JP2009001740A - 導電性の安定した熱可塑性樹脂組成物 - Google Patents

導電性の安定した熱可塑性樹脂組成物 Download PDF

Info

Publication number
JP2009001740A
JP2009001740A JP2007166195A JP2007166195A JP2009001740A JP 2009001740 A JP2009001740 A JP 2009001740A JP 2007166195 A JP2007166195 A JP 2007166195A JP 2007166195 A JP2007166195 A JP 2007166195A JP 2009001740 A JP2009001740 A JP 2009001740A
Authority
JP
Japan
Prior art keywords
component
resin composition
weight
acid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166195A
Other languages
English (en)
Inventor
Keiichiro Ino
慶一郎 井野
Fumitaka Kondo
史崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2007166195A priority Critical patent/JP2009001740A/ja
Priority to CN2008101288966A priority patent/CN101333338B/zh
Publication of JP2009001740A publication Critical patent/JP2009001740A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】導電性能のばらつきを改善した導電性ポリカーボネート樹脂組成物を提供する。
【解決手段】(A)芳香族ポリエステル樹脂を除く熱可塑性樹脂(A成分)100重量部に対して、(B)カーボンナノチューブ(B成分)0.1〜15重量部、および(C)芳香族ポリエステル樹脂(C成分)0.1〜4重量部を含有することを特徴とする導電性熱可塑性樹脂組成物。
【選択図】なし

Description

本発明は、熱可塑性樹脂とカーボンナノチューブからなるカーボンナノチューブを含有する樹脂組成物に関する。より詳しくは、本発明は熱可塑性樹脂の有する良好な変形特性を損なうことなく、かつ導電性に優れた樹脂組成物に関するものである。
カーボンナノチューブを充填したプラスチック複合材料は、既に多くの提案がなされ一部実用化されている。かかる複合材料の特徴としては、粒子による汚染が少ないこと、アウトガスが少ないこと、表面仕上がりおよび光沢がよいこと、流動性に優れること、反りが少ないこと、リサイクル性に優れること、および樹脂素材の物性を保持できることなどが知られている(非特許文献1参照)。
特に優れたリサイクル性は、環境負荷の低減およびコストの低減において有効な活用が望まれる特徴である。しかしながら、従来熱可塑性樹脂とカーボンナノチューブ(以下CNTと略称する場合がある)からなる樹脂組成物は、プレス成形や押出成形等による成形体ではCNTが2wt%程度で十分な導電性が得られるが、射出成形などの成形時に溶融樹脂に剪断がかかる成形方法で得られた成形体は、かかる低添加量ではブレス成形や押出成形等で得られる様な十分な導電性が得られない。またこの導電性は射出成形時の溶融樹脂の剪断速度、つまり射出速度の依存性が大きくなり、特に剪断速度の速くなる高射出速度にて得られた成形体の導電性は低くなるという問題点がある。したがっていかなる成形体の部位でも均一の導電性を持つ成形体を得るには、プレス成形や押出成形時に導電性が発揮されるCNT量よりはるかに多い量のCNTが必要とされ、そのため樹脂の本来持つ変形特性を損なう結果となっていた。
従来、熱可塑性樹脂とCNTからなる樹脂組成物の知見は多く存在するが、いずれもこの導電性の射出速度依存性のごとき、導電性能のばらつきを改善する十分な知見があるとは言い難いのが現状である。
非特許文献1の185頁表1によれば、ハイペリオン社よりポリカーボネート樹脂をベースレジンとしたCNTのマスターバッチ(グレード名:MB6015−00)が販売されていることは公知である。またハイペリオン社では、マスターバッチのみを販売しCNT単体の販売を現在一切行っていないことも該文献に記載されている。
更に上記文献1の187頁表3には、CNTを3%配合した熱可塑性樹脂の各種特性が示されている。また上記文献1の194〜201頁には、油化電子(株)製のHIPERSITE W1000シリーズが熱可塑性樹脂にCNTを複合化した材料であるとして、該シリーズの紹介記事が記載されている。
熱可塑性樹脂にCNTを配合し、特定の衝撃強さおよび体積抵抗率を満足するポリマー組成物は公知である(特許文献1参照)。より具体的にはかかる組成物は、ポリカーボネート樹脂にCNTを配合したマスターバッチとポリカーボネート樹脂とを二軸押出機で溶融混練することにより製造されている。本文献によれば、鳥の巣形態(いわゆるBNタイプ)のフィブリル(カーボンナノチューブ)に比較して、コーム糸形態のフィブリルを配合したポリカーボネート樹脂組成物は良好な耐衝撃性を有し、したがって絡み合い度が少ないほど組成物の機械的性質は良好になることが公知である。しかしながら本文献は樹脂組成物の導電性能のばらつきを改善することに関して有用な知見を開示していない。
更に、熱可塑性樹脂にCNTを配合した樹脂組成物に関しては、以下が公知である。熱可塑性樹脂にハイペリオン社製のBNタイプのCNTを配合した樹脂組成物及びそれから成形された成形品、並びにかかる成形品を粉砕および再成形する操作を繰り返して得られた成形品が公知である(特許文献2参照)。同様の組成物は、特許文献3、4、および5においても公知である。
またマスターバッチに関しては、ハイペリオン社製のポリカーボネート樹脂マスターバッチの重量平均分子量が19,500であるとの知見がある(特許文献6参照)。粘度平均分子量が約15,000のポリカーボネート樹脂にハイペリオン社製のBNタイプのCNTを配合した樹脂組成物も公知である(特許文献7参照)。
このように非常に多くの熱可塑性樹脂とCNTからなる樹脂組成物は開示されているが、かかる樹脂組成物の導電性能のばらつきを改善する方法については全く記載されていない。
カーボンナノチューブの合成・評価、実用化とナノ分散・配合制御技術 (株)技術情報協会、2003年2月26日発行 特表平8−508534号公報 特開2001−310994号公報 特開2002−175723号公報 特開2002−275276号公報 特開2003−082115号公報 特開2002−214928号公報 特開2000−044815号公報
上述のごとく、カーボンナノチューブを含有する熱可塑性樹脂組成物の高度な導電性を発揮しかつ導電性の射出速度依存性のごとき、導電性能のばらつきを改善するとの技術的課題は未だ知られておらず、その解決方法も開示されていないのが現状である。
本発明の課題は高度な導電性を有し、かつ導電性の射出速度依存性のごとき、導電性能のばらつきを改善した導電性ポリカーボネート樹脂組成物を提供することにある。本発明者らは、鋭意検討を重ねた結果、芳香族ポリエステル樹脂を除く熱可塑性樹脂に、カーボンナノチューブおよび少量の芳香族ポリエステル樹脂を配合した熱可塑性樹脂組成物が上記課題を達成できることを見出し、本発明を完成するに至った。
本発明によれば、上記課題は、(1)芳香族ポリエステル樹脂を除く熱可塑性樹脂(A成分)100重量部に対して、カーボンナノチューブ(B成分)0.1〜15重量部、および芳香族ポリエステル樹脂、好ましくは液晶ポリエステル樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、およびポリエチレンテレフタレート樹脂からなる群より選ばれる少なくとも1種の芳香族ポリエステル樹脂(C成分)0.1〜4重量部、を含有する熱可塑性樹脂組成物により達成される。
本発明の好ましい態様の1つは、(2)ポリカーボネート樹脂(A成分)100重量部あたり、0.0001〜2重量部のリン系安定剤(D成分)、好ましくはその50重量%以上がトリアルキルホスフェートであるリン系安定剤を含有する上記構成(1)に記載の樹脂組成物である。
本発明の好ましい態様の1つは、(3)上記カーボンナノチューブ(B成分)が直径が0.7nm〜100nmであり、かつアスペクト比が5以上であるカーボンナノチューブである上記構成(1)又は(2)に記載の樹脂組成物である。
本発明の好ましい態様の1つは、(4)上記芳香族ポリエステル樹脂がp−ヒドロキシ安息香酸から誘導される繰返し単位と6−ヒドロキシ−2−ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂である上記構成(1)〜(3)のいずれかに記載の樹脂組成物である。
以下、本発明の詳細について説明する。
(A成分:芳香族ポリエステル樹脂を除く熱可塑性樹脂)
本発明で使用するA成分の熱可塑性樹脂は、基本的に限定されるものではなく、特に電子機器の筺体や内部機構部品に用いられる芳香族ポリエステル樹脂を除く熱可塑性樹脂が好ましく使用される。かかる熱可塑性樹脂としては、例えばポリプロピレン樹脂、スチレン系樹脂、変性ポリフェニレンオキサイド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー等の熱可塑性エラストマー等が挙げられる。特に好ましいものとしては、例えばAS樹脂、ABS樹脂、ポリカーボネート樹脂、およびこれらの二種以上の混合物が挙げられる。
本発明のより好適な熱可塑性樹脂としては、ポリカーボネート樹脂を好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上含有する熱可塑性樹脂、最も好ましくは実質的にポリカーボネート樹脂のみからなる熱可塑性樹脂が挙げられる。
かかるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも靭性や変形特性に優れる点からビスフェノールAが特に好ましく、汎用されている。
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の二価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、二価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の二価フェノールは、該ポリカーボネートを構成する二価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPM成分が20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCF成分が20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPA成分が10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCF成分が5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPM成分が20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMC成分が20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
上記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
分岐ポリカーボネート樹脂は、本発明の樹脂組成物の溶融張力を増加させ、かかる特性に基づいて押出成形、発泡成形およびブロー成形における成形加工性を改善できる。結果として寸法精度により優れた、これらの成形法による成形品が得られる。
かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、および4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。その他多官能性芳香族化合物としては、フロログルシン、フロログルシド、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、並びにトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が例示される。中でも1,1,1−トリス(4−ヒドロキシフェニル)エタンおよび1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
分岐ポリカーボネート樹脂における多官能性芳香族化合物から誘導される構成単位は、二価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.03〜1モル%、好ましくは0.07〜0.7モル%、特に好ましくは0.1〜0.4モル%である。
また、かかる分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換反応時の副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、かかる分岐構造の割合については1H−NMR測定により算出することが可能である。
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、およびイコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環式ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環式ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
本発明の樹脂組成物を製造するにあたり、ポリカーボネート樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10であり、さらに好ましくは1.4×10〜2.4×10である。
粘度平均分子量が1×10未満のポリカーボネート樹脂では、実用上十分な靭性や割れ耐性が得られない場合がある。一方、粘度平均分子量が5×10を超えるポリカーボネート樹脂から得られる樹脂組成物は、概して高い成形加工温度を必要とするか、または特殊な成形方法を必要とすることから汎用性に劣る。高い成形加工温度は、樹脂組成物の変形特性の低下を招きやすい。
なお、上記ポリカーボネート樹脂は、その粘度平均分子量が上記範囲外のものを混合して得られたものであってもよい。殊に、上記値(5×10)を超える粘度平均分子量を有するポリカーボネート樹脂は、本発明の樹脂組成物の溶融張力を増加させ、かかる特性に基づいて押出成形、発泡成形およびブロー成形における成形加工性を改善できる。かかる改善効果は、上記分岐ポリカーボネートよりもさらに良好である。
より好適な態様としては、A成分が粘度平均分子量7×10〜2×10のポリカーボネート樹脂(A−3−1成分)、および粘度平均分子量1×10〜3×10のポリカーボネート樹脂(A−3−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10であるポリカーボネート樹脂(A−3成分)(以下、“高分子量成分含有ポリカーボネート樹脂”と称することがある)も使用できる。
かかる高分子量成分含有ポリカーボネート樹脂(A−3成分)において、A−3−1成分の分子量は7×10〜3×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−3−2成分の分子量は1×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。
高分子量成分含有ポリカーボネート樹脂(A−3成分)は上記A−3−1成分とA−3−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−3成分100重量%中、A−3−1成分が2〜40重量%およびA−3−2成分が60〜98重量%であり、より好ましくはA−3−1成分が5〜20重量%およびA−3−2成分が80〜95重量%である。通常ポリカーボネート樹脂の分子量分布は2〜3の範囲である。したがって、本発明のA−3−1成分およびA−3−2成分においてもかかる分子量分布の範囲を満足することが好ましい。尚、かかる分子量分布は、GPC(ゲルパーミエーションクロマトグラフィー)測定により算出される数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)で表されるものであり、該MnおよびMwは標準ポリスチレン換算によるものである。
また、A−3成分の調製方法としては、(1)A−3−1成分とA−3−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−3−1成分および/またはA−3−2成分とを混合する方法などを挙げることができる。
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
尚、本発明の樹脂組成物における粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
(B成分:カーボンナノチューブ)
本発明においてB成分として用いるカーボンナノチューブは直径が0.7nm〜100nmであり、アスペクト比が5以上であるカーボンナノチューブがより好ましい。
本発明においてB成分として用いるカーボンナノチューブは、筒状のグラフェンシートが軸方向に対する放射方向に積層した構造の繊維状物質である。
本発明のカーボンナノチューブの製造法は特に限定されるものではない。アーク放電法、レーザー蒸発法、化学気相成長法(CVD法)、および触媒化学気相成長法(CCVD法)などに代表されるカーボンナノチューブの製造法として公知の方法を利用できる。
本発明のカーボンナノチューブの製造法におけるアーク放電法として、容器内に配置された炭素電極からなる陽極と該陽極に対抗配置された炭素電極からなる陰極との間にアーク放電させ、容器内壁および電極に生成された堆積物を回収する方法が好適に例示される。
本発明のカーボンナノチューブの製造法におけるレーザー蒸発法として、炭素および1種類以上の周期律表VIII族遷移金属の混合物をレーザーパルスによって気化させ、該混合気体を装置内に凝集させることによって製造する方法が好適に例示される。かかるVIII族遷移金属としては、例えば鉄、ニッケル、およびコバルトが好適に例示される。
本発明のカーボンナノチューブの化学気相成長法(CVD法)として、少なくとも1種の遷移金属またはその化合物を触媒として、周期律表の第VI族元素を含有する化合物と、炭素源となる有機化合物または周期律表の第VI族元素を有する有機化合物とを、水素、メタン、または不活性ガスからなるキャリアーガスと共に反応炉に導入して、化学気相成長法により合成する方法が好適に例示される。かかるCVD法においては、遷移金属触媒が担体に担持されて用いられる触媒化学気相成長法(CCVD法)であってもよい。これらの中でも、低コストで大量生産が可能なCVD法およびCCVD法が好ましい。
CVD法およびCCVD法を用いて本発明のカーボンナノチューブを製造するとき、大まかには、直接かかる灰化残渣量となるカーボンナノチューブを合成する方法、並びにカーボンナノチューブ中の触媒残渣を洗浄する方法が利用される。触媒残渣は灰化残渣の源になる。もちろん、前者の方法で得られた灰化残渣量の少ないカーボンナノチューブを洗浄することによりその灰化残渣量が更に低減されてもよい。
上記前者の合成方法では合成時の触媒量を制御することにより、本発明のカーボンナノチューブが得られる。即ち、導入する炭化水素に対する触媒量を制御する。より少ない触媒量でカーボンナノチューブの合成が可能なCCVD法が有利といえる。但しかかる方法は実用的には触媒およびその担体を安定に作用させることが未だ困難な点がある。CVD法では、灰化残渣が3重量%以下となるよう反応炉への供給する炭化水素量と触媒量とを調整する。一方、洗浄法では、酸性化合物、アルカリ性化合物、および超臨界流体などを用いて、カーボンナノチューブ中の触媒残渣の洗浄を行う。かかる洗浄は、カーボンナノチューブの合成後に行っても、また高温熱処理前の素生成品の段階で行ってもよい。洗浄法による灰化残渣の減量は比較的困難であり、カーボンナノチューブのコスト増につながる。したがって好ましい方法は、直接かかる灰化残渣量となるカーボンナノチューブを合成する方法である。
以下、本発明のカーボンナノチューブを合成する好ましい方法である、上記CVD法およびCCVD法について説明する。
(カーボンナノチューブの合成原料)
カーボンナノチューブの合成原料としては、炭化水素、周期表第VIB族元素を含む化合物、これらの混合物等が使用できる。炭化水素としては芳香族系炭化水素が好ましい。芳香族系炭化水素としては、ベンゼン、トルエンおよびキシレンなどのアルキル基置換ベンゼン、クロロベンゼン、ジクロロベンゼン(o−、m−及びp−ジクロロベンゼン)、トリクロロベンゼン、ブロモベンゼン、およびジブロモベンゼンなどのハロゲン化ベンゼン、ナフタレン、並びにメチルナフタレンおよびジメチルナフタレンなどのアルキル基置換ナフタレン化合物などが例示される。
上記周期表第VIB族元素を含む化合物としては、酸素または硫黄を含むものが好ましく、特に酸素を含む有機化合物が好ましい。含酸素化合物としては一酸化炭素、二酸化炭素、アルコール類、ケトン類、フェノール類、エーテル類、アルデヒド類、有機酸類、およびエステル類が好ましい。具体的には、メタノール、エタノール、プロパノール、シクロヘキサノール、アセトン、メチルエチルケトン、アセトフェノン、シクロヘキサノン、フェノール、クレゾール、ホルムアルデヒド、アセトアルデヒド、ギ酸、酢酸、プロピオン酸、シュウ酸、コハク酸、アジピン酸、ジメチルエーテル、ジエチルエーテル、ジオキサン、酢酸メチル、酢酸エチル、およびこれらの誘導体などが挙げられる。また硫黄を含む化合物としては、硫化水素、二硫化炭素、二酸化硫黄、硫黄、チオール、チオエーテル、チオフェン類、およびこれらの誘導体などが挙げられる。これらの含酸素化合物または含硫黄化合物は単独で使用しされてもよく、2種以上を混合して使用してもよい。
(カーボンナノチューブの合成触媒)
カーボンナノチューブの合成時の触媒としては遷移金属からなる超微粒子が用いられる。遷移金属としては鉄、コバルト、ニッケル、イットリウム、チタン、バナジウム、マンガン、クロム、銅、ニオブ、モリブデン、パラジウム、タングステン、および白金などが例示される。これらの中でも鉄、ニッケル、およびモリブデンから選択される少なくとも1種の元素が好ましい。これらの金属は単体で使用されても、これらの金属を含む化合物として使用されてもよい。金属化合物としては、有機化合物、無機化合物、又はこれらを組み合わせたものが好ましい。有機化合物としては、フェロセン、ニッケルセン、コバルトセン、鉄カルボニル、およびアセトナート鉄などが挙げられる。また無機化合物としては、酸化物、硝酸塩、硫酸塩、および塩化物などのいずれの形態でもよい。2種以上の金属を組み合わせて使用してもよい。組合せによっては、より大きな触媒効果が得られる。特に有機金属化合物は、該化合物をガス化させて反応炉内に触媒を供給することが容易であることから、CVD法において好適に利用される。
上記金属または金属化合物の微粒子をそのまま使用してもよいが、これらの微粒子を無機担体に担持させてもよい。無機担体としては、アルミナ、ゼオライト、炭素、マグネシア、カルシア、およびアルミノリン酸塩などが好ましい。特に耐熱性の高いゼオライトが好ましい。かかる無機担体における担持のために孔は、均一であることが好ましく、その孔径は1nm前後であることが好ましい。
触媒の導入方法としては、単独でガス化する方法、炭素原料と混合してからガス化する方法、キャリアーガスで希釈する方法、または炭素原料に溶解して液状で投入する方法など、いずれの方法でもよい。
(カーボンナノチューブ合成時の反応条件)
本発明のカーボンナノチューブを合成する際、より好ましい反応条件は次のとおりである。(a)炉内の滞留時間に関して、物質収支から計算された炭素の滞留時間は、好ましくは2〜10秒、より好ましくは5〜10秒である。(b)炉内温度は、好ましくは1,000〜1,350℃、より好ましくは1,100〜1250℃である。(c)触媒および原料炭素化合物の炉内への投入は、好ましくは300〜450℃、より好ましくは330〜400℃の範囲で予熱してガス状で行う。(d)炉内ガス中の炭素濃度は、好ましくは1〜20容量%、より好ましくは3〜10容量%、更に好ましくは5〜9容量%の範囲に制御する。(e)炉内の圧力は、約98kPaを下限とし、上限を200kPaとすることが好ましい。(f)上記合成原料中における炭素の重量と、上記合成触媒中における遷移金属との重量との合計中、遷移金属の重量は3重量%以下、好ましくは0.1〜3重量%、より好ましくは0.1〜0.8重量%、更に好ましくは0.2〜0.7重量%とする。尚、上記炉内の圧力の下限は98kPaを基本とするが、大気圧中の雰囲気下であれば特に問題がないことを意味する。
更に上記の如き条件で得られたカーボンナノチューブを高温熱処理することにより、吸着した炭化水素を分離し、更に高い温度で熱処理することにより結晶の発達を促進する。かかる高温処理により最終的なカーボンナノチューブを得ることが好ましい。
(g)上記(a)〜(f)の条件により得られた素生成のカーボンナノチューブを、好ましくは1,100〜1,500℃、より好ましくは1,300〜1,450℃の範囲で熱処理し、炭化水素を分離する。(h)次の段階として、2,000〜3,000℃、好ましく2,500〜3,000℃の範囲で高温熱処理して結晶の発達を促進する。上記(a)〜(h)の条件を満足することにより、本発明のカーボンナノチューブを比較的低コストで、安定して製造することができる。
(カーボンナノチューブの構造的特徴について)
本発明のカーボンナノチューブは、グラフェンシートの層数が1層、2層、または2層を超える複数層であってよい。特に2層を超える複数層が好ましい。本発明のカーボンナノチューブの繊維径は、好ましくは0.7〜100nm、より好ましくは7〜100nm、更に好ましくは15〜90nmである。本発明のカーボンナノチューブのアスペクト比は、好ましくは5以上、さらに好ましくは100以上である。アスペクト比は、走査型電子顕微鏡倍率3〜10万倍にて長さと直径を測定し、その比より求めることができる。なお、長さの測定は以下の方法で実施する。まずその観察像をCCDカメラに画像データとして取り込む。得られた画像データを、画像解析装置を使用して、繊維長を算出する。測定本数は5000本以上として行う。また、直径の測定は以下の方法で実施する。まず電子顕微鏡の観察で得られる画像に対して、直径を測定する対象のカーボンナノチューブをランダムに抽出し、中央部に近いところで直径を測定する。なお、断面が円でない場合はその最大値を直径とする。得られた測定値から数平均直径を算出する。近年の電子顕微鏡はその観察画面上の長さを算出する機能が備えられているため、かかる直径も比較的容易に算出可能である。測定本数は1,000本以上として行う。
本発明のカーボンナノチューブにおけるグラフェンシート間の距離(層間距離)は、3.354〜3.44nmの範囲であっても、3.44nmを超える範囲であってもよい。層間距離の上限は好ましくは3.65nm、より好ましくは3.6nmである。かかる層間距離は3.44nm超えることが好ましい。したがって本発明のカーボンナノチューブは、いわゆる黒鉛化指数が正の値をとり実質的に黒鉛構造を有するものであっても、黒鉛化指数が負の値をとり非黒鉛性の多層構造であってもよい。よって、より好ましいのは黒鉛化指数が負の値をとり非黒鉛性の多層構造である。尚、黒鉛化指数に関してはWO2004/070095号パンフレットが参照される。
本発明のカーボンナノチューブは、そのグラフェンシートの各層が円柱軸に対して実質的に同心円構造を有するものであっても、該シートの間隔が繊維全体に渉り変化するものであってもよい。本発明でより好ましいのは、後者のシートの間隔が繊維全体に渉り変化するものである。またグラフェンシートの積層が繊維軸に対して一定の角度で傾斜した構造であってもよい。かかる場合その傾斜角度は、中心線に対して25〜35度の範囲が好ましい。
本発明のカーボンナノチューブは、各層のカイラリティーが無作為に組み合わされたものが好ましく、またグラフェンシート中に6員環でない炭素環構造が存在してもよい。
カーボンナノチューブ(B成分)の含有量は、A成分を100重量部とした場合、0.1〜15重量部であり、1〜12重量部が好ましく、2〜10重量部がより好ましい。0.1重量部未満では、電気伝導性に劣り、15重量部を越える量では、成形加工性および樹脂組成物の機械的強度が損なわれるので好ましくない。
(C成分:芳香族ポリエステル樹脂)
本発明に用いられる芳香族ポリエステル樹脂の一つは、芳香族ジカルボン酸成分およびジオール成分からなる。
芳香族ジカルボン酸成分としてはテレフタル酸、または2,6−ナフタリンジカルボン酸が好ましい。ジオール成分としては、エチレングリコール、テトラメチレングリコール、プロピレングリコール等のアルキレングリコールを例示することができる。
芳香族ジカルボン酸成分は芳香族ジカルボン酸またはそのエステル形成性誘導体に由来することができる。ジオール成分はジオールまはたそのエステル形成性誘導体に由来することができる。
かかる芳香族ポリエステル樹脂としてはポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリブチレンナフタレートが好ましい。
芳香族ポリエステル樹脂はそのジカルボン酸成分および/またはジオール成分の一部を共重合成分で置き換えたものでもよい。かかる共重合成分としては、例えばイソフタル酸、フタル酸;テトラブロムフタル酸、テトラブロムテレフタル酸等の如きハロゲン置換フタル酸;メチルイソフタル酸等の如きアルキル置換フタル酸;2,7−ナフタリンジカルボン酸、1,5−ナフタリンジカルボン酸等の如きナフタリンジカルボン酸;4,4’−ジフェニルジカルボン酸、3,4’−ジフェニルジカルボン酸等の如きジフェニルジカルボン酸;4,4’−ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸;コハク酸、アジピン酸、セバシン酸、アゼライン酸、デカジカルボン酸、シクロヘキサンジカルボン酸等の如き脂肪族または脂環族ジカルボン酸;トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール等の如き脂肪族または脂環族ジオール;ハイドロキノン、レゾルシン等の如きジヒドロキシベンゼン;2,2’−ビス(ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシフェニル)−スルホン等の如きビスフェノール;ビスフェノール類とエチレングリコールの如きグリコールとから得られるエーテルジオールなどの如き芳香族ジオール;ポリオキシテトラメチレングリコール等の如きポリオキシアルキレングリコール;ε-オキシカプロン酸ヒドロキシ安息香酸、ヒドロキシエトキシ安息香酸等の如きオキシカルボン酸等が挙げられる。
これらの共重合成分は1種または2種以上用いることができる。共重合成分が共重合される場合、その割合は全ジカルボン酸成分(オキシカルボン酸はその半分量がカルボン酸として計算)あたり好ましくは20モル%以下、さらに好ましくは10モル%以下である。
かかる芳香族ポリエステル樹脂は、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能もしくはピロメリット酸のごとき四官能のエステル形成能を有する酸またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを全ジカルボン酸成分あたり1.0モル%以下、好ましくは0.5モル%以下、更に好ましくは0.3モル%以下を共重合せしめたものであってもよい。
本発明に用いられる芳香族ポリエステル樹脂の一つは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種または2種以上の化合物由来の単位構成成分として有する全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂である。より具体的には、
1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される芳香族ポリエステル樹脂、
2)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される芳香族ポリエステル樹脂、
3)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される芳香族ポリエステルアミド樹脂、
4)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにd) 芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される芳香族ポリエステルアミド樹脂
が挙げられるが、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上から合成される芳香族ポリエステル樹脂が好ましい。
更に上記の構成成分に必要に応じ分子量調整剤を併用しても良い。
上記の芳香族ポリエステル樹脂の合成に用いられる具体的化合物の好ましい例は、2,6−ナフタレンジカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン及び6−ヒドロキシ−2−ナフトエ酸等のナフタレン化合物、4,4’−ジフェニルジカルボン酸、4,4’−ジヒドロキシビフェニル等のビフェニル化合物、p−ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p−アミノフェノール及びp−フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1−フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに下記一般式(1)、(2)又は(3)で表される化合物である。中でも、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が特に好ましく、両者を混合してなる芳香族ポリエステル樹脂が好適である。両者の割合は前者が90〜50モル%の範囲が好ましく、80〜65モル%の範囲がより好ましく、後者が10〜50モル%の範囲が好ましく、20〜35モル%の範囲がより好ましい。
Figure 2009001740
Figure 2009001740
Figure 2009001740
(但し、Xは炭素数1〜4のアルキレン基およびアルキリデン基、−O−、−SO−、−SO−、−S−、並びに−CO−よりなる群より選ばれる基であり、Yは−(CH−(n=1〜4)、および−O(CHO−(n=1〜4)よりなる群より選ばれる基である。)
さらに、上記の全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂が液晶ポリエステル樹脂であることが好ましい。
液晶ポリエステル樹脂とは、サーモトロピック液晶ポリエステル樹脂であり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる配列状態の形態はネマチック型、スメチック型、コレステリック型、およびディスコチック型のいずれの形態であってもよく、また2種以上の形態を呈するものであってもよい。更に液晶ポリエステル樹脂の構造としては主鎖型、側鎖型、および剛直主鎖屈曲側鎖型などのいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステル樹脂である。
上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明のポリマーは直交偏光子の間で検査したときにたとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。
又、本発明に使用される液晶ポリエステル樹脂は、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレート由来単位が存在してもよい。この場合のアルキル基の炭素数は2〜4である。
本発明において使用する液晶ポリエステル樹脂の基本的な製造方法は、特に制限がなく、公知の液晶ポリエステル樹脂の重縮合法に準じて製造できる。上記の液晶ポリエステル樹脂はまた、60℃でペンタフルオロフェノールに0.1重量%濃度で溶解したときに、少なくとも約2.0dl/g、たとえば約2.0〜10.0dl/gの対数粘度(IV値)を一般に示す。
芳香族ポリエステル樹脂は、1種類または2種類以上配合して用いることができる。
芳香族ポリエステル樹脂(C成分)の含有量は、A成分を100重量部とした場合、0.1〜4重量部であり、0.2〜2重量部が好ましく、0.5〜1重量部がより好ましい。0.1重量部未満では十分な導電性が得られず、4重量部を越える量では、速い射出速度で十分な導電性が得られないので好ましくない。
(D成分:リン系安定剤)
本発明の樹脂組成物は、更にリン系安定剤を含有することが好ましい。かかるリン系安定剤は製造時または成形加工時の熱安定性を大きく向上させる。その結果、機械的特性、色相、および成形安定性を向上させる。かかるリン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましく、その100重量%中50重量%以上がトリアルキルホスフェートおよび/またはアシッドホスフェート化合物であるリン系安定剤、特にその100重量%中50重量%以上がトリアルキルホスフェートであるリン系安定剤が好ましく用いられる。
尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートのアルキル基の炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。
アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でもアルキル基の炭素数が10以上、より好ましくは14〜22の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。
その他ホスファイト化合物としては、例えば、トリデシルホスファイトの如きトリアルキルホスファイト、ジデシルモノフェニルホスファイトの如きジアルキルモノアリールホスファイト、モノブチルジフェニルホスファイトの如きモノアルキルジアリールホスファイト、トリフェニルホスファイトおよびトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトの如きトリアリールホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、およびビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトなどのペンタエリスリトールホスファイト、並びに2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトおよび2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイトなどの環状ホスファイトが例示される。
ホスホナイト化合物としては、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、およびビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく例示され、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、およびビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。第3級ホスフィンとしては、例えばトリフェニルホスフィンが例示される。
リン系安定剤の含有量は、芳香族ポリエステル樹脂を除く熱可塑性樹脂(A成分)100重量部を基準として好ましくは0.0001〜2重量部、より好ましくは0.01〜1重量部、更に好ましくは0.05〜0.5重量部である。
(その他の成分)
本発明の樹脂組成物には、通常熱可塑性樹脂に配合される各種の添加剤、強化剤、および他のポリマーなどを更に配合することができる。
(充填材)
本発明の樹脂組成物には、強化フィラーとして公知の各種充填材を配合することができる。かかる充填材としては、各種の繊維状充填材、板状充填材、および粒状充填材が利用できる。ここで、繊維状充填材はその形状が繊維状(棒状、針状、またはその軸が複数の方向に伸びた形状をいずれも含む)であり、板状充填材はその形状が板状(表面に凹凸を有するものや、板が湾曲を有するものを含む)である充填材である。粒状充填材は、不定形状を含むこれら以外の形状の充填材である。
上記繊維状や板状の形状は充填材の形状観察より明らかな場合が多いが、例えばいわゆる不定形との差異としては、そのアスペクト比が3以上であるものは繊維状や板状といえる。
板状充填材としては、ガラスフレーク、タルク、マイカ、カオリン、メタルフレーク、カーボンフレーク、およびグラファイト、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した板状充填材などが好ましく例示される。その粒径は0.1〜300μmの範囲が好ましい。かかる粒径は、10μm程度までの領域は液相沈降法の1つであるX線透過法で測定された粒子径分布のメジアン径(D50)による値をいい、10〜50μmの領域ではレーザー回折・散乱法で測定された粒子径分布のメジアン径(D50)による値をいい、50〜300μmの領域では振動式篩分け法による値である。かかる粒径は樹脂組成物中での粒径である。板状充填材は、各種のシラン系、チタネート系、アルミネート系、およびジルコネート系などのカップリング剤で表面処理されてもよく、またオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂などの各種樹脂や高級脂肪酸エステルなどにより集束処理されるか、または圧縮処理された造粒物であってもよい。
繊維状充填材は、その繊維径が0.1〜20μmの範囲が好ましい。繊維径の上限は13μmが好ましく、10μmが更に好ましい。一方繊維径の下限は1μmが好ましい。
ここでいう繊維径とは数平均繊維径を指す。尚、かかる数平均繊維径は、成形品を溶剤に溶解するかもくしは樹脂を塩基性化合物で分解した後に採取される残渣、およびるつぼで灰化を行った後に採取される灰化残渣を走査電子顕微鏡観察した画像から算出される値である。
かかる繊維状充填材としては、例えば、ガラスファイバー、ガラスミルドファイバー、カーボンファイバー、カーボンミルドファイバー、メタルファイバー、アスベスト、ロックウール、セラミックファイバー、スラグファイバー、チタン酸カリウムウィスカー、ボロンウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、ワラストナイト、ゾノトライト、パリゴルスカイト(アタパルジャイト)、およびセピオライトなどの繊維状無機充填材、アラミド繊維、ポリイミド繊維およびポリベンズチアゾール繊維などの耐熱有機繊維に代表される繊維状耐熱有機充填材、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した繊維状充填材などが例示される。異種材料を表面被覆した充填材としては、例えば金属コートガラスファイバー、金属コートガラスフレーク、酸化チタンコートガラスフレーク、および金属コートカーボンファイバーなどが例示される。異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。
ここで繊維状充填材とは、アスペクト比が3以上、好ましくは5以上、より好ましくは10以上である繊維状の充填材をいう。アスペクト比の上限は10,000程度であり、好ましくは200である。かかる充填材のアスペクト比は樹脂組成物中での値である。繊維状充填材も上記板状充填材と同様に各種のカップリング剤で表面処理されてもよく、各種の樹脂などにより集束処理され、また圧縮処理により造粒されてもよい。
かかる充填材の含有量は、100重量部のA成分を基準として200重量部以下、好ましくは100重量部以下、更に好ましくは50重量部以下、特に好ましくは30重量部以下である。
(離型剤)
本発明の樹脂組成物には、必要に応じて離型剤を配合することができる。本発明の樹脂組成物には高い寸法精度が要求されることが多い。したがって樹脂組成物は離型性に優れることが好ましい。かかる離型剤としては公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1−アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、および蜜蝋などを挙げることができる。かかる離型剤は樹脂組成物100重量%中0.005〜2重量%が好ましい。
本発明の脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。脂肪酸エステルにおいて、酸価は20以下(実質的に0を取り得る)、水酸基価は0.1〜30の範囲、ヨウ素価は10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。
(ヒンダードフェノール系安定剤およびその他の酸化防止剤)
ヒンダードフェノール系安定剤は、樹脂組成物の耐熱老化を防止するのに効果がある。本発明の樹脂組成物は高熱雰囲気下で利用される場合もあることから、かかる場合に特に好適に配合される。ヒンダードフェノール系安定剤としては、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、およびテトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。中でもオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましく利用される。
また上記ヒンダードフェノール系安定剤以外の他の酸化防止剤を使用することができる。かかる他の酸化防止剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)、並びにペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有系安定剤が挙げられる。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組み合わせて使用することができる。これら安定剤の含有量は、樹脂組成物100重量%中、好ましくは0.0001〜1重量%、より好ましくは0.005〜0.5重量%である。
(加水分解改良剤)
本発明の樹脂組成物は高熱雰囲気下で利用される場合もあることから、その耐加水分解性の改良が求められる場合がある。かかる場合にポリカーボネート樹脂の加水分解改良剤として従来知られた化合物を、本発明の目的を損なわない範囲において配合することができる。かかる化合物としては、エポキシ化合物、オキセタン化合物、シラン化合物およびホスホン酸化合物などが例示され、特にエポキシ化合物およびオキセタン化合物が好適に例示される。エポキシ化合物としては、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ化合物、および3−グリシジルプロポキシ−トリエトキシシランに代表される珪素原子含有エポキシ化合物が好適に例示される。かかる加水分解改良剤は、樹脂組成物100重量%中1重量%以下とすることが好ましい。
(紫外線吸収剤)
本発明の樹脂組成物に耐候性の改良や紫外線吸収性が要求される場合、紫外線吸収剤を配合することが好ましい。紫外線吸収剤としては、紫外線吸収剤として公知のベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ヒドロキシフェニルトリアジン系化合物、環状イミノエステル系化合物、およびシアノアクリレート系化合物などが例示される。より具体的には、例えば2−(2H−ベンゾトリアゾール−2−イル)−p−クレゾール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−[5−クロロ(2H)−ベンゾトリアゾール−2−イル]−4−メチル−6−tert−ブチルフェノール、2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール]、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]フェノール、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および1,3−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]−2,2−ビス[[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル]プロパンなどが例示される。さらにビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート等に代表されるヒンダードアミン系の光安定剤も使用することが可能である。かかる紫外線吸収剤、光安定剤の含有量は、樹脂組成物100重量%中0.01〜5重量%が好ましい。
(帯電防止剤)
本発明の樹脂組成物に帯電防止剤を併用することもできる。かかる帯電防止剤としては、例えばポリエーテルエステルアミド、グリセリンモノステアレート、ナフタリンスルホン酸ホルムアルデヒド高縮合物アルカリ(土類)金属塩、ドデシルベンゼンスルホン酸アルカリ(土類)金属塩、ドデシルベンゼンスルホン酸アンモニウム塩、ドデシルベンゼンスルホン酸ホスホニウム塩、無水マレイン酸モノグリセライド、および無水マレイン酸ジグリセライド等が挙げられる。かかる帯電防止剤の含有量は、樹脂組成物100重量%中0.5〜20重量%が好ましい。
(その他付加的成分)
上記以外にも本発明の樹脂組成物には、摺動剤(例えばPTFE粒子および高分子量ポリエチレン粒子など)、着色剤(例えばカーボンブラックおよび酸化チタンなどの顔料、並びに染料)、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、無機もしくは有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、および微粒子酸化亜鉛など)、赤外線吸収剤(ATO微粒子、ITO微粒子、ホウ化ランタン微粒子、ホウ化タングステン微粒子、およびフタロシアニン系金属錯体など)、フォトクロミック剤、並びに蛍光増白剤などが配合できる。
(樹脂組成物の製造)
本発明の樹脂組成物の製造に当たっては、その製造方法は特に限定されるものではない。しかしながら二軸押出機を使用してA成分〜D成分およびその他成分を溶融混練することが好ましい。
二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。その他、FCM(Farrel社製、商品名)、Ko−Kneader(Buss社製、商品名)、およびDSM(Krauss−Maffei社製、商品名)などの溶融混練機も具体例として挙げることができる。上記の中でもZSKに代表されるタイプがより好ましい。かかるZSKタイプの二軸押出機においてそのスクリューは、完全噛合い型であり、スクリューは長さとピッチの異なる各種のスクリューセグメント、および幅の異なる各種のニーディングディスク(またそれに相当する混練用セグメント)からなるものである。
二軸押出機においてより好ましい態様は次の通りである。スクリュー形状は1条、2条、および3条のネジスクリューを使用することができ、特に溶融樹脂の搬送能力やせん断混練能力の両方の適用範囲が広い2条ネジスクリューが好ましく使用できる。二軸押出機におけるスクリューの長さ(L)と直径(D)との比(L/D)は、20〜50が好ましく、更に28〜42が好ましい。L/Dが大きい方が均質な分散が達成されやすい一方、大きすぎる場合には熱劣化により樹脂の分解が起こりやすい。スクリューには混練性を上げるためのニーディングディスクセグメント(またはそれに相当する混練セグメント)から構成された混練ゾーンを1個所以上有することが必要であり、1〜3箇所有することが好ましい。
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。またカーボンナノチューブの分散性を高めたり、樹脂組成物中の不純物を極力除去するため、水、有機溶剤、および超臨界流体などの添加を行ってもよい。更に押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
B成分〜C成分、任意のD成分およびその他添加剤(以下の例示において単に“添加剤”と称する)の押出機への供給方法は特に限定されないが、以下の方法が代表的に例示される。(i)添加剤をポリカーボネート樹脂とは独立して押出機中に供給する方法。(ii)添加剤とポリカーボネート樹脂粉末とをスーパーミキサーなどの混合機を用いて予備混合した後、押出機に供給する方法。(iii)添加剤とポリカーボネート樹脂とを予め溶融混練してマスターペレット化する方法。
上記方法(ii)の1つは、必要な原材料を全て予備混合して押出機に供給する方法である。また他の方法は、添加剤が高濃度に配合されたマスター剤を作成し、該マスター剤を独立にまたは残りのポリカーボネート樹脂等と更に予備混合した後、押出機に供給する方法である。尚、該マスター剤は、粉末形態および該粉末を圧縮造粒などした形態のいずれも選択できる。また他の予備混合の手段は、例えばナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などがあるが、ヘンシェルミキサーのような高速撹拌型の混合機が好ましい。更に他の予備混合の方法は、例えばポリカーボネート樹脂と添加剤を溶媒中に均一分散させた溶液とした後、該溶媒を除去する方法である。
二軸押出機より押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。更に外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
(樹脂組成物の好適な製造方法)
上述のとおり、本発明によれば、A成分100重量部当たり、B成分0.1〜15重量部、C成分0.1〜4重量部、および任意にD成分0.0001〜2重量部を混合することを特徴とする製造方法が提供される。かかる製造方法で利用されるA成分、B成分、C成分、およびD成分の詳細は上述のとおりである。かかる混合には、樹脂組成物の製造方法で説明したとおり、ベント式二軸押出機が最も好適に利用できる。
かかる溶融混練では、シリンダ温度を好ましくは250〜320℃、より好ましくは270〜310℃に設定し、スクリュー回転数を好ましくは60〜500rpm、より好ましくは70〜200rpmに設定する。
(本発明の樹脂組成物からなる成形品について)
上記の如く得られた本発明の樹脂組成物は通常上記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、二軸押出機で溶融混練された樹脂組成物を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。
かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。より好ましいのは低射出速度でも成形が可能な射出圧縮成形および射出プレス成形である。
また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物は回転成形やブロー成形などにより成形品にしてもよい。
更に本発明の樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常の樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。
本発明の樹脂組成物は、熱可塑性樹脂にカーボンナノチューブと少量の芳香族ポリエステル樹脂を配合することにより、優れた導電性と改善された溶融熱安定性とを有するものである。かかる特性によって、樹脂組成物は幅広い成形条件に対応し、かつその成形は割れ耐性に優れることから、幅広い用途に適用可能な導電性材料が提供できる。かかる用途としては、例えばパソコン、ノートパソコン、ゲーム機(家庭用ゲーム機、業務用ゲーム機、パチンコ、およびスロットマシーンなど)、ディスプレー装置(LCD、有機EL、電子ペーパー、プラズマディスプレー、およびプロジェクタなど)、送電部品(誘電コイル式送電装置のハウジングに代表される)が例示される。かかる用途としては、例えばプリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)が例示される。かかる用途としては、VTRカメラ、光学フィルム式カメラ、デジタルスチルカメラ、カメラ用レンズユニット、防犯装置、および携帯電話などの精密機器が例示される。特に本発明の樹脂組成物は、カメラ鏡筒、デジタルカメラの如きデジタル画像情報処理装置の筐体、カバー、および枠に好適に利用される。
その他更に本発明の樹脂組成物は、マッサージ機や高酸素治療器などの医療機器;画像録画機(いわゆるDVDレコーダーなど)、オーディオ機器、および電子楽器などの家庭電器製品;パチンコやスロットマシーンなどの遊技装置;並びに精密なセンサーを搭載する家庭用ロボットなどの部品にも好適なものである。
また本発明の樹脂組成物は、各種の車両部品、電池、発電装置、回路基板、集積回路のモールド、光学ディスク基板、ディスクカートリッジ、光カード、ICメモリーカード、コネクター、ケーブルカプラー、電子部品の搬送用容器(ICマガジンケース、シリコンウエハー容器、ガラス基板収納容器、およびキャリアテープなど)、帯電防止用または帯電除去部品(電子写真感光装置の帯電ロールなど)、並びに各種機構部品(ギア、ターンテーブル、ローター、およびネジなど。マイクロマシン用機構部品を含む)に利用可能である。
したがって本発明の樹脂組成物は、OA機器分野、電気電子機器分野などの各種工業用途に極めて有用であり、その奏する工業的効果は極めて大である。
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。尚、評価としては以下の項目について実施した。
(I)評価項目
(I−1)表面抵抗率
幅45mm×長さ80mm×厚み2mmの角板をシリンダー温度300℃、金型温度80℃、射速20mm/sec、および成形サイクル約60秒の条件で射出成形により成形した。パージ直後から2、4、6、8、および10ショット目の成形品を抜き出し、温度23℃、相対湿度50%の雰囲気で24時間放置した後、かかる5つの角板をデジタル絶縁計(東亜電波工業(株)製)および抵抗率計(三菱化学(株)製)で表面抵抗率を測定し、その平均値を算出した。なお、1.0×1013Ω以下の場合表面抵抗率は良好であるといえる。
(I−2)引張破断伸度
ISO527−1および527−2に準拠して引張破断伸度を測定した。試験形状は、長さ175mm×幅10mm×厚み4mmであった。上記と同様に5本のサンプルの平均値を算出した。なお、試験速度は5mm/minで行なった。
(II)樹脂組成物および成形品の製造
表記載の配合割合からなる樹脂組成物を以下の要領で作成した。尚、説明は以下の表中の記号にしたがって説明する。表に記載成分をV型ブレンダーにて混合して混合物を作成した。尚、少量の添加剤は、その含有率が10重量%となる予備混合物を、スーパーミキサーを用いて製造した。かかる複数の予備混合物を残りと共にV型ブレンダーで均一に混合した。
スクリュー径30mmのベント式二軸押出機((株)日本製鋼所TEX−30XSST)を用いて、V型ブレンダーによる混合物を最後部の第1投入口に供給した。かかる押出機は、第1供給口から第2供給口の間にニーディングディスクによる混練ゾーンがあり、その直後に開放されたベント口が設けられていた。ベント口の長さはスクリュー径(D)に対して約2Dであった。かかるベント口の後にサイドフィーダーが設置され、サイドフィーダー以後に更にニーディングディスクによる混練ゾーンおよびそれに続くベント口が設けられていた。かかる部分のベント口の長さは約1.5Dであり、その部分では真空ポンプを使用し約3kPaの減圧度とした。押出は、シリンダー温度250℃〜300℃(スクリュー根元のバレル〜ダイスまでほぼ均等に上昇)、スクリュー回転数180rpm、および時間当りの吐出量20kgの条件で行った。押出されたストランドを水浴において冷却した後、ペレタイザーで切断しペレット化した。
得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、いずれもシリンダー温度260℃、金型温度60℃、射速20mm/sec、並びに成形サイクル約60秒の条件で、上記評価項目の試験片を作成した。
上記実施例および比較例で使用した原材料は、下記のとおりである。
(A成分:芳香族ポリエステル樹脂を除く熱可塑性樹脂)
A−1:粘度平均分子量22,500の直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製パンライトL−1225WP(商品名))
A−2:粘度平均分子量20,000の直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製パンライトL−1225WX(商品名))
(B成分:カーボンナノチューブ)
B−1:直径20nm、アスペクト比5以上のカーボンナノチューブ濃度が15重量%であるカーボンナノチューブ配合用濃縮物(ハイペリオン社製カーボンナノチューブマスターMB6015−00(商品名))
B−2:直径15nm、アスペクト比5以上のカーボンナノチューブ濃度が8重量%であるカーボンナノチューブ配合用濃縮物((株)ジェムコ社製カーボンナノチューブマスターPC(T)−JCNT−08AK(商品名))
(C成分:芳香族ポリエステル樹脂)
C−1:全芳香族ポリエステル樹脂(ポリプラスチックス(株)製 ベクトラA−950RX(商品名))
C−2:ポリエチレンテレフタレート(帝人化成(株)製 TR−4550BH(商品名))
C−3:ポリブチレンテレフタレート(ウィンテックポリマー(株)製 ジュラネックス300FP(商品名)
C−4:ポリブチレンナフタレート(帝人化成(株)製 TQB−T(商品名))
(D成分:リン系安定剤)
D−1:トリメチルホスフェート(大八化学工業(株)製TMP(商品名))
D−2:ジステアリルペンタエリスリトールジホスファイト(旭電化工業(株)製 アデカスタブ PEP−8(商品名))
結果を表1および表2に示す。
Figure 2009001740
Figure 2009001740
表1および表2の結果から明らかなように、本発明によれば熱可塑性樹脂とカーボンナノチューブからなる樹脂組成物の引張破断伸度の如き変形特性を改善され、よってこれらの特性と良好な電気伝導性とを併有する樹脂組成物が達成されていることがわかる。

Claims (7)

  1. (A)芳香族ポリエステル樹脂を除く熱可塑性樹脂(A成分)100重量部に対して、(B)カーボンナノチューブ(B成分)0.1〜15重量部、および(C)芳香族ポリエステル樹脂(C成分)0.1〜4重量部を含有することを特徴とする導電性熱可塑性樹脂組成物。
  2. A成分100重量部当たり、(D)リン系安定剤(D成分)0.0001〜2重量部を含有する請求項1に記載の導電性熱可塑性樹脂組成物。
  3. A成分がポリカーボネート樹脂である請求項1または2に記載の導電性熱可塑性樹脂組成物。
  4. B成分が直径0.7nm〜100nmでありかつ、アスペクト比が5以上であるカーボンナノチューブである請求項1〜3のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  5. C成分が液晶ポリエステル樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、およびポリエチレンテレフタレート樹脂からなる群より選ばれる少なくとも1種の芳香族ポリエステル樹脂である請求項1〜4のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  6. D成分がその50重量%以上がトリアルキルホスフェートであるリン系安定剤である請求項2〜5のいずれか1項に記載の導電性熱可塑性樹脂組成物。
  7. C成分がp−ヒドロキシ安息香酸から誘導される繰返し単位と6−ヒドロキシ−2−ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂である請求項1〜6のいずれか1項に記載の導電性熱可塑性樹脂組成物。
JP2007166195A 2007-06-25 2007-06-25 導電性の安定した熱可塑性樹脂組成物 Pending JP2009001740A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007166195A JP2009001740A (ja) 2007-06-25 2007-06-25 導電性の安定した熱可塑性樹脂組成物
CN2008101288966A CN101333338B (zh) 2007-06-25 2008-06-24 导电性稳定的热塑性树脂组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166195A JP2009001740A (ja) 2007-06-25 2007-06-25 導電性の安定した熱可塑性樹脂組成物

Publications (1)

Publication Number Publication Date
JP2009001740A true JP2009001740A (ja) 2009-01-08

Family

ID=40196230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166195A Pending JP2009001740A (ja) 2007-06-25 2007-06-25 導電性の安定した熱可塑性樹脂組成物

Country Status (2)

Country Link
JP (1) JP2009001740A (ja)
CN (1) CN101333338B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027780A1 (ja) 2009-09-04 2011-03-10 宇部興産株式会社 導電性熱可塑性樹脂組成物
JP2011068773A (ja) * 2009-09-25 2011-04-07 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物及びその成形体
JP2011084715A (ja) * 2009-09-16 2011-04-28 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2011184618A (ja) * 2010-03-10 2011-09-22 Teijin Chem Ltd 導電性樹脂組成物からなる成形品
JP2012241089A (ja) * 2011-05-18 2012-12-10 Teijin Chem Ltd ハイサイクル成形性熱可塑性樹脂組成物
JP2015140362A (ja) * 2014-01-27 2015-08-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその製造方法
JP2017512847A (ja) * 2014-08-29 2017-05-25 エルジー・ケム・リミテッド 機械的物性が改善された複合材及びこれを含有する成形品

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781471B (zh) * 2009-01-16 2013-04-24 鸿富锦精密工业(深圳)有限公司 复合材料、采用该复合材料的电子产品外壳及其制作方法
CN101508835B (zh) * 2009-03-12 2012-08-22 华南理工大学 无卤阻燃抗静电聚碳酸酯组合物及其制备方法
KR101344584B1 (ko) * 2010-09-17 2013-12-26 (주)엘지하우시스 탄소나노튜브를 이용한, ntc 특성이 감소된 ptc 소자용 전도성 중합체조성물
CN102222542A (zh) * 2011-05-05 2011-10-19 常州鸿泽澜线缆有限公司 一种复合材料电缆芯
CN103145977B (zh) * 2013-03-08 2015-09-09 苏州东南药业股份有限公司 一种mPEG2000-DSPE钠盐的制备方法
JP6979388B2 (ja) * 2018-04-27 2021-12-15 ポリプラスチックス株式会社 帯電防止成形品の製造方法
EP3766938A1 (en) 2019-07-19 2021-01-20 SABIC Global Technologies B.V. Poly(aliphatic ester)-polycarbonate filled compositions
CN114316558B (zh) * 2021-12-20 2023-04-25 杨劲光 一种碳纳米管浓缩组合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287143A (ja) * 1992-04-09 1993-11-02 Polyplastics Co 導電性熱可塑性樹脂組成物構造体及びその製造法
JPH0641400A (ja) * 1992-07-27 1994-02-15 Toray Ind Inc 液晶ポリエステル樹脂組成物
JP2001031859A (ja) * 1999-07-22 2001-02-06 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2002338794A (ja) * 2001-05-21 2002-11-27 Toray Ind Inc 導電性樹脂組成物およびそれからなる成形材料または成形体
JP2003082219A (ja) * 2001-09-17 2003-03-19 Teijin Chem Ltd 樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176142C (zh) * 2002-03-14 2004-11-17 四川大学 聚合物/碳纳米管复合粉体及其固相剪切分散的制备方法
JP4217878B2 (ja) * 2002-12-27 2009-02-04 ライオン株式会社 導電性熱可塑性樹脂組成物の製造方法
JP4746861B2 (ja) * 2004-10-05 2011-08-10 出光興産株式会社 芳香族ポリカーボネート樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
CN1757674A (zh) * 2004-10-10 2006-04-12 四川大学 碳纳米管/聚碳酸酯/聚乙烯原位微纤化复合材料的制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287143A (ja) * 1992-04-09 1993-11-02 Polyplastics Co 導電性熱可塑性樹脂組成物構造体及びその製造法
JPH0641400A (ja) * 1992-07-27 1994-02-15 Toray Ind Inc 液晶ポリエステル樹脂組成物
JP2001031859A (ja) * 1999-07-22 2001-02-06 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2002338794A (ja) * 2001-05-21 2002-11-27 Toray Ind Inc 導電性樹脂組成物およびそれからなる成形材料または成形体
JP2003082219A (ja) * 2001-09-17 2003-03-19 Teijin Chem Ltd 樹脂組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027780A1 (ja) 2009-09-04 2011-03-10 宇部興産株式会社 導電性熱可塑性樹脂組成物
JP2011084715A (ja) * 2009-09-16 2011-04-28 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2014145084A (ja) * 2009-09-16 2014-08-14 Kaneka Corp 樹脂組成物
JP2011068773A (ja) * 2009-09-25 2011-04-07 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物及びその成形体
JP2011184618A (ja) * 2010-03-10 2011-09-22 Teijin Chem Ltd 導電性樹脂組成物からなる成形品
JP2012241089A (ja) * 2011-05-18 2012-12-10 Teijin Chem Ltd ハイサイクル成形性熱可塑性樹脂組成物
JP2015140362A (ja) * 2014-01-27 2015-08-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその製造方法
JP2017512847A (ja) * 2014-08-29 2017-05-25 エルジー・ケム・リミテッド 機械的物性が改善された複合材及びこれを含有する成形品

Also Published As

Publication number Publication date
CN101333338A (zh) 2008-12-31
CN101333338B (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4907899B2 (ja) カーボンナノチューブを含有する樹脂組成物、およびカーボンナノチューブ配合用濃縮物
JP5154820B2 (ja) 導電性樹脂組成物
JP2009001740A (ja) 導電性の安定した熱可塑性樹脂組成物
JP2009197056A (ja) 導電性樹脂成形用材料
JP5558661B2 (ja) 導電性樹脂組成物
JP5323701B2 (ja) 難燃性樹脂組成物
JP6092499B2 (ja) 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP5296622B2 (ja) 導電性樹脂組成物からなる成形品
JP2008255214A (ja) 芳香族ポリカーボネート樹脂組成物
JP5436219B2 (ja) 樹脂組成物
JP5592126B2 (ja) 導電性樹脂組成物からなる成形品
JP2013018938A (ja) 難燃性ポリカーボネート樹脂組成物およびその成形品
JP2005320515A (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP2007100023A (ja) 難燃性芳香族ポリカーボネート樹脂組成物
JP5723892B2 (ja) 芳香族ポリカーボネート樹脂組成物およびその成形品
JP5679635B2 (ja) 導電性樹脂組成物からなる成形品
KR20140097278A (ko) 하드 디스크 드라이브 및 반도체 용도에서 유용한 청정 폴리카보네이트 재료
JP2008163270A (ja) ポリエステル系樹脂組成物
JP2014152210A (ja) 強化ポリカーボネート樹脂組成物
JP6110197B2 (ja) 導電性ポリカーボネート樹脂組成物
JP5767056B2 (ja) ポリカーボネート樹脂組成物
JP5480687B2 (ja) 表面外観が向上した芳香族ポリカーボネート樹脂組成物
JP5855844B2 (ja) ポリカーボネート樹脂組成物
JP3400743B2 (ja) 熱可塑性樹脂組成物及びその製造方法
JP2001234083A (ja) 制振性熱可塑性樹脂組成物および成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605