WO2013099214A1 - 撮像レンズおよび撮像装置 - Google Patents

撮像レンズおよび撮像装置 Download PDF

Info

Publication number
WO2013099214A1
WO2013099214A1 PCT/JP2012/008260 JP2012008260W WO2013099214A1 WO 2013099214 A1 WO2013099214 A1 WO 2013099214A1 JP 2012008260 W JP2012008260 W JP 2012008260W WO 2013099214 A1 WO2013099214 A1 WO 2013099214A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
lens group
cemented
positive
Prior art date
Application number
PCT/JP2012/008260
Other languages
English (en)
French (fr)
Inventor
大樹 河村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12861522.6A priority Critical patent/EP2799923B1/en
Priority to CN201280064706.3A priority patent/CN104011577B/zh
Priority to JP2013551238A priority patent/JP5642891B2/ja
Publication of WO2013099214A1 publication Critical patent/WO2013099214A1/ja
Priority to US14/317,850 priority patent/US9013806B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present invention relates to an imaging lens, particularly a small lens suitable for an imaging apparatus such as an electronic camera.
  • the present invention also relates to an imaging apparatus provided with such an imaging lens.
  • Patent Documents 1 to 4 have been proposed as small-sized imaging lenses having a small number of lenses and corresponding to such large-sized imaging elements.
  • the negative lens is commonly arranged closest to the object side, and has a so-called retrofocus type or a lens configuration having a power arrangement equivalent to this. .
  • an imaging lens used as an interchangeable lens of a camera particularly a single-lens reflex camera
  • a long back is required to insert various optical elements between the lens system and the imaging element or to secure an optical path length for a reflex finder.
  • Focus may be required.
  • a retrofocus type power arrangement is suitable.
  • an image pickup apparatus using a large image pickup device such as the APS format described above
  • a large image pickup device such as the APS format described above
  • an interchangeable lens camera without a reflex finder or a compact camera with an integrated lens it may be used for a single lens reflex camera.
  • the back focus as long as the interchangeable lens is not required.
  • the imaging lenses described in Patent Documents 1 to 4 have a configuration in which a negative lens is disposed closest to the object side, and a negative lens, a positive lens, and a positive lens are disposed on the image plane side from the stop. It has become.
  • this type of imaging lens the entire optical length is inevitably increased in order to ensure both long back focus and optical performance.
  • the present invention has been made in view of the above circumstances, and is a thin and low-cost imaging lens that can reduce the incident angle to the imaging element and can be formed in a small size while ensuring optical performance that can accommodate a large imaging element. And an imaging apparatus to which the imaging lens is applied.
  • the imaging lens of the present invention is composed of a first lens group, a diaphragm, and a second lens group in order from the object side.
  • the first lens group includes three or less lenses including a negative lens arranged closest to the object side and a positive lens arranged closer to the image side than the negative lens
  • the second lens group includes five lenses including a cemented lens in which two lenses of a positive lens and a negative lens are cemented, and a single lens having a positive refractive power and disposed on the image side of the cemented lens. Consists of the following lenses, The following conditional expressions (1) to (4) are satisfied.
  • Any of the positive lens and the negative lens in the cemented lens of the two lens group may be on the object side.
  • the imaging lens of the present invention is composed of a first lens group and a second lens group.
  • the lens has substantially no power, and is not a lens such as an aperture or a cover glass.
  • the optical element, lens flange, lens barrel, imaging element, camera shake correction mechanism, and the like may also be included.
  • the lens surface shape such as convex surface, concave surface, plane, biconcave, meniscus, biconvex, plano-convex and plano-concave, and the sign of the refractive power of the lens such as positive and negative include aspherical surfaces. Unless otherwise noted, the paraxial region is considered. In the present invention, the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the first lens group has a positive refractive power.
  • the first lens group may include, in order from the object side, a negative lens having a meniscus shape having a convex surface facing the object side, and a positive lens cemented to the negative lens. preferable.
  • Nd2p refractive index with respect to d-line of positive lens constituting the cemented lens of the second lens group
  • Nd2n refractive index with respect to d-line of negative lens constituting the cemented lens of the second lens group
  • f2c focal length of the cemented lens of the second lens group
  • f focal length of the entire system
  • f2 Focal length of the second lens group
  • f Focal length of the entire system
  • TL Distance on the optical axis from the lens surface closest to the object side of the entire system to the image plane (the back focus is the air equivalent length)
  • Y Maximum image height In this case, it is more preferable to satisfy the following conditional expression (8-1).
  • the maximum image height Y can be determined by the design specifications of the lens, the specifications of the mounted device, and the like.
  • the second lens group has at least one aspheric lens having at least one aspheric surface.
  • a single lens having a positive refractive power and having a spherical shape on both sides is disposed on the most image side of the second lens group, and the single lens having the positive refractive power is located closer to the object side than the single lens having the positive refractive power. It is preferable that an aspheric lens is disposed.
  • the lens other than the aspheric lens in the entire system is preferably a spherical lens.
  • the second lens group includes a single lens having a positive refractive power disposed closest to the image side, a two-piece cemented lens disposed closer to the object side than the single lens, and It is preferable that the lens is composed of four single lenses.
  • An image pickup apparatus includes the above-described image pickup lens according to the present invention.
  • the first lens group is composed of at least one negative lens and one positive lens, so that various aberrations such as spherical aberration, field curvature, and chromatic aberration generated in the first lens group are obtained.
  • Aberrations can be corrected in a balanced manner.
  • chromatic aberration can be corrected well.
  • conditional expressions (1) to (4) it is possible to achieve downsizing and high optical performance that can correct various aberrations and obtain a good image up to the periphery of the imaging region.
  • An imaging lens having the following can be realized.
  • the image pickup apparatus includes the image pickup lens of the present invention, the image pickup apparatus can be configured to be small and inexpensive, and a good image with high resolution in which various aberrations are corrected can be obtained.
  • Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 1 of this invention Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 2 of this invention. Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 3 of this invention. Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 4 of this invention. Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 5 of this invention. Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 6 of this invention. Sectional drawing which shows the lens structure of the imaging lens which concerns on Example 7 of this invention. (A) to (D) are aberration diagrams of the imaging lens according to Example 1 of the present invention.
  • FIG. 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention. Schematic configuration diagram of an imaging apparatus according to another embodiment of the present invention Schematic configuration diagram of an imaging apparatus according to another embodiment of the present invention
  • FIG. 1 is a cross-sectional view illustrating a configuration example of an imaging lens according to an embodiment of the present invention, and corresponds to the imaging lens of Example 1 described later.
  • 2 to 7 are cross-sectional views showing other configuration examples according to the embodiment of the present invention, which respectively correspond to imaging lenses of Examples 2 to 7 described later.
  • the basic configurations of the examples shown in FIGS. 1 to 7 are substantially the same as each other, and the method of illustration is also the same.
  • the imaging lens according to the embodiment of the present invention will be described mainly with reference to FIG. To do.
  • FIG. 1 shows the arrangement of the optical system in an infinite focus state with the left side as the object side and the right side as the image side. The same applies to FIGS. 2 to 7 described later.
  • the imaging lens of the present embodiment is composed of a first lens group G1 and a second lens group G2 in order from the object side as a lens group.
  • An aperture stop St is disposed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes three or less lenses including a negative lens arranged closest to the object side and a positive lens arranged closer to the image side than the negative lens.
  • the first lens group G1 is joined to the 1-1 lens L11, which is a negative lens having a meniscus shape having a convex surface facing the object side, and the 1-1 lens L11 in order from the object side.
  • the first lens L12 is a positive lens and is composed of two lenses.
  • the first lens group G1 has the same configuration.
  • the first lens group G1 is cemented sequentially from the object side to the first lens 1-1 and the first lens L11, which are negative lenses having a meniscus shape with a convex surface facing the object side.
  • the first lens L12 is a positive lens and the first lens L13 is a negative lens.
  • the second lens group G2 includes five or less lenses including a cemented lens in which two lenses of a positive lens and a negative lens are cemented, and a single lens having a positive refractive power disposed on the image side of the cemented lens. It is made up of lenses.
  • the second lens group G2 includes, in order from the object side, a 2-1 lens L21 having a biconcave shape, and a 2-2 lens having a biconvex shape joined to the 2-1 lens L21.
  • the lens includes four lenses: L22, a negative lens having a meniscus shape with a convex surface facing the image side, a second lens L23 having a meniscus shape, and a second lens L24 having a biconvex shape.
  • the second lens group G2 has the same configuration also in Example 2 described later.
  • the object side surface of the second-third lens L23 is an aspherical surface.
  • the second lens group G2 includes, in order from the object side, a 2-1 lens L21, which is a positive lens having a meniscus shape with a convex surface facing the image side, and a biconcave shape.
  • the second lens group G2 is a positive lens having a meniscus shape with a convex surface facing the image side in order from the object side, and the object side and image side surfaces being aspherical surfaces.
  • the second lens L24 is a positive lens having a meniscus shape, and is composed of four lenses.
  • the aperture stop St shown in FIG. 1 does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • Sim shown here is an imaging plane, and an image sensor made up of, for example, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) or the like is disposed at this position as will be described later.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 1 shows an example in which a parallel plate-shaped optical member PP is disposed between the second lens group G2 and the imaging plane Sim.
  • various filters such as a cover glass, an infrared cut filter, a low-pass filter, and the like are provided between the optical system and the imaging surface Sim according to the configuration of the imaging device on which the lens is mounted. Often placed. The optical member PP assumes them.
  • focusing is performed by moving the entire optical system along the optical axis Z.
  • the first lens group G1 includes at least one negative lens 1-1 lens L11 and one positive lens 1-2 lens L12.
  • Various aberrations such as spherical aberration, curvature of field and chromatic aberration occurring in the first lens group G1 can be corrected in a balanced manner.
  • the first lens L11 and the first lens L12 are cemented to form a cemented lens, good achromaticity can be realized.
  • the first lens group G1 is composed of a negative lens having a meniscus shape with a convex surface facing the object side in order from the object side, and a positive lens cemented to the negative lens.
  • Various aberrations such as generated spherical aberration, field curvature, and chromatic aberration can be corrected in a balanced manner.
  • the cemented lens is provided in the second lens group G2, chromatic aberration can be corrected well. Further, by arranging a single lens having a positive refractive power on the image plane side with respect to the cemented lens, it is possible to suppress the emission angle of the peripheral rays without making the back focus too long.
  • the imaging lens of the present embodiment has the above configuration and satisfies the following conditional expressions (1) to (4).
  • NdfL Refractive index ⁇ dfL for the d-line of the negative lens disposed closest to the object side of the first lens group G1: Abbe number ⁇ d2p for the d-line of the negative lens disposed closest to the object side of the first lens group G1: second Abbe number ⁇ d2n for the d-line of the positive lens constituting the cemented lens of the lens group G2: Abbe number NdrL for the d-line of the negative lens constituting the cemented lens of the second lens group G2: single lens constituting the second lens group G2 In FIG.
  • the negative lens disposed closest to the object side of the first lens group G1 corresponds to the first-first lens L11 and constitutes a cemented lens of the second lens group G2.
  • the positive lens corresponds to the 2-2 lens L22
  • the negative lens that forms the cemented lens of the second lens group G2 corresponds to the 2-1 lens L21
  • the lens corresponds to the second-4 lens L24.
  • conditional expressions (1) to (4) in particular, at least one of the following conditional expressions (1-1), (2-1) and (3-1) is satisfied. .
  • conditional expressions (1) to (4) that is, specific values of the character expression part are collectively shown in Table 11 for each example. The same applies to conditional expressions (5) to (8) described later.
  • the imaging lens of the present embodiment has the following effects. That is, the conditional expression (1) defines the refractive index of the negative lens (the first lens L11 in FIG. 1) arranged closest to the object side of the first lens group G1, and when below the lower limit value, It becomes difficult to correct astigmatism and coma, which is not preferable.
  • Conditional expression (2) defines the Abbe number of the negative lens disposed closest to the object side of the first lens group G1, and correction of chromatic aberration, particularly axial chromatic aberration, is outside the range of conditional expression (2). Is difficult and undesirable.
  • Conditional expression (3) shows the Abbe number difference between the positive lens and the negative lens (the 2-2 lens L22 and the 2-1 lens L21 in FIG. 1) constituting the cemented lens arranged in the second lens group G2. If it is defined and out of the range of the conditional expression, it is difficult to correct both axial chromatic aberration and lateral chromatic aberration in a balanced manner, which is not preferable.
  • Conditional expression (4) is arranged in the second lens group G2 and is at least one single lens having a positive refractive power disposed on the image plane side with respect to the cemented lens (the second-4 lens L24 in FIG. 1). If the refractive index is lower than the lower limit, it is difficult to control the Petzval sum, and it becomes difficult to correct curvature of field.
  • conditional expressions (1-1) to (3-1) are satisfied within the range defined by the conditional expressions (1) to (4). It becomes more prominent. Note that it is not necessary to satisfy all of the conditional expressions (1-1) to (3-1), and if any one of them is satisfied, the above-described effect becomes higher.
  • the first lens group G1 has a positive refractive power, and thus the lens system can be miniaturized.
  • the imaging lens of the present embodiment satisfies the following conditional expression (5), and particularly satisfies the following conditional expression (5-1) within the range defined by the conditional expression (5). .
  • Nd2p Refractive index for the d-line of the positive lens constituting the cemented lens of the second lens group G2
  • Nd2n Refractive index for the d-line of the negative lens constituting the cemented lens of the second lens group G2
  • the refractive index difference between the positive lens and the negative lens constituting the cemented lens arranged in the two-lens group G2 is defined, and if it is out of the conditional expression range, it is difficult to correct spherical aberration and lateral chromatic aberration, which is not preferable. .
  • conditional expression (5-1) particularly within the range defined by conditional expression (5).
  • the imaging lens of the present embodiment satisfies the following conditional expression (6), and particularly satisfies the following conditional expression (6-1) within the range defined by the conditional expression (6). .
  • Conditional expression (6) is the relationship between the focal length of the cemented lens disposed in the second lens group G2 and the focal length of the entire system. If the upper limit is exceeded, it is difficult to correct lateral chromatic aberration, which is not preferable. On the other hand, if the value is below the lower limit, correction of astigmatism becomes difficult, which is not preferable.
  • conditional expression (6-1) particularly within the range defined by conditional expression (6).
  • the imaging lens of the present embodiment satisfies the following conditional expression (7), and particularly satisfies the following conditional expression (7-1) within the range defined by the conditional expression (7). .
  • Conditional expression (7) defines the relationship between the focal length of the second lens group G2 and the focal length of the entire system. If it exceeds the upper limit, correction of aberration, particularly correction of curvature of field and distortion, becomes difficult. On the contrary, if the value is below the lower limit, it is advantageous in terms of aberration correction, but it is not preferable because the total lens length becomes large.
  • conditional expression (7-1) particularly within the range defined by conditional expression (7).
  • the imaging lens of the present embodiment satisfies the following conditional expression (8), and particularly satisfies the following conditional expression (8-1) within the range defined by the conditional expression (8). .
  • TL Distance on the optical axis from the lens surface closest to the object side of the entire system to the image plane (the back focus is the air equivalent length)
  • Y Maximum image height The maximum image height Y can be determined by the design specifications of the lens, the specifications of the mounted device, and the like.
  • Conditional expression (8) shows the relationship between the optical total length and the maximum image height. If the upper limit is exceeded, aberration correction is advantageous, but the entire lens system becomes large, which is not preferable in terms of portability. . On the other hand, if the value is below the lower limit, it is difficult to correct spherical aberration and field curvature in the entire lens system, which is not preferable.
  • conditional expression (8-1) particularly within the range defined by conditional expression (8).
  • the second lens group G2 has at least one aspherical lens having at least one aspheric surface, thereby providing a good balance of on-axis and off-axis aberrations. And curvature of field can be corrected well.
  • the imaging lens of the same type as the imaging lens of the present embodiment has a problem that the lens diameter suddenly increases toward the image plane side, which increases the cost.
  • the imaging lens of the present embodiment assumes a large imaging device, and the outer diameter of the final lens becomes very large.
  • the imaging lens of the present embodiment is given priority to thinning, and if aberration correction is not particularly difficult such as a wide angle of view and a large aperture, a certain degree of aberration correction capability can be obtained even at a position close to the stop St. In addition, the cost can be reduced. For this reason, it is preferable to provide an aspherical surface on the lens in front of the final lens.
  • the cost can be reduced by using a spherical lens as the lens other than the aspherical surface in the entire system.
  • the second lens group G2 includes four lenses including a single lens having a positive refractive power arranged closest to the image side, a two-piece cemented lens arranged closer to the object side than the single lens, and a single lens.
  • the imaging lens can be configured with a minimum number of lenses, and can be reduced in thickness, cost, and weight.
  • Example 1 The arrangement of the lens group of the imaging lens of Example 1 is shown in FIG. Since the detailed description of the lens group and each lens in the configuration of FIG. 1 is as described above, the redundant description is omitted below unless otherwise required.
  • Table 1 shows basic lens data of the imaging lens of Example 1.
  • the optical member PP is also shown.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the d-line (wavelength 587.6 nm) of the j-th (j 1, 2, 3,...) Component that increases sequentially toward the image side with the most object-side component as the first.
  • the ⁇ dj column indicates the Abbe number of the j-th component with respect to the d-line.
  • the basic lens data also includes the aperture stop St, and ⁇ (aperture) is described in the column of the radius of curvature of the surface corresponding to the aperture stop St.
  • the unit of the values of the radius of curvature R and the surface spacing D in Table 1 is mm.
  • values rounded to a predetermined digit are shown.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the focal length f of the entire lens system, and FNo. Is also shown.
  • mm is used as the unit of length and degrees (°) are used as the unit of angle as described above, but the optical system can be used with proportional expansion or proportional reduction. Therefore, other suitable units can be used.
  • FIGS. 8 (A) to (D) spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration in the infinitely focused state of the imaging lens of Example 1 are shown in FIGS. 8 (A) to (D), respectively.
  • Each aberration is based on the d-line (wavelength 587.6 nm), but the spherical aberration diagram also shows aberrations relating to the wavelengths 460.0 nm and 615.0 nm, and particularly the magnification chromatic aberration diagram shows the wavelengths 460.0 nm and 615.0 nm.
  • the aberration about is shown.
  • the sagittal direction is indicated by a solid line
  • the tangential direction is indicated by a dotted line.
  • FNo. Means F value, and ⁇ in other aberration diagrams means half angle of view.
  • the aberration display method described above is the same in FIGS. 9 to 14 described later.
  • FIG. 2 shows the arrangement of lens groups in the imaging lens of the second embodiment.
  • Table 2 shows basic lens data of the imaging lens of Example 2.
  • 9A to 9D show aberration diagrams of the image pickup lens of Example 2.
  • FIG. 2 shows the arrangement of lens groups in the imaging lens of the second embodiment.
  • FIG. 3 shows the arrangement of lens groups in the imaging lens of Example 3.
  • Table 3 shows basic lens data of the imaging lens of Example 3.
  • the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
  • Table 4 shows aspherical data of the imaging lens of Example 3.
  • the surface number of the aspheric surface and the aspheric coefficient related to the aspheric surface are shown.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric coefficient means “ ⁇ 10 ⁇ n ”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C Reciprocal number KA of paraxial radius of curvature
  • Table 4 described above is the same in Tables 7 and 9 described later.
  • FIGS. 10A to 10D show aberration diagrams of the imaging lens of Example 3.
  • FIG. 10A to 10D show aberration diagrams of the imaging lens of Example 3.
  • FIG. 4 shows the arrangement of lens groups in the imaging lens of Example 4.
  • the imaging lens of Example 4 has substantially the same configuration as the imaging lens of Example 1 described above, but the second lens group G2 has a meniscus shape with a convex surface facing the image side in order from the object side.
  • 2-1 lens L21 which is a positive lens
  • 2-2 lens L22 having a biconcave shape
  • biconvex shape 2-3 lens L23 which is cemented to 2-2 lens L22, negative refractive power
  • the fifth to fourth lenses L24 having a meniscus shape having a convex surface facing the image side and the second to fifth lenses L25 having a biconvex shape.
  • Table 5 shows basic lens data of the imaging lens of Example 4.
  • FIGS. 11A to 11D show aberration diagrams of the imaging lens of Example 4.
  • FIG. 5 shows the arrangement of lens groups in the imaging lens of Example 5.
  • the imaging lens of Example 5 has substantially the same configuration as the imaging lens of Example 1 described above, but the first lens group G1 has a meniscus shape with a convex surface facing the object side in order from the object side.
  • the lens includes three lenses: a first lens L11 that is a negative lens, a first lens L12 that is a positive lens cemented to the first lens L11, and a first lens L13 that is a negative lens. It is different in the point that is done.
  • the second lens group G2 is a positive lens having a meniscus shape with a convex surface facing the image side in order from the object side, and is a positive lens having aspheric surfaces on the object side and the image side.
  • the differences with respect to the second lens group G2 are the same as in the seventh embodiment except that the 2-1 lens L21 is an aspherical lens. In the description of the seventh embodiment, this point will not be repeated.
  • Table 6 shows basic lens data of the imaging lens of Example 5.
  • Table 7 shows aspherical data of the imaging lens of Example 5.
  • FIGS. 12A to 12D show aberration diagrams of the imaging lens of Example 5.
  • FIG. 6 shows the arrangement of lens groups in the imaging lens of Example 6.
  • Table 8 shows basic lens data of the imaging lens of Example 6.
  • Table 9 shows aspherical data of the imaging lens of Example 6.
  • FIGS. 13A to 13D show aberration diagrams of the imaging lens of Example 6.
  • FIG. 7 shows the arrangement of lens groups in the imaging lens of Example 7.
  • Table 10 shows basic lens data of the imaging lens of Example 7.
  • 14A to 14D show aberration diagrams of the imaging lens of Example 7.
  • FIG. 7 shows the arrangement of lens groups in the imaging lens of Example 7.
  • Table 11 shows the conditions defined by the above-described conditional expressions (1) to (8), that is, the values of the character expressions for each of Examples 1 to 7.
  • the values in Table 11 relate to the d line.
  • all of the imaging lenses of Examples 1 to 7 satisfy all of the conditional expressions (1) to (8), and further indicate a more preferable range within the range defined by these conditional expressions.
  • Formulas (1-1) to (3-1) and (5-1) to (8-1) are all satisfied. The effect obtained by this is as described in detail above.
  • FIG. 1 shows an example in which the optical member PP is disposed between the lens system and the imaging plane Sim, but instead of disposing a low-pass filter or various filters that cut a specific wavelength range. These various filters may be disposed between the lenses, or a coating having the same action as the various filters may be applied to the lens surface of any lens.
  • FIG. 15 shows a perspective shape of a camera according to an embodiment of the present invention.
  • a camera 10 shown here is a compact digital camera, and a small imaging lens 12 according to an embodiment of the present invention is provided on the front and inside of a camera body 11, and a flash is emitted to a subject on the front of the camera body 11.
  • a flash light emitting device 13 is provided, a shutter button 15 and a power button 16 are provided on the upper surface of the camera body 11, and an image sensor 17 is provided inside the camera body 11.
  • the image sensor 17 captures an optical image formed by the small wide-angle lens 12 and converts it into an electrical signal, and is composed of, for example, a CCD or a CMOS.
  • the camera 10 is a compact camera both when carried and photographed without adopting a retractable type. It can be. Alternatively, when a retractable type is adopted, the camera can be made smaller and more portable than a conventional retractable camera. In addition, the camera 10 to which the imaging lens 12 according to the present invention is applied is capable of photographing with high image quality.
  • FIG. 16A shows an external view of the camera 30 as seen from the front side. Shows an appearance of the camera 30 as viewed from the back side.
  • the camera 30 includes a camera body 31 on which a shutter button 32 and a power button 33 are provided. On the back of the camera body 31, operation units 34 and 35 and a display unit 36 are provided.
  • the display unit 36 is for displaying a captured image or an image within an angle of view before being captured.
  • a photographing opening through which light from a photographing object enters is provided at the center of the front surface of the camera body 31, and a mount 37 is provided at a position corresponding to the photographing opening, and the interchangeable lens 20 is connected to the camera body via the mount 37. 31 is attached.
  • the interchangeable lens 20 is an imaging lens according to the present invention housed in a lens barrel.
  • An image sensor such as a CCD that receives the subject image formed by the interchangeable lens 20 and outputs an image signal corresponding thereto in the camera body 31, and processes the image signal output from the image sensor
  • a signal processing circuit for generating an image and a recording medium for recording the generated image are provided.
  • a still image for one frame is shot by pressing the shutter button 32, and image data obtained by this shooting is recorded on the recording medium.
  • the imaging lens according to the present invention By applying the imaging lens according to the present invention to the interchangeable lens 20 used in such a mirrorless single-lens camera 30, the camera 30 is sufficiently small when the lens is mounted and can be photographed with high image quality.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens component are not limited to the values shown in the above numerical examples, and can take other values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 小型の撮像レンズを得る。 物体側から順に、第1レンズ群(G1)、絞り(St)および第2レンズ群(G2)から構成され、第1レンズ群(G1)は、最も物体側に配置された負レンズと、この負レンズよりも像側に配置された正レンズとを含む3枚以下のレンズから構成される。第2レンズ群(G2)は、正レンズおよび負レンズの2枚のレンズが接合された接合レンズと、この接合レンズよりも像側に配置された、正の屈折力を有する単レンズとを含む5枚以下のレンズから構成される。第1レンズ群(G1)の最も物体側に配置された負レンズおよび正レンズのd線に対する屈折率およびアッベ数、第2レンズ群(G2)の接合レンズを構成する正負レンズのd線に対するアッベ数、および第2レンズ群(G2)を構成する単レンズのd線に対する屈折率に関する条件式を満足する。

Description

撮像レンズおよび撮像装置
 本発明は撮像レンズ、特に電子カメラ等の撮像装置に好適な小型のレンズに関するものである。また本発明は、そのような撮像レンズを備えた撮像装置に関するものである。
 近年、例えばAPSフォーマットやフォーサーズフォーマット等に準拠する大型の撮像素子を搭載したデジタルカメラが市場に多く供給されている。最近では、デジタル一眼レフカメラに限らず、上記の大型の撮像素子を用いつつ、レフレックスファインダーを持たないレンズ交換式のデジタルカメラや、コンパクトカメラも提供されている。これらのカメラの利点は、高画質でありながら、システム全体が小型で携帯性に優れている点にある。そして、カメラの小型化に伴って、レンズ系の小型化かつ薄型化の要求が非常に高まっている。
 このような大型の撮像素子に対応しつつも、レンズ枚数が少なくかつ小型の撮像レンズとして、例えば、特許文献1~4に記載されたものが提案されている。特許文献1~4に記載された撮像レンズにおいては、共通して最も物体側に負レンズが配置されており、いわゆるレトロフォーカスタイプ、あるいはこれに準ずるようなパワー配置を有するレンズ構成となっている。
特開2009-237542号公報 特開2009-258157号公報 特開2010-186011号公報 特開2011-59288号公報
 カメラ、特に一眼レフカメラの交換レンズとして用いられる撮像レンズにおいては、レンズ系と撮像素子との間に各種光学素子を挿入するため、あるいはレフレックスファインダー用の光路長を確保するために、長いバックフォーカスが必要な場合がある。このような場合、レトロフォーカスタイプのパワー配置が適している。
 一方、上述したAPSフォーマット等の大型の撮像素子を用いた撮像装置においても、レフレックスファインダーを持たないレンズ交換式のカメラ、あるいはレンズ一体型のコンパクトカメラ等、その構成によっては、一眼レフカメラ用の交換レンズほどの長いバックフォーカスを必要としない場合がある。
 ここで、特許文献1~4に記載の撮像レンズは、共通して、最も物体側に負レンズが配置され、絞りから像面側には、負レンズ、正レンズおよび正レンズが配置された構成となっている。このようなタイプの撮像レンズにおいては、長いバックフォーカスおよび光学性能の双方を確保するために、光学全長が必然的に長くなってしまう。
 特許文献1~4に記載された撮像レンズを、上述したAPSフォーマット等の大型の撮像素子を用いた撮像装置に対して適用した場合、高い光学性能を確保することができる。しかしながら、システム全体が小型で携帯性に優れた撮像装置に応じて、撮像レンズも小型化することが望まれている。
 本発明は上記事情に鑑みなされたものであり、大型の撮像素子に対応できる光学性能を確保しつつ、撮像素子への入射角を抑え、さらには小型に形成可能な薄型かつ低コストの撮像レンズ、およびこの撮像レンズを適用した撮像装置を提供することを目的とする。
 本発明の撮像レンズは、物体側から順に、第1レンズ群、絞り、および第2レンズ群から構成され、
 前記第1レンズ群は、最も物体側に配置された負レンズと、該負レンズよりも像側に配置された正レンズとを含む3枚以下のレンズから構成され、
 前記第2レンズ群は、正レンズおよび負レンズの2枚のレンズが接合された接合レンズと、該接合レンズよりも像側に配置された、正の屈折力を有する単レンズとを含む5枚以下のレンズから構成され、
 下記条件式(1)~(4)を満足することを特徴とするものである。
  NdfL>1.65 … (1)
  20<νdfL<40 … (2)
  4<νd2p-νd2n<25 … (3)
  NdrL>1.7 …(4) 
ただし、
NdfL:前記第1レンズ群の前記負レンズのd線に対する屈折率
νdfL:前記第1レンズ群の前記負レンズのd線に対するアッベ数
νd2p:前記第2レンズ群の前記接合レンズを構成する正レンズのd線に対するアッベ数
νd2n:前記第2レンズ群の前記接合レンズを構成する負レンズのd線に対するアッベ数
NdrL:前記第2レンズ群を構成する前記単レンズのd線に対する屈折率
 なお、第2レンズ群の接合レンズにおける正レンズおよび負レンズは、いずれが物体側にあってもよいものである。
 また、本発明の撮像レンズは、第1レンズ群と第2レンズ群とからなるものであるが、2つのレンズ群以外に,実質的にパワーを持たないレンズ、絞りやカバーガラス等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分等を持つものも含むものであってもよい。
 また、本発明においては、凸面、凹面、平面、両凹、メニスカス、両凸、平凸および平凹等といったレンズの面形状、正および負といったレンズの屈折力の符号は、非球面が含まれているものについては特に断りのない限り近軸領域で考えるものとする。また、本発明においては、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負とすることにする。
 また、本発明による撮像レンズにおいては、下記条件式(1-1)、(2-1)および(3-1)の少なくとも1つを満足することが好ましい。
  NdfL>1.66 … (1-1)
  23<νdfL<38 … (2-1)
  6<νd2p-νd2n<24 … (3-1)
 また、本発明による撮像レンズにおいては、前記第1レンズ群は、正の屈折力を有することが好ましい。
 また、本発明による撮像レンズにおいては、前記第1レンズ群は、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズ、および該負レンズに接合された正レンズを有することが好ましい。
 また、本発明による撮像レンズにおいては、下記条件式(5)を満足することが好ましい。
  -0.05<Nd2p-Nd2n<0.20 … (5)
ただし、
Nd2p:前記第2レンズ群の前記接合レンズを構成する正レンズのd線に対する屈折率
Nd2n:前記第2レンズ群の前記接合レンズを構成する負レンズのd線に対する屈折率
 この場合、下記条件式(5-1)を満足することがより好ましい。
  -0.03<Nd2p-Nd2n<0.18 … (5-1)
 また、本発明による撮像レンズにおいては、下記条件式(6)を満足することが好ましい。
  0.05<f/f2c<0.90 … (6)
ただし、
f2c:前記第2レンズ群の接合レンズの焦点距離
f:全系の焦点距離
 この場合、下記条件式(6-1)を満足することがより好ましい。
  0.08<f/f2c<0.85 … (6-1)
 また、本発明による撮像レンズにおいては、下記条件式(7)を満足することが好ましい。
  0<f/f2<0.6 … (7)
ただし、
f2:前記第2レンズ群の焦点距離
f:全系の焦点距離
 この場合、下記条件式(7-1)を満足することがより好ましい。
  0.02<f/f2<0.58 … (7-1)
 また、本発明による撮像レンズにおいては、下記条件式(8)を満足することが好ましい。
  2.2<TL/Y<3.2 … (8)
ただし、
TL:全系の最も物体側のレンズ面から像面までの光軸上の距離(バックフォーカス分は空気換算長)
Y:最大像高
 この場合、下記条件式(8-1)を満足することがより好ましい。
  2.3<TL/Y<3.1 … (8-1)
 なお、最大像高Yは、レンズの設計仕様、および搭載される装置の仕様等によって決めることができる。
 また、本発明による撮像レンズにおいては、前記第2レンズ群は、少なくとも1面が非球面の非球面レンズを少なくとも1枚有することが好ましい。
 この場合、前記第2レンズ群の最も像側には、正の屈折力を有し、両面ともに球面形状である単レンズが配置され、該正の屈折力を有する単レンズよりも物体側に前記非球面レンズが配置されていることが好ましい。
 また、この場合、全系における前記非球面レンズ以外のレンズは、球面レンズであることが好ましい。
 また、本発明による撮像レンズにおいては、前記第2レンズ群は、最も像側に配置された正の屈折力を有する単レンズ、該単レンズよりも物体側に配置された2枚接合レンズ、および1枚の単レンズの4枚のレンズから構成されることが好ましい。
 本発明による撮像装置は、上述した本発明による撮像レンズを備えたことを特徴とするものである。
 本発明の撮像レンズは、第1レンズ群を少なくとも1枚の負レンズと1枚の正レンズとから構成することにより、第1レンズ群で発生する球面収差、像面湾曲、および色収差等の諸収差をバランスよく補正することができる。また、第2レンズ群に接合レンズを設けることにより、色収差を良好に補正することができる。また、接合レンズよりも像面側に正の屈折力を有する単レンズを配置することにより、バックフォーカスを長くし過ぎずに、周辺光線の射出角度を抑えることができる。
 また、条件式(1)~(4)を満足することにより、小型化を達成できるとともに、諸収差を良好に補正して、結像領域周辺部まで良好な像を得ることができる高い光学性能を有する撮像レンズを実現することができる。
 本発明による撮像装置は、本発明の撮像レンズを備えているため、小型で安価に構成でき、諸収差が補正された解像度の高い良好な像を得ることができる。
本発明の実施例1に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例2に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例3に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例4に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例5に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例6に係る撮像レンズのレンズ構成を示す断面図 本発明の実施例7に係る撮像レンズのレンズ構成を示す断面図 (A)~(D)は本発明の実施例1に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例2に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例3に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例4に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例5に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例6に係る撮像レンズの各収差図 (A)~(D)は本発明の実施例7に係る撮像レンズの各収差図 本発明の一実施形態に係る撮像装置の概略構成図 本発明の別の実施形態に係る撮像装置の概略構成図 本発明の別の実施形態に係る撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態に係る撮像レンズの構成例を示す断面図であり、後述する実施例1の撮像レンズに対応している。また図2~図7は、本発明の実施形態に係る別の構成例を示す断面図であり、それぞれ後述する実施例2~7の撮像レンズに対応している。図1~図7に示す例の基本的な構成は互いに略同様であり、図示方法も同様であるので、ここでは主に図1を参照しながら、本発明の実施形態に係る撮像レンズについて説明する。
 図1では左側を物体側、右側を像側として、無限遠合焦状態での光学系配置を示している。これは、後述する図2~図7においても同様である。
 本実施形態の撮像レンズは、レンズ群として物体側から順に、第1レンズ群G1と第2レンズ群G2とから構成されている。なお、第1レンズ群G1と第2レンズ群G2との間には、開口絞りStが配置されている。
 第1レンズ群G1は、最も物体側に配置された負レンズと、負レンズよりも像側に配置された正レンズとを含む3枚以下のレンズから構成されている。本実施形態では、第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズである第1-1レンズL11、および第1-1レンズL11に接合された正レンズである第1-2レンズL12の2枚のレンズから構成されている。
 なお、後述する実施例2~4,6,7においても、第1レンズ群G1は同様の構成とされる。一方、実施例5では、第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズである第1-1レンズL11、第1-1レンズL11に接合された正レンズである第1-2レンズL12、および負レンズである第1-3レンズL13の3枚のレンズから構成されている。
 第2レンズ群G2は、正レンズおよび負レンズの2枚のレンズが接合された接合レンズと、接合レンズよりも像側に配置された、正の屈折力を有する単レンズとを含む5枚以下のレンズから構成されている。本実施形態においては、第2レンズ群G2は、物体側から順に、両凹形状を有する第2-1レンズL21、第2-1レンズL21に接合された両凸形状を有する第2-2レンズL22、像側に凸面を向けたメニスカス形状を有する負レンズである得第2-3レンズL23、および両凸形状を有する第2-4レンズL24の4枚のレンズから構成されている。
 なお、後述する実施例2においても、第2レンズ群G2は同様の構成とされる。一方、実施例3においては、第2-3レンズL23の物体側の面が非球面とされている。また、実施例4,7においては、第2レンズ群G2は、物体側から順に、像側に凸面を向けたメニスカス形状を有する正レンズである第2-1レンズL21、両凹形状を有する第2-2レンズL22、第2-2レンズL22に接合された両凸形状を有する第2-3レンズL23、負の屈折力を有し、像側に凸面を向けたメニスカス形状を有する第2-4レンズL24、および両凸形状を有する第2-5レンズL25の5枚のレンズから構成されている。
 また、実施例5,6においては、第2レンズ群G2は、物体側から順に、像側に凸面を向けたメニスカス形状を有する、物体側および像側の面が非球面とされた正レンズである第2-1レンズL21、両凸形状を有する第2-2レンズL22、第2-2レンズL22に接合された両凹形状を有する第2-3レンズL23、および物体側に凸面を向けたメニスカス形状を有する正レンズである第2-4レンズL24の4枚のレンズから構成されている。
 また、図1に示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。またここに示すSimは結像面であり、後述するようにこの位置に、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等からなる撮像素子が配置される。
 また、図1には、第2レンズ群G2と結像面Simとの間に、平行平板状の光学部材PPが配置された例を示している。撮像レンズを撮像装置に適用する際には、レンズを装着する撮像装置側の構成に応じて、光学系と結像面Simの間にカバーガラス、赤外線カットフィルタやローパスフィルタ等の各種フィルタ等を配置することが多い。上記光学部材PPは、それらを想定したものである。
 なお、本実施形態の撮像レンズにおいて、フォーカシングは、光学系全体を光軸Zに沿って移動させることにより行われる。
 本実施形態の撮像レンズは、第1レンズ群G1を少なくとも1枚の負レンズである第1-1レンズL11と、1枚の正レンズである第1-2レンズL12とで構成しているため、第1レンズ群G1で発生する球面収差、像面湾曲および色収差等の諸収差をバランスよく補正することができる。また、第1-1レンズL11と第1-2レンズL12とを接合して接合レンズとしているため、良好な色消しを実現することができる。
 特に第1レンズ群G1を、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズ、およびこの負レンズに接合された正レンズから構成しているため、第1レンズ群G1で発生する球面収差、像面湾曲、および色収差等の諸収差をバランスよく補正することができる。
 また、第2レンズ群G2に接合レンズを設けているため、色収差を良好に補正することができる。また、接合レンズよりも像面側に正の屈折力を有する単レンズを配置することにより、バックフォーカスを長くし過ぎずに、周辺光線の射出角度を抑えることができる。
 また、本実施形態の撮像レンズは、上記構成を有するとともに、下記条件式(1)~(4)を満足している。
  NdfL>1.65 … (1)
  20<νdfL<40 … (2)
  4<νd2p-νd2n<25 … (3)
  NdrL>1.7 …(4) 
ただし、
NdfL:第1レンズ群G1の最も物体側に配置された負レンズのd線に対する屈折率
νdfL:第1レンズ群G1の最も物体側に配置された負レンズのd線に対するアッベ数
νd2p:第2レンズ群G2の接合レンズを構成する正レンズのd線に対するアッベ数
νd2n:第2レンズ群G2の接合レンズを構成する負レンズのd線に対するアッベ数
NdrL:第2レンズ群G2を構成する単レンズのd線に対する屈折率
 なお、図1において、第1レンズ群G1の最も物体側に配置された負レンズは、第1-1レンズL11に対応し、第2レンズ群G2の接合レンズを構成する正レンズは、第2-2レンズL22に対応し、第2レンズ群G2の接合レンズを構成する負レンズは、第2-1レンズL21に対応し、第2レンズ群G2を構成する単レンズは、第2-4レンズL24に対応する。
 また、これらの条件式(1)~(4)が規定する範囲内で、特に下記条件式(1-1)、(2-1)および(3-1)の少なくとも1つを満足している。
  NdfL>1.66 … (1-1)
  23<νdfL<38 … (2-1)
  6<νd2p-νd2n<24 … (3-1)
 ここで、条件式(1)~(4)が規定する条件、つまり文字式の部分の具体的な値については、表11において実施例毎にまとめて記載してある。これは後述する条件式(5)~(8)に関しても同様である。
 以上のように条件式(1)~(4)を全て満足することにより、本実施形態の撮像レンズは以下の効果を奏する。すなわち、条件式(1)は、第1レンズ群G1の最も物体側に配置された負レンズ(図1における第1-1レンズL11)の屈折率を規定しており、下限値を下回ると、非点収差およびコマ収差を補正することが困難となり、好ましくない。
 条件式(2)は、第1レンズ群G1の最も物体側に配置された負レンズのアッベ数を規定しており、条件式(2)の範囲を外れると、色収差、特に軸上色収差の補正が困難となり、好ましくない。
 条件式(3)は、第2レンズ群G2に配置された接合レンズを構成する正レンズと負レンズ(図1における第2-2レンズL22と第2-1レンズL21)とのアッベ数差を規定しており、条件式の範囲を外れると、軸上色収差および倍率色収差をともにバランスよく補正することが困難となり、好ましくない。
 条件式(4)は、第2レンズ群G2に配置され、接合レンズよりも像面側に配置された少なくとも1枚の正の屈折力を有する単レンズ(図1における第2-4レンズL24)の屈折率を規定しており、下限値を下回ると、ペッツバール和のコントロールが困難となり、像面湾曲の補正が困難となる。
 そして本実施形態の撮像レンズにおいては、条件式(1)~(4)が規定する範囲内で特に条件式(1-1)~(3-1)も全て満足することで、上述の効果がより顕著なものとなる。なお、条件式(1-1)~(3-1)を全て満足する必要はなく、そのうち1つでも満足していれば、上記効果がより高いものとなる。
 また、本実施形態の撮像レンズにおいては、第1レンズ群G1は、正の屈折力を有するものとなっており、これにより、レンズ系を小型化することができる。
 また、本実施形態の撮像レンズは、下記条件式(5)を満足しており、さらには、条件式(5)が規定する範囲内で特に下記条件式(5-1)を満足している。
  -0.05<Nd2p-Nd2n<0.20 … (5)
  -0.03<Nd2p-Nd2n<0.18 … (5-1)
ただし、
Nd2p:第2レンズ群G2の接合レンズを構成する正レンズのd線に対する屈折率
Nd2n:第2レンズ群G2の接合レンズを構成する負レンズのd線に対する屈折率
 条件式(5)は、第2レンズ群G2に配置された接合レンズを構成する正レンズと負レンズとの屈折率差を規定しており、条件式の範囲を外れると、球面収差および倍率色収差の補正が困難となり、好ましくない。
 そして本実施形態の撮像レンズにおいては、条件式(5)が規定する範囲内で特に条件式(5-1)も満足することで、上述の効果がより顕著なものとなる。
 また、本実施形態の撮像レンズは、下記条件式(6)を満足しており、さらには、条件式(6)が規定する範囲内で特に下記条件式(6-1)を満足している。
  0.05<f/f2c<0.90 … (6)
  0.08<f/f2c<0.85 … (6-1)
ただし、
f2c:第2レンズ群G2の接合レンズの焦点距離
f:全系の焦点距離
 条件式(6)は、第2レンズ群G2に配置された接合レンズの焦点距離と全系の焦点距離との関係を規定しており、上限値を上回ると、倍率色収差の補正が困難となり、好ましくない。逆に、下限値を下回ると、非点収差の補正が困難となり、好ましくない。
 そして本実施形態の撮像レンズにおいては、条件式(6)が規定する範囲内で特に条件式(6-1)も満足することで、上述の効果がより顕著なものとなる。
 また、本実施形態の撮像レンズは、下記条件式(7)を満足しており、さらには、条件式(7)が規定する範囲内で特に下記条件式(7-1)を満足している。
  0<f/f2<0.6 … (7)
  0.02<f/f2<0.58 … (7-1)
ただし、
f2:第2レンズ群G2の焦点距離
f:全系の焦点距離
 条件式(7)は、第2レンズ群G2の焦点距離と全系の焦点距離との関係を規定しており、上限値を上回ると、収差補正、特に像面湾曲および歪曲収差の補正が困難となるため、好ましくない。逆に、下限値を下回ると、収差補正の点では有利になるが、レンズ全長が大きくなってしまうため、好ましくない。
 そして本実施形態の撮像レンズにおいては、条件式(7)が規定する範囲内で特に条件式(7-1)も満足することで、上述の効果がより顕著なものとなる。
 また、本実施形態の撮像レンズは、下記条件式(8)を満足しており、さらには、条件式(8)が規定する範囲内で特に下記条件式(8-1)を満足している。
  2.2<TL/Y<3.2 … (8)
  2.3<TL/Y<3.1 … (8-1)
ただし、
TL:全系の最も物体側のレンズ面から像面までの光軸上の距離(バックフォーカス分は空気換算長)
Y:最大像高
 なお、最大像高Yは、レンズの設計仕様、および搭載される装置の仕様等によって決めることができる。
 条件式(8)は、光学全長と最大像高との関係を示しており、上限値を上回ると、収差補正上は有利になるが、レンズ系全体が大きくなり、携帯性の面で好ましくない。逆に、下限値を下回ると、レンズ系全体での球面収差および像面湾曲の補正が困難となり、好ましくない。
 そして本実施形態の撮像レンズにおいては、条件式(8)が規定する範囲内で特に条件式(8-1)も満足することで、上述の効果がより顕著なものとなる。
 また、本実施形態の撮像レンズにおいては、第2レンズ群G2を、少なくとも1面が非球面の非球面レンズを少なくとも1枚有するものとすることにより、軸上および軸外の収差のバランスを良好に保つことができ、像面湾曲を良好に補正することができる。
 この場合、第2レンズ群G2の最も像側に、正の屈折力を有し、両面ともに球面形状である単レンズを配置することにより、バックフォーカスを長くし過ぎずに、周辺光線の射出角度を抑えることができる。また、この正レンズを必要なバックフォーカスが確保可能な範囲で、像面により近づけることによって、小型化にはより有利なものとなる。
 なお、より像面側に配置されるレンズに非球面を設けた方が、レンズ面を通過するそれぞれの像高に向かう光線同士が分離されているため、非球面の効果を利用し易い。しかしながら、本実施形態の撮像レンズと同タイプの撮像レンズでは、像面側に向かうにつれてレンズ径が急に大きくなるため、コストが高くなってしまうという問題がある。特に本実施形態の撮像レンズは、大型の撮像素子を想定したものであり、最終レンズの外径が非常に大きくなってしまう。本実施形態の撮像レンズは薄型化を優先しており、広画角や大口径等、収差補正が特別に難しい状態でなければ、絞りStに近い位置であっても、ある程度の収差補正能力を有しつつ、低コスト化も実現できる。このため、最終レンズよりも手前のレンズに非球面を設ける方が好ましい。
 また、この場合、全系における非球面以外のレンズを球面レンズとすることにより、低コスト化を図ることができる。
 また、第2レンズ群G2を、最も像側に配置された正の屈折力を有する単レンズ、単レンズよりも物体側に配置された2枚接合レンズ、および1枚の単レンズの4枚のレンズから構成することにより、最低限のレンズ枚数で撮像レンズを構成することができ、薄型化、低コスト化、軽量化を図ることができる。
 次に、本発明の撮像レンズの実施例について、特に数値実施例を主に詳しく説明する。
 <実施例1>
 実施例1の撮像レンズのレンズ群の配置を図1に示す。なお、図1の構成におけるレンズ群および各レンズの詳細な説明は上述した通りであるので、以下では特に必要のない限り重複した説明は省略する。
 表1に、実施例1の撮像レンズの基本レンズデータを示す。ここでは、光学部材PPも含めて示している。表1において、Siの欄には最も物体側にある構成要素の物体側の面を1番目として像側に向かうに従い順次増加するように構成要素に面番号を付したときのi番目(i=1、2、3、…)の面番号を示す。Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndjの欄には最も物体側の構成要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。また、この基本レンズデータには、開口絞りStも含めて示しており、開口絞りStに相当する面の曲率半径の欄には、∞(絞り)と記載している。
 表1の曲率半径Rおよび面間隔Dの値の単位はmmである。また表1中では、所定の桁でまるめた数値を記載している。そして曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。そして表1の下には、レンズ系全体の焦点距離f、およびFNo.を併せて示してある。
 以上述べた表1の記載の仕方は、後述する表2,3,5,6,8,10においても同様である。
 以下に記載する表では全て、上述したように長さの単位としてmmを用い、角度の単位として度(°)を用いているが、光学系は比例拡大または比例縮小して使用することが可能であるため、他の適当な単位を用いることもできる。
Figure JPOXMLDOC01-appb-T000001
 ここで、実施例1の撮像レンズの無限遠合焦状態における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差を、それぞれ図8の(A)~(D)に示す。各収差はd線(波長587.6nm)を基準としたものであるが、球面収差図では波長460.0nmおよび615.0nmに関する収差も示し、特に倍率色収差図では波長460.0nmおよび615.0nmに関する収差を示す。非点収差図では、サジタル方向については実線で、タンジェンシャル方向については点線で示している。球面収差図のFNo.はF値を意味し、その他の収差図のωは半画角を意味する。以上述べた収差の表示方法は、後述する図9~図14においても同様である。
 <実施例2>
 図2に、実施例2の撮像レンズにおけるレンズ群の配置を示す。表2に実施例2の撮像レンズの基本レンズデータを示す。図9の(A)~(D)に、実施例2の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000002
 <実施例3>
 図3に、実施例3の撮像レンズにおけるレンズ群の配置を示す。表3に実施例3の撮像レンズの基本レンズデータを示す。また表3のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。
 また表4に、実施例3の撮像レンズの非球面データを示す。ここでは、非球面の面番号と、その非球面に関する非球面係数を示す。ここで非球面係数の数値の「E-n」(n:整数)は、「×10-n」を意味する。なお非球面係数は、下記非球面式における各係数KA、Am(m=3、4、5、…10)の値である。
  Zd=C・h2/{1+(1-KA・C2・h21/2}+ΣAm・hm
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
KA、Am:非球面係数(m=3、4、5、…10)
 以上述べた表4の記載の仕方は、後述する表7,9においても同様である。
 また、図10の(A)~(D)に、実施例3の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <実施例4>
 図4に、実施例4の撮像レンズにおけるレンズ群の配置を示す。実施例4の撮像レンズは、上述した実施例1の撮像レンズと略同様の構成とされているが、第2レンズ群G2が、物体側から順に、像側に凸面を向けたメニスカス形状を有する正レンズである第2-1レンズL21、両凹形状を有する第2-2レンズL22、第2-2レンズL22に接合された両凸形状を有する第2-3レンズL23、負の屈折力を有し、像側に凸面を向けたメニスカス形状を有する第2-4レンズL24、および両凸形状を有する第2-5レンズL25の5枚のレンズから構成されている点において相違している。なお、この実施例1に対する相違点は、実施例7においても同様であるため、実施例7の説明ではその点を繰り返し述べることはしない。表5に実施例4の撮像レンズの基本レンズデータを示す。図11の(A)~(D)に、実施例4の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000005
 <実施例5>
 図5に、実施例5の撮像レンズにおけるレンズ群の配置を示す。実施例5の撮像レンズは、上述した実施例1の撮像レンズと略同様の構成とされているが、第1レンズ群G1が、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズである第1-1レンズL11、第1-1レンズL11に接合された正レンズである第1-2レンズL12、および負レンズである第1-3レンズL13の3枚のレンズから構成されている点において相違している。また、第2レンズ群G2が、物体側から順に、像側に凸面を向けたメニスカス形状を有する、物体側および像側の面が非球面とされた正レンズである第2-1レンズL21、両凸形状を有する第2-2レンズL22、第2-2レンズL22に接合された両凹形状を有する第2-3レンズL23、および物体側に凸面を向けたメニスカス形状を有する正レンズである第2-4レンズL24から構成されている点において相違している。なお、これらの実施例1に対する相違点のうち、第2レンズ群G2についての相違点は、第2-1レンズL21が非球面レンズである点を除いて、実施例7においても同様であるため、実施例7の説明ではその点を繰り返し述べることはしない。
 表6に実施例5の撮像レンズの基本レンズデータを示す。表7に、実施例5の撮像レンズの非球面データを示す。図12の(A)~(D)に、実施例5の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 <実施例6>
 図6に、実施例6の撮像レンズにおけるレンズ群の配置を示す。表8に実施例6の撮像レンズの基本レンズデータを示す。表9に、実施例6の撮像レンズの非球面データを示す。図13の(A)~(D)に、実施例6の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <実施例7>
 図7に、実施例7の撮像レンズにおけるレンズ群の配置を示す。表10に実施例7の撮像レンズの基本レンズデータを示す。図14の(A)~(D)に、実施例7の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000010
 また表11に、上述した条件式(1)~(8)が規定する条件、すなわち文字式の部分の値を、実施例1~7の各々について示す。この表11の値はd線に関するものである。表11に示すように、実施例1~7の撮像レンズはいずれも条件式(1)~(8)の全てを満たし、さらにはそれらの条件式が規定する範囲内のより好ましい範囲を示す条件式(1-1)~(3-1)、(5-1)~(8-1)も全て満たしている。これによって得られる効果は、先に詳しく説明した通りである。
Figure JPOXMLDOC01-appb-T000011
 なお、図1には、レンズ系と結像面Simとの間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明による撮像装置について説明する。図15に、本発明の一実施形態によるカメラの斜視形状を示す。ここに示すカメラ10は、コンパクトデジタルカメラであり、カメラボディ11の正面および内部には本発明の実施形態に係る小型の撮像レンズ12が設けられ、カメラボディ11の正面には被写体に閃光を発光するための閃光発光装置13が設けられ、カメラボディ11の上面にはシャッターボタン15と、電源ボタン16とが設けられ、カメラボディ11の内部には撮像素子17が設けられている。撮像素子17は、小型の広角レンズ12により形成される光学像を撮像して電気信号に変換するものであり、例えば、CCDやCMOS等により構成される。
 上述したように、本発明の実施形態に係る撮像レンズ12は十分な小型化が実現されているため、カメラ10は、沈胴式を採用しなくても携帯時と撮影時の両方においてコンパクトなカメラとすることができる。あるいは、沈胴式を採用した場合には、従来の沈胴式のカメラよりもさらに小型で携帯性の高いカメラとすることができる。また、本発明による撮像レンズ12が適用されたこのカメラ10は、高画質で撮影可能なものとなる。
 次に、本発明による撮像装置の別の実施形態について、図16を参照して説明する。ここに斜視形状を示すカメラ30は、交換レンズ20が取り外し自在に装着される、いわゆるミラーレス一眼形式のデジタルスチルカメラであり、図16Aはこのカメラ30を前側から見た外観を示し、図16Bはこのカメラ30を背面側から見た外観を示している。
 このカメラ30はカメラボディ31を備え、その上面にはシャッターボタン32と電源ボタン33とが設けられている。またカメラボディ31の背面には、操作部34および35と表示部36とが設けられている。表示部36は、撮像された画像や、撮像される前の画角内にある画像を表示するためのものである。
 カメラボディ31の前面中央部には、撮影対象からの光が入射する撮影開口が設けられ、その撮影開口に対応する位置にマウント37が設けられ、このマウント37を介して交換レンズ20がカメラボディ31に装着されるようになっている。交換レンズ20は、本発明による撮像レンズを鏡筒内に収納したものである。
 そしてカメラボディ31内には、交換レンズ20によって形成された被写体像を受け、それに応じた撮像信号を出力するCCD等の撮像素子(図示せず)、その撮像素子から出力された撮像信号を処理して画像を生成する信号処理回路、およびその生成された画像を記録するための記録媒体等が設けられている。このカメラ30では、シャッターボタン32を押すことにより1フレーム分の静止画の撮影がなされ、この撮影で得られた画像データが上記記録媒体に記録される。
 このようなミラーレス一眼カメラ30に用いられる交換レンズ20に、本発明による撮像レンズを適用することにより、このカメラ30はレンズ装着状態において十分小型で、また高画質で撮影可能なものとなる。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではなく、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。

Claims (17)

  1.  物体側から順に、第1レンズ群、絞り、および第2レンズ群から構成され、
     前記第1レンズ群は、最も物体側に配置された負レンズと、該負レンズよりも像側に配置された正レンズとを含む3枚以下のレンズから構成され、
     前記第2レンズ群は、正レンズおよび負レンズの2枚のレンズが接合された接合レンズと、該接合レンズよりも像側に配置された、正の屈折力を有する単レンズとを含む5枚以下のレンズから構成され、
     下記条件式(1)~(4)を満足することを特徴とする撮像レンズ。
      NdfL>1.65 … (1)
      20<νdfL<40 … (2)
      4<νd2p-νd2n<25 … (3)
      NdrL>1.7 …(4) 
    ただし、
    NdfL:前記第1レンズ群の前記負レンズのd線に対する屈折率
    νdfL:前記第1レンズ群の前記負レンズのd線に対するアッベ数
    νd2p:前記第2レンズ群の前記接合レンズを構成する正レンズのd線に対するアッベ数
    νd2n:前記第2レンズ群の前記接合レンズを構成する負レンズのd線に対するアッベ数
    NdrL:前記第2レンズ群を構成する前記単レンズのd線に対する屈折率
  2.  下記条件式(1-1)、(2-1)および(3-1)の少なくとも1つを満足することを特徴とする請求項1記載の撮像レンズ。
      NdfL>1.66 … (1-1)
      23<νdfL<38 … (2-1)
      6<νd2p-νd2n<24 … (3-1)
  3.  前記第1レンズ群は、正の屈折力を有することを特徴とする請求項1または2記載の撮像レンズ。
  4.  前記第1レンズ群は、物体側から順に、物体側に凸面を向けたメニスカス形状を有する負レンズ、および該負レンズに接合された正レンズを有することを特徴とする請求項1から3のいずれか1項記載の撮像レンズ。
  5.  下記条件式(5)を満足することを特徴とする請求項1から4のいずれか1項記載の撮像レンズ。
      -0.05<Nd2p-Nd2n<0.20 … (5)
    ただし、
    Nd2p:前記第2レンズ群の前記接合レンズを構成する正レンズのd線に対する屈折率
    Nd2n:前記第2レンズ群の前記接合レンズを構成する負レンズのd線に対する屈折率
  6.  下記条件式(5-1)を満足することを特徴とする請求項5記載の撮像レンズ。
      -0.03<Nd2p-Nd2n<0.18 … (5-1)
  7.  下記条件式(6)を満足することを特徴とする請求項1から6のいずれか1項記載の撮像レンズ。
      0.05<f/f2c<0.90 … (6)
    ただし、
    f2c:前記第2レンズ群の接合レンズの焦点距離
    f:全系の焦点距離
  8.  下記条件式(6-1)を満足することを特徴とする請求項7記載の撮像レンズ。
      0.08<f/f2c<0.85 … (6-1)
  9.  下記条件式(7)を満足することを特徴とする請求項1から8のいずれか1項記載の撮像レンズ。
      0<f/f2<0.6 … (7)
    ただし、
    f2:前記第2レンズ群の焦点距離
    f:全系の焦点距離
  10.  下記条件式(7-1)を満足することを特徴とする請求項9記載の撮像レンズ。
      0.02<f/f2<0.58 … (7-1)
  11.  下記条件式(8)を満足することを特徴とする請求項1から10のいずれか1項記載の撮像レンズ。
      2.2<TL/Y<3.2 … (8)
    ただし、
    TL:全系の最も物体側のレンズ面から像面までの光軸上の距離(バックフォーカス分は空気換算長)
    Y:最大像高
  12.  下記条件式(8-1)を満足することを特徴とする請求項11記載の撮像レンズ。
      2.3<TL/Y<3.1 … (8-1)
  13.  前記第2レンズ群は、少なくとも1面が非球面の非球面レンズを少なくとも1枚有することを特徴とする請求項1から12のいずれか1項記載の撮像レンズ。
  14.  前記第2レンズ群の最も像側には、正の屈折力を有し、両面ともに球面形状である単レンズが配置され、該正の屈折力を有する単レンズよりも物体側に前記非球面レンズが配置されていることを特徴とする請求項13記載の撮像レンズ。
  15.  全系における前記非球面レンズ以外のレンズは、球面レンズであることを特徴とする請求項13または14記載の撮像レンズ。
  16.  前記第2レンズ群は、最も像側に配置された正の屈折力を有する単レンズ、該単レンズよりも物体側に配置された2枚接合レンズ、および1枚の単レンズの4枚のレンズから構成されることを特徴とする請求項1から15のいずれか1項記載の撮像レンズ。
  17.  請求項1から16のいずれか1項記載の撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2012/008260 2011-12-27 2012-12-25 撮像レンズおよび撮像装置 WO2013099214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12861522.6A EP2799923B1 (en) 2011-12-27 2012-12-25 Imaging lens and imaging device
CN201280064706.3A CN104011577B (zh) 2011-12-27 2012-12-25 摄像透镜和摄像装置
JP2013551238A JP5642891B2 (ja) 2011-12-27 2012-12-25 撮像レンズおよび撮像装置
US14/317,850 US9013806B2 (en) 2011-12-27 2014-06-27 Imaging lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-284632 2011-12-27
JP2011284632 2011-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/317,850 Continuation US9013806B2 (en) 2011-12-27 2014-06-27 Imaging lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013099214A1 true WO2013099214A1 (ja) 2013-07-04

Family

ID=48696754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008260 WO2013099214A1 (ja) 2011-12-27 2012-12-25 撮像レンズおよび撮像装置

Country Status (5)

Country Link
US (1) US9013806B2 (ja)
EP (1) EP2799923B1 (ja)
JP (1) JP5642891B2 (ja)
CN (1) CN104011577B (ja)
WO (1) WO2013099214A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016115478A1 (de) 2015-09-11 2017-03-16 Fujifilm Corporation Abbildungsobjektiv und abbildungsvorrichtung
CN106597643A (zh) * 2017-02-22 2017-04-26 佛山赛威光电技术有限公司 一种光电组合镜头
CN106707452A (zh) * 2017-02-22 2017-05-24 佛山赛威光电技术有限公司 一种镜头组合架
CN106772906A (zh) * 2017-02-22 2017-05-31 佛山赛威光电技术有限公司 一种光学镜头座
CN106772905A (zh) * 2017-02-22 2017-05-31 佛山赛威光电技术有限公司 一种光电镜头组件
JP6391131B1 (ja) * 2017-12-18 2018-09-19 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6401408B1 (ja) * 2017-12-18 2018-10-10 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN110618518A (zh) * 2018-06-19 2019-12-27 株式会社理光 成像镜头系统及摄像装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011577B (zh) * 2011-12-27 2016-03-30 富士胶片株式会社 摄像透镜和摄像装置
JP5872123B2 (ja) * 2013-10-03 2016-03-01 日立マクセル株式会社 撮像レンズ系及び撮像装置
TWI526712B (zh) * 2014-05-09 2016-03-21 信泰光學(深圳)有限公司 成像鏡頭
CN105759407B (zh) * 2014-12-16 2018-06-19 信泰光学(深圳)有限公司 成像镜头
JP6576289B2 (ja) * 2016-04-04 2019-09-18 富士フイルム株式会社 内視鏡用対物光学系および内視鏡
TWI622822B (zh) 2017-09-13 2018-05-01 大立光電股份有限公司 影像系統鏡組、取像裝置及電子裝置
KR20230068887A (ko) * 2021-11-11 2023-05-18 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 모듈

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499429A (en) * 1978-01-23 1979-08-06 Asahi Optical Co Ltd Short length quasiiwide angle photographic lens
JP2007226195A (ja) * 2006-02-24 2007-09-06 Benq Corp ズームレンズ及びそれを有する撮像装置
JP2008298899A (ja) * 2007-05-29 2008-12-11 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2009237542A (ja) 2008-03-04 2009-10-15 Nikon Corp リアフォーカス光学系、撮像装置、リアフォーカス光学系の合焦方法
JP2009258157A (ja) 2008-04-11 2009-11-05 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器及び結像方法
JP2009300919A (ja) * 2008-06-17 2009-12-24 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2010186011A (ja) 2009-02-12 2010-08-26 Olympus Imaging Corp 広角光学系及びそれを用いた撮像装置
JP2011059288A (ja) 2009-09-09 2011-03-24 Nikon Corp 広角レンズ、この広角レンズを有する光学機器、及び、広角レンズの製造方法
JP2011059598A (ja) * 2009-09-14 2011-03-24 Olympus Imaging Corp 変倍光学系及びそれを有する撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
KR20090033754A (ko) * 2007-10-01 2009-04-06 삼성테크윈 주식회사 광각 줌 광학계
KR101660840B1 (ko) * 2009-09-11 2016-09-28 삼성전자주식회사 소형 줌 광학계
WO2011030894A1 (ja) 2009-09-14 2011-03-17 オリンパスイメージング株式会社 変倍光学系及びそれを有する撮像装置
JP5043146B2 (ja) * 2010-04-12 2012-10-10 シャープ株式会社 撮像レンズおよび撮像モジュール
CN104011577B (zh) * 2011-12-27 2016-03-30 富士胶片株式会社 摄像透镜和摄像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499429A (en) * 1978-01-23 1979-08-06 Asahi Optical Co Ltd Short length quasiiwide angle photographic lens
JP2007226195A (ja) * 2006-02-24 2007-09-06 Benq Corp ズームレンズ及びそれを有する撮像装置
JP2008298899A (ja) * 2007-05-29 2008-12-11 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2009237542A (ja) 2008-03-04 2009-10-15 Nikon Corp リアフォーカス光学系、撮像装置、リアフォーカス光学系の合焦方法
JP2009258157A (ja) 2008-04-11 2009-11-05 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器及び結像方法
JP2009300919A (ja) * 2008-06-17 2009-12-24 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2010186011A (ja) 2009-02-12 2010-08-26 Olympus Imaging Corp 広角光学系及びそれを用いた撮像装置
JP2011059288A (ja) 2009-09-09 2011-03-24 Nikon Corp 広角レンズ、この広角レンズを有する光学機器、及び、広角レンズの製造方法
JP2011059598A (ja) * 2009-09-14 2011-03-24 Olympus Imaging Corp 変倍光学系及びそれを有する撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799923A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10101565B2 (en) 2015-09-11 2018-10-16 Fujifilm Corporation Imaging lens and imaging apparatus
DE102016115478B4 (de) 2015-09-11 2018-07-19 Fujifilm Corporation Abbildungsobjektiv und abbildungsvorrichtung
DE102016115478A1 (de) 2015-09-11 2017-03-16 Fujifilm Corporation Abbildungsobjektiv und abbildungsvorrichtung
CN106597643A (zh) * 2017-02-22 2017-04-26 佛山赛威光电技术有限公司 一种光电组合镜头
CN106707452A (zh) * 2017-02-22 2017-05-24 佛山赛威光电技术有限公司 一种镜头组合架
CN106772906A (zh) * 2017-02-22 2017-05-31 佛山赛威光电技术有限公司 一种光学镜头座
CN106772905A (zh) * 2017-02-22 2017-05-31 佛山赛威光电技术有限公司 一种光电镜头组件
JP6391131B1 (ja) * 2017-12-18 2018-09-19 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6401408B1 (ja) * 2017-12-18 2018-10-10 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP2019109481A (ja) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP2019109478A (ja) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN110618518A (zh) * 2018-06-19 2019-12-27 株式会社理光 成像镜头系统及摄像装置
CN110618518B (zh) * 2018-06-19 2021-11-02 株式会社理光 成像镜头系统及摄像装置
US11287606B2 (en) 2018-06-19 2022-03-29 Ricoh Company, Ltd. Imaging lens system and imaging device

Also Published As

Publication number Publication date
CN104011577B (zh) 2016-03-30
JPWO2013099214A1 (ja) 2015-04-30
EP2799923A4 (en) 2015-07-08
EP2799923A1 (en) 2014-11-05
US9013806B2 (en) 2015-04-21
CN104011577A (zh) 2014-08-27
US20140307333A1 (en) 2014-10-16
JP5642891B2 (ja) 2014-12-17
EP2799923B1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5642891B2 (ja) 撮像レンズおよび撮像装置
JP6040105B2 (ja) 撮像レンズおよび撮像装置
JP5616535B2 (ja) 撮像レンズおよび撮像装置
JP5638702B2 (ja) 撮像レンズおよび撮像装置
JP5655164B2 (ja) 撮像レンズおよび撮像装置
US9442278B2 (en) Zoom lens and imaging apparatus
JP6548590B2 (ja) 撮像レンズおよび撮像装置
JP6042768B2 (ja) 撮像レンズおよび撮像装置
JP6468978B2 (ja) 撮像レンズおよび撮像装置
JP5607264B2 (ja) 撮像レンズおよび撮像装置
JP5974101B2 (ja) 広角レンズおよび撮像装置
US9377607B2 (en) Zoom lens and imaging apparatus
US9606330B2 (en) Imaging lens and imaging apparatus
US8917456B2 (en) Medium telephoto lens and imaging device
JP6320904B2 (ja) 撮像レンズおよび撮像装置
JP5796919B2 (ja) レトロフォーカス型広角レンズおよび撮像装置
JP5592571B2 (ja) 撮像レンズおよび撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280064706.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012861522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861522

Country of ref document: EP