WO2011027896A1 - 窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子 - Google Patents

窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子 Download PDF

Info

Publication number
WO2011027896A1
WO2011027896A1 PCT/JP2010/065319 JP2010065319W WO2011027896A1 WO 2011027896 A1 WO2011027896 A1 WO 2011027896A1 JP 2010065319 W JP2010065319 W JP 2010065319W WO 2011027896 A1 WO2011027896 A1 WO 2011027896A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
multilayer structure
semiconductor layer
nuclei
source gas
Prior art date
Application number
PCT/JP2010/065319
Other languages
English (en)
French (fr)
Inventor
隆好 高野
椿 健治
秀樹 平山
紗千恵 藤川
Original Assignee
パナソニック電工株式会社
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社, 独立行政法人理化学研究所 filed Critical パナソニック電工株式会社
Priority to CN201080039427.2A priority Critical patent/CN102656711B/zh
Priority to JP2011529977A priority patent/JP5704724B2/ja
Priority to US13/394,459 priority patent/US20120248456A1/en
Priority to EP10813842.1A priority patent/EP2477236A4/en
Priority to KR1020127008861A priority patent/KR101317735B1/ko
Publication of WO2011027896A1 publication Critical patent/WO2011027896A1/ja
Priority to US14/641,076 priority patent/US20150176154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor multilayer structure containing Al as a constituent element, a method for manufacturing the same, and a nitride semiconductor light emitting device.
  • Nitride semiconductor light-emitting elements that emit light in the visible to ultraviolet wavelength range are expected to be applied in various fields such as hygiene, medicine, industry, lighting, and precision machinery because of their low power consumption and small size. It has already been put into practical use in some wavelength regions such as the blue light wavelength region.
  • nitride semiconductor light-emitting elements are not limited to nitride semiconductor light-emitting elements that emit blue light (hereinafter referred to as blue light-emitting diodes), and further improvements in luminous efficiency and light output are desired.
  • nitride semiconductor light-emitting devices that emit light in the ultraviolet wavelength region (hereinafter referred to as ultraviolet light-emitting diodes) are currently in practical use due to their significantly lower external quantum efficiency and light output than blue light-emitting diodes. It has become a big barrier to.
  • One of the causes that the external quantum efficiency and the light output are remarkably inferior is that the light emission efficiency of the light emitting layer (hereinafter referred to as internal quantum efficiency) is low.
  • the internal quantum efficiency of the light-emitting layer composed of the nitride semiconductor crystal is affected by threading dislocations.
  • dislocation density of threading dislocations is high, non-radiative recombination becomes dominant, which causes a significant decrease in internal quantum efficiency.
  • the above threading dislocations are particularly likely to occur at the growth interface when a substrate made of a material such as sapphire having a large lattice mismatch with respect to the nitride semiconductor is used as a single crystal substrate for epitaxial growth. Therefore, in order to obtain a nitride semiconductor crystal having a low threading dislocation density, it is a very important factor to control the behavior of each constituent element at the initial stage of growth. Especially in nitride semiconductor crystals containing Al (especially AlN), the growth technology has not been established compared to nitride semiconductor crystals containing Al (especially GaN), and relatively high density of threading dislocations. Exists.
  • the nitride semiconductor crystal has a larger content than a blue light-emitting diode composed of a nitride semiconductor crystal mainly composed of GaN. As a result, many threading dislocations existed, and thus the light emission efficiency was low.
  • a high buffer layer formed on one surface side of a single crystal substrate made of a sapphire substrate is formed on the above-mentioned buffer layer formed by the reduced pressure MOVPE method.
  • the above-mentioned buffer layer formed by the reduced pressure MOVPE method includes a number of island-like nuclei (hereinafter referred to as AlN nuclei) made of AlN formed on the one surface of the single crystal substrate.
  • NH 3 intermittently and AlN nucleation embedding a gap AlN nuclei in the first surface side of the single crystal substrate by supplying the (pulsed) a TMAl a III group material is a group V material while continuously feeding A first nitride semiconductor layer formed of an AlN layer (pulse supply AlN layer) formed so as to cover the substrate, and both TMAl and NH 3 are continuously supplied simultaneously.
  • a nitride semiconductor multilayer structure having a second nitride semiconductor layer made of an AlN layer (continuously grown AlN layer) formed on the first nitride semiconductor layer is proposed (Patent Literature). 1).
  • Patent Document 1 does not specifically disclose the density (nuclear density) of AlN nuclei on the one surface of the single crystal substrate for obtaining a high-quality nitride semiconductor multilayer structure.
  • the inventors of the present application have found that depending on the density of AlN nuclei on the one surface of the single crystal substrate, the threading dislocation density of the nitride semiconductor multilayer structure and the light emitting layer is increased, and light emission It was found that the effect of improving the efficiency may be difficult to obtain.
  • the present invention has been made in view of the above reasons, and its purpose is to provide a high-quality nitride semiconductor multilayer structure composed of a nitride semiconductor containing Al as a constituent element, a manufacturing method thereof, and Al as a constituent element.
  • An object of the present invention is to provide a nitride semiconductor light emitting device including a high-quality nitride semiconductor multilayer structure made of a contained nitride semiconductor as a buffer layer.
  • a large number of island-shaped nuclei formed of a nitride semiconductor containing Al as a constituent element are formed on one surface of a single crystal substrate, and gaps between the adjacent nuclei are embedded and all the A first nitride semiconductor layer formed on the one surface side of the single crystal substrate so as to cover the nucleus and containing Al as a constituent element, and a first nitride semiconductor layer formed on the first nitride semiconductor layer and containing Al as a constituent element 2 of the nitride semiconductor layer, and the density of the nuclei does not exceed 6 ⁇ 10 9 cm ⁇ 2 .
  • a high-quality nitride semiconductor multilayer structure made of a nitride semiconductor containing Al as a constituent element can be obtained.
  • a large number of island-like nuclei formed on the one surface of the single-crystal substrate increase in size as the growth of the nuclei, and when coupled to adjacent nuclei, threading dislocations occur at the bonding interface.
  • the bonding interface can be reduced, and as a result, threading dislocations that occur when adjacent nuclei are bonded to each other.
  • a high-quality nitride semiconductor multilayer structure with few threading dislocations can be obtained.
  • the invention of claim 2 is characterized in that the density of the nuclei is 1 ⁇ 10 6 cm ⁇ 2 or more. Since the density of the nuclei is 1 ⁇ 10 6 cm ⁇ 2 or more, the first nitride semiconductor layer can be formed with a small thickness in order to fill the gaps between the nuclei and cover all the nuclei. Therefore, when the density of the nuclei is 1 ⁇ 10 6 cm ⁇ 2 or more, it is possible to prevent the occurrence of cracks due to the film thickness becoming too large, and it is easy to obtain a flat film embedded with the nuclei. .
  • the density of the nuclei is 1 ⁇ 10 8 cm ⁇ 2 or more.
  • the distance between adjacent nuclei is about 1 ⁇ m, so that a flat film can be easily obtained while having a low dislocation density. Therefore, it is possible to form a high-quality light-emitting layer having few non-radiative recombination centers caused by dislocations and having a good interface.
  • the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the nucleus has a surface inclined from the one surface of the single crystal substrate.
  • the nucleus since the nucleus has a surface inclined from the one surface of the single crystal substrate, the method of the one surface of the single crystal substrate when the first nitride semiconductor layer is formed. Growth in the line direction is suppressed, and growth in the lateral direction along the one surface easily proceeds. Since threading dislocations are likely to enter along the growth direction, it is difficult to extend in the normal direction of the one surface of the single crystal substrate and is parallel to the one surface, similarly to the growth direction of the first nitride semiconductor layer. Since it bends in a certain direction, threading dislocations and dislocation loops in the vicinity are created and disappear easily. As a result, the density of threading dislocations on the surface of the second nitride semiconductor layer can be reduced.
  • the invention of claim 5 is characterized in that, in the invention of claims 1 to 4, the nitride semiconductor constituting the nucleus is AlN.
  • the first nitride semiconductor layer and the second nitride semiconductor layer are formed of AIN.
  • the control when forming the nucleus is easy.
  • AlN is a material having a large band gap energy of 6.2 eV
  • a nitride semiconductor light emitting element (ultraviolet light emission) is formed by forming a light emitting layer that emits ultraviolet light on the surface side of the second nitride semiconductor layer.
  • the single crystal substrate is a sapphire substrate, and the one surface has an off angle of 0 ° to 0 with respect to the c-plane. .2 °.
  • the density of nuclei can be prevented from exceeding 6 ⁇ 10 9 cm ⁇ 2, and a high quality nitride semiconductor multilayer structure can be provided.
  • Atoms supplied to form nuclei diffuse on the substrate surface and become crystals in a stable place. When the atomic diffusion distance is sufficiently long, the nuclei are likely to be formed particularly on the terrace. Accordingly, the smaller the off-angle of the single crystal substrate, the longer the terrace width, and thus the density of the nuclei can be easily lowered.
  • N is used for the amount of material of the Al source gas at a predetermined substrate temperature and a predetermined growth pressure by using a reduced pressure MOVPE method.
  • Step a for forming a large number of island-shaped nuclei made of a nitride semiconductor containing Al as a constituent element, and a material of N source gas with respect to the amount of Al source gas at a predetermined substrate temperature and a predetermined growth pressure
  • the ratio of the material amount of the N source gas to the material amount of the Al source gas is set to a third material amount ratio under a predetermined substrate temperature and a predetermined growth pressure.
  • a nitride semiconductor multilayer structure comprising: a step c of forming a second nitride semiconductor layer on the first nitride semiconductor layer by supplying an Al source gas and an N source gas into the reaction furnace;
  • the first nitride semiconductor layer and the second nitride semiconductor layer each contain Al as a constituent element and have the same substrate temperature in each of the steps a to c.
  • the growth pressure for forming the nucleus, the first nitride semiconductor layer, and the second nitride semiconductor layer is set to be the same.
  • the manufacturing time can be shortened, and the nucleus and the first layer accompanying the change in the substrate temperature and the growth pressure can be reduced.
  • the deterioration of the nitride semiconductor layer 1 can be prevented.
  • the invention according to claim 9 is characterized in that, in the manufacturing method according to claim 8, the ratio of the first substance in the step a is set to 10 to 1000.
  • the invention according to claim 10 is characterized in that, in the manufacturing method according to claim 8 or 9, the second substance amount ratio in the step b is set to 40-60. According to the present invention, white turbidity caused by excessive supply of one of the source gases can be prevented.
  • the invention according to claim 11 is characterized in that, in the manufacturing method according to any one of claims 8 to 10, the third substance amount ratio in the step c is set to 1 to 100. According to the present invention, the second nitride semiconductor layer can be formed without deteriorating the surface state.
  • the invention according to claim 12 is the manufacturing method according to any one of claims 8 to 11, wherein the supply amount of the Al source gas in the step a is 0.01 L / min to 0.1 L in a standard state.
  • the supply amount of the N source gas is 0.01 L / min to 0.1 L / min in the standard state.
  • the invention according to claim 13 is the manufacturing method according to any one of claims 8 to 12, wherein the supply amount of the Al source gas in the step b is 0.1 L / min to 1 L / min in a standard state.
  • the supply amount of the N source gas is 0.1 L / min to 1 L / min in a standard state.
  • the supply amount of the Al source gas in the step c is 0.1 L / min to 1 L / min in a standard state.
  • the supply amount of the N source gas is 0.01 L / min to 1 L / min in a standard state.
  • the invention according to claim 15 is the manufacturing method according to any one of claims 8 to 14, wherein the Al source gas supplied in each of the steps a to c is trimethylaluminum. .
  • a sixteenth aspect of the invention is characterized in that in the manufacturing method according to any one of the eighth to fifteenth aspects, the N source gas supplied in each of the steps a to c is NH 3. .
  • the invention according to claim 17 is the manufacturing method according to any one of claims 8 to 16, wherein the carrier gas supplied in each of the steps a to c is hydrogen.
  • the invention of claim 18 is the method for producing a nitride semiconductor multilayer structure according to any one of claims 8 to 17, wherein the substrate temperature is set to 1300 ° C. or more and 1500 ° C. or less. And according to this invention, when the nucleus is formed, the diffusion length of the constituent elements attached to the one surface of the single crystal substrate is longer than when the substrate temperature is lower than 1300 ° C. The density of nuclei can be reduced, and the density of the nuclei can be easily prevented from exceeding 6 ⁇ 10 9 cm ⁇ 2, and the high quality made of a nitride semiconductor containing Al as a constituent element.
  • the nitride semiconductor multilayer structure can be provided.
  • the invention of claim 19 is the method for producing a nitride semiconductor multilayer structure according to any one of claims 8 to 18, wherein an Al source gas as a component of the AlN is supplied to each of the steps a to Each of c is continuously supplied, and the source gas of N which is a component of the AlN is intermittently supplied in each of the step a and the step b.
  • the nucleus and the first nitride semiconductor layer can be more reliably formed.
  • the invention of claim 20 is a nitride semiconductor light emitting device comprising a nitride semiconductor multilayer structure.
  • This nitride semiconductor multilayer structure is formed on one surface of a single crystal substrate and fills gaps between a large number of island-shaped nuclei made of a nitride semiconductor containing Al as a constituent element and adjacent nuclei.
  • a second nitride semiconductor layer included as The nitride semiconductor light emitting device further includes an n-type nitride semiconductor layer formed on the nitride semiconductor multilayer structure, a light emitting layer formed on the n type nitride semiconductor layer, and a light emitting layer on the light emitting layer.
  • a stacked structure of an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer can be formed on a high-quality nitride semiconductor multilayer structure with few threading dislocations.
  • the nitride semiconductor multilayer structure and the light emitting layer can be made of high quality, and non-radiative recombination centers caused by threading dislocations can be reduced. As a result, the light emission efficiency can be improved.
  • the invention of claim 1 is advantageous in that a high-quality nitride semiconductor multilayer structure made of a nitride semiconductor containing Al as a constituent element can be obtained.
  • the invention of claim 8 achieves a method of manufacturing a nitride semiconductor multilayer structure that can shorten the manufacturing time and prevent deterioration of the nucleus and the first nitride semiconductor layer accompanying changes in substrate temperature and growth pressure. There is an effect that can be done.
  • the inventions of claims 8 and 9 have an effect that a high-quality nitride semiconductor multilayer structure made of a nitride semiconductor containing Al as a constituent element can be provided.
  • a high-quality nitride semiconductor multilayer structure and a light emitting layer can be obtained, and non-radiative recombination centers caused by threading dislocations can be reduced. As a result, luminous efficiency is improved. There is an effect that it can be planned.
  • the nitride semiconductor light emitting device of this embodiment is an ultraviolet light emitting diode, and as shown in FIG. 1A, a nitride semiconductor multilayer structure containing Al as a constituent element on one surface side of a single crystal substrate 1 for epitaxial growth.
  • An n-type nitride semiconductor layer 3 is formed through a body buffer layer 2, a light emitting layer 4 is formed on the surface side of the n-type nitride semiconductor layer 3, and a p-type nitride semiconductor layer is formed on the surface side of the light emitting layer 4. 5 is formed.
  • the n-type nitride semiconductor layer 3 has a cathode electrode, and the p-type nitride semiconductor layer 5 has an anode electrode.
  • This single crystal substrate 1 has the one surface with an off angle of 0.15 ° with respect to the (0001) plane, that is, the c-plane.
  • the buffer layer 2 is provided to reduce threading dislocations in the n-type nitride semiconductor layer 3 and to reduce residual strain in the n-type nitride semiconductor layer 3.
  • the nitride semiconductor multilayer structure constituting the buffer layer 2 is a nitride semiconductor formed on the one surface of the single crystal substrate 1 made of a sapphire substrate and containing Al as a constituent element, as shown in FIG. 1B.
  • a large number of island-shaped nuclei (growth nuclei) 2a made of AlN and the single-crystal substrate 1 are formed on the one surface side so as to fill the gaps between adjacent nuclei 2a and cover all the nuclei 2a.
  • a first nitride semiconductor layer 2b made of an AlN layer containing an element; and a second nitride semiconductor layer 2c made of an AlN layer made of Al as a constituent element and formed on the first nitride semiconductor layer 2b. ing.
  • the buffer layer 2 is formed on the second nitride semiconductor layer 2c for the purpose of increasing the film thickness of the buffer layer 2, and is formed with a number of island crystals 2d made of AlN containing Al as a constituent element.
  • the island-like crystal 2d is formed for the purpose of further reducing threading dislocations by forming threading dislocations and loops by bending threading dislocations.
  • the threading dislocations are sufficiently reduced by the effect of the nuclei 2a formed on the one surface of the single crystal substrate 1, the threading dislocations reaching the island-like crystals 2d are very few. Therefore, the effect of reducing threading dislocations in the island-like crystal 2d is sufficiently smaller than the effect of reducing threading dislocations in the nucleus 2a because there are very few threading dislocations that can form a loop.
  • the height of the nucleus 2a is about 30 nm
  • the thickness of the first nitride semiconductor layer 2b is 500 nm
  • the thickness of the second nitride semiconductor layer 2c is 1 ⁇ m
  • the height of the island-shaped crystal 2d is high.
  • the thickness is set to about 10 nm, and the film thickness of the entire buffer layer 2 is about 4.5 ⁇ m, but these values are merely examples and are not particularly limited.
  • the film thickness of the entire buffer layer 2 is desirably set to be large in order to reduce threading dislocations and improve heat dissipation. However, if the film thickness of the entire buffer layer 2 becomes too large, the possibility of cracking due to lattice mismatch between the single crystal substrate 1 and the buffer layer 2 increases. Therefore, it is desirable not to exceed 10 ⁇ m.
  • the number of unit layers formed of the island-shaped crystals 2d and the second nitride semiconductor layer 2c is not particularly limited as long as cracks do not occur.
  • the nitride semiconductor of the buffer layer 2 is not limited to AlN, and may contain Al as a constituent element.
  • AlGaN, AlInN, or the like may be adopted.
  • the buffer layer 2 only needs to include at least a large number of nuclei 2a, a first nitride semiconductor layer 2c, and a second nitride semiconductor layer 2c, and the above-described unit layer is not necessarily provided.
  • the unit layer is advantageous from the viewpoint of reducing the threading dislocation density.
  • one surface of the single crystal substrate 1 on which the nucleus 2a and the first nitride semiconductor layer 2b are formed has an off angle of 0.15 ° with respect to the c-plane. That is, nuclei are formed on one surface of the single crystal substrate 1 whose off angle with respect to the c-plane is in the range of 0 ° to 0.2 ° .
  • the atoms supplied to form the nucleus 2a diffuse on the surface of the single crystal substrate 1 and become crystals at a stable location. When the diffusion distance of atoms is sufficiently long, the nucleus 2a is easily formed particularly on the terrace. Therefore, as in the present embodiment, the smaller the off-angle of the single crystal substrate 1, the longer the terrace width.
  • the density of the nuclei 2a can be easily reduced, and a high-quality nitride semiconductor multilayer structure is provided. Can do.
  • the off-angle of the single crystal substrate 1 is larger than 0.2 ° , the terrace width is shortened, so that the density of the nuclei 2a is increased, and it becomes difficult to obtain a high-quality nitride semiconductor multilayer structure.
  • the single crystal substrate 1 made of a sapphire substrate is introduced into the reactor of the MOVPE apparatus, and then the substrate temperature is maintained while maintaining the pressure in the reactor at a predetermined growth pressure (for example, 10 kPa ⁇ 76 Torr). Is heated to a predetermined temperature (for example, 1300 ° C.) of 1300 ° C. or higher and 1500 ° C.
  • a predetermined growth pressure for example, 10 kPa ⁇ 76 Torr
  • TMAl trimethylaluminum
  • Group III raw material aluminum raw material
  • the nitrogen raw material (V group material) is a ammonia 0.02L under standard conditions the flow rate of (NH 3) / min (20SC After setting the M), in a state in which the reactor was flushed with TMAl, by flowing NH 3 into the reaction furnace intermittently (pulsed), AlN first predetermined height (e.g., 30 nm) A large number of island-like nuclei 2a are formed.
  • the mass ratio of trimethylaluminum and ammonia supplied into the reaction furnace is 32 in this embodiment, and is set in the range of 10 to 1000.
  • the flow rates of trimethylaluminum and ammonia supplied into the reactor are not limited to 0.02 L / min in the standard state, but between 0.01 L / min and 0.1 L / min in the standard state.
  • NH 3 and TMAl used as general raw materials when growing AlN react with each other in the process of being transported to the single crystal substrate 1 (parasitic reaction), thereby forming fine particles. Further, when these raw materials are continuously supplied, a parasitic reaction is likely to occur, and many fine particles are formed. A part of the fine particles is supplied onto the single crystal substrate 1, thereby hindering the growth of AlN. Therefore, NH 3 is intermittently supplied to suppress parasitic reactions.
  • H 2 gas is used as a carrier gas for transporting TMAl and NH 3 respectively.
  • the substrate temperature is kept at the predetermined temperature (ie, 10 kPa ⁇ 76 Torr) while maintaining the pressure in the reactor at the predetermined growth pressure (ie, 10 kPa ⁇ 76 Torr). That is, after maintaining at 1300 ° C., the flow rate of TMAl is set to 0.29 L / min (290 SCCM) and the flow rate of NH 3 is set to 0.4 L / min (400 SCCM).
  • the first nitride semiconductor layer 2b made of an AlN layer having a first predetermined thickness (for example, 500 nm) is formed by intermittently flowing NH 3 into the reaction furnace in a state where TMAl is flowed into the reaction furnace. Grow.
  • the substance amount ratio of trimethylaluminum and ammonia supplied into the reaction furnace is 50 in this embodiment, and is set within the range of 40-60.
  • the flow rates of trimethylaluminum and ammonia supplied into the reaction furnace are not limited to the above values, and both are appropriately set between 0.1 L / min and 1 L / min in the standard state.
  • H 2 gas may be used as the carrier gas for each of TMAl and NH 3 .
  • the substrate temperature is maintained at the predetermined temperature (ie, 1300 ° C.) while maintaining the pressure in the reaction furnace at the predetermined growth pressure (ie, 10 kPa ⁇ 76 Torr). Then, after setting the flow rate of TMAl to 0.29 L / min (290 SCCM) and the flow rate of NH 3 to 0.02 L / min (20 SCCM), TMAl and NH 3 are allowed to flow simultaneously and continuously.
  • a second nitride semiconductor layer 2c made of an AlN layer having a predetermined film thickness (for example, 1 ⁇ m) is formed.
  • the substance amount ratio of trimethylaluminum and ammonia supplied into the reaction furnace is 2.5 in this embodiment, and is set within a range of 1 to 100. Yes.
  • the mass ratio of trimethylaluminum and ammonia supplied into the reaction furnace within the range of 1 to 100, the second nitride semiconductor layer 2c can be formed without deteriorating the surface state.
  • the flow rates of trimethylaluminum and ammonia supplied into the reactor are not limited to the above values, and are 0.1 L / min to 1 L / min and 0.01 L / min to 1 L / min, respectively, in the standard state. It is set appropriately between min.
  • the second nitride semiconductor layer 2c needs to be thickly stacked with a total thickness of 4 ⁇ m (1 ⁇ m is 4 times). Therefore, in order to increase the growth rate, TMAl and NH 3 are continuously flowed simultaneously. Is formed.
  • the carrier gas for TMAl and NH 3 for example, H 2 gas may be used.
  • the flow rate of TMAl is 0.29 L / min (290 SCCM), and the flow rate of NH 3 is 0.02 L / After setting to min (20 SCCM), NH 3 is intermittently allowed to flow into the reaction furnace in a state where TMAl is allowed to flow into the reaction furnace, whereby a large number of AlN having a second predetermined height (for example, 10 nm) is formed.
  • the island-shaped crystal 2d is formed.
  • the substance amount ratio of trimethylaluminum and ammonia supplied into the reaction furnace is 2.5 in the present embodiment, and is set in the range of 1 to 50.
  • the island-like crystal 2d can be formed without deteriorating the surface state.
  • the flow rates of trimethylaluminum and ammonia supplied into the reaction furnace are not limited to the above values, and both are appropriately set between 0.1 L / min and 1 L / min in the standard state.
  • the carrier gas for TMAl and NH 3 for example, H 2 gas may be used.
  • the process of forming the second nitride semiconductor layer 2c and the process of forming the island-like crystals 2d are repeated, and the film thickness of the entire buffer layer 2 becomes a third predetermined film thickness (for example, 4.5 ⁇ m).
  • the outermost layer of the buffer layer 2 is the second nitride semiconductor layer 2c.
  • the buffer layer 2 can be formed by appropriately combining a plurality of growth conditions so that a large number of nuclei 2a, a first nitride semiconductor layer 2b, a second nitride semiconductor layer 2c, and a large number of island crystals.
  • a nitride semiconductor multilayer structure having 2d is formed.
  • the same substrate temperature and the same growth pressure are set when the nucleus 2a, the first nitride semiconductor layer 2b, and the second nitride semiconductor layer 2c are formed.
  • the manufacturing time can be shortened and the nucleus 2a associated with the change in the substrate temperature and the growth pressure can be reduced. Deterioration of the first nitride semiconductor layer 2b can be prevented.
  • the single crystal substrate 1 since the set substrate temperature is in the range of 1300 ° C. or more and 1500 ° C. or less, compared to the case where the substrate temperature is lower than 1300 ° C., the single crystal substrate 1 has the above one surface. Since the diffusion length of the attached constituent elements can be increased, the density of the nuclei 2a can be easily reduced to a level not exceeding 6 ⁇ 10 9 cm ⁇ 2 . When the substrate temperature exceeds 1500 ° C., the one surface of the sapphire substrate that is the single crystal substrate 1 is easily subjected to the reducing action by the hydrogen gas in the carrier gas.
  • the crystal state on the one surface of the sapphire substrate is likely to change, and as a result, the nuclei 2a are hardly formed.
  • the substrate temperature exceeds 1500 ° C.
  • high heat resistance is required for the configuration of the reduced pressure MOVPE apparatus, and the cost is very high due to the change of the configuration and the use of a heat resistant member. . Therefore, it is not suitable for the present invention to form the nucleus 2a in the region where the substrate temperature exceeds 1500 ° C.
  • a growth method is adopted in which NH 3 is intermittently supplied while TMAl is continuously supplied into the reaction furnace when the nucleus 2a, the first nitride semiconductor layer 2b, and the island-like crystal 2d are formed.
  • the present invention is not limited to this.
  • a growth method in which TMAl and NH 3 are simultaneously flowed (simultaneous supply method)
  • a growth method in which TMAl and NH 3 are alternately flowed (alternate supply method), etc.
  • alternative supply method etc.
  • the n-type nitride semiconductor layer 3 is for injecting electrons into the light emitting layer 4 and is composed of a Si-doped n-type Al 0.55 Ga 0.45 N layer formed on the buffer layer 2.
  • the film thickness of the n-type nitride semiconductor layer 3 is set to 2 ⁇ m, it is not particularly limited.
  • the n-type nitride semiconductor layer 3 is not limited to a single layer structure, and may be a multilayer structure.
  • the n-type Al 0.7 Ga 0.3 N layer doped with Si on the first buffer layer 2 and the n-type Al A Si-doped n-type Al 0.55 Ga 0.45 N layer on a 0.7 Ga 0.3 N layer may be used.
  • the growth conditions of the n-type nitride semiconductor layer 3 include a growth temperature of 1200 ° C., a growth pressure of a predetermined pressure (for example, 10 kPa), TMAl as an aluminum source, trimethylgallium (TMGa) as a gallium source, NH 3 is used as a raw material for nitrogen, tetraethylsilane (TESi) is used as a raw material for silicon which is an impurity imparting n-type conductivity, and H 2 gas is used as a carrier gas for transporting each raw material.
  • the flow rate of TESi is set to 0.0009 L / min (0.9 SCCM) in a standard state.
  • Each raw material is not particularly limited.
  • triethylgallium may be used as a gallium raw material
  • a hydrazine derivative may be used as a nitrogen raw material
  • monosilane SiH 4
  • the light emitting layer 4 has a quantum well structure, and barrier layers 4a and well layers 4b are alternately stacked so that the number of well layers 4b is three.
  • the barrier layer 4a is constituted by an Al 0.55 Ga 0.45 N layer having a thickness of 8 nm
  • the well layer 4b is constituted by an Al 0.4 Ga 0.60 N layer having a thickness of 2 nm.
  • the compositions of the barrier layer 4a and the well layer 4b are not limited, and may be set as appropriate according to the desired emission wavelength.
  • the number of well layers 4b in the light emitting layer 4 is not particularly limited to three, and is not limited to the light emitting layer 4 having a multiple quantum well structure including a plurality of well layers 4b, but a single well layer 4b. You may employ
  • the film thicknesses of the barrier layer 4a and the well layer 4b are not particularly limited.
  • the combination of the material of the well layer and the barrier layer is not limited to this, and a material containing Al as a constituent element and having a larger band gap energy than GaN is preferable. Therefore, AlGaInN and AlInN can be used by appropriately adjusting the composition.
  • well / barrier layer combinations include AlGaN / AlGaInN, AlGaN / AlInN, AlGaNInN / AlGaInN, AlGaInN / AlGaN, AlGaInN / AlInN, AlInN / AlInN, AlInN / AlGaN, and AlInN / AlGaInN.
  • AlGaN / AlGaInN AlGaN / AlInN
  • AlGaInN / AlInN AlInN / AlInN
  • AlInN / AlGaN AlInN / AlGaN
  • AlInN / AlGaN AlInN / AlGaN
  • the growth conditions of the light emitting layer 4 are as follows: the growth temperature is 1200 ° C., which is the same as that of the n-type nitride semiconductor layer 3, the growth pressure is the predetermined growth pressure (for example, 10 kPa), TMAl is used as aluminum material, and TMGa is used as gallium material. NH 3 is used as a raw material of nitrogen.
  • the growth conditions of the barrier layer 4a are set to be the same as the growth conditions of the n-type nitride semiconductor layer 3 except that TESi is not supplied.
  • the molar ratio of TMAl in the group III material ([TMAl] / ⁇ [TMAl] + [TMGa] ⁇ ) is set so as to obtain a desired composition. Is set smaller.
  • the barrier layer 4a is not doped with an impurity.
  • an n-type impurity such as silicon may be doped with an impurity concentration that does not deteriorate the crystal quality of the barrier layer 4a. .
  • the p-type nitride semiconductor layer 5 is formed on the first p-type nitride semiconductor layer 5a and the first p-type nitride semiconductor layer 5a formed of the Mg-doped p-type AlGaN layer formed on the light emitting layer 4.
  • P-type nitride semiconductor layer 5c P-type nitride semiconductor layer 5c.
  • each composition of the first p-type nitride semiconductor layer 5a and the second p-type nitride semiconductor layer 5b is such that the band gap energy of the first p-type nitride semiconductor layer 5a is the second p-type nitride semiconductor. It is set to be larger than the band gap energy of the physical semiconductor layer 5b.
  • the composition of the second p-type nitride semiconductor layer 5 b is set so that the band gap energy is the same as that of the barrier layer 4 a of the light emitting layer 4.
  • the p-type nitride semiconductor layer 5 includes a first p-type nitride semiconductor layer 5a having a thickness of 15 nm, a second p-type nitride semiconductor layer 5b having a thickness of 50 nm, and a third p-type nitride semiconductor layer 5b.
  • the film thickness of the semiconductor layer 5c is set to 15 nm, these film thicknesses are not particularly limited.
  • the nitride semiconductor employed in the p-type nitride semiconductor layer 5 is not particularly limited, and for example, AlGaInN may be used. Further, not only AlGaInN but also InGaN may be used for the third p-type nitride semiconductor layer 5c.
  • the growth conditions of the first p-type nitride semiconductor layer 5a and the second p-type nitride semiconductor layer 5b of the p-type nitride semiconductor layer 5 are a growth temperature of 1050 ° C. and a growth pressure of the predetermined pressure.
  • Growth pressure here, 10 kPa
  • TMAl as an aluminum source
  • TMGa as a gallium source
  • NH 3 as a nitrogen source
  • H 2 gas is used as a carrier gas for transporting each raw material.
  • the growth condition of the third p-type nitride semiconductor layer 5c is basically the same as the growth condition of the second p-type nitride semiconductor layer 5b, except that the supply of TMAl is stopped. .
  • the flow rate of Cp 2 Mg is 0.02 L / min (20 SCCM) in the standard state, and the first to third p-types are used.
  • the molar ratio (flow rate ratio) of the group III raw material is appropriately changed according to the composition of each of the nitride semiconductor layers 5a to 5c.
  • FIG. 2A shows an AFM image of a sample in which a large number of nuclei 2a are formed on the one surface of the single crystal substrate 1 at a substrate temperature of 1300 ° C., and the one surface of the single crystal substrate 1 at a substrate temperature of 1300 ° C.
  • FIG. 2B shows an AFM image of the sample on which many nuclei 2a are formed.
  • 2A and 2B it was confirmed that island-like nuclei 2a were formed on the one surface of the single crystal substrate 1 when the substrate temperature was 1300 ° C. or 1000 ° C. In any case, it was confirmed that most of the surface of each nucleus 2a was formed by a surface inclined from the c-plane which is the growth surface.
  • the density of the nuclei 2a formed at the substrate temperature of 1000 ° C. as shown in FIG. 2B is 3 ⁇ 10 10 cm ⁇ 2
  • the nuclei 2a formed at the substrate temperature of 1300 ° C. as shown in FIG. 2A The density of the nuclei is 6 ⁇ 10 9 cm ⁇ 2
  • the density of the latter nuclei 2a is about one fifth that of the former, and it can be seen that the bonding interface between the adjacent nuclei 2a is reduced.
  • the formation temperature of the nucleus 2a made of AlN is 1300 ° C. (that is, the density of the nucleus 2a is 6 ⁇ 10 9 cm ⁇ 2 ), and the first An example in which the nitride semiconductor layer 2b, the second nitride semiconductor layer 2c, and the island-like crystal 2d are AlN and the height and film thickness are the above numerical examples, and the formation temperature of the nucleus 2a made of AlN is 1000 ° C.
  • the density of the nuclei 2a is 3 ⁇ 10 10 cm ⁇ 2
  • the first nitride semiconductor layer 2b, the second nitride semiconductor layer 2c, and the island-like crystal 2d are each made of AlN to have a height and film thickness.
  • the above-described numerical examples are manufactured, and the X-rays with respect to the AlN (10-12) plane reflecting the density of mixed dislocations and edge dislocations in the nitride semiconductor multilayer structures of Examples and Comparative Examples are manufactured.
  • Diffraction ⁇ scan crystal X-ray rocking curve when performing index
  • XRC X-Ray Rocking Curve
  • a conventionally known lateral epitaxial overgrowth method which is a crystal growth technique combining a selective wavelength using a selective wavelength mask and lateral growth
  • adjacent growth is performed.
  • a nitride semiconductor layer GaN layer
  • a growth film thickness comparable to the interval between adjacent selective wavelength masks is required.
  • the first nitride semiconductor layer 2b containing Al as a constituent element is heteroepitaxially grown on one surface side of the single crystal substrate, the single crystal substrate 1 is formed when the thickness of the first nitride semiconductor layer 2b exceeds 10 ⁇ m.
  • the density of the nuclei 2a is 1 ⁇ 10 6 cm ⁇ 2 when the interval between adjacent nuclei 2a is 10 ⁇ m, the density of the nuclei 2a should be 1 ⁇ 10 6 cm ⁇ 2 or more. Is preferred. Further, the density of the nuclei 2a is preferably 1 ⁇ 10 8 cm ⁇ 2 or more so that the interval between the nuclei 2a is 1 ⁇ m or less.
  • a V / III ratio (a molar ratio of a Group V material to a Group III material), a supply amount of a Group III material, and the like are assumed.
  • a V / III ratio a molar ratio of a Group V material to a Group III material
  • a supply amount of a Group III material and the like are assumed.
  • the substrate temperature is the most essential parameter and is considered to have the strongest influence on the nuclear density control.
  • FIG. 4 shows an AFM image obtained by observing the surface state of the nitride semiconductor multilayer structure of the above-described example by AFM. From FIG. 4, it was found that a concavo-convex structure caused by a large number of island-like nuclei 2a was not observed on the surface of the nitride semiconductor multilayer structure, and a flat film at the atomic level was obtained.
  • the nitride semiconductor multilayer structure of the present embodiment described above has a large number of island-like nuclei 2a formed on the one surface of the single crystal substrate 1 and made of a nitride semiconductor containing Al as a constituent element, and adjacent nuclei.
  • a first nitride semiconductor layer 2b which is formed on the one surface side of the single crystal substrate 1 so as to fill in the gaps between 2a and cover all the nuclei 2a and which contains Al as a constituent element; and a first nitride semiconductor
  • a second nitride semiconductor layer 2c formed on the layer 2b and containing Al as a constituent element, and the density of the nuclei 2a does not exceed 6 ⁇ 10 9 cm ⁇ 2 , so that the nitride containing Al as a constituent element
  • a high-quality nitride semiconductor multilayer structure made of a physical semiconductor can be obtained.
  • a large number of island-like nuclei 2a formed on the one surface of the single-crystal substrate 1 increase in size as the growth of the nuclei 2a occurs.
  • the density of the nuclei 2a does not exceed 6 ⁇ 10 9 cm ⁇ 2 , so that the bonding interface can be reduced.
  • the generated threading dislocations can be reduced, and a high-quality nitride semiconductor multilayer structure with few threading dislocations can be obtained.
  • the nitride semiconductor multilayer structure of the present embodiment most of the surface of each nucleus 2a is formed by a surface inclined from the c-plane which is the growth surface, so that the first nitride semiconductor layer 2b During the formation, the growth in the normal direction (vertical direction) of the one surface of the single crystal substrate 1 is suppressed, and the growth in the lateral direction along the one surface is likely to proceed.
  • the growth direction of the first nitride semiconductor layer 2b it is difficult to extend in the normal direction of the one surface of the single crystal substrate 1 and bends in a direction parallel to the one surface.
  • the density of threading dislocations on the surface of the second nitride semiconductor layer 2c can be reduced, and the density of threading dislocations on the surface of the nitride semiconductor multilayer structure can be reduced. it can.
  • the number of elements constituting the nitride semiconductor serving as the nucleus 2a can be reduced, so that the nucleus 2a is formed. It is easy to control. Further, since AlN is a material having a large band gap energy of 6.2 eV, a light emitting layer 4 that emits ultraviolet light having a wavelength of 200 to 350 nm is formed on the surface side of the second nitride semiconductor layer 2c to form nitride.
  • a semiconductor light emitting device (ultraviolet light emitting diode)
  • GaN cannot be used because it absorbs ultraviolet light in the above-mentioned wavelength region and causes a decrease in external quantum efficiency.
  • a physical semiconductor multilayer structure can be provided.
  • the density of the nucleus 2a is 6 ⁇ 10 9. Since the nucleus 2a is grown under the condition of the substrate temperature not exceeding 2 cm ⁇ 2 and the substrate temperature is set to 1300 ° C. or higher, when the substrate temperature is lower than 1300 ° C.
  • the diffusion length of the constituent elements attached to the one surface of the single crystal substrate 1 is increased, the density of the nuclei 2a can be reduced, and the density of the nuclei 2a can be easily 6 ⁇ 10 9 cm ⁇ 2. Therefore, it is possible to provide a high-quality nitride semiconductor multilayer structure made of a nitride semiconductor containing Al as a constituent element.
  • the nitride semiconductor light emitting device of this embodiment includes a buffer layer 2 made of the above-described nitride semiconductor multilayer structure, an n-type nitride semiconductor layer 3 formed on the buffer layer 2, and the n-type nitridation. Since the light emitting layer 4 formed on the light emitting semiconductor layer 3 and the p-type nitride semiconductor layer 5 formed on the light emitting layer 4 are provided, the high-quality nitride semiconductor multilayer structure with few threading dislocations is provided.
  • the n-type nitride semiconductor layer 3 Since a laminated structure of the n-type nitride semiconductor layer 3, the light-emitting layer 4, and the p-type nitride semiconductor layer 5 can be formed on the buffer layer 2, the high-quality buffer layer 2 and light-emitting layer 4 are obtained. Thus, non-radiative recombination centers caused by threading dislocations can be reduced, and as a result, the luminous efficiency can be improved.
  • the reduced pressure MOVPE method is exemplified as a method for manufacturing a nitride semiconductor multilayer structure or a nitride semiconductor light emitting device including the nitride semiconductor multilayer structure as the buffer layer 2, but not limited thereto, for example, It is also possible to employ growth methods such as halide vapor phase growth (HVPE) and molecular beam growth (MBE).
  • HVPE halide vapor phase growth
  • MBE molecular beam growth
  • the single crystal substrate 1 is not limited to a sapphire substrate,
  • a spinel substrate, a silicon substrate, a silicon carbide substrate, a zinc oxide substrate Alternatively, a gallium phosphide substrate, a gallium arsenide substrate, a magnesium oxide substrate, a zirconium boride substrate, a group III nitride semiconductor crystal substrate, or the like may be used.
  • the technical idea of the present invention can be applied and developed in various structures as long as the basic configuration described in the above embodiment can be applied.
  • the light emission wavelength of the light emitting layer 4 is set in the range of 250 nm to 300 nm, a light emitting diode having a light emission wavelength in the ultraviolet region can be realized. It can be used as an alternative light source for a deep ultraviolet light source such as an excimer lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造およびその製造方法、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造をバッファ層として備えた窒化物半導体発光素子を提供する。本発明における窒化物半導体発光素子は、サファイア基板からなる単結晶基板1の一表面側にバッファ層2とn形窒化物半導体層3と発光層4とp形窒化物半導体層5との積層構造を有する。バッファ層2を構成する窒化物半導体多層構造は、単結晶基板1の上記一表面上に形成されAlNからなる多数の島状の核2aと、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆うように単結晶基板1の上記一表面側に形成されたAlN層からなる第1の窒化物半導体層2bと、第1の窒化物半導体層2b上に形成されたAlN層からなる第2の窒化物半導体層2cとを備え、核2aの密度が6×109個cm-2を超えないことを特徴とする。

Description

窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子
 本発明は、構成元素としてAlを含有する窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子に関するものである。
 可視光~紫外線の波長域で発光する窒化物半導体発光素子は、低消費電力、小型という利点から、衛生、医療、工業、照明、精密機械などの様々な分野への応用が期待されており、青色光の波長域など、一部の波長域では既に実用化に至っている。
 しかしながら、窒化物半導体発光素子においては、青色光を発光する窒化物半導体発光素子(以下、青色発光ダイオードと称する)に限らず、発光効率および光出力の、より一層の向上が望まれている。特に、紫外線の波長域の光を発光する窒化物半導体発光素子(以下、紫外発光ダイオードと称する)は、現状では、青色発光ダイオードに比べて外部量子効率および光出力が著しく劣るという問題が実用化への大きな障壁となっている。外部量子効率および光出力が著しく劣る原因の一つに発光層の発光効率(以下、内部量子効率と称する)が低いことが挙げられる。
 ここにおいて、窒化物半導体結晶により構成される発光層の内部量子効率は、貫通転位の影響を受ける。ここで、貫通転位の転位密度が高い場合には、非発光再結合が支配的になり、内部量子効率を大きく低下させる原因となる。
 上述の貫通転位は、窒化物半導体に対して格子不整合の大きいサファイアなどの材料からなる基板をエピタキシャル成長用の単結晶基板として用いた場合に、特に成長界面で発生し易い。従って、貫通転位密度の少ない窒化物半導体結晶を得るためには、成長初期の各構成元素の振る舞いを制御することが非常に重要な要素となる。特にAlを含有した窒化物半導体結晶(特にAlN)では、Alを含有していない窒化物半導体結晶(特にGaN)に比べ、成長技術の確立が進んでおらず、相対的に高密度の貫通転位が存在する。従って、窒化物半導体結晶の構成元素にAlを含めなければならない紫外線発光ダイオードを製造する場合、GaNを主体とした窒化物半導体結晶で構成される青色発光ダイオードと比較して、窒化物半導体結晶内に多く貫通転位が存在してしまうため、発光効率が低かった。
 そこで、波長が230nm~350nmの深紫外域において室温で発光する発光層を備えた紫外発光ダイオードの発光効率を高めるために、サファイア基板からなる単結晶基板の一表面側に形成するバッファ層の高品質化を図る目的で、減圧MOVPE法により形成する上述のバッファ層を、単結晶基板の上記一表面上に形成されたAlNからなる多数の島状の核(以下、AlN核と称する)と、III族原料であるTMAlを連続して供給しながらV族原料であるNH3を間欠的(パルス的)に供給することにより単結晶基板の上記一表面側においてAlN核の隙間を埋め込み且つAlN核を覆うように形成されたAlN層(パルス供給AlN層)からなる第1の窒化物半導体層と、TMAlとNH3との両方を同時に連続して供給することにより第1の窒化物半導体層上に形成されたAlN層(連続成長AlN層)からなる第2の窒化物半導体層とを有する窒化物半導体多層構造体とすることが提案されている(特許文献1)。
特開2009-54780号公報
 ところで、上記特許文献1に記載の窒化物半導体多層構造体をバッファ層として備えた紫外発光ダイオードでは、貫通転位密度の低減による発光効率の向上を図ることができる。しかしながら、上記特許文献1には、高品質の窒化物半導体多層構造体を得るための、単結晶基板の上記一表面上のAlN核の密度(核密度)について具体的に開示されていなかった。これに対して、本願発明者らは、鋭意研究の結果、単結晶基板の上記一表面上のAlN核の密度によっては、窒化物半導体多層構造体および発光層の貫通転位密度が増加して発光効率を向上する効果が得られにくくなることがあるという知見を得た。
 本発明は上記事由に鑑みて為されたものであり、その目的は、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体およびその製造方法、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体をバッファ層として備えた窒化物半導体発光素子を提供することにある。
 請求項1の発明は、単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを備え、前記核の密度が6×109個cm-2を超えないことを特徴とする。
 この発明によれば、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができる。ここにおいて、単結晶基板の前記一表面上に形成される多数の島状の核は、核の成長の進行に伴ってサイズが大きくなり、隣り合う核と結合する際に、結合界面で貫通転位が生じやすいが、核の密度を6×109個cm-2を超えない範囲とすることにより、結合界面を減少させることができ、結果として、隣り合う核同士が結合する際に生じる貫通転位を低減させることができ、貫通転位の少ない高品質の窒化物半導体多層構造体を得ることができる。
 請求項2の発明は、前記核の密度が1×106個cm-2以上であることを特徴とする。核の密度が1×106個cm-2以上にあることで、核の間の隙間を埋め込み全ての核を覆うために、小さな膜厚で前記第1窒化物半導体層を形成できる。したがって、核の密度が1×106個cm-2以上にあることで、膜厚が大きくなりすぎることによるクラックの発生を防止できるとともに、核を埋め込み且つ平坦な膜を得ることが容易になる。
 請求項3の発明は、前記核の密度が1×108個cm-2以上である。核の密度がこの範囲内では、隣り合う核の距離が1μm程度になるので、低い転位密度を有しながら、且つ容易に平坦な膜を得られるようになる。従って、転位に起因する非発光再結合中心が少なく、良好な界面を有する高品質の発光層を形成できる。
 請求項4の発明は、請求項1から請求項3のいずれか1項に記載の発明において、前記核は、前記単結晶基板の前記一表面から傾いた面を有することを特徴とする。
 この発明によれば、前記核が、前記単結晶基板の前記一表面から傾いた面を有しているので、前記第1の窒化物半導体層の形成時に前記単結晶基板の前記一表面の法線方向への成長が抑制され前記一表面に沿った横方向への成長が進行し易くなる。貫通転位は、成長方向に沿って入りやすいので、前記第1の窒化物半導体層の成長方向と同様に、前記単結晶基板の前記一表面の法線方向へ延びづらくなり、前記一表面に平行な方向へ曲がるから、近傍の貫通転位と転位ループを作り消滅し易くなる。結果として、前記第2の窒化物半導体層の表面の貫通転位の密度を減少させることができる。
 請求項5の発明は、請求項1から請求項4の発明において、前記核を構成する前記窒化物半導体は、AlNであることを特徴とする。請求項6の発明は、請求項5に記載の発明において、前記第1の窒化物半導体層と前記第2の窒化物半導体層は、AINにより形成されることを特徴とする。
 この発明によれば、前記核となる前記窒化物半導体の構成元素の数が少ないので、前記核を形成する際の制御が容易である。また、AlNは、バンドギャップエネルギが6.2eVと大きい材料であるので、前記第2の窒化物半導体層の表面側に紫外光を発光する発光層を形成して窒化物半導体発光素子(紫外発光ダイオード)を製造した場合に、発光層から放射される紫外光が前記核により吸収されるのを防止することができ、窒化物半導体発光素子の外部量子効率の向上を図れる。
 請求項7の発明は、請求項1から請求項6のいずれか1項に記載の発明において、前記単結晶基板はサファイヤ基板であって、前記一表面はc面に対するオフ角が0°~0.2°であることを特徴とする。
 この発明によれば、オフ角をこの範囲に定めることにより、核の密度が6×109個cm-2を超えないようにでき、高品質の窒化物半導体多層構造体を提供することができる。核を形成するために供給される原子は、基板表面を拡散し、安定な場所で結晶となる。原子の拡散距離が十分長い場合、特にテラスで前記核が形成され易くなる。従って、前記単結晶基板のオフ角が小さいほど、テラス幅が長くなるので、核の密度を下げ易くなる。
 請求項8に記載の発明は、単結晶基板を反応炉内に配置した状態において、減圧MOVPE法を用いて、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第1物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記単結晶基板の一表面上にAlを構成元素として含む窒化物半導体からなる多数の島状の核を形成するステップaと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第2物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように第1の窒化物半導体層を形成するステップbと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第3物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記第1の窒化物半導体層上に第2の窒化物半導体層を形成するステップcとを有する窒化物半導体多層構造体の製造方法であって、前記第1の窒化物半導体層と前記第2の窒化物半導体層は、それぞれAlを構成元素として含み、前記の各ステップa~cにおいて、同じ基板温度であり、かつ、前記核および前記第1の窒化物半導体層および前記第2の窒化物半導体層を形成するための成長圧力は同じに設定されることを特徴とする。この発明によれば、各ステップ毎に基板温度や成長圧力を変えることなく、核や半導体層を形成できるので、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う前記核と前記第1の窒化物半導体層の劣化を防止できる。
 請求項9に記載の発明は、請求項8に記載の製造方法において、前記ステップaにおける前記第1物質量比は10~1000に設定されることを特徴とする。
 請求項10に記載の発明は、請求項8または9に記載の製造方法において、前記ステップbにおける前記第2物質量比は40~60に設定されることを特徴とする。この発明によれば、原料ガスの一方が過剰に供給されることによる白濁を防止できる。
 請求項11に記載の発明は、請求項8から10のいずれか1項に記載の製造方法において、前記ステップcにおける前記第3物質量比は1~100に設定されることを特徴とする。この発明によれば、表面状態を悪化させることなく、第2の窒化物半導体層を形成することができる。
 請求項12記載の発明は、請求項8から11のいずれか1項に記載の製造方法において、前記ステップaにおける、Alの原料ガスの供給量は標準状態で0.01L/min~0.1L/minであって、Nの原料ガスの供給量は標準状態で0.01L/min~0.1L/minであることを特徴とする。
 請求項13記載の発明は、請求項8から12のいずれか1項に記載の製造方法において、前記ステップbにおける、Alの原料ガスの供給量は標準状態で0.1L/min~1L/minであって、Nの原料ガスの供給量は標準状態で0.1L/min~1L/minであることを特徴とする。
 請求項14記載の発明は、請求項8から13のいずれか1項に記載の製造方法において、前記ステップcにおける、Alの原料ガスの供給量は標準状態で0.1L/min~1L/minであって、Nの原料ガスの供給量は標準状態で0.01L/min~1L/minであることを特徴とする。
 請求項15記載の発明は、請求項8から14のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給されるAlの原料ガスはトリメチルアルミニウムであることを特徴とする。
 請求項16記載の発明は、請求項8から15のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給されるNの原料ガスはNH3であることを特徴とする。
 請求項17記載の発明は、請求項8から16のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給されるキャリアガスは水素であることを特徴とする。
 請求項18の発明は、請求項8から請求項17のいずれか1項に記載の窒化物半導体多層構造体の製造方法において、当該基板温度は1300℃以上1500℃以下に設定されることを特徴とする。この発明によれば、前記核を形成する際に、基板温度が1300℃よりも低温の場合に比べて、前記単結晶基板の前記一表面に付着した構成元素の拡散長が長くなるので、前記核の密度を低減することができ、前記核の密度を容易に6×109個cm-2を超えないようにすることが可能となり、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。
 請求項19の発明は、請求項8から請求項18のいずれか1項に記載の窒化物半導体多層構造体の製造方法において、前記AlNの成分であるAlの原料ガスを前記の各ステップa~cそれぞれにおいて連続的に供給し、且つ前記AlNの成分であるNの原料ガスを前記ステップaおよび前記ステップbそれぞれにおいて間欠的に供給することを特徴とする。この発明によれば、前記核および上記第1の窒化物半導体層前記窒化物半導体層をより確実に形成できる。
 請求項20の発明は、窒化物半導体多層構造体を備えた窒化物半導体発光素子である。この窒化物半導体多層構造体は、単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、前記第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを含んでいる。この窒化物半導体発光素子は、さらに前記窒化物半導体多層構造体上に形成されたn形窒化物半導体層と、前記n形窒化物半導体層上に形成された発光層と、前記発光層上に形成されたp形窒化物半導体層とを備えていて、前記核の密度が6×109個cm-2を超えないことを特徴とする。
 この発明によれば、貫通転位の少ない高品質の窒化物半導体多層構造体上にn形窒化物半導体層と発光層とp形窒化物半導体層との積層構造を形成することができるので、高品質の窒化物半導体多層構造体および発光層とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができる。
 請求項1の発明では、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができるという効果がある。
 請求項8の発明では、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う上記核と上記第1の窒化物半導体層の劣化を防止できる窒化物半導体多層構造体の製造方法が達成できるという効果がある。
 請求項8,9の発明では、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができるという効果がある。
 請求項20の発明では、高品質の窒化物半導体多層構造体および発光層とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができるという効果がある。
実施形態における窒化物半導体発光素子の概略断面図である。 実施形態における窒化物半導体発光素子の要部概略断面図である。 同上において用いる単結晶基板の一表面上にAlを構成元素として含有した窒化物半導体からなる多数の核を形成した表面状態を示し、基板温度を1300℃として形成した表面状態のAFM像図である。 同上において用いる単結晶基板の一表面上にAlを構成元素として含有した窒化物半導体からなる多数の核を形成した表面状態を示し、基板温度を1000℃として形成した表面状態のAFM像図である。 同上において用いる単結晶基板の一表面側に窒化物半導体多層構造体を形成した実施例および比較例のX線ロッキングカーブ図である。 同上における窒化物半導体多層構造体の表面のAFM像図である。
 本実施形態の窒化物半導体発光素子は、紫外発光ダイオードであって、図1Aに示すように、エピタキシャル成長用の単結晶基板1の一表面側に、構成元素としてAlを含有した窒化物半導体多層構造体のバッファ層2を介してn形窒化物半導体層3が形成され、n形窒化物半導体層3の表面側に発光層4が形成され、発光層4の表面側にp形窒化物半導体層5が形成されている。なお、図示していないが、n形窒化物半導体層3にはカソード電極が形成され、p形窒化物半導体層5にはアノード電極が形成されている。
 ここにおいて、単結晶基板1として、サファイア基板を用いている。この単結晶基板1は、(0001)面、つまり、c面に対するオフ角が0.15°である上記一表面を有する。
 バッファ層2は、n形窒化物半導体層3の貫通転位を低減するとともにn形窒化物半導体層3の残留歪みを低減するために設けたものである。
 ここで、バッファ層2を構成する窒化物半導体多層構造は、図1Bに示すように、サファイア基板からなる単結晶基板1の上記一表面上に形成されAlを構成元素として含む窒化物半導体であるAlNからなる多数の島状の核(成長核)2aと、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆うように単結晶基板1の上記一表面側に形成されAlを構成元素として含むAlN層からなる第1の窒化物半導体層2bと、第1の窒化物半導体層2b上に形成されAlを構成元素として含むAlN層からなる第2の窒化物半導体層2cとを備えている。さらに、バッファ層2は、当該バッファ層2の膜厚を厚くすることを目的として、第2の窒化物半導体層2c上に形成されAlを構成元素として含むAlNからなる多数の島状結晶2dと、隣り合う島状結晶2dの間の隙間を埋め込み且つ全ての島状結晶2dを覆うように形成されAlを構成元素として含むAlN層からなる第3の窒化物半導体層2cとで構成される単位層を3回繰り返して形成してある。ここで島状結晶2dは、貫通転位を屈曲させることで隣り合う貫通転位とループを形成させることにより、貫通転位をさらに低減させることを目的として形成されている。しかしながら、単結晶基板1の上記一表面上に形成された核2aの効果によって貫通転位は十分に低減されているので、島状結晶2dに達する貫通転位は極めて少ない。従って、島状結晶2dで貫通転位を減少させる効果は、ループを形成出来る貫通転位が極めて少ないことから、核2aでの貫通転位を減少させる効果に比べて十分に小さい。なお、本実施形態では、核2aの高さを30nm程度、第1の窒化物半導体層2bの膜厚を500nm、第2の窒化物半導体層2cの膜厚を1μm、島状結晶2dの高さを10nm程度に設定してあり、バッファ層2全体の膜厚が4.5μm程度となっているが、これらの値は一例であって特に限定するものではない。なお、バッファ層2全体の膜厚は、貫通転位を減少させて放熱性を向上させるためには、大きくなるように設定されることが望ましい。ただし、バッファ層2全体の膜厚が大きくなりすぎると、単結晶基板1とバッファ層2の格子不整合に起因してクラックが発生する可能性が高くなるので、製造時のクラックの発生を防止する観点からは、10μmを超えないことが望ましい。また、島状結晶2dと第2の窒化物半導体層2cとからなる単位層の積層数は、クラックの発生が起こらない数であれば特に限定するものではない。また、バッファ層2の窒化物半導体は、AlNに限定するものではなく、構成元素としてAlを含有していればよく、例えば、AlGaN、AlInNなどを採用してもよい。また、バッファ層2は、少なくとも、多数の核2aと第1の窒化物半導体層2cと第2の窒化物半導体層2cとを備えていればよく、上述の単位層は必ずしも設ける必要はないが、単位層を設けた方が貫通転位密度を低減する観点からは有利である。
 上述したように、核2aと第1の窒化物半導体層2bが形成される単結晶基板1の一表面はc面に対するオフ角が0.15°である。すなわち、c面に対するオフ角が0o~0.2oの範囲内にある単結晶基板1の一表面上に核が形成される。核2aを形成する為に供給される原子は、単結晶基板1の表面を拡散し、安定な場所で結晶となる。原子の拡散距離が十分長い場合、特にテラスで核2aが形成され易くなる。従って、本実施形態のように、単結晶基板1のオフ角が小さいほど、テラス幅が長くなるので、核2aの密度を減少させ易くなり、高品質の窒化物半導体多層構造体を提供することができる。単結晶基板1のオフ角が0.2oよりも大きくなると、テラス幅が短くなるので、核2aの密度も増加し、高品質な窒化物半導体多層構造体が得られにくくなる。
 バッファ層2の形成にあたっては、サファイア基板からなる単結晶基板1をMOVPE装置の反応炉内に導入した後、反応炉内の圧力を所定の成長圧力(例えば、10kPa≒76Torr)に保ちながら基板温度を1300℃以上1500℃以下の所定温度(例えば、1300℃)まで上昇させてから所定時間(例えば、5分間)の加熱を行うことにより単結晶基板1の上記一表面を浄化し、その後、基板温度を上記所定温度と同じ温度(例えば、1300℃)に保持した状態で、アルミニウムの原料(III族原料)であるトリメチルアルミニウム(TMAl)の流量を標準状態で0.02L/min(20SCCM)に設定し、且つ、窒素の原料(V族原料)であるアンモニア(NH3)の流量を標準状態で0.02L/min(20SCCM)に設定してから、反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的(パルス的)に流すことにより、第1の所定高さ(例えば、30nm)のAlNからなる多数の島状の核2aを形成する。核2aを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では32であり、10~1000の範囲内に設定されている。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は標準状態において0.02L/minに限定されず、標準状態で0.01L/min~0.1L/minの間で適宜設定される。AlNを成長する際に一般的な原料として用いられるNH3とTMAlは、単結晶基板1に輸送される過程において反応(寄生反応)することにより、微粒子を形成してしまう。また、これらの原料を連続的に供給した場合、寄生反応は起こり易くなり、微粒子も多く形成されてしまう。この微粒子の一部は、単結晶基板1上に供給されてしまうことにより、AlNの成長の妨げとなる。そこで、寄生反応を抑制するために、NH3を間欠的に供給している。ここにおいて、TMAlおよびNH3それぞれを輸送するためのキャリアガスとしてはH2ガスを用いている。
 上述の核2aを形成した後の第1の窒化物半導体層2bの形成にあたっては、反応炉内の圧力を上記所定の成長圧力(すなわち、10kPa≒76Torr)に保ちながら基板温度を上記所定温度(すなわち、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.4L/min(400SCCM)に設定してから、核2aの形成時と同様に反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的に流すことにより、第1の所定膜厚(例えば、500nm)のAlN層からなる第1の窒化物半導体層2bを成長させる。第1の窒化物半導体層2bを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では50であり、40~60の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が40~60の範囲内に設定されることで、原料ガスの一方が過剰に供給されることによる白濁を防止できる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてどちらも0.1L/min~1L/minの間で適宜設定される。ここにおいて、核2aの形成時と同様、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
 また,第2の窒化物半導体層2cの形成にあたっては、反応炉内の圧力を上記所定の成長圧力(すなわち、10kPa≒76Torr)に保ちながら基板温度を上記所定温度(すなわち、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.02L/min(20SCCM)に設定した後、TMAlとNH3とを同時に連続して流すことにより、第2の所定膜厚(例えば、1μm)のAlN層からなる第2の窒化物半導体層2cを形成する。第2の窒化物半導体層2cを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では2.5であり、1~100の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が1~100の範囲内に設定されることで、表面状態を悪化させることなく第2の窒化物半導体層2cを形成することができる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてそれぞれ0.1L/min~1L/min、0.01L/min~1L/minの間で適宜設定される。ここで、寄生反応を抑制するためには、NH3を間欠的に流すことが好ましいが、NH3が供給されない時間が生じるので、連続的に供給した場合に比べ成長速度が低下する可能性がある。第2の窒化物半導体層2cは、本実施形態では合計4μm(1μmを4回)と厚く積層させる必要がある為、成長速度を大きくするためにTMAlとNH3を同時に連続的に流す手法により形成されている。ここにおいて、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
 また、島状結晶2dの形成にあたっては、基板温度を上記所定温度(例えば、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.02L/min(20SCCM)に設定した後、反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的に流すことにより、第2の所定高さ(例えば、10nm)のAlNからなる多数の島状結晶2dを形成する。島状結晶2dを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では2.5であり、1~50の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が1~50の範囲内に設定されることで、表面状態を悪化させることなく島状結晶2dを形成することができる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてどちらも0.1L/min~1L/minの間で適宜設定される。ここにおいて、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
 次に、第2の窒化物半導体層2cを形成する過程と島状結晶2dを形成する過程とを繰り返し、バッファ層2全体の膜厚が第3の所定膜厚(例えば、4.5μm)となるようにする。ただし、バッファ層2の最表層は第2の窒化物半導体層2cとする。
 上述の説明から分かるようにバッファ層2は、複数の成長条件を適宜組み合わせることにより、多数の核2a、第1の窒化物半導体層2b、第2の窒化物半導体層2c、多数の島状結晶2dを有する窒化物半導体多層構造を形成している。また、核2a、第1の窒化物半導体層2b、第2の窒化物半導体層2cの形成時それぞれにおいて、同じ基板温度かつ同じ成長圧力に設定されている。したがって、本実施形態では基板温度や成長圧力を変えることなく、核2aや窒化物半導体層2b,2cを形成できるので、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う核2aと第1の窒化物半導体層2bの劣化を防止できる。
 さらに、本実施形態では、設定されている基板温度は1300℃以上1500℃以下の範囲内であるので、基板温度が1300℃よりも低温の場合に比べて、単結晶基板1の上記一表面に付着した構成元素の拡散長が長くできるので、容易に核2aの密度を6×109個cm-2を超えない程度まで低減することが可能となる。なお、基板温度が1500℃を超えると、キャリアガス中の水素ガスによって、単結晶基板1であるサファイヤ基板の上記一表面が還元作用を受け易くなる。その結果、サファイヤ基板の上記一表面での結晶状態が変化し易くなり、その結果核2aが形成されにくくなる。また、基板温度が1500℃を超えると、減圧MOPVE装置の構成に対して高い耐熱性が要求されることになり、構成の変更、耐熱性部材の使用が求められることで非常にコストが高くなる。従って、基板温度が1500℃を超える領域で核2aを形成することは、本発明では適さない。
 ここにおいて、核2a、第1の窒化物半導体層2b、および島状結晶2dの形成時に、TMAlを反応炉内へ供給し続けながら、NH3を間欠的に流す成長方法を採用しているが、これに限定されるものではなく、例えば、TMAlとNH3とを同時に流す成長方法(同時供給法)、TMAlとNH3とを交互に流す成長方法(交互供給法)などを採用してもよい。
 n形窒化物半導体層3は、発光層4へ電子を注入するためのものであり、バッファ層2上に形成されたSiドープのn形Al0.55Ga0.45N層で構成してある。ここで、n形窒化物半導体層3の膜厚は2μmに設定してあるが、特に限定するものではない。また、n形窒化物半導体層3は、単層構造に限らず、多層構造でもよく、例えば、第1のバッファ層2上のSiドープのn形Al0.7Ga0.3N層と、当該n形Al0.7Ga0.3N層上のSiドープのn形Al0.55Ga0.45N層とで構成してもよい。
 ここにおいて、n形窒化物半導体層3の成長条件としては、成長温度を1200℃、成長圧力を所定の圧力(例えば10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてトリメチルガリウム(TMGa)、窒素の原料としてNH3、n形導電性を付与する不純物であるシリコンの原料としてはテトラエチルシラン(TESi)を用い、各原料を輸送する為のキャリアガスとしてはH2ガスを用いている。ここで、TESiの流量は標準状態で0.0009L/min(0.9SCCM)としている。なお、各原料は特に限定するものではなく、例えば、ガリウムの原料としてトリエチルガリウム(TEGa)、窒素の原料としてヒドラジン誘導体、シリコンの原料としてモノシラン(SiH4)を用いてもよい。
 また、発光層4は、量子井戸構造を有し、障壁層4aと井戸層4bとを井戸層4bの数が3となるように交互に積層してある。ここで、発光層4は、障壁層4aを膜厚が8nmのAl0.55Ga0.45N層により構成し、井戸層4bを膜厚が2nmのAl0.4Ga0.60N層により構成してある。なお、障壁層4aおよび井戸層4bの各組成は限定するものではなく、所望の発光波長に応じて適宜設定すればよい。また、発光層4における井戸層4bの数は特に3つに限定するものではなく、井戸層4bを複数備えた多重量子井戸構造の発光層4に限らず、井戸層4bを1つとした単一量子井戸構造の発光層4を採用してもよい。また、障壁層4aおよび井戸層4bの各膜厚も特に限定するものではない。また、井戸層と障壁層の材料の組み合わせは、これに限定されるものではなく、構成元素にAlを含み、且つバンドギャップエネルギーがGaNよりも大きいものが良い。従って、AlGaInN、AlInNでも組成を適宜調整する事で用いる事が出来る。具体的に井戸層/障壁層の組み合わせとしては、AlGaN/AlGaInN、AlGaN/AlInN、AlGaNInN/AlGaInN、AlGaInN/AlGaN、AlGaInN/AlInN、AlInN/AlInN、AlInN/AlGaN、AlInN/AlGaInNが挙げられる。ただし、量子井戸の機能を発現させる為に、井戸層よりも障壁層のバンドギャップエネルギーを大きくする必要がある。
 発光層4の成長条件としては、成長温度をn形窒化物半導体層3と同じ1200℃、成長圧力を上記所定の成長圧力(例えば、10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてTMGa、窒素の原料としてNH3を用いている。障壁層4aの成長条件については、TESiを供給しないことを除けば、n形窒化物半導体層3の成長条件と同じに設定している。また、井戸層4bの成長条件については、所望の組成が得られるように、III族原料におけるTMAlのモル比(〔TMAl〕/{〔TMAl〕+〔TMGa〕})を障壁層4aの成長条件よりも小さく設定している。なお、本実施形態では、障壁層4aに不純物をドーピングしていないが、これに限らず、障壁層4aの結晶品質が劣化しない程度の不純物濃度でシリコンなどのn形不純物をドーピングしてもよい。
 p形窒化物半導体層5は、発光層4上に形成されたMgドープのp形AlGaN層からなる第1のp形窒化物半導体層5aと、第1のp形窒化物半導体層5a上に形成されたMgドープのp形AlGaN層からなる第2のp形窒化物半導体層5bと、第2のp形窒化物半導体層5b上に形成されたMgドープのp形GaN層からなる第3のp形窒化物半導体層5cとで構成してある。ここで、第1のp形窒化物半導体層5aおよび第2のp形窒化物半導体層5bの各組成は、第1のp形窒化物半導体層5aのバンドギャップエネルギが第2のp形窒化物半導体層5bのバンドギャップエネルギよりも大きくなるように設定してある。また、第2のp形窒化物半導体層5bの組成は、バンドギャップエネルギが発光層4の障壁層4aと同じになるように設定してある。また、p形窒化物半導体層5は、第1のp形窒化物半導体層5aの膜厚を15nm、第2のp形窒化物半導体層5bの膜厚を50nm、第3のp形窒化物半導体層5cの膜厚を15nmに設定してあるが、これらの膜厚は特に限定するものではない。また、p形窒化物半導体層5で採用する窒化物半導体も特に限定するものではなく、例えば、AlGaInNを用いてもよい。また、第3のp形窒化物半導体層5cにはAlGaInNだけではなく、InGaNも用いてもよい。
 ここにおいて、p形窒化物半導体層5の第1のp形窒化物半導体層5aおよび第2のp形窒化物半導体層5bの成長条件としては、成長温度を1050℃、成長圧力を上記所定の成長圧力(ここでは、10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてTMGa、窒素の原料としてNH3、p形導電性を付与する不純物であるマグネシウムの原料としてビスシクロペンタジエニルマグネシウム(Cp2Mg)を用い、各原料を輸送するためのキャリアガスとしてはH2ガスを用いている。また、第3のp形窒化物半導体層5cの成長条件は、基本的に第2のp形窒化物半導体層5bの成長条件と同じであり、TMAlの供給を停止している点が相違する。ここにおいて、第1~第3のp形窒化物半導体層5a~5cいずれの成長時もCp2Mgの流量は標準状態で0.02L/min(20SCCM)とし、第1~第3のp形窒化物半導体層5a~5cそれぞれの組成に応じてIII族原料のモル比(流量比)を適宜変化させる。
 ところで、バッファ層2を構成する窒化物半導体多層構造における核2aの形成温度(成長温度)が単結晶基板1の上記一表面上に形成される核2aの密度に与える影響を確認するために、サファイア基板からなる単結晶基板1の上記一表面(c面)上にAlNからなる多数の核2aを形成する際の基板温度を異ならせた試料について、表面状態を原子間力顕微鏡(AFM)により観察した。一例として、基板温度を1300℃として単結晶基板1の上記一表面上に多数の核2aを形成した試料のAFM像図を図2Aに、基板温度を1300℃として単結晶基板1の上記一表面上に多数の核2aを形成した試料のAFM像図を図2Bに示す。図2A,図2Bから、基板温度を1300℃、1000℃のいずれとした場合にも、単結晶基板1の上記一表面上に島状の核2aが形成されていることが確認された。また、いずれの場合も、各核2aの表面の大部分が、成長面であるc面から傾いた面によって形成されていることが確認された。さらに、図2Bのように1000℃の基板温度で形成した核2aの密度が3×1010個cm-2であるのに対して、図2Aのように1300℃の基板温度で形成した核2aの密度が6×109個cm-2となり、後者の核2aの密度が前者の5分の1程度となっており、隣り合う核2a同士の結合界面が少なくなっていることが分かる。
 次に、バッファ層2を構成する窒化物半導体多層構造体について、AlNからなる核2aの形成温度を1300℃とし(つまり、核2aの密度を6×109個cm-2とし)、第1の窒化物半導体層2b、第2の窒化物半導体層2c、島状結晶2dそれぞれをAlNとして高さや膜厚などを上述の数値例とした実施例、AlNからなる核2aの形成温度を1000℃とし(つまり、核2aの密度を3×1010個cm-2とし)、第1の窒化物半導体層2b、第2の窒化物半導体層2c、島状結晶2dそれぞれをAlNとして高さや膜厚などを上述の数値例とした比較例を製造し、実施例、比較例それぞれの窒化物半導体多層構造体について、混合転位および刃状転位の密度を反映するAlN(10-12)面に対するX線回折のωスキャン(結晶のc軸方向の揺らぎの程度を示す指標)を行なった時のX線ロッキングカーブ(X-Ray Rocking Curve:XRC)図を図3に示す。
 図3から、核2aの密度を3×1010個cm-2とした比較例の窒化物半導体多層構造体のXRC(点線)の半値幅が600arcsecであるのに対して、核2aの密度を6×109個cm-2とした実施例の窒化物半導体多層構造体のXRC(実線)の半値幅が440arcsecとなっており、実施例の方が比較例に比べてXRCの半値幅が大きく減少しており、混合転位および刀状転位の密度が低減され、貫通転位密度が低減された高品質の窒化物半導体多層構造であることが分かる。
 また、核2aの密度が小さいほど貫通転位の密度が小さくなることが断面TEM(Transmission Electron microscope)観察などにより確認された。その一方で、核2aの密度が小さくなるほど、隣り合う核2aの間の間隔が大きくなり、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆う第1の窒化物半導体層2bの膜厚が大きくなる。ここにおいて、第1の窒化物半導体層2bの膜厚が大きくなりすぎると、単結晶基板と第1の窒化物半導体層2bとの格子不整合に起因してクラックが発生する。ここで、従来から知られている、選択波長マスクを用いた選択波長と横方向成長とを組み合わせた結晶成長技術である横方向エピタキシャル埋め込み成長法(Epitaxial Lateral Overgrowth: ELO)においては、隣り合う成長膜同士が繋がって表面が平坦な窒化物半導体層(GaN層)を成長させるためには、隣り合う選択波長マスクの間隔と同程度の成長膜厚が必要である。また、単結晶基板の一表面側にAlを構成元素として含む第1の窒化物半導体層2bをヘテロエピタキシャル成長させる場合、第1の窒化物半導体層2bの膜厚が10μmを超えると単結晶基板1と第1の窒化物半導体層2bとの格子不整合に起因してクラックが発生する可能性が高くなるので、製造時のクラックの発生を防止する観点からは、隣り合う核2aの間の間隔は10μm以下であることが好ましい。そこで、隣り合う核2aの間隔を10μmとしたときの核2aの密度が、1×106個cm-2であることから、核2aの密度を1×106個cm-2以上とすることが好ましい。さらに、核2aの間隔が1μm以下となるように、核2aの密度を1×108個cm-2以上とすることが好ましい。
 核2aの密度を制御するパラメータとして、例えばV/III比(V族原料とIII族原料のモル比)、III族原料の供給量等も想定される。しかしながら、原子を拡散させる為には運動エネルギーを基板温度で与える事が必要であり、運動エネルギーが小さければ、たとえ基板温度以外のパラメータを変化させたとしても、もともとの拡散距離が短い為、核2aの密度が高い状態で制御する事が出来ない。従って、基板温度が最も本質的なパラメータであり、核密度の制御に最も強い影響を与えると考えられる。
 次に、上述の実施例の窒化物半導体多層構造体の表面状態をAFMにより観察することにより得られたAFM像図を図4に示す。図4から、窒化物半導体多層構造体の表面に、多数の島状の核2aに起因した凹凸構造は観察されず、原子レベルで平坦な膜が得られていることが分かった。
 以上説明した本実施形態の窒化物半導体多層構造体は、単結晶基板1の上記一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核2aと、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆うように単結晶基板1の上記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層2bと、第1の窒化物半導体層2b上に形成されAlを構成元素として含む第2の窒化物半導体層2cとを備え、核2aの密度が6×109個cm-2を超えないので、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができる。ここにおいて、単結晶基板1の上記一表面上に形成される多数の島状の核2aは、核2aの成長の進行に伴ってサイズが大きくなり、隣り合う核2aと結合する際に、結合界面で貫通転位が生じやすいが、核2aの密度が6×109個cm-2を超えないことにより、結合界面を減少させることができ、結果として、隣り合う核2a同士が結合する際に生じる貫通転位を低減させることができ、貫通転位の少ない高品質の窒化物半導体多層構造体を得ることができる。
 また、本実施形態の窒化物半導体多層構造体において、各核2aの表面の大部分が、成長面であるc面から傾いた面によって形成されているので、第1の窒化物半導体層2bの形成時に単結晶基板1の上記一表面の法線方向(垂直方向)への成長が抑制され上記一表面に沿った横方向への成長が進行し易くなり、成長方向に沿って入りやすい貫通転位が、第1の窒化物半導体層2bの成長方向と同様に、単結晶基板1の上記一表面の法線方向へ延びづらく上記一表面に平行な方向へ曲がるから、近傍の貫通転位と転位ループを作り消滅し易くなり、結果として、第2の窒化物半導体層2cの表面の貫通転位の密度を減少させることができ、窒化物半導体多層構造体の表面の貫通転位の密度を減少させることができる。
 また、本実施形態の窒化物半導体多層構造体では、核2aを構成する窒化物半導体としてAlNを採用すれば、核2aとなる窒化物半導体の構成元素の数を少なくできるので、核2aを形成する際の制御が容易である。また、AlNは、バンドギャップエネルギが6.2eVと大きい材料であるので、第2の窒化物半導体層2cの表面側に波長200~350nmの紫外光を発光する発光層4を形成して窒化物半導体発光素子(紫外発光ダイオード)を製造した場合に、発光層4から放射される紫外光が核2aにより吸収されるのを防止することができ、窒化物半導体発光素子の外部量子効率の向上を図れる。例えば、GaNは、上記波長領域の紫外光を吸収してしまい、外部量子効率を低下させてしまう原因となるので、用いることができない。
 また、本実施形態の窒化物半導体多層構造体の製造方法では、単結晶基板1の上記一表面上に減圧MOVPE法により核2aを形成するにあたり、核2aの密度が6×109個cm-2を超えない基板温度の条件で核2aを成長させるので、核2aの密度の制御を基板温度の条件で制御することができ、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。また、本実施形態の窒化物半導体多層構造体の製造方法では、単結晶基板1の上記一表面上に減圧MOVPE法によりAlNからなる核2aを形成するにあたり、核2aの密度が6×109個cm-2を超えない基板温度の条件で核2aを成長させるようにし、当該基板温度を1300℃以上とするので、核2aを形成する際に、基板温度が1300℃よりも低温の場合に比べて、単結晶基板1の上記一表面に付着した構成元素の拡散長が長くなるから、核2aの密度を低減することができ、核2aの密度を容易に6×109個cm-2を超えないようにすることが可能となり、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。
 また、本実施形態の窒化物半導体発光素子は、上述の窒化物半導体多層構造体からなるバッファ層2と、当該バッファ層2上に形成されたn形窒化物半導体層3と、当該n形窒化物半導体層3上に形成された発光層4と、当該発光層4上に形成されたp形窒化物半導体層5とを備えているので、貫通転位の少ない高品質の窒化物半導体多層構造からなるバッファ層2上にn形窒化物半導体層3と発光層4とp形窒化物半導体層5との積層構造を形成することができるから、高品質のバッファ層2および発光層4とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができる。
 上記実施形態では、窒化物半導体多層構造体や当該窒化物半導体多層構造体をバッファ層2として備えた窒化物半導体発光素子の製造方法として減圧MOVPE法を例示したが、これに限らず、例えば、ハライド気相成長法(HVPE法)、分子線成長法(MBE法)などの成長法を採用することも可能である。
 また、上記実施形態では、単結晶基板1としてサファイア基板を用いているが、単結晶基板1はサファイア基板に限定されるものではなく、例えば、スピネル基板、シリコン基板、炭化シリコン基板、酸化亜鉛基板、燐化ガリウム基板、砒化ガリウム基板、酸化マグネシウム基板、硼化ジルコニウム基板、III族窒化物系半導体結晶基板などを用いてもよい。また、本発明の技術思想は、上記実施形態で説明した基本構成が適用できれば、様々な構造に応用、発展させることが可能である。
 また、上記実施形態の窒化物半導体発光素子では、発光層4の発光波長が250nm~300nmの範囲内で設定されているので、発光波長が紫外域の発光ダイオードを実現できるから、水銀ランプや、エキシマランプなどの深紫外光源の代替光源として用いることが可能となる。

Claims (20)

  1.  単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、前記第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを備え、前記核の密度が6×109個cm-2を超えないことを特徴とする窒化物半導体多層構造体。
  2.  前記核の密度が、1×106個cm-2以上であることを特徴とする請求項1に記載の窒化物半導体多層構造体。
  3.  前記核の密度が、1×108個cm-2以上であることを特徴とする請求項2に記載の窒化物半導体多層構造体。
  4.  前記核は、前記単結晶基板の前記一表面から傾いた面を有することを特徴とする請求項1から請求項3のいずれか1項に記載の窒化物半導体多層構造体。
  5.  前記核を構成する前記窒化物半導体は、AlNであることを特徴とする請求項1から請求項4のいずれか1項に記載の窒化物半導体多層構造体。
  6.  前記第1の窒化物半導体層および前記第2の窒化物半導体層は、AlNにより形成されることを特徴とする請求項5に記載の窒化物半導体多層構造体。
  7.  前記単結晶基板はサファイヤ基板であって、前記一表面はc面に対するオフ角が0°~0.2°であることを特徴とする請求項1から請求項6のいずれか1項に記載の窒化物半導体多層構造体。
  8.  単結晶基板を反応炉内に配置した状態において、減圧MOVPE法を用いて、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第1物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記単結晶基板の一表面上にAlを構成元素として含む窒化物半導体からなる多数の島状の核を形成するステップaと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第2物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように第1の窒化物半導体層を形成するステップbと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第3物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記第1の窒化物半導体層上に第2の窒化物半導体層を形成するステップcとを有する窒化物半導体多層構造体の製造方法であって、
     前記第1の窒化物半導体層と前記第2の窒化物半導体層は、それぞれAlを構成元素として含み、
     前記の各ステップa~cにおいて、同じ基板温度であり、かつ、前記核および前記第1の窒化物半導体層および前記第2の窒化物半導体層を形成するための成長圧力は同じに設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  9.  請求項8に記載の製造方法において、前記ステップaにおける前記第1物質量比は10~1000に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  10.  請求項8または9に記載の製造方法において、前記ステップbにおける前記第2物質量比は40~60に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  11.  請求項8から請求項10のいずれか1項に記載の製造方法において、前記ステップcにおける前記第3物質量比は1~100に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  12.  請求項8から請求項11のいずれか1項に記載の製造方法において、前記ステップaにおける、前記Alの原料ガスの供給量は標準状態で0.01L/min~0.1L/minであって、前記Nの原料ガスの供給量は標準状態で0.01L/min~0.1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  13.  請求項8から請求項12のいずれか1項に記載の製造方法において、前記ステップbにおける、前記Alの原料ガスの供給量は標準状態で0.1L/min~1L/minであって、前記Nの原料ガスの供給量は標準状態で0.1L/min~1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  14.  請求項8から請求項13のいずれか1項に記載の製造方法において、前記ステップcにおける、前記Alの原料ガスの供給量は標準状態で0.1L/min~1L/minであって、前記Nの原料ガスの供給量は標準状態で0.01L/min~1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  15.  請求項8から請求項14のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給される前記Alの原料ガスはトリメチルアルミニウムであることを特徴とする窒化物半導体多層構造体の製造方法。
  16.  請求項8から請求項15のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給される前記Nの原料ガスはNH3であることを特徴とする窒化物半導体多層構造体の製造方法。
  17.  請求項8から請求項16のいずれか1項に記載の製造方法において、前記の各ステップa~cで供給されるキャリアガスは水素であることを特徴とする窒化物半導体多層構造体の製造方法。
  18.  請求項8から請求項17のいずれか1項に記載の製造方法において、前記基板温度は1300℃以上1500℃以下に設定される。
  19.  前記の各ステップa~cそれぞれにおいて前記AlNの成分であるAlの原料ガスを反応炉内に連続的に供給し、且つ前記ステップaと前記ステップbそれぞれにおいて前記AlNの成分であるNの原料ガスを間欠的に供給することを特徴とする請求項8から請求項18のいずれか1項に記載の窒化物半導体多層構造体の製造方法。
  20.  以下の構成を備えた窒化物半導体発光素子
    - 単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、前記第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを含む窒化物半導体多層構造体
    - 前記窒化物半導体多層構造体上に形成されたn形窒化物半導体層
    - 前記n形窒化物半導体層上に形成された発光層
    - 前記発光層上に形成されたp形窒化物半導体層
    であって、
     前記核の密度が6×109個cm-2を超えないことを特徴とする窒化物半導体発光素子。
PCT/JP2010/065319 2009-09-07 2010-09-07 窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子 WO2011027896A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080039427.2A CN102656711B (zh) 2009-09-07 2010-09-07 氮化物半导体多层结构体及其制造方法、氮化物半导体发光元件
JP2011529977A JP5704724B2 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体の製造方法
US13/394,459 US20120248456A1 (en) 2009-09-07 2010-09-07 Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element
EP10813842.1A EP2477236A4 (en) 2009-09-07 2010-09-07 MULTILAYER NITRIDE SEMICONDUCTOR STRUCTURE, METHOD FOR THE PRODUCTION THEREOF AND LIGHT-EMITTING NITRIDE-SEMICONDUCTOR ELEMENT
KR1020127008861A KR101317735B1 (ko) 2009-09-07 2010-09-07 질화물 반도체 다층 구조체 및 그 제조 방법과, 질화물 반도체 발광 소자
US14/641,076 US20150176154A1 (en) 2009-09-07 2015-03-06 Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009206082 2009-09-07
JP2009-206082 2009-09-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/394,459 A-371-Of-International US20120248456A1 (en) 2009-09-07 2010-09-07 Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element
US14/641,076 Division US20150176154A1 (en) 2009-09-07 2015-03-06 Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
WO2011027896A1 true WO2011027896A1 (ja) 2011-03-10

Family

ID=43649430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065319 WO2011027896A1 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子

Country Status (7)

Country Link
US (2) US20120248456A1 (ja)
EP (1) EP2477236A4 (ja)
JP (1) JP5704724B2 (ja)
KR (1) KR101317735B1 (ja)
CN (1) CN102656711B (ja)
TW (1) TWI556468B (ja)
WO (1) WO2011027896A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148300A (zh) * 2011-03-17 2011-08-10 中国科学院半导体研究所 一种紫外led的制作方法
JP2012244161A (ja) * 2012-03-09 2012-12-10 Toshiba Corp 半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
WO2013005789A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
WO2013153729A1 (ja) * 2012-04-13 2013-10-17 パナソニック株式会社 紫外発光素子およびその製造方法
JP2014179628A (ja) * 2014-04-11 2014-09-25 Toshiba Corp 半導体素子、及び、窒化物半導体ウェーハ
JP2016157876A (ja) * 2015-02-25 2016-09-01 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
JP2021185618A (ja) * 2020-03-25 2021-12-09 日機装株式会社 窒化物半導体素子の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025062A2 (en) * 2005-08-25 2007-03-01 Wakonda Technologies, Inc. Photovoltaic template
JP5849215B2 (ja) 2010-06-21 2016-01-27 パナソニックIpマネジメント株式会社 紫外半導体発光素子
JP2012033708A (ja) * 2010-07-30 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置の製造方法
JP5668647B2 (ja) * 2011-09-06 2015-02-12 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
JP2015216352A (ja) 2014-04-24 2015-12-03 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器
CN104716241B (zh) * 2015-03-16 2018-10-16 映瑞光电科技(上海)有限公司 一种led结构及其制作方法
JP6489232B2 (ja) * 2015-11-12 2019-03-27 株式会社Sumco Iii族窒化物半導体基板の製造方法及びiii族窒化物半導体基板
CN110148652B (zh) * 2019-03-26 2020-09-25 华灿光电股份有限公司 发光二极管的外延片的制备方法及外延片
CN111354629B (zh) * 2020-04-26 2023-04-07 江西力特康光学有限公司 一种用于紫外LED的AlN缓冲层结构及其制作方法
WO2022160089A1 (en) * 2021-01-26 2022-08-04 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and fabrication method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215035A (ja) * 1997-01-30 1998-08-11 Toshiba Corp 化合物半導体素子及びその製造方法
JP2002093720A (ja) * 2000-09-14 2002-03-29 Inst Of Physical & Chemical Res 半導体層の形成方法
JP2003101157A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP2005244202A (ja) * 2004-01-26 2005-09-08 Showa Denko Kk Iii族窒化物半導体積層物
JP2005327821A (ja) * 2004-05-12 2005-11-24 Nichia Chem Ind Ltd 窒化物半導体、窒化物半導体基板、窒化物半導体素子及びそれらの製造方法
JP2009054780A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US6271104B1 (en) * 1998-08-10 2001-08-07 Mp Technologies Fabrication of defect free III-nitride materials
JP2000236142A (ja) * 1998-12-15 2000-08-29 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2002222771A (ja) * 2000-11-21 2002-08-09 Ngk Insulators Ltd Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法
US6703255B2 (en) * 2001-03-28 2004-03-09 Ngk Insulators, Ltd. Method for fabricating a III nitride film
JP3954335B2 (ja) * 2001-06-15 2007-08-08 日本碍子株式会社 Iii族窒化物多層膜
JP3768943B2 (ja) * 2001-09-28 2006-04-19 日本碍子株式会社 Iii族窒化物エピタキシャル基板、iii族窒化物素子用エピタキシャル基板及びiii族窒化物素子
JP3831322B2 (ja) * 2001-12-25 2006-10-11 日本碍子株式会社 Iii族窒化物膜の製造方法、エピタキシャル成長用基板、iii族窒化物膜、iii族窒化物素子用エピタキシャル基板、及びiii族窒化物素子
JP4823466B2 (ja) * 2002-12-18 2011-11-24 日本碍子株式会社 エピタキシャル成長用基板および半導体素子
US7294199B2 (en) * 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
WO2006022302A2 (ja) * 2004-08-24 2006-03-02 Univ Osaka 窒化アルミニウム結晶の製造方法およびそれにより得られた窒化アルミニウム結晶
US8529697B2 (en) * 2004-08-31 2013-09-10 Honda Motor Co., Ltd. Growth of nitride semiconductor crystals
US20060160345A1 (en) * 2005-01-14 2006-07-20 Xing-Quan Liu Innovative growth method to achieve high quality III-nitride layers for wide band gap optoelectronic and electronic devices
US7250360B2 (en) * 2005-03-02 2007-07-31 Cornell Research Foundation, Inc. Single step, high temperature nucleation process for a lattice mismatched substrate
US7491626B2 (en) * 2005-06-20 2009-02-17 Sensor Electronic Technology, Inc. Layer growth using metal film and/or islands
JP2007059850A (ja) * 2005-08-26 2007-03-08 Ngk Insulators Ltd Iii族窒化物成膜用基板及びその製造方法並びにそれを用いた半導体装置
JP4939014B2 (ja) * 2005-08-30 2012-05-23 国立大学法人徳島大学 Iii族窒化物半導体発光素子およびiii族窒化物半導体発光素子の製造方法
US7915626B1 (en) * 2006-08-15 2011-03-29 Sandia Corporation Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
WO2008024991A2 (en) * 2006-08-24 2008-02-28 Hongxing Jiang Er doped iii-nitride materials and devices synthesized by mocvd
JP4531071B2 (ja) * 2007-02-20 2010-08-25 富士通株式会社 化合物半導体装置
JP5079361B2 (ja) * 2007-03-23 2012-11-21 日本碍子株式会社 AlGaN結晶層の形成方法
JP5274785B2 (ja) * 2007-03-29 2013-08-28 日本碍子株式会社 AlGaN結晶層の形成方法
US20110254048A1 (en) * 2007-08-09 2011-10-20 Showa Denko K.K. Group iii nitride semiconductor epitaxial substrate
JP2009054782A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP5276852B2 (ja) * 2008-02-08 2013-08-28 昭和電工株式会社 Iii族窒化物半導体エピタキシャル基板の製造方法
US9331240B2 (en) * 2008-06-06 2016-05-03 University Of South Carolina Utlraviolet light emitting devices and methods of fabrication
JP5641173B2 (ja) * 2009-02-27 2014-12-17 独立行政法人理化学研究所 光半導体素子及びその製造方法
JP5112370B2 (ja) * 2009-03-23 2013-01-09 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
WO2011024615A1 (ja) * 2009-08-31 2011-03-03 国立大学法人京都大学 紫外線照射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215035A (ja) * 1997-01-30 1998-08-11 Toshiba Corp 化合物半導体素子及びその製造方法
JP2002093720A (ja) * 2000-09-14 2002-03-29 Inst Of Physical & Chemical Res 半導体層の形成方法
JP2003101157A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP2005244202A (ja) * 2004-01-26 2005-09-08 Showa Denko Kk Iii族窒化物半導体積層物
JP2005327821A (ja) * 2004-05-12 2005-11-24 Nichia Chem Ind Ltd 窒化物半導体、窒化物半導体基板、窒化物半導体素子及びそれらの製造方法
JP2009054780A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477236A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148300A (zh) * 2011-03-17 2011-08-10 中国科学院半导体研究所 一种紫外led的制作方法
EP2731151A1 (en) * 2011-07-05 2014-05-14 Panasonic Corporation Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
WO2013005789A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
JP2013016711A (ja) * 2011-07-05 2013-01-24 Panasonic Corp 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
EP2731151A4 (en) * 2011-07-05 2015-04-29 Panasonic Corp METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT, WAFER, AND NITRIDE SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT
US9293646B2 (en) 2011-07-05 2016-03-22 Panasonic Corporation Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP2012244161A (ja) * 2012-03-09 2012-12-10 Toshiba Corp 半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
WO2013153729A1 (ja) * 2012-04-13 2013-10-17 パナソニック株式会社 紫外発光素子およびその製造方法
JP2013222746A (ja) * 2012-04-13 2013-10-28 Panasonic Corp 紫外発光素子およびその製造方法
JP2014179628A (ja) * 2014-04-11 2014-09-25 Toshiba Corp 半導体素子、及び、窒化物半導体ウェーハ
JP2016157876A (ja) * 2015-02-25 2016-09-01 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
WO2016136446A1 (ja) * 2015-02-25 2016-09-01 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
JP2021185618A (ja) * 2020-03-25 2021-12-09 日機装株式会社 窒化物半導体素子の製造方法
JP7166404B2 (ja) 2020-03-25 2022-11-07 日機装株式会社 窒化物半導体素子の製造方法

Also Published As

Publication number Publication date
US20120248456A1 (en) 2012-10-04
CN102656711A (zh) 2012-09-05
CN102656711B (zh) 2015-07-08
TWI556468B (zh) 2016-11-01
KR20120068899A (ko) 2012-06-27
EP2477236A4 (en) 2015-07-22
US20150176154A1 (en) 2015-06-25
TW201126752A (en) 2011-08-01
JPWO2011027896A1 (ja) 2013-02-04
KR101317735B1 (ko) 2013-10-15
JP5704724B2 (ja) 2015-04-22
EP2477236A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5704724B2 (ja) 窒化物半導体多層構造体の製造方法
JP4999866B2 (ja) 窒化ガリウム系半導体ヘテロ構造体の成長方法
JP5995302B2 (ja) 窒化物半導体発光素子の製造方法
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
WO2010032423A1 (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子並びにランプ
JP5279006B2 (ja) 窒化物半導体発光素子
JP2009123718A (ja) Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
JP2007103774A (ja) Iii族窒化物半導体積層構造体およびその製造方法
JP2010258096A (ja) 窒化物半導体発光素子
JP2008028121A (ja) 半導体発光素子の製造方法
US8278129B2 (en) Manufacturing method of nitride semi-conductor layer, and a nitride semi-conductor light emitting device with its manufacturing method
JP2012204540A (ja) 半導体装置およびその製造方法
JP4624064B2 (ja) Iii族窒化物半導体積層物
KR101850537B1 (ko) 반도체 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039427.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529977

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010813842

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008861

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13394459

Country of ref document: US