JP5704724B2 - 窒化物半導体多層構造体の製造方法 - Google Patents

窒化物半導体多層構造体の製造方法 Download PDF

Info

Publication number
JP5704724B2
JP5704724B2 JP2011529977A JP2011529977A JP5704724B2 JP 5704724 B2 JP5704724 B2 JP 5704724B2 JP 2011529977 A JP2011529977 A JP 2011529977A JP 2011529977 A JP2011529977 A JP 2011529977A JP 5704724 B2 JP5704724 B2 JP 5704724B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
source gas
multilayer structure
semiconductor layer
nuclei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011529977A
Other languages
English (en)
Other versions
JPWO2011027896A1 (ja
Inventor
隆好 高野
隆好 高野
椿 健治
健治 椿
秀樹 平山
秀樹 平山
紗千恵 藤川
紗千恵 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
RIKEN Institute of Physical and Chemical Research
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
RIKEN Institute of Physical and Chemical Research
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, RIKEN Institute of Physical and Chemical Research, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011529977A priority Critical patent/JP5704724B2/ja
Publication of JPWO2011027896A1 publication Critical patent/JPWO2011027896A1/ja
Application granted granted Critical
Publication of JP5704724B2 publication Critical patent/JP5704724B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、構成元素としてAlを含有する窒化物半導体多層構造体の製造方法に関するものである。
可視光〜紫外線の波長域で発光する窒化物半導体発光素子は、低消費電力、小型という利点から、衛生、医療、工業、照明、精密機械などの様々な分野への応用が期待されており、青色光の波長域など、一部の波長域では既に実用化に至っている。
しかしながら、窒化物半導体発光素子においては、青色光を発光する窒化物半導体発光素子(以下、青色発光ダイオードと称する)に限らず、発光効率および光出力の、より一層の向上が望まれている。特に、紫外線の波長域の光を発光する窒化物半導体発光素子(以下、紫外発光ダイオードと称する)は、現状では、青色発光ダイオードに比べて外部量子効率および光出力が著しく劣るという問題が実用化への大きな障壁となっている。外部量子効率および光出力が著しく劣る原因の一つに発光層の発光効率(以下、内部量子効率と称する)が低いことが挙げられる。
ここにおいて、窒化物半導体結晶により構成される発光層の内部量子効率は、貫通転位の影響を受ける。ここで、貫通転位の転位密度が高い場合には、非発光再結合が支配的になり、内部量子効率を大きく低下させる原因となる。
上述の貫通転位は、窒化物半導体に対して格子不整合の大きいサファイアなどの材料からなる基板をエピタキシャル成長用の単結晶基板として用いた場合に、特に成長界面で発生し易い。従って、貫通転位密度の少ない窒化物半導体結晶を得るためには、成長初期の各構成元素の振る舞いを制御することが非常に重要な要素となる。特にAlを含有した窒化物半導体結晶(特にAlN)では、Alを含有していない窒化物半導体結晶(特にGaN)に比べ、成長技術の確立が進んでおらず、相対的に高密度の貫通転位が存在する。従って、窒化物半導体結晶の構成元素にAlを含めなければならない紫外線発光ダイオードを製造する場合、GaNを主体とした窒化物半導体結晶で構成される青色発光ダイオードと比較して、窒化物半導体結晶内に多く貫通転位が存在してしまうため、発光効率が低かった。
そこで、波長が230nm〜350nmの深紫外域において室温で発光する発光層を備えた紫外発光ダイオードの発光効率を高めるために、サファイア基板からなる単結晶基板の一表面側に形成するバッファ層の高品質化を図る目的で、減圧MOVPE法により形成する上述のバッファ層を、単結晶基板の上記一表面上に形成されたAlNからなる多数の島状の核(以下、AlN核と称する)と、III族原料であるTMAlを連続して供給しながらV族原料であるNH3を間欠的(パルス的)に供給することにより単結晶基板の上記一表面側においてAlN核の隙間を埋め込み且つAlN核を覆うように形成されたAlN層(パルス供給AlN層)からなる第1の窒化物半導体層と、TMAlとNH3との両方を同時に連続して供給することにより第1の窒化物半導体層上に形成されたAlN層(連続成長AlN層)からなる第2の窒化物半導体層とを有する窒化物半導体多層構造体とすることが提案されている(特許文献1)。
特開2009−54780号公報
ところで、上記特許文献1に記載の窒化物半導体多層構造体をバッファ層として備えた紫外発光ダイオードでは、貫通転位密度の低減による発光効率の向上を図ることができる。しかしながら、上記特許文献1には、高品質の窒化物半導体多層構造体を得るための、単結晶基板の上記一表面上のAlN核の密度(核密度)について具体的に開示されていなかった。これに対して、本願発明者らは、鋭意研究の結果、単結晶基板の上記一表面上のAlN核の密度によっては、窒化物半導体多層構造体および発光層の貫通転位密度が増加して発光効率を向上する効果が得られにくくなることがあるという知見を得た。
本発明は上記事由に鑑みて為されたものであり、その目的は、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体の製造方法を提供することにある。
本願の別の第1の発明は、単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを備え、前記核の密度が6×109個cm-2を超えないことを特徴とする。
この発明によれば、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができる。ここにおいて、単結晶基板の前記一表面上に形成される多数の島状の核は、核の成長の進行に伴ってサイズが大きくなり、隣り合う核と結合する際に、結合界面で貫通転位が生じやすいが、核の密度を6×109個cm-2を超えない範囲とすることにより、結合界面を減少させることができ、結果として、隣り合う核同士が結合する際に生じる貫通転位を低減させることができ、貫通転位の少ない高品質の窒化物半導体多層構造体を得ることができる。
本願の別の第2の発明は、前記核の密度が1×106個cm-2以上であることを特徴とする。核の密度が1×106個cm-2以上にあることで、核の間の隙間を埋め込み全ての核を覆うために、小さな膜厚で前記第1窒化物半導体層を形成できる。したがって、核の密度が1×106個cm-2以上にあることで、膜厚が大きくなりすぎることによるクラックの発生を防止できるとともに、核を埋め込み且つ平坦な膜を得ることが容易になる。
本願の別の第3の発明は、前記核の密度が1×108個cm-2以上である。核の密度がこの範囲内では、隣り合う核の距離が1μm程度になるので、低い転位密度を有しながら、且つ容易に平坦な膜を得られるようになる。従って、転位に起因する非発光再結合中心が少なく、良好な界面を有する高品質の発光層を形成できる。
本願の別の第4の発明は、第1の発明から第3の発明のいずれか1つに記載の発明において、前記核は、前記単結晶基板の前記一表面から傾いた面を有することを特徴とする。
この発明によれば、前記核が、前記単結晶基板の前記一表面から傾いた面を有しているので、前記第1の窒化物半導体層の形成時に前記単結晶基板の前記一表面の法線方向への成長が抑制され前記一表面に沿った横方向への成長が進行し易くなる。貫通転位は、成長方向に沿って入りやすいので、前記第1の窒化物半導体層の成長方向と同様に、前記単結晶基板の前記一表面の法線方向へ延びづらくなり、前記一表面に平行な方向へ曲がるから、近傍の貫通転位と転位ループを作り消滅し易くなる。結果として、前記第2の窒化物半導体層の表面の貫通転位の密度を減少させることができる。
本願の別の第5の発明は、第1の発明から第4の発明のいずれか1つに記載の発明において、前記核を構成する前記窒化物半導体は、AlNであることを特徴とする。本願の別の第6の発明は、第5の発明において、前記第1の窒化物半導体層と前記第2の窒化物半導体層は、AINにより形成されることを特徴とする。
この発明によれば、前記核となる前記窒化物半導体の構成元素の数が少ないので、前記核を形成する際の制御が容易である。また、AlNは、バンドギャップエネルギが6.2eVと大きい材料であるので、前記第2の窒化物半導体層の表面側に紫外光を発光する発光層を形成して窒化物半導体発光素子(紫外発光ダイオード)を製造した場合に、発光層から放射される紫外光が前記核により吸収されるのを防止することができ、窒化物半導体発光素子の外部量子効率の向上を図れる。
本願の別の第7の発明は、第1の発明から第6の発明のいずれか1つに記載の発明において、前記単結晶基板はサファイア基板であって、前記一表面はc面に対するオフ角が0°〜0.2°であることを特徴とする。
この発明によれば、オフ角をこの範囲に定めることにより、核の密度が6×109個cm-2を超えないようにでき、高品質の窒化物半導体多層構造体を提供することができる。核を形成するために供給される原子は、基板表面を拡散し、安定な場所で結晶となる。原子の拡散距離が十分長い場合、特にテラスで前記核が形成され易くなる。従って、前記単結晶基板のオフ角が小さいほど、テラス幅が長くなるので、核の密度を下げ易くなる。
請求項1に記載の発明は、単結晶基板を反応炉内に配置した状態において、減圧MOVPE法を用いて、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第1物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記単結晶基板の一表面上にAlを構成元素として含む窒化物半導体からなる多数の島状の核を形成するステップaと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第2物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように第1の窒化物半導体層を形成するステップbと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第3物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記第1の窒化物半導体層上に第2の窒化物半導体層を形成するステップcとを有する窒化物半導体多層構造体の製造方法であって、前記第1の窒化物半導体層と前記第2の窒化物半導体層は、それぞれAlを構成元素として含み、前記の各ステップa〜cにおいて、同じ基板温度であり、かつ、前記核および前記第1の窒化物半導体層および前記第2の窒化物半導体層を形成するための成長圧力は同じに設定されることを特徴とする。この発明によれば、各ステップ毎に基板温度や成長圧力を変えることなく、核や半導体層を形成できるので、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う前記核と前記第1の窒化物半導体層の劣化を防止できる。
請求項2に記載の発明は、請求項1に記載の製造方法において、前記ステップaにおける前記第1物質量比は10〜1000に設定されることを特徴とする。
請求項3に記載の発明は、請求項1まは2に記載の製造方法において、前記ステップbにおける前記第2物質量比は40〜60に設定されることを特徴とする。この発明によれば、原料ガスの一方が過剰に供給されることによる白濁を防止できる。
請求項4に記載の発明は、請求項1から3のいずれか1項に記載の製造方法において、前記ステップcにおける前記第3物質量比は1〜100に設定されることを特徴とする。この発明によれば、表面状態を悪化させることなく、第2の窒化物半導体層を形成することができる。
請求項5に記載の発明は、請求項1から4のいずれか1項に記載の製造方法において、前記ステップaにおける、Alの原料ガスの供給量は標準状態で0.01L/min〜0.1L/minであって、Nの原料ガスの供給量は標準状態で0.01L/min〜0.1L/minであることを特徴とする。
請求項6に記載の発明は、請求項1から5のいずれか1項に記載の製造方法において、前記ステップbにおける、Alの原料ガスの供給量は標準状態で0.1L/min〜1L/minであって、Nの原料ガスの供給量は標準状態で0.1L/min〜1L/minであることを特徴とする。
請求項7に記載の発明は、請求項1から6のいずれか1項に記載の製造方法において、前記ステップcにおける、Alの原料ガスの供給量は標準状態で0.1L/min〜1L/minであって、Nの原料ガスの供給量は標準状態で0.01L/min〜1L/minであることを特徴とする。
請求項8に記載の発明は、請求項1から7のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給されるAlの原料ガスはトリメチルアルミニウムであることを特徴とする。
請求項9に記載の発明は、請求項1から8のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給されるNの原料ガスはNH3であることを特徴とする。
請求項10に記載の発明は、請求項1から9のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給されるキャリアガスは水素であることを特徴とする。
請求項11に記載の発明は、請求項1から10のいずれか1項に記載の窒化物半導体多層構造体の製造方法において、当該基板温度は1300℃以上1500℃以下に設定されることを特徴とする。この発明によれば、前記核を形成する際に、基板温度が1300℃よりも低温の場合に比べて、前記単結晶基板の前記一表面に付着した構成元素の拡散長が長くなるので、前記核の密度を低減することができ、前記核の密度を容易に6×109個cm-2を超えないようにすることが可能となり、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。
請求項12に記載の発明は、請求項1から11のいずれか1項に記載の窒化物半導体多層構造体の製造方法において、前記Alの原料ガスを前記の各ステップa〜cそれぞれにおいて連続的に供給し、且つ前記Nの原料ガスを前記ステップaおよび前記ステップbそれぞれにおいて間欠的に供給することを特徴とする。この発明によれば、前記核および上記第1の窒化物半導体層前記窒化物半導体層をより確実に形成できる。
本願の別の第8の発明は、窒化物半導体多層構造体を備えた窒化物半導体発光素子である。この窒化物半導体多層構造体は、単結晶基板の一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核と、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように前記単結晶基板の前記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層と、前記第1の窒化物半導体層上に形成されAlを構成元素として含む第2の窒化物半導体層とを含んでいる。この窒化物半導体発光素子は、さらに前記窒化物半導体多層構造体上に形成されたn形窒化物半導体層と、前記n形窒化物半導体層上に形成された発光層と、前記発光層上に形成されたp形窒化物半導体層とを備えていて、前記核の密度が6×109個cm-2を超えないことを特徴とする。
この発明によれば、貫通転位の少ない高品質の窒化物半導体多層構造体上にn形窒化物半導体層と発光層とp形窒化物半導体層との積層構造を形成することができるので、高品質の窒化物半導体多層構造体および発光層とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができる。
本願の別の第1の発明では、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができるという効果がある。
請求項1の発明では、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う上記核と上記第1の窒化物半導体層の劣化を防止できる窒化物半導体多層構造体の製造方法が達成できるという効果がある。
請求項1,2の発明では、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができるという効果がある。
本願の別の第8の発明では、高品質の窒化物半導体多層構造体および発光層とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができるという効果がある。
実施形態における窒化物半導体発光素子の概略断面図である。 実施形態における窒化物半導体発光素子の要部概略断面図である。 同上において用いる単結晶基板の一表面上にAlを構成元素として含有した窒化物半導体からなる多数の核を形成した表面状態を示し、基板温度を1300℃として形成した表面状態のAFM像図である。 同上において用いる単結晶基板の一表面上にAlを構成元素として含有した窒化物半導体からなる多数の核を形成した表面状態を示し、基板温度を1000℃として形成した表面状態のAFM像図である。 同上において用いる単結晶基板の一表面側に窒化物半導体多層構造体を形成した実施例および比較例のX線ロッキングカーブ図である。 同上における窒化物半導体多層構造体の表面のAFM像図である。
本実施形態の窒化物半導体発光素子は、紫外発光ダイオードであって、図1Aに示すように、エピタキシャル成長用の単結晶基板1の一表面側に、構成元素としてAlを含有した窒化物半導体多層構造体のバッファ層2を介してn形窒化物半導体層3が形成され、n形窒化物半導体層3の表面側に発光層4が形成され、発光層4の表面側にp形窒化物半導体層5が形成されている。なお、図示していないが、n形窒化物半導体層3にはカソード電極が形成され、p形窒化物半導体層5にはアノード電極が形成されている。
ここにおいて、単結晶基板1として、サファイア基板を用いている。この単結晶基板1は、(0001)面、つまり、c面に対するオフ角が0.15°である上記一表面を有する。
バッファ層2は、n形窒化物半導体層3の貫通転位を低減するとともにn形窒化物半導体層3の残留歪みを低減するために設けたものである。
ここで、バッファ層2を構成する窒化物半導体多層構造は、図1Bに示すように、サファイア基板からなる単結晶基板1の上記一表面上に形成されAlを構成元素として含む窒化物半導体であるAlNからなる多数の島状の核(成長核)2aと、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆うように単結晶基板1の上記一表面側に形成されAlを構成元素として含むAlN層からなる第1の窒化物半導体層2bと、第1の窒化物半導体層2b上に形成されAlを構成元素として含むAlN層からなる第2の窒化物半導体層2cとを備えている。さらに、バッファ層2は、当該バッファ層2の膜厚を厚くすることを目的として、第2の窒化物半導体層2c上に形成されAlを構成元素として含むAlNからなる多数の島状結晶2dと、隣り合う島状結晶2dの間の隙間を埋め込み且つ全ての島状結晶2dを覆うように形成されAlを構成元素として含むAlN層からなる第2の窒化物半導体層2cとで構成される単位層を3回繰り返して形成してある。ここで島状結晶2dは、貫通転位を屈曲させることで隣り合う貫通転位とループを形成させることにより、貫通転位をさらに低減させることを目的として形成されている。しかしながら、単結晶基板1の上記一表面上に形成された核2aの効果によって貫通転位は十分に低減されているので、島状結晶2dに達する貫通転位は極めて少ない。従って、島状結晶2dで貫通転位を減少させる効果は、ループを形成出来る貫通転位が極めて少ないことから、核2aでの貫通転位を減少させる効果に比べて十分に小さい。なお、本実施形態では、核2aの高さを30nm程度、第1の窒化物半導体層2bの膜厚を500nm、第2の窒化物半導体層2cの膜厚を1μm、島状結晶2dの高さを10nm程度に設定してあり、バッファ層2全体の膜厚が4.5μm程度となっているが、これらの値は一例であって特に限定するものではない。なお、バッファ層2全体の膜厚は、貫通転位を減少させて放熱性を向上させるためには、大きくなるように設定されることが望ましい。ただし、バッファ層2全体の膜厚が大きくなりすぎると、単結晶基板1とバッファ層2の格子不整合に起因してクラックが発生する可能性が高くなるので、製造時のクラックの発生を防止する観点からは、10μmを超えないことが望ましい。また、島状結晶2dと第2の窒化物半導体層2cとからなる単位層の積層数は、クラックの発生が起こらない数であれば特に限定するものではない。また、バッファ層2の窒化物半導体は、AlNに限定するものではなく、構成元素としてAlを含有していればよく、例えば、AlGaN、AlInNなどを採用してもよい。また、バッファ層2は、少なくとも、多数の核2aと第1の窒化物半導体層2bと第2の窒化物半導体層2cとを備えていればよく、上述の単位層は必ずしも設ける必要はないが、単位層を設けた方が貫通転位密度を低減する観点からは有利である。
上述したように、核2aと第1の窒化物半導体層2bが形成される単結晶基板1の一表面はc面に対するオフ角が0.15°である。すなわち、c面に対するオフ角が0o〜0.2oの範囲内にある単結晶基板1の一表面上に核が形成される。核2aを形成する為に供給される原子は、単結晶基板1の表面を拡散し、安定な場所で結晶となる。原子の拡散距離が十分長い場合、特にテラスで核2aが形成され易くなる。従って、本実施形態のように、単結晶基板1のオフ角が小さいほど、テラス幅が長くなるので、核2aの密度を減少させ易くなり、高品質の窒化物半導体多層構造体を提供することができる。単結晶基板1のオフ角が0.2oよりも大きくなると、テラス幅が短くなるので、核2aの密度も増加し、高品質な窒化物半導体多層構造体が得られにくくなる。
バッファ層2の形成にあたっては、サファイア基板からなる単結晶基板1をMOVPE装置の反応炉内に導入した後、反応炉内の圧力を所定の成長圧力(例えば、10kPa≒76Torr)に保ちながら基板温度を1300℃以上1500℃以下の所定温度(例えば、1300℃)まで上昇させてから所定時間(例えば、5分間)の加熱を行うことにより単結晶基板1の上記一表面を浄化し、その後、基板温度を上記所定温度と同じ温度(例えば、1300℃)に保持した状態で、アルミニウムの原料(III族原料)であるトリメチルアルミニウム(TMAl)の流量を標準状態で0.02L/min(20SCCM)に設定し、且つ、窒素の原料(V族原料)であるアンモニア(NH3)の流量を標準状態で0.02L/min(20SCCM)に設定してから、反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的(パルス的)に流すことにより、第1の所定高さ(例えば、30nm)のAlNからなる多数の島状の核2aを形成する。核2aを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では32であり、10〜1000の範囲内に設定されている。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は標準状態において0.02L/minに限定されず、標準状態で0.01L/min〜0.1L/minの間で適宜設定される。AlNを成長する際に一般的な原料として用いられるNH3とTMAlは、単結晶基板1に輸送される過程において反応(寄生反応)することにより、微粒子を形成してしまう。また、これらの原料を連続的に供給した場合、寄生反応は起こり易くなり、微粒子も多く形成されてしまう。この微粒子の一部は、単結晶基板1上に供給されてしまうことにより、AlNの成長の妨げとなる。そこで、寄生反応を抑制するために、NH3を間欠的に供給している。ここにおいて、TMAlおよびNH3それぞれを輸送するためのキャリアガスとしてはH2ガスを用いている。
上述の核2aを形成した後の第1の窒化物半導体層2bの形成にあたっては、反応炉内の圧力を上記所定の成長圧力(すなわち、10kPa≒76Torr)に保ちながら基板温度を上記所定温度(すなわち、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.4L/min(400SCCM)に設定してから、核2aの形成時と同様に反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的に流すことにより、第1の所定膜厚(例えば、500nm)のAlN層からなる第1の窒化物半導体層2bを成長させる。第1の窒化物半導体層2bを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では50であり、40〜60の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が40〜60の範囲内に設定されることで、原料ガスの一方が過剰に供給されることによる白濁を防止できる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてどちらも0.1L/min〜1L/minの間で適宜設定される。ここにおいて、核2aの形成時と同様、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
また,第2の窒化物半導体層2cの形成にあたっては、反応炉内の圧力を上記所定の成長圧力(すなわち、10kPa≒76Torr)に保ちながら基板温度を上記所定温度(すなわち、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.02L/min(20SCCM)に設定した後、TMAlとNH3とを同時に連続して流すことにより、第2の所定膜厚(例えば、1μm)のAlN層からなる第2の窒化物半導体層2cを形成する。第2の窒化物半導体層2cを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では2.5であり、1〜100の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が1〜100の範囲内に設定されることで、表面状態を悪化させることなく第2の窒化物半導体層2cを形成することができる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてそれぞれ0.1L/min〜1L/min、0.01L/min〜1L/minの間で適宜設定される。ここで、寄生反応を抑制するためには、NH3を間欠的に流すことが好ましいが、NH3が供給されない時間が生じるので、連続的に供給した場合に比べ成長速度が低下する可能性がある。第2の窒化物半導体層2cは、本実施形態では合計4μm(1μmを4回)と厚く積層させる必要がある為、成長速度を大きくするためにTMAlとNH3を同時に連続的に流す手法により形成されている。ここにおいて、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
また、島状結晶2dの形成にあたっては、基板温度を上記所定温度(例えば、1300℃)に保持した後、TMAlの流量を0.29L/min(290SCCM)、NH3の流量を0.02L/min(20SCCM)に設定した後、反応炉内へTMAlを流した状態で、反応炉内へNH3を間欠的に流すことにより、第2の所定高さ(例えば、10nm)のAlNからなる多数の島状結晶2dを形成する。島状結晶2dを形成するにあたって、反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比は、本実施形態では2.5であり、1〜50の範囲内に設定されている。反応炉内に供給されるトリメチルアルミニウムとアンモニアの物質量比が1〜50の範囲内に設定されることで、表面状態を悪化させることなく島状結晶2dを形成することができる。また、本発明において、反応炉内に供給されるトリメチルアルミニウムとアンモニアの流量は上記の値に限定されず、標準状態においてどちらも0.1L/min〜1L/minの間で適宜設定される。ここにおいて、TMAlおよびNH3それぞれのキャリアガスとしては、例えば、H2ガスを用いればよい。
次に、第2の窒化物半導体層2cを形成する過程と島状結晶2dを形成する過程とを繰り返し、バッファ層2全体の膜厚が第3の所定膜厚(例えば、4.5μm)となるようにする。ただし、バッファ層2の最表層は第2の窒化物半導体層2cとする。
上述の説明から分かるようにバッファ層2は、複数の成長条件を適宜組み合わせることにより、多数の核2a、第1の窒化物半導体層2b、第2の窒化物半導体層2c、多数の島状結晶2dを有する窒化物半導体多層構造を形成している。また、核2a、第1の窒化物半導体層2b、第2の窒化物半導体層2cの形成時それぞれにおいて、同じ基板温度かつ同じ成長圧力に設定されている。したがって、本実施形態では基板温度や成長圧力を変えることなく、核2aや窒化物半導体層2b,2cを形成できるので、製造時間を短縮できるともに、基板温度や成長圧力の変化に伴う核2aと第1の窒化物半導体層2bの劣化を防止できる。
さらに、本実施形態では、設定されている基板温度は1300℃以上1500℃以下の範囲内であるので、基板温度が1300℃よりも低温の場合に比べて、単結晶基板1の上記一表面に付着した構成元素の拡散長が長くできるので、容易に核2aの密度を6×109個cm-2を超えない程度まで低減することが可能となる。なお、基板温度が1500℃を超えると、キャリアガス中の水素ガスによって、単結晶基板1であるサファイア基板の上記一表面が還元作用を受け易くなる。その結果、サファイア基板の上記一表面での結晶状態が変化し易くなり、その結果、核2aが形成されにくくなる。また、基板温度が1500℃を超えると、減圧MOPVE装置の構成に対して高い耐熱性が要求されることになり、構成の変更、耐熱性部材の使用が求められることで非常にコストが高くなる。従って、基板温度が1500℃を超える領域で核2aを形成することは、本発明では適さない。
ここにおいて、核2a、第1の窒化物半導体層2b、および島状結晶2dの形成時に、TMAlを反応炉内へ供給し続けながら、NH3を間欠的に流す成長方法を採用しているが、これに限定されるものではなく、例えば、TMAlとNH3とを同時に流す成長方法(同時供給法)、TMAlとNH3とを交互に流す成長方法(交互供給法)などを採用してもよい。
n形窒化物半導体層3は、発光層4へ電子を注入するためのものであり、バッファ層2上に形成されたSiドープのn形Al0.55Ga0.45N層で構成してある。ここで、n形窒化物半導体層3の膜厚は2μmに設定してあるが、特に限定するものではない。また、n形窒化物半導体層3は、単層構造に限らず、多層構造でもよく、例えば、バッファ層2上のSiドープのn形Al0.7Ga0.3N層と、当該n形Al0.7Ga0.3N層上のSiドープのn形Al0.55Ga0.45N層とで構成してもよい。
ここにおいて、n形窒化物半導体層3の成長条件としては、成長温度を1200℃、成長圧力を所定の圧力(例えば10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてトリメチルガリウム(TMGa)、窒素の原料としてNH3、n形導電性を付与する不純物であるシリコンの原料としてはテトラエチルシラン(TESi)を用い、各原料を輸送する為のキャリアガスとしてはH2ガスを用いている。ここで、TESiの流量は標準状態で0.0009L/min(0.9SCCM)としている。なお、各原料は特に限定するものではなく、例えば、ガリウムの原料としてトリエチルガリウム(TEGa)、窒素の原料としてヒドラジン誘導体、シリコンの原料としてモノシラン(SiH4)を用いてもよい。
また、発光層4は、量子井戸構造を有し、障壁層4aと井戸層4bとを井戸層4bの数が3となるように交互に積層してある。ここで、発光層4は、障壁層4aを膜厚が8nmのAl0.55Ga0.45N層により構成し、井戸層4bを膜厚が2nmのAl0.4Ga0.60N層により構成してある。なお、障壁層4aおよび井戸層4bの各組成は限定するものではなく、所望の発光波長に応じて適宜設定すればよい。また、発光層4における井戸層4bの数は特に3つに限定するものではなく、井戸層4bを複数備えた多重量子井戸構造の発光層4に限らず、井戸層4bを1つとした単一量子井戸構造の発光層4を採用してもよい。また、障壁層4aおよび井戸層4bの各膜厚も特に限定するものではない。また、井戸層と障壁層の材料の組み合わせは、これに限定されるものではなく、構成元素にAlを含み、且つバンドギャップエネルギーがGaNよりも大きいものが良い。従って、AlGaInN、AlInNでも組成を適宜調整する事で用いる事が出来る。具体的に井戸層/障壁層の組み合わせとしては、AlGaN/AlGaInN、AlGaN/AlInN、AlGaNInN/AlGaInN、AlGaInN/AlGaN、AlGaInN/AlInN、AlInN/AlInN、AlInN/AlGaN、AlInN/AlGaInNが挙げられる。ただし、量子井戸の機能を発現させる為に、井戸層よりも障壁層のバンドギャップエネルギーを大きくする必要がある。
発光層4の成長条件としては、成長温度をn形窒化物半導体層3と同じ1200℃、成長圧力を上記所定の成長圧力(例えば、10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてTMGa、窒素の原料としてNH3を用いている。障壁層4aの成長条件については、TESiを供給しないことを除けば、n形窒化物半導体層3の成長条件と同じに設定している。また、井戸層4bの成長条件については、所望の組成が得られるように、III族原料におけるTMAlのモル比(〔TMAl〕/{〔TMAl〕+〔TMGa〕})を障壁層4aの成長条件よりも小さく設定している。なお、本実施形態では、障壁層4aに不純物をドーピングしていないが、これに限らず、障壁層4aの結晶品質が劣化しない程度の不純物濃度でシリコンなどのn形不純物をドーピングしてもよい。
p形窒化物半導体層5は、発光層4上に形成されたMgドープのp形AlGaN層からなる第1のp形窒化物半導体層5aと、第1のp形窒化物半導体層5a上に形成されたMgドープのp形AlGaN層からなる第2のp形窒化物半導体層5bと、第2のp形窒化物半導体層5b上に形成されたMgドープのp形GaN層からなる第3のp形窒化物半導体層5cとで構成してある。ここで、第1のp形窒化物半導体層5aおよび第2のp形窒化物半導体層5bの各組成は、第1のp形窒化物半導体層5aのバンドギャップエネルギが第2のp形窒化物半導体層5bのバンドギャップエネルギよりも大きくなるように設定してある。また、第2のp形窒化物半導体層5bの組成は、バンドギャップエネルギが発光層4の障壁層4aと同じになるように設定してある。また、p形窒化物半導体層5は、第1のp形窒化物半導体層5aの膜厚を15nm、第2のp形窒化物半導体層5bの膜厚を50nm、第3のp形窒化物半導体層5cの膜厚を15nmに設定してあるが、これらの膜厚は特に限定するものではない。また、p形窒化物半導体層5で採用する窒化物半導体も特に限定するものではなく、例えば、AlGaInNを用いてもよい。また、第3のp形窒化物半導体層5cにはAlGaInNだけではなく、InGaNも用いてもよい。
ここにおいて、p形窒化物半導体層5の第1のp形窒化物半導体層5aおよび第2のp形窒化物半導体層5bの成長条件としては、成長温度を1050℃、成長圧力を上記所定の成長圧力(ここでは、10kPa)とし、アルミニウムの原料としてTMAl、ガリウムの原料としてTMGa、窒素の原料としてNH3、p形導電性を付与する不純物であるマグネシウムの原料としてビスシクロペンタジエニルマグネシウム(Cp2Mg)を用い、各原料を輸送するためのキャリアガスとしてはH2ガスを用いている。また、第3のp形窒化物半導体層5cの成長条件は、基本的に第2のp形窒化物半導体層5bの成長条件と同じであり、TMAlの供給を停止している点が相違する。ここにおいて、第1〜第3のp形窒化物半導体層5a〜5cいずれの成長時もCp2Mgの流量は標準状態で0.02L/min(20SCCM)とし、第1〜第3のp形窒化物半導体層5a〜5cそれぞれの組成に応じてIII族原料のモル比(流量比)を適宜変化させる。
ところで、バッファ層2を構成する窒化物半導体多層構造における核2aの形成温度(成長温度)が単結晶基板1の上記一表面上に形成される核2aの密度に与える影響を確認するために、サファイア基板からなる単結晶基板1の上記一表面(c面)上にAlNからなる多数の核2aを形成する際の基板温度を異ならせた試料について、表面状態を原子間力顕微鏡(AFM)により観察した。一例として、基板温度を1300℃として単結晶基板1の上記一表面上に多数の核2aを形成した試料のAFM像図を図2Aに、基板温度を1300℃として単結晶基板1の上記一表面上に多数の核2aを形成した試料のAFM像図を図2Bに示す。図2A,図2Bから、基板温度を1300℃、1000℃のいずれとした場合にも、単結晶基板1の上記一表面上に島状の核2aが形成されていることが確認された。また、いずれの場合も、各核2aの表面の大部分が、成長面であるc面から傾いた面によって形成されていることが確認された。さらに、図2Bのように1000℃の基板温度で形成した核2aの密度が3×1010個cm-2であるのに対して、図2Aのように1300℃の基板温度で形成した核2aの密度が6×109個cm-2となり、後者の核2aの密度が前者の5分の1程度となっており、隣り合う核2a同士の結合界面が少なくなっていることが分かる。
次に、バッファ層2を構成する窒化物半導体多層構造体について、AlNからなる核2aの形成温度を1300℃とし(つまり、核2aの密度を6×109個cm-2とし)、第1の窒化物半導体層2b、第2の窒化物半導体層2c、島状結晶2dそれぞれをAlNとして高さや膜厚などを上述の数値例とした実施例、AlNからなる核2aの形成温度を1000℃とし(つまり、核2aの密度を3×1010個cm-2とし)、第1の窒化物半導体層2b、第2の窒化物半導体層2c、島状結晶2dそれぞれをAlNとして高さや膜厚などを上述の数値例とした比較例を製造し、実施例、比較例それぞれの窒化物半導体多層構造体について、混合転位および刃状転位の密度を反映するAlN(10−12)面に対するX線回折のωスキャン(結晶のc軸方向の揺らぎの程度を示す指標)を行なった時のX線ロッキングカーブ(X−Ray Rocking Curve:XRC)図を図3に示す。
図3から、核2aの密度を3×1010個cm-2とした比較例の窒化物半導体多層構造体のXRC(点線)の半値幅が600arcsecであるのに対して、核2aの密度を6×109個cm-2とした実施例の窒化物半導体多層構造体のXRC(実線)の半値幅が440arcsecとなっており、実施例の方が比較例に比べてXRCの半値幅が大きく減少しており、混合転位および刀状転位の密度が低減され、貫通転位密度が低減された高品質の窒化物半導体多層構造であることが分かる。
また、核2aの密度が小さいほど貫通転位の密度が小さくなることが断面TEM(Transmission Electron microscope)観察などにより確認された。その一方で、核2aの密度が小さくなるほど、隣り合う核2aの間の間隔が大きくなり、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆う第1の窒化物半導体層2bの膜厚が大きくなる。ここにおいて、第1の窒化物半導体層2bの膜厚が大きくなりすぎると、単結晶基板と第1の窒化物半導体層2bとの格子不整合に起因してクラックが発生する。ここで、従来から知られている、選択波長マスクを用いた選択波長と横方向成長とを組み合わせた結晶成長技術である横方向エピタキシャル埋め込み成長法(Epitaxial Lateral Overgrowth: ELO)においては、隣り合う成長膜同士が繋がって表面が平坦な窒化物半導体層(GaN層)を成長させるためには、隣り合う選択波長マスクの間隔と同程度の成長膜厚が必要である。また、単結晶基板の一表面側にAlを構成元素として含む第1の窒化物半導体層2bをヘテロエピタキシャル成長させる場合、第1の窒化物半導体層2bの膜厚が10μmを超えると単結晶基板1と第1の窒化物半導体層2bとの格子不整合に起因してクラックが発生する可能性が高くなるので、製造時のクラックの発生を防止する観点からは、隣り合う核2aの間の間隔は10μm以下であることが好ましい。そこで、隣り合う核2aの間隔を10μmとしたときの核2aの密度が、1×106個cm-2であることから、核2aの密度を1×106個cm-2以上とすることが好ましい。さらに、核2aの間隔が1μm以下となるように、核2aの密度を1×108個cm-2以上とすることが好ましい。
核2aの密度を制御するパラメータとして、例えばV/III比(V族原料とIII族原料のモル比)、III族原料の供給量等も想定される。しかしながら、原子を拡散させる為には運動エネルギーを基板温度で与える事が必要であり、運動エネルギーが小さければ、たとえ基板温度以外のパラメータを変化させたとしても、もともとの拡散距離が短い為、核2aの密度が高い状態で制御する事が出来ない。従って、基板温度が最も本質的なパラメータであり、核密度の制御に最も強い影響を与えると考えられる。
次に、上述の実施例の窒化物半導体多層構造体の表面状態をAFMにより観察することにより得られたAFM像図を図4に示す。図4から、窒化物半導体多層構造体の表面に、多数の島状の核2aに起因した凹凸構造は観察されず、原子レベルで平坦な膜が得られていることが分かった。
以上説明した本実施形態の窒化物半導体多層構造体は、単結晶基板1の上記一表面上に形成されAlを構成元素として含む窒化物半導体からなる多数の島状の核2aと、隣り合う核2aの間の隙間を埋め込み且つ全ての核2aを覆うように単結晶基板1の上記一表面側に形成されAlを構成元素として含む第1の窒化物半導体層2bと、第1の窒化物半導体層2b上に形成されAlを構成元素として含む第2の窒化物半導体層2cとを備え、核2aの密度が6×109個cm-2を超えないので、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を得ることができる。ここにおいて、単結晶基板1の上記一表面上に形成される多数の島状の核2aは、核2aの成長の進行に伴ってサイズが大きくなり、隣り合う核2aと結合する際に、結合界面で貫通転位が生じやすいが、核2aの密度が6×109個cm-2を超えないことにより、結合界面を減少させることができ、結果として、隣り合う核2a同士が結合する際に生じる貫通転位を低減させることができ、貫通転位の少ない高品質の窒化物半導体多層構造体を得ることができる。
また、本実施形態の窒化物半導体多層構造体において、各核2aの表面の大部分が、成長面であるc面から傾いた面によって形成されているので、第1の窒化物半導体層2bの形成時に単結晶基板1の上記一表面の法線方向(垂直方向)への成長が抑制され上記一表面に沿った横方向への成長が進行し易くなり、成長方向に沿って入りやすい貫通転位が、第1の窒化物半導体層2bの成長方向と同様に、単結晶基板1の上記一表面の法線方向へ延びづらく上記一表面に平行な方向へ曲がるから、近傍の貫通転位と転位ループを作り消滅し易くなり、結果として、第2の窒化物半導体層2cの表面の貫通転位の密度を減少させることができ、窒化物半導体多層構造体の表面の貫通転位の密度を減少させることができる。
また、本実施形態の窒化物半導体多層構造体では、核2aを構成する窒化物半導体としてAlNを採用すれば、核2aとなる窒化物半導体の構成元素の数を少なくできるので、核2aを形成する際の制御が容易である。また、AlNは、バンドギャップエネルギが6.2eVと大きい材料であるので、第2の窒化物半導体層2cの表面側に波長200〜350nmの紫外光を発光する発光層4を形成して窒化物半導体発光素子(紫外発光ダイオード)を製造した場合に、発光層4から放射される紫外光が核2aにより吸収されるのを防止することができ、窒化物半導体発光素子の外部量子効率の向上を図れる。例えば、GaNは、上記波長領域の紫外光を吸収してしまい、外部量子効率を低下させてしまう原因となるので、用いることができない。
また、本実施形態の窒化物半導体多層構造体の製造方法では、単結晶基板1の上記一表面上に減圧MOVPE法により核2aを形成するにあたり、核2aの密度が6×109個cm-2を超えない基板温度の条件で核2aを成長させるので、核2aの密度の制御を基板温度の条件で制御することができ、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。また、本実施形態の窒化物半導体多層構造体の製造方法では、単結晶基板1の上記一表面上に減圧MOVPE法によりAlNからなる核2aを形成するにあたり、核2aの密度が6×109個cm-2を超えない基板温度の条件で核2aを成長させるようにし、当該基板温度を1300℃以上とするので、核2aを形成する際に、基板温度が1300℃よりも低温の場合に比べて、単結晶基板1の上記一表面に付着した構成元素の拡散長が長くなるから、核2aの密度を低減することができ、核2aの密度を容易に6×109個cm-2を超えないようにすることが可能となり、構成元素としてAlを含有した窒化物半導体からなる高品質の窒化物半導体多層構造体を提供することができる。
また、本実施形態の窒化物半導体発光素子は、上述の窒化物半導体多層構造体からなるバッファ層2と、当該バッファ層2上に形成されたn形窒化物半導体層3と、当該n形窒化物半導体層3上に形成された発光層4と、当該発光層4上に形成されたp形窒化物半導体層5とを備えているので、貫通転位の少ない高品質の窒化物半導体多層構造からなるバッファ層2上にn形窒化物半導体層3と発光層4とp形窒化物半導体層5との積層構造を形成することができるから、高品質のバッファ層2および発光層4とすることができて、貫通転位に起因する非発光再結合中心を低減することができ、結果として発光効率の向上を図ることができる。
上記実施形態では、窒化物半導体多層構造体や当該窒化物半導体多層構造体をバッファ層2として備えた窒化物半導体発光素子の製造方法として減圧MOVPE法を例示したが、これに限らず、例えば、ハライド気相成長法(HVPE法)、分子線成長法(MBE法)などの成長法を採用することも可能である。
また、上記実施形態では、単結晶基板1としてサファイア基板を用いているが、単結晶基板1はサファイア基板に限定されるものではなく、例えば、スピネル基板、シリコン基板、炭化シリコン基板、酸化亜鉛基板、燐化ガリウム基板、砒化ガリウム基板、酸化マグネシウム基板、硼化ジルコニウム基板、III族窒化物系半導体結晶基板などを用いてもよい。また、本発明の技術思想は、上記実施形態で説明した基本構成が適用できれば、様々な構造に応用、発展させることが可能である。
また、上記実施形態の窒化物半導体発光素子では、発光層4の発光波長が250nm〜300nmの範囲内で設定されているので、発光波長が紫外域の発光ダイオードを実現できるから、水銀ランプや、エキシマランプなどの深紫外光源の代替光源として用いることが可能となる。

Claims (12)

  1. 単結晶基板を反応炉内に配置した状態において、減圧MOVPE法を用いて、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第1物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記単結晶基板の一表面上にAlを構成元素として含む窒化物半導体からなる多数の島状の核を形成するステップaと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第2物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、隣り合う前記核の間の隙間を埋め込み且つ全ての前記核を覆うように第1の窒化物半導体層を形成するステップbと、所定の基板温度及び所定の成長圧力下で、Alの原料ガスの物質量に対するNの原料ガスの物質量の比が第3物質量比に設定された状態で前記反応炉内にAlの原料ガスとNの原料ガスとを供給することによって、前記第1の窒化物半導体層上に第2の窒化物半導体層を形成するステップcとを有する窒化物半導体多層構造体の製造方法であって、
    前記第1の窒化物半導体層と前記第2の窒化物半導体層は、それぞれAlを構成元素として含み、
    前記の各ステップa〜cにおいて、同じ基板温度であり、かつ、前記核および前記第1の窒化物半導体層および前記第2の窒化物半導体層を形成するための成長圧力は同じに設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  2. 請求項1に記載の製造方法において、前記ステップaにおける前記第1物質量比は10〜1000に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  3. 請求項1または2に記載の製造方法において、前記ステップbにおける前記第2物質量比は40〜60に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  4. 請求項1から請求項3のいずれか1項に記載の製造方法において、前記ステップcにおける前記第3物質量比は1〜100に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  5. 請求項1から請求項4のいずれか1項に記載の製造方法において、前記ステップaにおける、前記Alの原料ガスの供給量は標準状態で0.01L/min〜0.1L/minであって、前記Nの原料ガスの供給量は標準状態で0.01L/min〜0.1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  6. 請求項1から請求項5のいずれか1項に記載の製造方法において、前記ステップbにおける、前記Alの原料ガスの供給量は標準状態で0.1L/min〜1L/minであって、前記Nの原料ガスの供給量は標準状態で0.1L/min〜1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  7. 請求項1から請求項6のいずれか1項に記載の製造方法において、前記ステップcにおける、前記Alの原料ガスの供給量は標準状態で0.1L/min〜1L/minであって、前記Nの原料ガスの供給量は標準状態で0.01L/min〜1L/minであることを特徴とする窒化物半導体多層構造体の製造方法。
  8. 請求項1から請求項7のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給される前記Alの原料ガスはトリメチルアルミニウムであることを特徴とする窒化物半導体多層構造体の製造方法。
  9. 請求項1から請求項8のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給される前記Nの原料ガスはNH 3 であることを特徴とする窒化物半導体多層構造体の製造方法。
  10. 請求項1から請求項9のいずれか1項に記載の製造方法において、前記の各ステップa〜cで供給されるキャリアガスは水素であることを特徴とする窒化物半導体多層構造体の製造方法。
  11. 請求項1から請求項10のいずれか1項に記載の製造方法において、前記基板温度は1300℃以上1500℃以下に設定されることを特徴とする窒化物半導体多層構造体の製造方法。
  12. 前記の各ステップa〜cそれぞれにおいて前記Alの原料ガスを反応炉内に連続的に供給し、且つ前記ステップaと前記ステップbそれぞれにおいて前記Nの原料ガスを間欠的に供給することを特徴とする請求項1から請求項11のいずれか1項に記載の窒化物半導体多層構造体の製造方法。
JP2011529977A 2009-09-07 2010-09-07 窒化物半導体多層構造体の製造方法 Active JP5704724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529977A JP5704724B2 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009206082 2009-09-07
JP2009206082 2009-09-07
JP2011529977A JP5704724B2 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体の製造方法
PCT/JP2010/065319 WO2011027896A1 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体およびその製造方法、窒化物半導体発光素子

Publications (2)

Publication Number Publication Date
JPWO2011027896A1 JPWO2011027896A1 (ja) 2013-02-04
JP5704724B2 true JP5704724B2 (ja) 2015-04-22

Family

ID=43649430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011529977A Active JP5704724B2 (ja) 2009-09-07 2010-09-07 窒化物半導体多層構造体の製造方法

Country Status (7)

Country Link
US (2) US20120248456A1 (ja)
EP (1) EP2477236A4 (ja)
JP (1) JP5704724B2 (ja)
KR (1) KR101317735B1 (ja)
CN (1) CN102656711B (ja)
TW (1) TWI556468B (ja)
WO (1) WO2011027896A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025062A2 (en) * 2005-08-25 2007-03-01 Wakonda Technologies, Inc. Photovoltaic template
JP5849215B2 (ja) 2010-06-21 2016-01-27 パナソニックIpマネジメント株式会社 紫外半導体発光素子
JP2012033708A (ja) * 2010-07-30 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置の製造方法
CN102148300A (zh) * 2011-03-17 2011-08-10 中国科学院半导体研究所 一种紫外led的制作方法
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
JP5668647B2 (ja) * 2011-09-06 2015-02-12 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
JP5597663B2 (ja) * 2012-03-09 2014-10-01 株式会社東芝 半導体発光素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
JP5948698B2 (ja) * 2012-04-13 2016-07-06 パナソニックIpマネジメント株式会社 紫外発光素子およびその製造方法
JP5837642B2 (ja) * 2014-04-11 2015-12-24 株式会社東芝 半導体素子、及び、窒化物半導体ウェーハ
JP2015216352A (ja) 2014-04-24 2015-12-03 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器
JP6195125B2 (ja) * 2015-02-25 2017-09-13 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
CN104716241B (zh) * 2015-03-16 2018-10-16 映瑞光电科技(上海)有限公司 一种led结构及其制作方法
JP6489232B2 (ja) * 2015-11-12 2019-03-27 株式会社Sumco Iii族窒化物半導体基板の製造方法及びiii族窒化物半導体基板
CN110148652B (zh) * 2019-03-26 2020-09-25 华灿光电股份有限公司 发光二极管的外延片的制备方法及外延片
JP7089544B2 (ja) * 2020-03-25 2022-06-22 日機装株式会社 窒化物半導体素子
CN111354629B (zh) * 2020-04-26 2023-04-07 江西力特康光学有限公司 一种用于紫外LED的AlN缓冲层结构及其制作方法
WO2022160089A1 (en) * 2021-01-26 2022-08-04 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236142A (ja) * 1998-12-15 2000-08-29 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2002093720A (ja) * 2000-09-14 2002-03-29 Inst Of Physical & Chemical Res 半導体層の形成方法
JP2004142953A (ja) * 2001-09-28 2004-05-20 Ngk Insulators Ltd Iii族窒化物エピタキシャル基板、iii族窒化物素子用エピタキシャル基板及びiii族窒化物素子
JP2009054780A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JPH10215035A (ja) * 1997-01-30 1998-08-11 Toshiba Corp 化合物半導体素子及びその製造方法
US6271104B1 (en) * 1998-08-10 2001-08-07 Mp Technologies Fabrication of defect free III-nitride materials
JP2002222771A (ja) * 2000-11-21 2002-08-09 Ngk Insulators Ltd Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法
US6703255B2 (en) * 2001-03-28 2004-03-09 Ngk Insulators, Ltd. Method for fabricating a III nitride film
JP3954335B2 (ja) * 2001-06-15 2007-08-08 日本碍子株式会社 Iii族窒化物多層膜
JP2003101157A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP3831322B2 (ja) * 2001-12-25 2006-10-11 日本碍子株式会社 Iii族窒化物膜の製造方法、エピタキシャル成長用基板、iii族窒化物膜、iii族窒化物素子用エピタキシャル基板、及びiii族窒化物素子
JP4823466B2 (ja) * 2002-12-18 2011-11-24 日本碍子株式会社 エピタキシャル成長用基板および半導体素子
JP2005244202A (ja) * 2004-01-26 2005-09-08 Showa Denko Kk Iii族窒化物半導体積層物
JP4581478B2 (ja) * 2004-05-12 2010-11-17 日亜化学工業株式会社 窒化物半導体の製造方法
US7294199B2 (en) * 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
WO2006022302A2 (ja) * 2004-08-24 2006-03-02 Univ Osaka 窒化アルミニウム結晶の製造方法およびそれにより得られた窒化アルミニウム結晶
US8529697B2 (en) * 2004-08-31 2013-09-10 Honda Motor Co., Ltd. Growth of nitride semiconductor crystals
US20060160345A1 (en) * 2005-01-14 2006-07-20 Xing-Quan Liu Innovative growth method to achieve high quality III-nitride layers for wide band gap optoelectronic and electronic devices
US7250360B2 (en) * 2005-03-02 2007-07-31 Cornell Research Foundation, Inc. Single step, high temperature nucleation process for a lattice mismatched substrate
US7491626B2 (en) * 2005-06-20 2009-02-17 Sensor Electronic Technology, Inc. Layer growth using metal film and/or islands
JP2007059850A (ja) * 2005-08-26 2007-03-08 Ngk Insulators Ltd Iii族窒化物成膜用基板及びその製造方法並びにそれを用いた半導体装置
JP4939014B2 (ja) * 2005-08-30 2012-05-23 国立大学法人徳島大学 Iii族窒化物半導体発光素子およびiii族窒化物半導体発光素子の製造方法
US7915626B1 (en) * 2006-08-15 2011-03-29 Sandia Corporation Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
WO2008024991A2 (en) * 2006-08-24 2008-02-28 Hongxing Jiang Er doped iii-nitride materials and devices synthesized by mocvd
JP4531071B2 (ja) * 2007-02-20 2010-08-25 富士通株式会社 化合物半導体装置
JP5079361B2 (ja) * 2007-03-23 2012-11-21 日本碍子株式会社 AlGaN結晶層の形成方法
JP5274785B2 (ja) * 2007-03-29 2013-08-28 日本碍子株式会社 AlGaN結晶層の形成方法
US20110254048A1 (en) * 2007-08-09 2011-10-20 Showa Denko K.K. Group iii nitride semiconductor epitaxial substrate
JP2009054782A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP5276852B2 (ja) * 2008-02-08 2013-08-28 昭和電工株式会社 Iii族窒化物半導体エピタキシャル基板の製造方法
US9331240B2 (en) * 2008-06-06 2016-05-03 University Of South Carolina Utlraviolet light emitting devices and methods of fabrication
JP5641173B2 (ja) * 2009-02-27 2014-12-17 独立行政法人理化学研究所 光半導体素子及びその製造方法
JP5112370B2 (ja) * 2009-03-23 2013-01-09 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
WO2011024615A1 (ja) * 2009-08-31 2011-03-03 国立大学法人京都大学 紫外線照射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236142A (ja) * 1998-12-15 2000-08-29 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2002093720A (ja) * 2000-09-14 2002-03-29 Inst Of Physical & Chemical Res 半導体層の形成方法
JP2004142953A (ja) * 2001-09-28 2004-05-20 Ngk Insulators Ltd Iii族窒化物エピタキシャル基板、iii族窒化物素子用エピタキシャル基板及びiii族窒化物素子
JP2009054780A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Also Published As

Publication number Publication date
WO2011027896A1 (ja) 2011-03-10
US20120248456A1 (en) 2012-10-04
CN102656711A (zh) 2012-09-05
CN102656711B (zh) 2015-07-08
TWI556468B (zh) 2016-11-01
KR20120068899A (ko) 2012-06-27
EP2477236A4 (en) 2015-07-22
US20150176154A1 (en) 2015-06-25
TW201126752A (en) 2011-08-01
JPWO2011027896A1 (ja) 2013-02-04
KR101317735B1 (ko) 2013-10-15
EP2477236A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5704724B2 (ja) 窒化物半導体多層構造体の製造方法
US8546830B2 (en) Method of growing semiconductor heterostructures based on gallium nitride
JP5995302B2 (ja) 窒化物半導体発光素子の製造方法
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US7547910B2 (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
WO2010032423A1 (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子並びにランプ
JP5279006B2 (ja) 窒化物半導体発光素子
JP2009123718A (ja) Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
JP4762023B2 (ja) 窒化ガリウム系化合物半導体積層物およびその製造方法
JP2010258096A (ja) 窒化物半導体発光素子
US7521777B2 (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
CN103456852B (zh) 一种led外延片及制备方法
JP2010258097A (ja) 窒化物半導体層の製造方法、窒化物半導体発光素子の製造方法および窒化物半導体発光素子
JP2012204540A (ja) 半導体装置およびその製造方法
EP1869717A1 (en) Production method of group iii nitride semioconductor element
JP4624064B2 (ja) Iii族窒化物半導体積層物
JP2011223043A (ja) 半導体発光素子、および半導体発光素子を作製する方法
KR20120084561A (ko) 반도체 소자
JP2009152491A (ja) 窒化物半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5704724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250