WO2011027780A1 - 導電性熱可塑性樹脂組成物 - Google Patents

導電性熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2011027780A1
WO2011027780A1 PCT/JP2010/064923 JP2010064923W WO2011027780A1 WO 2011027780 A1 WO2011027780 A1 WO 2011027780A1 JP 2010064923 W JP2010064923 W JP 2010064923W WO 2011027780 A1 WO2011027780 A1 WO 2011027780A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mass
resin composition
fine carbon
conductive thermoplastic
Prior art date
Application number
PCT/JP2010/064923
Other languages
English (en)
French (fr)
Inventor
賢 中村
西尾 正幸
吉孝 内藤
横浜 久哉
Original Assignee
宇部興産株式会社
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社, ユーエムジー・エービーエス株式会社 filed Critical 宇部興産株式会社
Priority to EP10813729.0A priority Critical patent/EP2474572A4/en
Priority to US13/393,878 priority patent/US20120193586A1/en
Priority to SG2012015129A priority patent/SG178970A1/en
Priority to CN201080049919XA priority patent/CN102597109A/zh
Publication of WO2011027780A1 publication Critical patent/WO2011027780A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/24Graft or block copolymers according to groups C08L51/00, C08L53/00 or C08L55/02; Derivatives thereof

Definitions

  • the present invention relates to a thermoplastic resin composition containing fine carbon fibers, and more particularly to a conductive thermoplastic resin composition having a good molded appearance and giving a molded article having excellent conductivity.
  • thermoplastic resin composition As a method of imparting electrical conductivity to a thermoplastic resin composition, (1) a method of surface-treating a molding surface of a thermoplastic resin by conductive paint, plating, metal vapor deposition, or the like (for example, Patent Document 1: Japanese Patent Application Laid-Open No. 2004-2005). -1688025), (2) In thermoplastic resin, conductive powder such as metal powder, carbon powder and metal flakes, metal fibers such as aluminum, stainless steel and brass, metal coated glass fibers, carbon fibers, etc. A method of blending a conductive substance such as a conductive fiber is known.
  • the method (1) by the surface treatment requires a complicated post-process of conducting the conductive treatment on the surface of the molded product, and has disadvantages such as the molded conductive layer is likely to be non-uniform and easily peeled off. There is. Furthermore, when recycling waste products, a step of peeling the conductive layer formed by the surface treatment is required, which is inappropriate for recycling.
  • the method of blending a conductive substance in the thermoplastic resin (2) does not require special post-processing, has no problems such as peeling of the conductive layer, and is excellent in recyclability. There is a problem like this.
  • conductive powder such as carbon powder, metal powder, and metal flake has a low conductivity imparting effect due to the addition, and it is necessary to add a large amount in order to impart sufficient conductivity.
  • the mechanical properties, particularly impact resistance, of the resulting molded product is significantly reduced.
  • conductive fibers such as stainless steel fibers and carbon fibers
  • the rigidity and thermal characteristics of the resin composition are improved by blending, and the conductivity is better than when conductive powder is added.
  • the fibers are easily cut during melt-kneading, and a large amount of blending is still necessary to cope with them. As a result, the impact resistance, the appearance of the molded product, and the molding processability of the resulting molded product are greatly reduced.
  • Patent Document 2 JP 2009-001740 A
  • Patent Document 3 JP 2006- 016553
  • a composite material in which carbon nanotubes are blended with a thermoplastic resin composition can provide sufficient conductivity in a molded body by press molding or extrusion molding.
  • a molded product obtained by a molding method in which a molten resin is sheared at the time of molding, such as injection molding does not have sufficient conductivity as obtained by press molding or extrusion molding, and particularly has a shear rate.
  • the carbon nanotubes are likely to aggregate, and the aggregates appear on the surface of the molded product, thereby deteriorating the surface appearance.
  • aggregates of carbon nanotubes tend to appear on the surface of the molded body, and it is difficult to obtain a molded product having a good surface appearance.
  • An object of the present invention is to provide a conductive thermoplastic resin composition that provides a molded article having high conductivity and excellent surface appearance and impact resistance.
  • the present invention relates to the following matters.
  • A 100 parts by mass of a thermoplastic resin component consisting of 0 to 99% by mass of the rubber-reinforced resin (B) obtained in this manner, and a top part of the head having a closed top of the graphite network surface composed of only carbon atoms, and a body having an open lower part
  • a bell-shaped structural unit having two or more portions, and the bell-shaped structural units are stacked by sharing 2 to 30 with a central axis, and the aggregate is spaced in a head-to-tail manner.
  • a conductive thermoplastic resin composition comprising 0.1 to 20 parts by mass of fine carbon fibers (C) that are connected together to form fibers.
  • thermoplastic resin composition according to the above 1, further comprising 1 to 15 parts by mass of carbon fiber (D).
  • the outer diameter D of the end of the aggregate body of the fine carbon fibers is 5 to 40 nm, the inner diameter d is 3 to 30 nm, and the aspect ratio (L / D) of the aggregate is 2 to 150. 4.
  • the conductive thermoplastic resin composition as described in any one of 1 to 3 above.
  • the fine carbon fiber is produced by a vapor phase growth method using a catalyst containing an element selected from the group consisting of Fe, Co, Ni, Al, Mg and Si, and the ash content in the fine carbon fiber is 4 mass. 5.
  • the conductive thermoplastic resin composition according to any one of 1 to 4 above, which is not more than%.
  • the fine carbon fiber is obtained by supplying and reacting a mixed gas containing CO and H 2 on a catalyst containing a cobalt spinel oxide in which magnesium is substituted and dissolved in a solid solution. 6.
  • the conductive thermoplastic resin composition according to any one of 1 to 5.
  • a conductive thermoplastic resin composition having high moldability and conductivity while maintaining the original physical properties of the resin is provided. Therefore, the molded object manufactured using the conductive thermoplastic resin composition of this invention has high electroconductivity, the outstanding surface appearance, and impact resistance.
  • the reason why the conductive thermoplastic resin composition of the present invention exhibits such an effect is considered as follows.
  • the ultra-fine carbon fibers collectively referred to as conventional so-called carbon nanofibers or carbon nanotubes, from their shape, form and structure,
  • Multi-walled carbon nanotubes graphite layer is multi-layer concentric cylinder) (non-fishbone) JP-B 3-64606, 3-77288 JP 2004-299986
  • Cup-stacked carbon nanotubes fishbone
  • Platelet type carbon nanofiber (Trump shape) H. Murayama, T.maeda ,: Nature, vol345 [No28] (1990) 791-793 JP-A-2004-300631
  • the three nanostructured carbon materials are roughly classified as follows.
  • the multi-walled carbon nanotube is good because the conductivity in the length direction of the carbon nanotube is an electron flow in the direction of the graphite network surface.
  • the conductivity between the carbon nanotube fibers is perpendicular to the graphite mesh surface direction, and electrons flow when the fibers are in direct contact with each other.
  • the resin since the fibers are loosely contacted with each other, Rather, the flow of electrons from the surface of the conductive filler surface layer plays an important role.
  • the ease of electron emission is related to the conductive performance of the filler.
  • the jumping effect tunnel effect theory due to the jumping out of ⁇ electrons cannot be expected so much because the graphite network surface is closed in a cylindrical shape.
  • the fine carbon fiber contained in the composition of the present invention is a conductive carbon fiber that does not belong to the three categories (1) to (3).
  • the electron flow in the vertical direction is carried by a bell-shaped body that is slightly inclined outward, and the electron flow between fibers can be carried out by the emission of electrons from the open end of the bell-shaped body. It is presumed that the conductive performance in the resin is improved.
  • the connecting portion of the assembly of bell-shaped structural units (described later) that are joined by a weak van der Waals force is easily separated at the joint portion by shearing force in kneading.
  • the catalytic vapor phase growth method which is currently most promising as a method for mass production, produces agglomerates (fuzz balls of several ⁇ m to 1 mm) in which long filaments of 1 ⁇ m or more are intertwined in a complicated manner.
  • the fine carbon fiber used in the present invention is cut to an appropriate length by adjusting the shearing force, and the fiber assembly is shortened (partially cut) and opened, Even without using a special dispersion technique or dispersion device, it is well dispersed in the resin component. Therefore, it is considered that a molded product having excellent conductivity and excellent surface appearance can be obtained without impairing the original characteristics of the resin.
  • A It is a figure which shows typically the minimum structural unit (bell-shaped structural unit) which comprises fine carbon fiber.
  • B A diagram schematically showing an assembly in which 2 to 30 bell-shaped structural units are stacked.
  • A It is a figure which shows typically a mode that an aggregate
  • B It is a figure which shows typically a mode that it bent and connected, when an aggregate
  • the conductive thermoplastic resin composition of the present invention comprises 100 parts by mass of a thermoplastic resin composition comprising a polycarbonate resin (A) and a rubber-reinforced resin (B), and fine carbon fibers (C) 0. 1 to 20 parts by mass, and further 1 to 15 parts by mass of carbon fiber (D) as necessary.
  • a thermoplastic resin composition comprising a polycarbonate resin (A) and a rubber-reinforced resin (B), and fine carbon fibers (C) 0. 1 to 20 parts by mass, and further 1 to 15 parts by mass of carbon fiber (D) as necessary.
  • fine carbon fiber means a carbon fiber having a specific structure described below, and not a carbon fiber having a known structure unless explicitly indicated.
  • the fine carbon fiber (C) used in the present invention has a bell-shaped structure as shown in FIG.
  • the temple bell is found in Japanese temples, has a relatively cylindrical body, and is different in shape from a conical Christmas bell.
  • the structural unit 11 has a top portion 12 and a trunk portion 13 having an open end, like a bell, and has a rotating body shape rotated about the central axis. It has become.
  • the structural unit 11 is formed of a graphite network surface made of only carbon atoms, and the circumferential portion of the body portion open end is the open end of the graphite network surface.
  • the central axis and the body portion 13 are shown as straight lines for convenience, but they are not necessarily straight lines and may be curved as shown in FIG. 3 described later.
  • the trunk portion 13 gently spreads toward the open end.
  • the bus bar of the trunk portion 13 is slightly inclined with respect to the central axis of the bell-shaped structural unit, and the angle ⁇ formed by both is smaller than 15 °. More preferably, 1 ° ⁇ ⁇ 15 °, and further preferably 2 ° ⁇ ⁇ 10 °. If ⁇ is too large, fine fibers composed of the structural unit exhibit a fishbone-like carbon fiber-like structure, and the conductivity in the fiber axis direction is impaired.
  • the fine carbon fiber has defects and irregular turbulence, but if such irregularity is eliminated and the shape of the whole is captured, the bell 13 in which the body portion 13 gradually spreads toward the open end side. It can be said that it has a shape structure. Fine carbon fiber does not mean that ⁇ indicates the above range in all parts, but when the structural unit 11 is captured as a whole while excluding defective parts and irregular parts, Overall, it means that ⁇ satisfies the above range. Therefore, in the measurement of ⁇ , it is preferable to exclude the vicinity of the crown 12 where the thickness of the trunk may be irregularly changed. More specifically, for example, if the length of the bell-shaped structural unit aggregate 21 (see below) is L as shown in FIG.
  • 1B, (1/4) L, (1/2 ) L and (3/4) L may be measured at three points to obtain an average, and this value may be used as the overall ⁇ for the structural unit 11.
  • the body part 13 is often a curved line in practice, it may be closer to the actual value when measured along the curve of the body part 13. .
  • the shape of the top of the head when manufactured as fine carbon fiber, is smoothly continuous with the trunk and has a curved surface that is convex upward (in the figure).
  • the length of the top of the head is typically about D (FIG. 1 (b)) or less and about d (FIG. 1 (b)) for explaining the bell-shaped structural unit aggregate.
  • the bell-shaped structural unit aggregate 21 (hereinafter referred to as the bell-shaped structural unit aggregate 21). It may be simply called an aggregate.)
  • the number of stacked layers is preferably 2 to 25, and more preferably 2 to 15.
  • the outer diameter D of the body portion of the aggregate 21 is 5 to 40 nm, preferably 5 to 30 nm, and more preferably 5 to 20 nm.
  • D is increased, the diameter of the fine fibers formed is increased, so that a large amount of addition is required in order to impart functions such as conductive performance in the composite with the polymer.
  • D becomes small, the diameter of the fine fibers formed becomes thin and the aggregation of the fibers becomes strong. For example, in preparing a composite with a polymer, it becomes difficult to disperse.
  • the measurement of the trunk outer diameter D is preferably performed by measuring at three points (1/4) L, (1/2) L, and (3/4) L from the top of the aggregate.
  • drum outer diameter D is shown for convenience in FIG.1 (b), the value of actual D has the preferable average value of the said 3 points
  • the inner diameter d of the aggregate body is 3 to 30 nm, preferably 3 to 20 nm, more preferably 3 to 10 nm.
  • the inner diameter d of the trunk is also measured and averaged at three points (1/4) L, (1/2) L, and (3/4) L from the top of the bell-shaped structural unit assembly. Is preferred.
  • drum internal diameter d is shown in FIG.1 (b) for convenience, the actual value of d has the preferable average value of the said 3 points
  • the aspect ratio (L / D) calculated from the length L and the body outer diameter D of the aggregate 21 is 2 to 150, preferably 2 to 50, more preferably 2 to 20.
  • the aspect ratio is large, the structure of the formed fiber approaches a cylindrical tube shape, and the conductivity in the fiber axis direction of one fiber is improved.
  • the open end of the graphite network surface constituting the structural unit body is a fiber. Since the frequency of exposure to the outer peripheral surface is reduced, the conductivity between adjacent fibers is deteriorated.
  • the aspect ratio is small, the open end of the graphite mesh surface constituting the structural unit body portion is more frequently exposed to the outer peripheral surface of the fiber, so that the conductivity between adjacent fibers is improved. Since many short graphite mesh surfaces are connected in the axial direction, conductivity in the fiber axial direction of one fiber is impaired.
  • fine carbon fibers are formed by further connecting the aggregates in a head-to-tail manner.
  • the joining parts of the adjacent aggregates are the top part (Head) of one aggregate and the lower end part (Tail) of the other aggregate.
  • the shape of the joint portion is the top of the bell-shaped structural unit of the outermost layer of the second aggregate 21b, further inside the bell-shaped structural unit of the innermost layer, at the lower end opening of the first aggregate 21a. Is inserted, and the top of the third assembly 21c is inserted into the lower end opening of the second assembly 21b, and this is further continued to form a fiber.
  • Each joint part forming one fine fiber of fine carbon fibers does not have structural regularity, for example, the fiber axis direction of the joint part of the first aggregate and the second aggregate
  • the length of is not necessarily the same as the length of the junction of the second assembly and the third assembly.
  • the two assemblies to be joined may be connected linearly sharing the central axis, but the bell-shaped structural unit assemblies 21b and 21c in FIG. As described above, the central axis may be joined without being shared, resulting in a bent structure at the joint.
  • the length L of the bell-shaped structural unit assembly is generally constant for each fiber.
  • the fine carbon fiber thus configured, at least a part of the open end of the graphite net surface at the lower end of the bell-shaped structural unit is exposed on the outer peripheral surface of the fiber according to the connection interval of the aggregate.
  • the conductivity between adjacent fibers can be improved by the jumping effect (tunnel effect) caused by the jumping out of the ⁇ electrons without impairing the conductivity in the fiber axis direction of one fiber.
  • the fine carbon fiber structure as described above can be observed by a TEM image.
  • the effect of the fine carbon fiber has almost no influence even when the aggregate itself bends and there is a bend in the connecting portion of the aggregate. Therefore, in the TEM image, an assembly having a shape that is relatively close to a straight line is observed to obtain each parameter relating to the structure, and the structure parameter ( ⁇ , D, d, L) for the fiber may be obtained.
  • the peak half width W (unit: degree) of the 002 plane measured is in the range of 2-4.
  • W exceeds 4 the graphite crystallinity is low and the conductivity is low.
  • W is less than 2 the graphite crystallinity is good, but at the same time, the fiber diameter becomes large, and a large amount of addition is required to impart a function such as conductivity to the polymer.
  • the graphite interplanar spacing d002 obtained by XRD measurement based on the Gakushin method of fine carbon fibers is 0.350 nm or less, preferably 0.341 to 0.348 nm. If d002 exceeds 0.350 nm, the graphite crystallinity is lowered and the conductivity is lowered. On the other hand, the fiber of less than 0.341 nm has a low yield in production.
  • Ash contained in fine carbon fiber is 4% by weight or less, and refining is not required for normal use. Usually, it is 0.3 to 3 weight%, More preferably, it is 0.3 to 2 weight%. The ash content is determined from the weight of the oxide remaining after burning 0.1 g or more of the fiber.
  • the fine carbon fiber having the above structure can be easily formed on the bottom surface of the graphite when stress parallel to the fiber axis is applied at the joint portion of the assembly of bell-shaped structural units bonded with a weak van der Waals force. Cut so that it slips out and pulls out.
  • the fine carbon fiber is a fiber aggregate in which long fibers are complexly aggregated at the time of production, but when blended into a resin and kneaded, it is easily separated by shearing force and shortens the fiber aggregate. Since (partial cutting) and fiber opening proceed, it is well dispersed in the resin component. Therefore, it is considered that a molded product having excellent conductivity and excellent surface appearance can be obtained without impairing the original characteristics of the resin.
  • the method for producing fine carbon fibers is as follows. Fine carbon fibers are produced by vapor phase growth using a catalyst.
  • a catalyst containing an element selected from the group consisting of Fe, Co, Ni, Al, Mg and Si is preferably used, and the supply gas is preferably a mixed gas containing CO and H 2 .
  • the catalyst a catalyst containing an element selected from the group consisting of Fe, Co, Ni, Al, Mg and Si is preferably used, and the supply gas is preferably a mixed gas containing CO and H 2 .
  • a mixed gas containing CO and H 2 is supplied to the catalyst particles to form fine particles by vapor deposition.
  • the spinel crystal structure of cobalt in which Mg is substituted and dissolved is represented by Mg x Co 3-x O y .
  • x is a number indicating the replacement of Co by Mg, and formally 0 ⁇ x ⁇ 3.
  • y is a number selected so that the entire expression is neutral in terms of charge, and formally represents a number of 4 or less. That is, in the spinel oxide Co 3 O 4 of cobalt, there are divalent and trivalent Co ions, where the divalent and trivalent cobalt ions are represented by Co II and Co III , respectively.
  • a cobalt oxide having a spinel crystal structure is represented by Co II Co III 2 O 4 .
  • Mg displaces both Co II and Co III sites and forms a solid solution. When Mg substitutes Co III for solid solution, the value of y becomes smaller than 4 in order to maintain charge neutrality. However, both x and y take values in a range where the spinel crystal structure can be maintained.
  • the solid solution range of Mg is such that the value of x is 0.5 to 1.5, more preferably 0.7 to 1.5.
  • the value of x is less than 0.5, the catalyst activity is low and the amount of fine carbon fibers produced is small.
  • the value of x exceeds 1.5, it is difficult to prepare a spinel crystal structure.
  • the spinel oxide crystal structure of the catalyst can be confirmed by XRD measurement, and the crystal lattice constant a (cubic system) is in the range of 0.811 to 0.818 nm, more preferably 0.812. ⁇ 0.818 nm. If “a” is small, the solid solution substitution of Mg is not sufficient, and the catalytic activity is low. Also, the spinel oxide crystal having a lattice constant exceeding 0.818 nm is difficult to prepare.
  • the particle size of the catalyst can be appropriately selected.
  • the median diameter is 0.1 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • Catalyst particles are generally used by being applied to a suitable support such as a substrate or a catalyst bed by a method such as spraying.
  • the catalyst particles may be sprayed directly onto the substrate or the catalyst bed, but the catalyst particles may be sprayed directly, but a desired amount may be sprayed by suspending in a solvent such as ethanol and drying.
  • the catalyst particles are preferably activated before reacting with the raw material gas. Activation is usually performed by heating in a gas atmosphere containing H 2 or CO. These activation operations can be performed by diluting with an inert gas such as He or N 2 as necessary.
  • the temperature at which the activation is performed is preferably 400 to 600 ° C., more preferably 450 to 550 ° C.
  • the reactor for the vapor phase growth method there are no particular limitations on the reactor for the vapor phase growth method, and the reaction can be carried out using a reactor such as a fixed bed reactor or a fluidized bed reactor.
  • a mixed gas containing CO and H 2 is used as a source gas that becomes a carbon source for vapor phase growth.
  • the H 2 gas addition concentration ⁇ (H 2 / (H 2 + CO) ⁇ is preferably 0.1 to 30 vol%, more preferably 2 to 20 vol%. If the addition concentration is too low, a cylindrical graphitic network is used. On the other hand, if the surface exceeds 30 vol%, the angle of inclination of the bell-shaped structure with respect to the fiber axis increases with respect to the fiber axis, resulting in a fishbone shape. This causes a decrease in conductivity in the fiber direction.
  • the raw material gas may contain an inert gas.
  • the inert gas include CO 2 , N 2 , He, Ar, and the like.
  • the content of the inert gas is preferably such that the reaction rate is not significantly reduced, for example, 80 vol% or less, preferably 50 vol% or less.
  • waste gas such as synthesis gas or converter exhaust gas containing H 2 and CO can be appropriately treated and used as necessary.
  • the reaction temperature for carrying out the vapor phase growth is preferably 400 to 650 ° C., more preferably 500 to 600 ° C. If the reaction temperature is too low, fiber growth does not proceed. On the other hand, if the reaction temperature is too high, the yield decreases.
  • reaction time is not specifically limited, For example, it is 2 hours or more, and is about 12 hours or less.
  • the reaction pressure for carrying out the vapor phase growth is preferably normal pressure from the viewpoint of simplifying the reaction apparatus and operation, but is carried out under pressure or reduced pressure as long as Boudardo equilibrium carbon deposition proceeds. It doesn't matter.
  • the amount of fine carbon fiber produced per unit weight of the catalyst was much larger than that of the conventional production method.
  • the amount of fine carbon fibers produced by this fine carbon fiber production method is 40 times or more per unit weight of the catalyst, for example, 40 to 200 times. As a result, it is possible to produce fine carbon fibers with less impurities and ash as described above.
  • the catalyst has a balance between the exothermic Boudouard equilibrium and the heat removal by the flow of the raw material gas. Since the temperature in the vicinity of the cobalt fine particles formed from oscillates up and down, it is considered that carbon deposition is formed by intermittent progress. That is, [1] formation of the top of the bell-shaped structure, [2] growth of the trunk of the bell-shaped structure, [3] growth stop due to temperature rise due to heat generated in the processes [1] and [2], [4] It is presumed that a fine junction of the carbon fiber structure is formed by repeating the four processes of cooling with the flow gas on the catalyst fine particles.
  • Thermoplastic resin component contains 1 to 100% by mass of the polycarbonate resin (A) and 0 to 99% by mass of the rubber-reinforced resin (B).
  • the polycarbonate resin (A) used in the present invention is produced, for example, by reacting a dihydroxy or polyhydroxy compound such as bisphenol with phosgene or a carbonic acid diester.
  • bisphenols include hydroquinone, 4,4-dihydroxyphenyl, bis- (4-hydroxyphenyl) -alkane, bis- (4-hydroxyphenyl) -cycloalkane, bis- (4-hydroxyphenyl) -sulfide Bis- (4-hydroxyphenyl) -ether, bis- (4-hydroxyphenyl) -ketone, bis- (4-hydroxyphenyl) -sulfone, or their alkyl-substituted, aryl-substituted, halogen-substituted, etc. These may be used alone or in combination of two or more.
  • dihydroxydiarylalkane for example, one having an alkyl group at the ortho position with respect to the hydroxy group is used.
  • Preferred specific examples of the dihydroxydiarylalkane include 4,4-dihydroxy2,2-diphenylpropane (ie, bisphenol A), tetramethylbisphenol A and bis- (4-hydroxyphenyl) -p-diisopropylbenzene. .
  • the branched polycarbonate is produced, for example, by substituting a part of a dihydroxy compound, for example, 0.2 to 2 mol% with polyhydroxy.
  • a dihydroxy compound for example, 0.2 to 2 mol%
  • polyhydroxy compound include phloroglicinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzene and the like.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is preferably 15,000 to 35,000. When the viscosity average molecular weight of the polycarbonate resin (A) is 15,000 or more, the impact resistance of the reinforced thermoplastic resin composition becomes higher, and when it is 35,000 or less, the moldability of the reinforced thermoplastic resin composition. Becomes higher.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is more preferably 17,000 to 25,000 because the balance of mechanical strength, falling ball impact strength and fluidity is particularly excellent.
  • the rubber-reinforced resin (B) used in the present invention is at least one vinyl monomer selected from the group of aromatic vinyl, vinyl cyanide and (meth) acrylic acid ester in the presence of a rubbery polymer. It is obtained by polymerizing.
  • rubber polymers examples include butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, isoprene rubber, chloroprene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-nonconjugated diene rubber, acrylic rubber, epichlorohydrin rubber, and diene.
  • the surface appearance and impact resistance of the molded product obtained from the conductive thermoplastic resin composition of the present invention are good, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylic rubber, Diene-acrylic composite rubber and silicone-acrylic composite rubber are preferred.
  • the diene component of the diene-acrylic composite rubber contains 50% by mass or more of butadiene units, and specifically includes butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like.
  • the acrylic rubber component in the diene-acrylic composite rubber is obtained by polymerizing an alkyl (meth) acrylate and a polyfunctional monomer.
  • alkyl (meth) acrylate for example, alkyl acrylate such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate; hexyl methacrylate, 2-ethylhexyl methacrylate, n-lauryl methacrylate
  • alkyl methacrylates such as These may be used individually by 1 type and may be used in combination of 2 or more type.
  • polyfunctional monomer examples include allyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, triallyl cyanurate, triallyl isocyanate.
  • the diene-acrylic composite rubber composite structure includes a core-shell structure in which the periphery of the core layer of the diene rubber is covered with an alkyl (meth) acrylate rubber, and the periphery of the core layer of the alkyl (meth) acrylate rubber is a diene base.
  • Core-shell structure covered with rubber structure in which diene rubber and alkyl (meth) acrylate rubber are entangled with each other, co-polymerization of diene monomer units and alkyl (meth) acrylate monomer units randomly arranged Examples include a polymerized structure.
  • the silicone component of the silicone-acrylic composite rubber is mainly composed of polyorganosiloxane, and among them, polyorganosiloxane containing a vinyl polymerizable functional group is preferable.
  • the acrylic rubber component in the silicone-acrylic composite rubber is the same as the acrylic rubber component of the diene-acrylic composite rubber.
  • the composite structure of the silicone-acrylic composite rubber includes a core-shell structure in which the periphery of the core layer of the polyorganosiloxane rubber is covered with an alkyl (meth) acrylate rubber, and the periphery of the core layer of the alkyl (meth) acrylate rubber is poly Core-shell structure covered with organosiloxane rubber, structure where polyorganosiloxane rubber and alkyl (meth) acrylate rubber are entangled with each other, polyorganosiloxane segment and polyalkyl (meth) acrylate segment are linear and solid with each other For example, a structure having a net-like rubber structure bonded to each other can be used.
  • the rubbery polymer is prepared, for example, by subjecting a monomer that forms the rubbery polymer to an emulsion polymerization by causing a radical polymerization initiator to act. According to the preparation method by the emulsion polymerization method, it is easy to control the particle size of the rubbery polymer.
  • the average particle diameter of the rubber polymer is preferably 0.1 to 0.6 ⁇ m because the impact resistance of the reinforced thermoplastic resin composition can be further increased.
  • the preferable content of the rubbery polymer in the rubber reinforced resin is 10 to 70% by weight.
  • the vinyl monomer polymerized in the presence of the rubbery polymer is selected from the group of aromatic vinyl, vinyl cyanide and (meth) acrylic acid ester.
  • aromatic vinyls include styrene, ⁇ -methylstyrene, vinyltoluene and the like, and styrene is preferred.
  • vinyl cyanides include acrylonitrile and methacrylonitrile, and acrylonitrile is preferred.
  • (meth) acrylic acid esters examples include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, and 2-ethylhexyl methacrylate, and acrylic acid esters such as methyl acrylate, ethyl acrylate, and butyl acrylate.
  • the production method of the rubber reinforced resin is not particularly limited and can be polymerized by a known method, but an emulsion polymerization method is preferred. Further, during the polymerization, various chain transfer agents may be added in order to adjust the molecular weight and graft ratio of the rubber reinforced resin.
  • carbon fiber can be blended as an optional component if necessary.
  • the carbon fibers include ordinary carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers.
  • the carbon fiber used in the present invention preferably has a fiber diameter of 4 to 20 ⁇ m and a fiber length of 3 to 20 mm. This is because if the fiber diameter of the carbon fiber is small, the production is generally difficult and expensive, and if it is too large, blending effects such as conductivity and electromagnetic shielding suitable for the blending amount cannot be obtained. Further, when the fiber length of the carbon fiber is short, a sufficient effect cannot be obtained with a small amount, and when it is too long, the fluidity at the time of melting the resin is lowered and kneading extrusion tends to be difficult.
  • the conductive thermoplastic resin composition of the present invention is produced by mixing the above polycarbonate resin (A), rubber-reinforced resin (B), fine carbon fiber (C), and, if necessary, carbon fiber (D). .
  • the blending ratio of the polycarbonate resin (A) and the rubber reinforced resin (B) is 1 to 100% by mass of the polycarbonate resin (A) in 100% by mass of the thermoplastic resin component (total of the polycarbonate resin (A) and the rubber reinforced resin (B)).
  • 100% by mass rubber-reinforced resin (B) is 0-99% by mass, preferably polycarbonate resin (A) is 40-90% by mass, and rubber-reinforced resin (B) is 10-60% by mass.
  • the blending ratio of the fine carbon fibers is 0.1 to 20 parts by mass, preferably 0.1 to 10 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic resin component. .
  • Carbon fiber (D) can be blended in the necessary amount as appropriate, but in the present invention, fine carbon fibers are present, so that sufficient conductivity can be obtained without blending in a large amount, and the smaller one is in appearance. Excellent.
  • the blending amount of the carbon fiber is generally 15 parts by mass or less, more preferably 12 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin component. Moreover, if it mix
  • the mixing method for obtaining the composition of the present invention is not particularly limited, and conventionally known methods can be employed. For example, after each component is uniformly mixed with a Henschel mixer, a super mixer, a tumbler mixer, a ribbon blender or the like, a method of melt kneading with a single screw extruder, a twin screw extruder, a Banbury mixer, or the like can be employed.
  • additives can be added within a range that does not interfere with the spirit of the present invention.
  • additives include flame retardants, flame retardant aids, antioxidants, UV absorbers, lubricants, plasticizers, mold release agents, antistatic agents, colorants (pigments, dyes, etc.), fillers, antibacterial agents
  • various additives such as an antifungal agent, silicone oil, and a coupling agent.
  • the resin composition of the present invention thus obtained can be molded into various molded products by a known molding method.
  • the molding method include an injection molding method, an injection compression molding method, an extrusion method, a blow molding method, a vacuum molding method, a compressed air molding method, a calendar molding method, and an inflation molding method.
  • the injection molding method and the injection compression molding method are preferable because they are excellent in mass productivity and can obtain a molded product with high dimensional accuracy.
  • the molded product of the composition of the present invention has high conductivity, is excellent in surface appearance and impact resistance, and is suitable for recycling. For this reason, it can be suitably used for various applications including electrical and electronic devices and housings of electronic device parts that may cause electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • personal computers including notebook computers
  • projectors including liquid crystal projectors
  • PDA personal digital assistant
  • the effects of the present invention are particularly exerted, so that it is suitable for a casing of an electronic component such as a notebook personal computer or a portable device.
  • the reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain a polyorganosiloxane latex (L-1).
  • a part of the polyorganosiloxane latex (L-1) was dried at 170 ° C. for 30 minutes and the solid content concentration was determined to be 17.3%.
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part by mass of ferrous sulfate, 0.0003 part by mass of disodium ethylenediaminetetraacetate and 0.24 part by mass of Rongalite are added to 10 parts by mass of distilled water.
  • a dissolved aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the acrylate component. This state was maintained for 1 hour to complete the polymerization of the acrylate component, and a composite rubber latex of polyorganosiloxane and butyl acrylate rubber was obtained.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene, and 0.1 part of tertiary butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was held for 1 hour and then cooled to obtain a graft copolymer latex obtained by grafting acrylonitrile-styrene copolymer to a composite rubber composed of polyorganosiloxane and butyl acrylate rubber.
  • the obtained enlarged butadiene rubber polymer latex was charged into a reactor, and further 100 parts by weight of distilled water, 4 parts by weight of a wood rosin emulsifier, and Demol N (trade name, manufactured by Kao Corporation, naphthalenesulfonic acid formalin condensate). 0.4 parts by mass, 0.04 parts by mass of sodium hydroxide, and 0.7 parts by mass of dextrose were added.
  • the yield was 53.1 g, and the ash content was 1.5% by weight.
  • the peak half-value width W (degree) observed by XRD analysis of the product was 3.156, and d002 was 0.3437 nm.
  • the number of the bell-shaped structural units forming the aggregate was about ten.
  • about D, d, and (theta) three points, (1/4) L, (1/2) L, and (3/4) L, were measured from the tower top of the aggregate.
  • a TEM image of the fine carbon fiber obtained in Reference Example 1 is shown in FIG.
  • Carbon nanotubes Master batch made by Hyperion Catalysis with a diameter of 20 nm and a concentration of carbon nanotubes with an aspect ratio of 5 or more of 15% (MB 6015-00, base polymer: polycarbonate)
  • Each material was mixed in the proportions shown in Tables 1 and 2, and then melt-kneaded at 260 ° C. with a twin-screw extruder (“KTX-30” manufactured by Kobe Steel) to form a pellet.
  • the pellets were molded at 300 ° C. using a 4 ounce injection molding machine (manufactured by Nippon Steel Co., Ltd.) to create necessary test pieces, and the following evaluation was performed.
  • a square plate of 100 mm ⁇ 100 mm ⁇ 1 mm was injection-molded to prepare a test piece.
  • the prepared test piece was placed on an aluminum 100 mm ⁇ 100 mm ⁇ 20 mm hollow frame (thickness 2 mm), a 500 g iron ball was dropped, and the height at which the test piece was cracked was measured.
  • Comparative Example 1 which is outside the scope of the present invention, although the impact resistance is high, the decrease in conductivity at a high injection speed is large, and the surface of the molded product is found to be flawed, thereby obtaining a molded product having an excellent surface appearance. It is difficult.
  • the conductive thermoplastic resin composition of the present invention can provide a molded product having high conductivity, excellent impact resistance and surface appearance.
  • the molded product of the composition of the present invention has high conductivity, is excellent in surface appearance and impact resistance, and is suitable for recycling. For this reason, it can be suitably used for various applications including housings for electrical and electronic equipment and electronic equipment parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 導電性熱可塑性樹脂組成物は、(i)ポリカーボネート樹脂(A)1~100質量%と、ゴム質重合体の存在下、芳香族ビニル、シアン化ビニルおよび(メタ)アクリル酸エステルの群から選ばれた少なくとも1種のビニル単量体を重合して得られるゴム強化樹脂(B)0~99質量%とからなる熱可塑性樹脂成分100質量部、および(ii)炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2~30個積み重なって集合体を形成し、前記集合体が、Head-to-Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維(C)0.1~20質量部を含有する。この導電性熱可塑性樹脂組成物は、高い導電性を有し、かつ、表面外観、耐衝撃性に優れた成形体を与える。

Description

導電性熱可塑性樹脂組成物
 本発明は、微細な炭素繊維を含有する熱可塑性樹脂組成物に関し、より詳しくは、良好な成形外観を有し、かつ優れた導電性を有する成形体を与える導電性熱可塑性樹脂組成物に関する。
 従来、熱可塑性樹脂組成物に導電性を付与する方法としては、(1)熱可塑性樹脂の成形面を導電塗料、メッキ、金属蒸着等により表面処理する方法(例えば、特許文献1:特開2004-168025参照)、(2)熱可塑性樹脂中に、金属粉、カーボン粉、金属フレーク等の導電性粉体や、アルミニウム、ステンレス鋼、真鍮等の金属繊維、金属コートガラス繊維、炭素繊維などの導電性繊維等の導電性物質を配合する方法等が知られている。
 上記(1)の表面処理による方法は、成形された成形品表面に導電処理を施すという煩雑な後工程を必要とし、また、成形された導電層が不均一となり易い、剥離し易い等の欠点がある。更に、廃品をリサイクルする際には、表面処理で形成された導電層を剥がす工程が必要となり、リサイクルには不適当である。
 一方、上記(2)の熱可塑性樹脂中に導電性物質を配合する方法は、特殊な後加工を必要とせず、導電層の剥離等の問題もなく、またリサイクル性にも優れるが、次のような問題がある。
 即ち、カーボン粉、金属粉、金属フレーク等の導電性粉体では添加による導電性の付与効果が低く、十分な導電性を付与するためには配合量を多量にする必要がある。しかし、導電性粉末を多量に配合すると、得られる成形品の機械的特性、特に耐衝撃性が著しく低下する。ステンレス繊維、炭素繊維等の導電性繊維では、配合により樹脂組成物の剛性及び熱的特性が向上し、導電性粉末を添加した場合と比較して導電性が良好である。しかし、溶融混練時に繊維が切断し易く、その対応のために、やはり多量配合が必要であり、この結果、得られる成形品の耐衝撃性、成形品外観、成形加工性が大きく低下する。
 このようなことから、少量の導電性物質の配合で高い導電性を有し、耐衝撃性、表面外観等にも優れた樹脂組成物が望まれている。
 この要求に対応するため、近年、導電性物質としてカーボンナノチューブを熱可塑性樹脂組成物に配合した複合材料が報告されており(特許文献2:特開2009-001740、特許文献3:特開2006-016553)、一部実用化されている。これらの複合材料は、粒子による汚染が少ないこと、流動性が優れること、そりが少ないこと、リサイクル性に優れることなどの特徴を持つことが知られている。
 カーボンナノチューブを熱可塑性樹脂組成物に配合した複合材料は、プレス成形や押出成形などによる成形体では十分な導電性が得られる。ところが、射出成形などの、成形時において溶融樹脂にせん断がかかる成形方法で得られた成形品は、プレス成形や押出成形などで得られるような十分な導電性が得られず、特にせん断速度の速くなる高射出速度にて得られた成形体の導電性は低くなるという問題がある。
 また、カーボンナノチューブの熱可塑性樹脂への分散性が低いことから、カーボンナノチューブが凝集しやすく、成形品表面に凝集物が現れ、表面外観を悪化させる。特に、低射出速度では、カーボンナノチューブの凝集物が成形体の表面に現れやすくなり、良好な表面外観を有する成形品を得ることが難しい。
 以上のように、カーボンナノチューブを熱可塑性樹脂組成物に配合した複合材料では、導電性と表面外観の双方に優れた成形品を得ることが困難であった。
特開2004-168025号公報 特開2009-001740号公報 特開2006-016553号公報
 本発明は、高い導電性を有し、かつ、表面外観、耐衝撃性に優れた成形体を与える導電性熱可塑性樹脂組成物を提供することを目的とする。
 本発明は、以下の事項に関する。
 1. ポリカーボネート樹脂(A)1~100質量%と、ゴム質重合体の存在下、芳香族ビニル、シアン化ビニルおよび(メタ)アクリル酸エステルの群から選ばれた少なくとも1種のビニル単量体を重合して得られるゴム強化樹脂(B)0~99質量%とからなる熱可塑性樹脂成分100質量部、および
 炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2~30個積み重なって集合体を形成し、前記集合体が、Head-to-Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維(C)0.1~20質量部
を含有することを特徴とする導電性熱可塑性樹脂組成物。
 2. さらに、炭素繊維(D)1~15質量部を含有する上記1記載の導電性熱可塑性樹脂組成物。
 3. 前記微細な炭素繊維の前記胴部の母線と繊維軸とのなす角θが15°より小さいことを特徴とする上記1または2記載の導電性熱可塑性樹脂組成物。
 4. 前記微細な炭素繊維の前記集合体胴部の端の外径Dが5~40nm、内径dが3~30nmであり、該集合体のアスペクト比(L/D)が2~150であることを特徴とする上記1~3のいずれか1項に記載の導電性熱可塑性樹脂組成物。
 5. 前記微細な炭素繊維が、Fe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒を用いた気相成長法により製造され、前記微細な炭素繊維中の灰分が4質量%以下であることを特徴とする上記1~4のいずれか1項に記載の導電性熱可塑性樹脂組成物。
 6. 前記微細な炭素繊維が、マグネシウムが置換固溶したコバルトのスピネル型酸化物を含む触媒上に、CO及びHを含む混合ガスを供給して反応させて、得られることを特徴とする上記1~5のいずれか1項に記載の導電性熱可塑性樹脂組成物。
 7. 前記スピネル型酸化物を、MgCo3-xで表したとき、マグネシウムの固溶範囲を示すxの値が、0.5~1.5であることを特徴とする上記6記載の導電性熱可塑性樹脂組成物。
 8. 上記1~7のいずれか1項に記載の導電性熱可塑性樹脂組成物が成形加工された成形品。
 本発明によれば、樹脂本来の物性を維持しながら高い成形性と導電性を有する導電性熱可塑性樹脂組成物が提供される。そのため、本発明の導電性熱可塑性樹脂組成物を用いて製造した成形体は、高い導電性と優れた表面外観、耐衝撃性を有する。本発明の導電性熱可塑性樹脂組成物がこのような効果を奏する理由は、次のように考えられる。
 まず、従来のいわゆるカーボンナノファイバーまたはカーボンナノチューブと総称される極細炭素繊維は、その形状、形態、構造から、
(1)多層カーボンナノチューブ(グラファイト層が多層同心円筒状)(非魚骨状)
  特公平3-64606、同3-77288
  特開2004-299986
(2)カップ積層型カーボンナノチューブ(魚骨状(フィッシュボーン))
  USP 4,855,091
  M.Endo,
Y.A.Kim etc.:Appl.Phys.Lett.,vol80(2002)1267~
  特開2003-073928
  特開2004-360099
(3)プレートレット型カーボンナノファイバー(トランプ状)
  H.Murayama、
T.maeda,:Nature, vol345[No28](1990)791~793
  特開2004-300631
の3つのナノ構造炭素材料に大別される。
 (1)多層カーボンナノチューブは、カーボンナノチューブ長さ方向の導電性はグラファイト網面方向の電子の流れとなるため良好である。一方、カーボンナノチューブ繊維間の導電性は、グラファイト網面方向と垂直となり繊維同士が直接接触することにより電子が流れるが、樹脂中においては、繊維同士の接触がゆるいため繊維自体の電子の流れよりむしろ導電性フィラー表面層からの電子の飛び出しによる電子の流れが重要な役割を果たすとされる。電子の飛出し易さがフィラーの導電性能に関わる。カーボンナノチューブにおいては、グラファイト網面が円筒状に閉じているためπ電子の飛び出しによるジャンピング効果(トンネル効果説)があまり期待できないことが推定される。
 (2)魚骨状構造、および(3)トランプ状構造の極細炭素繊維は、側周面にグラファイト網面の開放端が露出するため、隣接する繊維間の導電性はカーボンナノチューブに比べ向上する。しかしながら、グラファイト網面が繊維軸方向に対し傾斜あるいは直交して積層した構造であるため、単独の繊維における繊維軸長軸方向の導電性は低下してしまい、組成物全体としての導電性が低下する。
 これらに対して、本発明の組成物に含有される微細な炭素繊維は、(1)~(3)の三つの分類に属さない導電性炭素繊維であり、後述するように、繊維自体の長さ方向の電子流れは、外側に僅かに傾斜した釣鐘状胴部が担い、また繊維間の電子の流れは釣鐘状胴部の開放端からの電子の飛び出しが担うことが可能であり、これにより樹脂中での導電性能が向上しているものと推定される。
 また、活性な部位である開放端が存在するため、樹脂との親和性が高く、混練での分散性が向上し、同時に樹脂物性の維持、向上に寄与するものと推察される。
 また、ファンデルワールス力の弱い力で結合している釣鐘状構造単位の集合体(後述する)の連結部は、混練における剪断力によりその接合部で容易に分離する。一般に、大量生産を行う方式として現在最も有望とされる触媒気相成長方法では、1μm以上の糸状の長い繊維が複雑に絡み合った凝集体(数μmから1mmの毛玉)で生成する。しかし、本発明で使用される微細な炭素繊維は、剪断力を調節することにより適度な長さに切断されて繊維集合体の短繊維化(部分的な切断)と開繊が進むことから、特殊な分散技術、分散装置を用いなくても、良好に樹脂成分中に分散される。そのため、樹脂本来の特性を損なわず、導電性に優れかつ表面外観の優れた成形体を得ることができると考えられる。
(a)微細な炭素繊維を構成する最小構造単位(釣鐘状構造単位)を模式的に示す図である。(b)釣鐘状構造単位が、2~30個積み重なった集合体を模式的に示す図である。 (a)集合体が間隔を隔てて連結し、繊維を構成する様子を模式的に示す図である。(b)集合体が間隔を隔てて連結する際に、屈曲して連結した様子を模式的に示す図である。 参考例A1で製造した微細な炭素繊維のTEM写真像である。
 本発明の導電性熱可塑性樹脂組成物は、前述のとおり、ポリカーボネート樹脂(A)とゴム強化樹脂(B)とからなる熱可塑性樹脂組成物100質量部、および微細な炭素繊維(C)0.1~20質量部を含有し、必要に応じて更に炭素繊維(D)1~15質量部を含有する。以下に、各成分について説明する。
 以下の説明において、「微細な炭素繊維」は、明示的に示さない限り、以下に説明される特定構造の炭素繊維を意味し、公知の構造の炭素繊維を意味しない。
 <<微細な炭素繊維(C)>>
 本発明において使用される微細な炭素繊維(C)は、図1(a)に示すような釣鐘状構造を最小構造単位として有する。釣鐘(temple bell)は、日本の寺院で見られ、比較的円筒形に近い胴部を有しており、円錐形に近いクリスマスベルとは形状が異なる。図1(a)に示すように、構造単位11は、釣鐘のように、頭頂部12と、開放端を備える胴部13とを有し、概ね中心軸の周囲に回転させた回転体形状となっている。構造単位11は、炭素原子のみからなるグラファイト網面により形成され、胴部開放端の円周状部分はグラファイト網面の開放端となる。なお、図1(a)において、中心軸および胴部13は、便宜上直線で示されているが、必ずしも直線ではなく、後述する図3のように曲線の場合もある。
 胴部13は、開放端側に緩やかに広がっており、その結果、胴部13の母線は釣鐘状構造単位の中心軸に対してわずかに傾斜し、両者のなす角θは、15°より小さく、より好ましくは1°<θ<15°、更に好ましくは2°<θ<10°である。θが大きくなりすぎると、該構造単位から構成される微細繊維が魚骨状炭素繊維様の構造を呈してしまい、繊維軸方向の導電性が損なわれてしまう。一方θが小さいと、円筒チューブ状に近い構造となり、構造単位の胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が低くなるため、隣接繊維間の導電性が悪化する。
 微細な炭素繊維には、欠陥、不規則な乱れが存在するが、このような不規則性を排除して、全体としての形状を捉えると、胴部13が開放端側に緩やかに広がった釣鐘状構造を有していると言える。微細な炭素繊維は、すべての部分においてθが上記範囲を示すことを意味しているのではなく、欠陥部分や不規則な部分を排除しつつ、構造単位11を全体的に捉えたときに、総合的にθが上記範囲を満たしていることを意味している。そこで、θの測定では、胴部の太さが不規則に変化していることもある頭頂部12付近を除くことが好ましい。より具体的には、例えば、図1(b)に示すように釣鐘状構造単位集合体21(下記参照)の長さをLとすると、頭頂側から(1/4)L、(1/2)Lおよび(3/4)Lの3点においてθを測定してその平均を求め、その値を、構造単位11についての全体的なθとしてもよい。また、Lについては、直線で測定することが理想であるが、実際は胴部13が曲線であることも多いため、胴部13の曲線に沿って測定した方が実際の値に近い場合もある。
 頭頂部の形状は、微細な炭素繊維として製造される場合、胴部と滑らかに連続し、上側(図において)に凸の曲面となっている。頭頂部の長さは、典型的には、釣鐘状構造単位集合体について説明するD(図1(b))以下程度であり、d(図1(b))以下程度であるときもある。
 さらに、後述するように活性な窒素を原料として使用しないため、窒素等の他の原子は、釣鐘状構造単位のグラファイト網面中に含まれない。このため繊維の結晶性が良好である。
 本発明の微細な炭素繊維においては、図1(b)に示すように、このような釣鐘状構造単位が中心軸を共有して2~30個積み重なって釣鐘状構造単位集合体21(以下、単に集合体という場合がある。)を形成している。積層数は、好ましくは2~25個であり、より好ましくは2~15個である。
 集合体21の胴部の外径Dは、5~40nm、好ましくは5~30nm、更に好ましくは5~20nmである。Dが大きくなると形成される微細繊維の径が太くなるため、ポリマーとのコンポジットにおいて導電性能等の機能を付与するためには、多くの添加量が必要となってしまう。一方、Dが小さくなると形成される微細繊維の径が細くなって繊維同士の凝集が強くなり、例えばポリマーとのコンポジット調製において、分散させることが困難になる。胴部外径Dの測定は、集合体の頭頂側から、(1/4)L、(1/2)Lおよび(3/4)Lの3点で測定して平均することが好ましい。なお、図1(b)に胴部外径Dを便宜上示しているが、実際のDの値は、上記3点の平均値が好ましい。
 また、集合体胴部の内径dは、3~30nm、好ましくは3~20nm、更に好ましくは3~10nmである。胴部内径dの測定についても、釣鐘状構造単位集合体の頭頂側から、(1/4)L、(1/2)Lおよび(3/4)Lの3点で測定して平均することが好ましい。なお、図1(b)に胴部内径dを便宜上示しているが、実際のdの値は、上記3点の平均値が好ましい。
 集合体21の長さLと胴部外径Dから算出されるアスペクト比(L/D)は、2~150、好ましくは2~50、より好ましくは2~20である。アスペクト比が大きいと、形成される繊維の構造が円筒チューブ状に近づき、1本の繊維における繊維軸方向の導電性は向上するが、構造単位胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が低くなるため、隣接繊維間の導電性が悪化する。一方、アスペクト比が小さいと構造単位胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が高くなるため、隣接繊維間の導電性は向上するが、繊維外周面が、繊維軸方向に短いグラファイト網面が多数連結して構成されるため、1本の繊維における繊維軸方向の導電性が損なわれる。
 微細な炭素繊維は、図2(a)に示すように、前記集合体がさらにHead-to-Tailの様式で連結することにより形成される。Head-to-Tailの様式とは、微細な炭素繊維の構成において、隣り合った前記集合体どうしの接合部位が、一方の集合体の頭頂部(Head)と他方の集合体の下端部(Tail)の組合せで形成されていることを意味する。具体的な接合部分の形態は、第一の集合体21aの下端開口部において、最内層の釣鐘状構造単位の更に内側に、第二の集合体21bの最外層の釣鐘状構造単位の頭頂部が挿入され、さらに、第二の集合体21bの下端開口部に、第三の集合体21cの頭頂部が挿入され、これがさらに連続することによって繊維が構成される。
 微細な炭素繊維の1本の微細繊維を形成する各々の接合部分は、構造的な規則性を有しておらず、例えば第一の集合体と第二の集合体の接合部分の繊維軸方向の長さは、第二の集合体と第三の集合体の接合部分の長さと必ずしも同じではない。また、図2(a)のように、接合される二つの集合体が中心軸を共有して直線状に連結することもあるが、図2(b)の釣鐘状構造単位集合体21bと21cのように、中心軸が共有されずに接合して、結果として接合部分において屈曲構造を生じることもある。前記釣鐘状構造単位集合体の長さLは繊維ごとにおおむね一定である。しかしながら、気相成長法では、原料及び副生のガス成分と触媒及び生成物の固体成分が混在するため、発熱的な炭素析出反応の実施においては、前記の気体及び固体からなる不均一な反応混合物の流動状態によって一時的に温度の高い局所が形成されるなど、反応器内に温度分布が生じ、その結果、長さLにある程度のばらつきが生じることもある。
 このようにして構成される微細な炭素繊維は、前記釣鐘状構造単位下端のグラファイト網面の開放端の少なくとも一部が、前記集合体の連結間隔に応じて、繊維外周面に露出する。この結果、1本の繊維における繊維軸方向の導電性を損なうことなく、前記π電子の飛び出しによるジャンピング効果(トンネル効果)によって隣接する繊維間の導電性を向上させることができる。以上のような微細な炭素繊維の構造は、TEM画像によって観察できる。また、微細な炭素繊維の効果は、集合体自体の曲がり、集合体の連結部分における屈曲が存在しても、ほとんど影響がないと考えられる。従って、TEM画像の中で、比較的直線に近い形状を有する集合体を観察して、構造に関する各パラメータを求め、その繊維についての構造パラメータ(θ、D、d、L)としてよい。
 微細な炭素繊維の学振法によるXRDにおいて、測定される002面のピーク半価幅W(単位:degree)は、2~4の範囲である。Wが4を超えると、グラファイト結晶性が低く導電性も低い。一方、Wが2未満ではグラファイト結晶性は良いが、同時に繊維径が太くなり、ポリマーに導電性等の機能を付与するためには多くの添加量が必要となってしまう。
 微細な炭素繊維の学振法によるXRD測定によって求められるグラファイト面間隔d002は、0.350nm以下、好ましくは0.341~0.348nmである。d002が0.350nmを超えるとグラファイト結晶性が低くなり、導電性が低下する。一方、0.341nm未満の繊維は、製造の際に収率が低い。
 微細な炭素繊維に含有される灰分は、4重量%以下であり、通常の用途では、精製を必要としない。通常、0.3重量%以上3重量%以下であり、より好ましくは0.3重量%以上2重量%以下である。尚、灰分は、繊維を0.1グラム以上燃焼して残った酸化物の重量から決定される。
 以上の構造を有する微細な炭素繊維は、ファンデルワールス力の弱い力で結合している釣鐘状構造単位の集合体の接合部において、繊維軸に平行な応力が加わると、黒鉛基底面で容易に滑りが生じ、引き抜けるように切断する。微細な炭素繊維は、製造時には、長い繊維が複雑に凝集した繊維凝集体となっているが、樹脂に配合して混練したときに、剪断力により容易に分離し、繊維凝集体の短繊維化(部分的な切断)と開繊が進むことから、良好に樹脂成分中に分散される。そのため、樹脂本来の特性を損なわず、導電性に優れかつ表面外観の優れた成形体を得ることができると考えられる。
 <微細な炭素繊維の製造方法>
 微細な炭素繊維の製造方法は、次のとおりである。微細な炭素繊維は、触媒を用いて、気相成長法により製造される。触媒としては、好ましくはFe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒が使用され、供給ガスは、好ましくはCO及びHを含む混合ガスである。最も好ましくは、コバルトのスピネル型結晶構造を有する酸化物に、マグネシウムが固溶置換した触媒を用いて、CO及びHを含む混合ガスを触媒粒子に供給して気相成長法により、微細な炭素繊維を製造する。
 Mgが置換固溶したコバルトのスピネル型結晶構造は、MgCo3-xで表される。ここで、xは、MgによるCoの置換を示す数であり、形式的には0<x<3である。また、yはこの式全体が電荷的に中性になるように選ばれる数で、形式的には4以下の数を表す。即ち、コバルトのスピネル型酸化物Coでは、2価と3価のCoイオンが存在しており、ここで、2価および3価のコバルトイオンをそれぞれCoIIおよびCoIIIで表すと、スピネル型結晶構造を有するコバルト酸化物はCoIICoIII で表される。Mgは、CoIIとCoIIIのサイトの両方を置換して固溶する。MgがCoIIIを置換固溶すると、電荷的中性を保つためにyの値は4より小さくなる。但し、x、y共に、スピネル型結晶構造を維持できる範囲の値をとる。
 触媒として使用できる好ましい範囲として、Mgの固溶範囲は、xの値が0.5~1.5であり、より好ましくは0.7~1.5である。xの値が0.5未満の固溶量では、触媒の活性は低く、生成する微細な炭素繊維の量は少ない。xの値が1.5を超える範囲では、スピネル型結晶構造を調製することが困難である。
 触媒のスピネル型酸化物結晶構造は、XRD測定により確認することが可能であり、結晶格子定数a(立方晶系)は、0.811~0.818nmの範囲であり、より好ましくは0.812~0.818nmである。aが小さいとMgの固溶置換が充分でなく、触媒活性が低い。また、0.818nmを超える格子定数を有する前記スピネル型酸化物結晶は調製困難である。
 このような触媒が好適である理由として、本発明者らは、コバルトのスピネル構造酸化物にマグネシウムが置換固溶した結果、あたかもマグネシウムのマトリックス中にコバルトが分散配置された結晶構造が形成されることにより、反応条件下においてコバルトの凝集が抑制されていると推定している。
 また、触媒の粒子サイズは、適宜選ぶことができるが、例えばメジアン径として、0.1~100μm、好ましくは、0.1~10μmである。
 触媒粒子は、一般に基板または触媒床等の適当な支持体に、散布するなどの方法により載せて使用する。基板または触媒床への触媒粒子の散布は、触媒粒子を直接散布して良いが、エタノール等の溶媒に懸濁させて散布し、乾燥させることにより所望の量を散布しても良い。
 触媒粒子は、原料ガスと反応させる前に、活性化させることも好ましい。活性化は通常、HまたはCOを含むガス雰囲気下で加熱することにより行われる。これらの活性化操作は、必要に応じて、HeやNなどの不活性ガスで希釈することにより実施することができる。活性化を実施する温度は、好ましくは400~600℃、より好ましくは450~550℃である。
 気相成長法の反応装置に特に制限はなく、固定床反応装置や流動床反応装置といった反応装置により実施することができる。
 気相成長の炭素源となる原料ガスは、CO及びHを含む混合ガスが利用される。
 Hガスの添加濃度{(H/(H+CO)}は、好ましくは0.1~30vol%、より好ましくは2~20vol%である。添加濃度が低すぎると円筒状のグラファイト質網面が繊維軸に平行したカーボンナノチューブ様の構造を形成してしまう。一方、30vol%を超えると釣鐘状構造体の炭素側周面の繊維軸に対する傾斜角が大きくなり、魚骨形状を呈するため繊維方向の導電性の低下を招く。
 また、原料ガスは不活性ガスを含有していてもよい。不活性ガスとしては、CO、N、He、Ar等が挙げられる。不活性ガスの含有量は、反応速度を著しく低下させない程度が好ましく、例えば80vol%以下、好ましくは50vol%以下の量である。また、HおよびCOを含有する合成ガスまたは転炉排出ガス等の廃棄ガスを、必要により適宜処理して使用することもできる。
 気相成長を実施する反応温度は、好ましくは400~650℃、より好ましくは500~600℃である。反応温度が低すぎると繊維の成長が進行しない。一方、反応温度が高すぎると収量が低下してしまう。反応時間は、特に限定されないが、例えば2時間以上であり、また12時間程度以下である。
 気相成長を実施する反応圧力は、反応装置や操作の簡便化の観点から常圧で行うことが好ましいが、Boudouard平衡の炭素析出が進行する範囲であれば、加圧または減圧の条件で実施しても差し支えない。
 この微細な炭素繊維の製造方法によれば、触媒単位重量あたりの微細な炭素繊維の生成量は、従来の製造方法に比べて格段に大きいことが示された。この微細な炭素繊維の製造方法による微細な炭素繊維の生成量は、触媒単位重量あたり40倍以上であり、例えば40~200倍である。その結果、前述のような不純物、灰分の少ない微細な炭素繊維の製造が可能である。
 この微細な炭素繊維の製造方法により製造される微細な炭素繊維に特有な接合部の形成過程は明らかではないが、発熱的なBoudouard平衡と原料ガスの流通による除熱とのバランスから、前記触媒から形成されたコバルト微粒子近傍の温度が上下に振幅するため、炭素析出が断続的に進行することにより形成されるものと考えられる。即ち、[1]釣鐘状構造体頭頂部形成、[2]釣鐘状構造体の胴部成長、[3]前記[1]、[2]過程の発熱による温度上昇のため成長停止、[4]流通ガスによる冷却、の4過程が触媒微粒子上で繰り返されることにより、微細な炭素繊維構造特有の接合部が形成されると推定される。
  <<熱可塑性樹脂成分>>
 熱可塑性樹脂成分は、ポリカーボネート樹脂(A)1~100質量%と、ゴム強化樹脂(B)0~99質量%を含有する。
 本発明で使用されるポリカーボネート樹脂(A)は、例えば、ビスフェノール類等のジヒドロキシまたはポリヒドロキシ化合物をホスゲンまたは炭酸のジエステルと反応させることにより製造される。
 ビスフェノール類の具体例としては、ハイドロキノン、4,4-ジヒドロキシフェニル、ビス-(4-ヒドロキシフェニル)-アルカン、ビス-(4-ヒドロキシフェニル)-シクロアルカン、ビス-(4-ヒドロキシフェニル)-スルフィド、ビス-(4-ヒドロキシフェニル)-エーテル、ビス-(4-ヒドロキシフェニル)-ケトン、ビス-(4-ヒドロキシフェニル)-スルホン、或いはこれらのアルキル置換体、アリール置換体、ハロゲン置換体などが挙げられ、これらは1種又は2種以上組み合わせて用いられる。
 特にジヒドロキシジアリールアルカンから得られるものが好ましく、任意に枝別れしていてもよい。
 ジヒドロキシジアリールアルカンとしては、例えば、ヒドロキシ基に対してオルトの位置にアルキル基を有するものが使用される。ジヒドロキシジアリールアルカンの好ましい具体例としては、4,4-ジヒドロキシ2,2-ジフェニルプロパン(すなわち、ビスフェノールA)、テトラメチルビスフェノールAおよびビス-(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼンなどが挙げられる。
 また、分岐したポリカーボネートは、例えば、ジヒドロキシ化合物の一部、例えば0.2~2モル%をポリヒドロキシで置換することにより製造される。ポリヒドロキシ化合物の具体例としては、フロログリシノール、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプテン、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプタン、1,3,5-トリ-(4-ヒドロキシフェニル)-ベンゼンなどが挙げられる。
 ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は15,000~35,000であることが好ましい。ポリカーボネート樹脂(A)の粘度平均分子量が15,000以上であれば、強化熱可塑性樹脂組成物の耐衝撃性がより高くなり、35,000以下であれば、強化熱可塑性樹脂組成物の成形性がより高くなる。また、ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、機械的強度、落球衝撃強度、流動性のバランスが特に優れることから、17,000~25,000であることがより好ましい。
 本発明で使用されるゴム強化樹脂(B)は、ゴム質重合体の存在下、芳香族ビニル、シアン化ビニルおよび(メタ)アクリル酸エステルの群から選ばれた少なくとも1種のビニル単量体を重合して得られる。
 ゴム質重合体としては、例えば、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、イソプレンゴム、クロロプレンゴム、ブチルゴム、エチレン-プロピレンゴム、エチレン-プロピレン-非共役ジエンゴム、アクリルゴム、エピクロルヒドリンゴム、ジエン-アクリル複合ゴム、シリコーン(ポリシロキサン)-アクリル複合ゴムなどが挙げられる。これらの中では、本発明の導電性熱可塑性樹脂組成物から得られる成形品の表面外観および耐衝撃性が良好であることから、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、アクリルゴム、ジエン-アクリル複合ゴム、シリコーン-アクリル複合ゴムが好ましい。
 ここで、上記ジエン-アクリル複合ゴムのジエン成分は、ブタジエン単位を50質量%以上含むものであり、具体的には、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等である。
 ジエン-アクリル複合ゴムにおけるアクリルゴム成分は、アルキル(メタ)アクリレートと多官能性単量体とが重合されたものである。ここで、アルキル(メタ)アクリレートとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレート;ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-ラウリルメタクリレート等のアルキルメタクリレートが挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。多官能性単量体としては、例えば、アリルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ジエン-アクリル複合ゴムの複合化構造としては、ジエン系ゴムのコア層の周囲がアルキル(メタ)アクリレート系ゴムで覆われたコアシェル構造、アルキル(メタ)アクリレート系ゴムをコア層の周囲がジエン系ゴムで覆われたコアシェル構造、ジエン系ゴムとアルキル(メタ)アクリレート系ゴムが相互にからみあっている構造、ジエン系単量体単位とアルキル(メタ)アクリレート系単量体単位がランダムに配列した共重合構造等が挙げられる。
 上記シリコーン-アクリル複合ゴムのシリコーン成分は、ポリオルガノシロキサンを主成分とするものであり、中でも、ビニル重合性官能基を含有するポリオルガノシロキサンが好ましい。シリコーン-アクリル複合ゴムにおけるアクリルゴム成分は、ジエン-アクリル複合ゴムのアクリルゴム成分と同様である。
 シリコーン-アクリル複合ゴムの複合化構造としては、ポリオルガノシロキサンゴムのコア層の周囲がアルキル(メタ)アクリレート系ゴムで覆われたコアシェル構造、アルキル(メタ)アクリレート系ゴムのコア層の周囲がポリオルガノシロキサンゴムで覆われたコアシェル構造、ポリオルガノシロキサンゴムとアルキル(メタ)アクリレート系ゴムが相互に絡み合っている構造、ポリオルガノシロキサンのセグメントとポリアルキル(メタ)アクリレートのセグメントが互いに直線的および立体的に結合しあって網目状のゴム構造となっている構造等が挙げられる。
 ゴム質重合体は、例えば、ゴム質重合体を形成する単量体に、ラジカル重合開始剤を作用させて乳化重合することによって調製される。乳化重合法による調製方法によれば、ゴム質重合体の粒子径を制御しやすい。
 ゴム質重合体の平均粒子径は、強化熱可塑性樹脂組成物の耐衝撃性をより高くできることから、0.1~0.6μmであることが好ましい。
 また、ゴム強化樹脂中におけるゴム質重合体の好ましい含有量は10~70重量%である。
 ゴム質重合体の存在下で重合するビニル単量体は、芳香族ビニル、シアン化ビニルおよび(メタ)アクリル酸エステルの群から選ばれる。芳香族ビニル類としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等が挙げられ、好ましくはスチレンである。シアン化ビニル類としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられ、好ましくはアクリロニトリルである。(メタ)アクリル酸エステル類としては、例えば、メチルメタクリレート、エチルメタクリレート、2-エチルヘキシルメタクリレート等のメタクリル酸エステル、メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアクリル酸エステル等が挙げられる。
 ゴム強化樹脂の製造方法は特に制限はなく、公知の方法により重合することができるが、乳化重合法が好ましい。また、重合時には、ゴム強化樹脂の分子量やグラフト率を調整するために、各種連鎖移動剤を添加してもよい。
  <<炭素繊維(D)>>
 本発明においては、必要により任意成分として炭素繊維を配合することができる。炭素繊維としては、PAN系炭素繊維およびピッチ系炭素繊維等の通常の炭素繊維が挙げられる。
 本発明で使用される炭素繊維は、繊維径が4~20μmで繊維長が3~20mmであるものが好ましい。炭素繊維の繊維径が小さくなると、一般に製造が困難で高価となり、また、大きくなりすぎると配合量に見合った導電性、電磁波遮蔽等の配合効果が得られないからである。また炭素繊維の繊維長が短い場合には、少量配合で十分な効果を得ることができず、長すぎると樹脂溶融時の流動性が低下し、混練押出が難しくなる傾向になる。
  <<導電性熱可塑性樹脂組成物および成形品>>
 本発明の導電性熱可塑性樹脂組成物は、以上のポリカーボネート樹脂(A)、ゴム強化樹脂(B)、微細な炭素繊維(C)、および必要により炭素繊維(D)を混合して製造される。
 ポリカーボネート樹脂(A)とゴム強化樹脂(B)の配合割合は、熱可塑性樹脂成分(ポリカーボネート樹脂(A)とゴム強化樹脂(B)の合計)100質量%中、ポリカーボネート樹脂(A)が1~100質量%、ゴム強化樹脂(B)が0~99質量%であり、好ましくはポリカーボネート樹脂(A)が40~90質量%、ゴム強化樹脂(B)が10~60質量%である。
 微細な炭素繊維の配合割合は、熱可塑性樹脂成分100質量部に対して、0.1~20質量部であり、好ましくは0.1~10質量部、さらに好ましくは3~10質量部である。
 炭素繊維(D)は、適宜必要量を配合することができるが、本発明では微細な炭素繊維が存在するため、多量に配合しなくても十分な導電性が得られ、少ない方が外観に優れる。この観点から、炭素繊維の配合量は、熱可塑性樹脂成分100重量部に対して、一般に15質量部以下であり、より好ましくは12質量部以下である。また配合するのであれば一般に0.1質量部以上である。
 本発明の組成物を得るための混合方法は、特に限定されるものではなく、従来から公知の方法を採用することができる。例えば、各成分をヘンシェルミキサー、スーパーミキサー、タンブラーミキサー、リボンブレンダー等で均一に混合した後、単軸押出機や二軸押出機、バンバリーミキサー等で溶融混練する方法等を採用することができる。
 本発明の導電性熱可塑性樹脂組成物には、本発明の趣旨を妨げない範囲で、公知の添加剤を添加することができる。このような添加剤としては、難燃剤、難燃助剤、酸化防止剤、紫外線吸収剤、滑剤、可塑剤、離型剤、帯電防止剤、着色剤(顔料、染料など)、フィラー、抗菌剤、防カビ剤、シリコーンオイル、カップリング剤などの各種の添加剤が挙げられる。
 このようにして得られる本発明の樹脂組成物は、公知の成形方法により各種成形品に成形することができる。成形加工法としては、例えば、射出成形法、射出圧縮成形法、押出法、ブロー成形法、真空成形法、圧空成形法、カレンダー成形法およびインフレーション成形法等が挙げられる。これらの中でも、量産性に優れ、高い寸法精度の成形品を得ることができるため、射出成形法、射出圧縮成形法が好ましい。
 本発明の組成物の成形品は、高い導電性を有し、かつ、表面外観、耐衝撃性に優れ、リサイクルにも適している。このため、電磁波障害(EMI)が問題となる可能性のある電気電子機器及び電子機器部品のハウジング等をはじめ、各種用途に好適に使用することができる。例えば、パーソナルコンピュータ(ノート型も含む)、プロジェクタ(液晶プロジェクタを含む)、テレビジョン、プリンタ、ファクシミリ、複写機、オーディオ機器、ゲーム機、カメラ(ビデオカメラ、デジタルカメラ等を含む)、ビデオ等の映像機器、楽器、モバイル機器(電子手帳、情報携帯端末(PDA)など)、照明機器、電話(携帯電話を含む)等の通信機器などの筐体、釣具、パチンコ物品等の遊具、車両用製品、家具用製品、サニタリー製品、建材用製品などに適用できる。これら用途の中でも、本発明の効果がとりわけ発揮されることから、ノート型のパーソナルコンピュータまたは携帯機器等の電子部品の筐体に適している。
 以下、製造例、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り種々の変更が可能であり、以下の実施例に限定されるものではない。
 ゴム強化樹脂(B)の製造
 <製造例1> ゴム強化樹脂(B-1)の製造
 オクタメチルテトラシクロシロキサン96質量部、γ-メタクリルオキシプロピルジメトキシメチルシラン2質量部及びエチルオルソシリケート2質量部を混合してシロキサン系混合物100質量部を得た。これにドデシルベンゼンスルホン酸ナトリウム0.67質量部を溶解した蒸留水300質量部を添加し、ホモミキサーにて10000回転/2分間撹拌した後、ホモジナイザーに30MPaの圧力で1回通し、安定な予備混合オルガノシロキサンラテックスを得た。
 また、試薬注入容器、冷却管、ジャケット加熱器及び撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2質量部と蒸留水98質量部とを注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサンラテックスを4時間にわたって滴下し、滴下終了後1時間温度を維持し冷却した。この反応液を室温で48時間放置した後、水酸化ナトリウム水溶液で中和して、ポリオルガノシロキサンラテックス(L-1)を得た。ポリオルガノシロキサンラテックス(L-1)の一部を170℃で30分間乾燥して固形分濃度を求めたところ、17.3%であった。
 次いで、試薬注入容器、冷却管、ジャケット加熱器及び撹拌装置を備えた反応器内に、ポリオルガノシロキサンラテックス(L-1)43質量部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.3質量部を仕込み、蒸留水203質量部を添加し、混合した。その後、n-ブチルアクリレート19.2質量部、アリルメタクリレート0.07質量部、1,3-ブチレングリコールジメタクリレート0.04質量部及びターシャリーブチルハイドロパーオキサイド0.04質量部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001質量部、エチレンジアミン四酢酸二ナトリウム塩0.0003質量部及びロンガリット0.24質量部を蒸留水10質量部に溶解させた水溶液を添加し、ラジカル重合を開始させた。アクリレート成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、アクリレート成分の重合を完結させて、ポリオルガノシロキサンとブチルアクリレートゴムの複合ゴムラテックスを得た。
 反応器内部の液温が60℃に低下した後、ロンガリット0.4質量部を蒸留水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1質量部、スチレン33.2質量部及びターシャリーブチルハイドロパーオキサイド0.2質量部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002質量部、エチレンジアミン四酢酸二ナトリウム塩0.0006質量部及びロンガリット0.25質量部を蒸留水10質量部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部及びターシャリーブチルハイドロパーオキサイド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、ポリオルガノシロキサンとブチルアクリレートゴムからなる複合ゴムにアクリロニトリル-スチレン共重合体をグラフトさせたグラフト共重合体のラテックスを得た。
 次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体のラテックス100質量部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、ゴム強化樹脂(B-1)の乾燥粉末を得た。
 <製造例2> ゴム強化樹脂(B-2)の製造
 固形分濃度が35%、平均粒子径0.08μmのポリブタジエンラテックス100質量部(固形分として)に、n-ブチルアクリレート単位85%、メタクリル酸単位15%からなる平均粒子径0.08μmの共重合体ラテックス2部(固形分として)を攪拌しながら添加した。次いで、30分間攪拌を続けて、平均粒子径0.28μmの肥大化ブタジエン系ゴム質重合体ラテックスを得た。
 得られた肥大化ブタジエン系ゴム質重合体ラテックスを反応器に仕込み、更に蒸留水100質量部、ウッドロジン乳化剤4質量部、デモールN(商品名、花王(株)製、ナフタレンスルホン酸ホルマリン縮合物)0.4質量部、水酸化ナトリウム0.04質量部、デキストローズ0.7質量部を添加した。次いで、攪拌しながら昇温させ、内温60℃の時点で、硫酸第一鉄0.1質量部、ピロリン酸ナトリウム0.4質量部、亜ジチオン酸ナトリウム0.06質量部を添加した後、下記成分を含む混合物を90分間にわたり連続的に滴下し、その後1時間保持して冷却した。
 アクリロニトリル        30質量部
 スチレン            70質量部
 クメンハイドロパーオキサイド  0.8質量部
 t-ドデシルメルカプタン    0.8質量部
 これにより得られたグラフト共重合体ラテックスを希硫酸で凝固したのち、洗浄、濾過、乾燥して、ゴム強化樹脂(B-2)の乾燥粉末を得た。
 微細な炭素繊維(C)の製造
 <参考例1> 微細な炭素繊維の製造例
 イオン交換水500mLに硝酸コバルト〔Co(NO・6HO:分子量291.03〕115g(0.40モル)、硝酸マグネシウム〔Mg(NO・6HO:分子量256.41〕102g(0.40モル)を溶解させ、原料溶液(1)を調製した。また、重炭酸アンモニウム〔(NH)HCO:分子量79.06〕粉末220g(2.78モル)をイオン交換水1100mLに溶解させ、原料溶液(2)を調製した。次に、反応温度40℃で原料溶液(1)と(2)を混合し、その後4時間攪拌した。生成した沈殿物のろ過、洗浄を行い、乾燥した。
 これを焼成した後、乳鉢で粉砕し、43gの触媒を取得した。本触媒中のスピネル構造の結晶格子定数a(立方晶系)は0.8162nm、置換固溶によるスピネル構造中の金属元素の比はMg:Co=1.4:1.6であった。
 石英製反応管(内径75mmφ、高さ650mm)を立てて設置し、その中央部に石英ウール製の支持体を設け、その上に触媒0.9gを散布した。He雰囲気中で炉内温度を550℃に加熱した後、CO、Hからなる混合ガス(容積比:CO/H=95.1/4.9)を原料ガスとして反応管の下部から1.28L/分の流量で7時間流し、微細な炭素繊維を合成した。
 収量は53.1gであり、灰分を測定したところ1.5重量%であった。生成物のXRD分析で観察されたピーク半価幅W(degree)は3.156、d002は0.3437nmであった。またTEM画像から、得られた微細な炭素繊維を構成する釣鐘状構造単位及びその集合体の寸法に関するパラメータは、D=12nm、d=7nm、L=114nm、L/D=9.5、θは0から7°であり、平均すると約3°であった。また、集合体を形成する釣鐘状構造単位の積層数は約10程度であった。尚、D、dおよびθについては、集合体の塔頂から(1/4)L、(1/2)Lおよび(3/4)Lの3点について測定した。参考例1で得られた微細な炭素繊維のTEM像を図3に示す。
 <製造例3> 微細な炭素繊維を含む樹脂マスターバッチの製造
 以上の参考例1と同等の方法により製造した微細な炭素繊維10質量%を、ポリカーボネート樹脂(三菱エンジニアプラスチック(株)製「S-3000F」)90質量%に配合し、ヘンシェルミキサーで予備混合した後、配合物を二軸押出混練機により250℃で溶融混合し、溶融混合物をペレット化して微細な炭素繊維を含有するポリカーボネートマスターバッチを製造した。
 その他の配合成分としては、以下のものを用いた。
 ポリカーボネート(A):三菱エンジニアプラスチック(株)製「S-3000F」(粘度平均分子量(Mv):22000)
 炭素繊維(D):三菱レイヨン(株)製「TR06Q」
 カーボンナノチューブ(CNT):直径20nm、アスペクト比5以上のカーボンナノチューブ濃度が15%であるハイペリオン・キャタリシス製マスターバッチ(MB6015-00、ベースポリマー:ポリカーボネート)
 各材料を、表1、2に示す割合にて混合した後、260℃で2軸押出機(神戸製鋼(株)製「KTX-30」)にて溶融混練し、ペレット化した。このペレットを、4オンス射出成形機(日本製鋼(株)製)を用いて300℃で成型することで、必要なテストピースを作成し、下記の評価を行った。
 <評価方法>
 [表面固有抵抗]
 100mm×100mm×2mmの角板を、射出速度を変更(5mm/sec, 20mm/sec, 40mm/sec)して射出成形し、低抵抗計(三菱化学(株)製「MCP-T600」を用いて表面固有抵抗を測定した。(機器測定限界以上の抵抗値をNDと表した。)
 [成形外観]
 100mm×100mm×2mmの角板を、射出速度を変更(5mm/sec, 20mm/sec, 40mm/sec)して射出成形し、成形外観を確認した。
◎:表面が平滑で光沢がある。
○:表面が平滑であるが、光沢がない。
△:成形表面にブツまたは繊維の浮き出しが見られる。
×:成形表面にブツまたは繊維の浮き出しが数多く見られる。
 [耐衝撃性]
 100mm×100mm×1mmの角板を射出成形し、テストピースを作成した。作成したテストピースをアルミ製の100mm×100mm×20mmの中空状の枠(肉厚2mm)に乗せ、500gの鉄球を落下させ、テストピースに割れが発生する高さを測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2より次のことが明らかである。本発明の範囲内である実施例1~8では、成形条件により容易に高い導電性を有し、表面外観、耐衝撃性にも優れる成形品を得ることができる。
 本発明の範囲外である比較例1では、耐衝撃性は高いものの、高射出速度における導電性の低下が大きく、また成形品表面にブツの発生がみられ、表面外観の優れる成形品を得ることが難しい。
 炭素繊維を用いた比較例2~4では、高い導電性を得るには、多量の配合量が必要であり、成形品表面に炭素繊維が浮き出すことから、表面外観の優れる成形品を得ることが難しい。
 比較例5では、十分な導電性が得ることができない。
 以上のとおり、本発明の導電性熱可塑性樹脂組成物により、高い導電性を有し、かつ耐衝撃性、表面外観にも優れた成形品を得ることができる。
 本発明の組成物の成形品は、高い導電性を有し、かつ、表面外観、耐衝撃性に優れ、リサイクルにも適している。このため、電気電子機器及び電子機器部品のハウジング等をはじめ、各種用途に好適に使用することができる。
11 構造単位
12 頭頂部
13 胴部
21、21a、21b、21c 集合体

Claims (8)

  1.  ポリカーボネート樹脂(A)1~100質量%と、ゴム質重合体の存在下、芳香族ビニル、シアン化ビニルおよび(メタ)アクリル酸エステルの群から選ばれた少なくとも1種のビニル単量体を重合して得られるゴム強化樹脂(B)0~99質量%とからなる熱可塑性樹脂成分100質量部、および
     炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2~30個積み重なって集合体を形成し、前記集合体が、Head-to-Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維(C)0.1~20質量部
    を含有することを特徴とする導電性熱可塑性樹脂組成物。
  2.  さらに、炭素繊維(D)1~15質量部を含有する請求項1記載の導電性熱可塑性樹脂組成物。
  3.  前記微細な炭素繊維の前記胴部の母線と繊維軸とのなす角θが15°より小さいことを特徴とする請求項1または2記載の導電性熱可塑性樹脂組成物。
  4.  前記微細な炭素繊維の前記集合体胴部の端の外径Dが5~40nm、内径dが3~30nmであり、該集合体のアスペクト比(L/D)が2~150であることを特徴とする請求項1~3のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  5.  前記微細な炭素繊維が、Fe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒を用いた気相成長法により製造され、前記微細な炭素繊維中の灰分が4質量%以下であることを特徴とする請求項1~4のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  6.  前記微細な炭素繊維が、マグネシウムが置換固溶したコバルトのスピネル型酸化物を含む触媒上に、CO及びHを含む混合ガスを供給して反応させて、得られることを特徴とする請求項1~5のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  7.  前記スピネル型酸化物を、MgCo3-xで表したとき、マグネシウムの固溶範囲を示すxの値が、0.5~1.5であることを特徴とする請求項6記載の導電性熱可塑性樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の導電性熱可塑性樹脂組成物が成形加工された成形品。
PCT/JP2010/064923 2009-09-04 2010-09-01 導電性熱可塑性樹脂組成物 WO2011027780A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10813729.0A EP2474572A4 (en) 2009-09-04 2010-09-01 ELECTRICALLY CONDUCTIVE THERMOPLASTIC RESIN COMPOSITION
US13/393,878 US20120193586A1 (en) 2009-09-04 2010-09-01 Electrically conductive thermoplastic resin composition
SG2012015129A SG178970A1 (en) 2009-09-04 2010-09-01 Electrically conductive thermoplastic resin composition
CN201080049919XA CN102597109A (zh) 2009-09-04 2010-09-01 导电热塑性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009205292A JP2011057725A (ja) 2009-09-04 2009-09-04 導電性熱可塑性樹脂組成物
JP2009-205292 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011027780A1 true WO2011027780A1 (ja) 2011-03-10

Family

ID=43649316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064923 WO2011027780A1 (ja) 2009-09-04 2010-09-01 導電性熱可塑性樹脂組成物

Country Status (8)

Country Link
US (1) US20120193586A1 (ja)
EP (1) EP2474572A4 (ja)
JP (1) JP2011057725A (ja)
KR (1) KR20120080586A (ja)
CN (1) CN102597109A (ja)
SG (1) SG178970A1 (ja)
TW (1) TW201113318A (ja)
WO (1) WO2011027780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187639B2 (en) 2013-06-04 2015-11-17 Sabic Global Technologies B.V. Thermal plastic blends with improved impact strength and flow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057730A (ja) * 2009-09-04 2011-03-24 Ube Industries Ltd 微細な炭素繊維が開繊、分散したポリマー組成物の製造方法
FR2977259B1 (fr) * 2011-06-28 2013-08-02 Commissariat Energie Atomique Dispositif a profil specifique de reacteur de type lit a jet pour depot par cvd
JP6028189B2 (ja) 2011-09-30 2016-11-16 三菱マテリアル株式会社 金属コバルトを内包するカーボンナノファイバーの製造方法。
JP2013095784A (ja) * 2011-10-28 2013-05-20 Sekisui Chem Co Ltd 複合樹脂成形体の製造方法及び複合樹脂成形体
JP6379614B2 (ja) * 2014-04-14 2018-08-29 三菱ケミカル株式会社 長繊維ペレットとそれを射出成型して得られる成形体
KR101800845B1 (ko) * 2016-03-30 2017-11-23 금호석유화학 주식회사 전기전도성 수지 조성물 및 그 성형품

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH0364606A (ja) 1989-08-01 1991-03-20 Yamaha Motor Co Ltd 多弁式4サイクルエンジン
JPH0377288A (ja) 1989-08-19 1991-04-02 Mitsubishi Electric Corp Ic用ソケット
JP2003073928A (ja) 2001-08-29 2003-03-12 Gsi Creos Corp 気相成長法による炭素繊維
JP2003221217A (ja) * 2001-10-04 2003-08-05 Canon Inc ナノカーボン材料の製造方法
JP2004168025A (ja) 2002-10-31 2004-06-17 Fuji Polymer Industries Co Ltd 熱圧着用離型シート及びその製造方法
JP2004299986A (ja) 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノチューブ及びその製造方法
JP2004300631A (ja) 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノファイバ及びその製造方法
JP2004360099A (ja) 2003-06-03 2004-12-24 Mitsubishi Chemicals Corp 炭素質微細繊維状体
JP2005120323A (ja) * 2003-10-20 2005-05-12 Mitsubishi Engineering Plastics Corp 導電性熱可塑性樹脂組成物
JP2006016553A (ja) 2004-07-02 2006-01-19 Canon Inc 樹脂組成物及びそれらを用いて成形された成形体、レンズ鏡筒
JP2009001740A (ja) 2007-06-25 2009-01-08 Teijin Chem Ltd 導電性の安定した熱可塑性樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
US20020022686A1 (en) * 2000-06-15 2002-02-21 Hiroyuki Itoh Thermoplastic resin composition
JP3981566B2 (ja) * 2001-03-21 2007-09-26 守信 遠藤 膨張炭素繊維体の製造方法
JP2007512658A (ja) * 2003-08-08 2007-05-17 ゼネラル・エレクトリック・カンパニイ 導電性組成物及びその製造方法
US7182886B2 (en) * 2003-08-16 2007-02-27 General Electric Company Poly (arylene ether)/polyamide composition
WO2006009052A1 (ja) * 2004-07-15 2006-01-26 Toray Industries, Inc. 熱可塑性樹脂組成物
CN101305051B (zh) * 2005-11-10 2013-01-02 旭化成化学株式会社 阻燃性优异的树脂组合物
JP5189323B2 (ja) * 2007-07-11 2013-04-24 出光興産株式会社 難燃性ポリカーボネート樹脂組成物及びその成形品
US8859667B2 (en) * 2007-12-20 2014-10-14 Xerox Corporation Carbon nanotube filled polycarbonate anti-curl back coating with improved electrical and mechanical properties
JP5226326B2 (ja) * 2008-01-08 2013-07-03 帝人化成株式会社 芳香族ポリカーボネート樹脂組成物
JP5003923B2 (ja) * 2008-03-06 2012-08-22 宇部興産株式会社 微細な炭素繊維、微細な炭素短繊維およびそれらの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH0364606A (ja) 1989-08-01 1991-03-20 Yamaha Motor Co Ltd 多弁式4サイクルエンジン
JPH0377288A (ja) 1989-08-19 1991-04-02 Mitsubishi Electric Corp Ic用ソケット
JP2003073928A (ja) 2001-08-29 2003-03-12 Gsi Creos Corp 気相成長法による炭素繊維
JP2003221217A (ja) * 2001-10-04 2003-08-05 Canon Inc ナノカーボン材料の製造方法
JP2004168025A (ja) 2002-10-31 2004-06-17 Fuji Polymer Industries Co Ltd 熱圧着用離型シート及びその製造方法
JP2004299986A (ja) 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノチューブ及びその製造方法
JP2004300631A (ja) 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノファイバ及びその製造方法
JP2004360099A (ja) 2003-06-03 2004-12-24 Mitsubishi Chemicals Corp 炭素質微細繊維状体
JP2005120323A (ja) * 2003-10-20 2005-05-12 Mitsubishi Engineering Plastics Corp 導電性熱可塑性樹脂組成物
JP2006016553A (ja) 2004-07-02 2006-01-19 Canon Inc 樹脂組成物及びそれらを用いて成形された成形体、レンズ鏡筒
JP2009001740A (ja) 2007-06-25 2009-01-08 Teijin Chem Ltd 導電性の安定した熱可塑性樹脂組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. MURAYAMA; T. MAEDA, NATURE, vol. 345, no. 28, 1990, pages 79 - 793
M. ENDO; Y. A. KIM, APPL. PHYS. LETT., vol. 80, 2002, pages 1267
See also references of EP2474572A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187639B2 (en) 2013-06-04 2015-11-17 Sabic Global Technologies B.V. Thermal plastic blends with improved impact strength and flow

Also Published As

Publication number Publication date
KR20120080586A (ko) 2012-07-17
CN102597109A (zh) 2012-07-18
JP2011057725A (ja) 2011-03-24
EP2474572A1 (en) 2012-07-11
TW201113318A (en) 2011-04-16
EP2474572A4 (en) 2014-01-08
US20120193586A1 (en) 2012-08-02
SG178970A1 (en) 2012-04-27

Similar Documents

Publication Publication Date Title
WO2011027780A1 (ja) 導電性熱可塑性樹脂組成物
JP5341772B2 (ja) 導電性熱可塑性樹脂組成物及びプラスチック成形品
KR101139031B1 (ko) 방향족 폴리카보네이트 수지 조성물, 그 수지 조성물의제조방법 및 그 수지 조성물의 성형체
JP6319287B2 (ja) 高誘電率材料用樹脂組成物、それを含む成形品、および着色用マスターバッチ
JP5634870B2 (ja) 炭素繊維を含有する複合材料
JP2011195756A (ja) 樹脂組成物およびその製造方法
JP5596239B2 (ja) カーボンナノ繊維凝集体、熱可塑性樹脂組成物、及び熱可塑性樹脂組成物の製造方法
WO2012014676A1 (ja) 繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂組成物の製造方法
KR101055620B1 (ko) 전기적 특성이 뛰어난 고분자/탄소나노튜브 복합체와 이의 제조방법
WO2013157621A1 (ja) 導電性樹脂用マスターバッチ及び導電性樹脂
JP2013519745A (ja) 耐衝撃性改質熱可塑性組成物の調製における混合物の使用
JP7055931B2 (ja) 耐熱性と電磁波遮蔽能に優れた熱可塑性樹脂組成物、その製造方法及びそれから製造された射出成形品
JP2006083195A (ja) 芳香族ポリカーボネート樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
JP5624297B2 (ja) 導電性樹脂複合材
JP2011006511A (ja) ナノコンポジット
JP2011057730A (ja) 微細な炭素繊維が開繊、分散したポリマー組成物の製造方法
JP2019500466A (ja) メッキ特性に優れた親環境熱可塑性樹脂組成物
JP5463807B2 (ja) 微粒子化された微細な炭素繊維の凝集体
JP2001129826A (ja) 導電性繊維強化成形材料およびその製造方法
JP2002146679A (ja) 炭素繊維束、樹脂組成物、成形材料およびそれを用いた成形品
JP5333255B2 (ja) 電磁波抑制用樹脂組成物及び成形品
JP2008291133A (ja) 耐熱性に優れた樹脂組成物及びその製造方法
JP5413215B2 (ja) 電磁波抑制用樹脂組成物及び成形品
JP2004352816A (ja) 導電性熱可塑性樹脂組成物
JP2008143934A (ja) 耐熱性樹脂複合組成物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049919.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201000922

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010813729

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007800

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13393878

Country of ref document: US