WO2011030743A1 - レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法 - Google Patents

レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法 Download PDF

Info

Publication number
WO2011030743A1
WO2011030743A1 PCT/JP2010/065287 JP2010065287W WO2011030743A1 WO 2011030743 A1 WO2011030743 A1 WO 2011030743A1 JP 2010065287 W JP2010065287 W JP 2010065287W WO 2011030743 A1 WO2011030743 A1 WO 2011030743A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive power
lens system
cemented
positive refractive
Prior art date
Application number
PCT/JP2010/065287
Other languages
English (en)
French (fr)
Inventor
大下孝一
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201080039494.4A priority Critical patent/CN102483514B/zh
Priority to US13/395,234 priority patent/US8503110B2/en
Publication of WO2011030743A1 publication Critical patent/WO2011030743A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to a lens system, a wide-angle lens, an optical apparatus having this lens system, and a method for manufacturing the lens system.
  • this conventional retrofocus lens has a problem that the total lens length is large.
  • the present invention has been made in view of such problems, and is a compact lens system in which various aberrations are well corrected and excellent in optical performance, a wide-angle lens, an optical apparatus having the lens system, and a lens.
  • An object of the present invention is to provide a manufacturing method of the system.
  • the first aspect of the present invention includes, in order from the object side, a first lens composed of a negative meniscus lens having a convex surface facing the object side, a second lens having a positive refractive power, and a negative lens.
  • a third lens having refractive power is cemented, and a cemented lens component having positive refractive power as a whole, a fourth lens having negative refractive power, a fifth lens having positive refractive power, and positive refraction
  • a sixth lens having power and when the axial air space between the first lens and the second lens is d2, and the focal length of the first lens at the d-line is f1, the following formula (1 ) 0.01 ⁇ d2 / ( ⁇ f1) ⁇ 0.15 (1)
  • a lens system that satisfies the above conditions is provided.
  • the radius of curvature of the object-side lens surface of the first lens is r1
  • the radius of curvature of the image-side lens surface is r2
  • the following equation (2) ⁇ 5 ⁇ (r2 + r1) / (r2-r1) ⁇ 2 (2) It is preferable to satisfy the following conditions.
  • the focal length at the d-line of the front group consisting of the first lens and the cemented lens component is fa
  • the rear group consisting of the fourth lens, the fifth lens, and the sixth lens is fb
  • the focal length at the d-line is fb
  • the curvature radius of the image side lens surface of the fifth lens is rb and the curvature radius of the object side lens surface of the second lens is r3, the following equation (4) ) ⁇ 0.25 ⁇ (rb + r3) / (rb ⁇ r3) ⁇ 0.00 (4) It is preferable to satisfy the following conditions.
  • the axial air distance from the object-side lens surface of the first lens to the image-side lens surface of the sixth lens is D
  • the focal length of d-line of the entire system is where f is the following formula (5) 0.7 ⁇ D / f ⁇ 1.2 (5) It is preferable to satisfy the following conditions.
  • At least one lens surface of the sixth lens is an aspherical surface.
  • the fourth lens and the fifth lens are cemented.
  • the second aspect of the present invention provides a wide-angle lens having the configuration of the lens system according to the first aspect of the present invention.
  • the third aspect of the present invention provides an optical apparatus having the lens system according to the first aspect of the present invention.
  • a first lens composed of a negative meniscus lens having a convex surface directed toward the object side, a second lens having a positive refractive power, and a third lens having a negative refractive power
  • the radius of curvature of the object-side lens surface of the first lens is r1
  • the radius of curvature of the image-side lens surface is r2
  • the following equation (2) ⁇ 5 ⁇ (r2 + r1) / (r2-r1) ⁇ 2 (2) It is preferable to satisfy the following conditions.
  • the fourth aspect of the present invention it is preferable to have an aperture stop between the cemented lens component and the fourth lens.
  • the focal length of the front group consisting of the first lens and the cemented lens component at the d-line is fa, the fourth lens, the fifth lens, and the sixth lens.
  • the focal length of the rear group consisting of lenses at the d-line is fb, the following equation (3) 0.0 ⁇ fb / fa ⁇ 1.2 (3) It is preferable to satisfy the following conditions.
  • the curvature radius of the lens surface on the image side of the fifth lens is rb and the curvature radius of the lens surface on the object side of the second lens is r3, (4) ⁇ 0.25 ⁇ (rb + r3) / (rb ⁇ r3) ⁇ 0.00 (4) It is preferable to satisfy the following conditions.
  • the axial air space from the object-side lens surface of the first lens to the image-side lens surface of the sixth lens is D, and the focal length of the entire system is f.
  • a lens system, a wide-angle lens, an optical device having this lens system, and a method for manufacturing the lens system, which are small in size and have excellent correction of aberrations and excellent in optical performance, are obtained. be able to.
  • FIG. 1 is a cross-sectional view showing the configuration of the wide-angle lens according to the first embodiment.
  • FIG. 2 is a diagram of various aberrations in the infinite focus state in the first example.
  • FIG. 3 is a cross-sectional view showing the configuration of the wide-angle lens according to the second embodiment.
  • FIG. 4 is a diagram showing various aberrations in the infinite focus state in the second example.
  • FIG. 5 is a cross-sectional view showing the configuration of the wide-angle lens according to the third embodiment.
  • FIG. 6 is a diagram illustrating various aberrations in the infinitely focused state according to the third example.
  • FIG. 7 is a cross-sectional view showing a configuration of a wide-angle lens according to the fourth embodiment.
  • FIG. 8 is a diagram illustrating various aberrations in the infinitely focused state according to the fourth example.
  • FIG. 9 is a cross-sectional view showing the configuration of the wide-angle lens according to the fifth embodiment.
  • FIG. 10 is a diagram of various aberrations in the infinitely focused state according to the fifth example.
  • 11A and 11B show an electronic still camera equipped with a wide-angle lens according to this embodiment, FIG. 11A is a front view, and FIG. 11B is a rear view.
  • FIG. 12 is a cross-sectional view taken along the line AA ′ in FIG. 11A.
  • FIG. 13 is a flowchart for explaining the lens system manufacturing method according to the present embodiment.
  • the wide-angle lens WL having the lens system configuration of the present embodiment is a so-called retrofocus type lens having a five-group, six-element configuration, and in order from the object side, a negative meniscus with a convex surface facing the object side.
  • a first lens L1 composed of a lens, a second lens L2 having a positive refractive power, and a third lens L3 having a negative refractive power are cemented, and a cemented lens component CL1 having a positive refractive power as a whole, and a negative lens
  • the lens includes a fourth lens L4 having a refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a positive refractive power.
  • the wide-angle lens WL includes a first lens L1 and a cemented lens component CL1 as a front group FF, and a fourth lens L4, a fifth lens L5, and a sixth lens L6 as a rear group FR.
  • the wide-angle lens WL having five groups and six elements is described.
  • the present invention is not limited to this, and a retrofocus type lens having four groups and six elements may be used as shown in FIG.
  • the wide-angle lens WL has the following conditional expression when the axial air space between the first lens L1 and the second lens L2 is d2 and the focal length of the first lens L1 is f1. It is preferable to satisfy (1). 0.01 ⁇ d2 / ( ⁇ f1) ⁇ 0.15 (1)
  • Conditional expression (1) defines the ratio between the axial air distance d2 between the first lens L1 and the second lens L2 and the focal length f1 of the first lens L1. If the upper limit value of the conditional expression (1) is exceeded, the axial air distance d2 between the first lens L1 and the second lens L2 increases or the refractive power of the first lens L1 increases. It becomes difficult to correct the barrel distortion, which is a drawback of the focus lens. In addition, the size of the first lens L1 is increased, and the total length of the lens is increased. In order to secure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (1) to 0.05, and good performance can be obtained while downsizing.
  • conditional expression (1) if the lower limit value of conditional expression (1) is not reached, the first lens L1 and the second lens L2 are too close to each other, so that it is difficult to correct higher-order spherical aberration or the refraction of the first lens L1. Since the force is too small, the Petzval sum increases and it becomes difficult to maintain the flatness of the image plane, which is not preferable.
  • the radius of curvature of the object-side lens surface of the first lens L1 is r1
  • the radius of curvature of the image-side lens surface is r2
  • the following conditional expression (2) is satisfied. It is preferable to satisfy. ⁇ 5 ⁇ (r2 + r1) / (r2-r1) ⁇ 2 (2)
  • Conditional expression (2) defines the shape of the negative meniscus lens constituting the first lens L1. Exceeding the upper limit value of conditional expression (2) is not preferable because spherical aberration becomes insufficiently corrected and good optical performance cannot be obtained. On the other hand, if the lower limit of conditional expression (2) is not reached, the spherical aberration will be overcorrected, and it will not be possible to obtain good optical performance.
  • the wide-angle lens WL has an aperture stop S between the cemented lens component CL1 and the fourth lens L4. With this configuration, coma can be corrected well.
  • a lens frame may be used instead of a member as an aperture stop.
  • the focal length at the d-line of the front group FF composed of the first lens L1 and the cemented lens component CL1 is fa
  • the fourth lens L4 the fifth lens L5, and the sixth lens
  • fb is the focal length at the d-line of the rear group FR including the lens L6.
  • Conditional expression (3) is the ratio between the combined focal length fa of the front group FF from the first lens L1 to the third lens L3 and the combined focal length fb of the rear group FR from the fourth lens L4 to the sixth lens L6. It prescribes. If the upper limit value of conditional expression (3) is exceeded, the focal length fa of the front group FF is short, and the inclination of the light beam before and after the aperture stop S increases, leading to an increase in the lens diameter of the front group FF. This is not preferable because it is difficult to correct astigmatism at the maximum angle of view. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.6, and astigmatism can be corrected well.
  • conditional expression (3) if the lower limit value of conditional expression (3) is not reached, the refractive power of the second lens L2 is small, the focal length fa of the front group FF as a whole becomes long, and it is difficult to satisfactorily correct barrel distortion. Therefore, it is not preferable.
  • Conditional expression (4) defines the shape of the object side surface of the second lens L2 and the image side surface of the fifth lens L5. Even if the upper limit value of conditional expression (4) is exceeded or the lower limit value of conditional expression (4) is not reached, good correction of coma aberration over a wide angle of view cannot be obtained.
  • the axial air space from the object-side lens surface of the first lens L1 to the image-side lens surface of the sixth lens L6 is D, and the entire system of the wide-angle lens WL is It is preferable that the following conditional expression (5) is satisfied, where f is the focal length at the d-line. 0.7 ⁇ D / f ⁇ 1.2 (5)
  • Conditional expression (5) indicates that the axial air distance D from the object-side lens surface of the first lens L1 to the image-side lens surface of the sixth lens L6 and the focal length f of the wide-angle lens WL in the d-line of the entire system.
  • the ratio is defined.
  • Exceeding the upper limit of conditional expression (5) is not preferable because off-axis aberrations, particularly astigmatism, deteriorate.
  • the lower limit value of conditional expression (5) is not reached, correction of spherical aberration becomes difficult, which is not preferable.
  • the wide-angle lens WL according to the present embodiment can satisfactorily correct barrel distortion and spherical aberration by making at least one lens surface of the sixth lens L6 an aspherical surface.
  • the fourth lens L4 and the fifth lens L5 are cemented.
  • the on-axis air gap between the fourth lens L4 and the fifth lens L5 is highly sensitive to performance. Therefore, by joining the fourth lens L4 and the fifth lens L5, it is possible to obtain stable performance in manufacturing.
  • FIGS. 11A, 11B, and 12 show a configuration of an electronic still camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described wide-angle lens WL.
  • a camera an electronic still camera 1
  • a power button not shown
  • a shutter not shown of the photographing lens (wide-angle lens WL) is opened, and light from a subject (not shown) is condensed by the wide-angle lens WL and arranged on the image plane I.
  • the image is formed on the image pickup device C (for example, CCD or CMOS).
  • the subject image formed on the image sensor C is displayed on the liquid crystal monitor 2 disposed behind the camera 1.
  • the photographer determines the composition of the subject image while looking at the liquid crystal monitor 2, and then presses the release button 3 to photograph the subject image with the image sensor C and records and saves it in a memory (not shown).
  • the camera 1 includes an auxiliary light emitting unit 4 that emits auxiliary light when the subject is dark, and a wide (W) -telephone when zooming the wide-angle lens WL from the wide-angle end state (W) to the telephoto end state (T).
  • a (T) button 5 and function buttons 6 used for setting various conditions of the camera 1 are arranged.
  • the camera 1 may be a so-called single-lens reflex camera including a half mirror, a focusing screen, a pentaprism, an eyepiece optical system, and the like.
  • the wide-angle lens WL may be provided in an interchangeable lens that can be attached to and detached from a single-lens reflex camera.
  • a six-lens configuration is shown.
  • the above-described configuration conditions and the like can be applied to other lens configurations such as seven or eight.
  • a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image side may be used.
  • the lens group indicates a portion having at least one lens separated by an air interval that changes at the time of zooming.
  • a focusing lens group that performs focusing from an object at infinity to a near object by moving a single lens or a plurality of lenses, a lens group, or a partial lens group along the optical axis may be used.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor).
  • a motor for autofocus such as an ultrasonic motor.
  • the lens, lens group, or partial lens group is moved so as to have a component orthogonal to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake.
  • An anti-vibration lens group may be used.
  • the rear group FR (fourth to sixth lenses L4 to L6) is preferably an anti-vibration lens group.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • this aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, and a composite type in which resin is formed on the glass surface in an aspherical shape. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • each lens is prepared (step S100).
  • a negative meniscus lens having a convex surface facing the object side is arranged as the first lens L1, and a second lens L2 made of a biconvex lens and a second lens made up of a biconcave lens.
  • a cemented lens component CL1 having a positive refractive power as a whole is arranged by cementing the three lenses L3, a biconcave lens is arranged as the fourth lens L4, and a positive meniscus lens having a convex surface facing the image side.
  • the fifth lens L5 is arranged, and the biconvex lens is arranged as the sixth lens L6.
  • a lens system is manufactured by arranging the lenses thus prepared.
  • each lens is arranged (step S200).
  • FIGS. 1, 3, 5, 7, and 9 show lens configurations of the wide-angle lenses WL1 to WL5.
  • the wide-angle lenses WL1 and WL3 according to the first and third examples include a first lens L1 including a negative meniscus lens having a convex surface facing the object side in order from the object side, and a positive lens.
  • the fifth lens L5 has a positive refractive power
  • the sixth lens L6 has a positive refractive power.
  • the wide-angle lenses WL2, WL4, and WL5 according to the second, fourth, and fifth examples are, in order from the object side, the first lens L1 that is a negative meniscus lens having a convex surface facing the object side, and positive refractive power.
  • the first lens L1 to the third lens L3 constitute a front group FF
  • the fourth lens L4 to the sixth lens L6 constitute a rear group FR.
  • focusing from infinity to a close object is performed for the entire lens (first to sixth lenses L1 to L6) in the first to fourth embodiments, and to the rear group FR (fourth to sixth) in the fifth embodiment.
  • the lenses L4 to L6) are moved by moving along the optical axis.
  • the aperture stop S is located between the cemented lens CL1 and the fourth lens L4.
  • any lens surface of the sixth lens L6 closest to the image side is an aspherical surface.
  • the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance along the optical axis from the tangent plane of each vertex of the aspheric surface to each aspheric surface at height y.
  • FIG. 1 is a diagram illustrating a configuration of a wide-angle lens WL1 according to the first example.
  • the first lens L1 is a negative meniscus lens having a convex surface facing the object side.
  • the second lens L2 is composed of a biconvex lens
  • the third lens L3 is composed of a biconcave lens.
  • the second lens L2 and the third lens L3 are cemented to form a cemented lens component CL1.
  • the fourth lens L4 is a biconcave lens.
  • the fifth lens L5 is composed of a positive meniscus lens having a convex surface facing the image side.
  • the sixth lens L6 is a biconvex lens.
  • Table 1 below lists the values of the specifications of the first embodiment.
  • f represents the focal length of the entire system
  • Bf represents the back number
  • FNO represents the F number
  • Y represents the image height
  • 2 ⁇ represents the angle of view (the unit is “°”).
  • the surface number i refracts the order of the lens surfaces from the object side along the light traveling direction
  • the surface interval d refracts the distance on the optical axis from each optical surface to the next optical surface.
  • [Conditional Expression Corresponding Value] the corresponding value of each conditional expression is shown.
  • mm is generally used for the focal length, the radius of curvature, the surface interval, and other length units listed in all the following specifications, but the optical system is proportionally enlarged or reduced. However, it is not limited to this because the same optical performance can be obtained.
  • description of these codes symbols and description of a specification table are the same also in a subsequent example.
  • FIG. 2 shows various aberration diagrams in the infinite focus state in the first example.
  • the solid line represents the sagittal image plane
  • the broken line represents the meridional image plane
  • FNO represents the F number
  • Y represents the image height.
  • FIG. 3 is a diagram illustrating a configuration of the wide-angle lens WL2 according to the second example.
  • the first lens L1 is a negative meniscus lens having a convex surface facing the object side.
  • the second lens L2 is composed of a biconvex lens
  • the third lens L3 is composed of a biconcave lens.
  • the second lens L2 and the third lens L3 are cemented to form a cemented lens component CL1.
  • the fourth lens L4 is composed of a negative meniscus lens having a convex surface facing the image side
  • the fifth lens L5 is composed of a positive meniscus lens having a convex surface facing the image side
  • the sixth lens L6 is a biconvex lens.
  • FIG. 4 shows various aberration diagrams in the infinite focus state in the second example. As is apparent from the respective aberration diagrams, it can be seen that in the second embodiment, various aberrations are corrected well and the optical performance is excellent.
  • FIG. 5 is a diagram illustrating a configuration of the wide-angle lens WL3 according to the third example.
  • the first lens L1 is a negative meniscus lens having a convex surface facing the object side.
  • the second lens L2 is composed of a biconvex lens
  • the third lens L3 is composed of a biconcave lens.
  • the second lens L2 and the third lens L3 are cemented to form a cemented lens component CL1.
  • the fourth lens L4 is a biconcave lens.
  • the fifth lens L5 is composed of a positive meniscus lens having a convex surface facing the image side.
  • the sixth lens L6 is a biconvex lens.
  • FIG. 6 shows various aberration diagrams in the infinite focus state in the third example. As is apparent from each aberration diagram, it is understood that in the third example, various aberrations are corrected satisfactorily and the optical performance is excellent.
  • FIG. 7 is a diagram illustrating a configuration of a wide-angle lens WL4 according to the fourth example.
  • the first lens L1 is a negative meniscus lens having a convex surface facing the object side.
  • the second lens L2 is composed of a biconvex lens
  • the third lens L3 is composed of a biconcave lens.
  • the second lens L2 and the third lens L3 are cemented to form a cemented lens component CL1.
  • the fourth lens L4 is composed of a negative meniscus lens having a convex surface facing the image side
  • the fifth lens L5 is composed of a positive meniscus lens having a convex surface facing the image side
  • the sixth lens L6 is composed of a biconvex lens, and the object side surface (tenth surface) of the biconvex lens is an aspherical surface.
  • FIG. 8 shows various aberration diagrams in the infinitely focused state in the fourth example. As is apparent from the respective aberration diagrams, it is understood that various aberrations are corrected satisfactorily and the optical performance is excellent in the fourth example.
  • FIG. 9 is a diagram illustrating a configuration of a wide-angle lens WL5 according to the fifth example.
  • the first lens L1 is a negative meniscus lens having a convex surface facing the object side.
  • the second lens L2 is composed of a biconvex lens
  • the third lens L3 is composed of a biconcave lens.
  • the second lens L2 and the third lens L3 are cemented to form a cemented lens component CL1.
  • the fourth lens L4 is composed of a negative meniscus lens having a convex surface facing the image side
  • the fifth lens L5 is composed of a positive meniscus lens having a convex surface facing the image side
  • the sixth lens L6 is composed of a biconvex lens, and the image side surface (the eleventh surface) of the biconvex lens is an aspherical surface.
  • FIG. 10 shows various aberration diagrams in the infinite focus state in the fifth example. As is apparent from each aberration diagram, it is understood that various aberrations are corrected satisfactorily and the optical performance is excellent in the fifth example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズ(L1)と、正の屈折力を有する第2レンズ(L2)及び負の屈折力を有する第3レンズ(L3)とを接合し、全体として正の屈折力を有する接合レンズ成分(CL1)と、負の屈折力を有する第4レンズ(L4)と、正 の屈折力を有する第5レンズ(L5)と、正の屈折力を有する第6レンズ(L6)とで構成し、前記第1レンズ(L1)と前記第2レンズ(L2)との間の軸上空気間隔をd2とし、前記第1レンズ(L1)の焦点距離をf1としたとき、式 0.01 < d2/(-f1) < 0.15  の条件を満足するように構成することにより、小型で、各収差が良好に補正されて、光学性能に優れたレンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法を提供する。

Description

レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法
 本発明は、レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法に関する。
 従来、写真用広角レンズとして、最も物体側に配置されたレンズが負の屈折力を有する、いわゆるレトロフォーカス型レンズが知られている(例えば、特許文献1参照)。
特開2000-235145号公報
 しかしながら、この従来のレトロフォーカスレンズは、レンズ全長が大きいという課題があった。
 本発明はこのような課題に鑑みてなされたものであり、小型で、各収差が良好に補正されて、光学性能に優れたレンズ系、広角レンズ、このレンズ系を有する光学機器、及び、レンズ系の製造方法を提供することを目的とする。
 前記課題を解決するために、本発明の第1態様は、物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズと、正の屈折力を有する第2レンズと負の屈折力を有する第3レンズとを接合し、全体として正の屈折力を有する接合レンズ成分と、負の屈折力を有する第4レンズと、正の屈折力を有する第5レンズと、正の屈折力を有する第6レンズと、を有し、第1レンズと第2レンズとの間の軸上空気間隔をd2とし、第1レンズのd線における焦点距離をf1としたとき、次式(1)
0.01 < d2/(-f1) < 0.15         (1)
の条件を満足するレンズ系を提供する。
 また、本発明の第1態様によれば、第1レンズの物体側のレンズ面の曲率半径をr1、像側のレンズ面の曲率半径をr2としたとき、次式(2)
-5 < (r2+r1)/(r2-r1) < -2     (2)
の条件を満足することが好ましい。
 また、本発明の第1態様によれば、接合レンズ成分と第4レンズとの間に開口絞りを有することが好ましい。
 また、本発明の第1態様によれば、第1レンズ及び接合レンズ成分からなる前群のd線における焦点距離をfaとし、第4レンズ、第5レンズ、及び、第6レンズからなる後群のd線における焦点距離をfbとしたとき、次式(3)
0.0 < fb/fa < 1.2             (3)
の条件を満足することが好ましい。
 また、本発明の第1態様によれば、第5レンズの像側のレンズ面の曲率半径をrbとし、第2レンズの物体側のレンズ面の曲率半径をr3としたとき、次式(4)
-0.25 < (rb+r3)/(rb-r3) < 0.00 (4)
の条件を満足することが好ましい。
 また、本発明の第1態様によれば、第1レンズの物体側のレンズ面から第6レンズの像側のレンズ面までの軸上空気間隔をDとし、全系のd線における焦点距離をfとしたとき、次式(5)
0.7 < D/f < 1.2              (5)
の条件を満足することが好ましい。
 また、本発明の第1態様によれば、第6レンズの少なくとも一方のレンズ面が非球面であることが好ましい。
 また、本発明の第1態様によれば、第4レンズと第5レンズとが接合されていることが好ましい。
 本発明の第2態様は、本発明の第1態様に係るレンズ系の構成を有する広角レンズを提供する。
 本発明の第3態様は、本発明の第1態様に係るレンズ系を有する光学機器を提供する。
 本発明の第4態様は、物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズと、正の屈折力を有する第2レンズと負の屈折力を有する第3レンズとを接合した全体として正の屈折力を有する接合レンズ成分と、負の屈折力を有する第4レンズと、正の屈折力を有する第5レンズと、正の屈折力を有する第6レンズとを、第1レンズと第2レンズとの間の軸上空気間隔をd2とし、第1レンズのd線における焦点距離をf1としたとき、次式(1)
0.01 < d2/(-f1) < 0.15      (1)
の条件を満足するように配置することを特徴とするレンズ系の製造方法を提供する。
 また、本発明の第4態様によれば、前記第1レンズの物体側のレンズ面の曲率半径をr1、像側のレンズ面の曲率半径をr2としたとき、次式(2)
-5 < (r2+r1)/(r2-r1) < -2    (2)
の条件を満足することが好ましい。
 また、本発明の第4態様によれば、前記接合レンズ成分と前記第4レンズとの間に開口絞りを有することが好ましい。
 また、本発明の第4態様によれば、前記第1レンズ及び前記接合レンズ成分からなる前群のd線における焦点距離をfaとし、前記第4レンズ、前記第5レンズ、及び、前記第6レンズからなる後群のd線における焦点距離をfbとしたとき、次式(3)
0.0 < fb/fa < 1.2            (3)
の条件を満足することが好ましい。
 また、本発明の第4態様によれば、前記第5レンズの像側のレンズ面の曲率半径をrbとし、前記第2レンズの物体側のレンズ面の曲率半径をr3としたとき、次式(4)
-0.25 < (rb+r3)/(rb-r3) < 0.00 (4)
の条件を満足することが好ましい。
 また、本発明の第4態様によれば、前記第1レンズの物体側のレンズ面から前記第6レンズの像側のレンズ面までの軸上空気間隔をDとし、全系の焦点距離をfとしたとき、次式(5)
0.7 < D/f < 1.2           (5)
の条件を満足することが好ましい。
 本発明を以上のように構成すると、小型で、各収差が良好に補正されて、光学性能に優れたレンズ系、広角レンズ、このレンズ系を有する光学機器、及び、レンズ系の製造方法を得ることができる。
図1は、第1実施例による広角レンズの構成を示す断面図である。 図2は、第1実施例の無限遠合焦状態の諸収差図である。 図3は、第2実施例による広角レンズの構成を示す断面図である。 図4は、第2実施例の無限遠合焦状態の諸収差図である。 図5は、第3実施例による広角レンズの構成を示す断面図である。 図6は、第3実施例の無限遠合焦状態の諸収差図である。 図7は、第4実施例による広角レンズの構成を示す断面図である。 図8は、第4実施例の無限遠合焦状態の諸収差図である。 図9は、第5実施例による広角レンズの構成を示す断面図である。 図10は、第5実施例の無限遠合焦状態の諸収差図である。 図11A、11Bは、本実施形態に係る広角レンズを搭載する電子スチルカメラを示し、図11Aは正面図であり、図11Bは背面図である。 図12は、図11AのA-A′線に沿った断面図である。 図13は、本実施形態に係るレンズ系の製造方法を説明するためのフローチャートである。
 以下、本願の好ましい実施形態について図面を参照して説明する。本実施形態のレンズ系の構成を有する広角レンズWLは、図1に示すように、5群6枚構成のいわゆるレトロフォーカス型レンズであり、物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズL1と、正の屈折力を有する第2レンズL2及び負の屈折力を有する第3レンズL3を接合し、全体として正の屈折力を有する接合レンズ成分CL1と、負の屈折力を有する第4レンズL4と、正の屈折力を有する第5レンズL5と、正の屈折力を有する第6レンズL6と、を有して構成される。また、この広角レンズWLは、第1レンズL1及び接合レンズ成分CL1を前群FFとし、第4レンズL4、第5レンズL5、及び、第6レンズL6を後群FRとしている。この構成により、小型で、各収差が良好に補正されて、光学性能に優れた広角レンズWLを得ることができる。なお、ここでは5群6枚構成の広角レンズWLについて説明しているが、これに限定されることはなく、図3に示すように、4群6枚構成のレトロフォーカス型レンズとしても良い。
 また、本実施形態に係る広角レンズWLは、第1レンズL1と第2レンズL2との間の軸上空気間隔をd2とし、第1レンズL1の焦点距離をf1としたとき、以下の条件式(1)を満足することが好ましい。
0.01 < d2/(-f1) < 0.15     (1)
 条件式(1)は、第1レンズL1と第2レンズL2との間の軸上空気間隔d2と、第1レンズL1の焦点距離f1との比を規定するものである。この条件式(1)の上限値を上回ると、第1レンズL1と第2レンズL2との間の軸上空気間隔d2が増大するか、第1レンズL1の屈折力が増大するために、レトロフォーカス型レンズの欠点である、たる型歪曲収差の補正が困難となる。また、第1レンズL1の大型化やレンズ全長の増大も招くため好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を0.05にすることが好ましく、小型化しながら良好な性能を得ることができる。反対に、条件式(1)の下限値を下回ると、第1レンズL1と第2レンズL2とが接近しすぎるため、高次の球面収差の補正が困難となるか、第1レンズL1の屈折力が小さすぎるため、ペッツバール和が増大し、像面の平坦性を保つことが困難となるため好ましくない。
 また、本実施形態に係る広角レンズWLは、第1レンズL1の物体側のレンズ面の曲率半径をr1、像側のレンズ面の曲率半径をr2としたとき、以下の条件式(2)を満足することが好ましい。
-5 < (r2+r1)/(r2-r1) < -2  (2)
 条件式(2)は、第1レンズL1を構成する負メニスカスレンズの形状を規定するものである。この条件式(2)の上限値を上回ると、球面収差が補正不足となり、良好な光学性能を得ることができなくなるため好ましくない。反対に、条件式(2)の下限値を下回ると、球面収差が補正過剰となり、良好な光学性能を得ることができなくなるため好ましくない。
 また、本実施形態に係る広角レンズWLは、接合レンズ成分CL1と第4レンズL4との間に、開口絞りSを有することが望ましい。この構成により、コマ収差を良好に補正することができる。また、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 また、本実施形態に係る広角レンズWLは、第1レンズL1及び接合レンズ成分CL1からなる前群FFのd線における焦点距離をfaとし、第4レンズL4、第5レンズL5、及び、第6レンズL6からなる後群FRのd線における焦点距離をfbとしたとき、以下の条件式(3)を満足することが好ましい。
0.0 < fb/fa < 1.2   (3)
 条件式(3)は、第1レンズL1から第3レンズL3までの前群FFの合成焦点距離faと、第4レンズL4から第6レンズL6までの後群FRの合成焦点距離fbとの比率を規定するものである。この条件式(3)の上限値を上回ると、前群FFの焦点距離faが短く、開口絞りS前後での光線の傾きが大きくなるため、前群FFのレンズ径の大型化を招き、また最大画角での非点収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を0.6にすることが好ましく、非点収差の良好な補正が可能となる。反対に、条件式(3)の下限値を下回ると、第2レンズL2の屈折力が小さく、全体として前群FFの焦点距離faが長くなり、たる型歪曲収差の良好な補正が困難であるため好ましくない。
 また、本実施形態に係る広角レンズWLは、第5レンズL5の像側のレンズ面の曲率半径をrbとし、第2レンズL2の物体側のレンズ面の曲率半径をr3としたとき、以下の条件式(4)を満足することが好ましい。
-0.25 < (rb+r3)/(rb-r3) < 0.00 (4)
 条件式(4)は、第2レンズL2の物体側面及び、第5レンズL5の像側面の形状を規定するものである。この条件式(4)の上限値を上回っても、条件式(4)の下限値を下回っても、広い画角にわたるコマ収差の良好な補正を得ることができないため好ましくない。
 また、本実施形態に係る広角レンズWLは、第1レンズL1の物体側のレンズ面から第6レンズL6の像側のレンズ面までの軸上空気間隔をDとし、広角レンズWLの全系のd線における焦点距離をfとしたとき、以下の条件式(5)を満足することが好ましい。
0.7 < D/f < 1.2  (5)
 条件式(5)は、第1レンズL1の物体側のレンズ面から第6レンズL6の像側のレンズ面までの軸上空気間隔Dと、広角レンズWLの全系のd線における焦点距離fとの比率を規定するものである。この条件式(5)の上限値を上回ると、軸外の収差、特に非点収差が悪化するため好ましくない。反対に、条件式(5)の下限値を下回ると、球面収差の補正が難しくなるため好ましくない。
 また、本実施形態に係る広角レンズWLは、第6レンズL6の少なくとも一方のレンズ面を非球面とすることにより、たる型歪曲収差と球面収差との良好な補正が可能となる。
 また、本実施形態に係る広角レンズWLは、第4レンズL4と第5レンズL5とが接合されていることが望ましい。本実施形態の広角レンズWLでは、第4レンズL4と第5レンズL5との間の軸上空気間隔は性能に対する敏感度が高い。そのため、第4レンズL4と第5レンズL5とを接合することによって、製造上安定した性能を得ることができる。
 図11A、11B、及び図12に、上述の広角レンズWLを備える光学機器として、電子スチルカメラ1(以後、単にカメラと記す)の構成を示す。このカメラ1は、不図示の電源ボタンを押すと撮影レンズ(広角レンズWL)の不図示のシャッタが開放され、広角レンズWLで不図示の被写体からの光が集光され、像面Iに配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、カメラ1の背後に配置された液晶モニター2に表示される。撮影者は、液晶モニター2を見ながら被写体像の構図を決めた後、レリーズボタン3を押し下げ被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。
 このカメラ1には、被写体が暗い場合に補助光を発光する補助光発光部4、広角レンズWLを広角端状態(W)から望遠端状態(T)にズーミングする際のワイド(W)-テレ(T)ボタン5、及び、カメラ1の種々の条件設定等に使用するファンクションボタン6等が配置されている。なお、このカメラ1は、ハーフミラー、焦点板、ペンタプリズム、接眼光学系などを備える、いわゆる一眼レフカメラとしてもよい。また、広角レンズWLは、一眼レフカメラに着脱可能な交換レンズに備えられるものとしてもよい。
 なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 まず、上述の説明及び以降に示す実施例においては、6枚構成を示したが、以上の構成条件等は、7枚、8枚等の他のレンズ構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、単独または複数のレンズ、レンズ群、または部分レンズ群を光軸に沿って移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、後群FR(第4~第6レンズL4~L6)、またはレンズ全体を合焦レンズ群とするのが望ましい。また、第6レンズL6のみを合焦レンズ群としても良い。
 レンズ、レンズ群または部分レンズ群を光軸と直交方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に、後群FR(第4~第6レンズL4~L6)を防振レンズ群とするのが好ましい。
 また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。また、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。
 以下、本実施形態に係るレンズ系の製造方法の概略を、図13を参照して説明する。まず、各レンズをそれぞれ準備する(ステップS100)。具体的に、本実施形態では、例えば、物体側より順に、物体側に凸面を向けた負メニスカスレンズを配置して第1レンズL1とし、両凸レンズからなる第2レンズL2と両凹レンズからなる第3レンズL3とを接合して配置することで、全体として正の屈折力を有する接合レンズ成分CL1とし、両凹レンズを配置して第4レンズL4とし、像側に凸面を向けた正メニスカスレンズを配置して第5レンズL5とし、両凸レンズを配置して第6レンズL6とする。このようにして準備した各レンズを配置してレンズ系を製造する。
 この際に、第1レンズL1と第2レンズL2との間の軸上空気間隔をd2とし、第1レンズL1の焦点距離をf1としたとき、前出の条件式(1)を満足するよう各レンズを配置する(ステップS200)。
 以下、本願の各実施例を、添付図面に基づいて説明する。図1、図3、図5、図7及び図9に、広角レンズWL1~WL5のレンズ構成を示す。第1、第3実施例に係る広角レンズWL1,WL3は、図1及び図5に示すように、物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズL1と、正の屈折力を有する第2レンズL2及び負の屈折力を有する第3レンズL3を接合し、全体として正の屈折力を有する接合レンズ成分CL1と、負の屈折力を有する第4レンズL4と、正の屈折力を有する第5レンズL5と、正の屈折力を有する第6レンズL6と、から構成されている。一方、第2、第4及び第5実施例に係る広角レンズWL2,WL4,WL5は、物体側より順に、物体側に凸面を向けた負メニスカスレンズからなる第1レンズL1と、正の屈折力を有する第2レンズL2及び負の屈折力を有する第3レンズL3を接合し、全体として正の屈折力を有する接合レンズ成分CL1と、負の屈折力を有する第4レンズL4及び正の屈折力を有する第5レンズL5を接合した接合レンズ成分CL2と、正の屈折力を有する第6レンズL6と、から構成されている。また、各実施例の広角レンズWL1~WL6では、第1レンズL1から第3レンズL3までが前群FFを構成し、第4レンズL4から第6レンズL6までが後群FRを構成している。
 また、無限遠から近距離物体までの合焦は、第1~第4実施例ではレンズ全体(第1~第6レンズL1~L6)を、第5実施例では後群FR(第4~第6レンズL4~L6)を、それぞれ光軸に沿って移動することにより行う。開口絞りSは、接合レンズCL1と第4レンズL4との間に位置する。
 第4及び第5実施例においては、最も像側の第6レンズL6の何れかのレンズ面が非球面である。第4及び第5実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E-n」は「×10-n」を示す。また、これらの実施例の表中において、非球面には面番号の左側に*印を付している。
S(y)=(y2/r)/{1+(1-κ×y2/r21/2
    +A4×y4+A6×y6+A8×y8+A10×y10  (a)
〔第1実施例〕
 図1は、第1実施例に係る広角レンズWL1の構成を示す図である。この図1の広角レンズWL1において、第1レンズL1は、物体側に凸面を向けた負メニスカスレンズで構成されている。第2レンズL2は、両凸レンズで構成され、第3レンズL3は、両凹レンズで構成され、この第2レンズL2及び第3レンズL3を接合して接合レンズ成分CL1を構成している。第4レンズL4は、両凹レンズで構成されている。第5レンズL5は、像側に凸面を向けた正メニスカスレンズで構成されている。第6レンズL6は、両凸レンズで構成されている。
 以下の表1に、第1実施例の諸元の値を掲げる。[諸元値]において、fは全系の焦点距離、Bfはバックナンバー、FNOはFナンバー、Yは像高、2ωは画角(単位は「°」)をそれぞれ表している。[レンズデータ]において、面番号iは光線の進行する方向に沿った物体側からのレンズ面の順序を、面間隔dは各光学面から次の光学面までの光軸上の距離を、屈折率nd及びアッベ数νdはそれぞれd線(λ=587.6nm)に対する値を示している。[条件式対応値]において、各条件式の対応値を示す。ここで、以下の全ての諸元値において掲載されている焦点距離、曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。尚、曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000は省略してある。なお、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。
(表1)
[諸元値]
f= 24.600
Bf= 25.917
FNO= 2.89
Y= 14.2
2ω= 61.08

[レンズデータ]
 i     r        d      νd    nd
 1   19.2360 1.4000 63.38 1.618000
 2    8.9976 3.0000
 3   16.9627 4.0000 40.94 1.806100
 4   -15.0170 1.2000 38.02 1.603420
 5   44.6376 1.4000
 6    ∞   3.6000         (開口絞りS)
 7   -14.2114 1.2000 25.43 1.805180
 8   94.3840 0.6000
 9   -54.4047 3.5000 53.85 1.713000
 10   -10.6526 0.1000
 11   54.8584 2.5000 50.24 1.720000
 12   -77.9901  (Bf)

[条件式対応値]
(1)d2/(-f1)=0.104
(2)(r2+r1)/(r2-r1)=-2.758
(3)fb/fa=0.545
(4)(rb+r3)/(rb-r3)=-0.229
(5)D/f=0.915
 第1実施例における無限遠合焦状態の諸収差図を図2に示す。各収差図において、非点収差図中の実線はサジタル像面を、破線はメリディオナル像面を示し、FNOはFナンバーを、Yは像高を表す。また、各収差図中でd、g、C、Fはそれぞれd線(λ=587.6nm)、g線(λ=435.6nm)、C線(λ=656.3nm)、F線(λ=486.1nm)における収差を表す。各収差図から明らかなように、第1実施例では諸収差が良好に補正され、優れた光学性能を有することがわかる。
〔第2実施例〕
 図3は、第2実施例に係る広角レンズWL2の構成を示す図である。この図3の広角レンズWL2において、第1レンズL1は、物体側に凸面を向けた負メニスカスレンズで構成されている。第2レンズL2は、両凸レンズで構成され、第3レンズL3は、両凹レンズで構成され、この第2レンズL2及び第3レンズL3を接合して接合レンズ成分CL1を構成している。第4レンズL4は、像側に凸面を向けた負メニスカスレンズで構成され、第5レンズL5は、像側に凸面を向けた正メニスカスレンズで構成され、この第4レンズL4と第5レンズL5とを接合して接合レンズ成分CL2を構成している。第6レンズL6は、両凸レンズで構成されている。
 以下の表2に、第2実施例の諸元の値を掲げる。
(表2)
[諸元値]
f= 24.600
Bf= 23.689
FNO= 2.83
Y= 14.2
2ω= 61.56

[レンズデータ]
 i     r        d      νd    nd
 1   13.3184 1.4000 63.38 1.618000
 2    8.1256 1.2000
 3   13.2157 4.0000 40.94 1.806100
 4   -17.4639 1.2000 38.02 1.603420
 5   14.3964 1.6000
 6    ∞   3.4000         (開口絞りS)
 7   -11.8126 1.2000 25.43 1.805180
 8  -104.9584 3.8000 53.85 1.713000
 9   -10.7791 0.1000
 10 -12052.4180 2.6000 50.24 1.720000
 11   -28.0872  (Bf)

[条件式対応値]
(1)d2/(-f1)=0.032
(2)(r2+r1)/(r2-r1)=-4.130
(3)fb/fa=0.179
(4)(rb+r3)/(rb-r3)=-0.102
(5)D/f=0.833
 第2実施例における無限遠合焦状態の諸収差図を図4に示す。各収差図から明らかなように、第2実施例では諸収差が良好に補正され、優れた光学性能を有することがわかる。
〔第3実施例〕
 図5は、第3実施例に係る広角レンズWL3の構成を示す図である。この図5の広角レンズWL3において、第1レンズL1は、物体側に凸面を向けた負メニスカスレンズで構成されている。第2レンズL2は、両凸レンズで構成され、第3レンズL3は、両凹レンズで構成され、この第2レンズL2及び第3レンズL3を接合して接合レンズ成分CL1を構成している。第4レンズL4は、両凹レンズで構成されている。第5レンズL5は、像側に凸面を向けた正メニスカスレンズで構成されている。第6レンズL6は、両凸レンズで構成されている。
 以下の表3に、第3実施例の諸元の値を掲げる。
(表3)
[諸元値]
f= 24.600
Bf= 25.182
FNO= 2.08
Y= 14.2
2ω= 61.09 

[レンズデータ]
 i     r        d      νd    nd
 1   25.5121 1.4000 63.38 1.618000
 2   10.8774 4.4000
 3   17.9543 5.0000 40.94 1.806100
 4   -17.7814 1.2000 36.26 1.620040
 5   180.4056 1.4000
 6    ∞   3.6000         (開口絞りS)
 7   -14.8153 1.2000 25.43 1.805180
 8   52.9664 0.9000
 9   -49.0872 3.8000 53.85 1.713000
 10   -11.7932 0.1000
 11   46.6789 2.8000 50.24 1.720000
 12   -70.7593  (Bf)

[条件式対応値]
(1)d2/(-f1)=0.138
(2)(r2+r1)/(r2-r1)=-2.487
(3)fb/fa=1.062
(4)(rb+r3)/(rb-r3)=-0.207
(5)D/f=1.049
 第3実施例における無限遠合焦状態の諸収差図を図6に示す。各収差図から明らかなように、第3実施例では諸収差が良好に補正され、優れた光学性能を有することがわかる。
〔第4実施例〕
 図7は、第4実施例に係る広角レンズWL4の構成を示す図である。この図7の広角レンズWL4において、第1レンズL1は、物体側に凸面を向けた負メニスカスレンズで構成されている。第2レンズL2は、両凸レンズで構成され、第3レンズL3は、両凹レンズで構成され、この第2レンズL2及び第3レンズL3を接合して接合レンズ成分CL1を構成している。第4レンズL4は、像側に凸面を向けた負メニスカスレンズで構成され、第5レンズL5は、像側に凸面を向けた正メニスカスレンズで構成され、この第4レンズL4と第5レンズL5とを接合して接合レンズ成分CL2を構成している。第6レンズL6は、両凸レンズで構成され、両凸レンズの物体側の面(第10面)が非球面である。
 以下の表4に、第4実施例の諸元の値を掲げる。
(表4)
[諸元値]
f= 24.600
Bf= 25.106
FNO= 2.87
Y= 14.2
2ω= 61.15

[レンズデータ]
 i     r        d      νd    nd
 1   14.6010 1.2000 63.38 1.618000
 2    7.9456 1.2000
 3   14.3813 3.6000 40.94 1.806100
 4   -15.6036 1.0000 38.02 1.603420
 5   19.6400 1.4000
 6    ∞   3.6000         (開口絞りS)
 7   -10.9913 1.0000 25.43 1.805180
 8   -57.2447 4.0000 53.85 1.713000
 9   -9.5054 0.1000
*10   69.2380 2.4000 53.22 1.693500
 11   -98.3892  (Bf)

[非球面データ] 
面番号= 10
κ= -61.7366 
A4=  0.00000E+00
A6= -8.39050E-08 
A8=  0.00000E+00 
A10= 0.00000E+00

[条件式対応値]
(1)d2/(-f1)=0.040
(2)(r2+r1)/(r2-r1)=-3.388
(3)fb/fa=0.182
(4)(rb+r3)/(rb-r3)=-0.204
(5)D/f=0.793
 第4実施例における無限遠合焦状態の諸収差図を図8に示す。各収差図から明らかなように、第4実施例では諸収差が良好に補正され、優れた光学性能を有することがわかる。
〔第5実施例〕
 図9は、第5実施例に係る広角レンズWL5の構成を示す図である。この図9の広角レンズWL5において、第1レンズL1は、物体側に凸面を向けた負メニスカスレンズで構成されている。第2レンズL2は、両凸レンズで構成され、第3レンズL3は、両凹レンズで構成され、この第2レンズL2及び第3レンズL3を接合して接合レンズ成分CL1を構成している。第4レンズL4は、像側に凸面を向けた負メニスカスレンズで構成され、第5レンズL5は、像側に凸面を向けた正メニスカスレンズで構成され、この第4レンズL4と第5レンズL5とを接合して接合レンズ成分CL2を構成している。第6レンズL6は、両凸レンズで構成され、両凸レンズの像側の面(第11面)が非球面である。
 以下の表5に、第5実施例の諸元の値を掲げる。
(表10)
[諸元値]
f= 24.600
Bf= 24.965
FNO= 2.80
Y= 14.2
2ω= 61.32 

[レンズデータ]
 i     r        d      νd    nd
 1   19.9408 1.2000 63.38 1.618000
 2    9.9956 1.2000
 3   13.6758 3.6000 40.94 1.806100
 4   -19.1927 1.0000 38.02 1.603420
 5   20.5406 1.2000
 6    ∞   4.6000         (開口絞りS)
 7   -8.2347 1.0000 25.43 1.805180
 8   -28.5271 3.6000 53.85 1.713000
 9   -9.9156 0.1000
 10   275.9669 2.8000 53.22 1.693500
*11   -22.5820  (Bf)

[非球面データ] 
面番号= 11
κ= -0.5188 
A4=  0.00000E+00
A6= 6.60150E-08 
A8=  0.00000E+00 
A10= 0.00000E+00

[条件式対応値]
(1)d2/(-f1)=0.035
(2)(r2+r1)/(r2-r1)=-3.010
(3)fb/fa=0.350
(4)(rb+r3)/(rb-r3)=-0.159
(5)D/f=0.825
 第5実施例における無限遠合焦状態の諸収差図を図10に示す。各収差図から明らかなように、第5実施例では諸収差が良好に補正され、優れた光学性能を有することがわかる。

Claims (16)

  1.  物体側より順に、
     物体側に凸面を向けた負メニスカスレンズからなる第1レンズと、
     正の屈折力を有する第2レンズと負の屈折力を有する第3レンズとを接合し、全体として正の屈折力を有する接合レンズ成分と、
     負の屈折力を有する第4レンズと、
     正の屈折力を有する第5レンズと、
     正の屈折力を有する第6レンズとを有し、
     前記第1レンズと前記第2レンズとの間の軸上空気間隔をd2とし、前記第1レンズの焦点距離をf1としたとき、次式
    0.01 < d2/(-f1) < 0.15
    の条件を満足するレンズ系。
  2.  前記第1レンズの物体側のレンズ面の曲率半径をr1、像側のレンズ面の曲率半径をr2としたとき、次式
    -5 < (r2+r1)/(r2-r1) < -2
    の条件を満足する請求項1に記載のレンズ系。
  3.  前記接合レンズ成分と前記第4レンズとの間に開口絞りを有する請求項1記載のレンズ系。
  4.  前記第1レンズ及び前記接合レンズ成分からなる前群のd線における焦点距離をfa、前記第4レンズ、前記第5レンズ、及び、前記第6レンズからなる後群のd線における焦点距離をfbとしたとき、次式
    0.0 < fb/fa < 1.2
    の条件を満足する請求項1記載のレンズ系。
  5.  前記第5レンズの像側のレンズ面の曲率半径をrbとし、前記第2レンズの物体側のレンズ面の曲率半径をr3としたとき、次式
    -0.25 < (rb+r3)/(rb-r3) < 0.00
    の条件を満足する請求項1記載のレンズ系。
  6.  前記第1レンズの物体側のレンズ面から前記第6レンズの像側のレンズ面までの軸上空気間隔をDとし、全系の焦点距離をfとしたとき、次式
    0.7 < D/f < 1.2
    の条件を満足する請求項1記載のレンズ系。
  7.  前記第6レンズの少なくとも一方のレンズ面が非球面である請求項1記載のレンズ系。
  8.  前記第4レンズと前記第5レンズとが接合されている請求項1記載のレンズ系。
  9.  請求項1記載のレンズ系の構成を有する広角レンズ。
  10.  請求項1記載のレンズ系を有する光学機器。
  11.  物体側より順に、
     物体側に凸面を向けた負メニスカスレンズからなる第1レンズと、
     正の屈折力を有する第2レンズと負の屈折力を有する第3レンズとを接合し、全体として正の屈折力を有する接合レンズ成分と、
     負の屈折力を有する第4レンズと、
     正の屈折力を有する第5レンズと、
     正の屈折力を有する第6レンズとを配置し、
     前記第1レンズと前記第2レンズとの間の軸上空気間隔をd2とし、前記第1レンズのd線における焦点距離をf1としたとき、次式
    0.01 < d2/(-f1) < 0.15
    の条件を満足するように配置するレンズ系の製造方法。
  12.  前記第1レンズの物体側のレンズ面の曲率半径をr1、像側のレンズ面の曲率半径をr2としたとき、次式
    -5 < (r2+r1)/(r2-r1) < -2
    の条件を満足する請求項11に記載のレンズ系の製造方法。
  13.  前記接合レンズ成分と前記第4レンズとの間に開口絞りを有する請求項11記載のレンズ系の製造方法。
  14.  前記第1レンズ及び前記接合レンズ成分からなる前群のd線における焦点距離をfaとし、前記第4レンズ、前記第5レンズ、及び、前記第6レンズからなる後群のd線における焦点距離をfbとしたとき、次式
    0.0 < fb/fa < 1.2
    の条件を満足する請求項11記載のレンズ系の製造方法。
  15.  前記第5レンズの像側のレンズ面の曲率半径をrbとし、前記第2レンズの物体側のレンズ面の曲率半径をr3としたとき、次式
    -0.25 < (rb+r3)/(rb-r3) < 0.00
    の条件を満足する請求項11記載のレンズ系の製造方法。
  16.  前記第1レンズの物体側のレンズ面から前記第6レンズの像側のレンズ面までの軸上空気間隔をDとし、全系の焦点距離をfとしたとき、次式
    0.7 < D/f < 1.2
    の条件を満足する請求項11記載のレンズ系の製造方法。
PCT/JP2010/065287 2009-09-09 2010-09-07 レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法 WO2011030743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080039494.4A CN102483514B (zh) 2009-09-09 2010-09-07 镜头系统、广角镜头、配备有镜头系统的光学设备,和用于制造镜头系统的方法
US13/395,234 US8503110B2 (en) 2009-09-09 2010-09-07 Lens system, wide-angle lens, optical apparatus equipped with lens system, and method for manufacturing lens system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-207778 2009-09-09
JP2009207778A JP5510634B2 (ja) 2009-09-09 2009-09-09 広角レンズ、及び、この広角レンズを有する光学機器

Publications (1)

Publication Number Publication Date
WO2011030743A1 true WO2011030743A1 (ja) 2011-03-17

Family

ID=43732415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065287 WO2011030743A1 (ja) 2009-09-09 2010-09-07 レンズ系、広角レンズ、このレンズ系を有する光学機器、及びレンズ系の製造方法

Country Status (4)

Country Link
US (1) US8503110B2 (ja)
JP (1) JP5510634B2 (ja)
CN (1) CN102483514B (ja)
WO (1) WO2011030743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917907A (zh) * 2011-11-09 2014-07-09 富士胶片株式会社 摄像透镜及摄像装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580687B2 (ja) * 2010-08-05 2014-08-27 オリンパス株式会社 広角光学系及びそれを用いた撮像装置
JP5751084B2 (ja) * 2011-08-11 2015-07-22 リコーイメージング株式会社 超広角レンズ系
JP5932268B2 (ja) * 2011-09-06 2016-06-08 キヤノン株式会社 光学系及びそれを有する撮像装置
CN103917908B (zh) 2011-11-09 2016-05-18 富士胶片株式会社 摄像透镜以及摄像装置
CN104024909B (zh) 2011-12-27 2016-05-04 富士胶片株式会社 摄像透镜以及摄像装置
CN104011576B (zh) 2011-12-27 2016-04-13 富士胶片株式会社 摄像透镜和摄像装置
EP2799923B1 (en) 2011-12-27 2016-10-19 FUJIFILM Corporation Imaging lens and imaging device
JP5655164B2 (ja) 2011-12-27 2015-01-14 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5959894B2 (ja) 2012-03-28 2016-08-02 キヤノン株式会社 光学系及びそれを有する撮像装置
JP5891912B2 (ja) * 2012-04-04 2016-03-23 株式会社ニコン 光学系、光学装置
US9606330B2 (en) 2013-05-09 2017-03-28 Fujifilm Corporation Imaging lens and imaging apparatus
US9104009B2 (en) * 2013-12-20 2015-08-11 Genius Electronic Optical Co., Ltd. Optical imaging system and electronic apparatus including the same
TWI561852B (en) * 2014-04-11 2016-12-11 Six-piece wide-angle lens module
KR101820952B1 (ko) * 2015-03-11 2018-03-09 에이에이씨 어쿠스틱 테크놀로지스(심천)컴퍼니 리미티드 촬영 렌즈계
CN111796396B (zh) * 2015-12-24 2022-03-04 宁波舜宇车载光学技术有限公司 光学成像镜头及其透镜组
US10437021B1 (en) 2016-09-28 2019-10-08 Alex Ning High performance lenses
US10641993B1 (en) 2017-01-19 2020-05-05 Alex Ning Compact wide angle lens with low distortion
CN108663774B (zh) 2017-03-31 2020-10-27 宁波舜宇车载光学技术有限公司 光学镜头和成像设备
TWI704388B (zh) * 2017-05-03 2020-09-11 大陸商信泰光學(深圳)有限公司 望遠鏡頭
JP2018036665A (ja) * 2017-11-01 2018-03-08 株式会社ニコン 光学系、光学機器及び光学系の製造方法
US10935761B1 (en) 2018-03-22 2021-03-02 Alex Ning Large aperture compact lenses
CN110376709A (zh) * 2018-04-13 2019-10-25 甘肃智呈网络科技有限公司 一种定焦成像镜头
CN108594408B (zh) * 2018-04-13 2020-06-05 北京理工大学 半球空间可见光十五倍连续大变焦光学系统
US11181725B1 (en) 2018-11-09 2021-11-23 Alex Ning Wide-angle hyperspectral lenses
CN110208927B (zh) * 2019-07-12 2024-04-23 浙江舜宇光学有限公司 光学成像镜头
TWI735013B (zh) * 2019-07-26 2021-08-01 光芒光學股份有限公司 定焦取像鏡頭
CN112334812A (zh) * 2019-08-20 2021-02-05 深圳市大疆创新科技有限公司 透镜系统、摄像装置及移动体
RU2745899C1 (ru) * 2020-07-30 2021-04-02 Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ Широкоугольный светосильный объектив
CN113238345B (zh) * 2021-05-25 2022-05-20 天津欧菲光电有限公司 光学系统、取像装置、电子设备及载具
CN116027520B (zh) * 2023-03-30 2023-06-20 深圳市东正光学技术股份有限公司 光学成像系统及光学成像设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251115A (ja) * 1988-08-12 1990-02-21 Nikon Corp レトロフォーカス型広角レンズ
JPH02277015A (ja) * 1989-04-19 1990-11-13 Olympus Optical Co Ltd 内視鏡対物光学系
JPH08166538A (ja) * 1994-12-14 1996-06-25 Konica Corp レトロフォーカス型レンズ
JP2000235145A (ja) * 1999-02-15 2000-08-29 Asahi Optical Co Ltd 広角レンズ
JP2010186011A (ja) * 2009-02-12 2010-08-26 Olympus Imaging Corp 広角光学系及びそれを用いた撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849918A (en) * 1954-04-17 1958-09-02 Carl Zeiss Of Heidenheim Photographic objective
JPS5444519A (en) 1977-09-14 1979-04-09 Canon Inc Wide angle leins
US5198931A (en) 1989-04-19 1993-03-30 Olympus Optical Co., Ltd. Objective optical system for endoscopes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251115A (ja) * 1988-08-12 1990-02-21 Nikon Corp レトロフォーカス型広角レンズ
JPH02277015A (ja) * 1989-04-19 1990-11-13 Olympus Optical Co Ltd 内視鏡対物光学系
JPH08166538A (ja) * 1994-12-14 1996-06-25 Konica Corp レトロフォーカス型レンズ
JP2000235145A (ja) * 1999-02-15 2000-08-29 Asahi Optical Co Ltd 広角レンズ
JP2010186011A (ja) * 2009-02-12 2010-08-26 Olympus Imaging Corp 広角光学系及びそれを用いた撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917907A (zh) * 2011-11-09 2014-07-09 富士胶片株式会社 摄像透镜及摄像装置

Also Published As

Publication number Publication date
JP5510634B2 (ja) 2014-06-04
CN102483514B (zh) 2014-10-15
JP2011059288A (ja) 2011-03-24
CN102483514A (zh) 2012-05-30
US20120170135A1 (en) 2012-07-05
US8503110B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
JP5510634B2 (ja) 広角レンズ、及び、この広角レンズを有する光学機器
JP5263589B2 (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP5493308B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
US7492526B2 (en) High zoom ratio zoom lens, optical apparatus using the same, and method for varying focal length
JP5277624B2 (ja) マクロレンズ、光学装置、マクロレンズのフォーカシング方法
JP5309553B2 (ja) ズームレンズ、及び、このズームレンズを備えた光学機器
WO2014129149A1 (ja) 光学系、光学機器及び光学系の製造方法
JP2010176015A (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP5434447B2 (ja) 広角レンズおよび光学機器
JP2009020337A (ja) ズームレンズ、光学機器、ズームレンズの変倍方法
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP2010044227A (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP5887995B2 (ja) レンズ系、光学機器、およびレンズ系の製造方法
JP5423299B2 (ja) 広角レンズおよび光学機器
JP2010117677A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5578392B2 (ja) 撮影レンズ、この撮影レンズを備えた光学機器
JP5458586B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2013174795A (ja) レンズ系、光学機器、およびレンズ系の製造方法
JP2011102863A (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2008203346A (ja) ズームレンズと、これを有する光学装置
JP5682715B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
JP2012230133A (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP2002082367A (ja) 防振機能を備えたフロントテレコンバーター
JP5338345B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2010117532A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039494.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13395234

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10815340

Country of ref document: EP

Kind code of ref document: A1