WO2011024250A1 - 非水電解液型リチウムイオン二次電池の製造方法 - Google Patents

非水電解液型リチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2011024250A1
WO2011024250A1 PCT/JP2009/064717 JP2009064717W WO2011024250A1 WO 2011024250 A1 WO2011024250 A1 WO 2011024250A1 JP 2009064717 W JP2009064717 W JP 2009064717W WO 2011024250 A1 WO2011024250 A1 WO 2011024250A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ion secondary
lithium ion
secondary battery
additive
Prior art date
Application number
PCT/JP2009/064717
Other languages
English (en)
French (fr)
Inventor
浩二 高畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980161097.1A priority Critical patent/CN102549831B/zh
Priority to KR1020127007509A priority patent/KR101364828B1/ko
Priority to PCT/JP2009/064717 priority patent/WO2011024250A1/ja
Priority to US13/390,565 priority patent/US8597837B2/en
Priority to JP2011528533A priority patent/JP5408509B2/ja
Publication of WO2011024250A1 publication Critical patent/WO2011024250A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for producing a lithium ion secondary battery excellent in high temperature storage stability.
  • a lithium ion secondary battery includes positive and negative electrodes capable of reversibly occluding and releasing lithium ions, and an electrolyte interposed between the two electrodes, and the lithium ions in the electrolyte travel between the electrodes.
  • Patent documents 1 to 3 can be cited as technical documents related to the high temperature storage stability of the battery.
  • an electrolyte component (nonaqueous solvent, supporting salt, etc.) undergoes a reductive decomposition reaction on the negative electrode surface, which may deteriorate the battery.
  • an electrolyte component nonaqueous solvent, supporting salt, etc.
  • a reductive decomposition reaction on the negative electrode surface, which may deteriorate the battery.
  • SEI Solid Electrolyte Interface
  • Patent Document 1 describes that by adding a predetermined additive to the electrolytic solution, the rate of increase in internal resistance can be reduced and high-temperature storage stability can be improved.
  • the effect of improving the high-temperature storage stability may be insufficient or unstable by simply adding such an additive to the electrolytic solution.
  • An object of the present invention is to provide a method for stably producing a lithium ion secondary battery excellent in high temperature storage stability.
  • the present inventor after assembling a lithium ion secondary battery using an electrolytic solution containing a certain kind of additive, treating the assembled battery under specific conditions, thereby stabilizing a higher level of high-temperature storage stability. As a result, the present invention was completed.
  • a method for producing a lithium ion secondary battery comprising positive and negative electrodes capable of inserting and extracting lithium ions, and a non-aqueous electrolyte containing a lithium salt as a supporting salt in an organic solvent.
  • the manufacturing method includes a step of assembling a lithium ion secondary battery using the electrode and the non-aqueous electrolyte.
  • the non-aqueous electrolyte is at least one selected from carboxylic anhydride and dicarboxylic acid as additive A; and additive B is vinylene carbonate (VC), vinyl And at least one selected from ethylene carbonate (VEC), ethylene sulfite, and fluoroethylene carbonate.
  • the manufacturing method also includes a step of performing initial charging on the assembled battery, and an aging process by holding the battery at a temperature of 35 ° C. or higher for 6 hours or longer.
  • the stability of the SEI film formed on the negative electrode surface is improved and the internal resistance is reduced as compared with that before the aging treatment. Can be reduced.
  • the durability of the battery against subsequent high-temperature storage can be enhanced. Therefore, according to this manufacturing method, a lithium ion secondary battery excellent in high-temperature storage stability can be provided.
  • the aging treatment step is performed by holding the battery at the temperature for 40 to 50 hours.
  • the stability of the SEI film is further improved, and a lithium ion secondary battery that is superior in high-temperature storage stability can be provided.
  • the aging treatment step is performed while holding the battery at a temperature of 40 to 80 ° C.
  • the stability of the SEI film is further improved, and a lithium ion secondary battery that is superior in high-temperature storage stability can be provided.
  • a lithium ion secondary battery excellent in high temperature storage stability can be realized.
  • Such a battery is suitable as a battery mounted on a vehicle that can be left at a high temperature. Therefore, according to the present invention, a lithium ion secondary battery manufactured by any of the methods disclosed herein and a vehicle including the lithium ion secondary battery are provided.
  • a vehicle for example, an automobile
  • a lithium ion secondary battery as a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • FIG. 1 is a perspective view schematically showing an outer shape of a lithium ion secondary battery according to an embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a graph showing a change in internal resistance with respect to the aging processing time of the lithium ion secondary battery according to one embodiment.
  • FIG. 4 is a graph showing a change in internal resistance with respect to the aging temperature of the lithium ion secondary battery according to one embodiment.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) provided with the lithium ion secondary battery of the present invention.
  • FIG. 6 is a perspective view schematically showing the shape of a 18650 type lithium ion battery.
  • the technology disclosed herein includes an electrode body having a positive electrode and a negative electrode, a nonaqueous electrolytic solution containing additive A and additive B in an organic solvent (nonaqueous solvent) in addition to a lithium salt as a supporting salt, It can apply to the lithium ion secondary battery provided with.
  • a lithium salt used as a supporting salt in a general lithium ion secondary battery can be appropriately selected and used.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like.
  • These supporting salts can be used alone or in combination of two or more.
  • a particularly preferred example is LiPF 6 .
  • the nonaqueous electrolytic solution is preferably prepared so that the concentration of the supporting salt is within a range of 0.7 to 1.3 mol / L, for example.
  • an organic solvent used for a general lithium ion secondary battery can be appropriately selected and used.
  • Particularly preferred non-aqueous solvents include carbonates such as ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC). These organic solvents can be used alone or in combination of two or more. For example, EC, DMC, and EMC mixed at a volume ratio of 2 to 5: 2 to 5: 2 to 5 can be used.
  • 1 type selected from a carboxylic acid anhydride and dicarboxylic acid can be used individually or in combination of 2 or more types.
  • the carboxylic acid anhydride include maleic anhydride, succinic anhydride, citraconic anhydride, glutaric anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, phenyl succinic anhydride, and 2-phenylglutaric anhydride.
  • a particularly preferred carboxylic acid anhydride is maleic anhydride.
  • dicarboxylic acid oxalic acid, malonic acid, maleic acid, succinic acid, citraconic acid, glutaric acid, diglycolic acid, cyclohexanedicarboxylic acid, phenylsuccinic acid, 2-phenylglutaric acid and the like are preferably used.
  • An especially preferable dicarboxylic acid is exemplified by oxalic acid.
  • the total amount of additive A contained in the non-aqueous electrolyte is preferably in the range of about 0.05 to 5% by mass (more preferably about 0.1 to 1% by mass).
  • the additive B one kind selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite, and fluoroethylene carbonate can be used alone, or two or more kinds can be used in combination.
  • the amount of additive B contained in the non-aqueous electrolyte is preferably in the range of about 0.05 to 5% by mass (more preferably about 0.1 to 1% by mass).
  • the mass ratio of the additive A and the additive B contained in the nonaqueous electrolytic solution is preferably about 1: 4 to 4: 1 (more preferably 1: 2 to 2: 1).
  • the additive A is maleic anhydride and the additive B is VC
  • the above mass ratio (addition amount ratio) can be preferably employed.
  • the technique disclosed herein can be preferably applied to the manufacture of a lithium ion secondary battery using such a non-aqueous electrolyte.
  • the manufacturing method includes a step of assembling a battery by housing the electrode body and the non-aqueous electrolyte in a battery case; initial charging (preliminary charging process) is performed on the assembled battery until a predetermined potential value is reached. And a step of subjecting the battery, which has been initially charged, to an aging treatment by holding it for a predetermined time in a predetermined temperature range.
  • a lithium ion secondary battery 100 having a configuration in which an electrode body and a non-aqueous electrolyte are accommodated in a rectangular battery case with respect to a method for manufacturing a lithium ion secondary battery according to the present invention with reference to the drawings (FIG. 1).
  • the present invention is not limited to such an embodiment. That is, the shape of the lithium ion secondary battery according to the present invention is not particularly limited, and the battery case, electrode body, and the like can be appropriately selected in terms of material, shape, size, and the like according to the application and capacity.
  • the battery case may have a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.
  • a method of manufacturing a lithium ion secondary battery disclosed herein assembles a battery by housing an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material, and the non-aqueous electrolyte in a battery case.
  • the lithium ion secondary battery according to the present embodiment that is, the lithium ion secondary battery 100 to which the technology disclosed herein is applied, shows a wound electrode body 20 as shown in FIGS. 1 and 2.
  • the battery is housed inside the opening 12 of the flat box-shaped battery case 10 corresponding to the shape of the electrode body 20 together with the electrolyte solution, and the opening 12 of the case 10 is closed by the lid 14.
  • the lid body 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection so that a part of the terminals protrudes to the surface side of the lid body 14.
  • the electrode body 20 includes a positive electrode sheet 30 in which a positive electrode active material layer 34 is formed on the surface of a long sheet-like positive electrode current collector 32, and a negative electrode active material layer on the surface of a long sheet-like negative electrode current collector 42.
  • the negative electrode sheet 40 on which the electrode 44 is formed is rolled up with two long sheet-like separators 50, and the obtained wound body is crushed from the side surface and ablated to form a flat shape. ing.
  • the positive electrode sheet 30 is formed such that the positive electrode active material layer 34 is not provided (or removed) at one end along the longitudinal direction, and the positive electrode current collector 32 is exposed.
  • the wound negative electrode sheet 40 is not provided with (or removed from) the negative electrode active material layer 44 at one end along the longitudinal direction so that the negative electrode current collector 42 is exposed. Is formed.
  • the positive electrode terminal 38 is joined to the exposed end portion of the positive electrode current collector 32, and the negative electrode terminal 48 is joined to the exposed end portion of the negative electrode current collector 42, respectively.
  • the positive electrode sheet 30 or the negative electrode sheet 40 is electrically connected.
  • the positive and negative terminals 38 and 48 and the positive and negative current collectors 32 and 42 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • an initial charging process is performed on the battery 100 assembled as described above.
  • an external power source is connected between the positive electrode (positive electrode terminal 38) and the negative electrode (negative electrode terminal 48) of the battery, and the voltage between the terminals is predetermined at room temperature (typically about 25 ° C.).
  • the preliminary charging process is performed until the value is reached.
  • the predetermined inter-terminal voltage value is preferably in the range of 2.5V to 4.2V, and more preferably in the range of 3.0V to 4.1V.
  • charging is performed at a constant current of about 0.1 C to 10 C from the start of charging until the voltage between terminals reaches a predetermined value, and then SOC (State of Charge) is about 60% to 100%.
  • CC-CV charging constant-current constant-voltage charging
  • the charging rate is 1 / 3C or less (typically 1 / 20C to 1 / 3C) from the start of charging to at least SOC 20%, and then the voltage between terminals reaches a predetermined value.
  • the battery may be charged with a constant current of about 0.1 C to 10 C until it reaches, and further charged with a constant voltage until the SOC reaches about 60% to 100%.
  • a voltmeter is connected between the positive electrode terminal 38 and the negative electrode terminal 48 in the lithium ion secondary battery 100, the measured voltage value is monitored by the voltmeter, and a predetermined predetermined value is set. It may be terminated when the voltage value is reached.
  • a discharging process may be performed at a current value approximately equal to the charging rate during the constant current charging, and then charging is performed at a rate approximately equal to the current value.
  • the discharge cycle may be repeated several times. Alternatively, the charge / discharge cycle may be repeated several times at a rate different from the charge / discharge rate of the charge / discharge cycle.
  • the battery 100 subjected to the initial charge is held (for example, left) at a temperature of 35 ° C. or higher for 6 hours or longer (preferably 30 hours or longer, more preferably 40 hours or longer).
  • the aging temperature is preferably about 35 ° C. to 85 ° C. (more preferably 40 ° C. to 80 ° C., still more preferably 50 ° C. to 70 ° C.). If the aging temperature is too lower than the above range, the effect of reducing the initial internal resistance may not be sufficient.
  • the nonaqueous solvent and the supporting salt may be decomposed to deteriorate the electrolytic solution and increase the internal resistance.
  • the upper limit of the aging time is not particularly limited, but if it exceeds about 50 hours, the decrease in the initial internal resistance becomes remarkably slow, and the resistance value may hardly change. Therefore, from the viewpoint of cost reduction, the aging time is preferably about 6 to 50 hours (more preferably 30 to 50 hours, still more preferably 40 to 50 hours).
  • a conventionally known heating means can be preferably used.
  • a heat source such as an infrared heater may be brought into direct contact with the lithium ion secondary battery 100 and heated to a high temperature range.
  • the battery 100 may be held at the aging temperature by storing the battery 100 in a heating container such as a thermostat and maintaining (controlling) the inside of the container at a predetermined temperature within the above range.
  • a lithium ion secondary battery after initial charging is subjected to aging treatment in a high temperature range (for example, 40 ° C. to 80 ° C.) before aging treatment or at room temperature.
  • the internal resistance tends to increase as compared with the aging.
  • the nonaqueous electrolytic solution having the composition disclosed herein the internal resistance is reduced by aging treatment in a high temperature region, contrary to the above-mentioned normal tendency, an unexpected effect found by the present inventor. It is.
  • the compound produced by reductive decomposition or polymerization of the non-aqueous electrolyte components (organic solvent, supporting salt, additive A, additive B, etc.) (which can also be grasped as initial deterioration) is the negative electrode surface. It adheres as a SEI film.
  • the SEI film can be thin.
  • the initial internal resistance of the battery 100 can be kept low, and further deterioration of the non-aqueous electrolyte component can be suppressed. Further, even when stored at a high temperature for a long period of time, the increase in the internal resistance is kept at a low level corresponding to the reduction in the initial internal resistance, which can contribute to the realization of better high-temperature storage stability.
  • the positive electrode active material layer 34 includes, for example, a paste or slurry composition (positive electrode mixture) in which a positive electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder (binder), and the like as necessary. It can preferably be produced by applying to the positive electrode current collector 32 and drying the composition.
  • a paste or slurry composition positive electrode mixture
  • a positive electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder (binder), and the like as necessary. It can preferably be produced by applying to the positive electrode current collector 32 and drying the composition.
  • the positive electrode active material a positive electrode material capable of occluding and releasing lithium is used, and one or more of materials conventionally used in lithium ion secondary batteries (for example, oxides having a layered structure or oxides having a spinel structure) are used.
  • materials conventionally used in lithium ion secondary batteries for example, oxides having a layered structure or oxides having a spinel structure
  • examples thereof include lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, lithium manganese composite oxides, and lithium magnesium composite oxides.
  • the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and nickel) in addition to lithium and nickel.
  • the metal element other than Li and Ni include, for example, cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), and titanium (Ti ), Zirconium (Zr), niobium (Nb), molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) And one or more metal elements selected from the group consisting of cerium (Ce).
  • an olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe; for example, LiFePO 4 , LiMnPO 4 ) is used as the positive electrode active material. Also good.
  • the amount of the positive electrode active material contained in the positive electrode mixture can be, for example, about 80 to 95% by mass.
  • a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • a conductive material can be used alone or in combination of two or more.
  • the amount of the conductive material contained in the positive electrode mixture may be appropriately selected according to the type and amount of the positive electrode active material, and may be, for example, about 4 to 15% by mass.
  • a water-soluble polymer that dissolves in water for example, a water-soluble polymer that dissolves in water, a polymer that disperses in water, a polymer that dissolves in a non-aqueous solvent (organic solvent), and the like can be selected as appropriate. Moreover, only 1 type may be used independently and 2 or more types may be used in combination.
  • the water-soluble polymer include carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), and polyvinyl alcohol (PVA). It is done.
  • water-dispersible polymer examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetra Fluorine resins such as fluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), rubbers such as gum arabic, etc. It is done.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • EFE ethylene-tetra Fluorine resins
  • ETFE fluoroethylene copolymer
  • SBR s
  • Examples of the polymer dissolved in the non-aqueous solvent (organic solvent) include, for example, polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyethylene oxide (PEO), polypropylene oxide (PPO), and polyethylene oxide-propylene oxide copolymer. (PEO-PPO) and the like.
  • the addition amount of the binder may be appropriately selected according to the type and amount of the positive electrode active material, and can be, for example, about 1 to 5% by mass of the positive electrode mixture.
  • a conductive member made of a metal having good conductivity is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector 32 may vary depending on the shape of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • a sheet-like aluminum positive electrode current collector 32 is used, and can be preferably used for the lithium ion secondary battery 100 including the wound electrode body 20.
  • an aluminum sheet having a thickness of about 10 ⁇ m to 30 ⁇ m can be preferably used.
  • the negative electrode active material layer 44 includes, for example, a negative electrode current collector 42 made of a paste or slurry composition (negative electrode mixture) in which a negative electrode active material is dispersed in an appropriate solvent together with a binder (binder) and the like. And the composition can be preferably prepared by drying.
  • a carbon particle is mentioned as a suitable negative electrode active material.
  • a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. obtain.
  • graphite particles such as natural graphite can be preferably used. Since the graphite particles can suitably occlude lithium ions as charge carriers, they are excellent in conductivity.
  • the particle size is small and the surface area per unit volume is large, it can be a negative electrode active material more suitable for rapid charge / discharge (for example, high output discharge).
  • the amount of the negative electrode active material contained in the negative electrode mixture is not particularly limited, but is preferably about 90 to 99% by mass, more preferably about 95 to 99% by mass.
  • the same positive electrode as that described above can be used alone or in combination of two or more.
  • the addition amount of the binder may be appropriately selected according to the type and amount of the negative electrode active material, and can be, for example, about 1 to 5% by mass of the negative electrode mixture.
  • a conductive member made of a highly conductive metal is preferably used.
  • copper or an alloy containing copper as a main component can be used.
  • the shape of the negative electrode current collector 42 may vary depending on the shape of the lithium ion secondary battery and the like, so there is no particular limitation, and various shapes such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape possible.
  • a sheet-like copper negative electrode current collector 42 is used, and can be preferably used for the lithium ion secondary battery 100 including the wound electrode body 20.
  • a copper sheet having a thickness of about 6 to 30 ⁇ m can be preferably used.
  • the separator 50 is a sheet interposed between the positive electrode sheet 30 and the negative electrode sheet 40, and is disposed so as to be in contact with the positive electrode active material layer 34 of the positive electrode sheet 30 and the negative electrode active material layer 44 of the negative electrode sheet 40. Is done. Then, short-circuit prevention due to the contact between the electrode active material layers 34 and 44 in the positive electrode sheet 30 and the negative electrode sheet 40, and a conductive path (conductive path) between the electrodes by impregnating the electrolyte in the pores of the separator 50. ).
  • a porous sheet microporous resin sheet
  • a resin made of a resin
  • Porous polyolefin resins such as polyethylene (PE), polypropylene (PP), and polystyrene are preferred.
  • PE polyethylene
  • PP polypropylene
  • polystyrene polystyrene
  • a PE sheet, a PP sheet, a two-layer structure sheet in which a PE layer and a PP layer are laminated, and the like can be suitably used.
  • the thickness of the separator is preferably set within a range of about 10 ⁇ m to 40 ⁇ m, for example.
  • Example 1 and 2 As the positive electrode mixture, positive electrode active material powder, acetylene black (conductive material), and PVDF (binder) are mixed so that the mass ratio is 85: 10: 5 and the solid content concentration (NV) is about 50%. -Mix-2-pyrrolidone (NMP) was mixed to prepare a slurry composition.
  • the positive electrode active material powdered lithium manganese oxide (LiMn 2 O 4 ) having an average particle diameter of 7 ⁇ m, a specific surface area of 1 m 2 / g, and a theoretical discharge capacity of 90 mA / g was used.
  • This positive electrode mixture was applied to both sides of a 15 ⁇ m-thick long aluminum foil (positive electrode current collector) so that the total application amount on both surfaces was 240 g / m 2 (NV standard). After drying this, it was pressed to a total thickness of about 110 ⁇ m to obtain a positive electrode sheet.
  • a negative electrode mixture natural graphite, SBR, and CMC were mixed with ion-exchanged water so that the mass ratio was 98: 1: 1 and NV was about 45% to prepare a slurry composition.
  • This negative electrode mixture was applied to both surfaces of a long copper foil (negative electrode current collector) having a thickness of 10 ⁇ m so that the total coating amount on both surfaces was 80 g / m 2 (NV standard). This was dried and then pressed so that the total thickness was about 65 ⁇ m to obtain a negative electrode sheet.
  • a LiPF 6 solution having a concentration of 1 mol / L was prepared, and maleic anhydride (additive A) was added thereto.
  • VC additive B
  • additive B additive B
  • a 18650 type (cylindrical type having a diameter of 18 mm and a height of 65 mm) lithium ion secondary battery 200 was manufactured by the following procedure. That is, the positive electrode sheet and the negative electrode sheet were laminated together with the two separators, and the laminate was wound in the longitudinal direction to produce a wound electrode body. The electrode body was housed in a cylindrical container together with the non-aqueous electrolyte, and the container was sealed to construct a battery.
  • Examples 3 to 4 Batteries according to Example 3 and Example 4 were obtained in the same manner as Example 1 except that the additive A was not added to the electrolytic solution.
  • Examples 5 to 6 Batteries according to Example 5 and Example 6 were obtained in the same manner as Example 1 except that the additive B was not added to the electrolytic solution.
  • Examples 7 to 8 Batteries according to Example 7 and Example 8 were obtained in the same manner as Example 1 except that neither additive A nor additive B was added to the electrolytic solution.
  • Each battery of Examples 1, 3, 5, and 7 was subjected to an aging treatment that was held at 60 ° C. for 24 hours.
  • Each battery of Examples 2, 4, 6, and 8 was subjected to an aging treatment that was held at room temperature (23 ° C.) for 24 hours.
  • Table 1 shows the measurement results of the batteries of Examples 1 to 8 together with the amounts of additives A and B used and the aging treatment conditions.
  • Example 2 [Correlation test between aging time and internal resistance] A battery manufactured in the same manner as in Example 1 was fixed at a temperature of 60 ° C., subjected to aging treatment with a time varying between 6 and 60 hours, and the IV resistance value after the treatment at each time setting was set as described above. Measured by the method. The aging treatment time was set in increments of 6 hours from 6 hours to 60 hours. The result is shown in FIG. When the temperature was fixed at room temperature (23 ° C.), the IV resistance value remained almost unchanged at 49% even when the aging treatment was performed with the time varied between 6 and 60 hours.
  • the battery of Example 7 aged at 60 ° C. for 24 hours was at room temperature. It was confirmed that the internal resistance value was higher than that of the battery of Example 8 which had been aged for the same time, and the high temperature storage stability was poor. More specifically, as compared with the battery of Example 8, the battery of Example 7 had both higher initial internal resistance and internal resistance after storage at 60 ° C. for 30 days, and the increase in resistance due to storage was also larger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】高温保存性に優れたリチウムイオン二次電池の製造方法を提供すること。 【解決手段】本発明により提供されるリチウムイオン二次電池の製造方法は、支持塩としてのリチウム塩;添加剤Aとして、カルボン酸無水物およびジカルボン酸から選択される少なくとも一種;および、添加剤Bとして、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;を有機溶媒中に含む非水電解液と、正負の電極と、を用いてリチウムイオン二次電池を組み立てる工程;前記組み立てた電池に対して、所定電圧値まで初期充電を行う工程;および、前記電池を、35℃以上の温度で6時間以上保持してエージング処理する工程;を含む。

Description

非水電解液型リチウムイオン二次電池の製造方法
 本発明は、高温保存性に優れたリチウムイオン二次電池を製造する方法に関する。
 リチウムイオン二次電池は、リチウムイオンを可逆的に吸蔵および放出可能な正負の電極と、それら両電極間に介在された電解質とを備え、該電解質中のリチウムイオンが両電極間を行き来することにより充放電を行う。軽量でエネルギー密度が高いため、各種携帯機器の電源として利用されている。また、ハイブリッド車両や電気自動車等のように大容量の電源を要する分野においても利用が検討されており、電池性能の更なる向上が求められている。特に、車両用その他、使用環境や保存環境が高温になり得る用途向けのリチウムイオン二次電池では、優れた高温保存性が重要である。電池の高温保存性に関連する技術文献として特許文献1~3が挙げられる。
日本国特許出願公開2003-151623号公報 日本国特許出願公開2002-359002号公報 日本国特許出願公開2007-134047号公報
 ところで、リチウムイオン二次電池は、充放電を行うと負極表面において電解質成分(非水溶媒、支持塩等)が還元分解反応を起こし、これにより電池が劣化する場合がある。かかる電池の劣化を防ぐ手段として、例えば、初期充電の際、意図的に電解質成分の一部を還元分解させ、負極表面をその分解生成物からなるSEI(Solid Electrolyte Interphase)膜で被覆する方法が挙げられる。これにより、電池の通常使用時において、負極表面における更なる電解質成分の還元分解を防ぐことができる。一方、かかる態様の電池は、高温下に放置すると、形成されたSEI膜上に更に分解生成物が堆積するなどして内部抵抗が増加し、そのことによって電池が劣化してしまうという課題があった。特許文献1には、電解液に所定の添加剤を加えることにより、内部抵抗の増加率を低減して、高温保存性を向上させ得ることが記載されている。
 しかし、本発明者の検討によれば、かかる添加剤を単純に電解液に加えるだけでは、高温保存性の向上効果が不十分または不安定となる場合があった。
 本発明は、高温保存性に優れたリチウムイオン二次電池を安定的に製造する方法を提供することを一つの目的とする。
 本発明者は、ある種の添加剤を含む電解液を用いてリチウムイオン二次電池を組み立てた後、その組み立てた電池を特定の条件で処理することにより、より高レベルの高温保存性が安定して実現されることを見出して、本発明を完成させた。
 本発明によると、リチウムイオンを吸蔵および放出可能な正負の電極と、支持塩としてのリチウム塩を有機溶媒中に含む非水電解液と、を備えたリチウムイオン二次電池の製造方法が提供される。その製造方法は、上記電極と上記非水電解液とを用いてリチウムイオン二次電池を組み立てる工程を含む。ここで、上記非水電解液は、上記リチウム塩の他に、添加剤Aとして、カルボン酸無水物およびジカルボン酸から選択される少なくとも一種;および、添加剤Bとして、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;を含む。上記製造方法は、また、上記組み立てた電池に対して初期充電を行う工程と、該電池を35℃以上の温度に6時間以上保持してエージング処理する工程と、を含む。
 上記添加剤A,Bを含む組成の電解液を用いてなる電池では、上記エージング処理を行うことにより、エージング処理前と比べ、負極表面に形成されたSEI膜の安定性を高め、内部抵抗を低減することができる。このように電池を製造する過程で(すなわち出荷前に)いったん内部抵抗を低減させることにより、その後の高温保存に対する電池の耐久性を高めることができる。したがって、かかる製造方法によると、高温保存性に優れたリチウムイオン二次電池が提供され得る。
 ここに開示されるリチウムイオン二次電池の製造方法の好ましい一態様では、上記エージング処理工程を、上記温度に上記電池を40~50時間保持して行う。これにより、SEI膜の安定性がより向上して、高温保存性により優れたリチウムイオン二次電池が提供され得る。
 他の好ましい一態様では、上記エージング処理工程を、40~80℃の温度に上記電池を保持して行う。これにより、SEI膜の安定性がより向上して、高温保存性により優れたリチウムイオン二次電池が提供され得る。
 ここに開示される方法によると、上述のように、高温保存性に優れたリチウムイオン二次電池が実現され得る。かかる電池は、高温下に放置され得る車両に搭載する電池として好適である。したがって、本発明によると、ここに開示されるいずれかの方法により製造されたリチウムイオン二次電池および、該リチウムイオン二次電池を備えた車両が提供される。特に、かかるリチウムイオン二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が好ましい。
図1は、一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図2は、図1におけるII-II線断面図である。 図3は、一実施例に係るリチウムイオン二次電池のエージング処理時間に対する内部抵抗の変化を示すグラフである。 図4は、一実施例に係るリチウムイオン二次電池のエージング温度に対する内部抵抗の変化を示すグラフである。 図5は、本発明のリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 図6は、18650型リチウムイオン電池の形状を模式的に示す斜視図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される技術は、正極および負極を有する電極体と、支持塩としてのリチウム塩に加えて添加剤Aおよび添加剤Bを有機溶媒(非水溶媒)中に含む非水電解液と、を備えたリチウムイオン二次電池に適用することができる。
 上記支持塩としては、一般的なリチウムイオン二次電池に支持塩として用いられるリチウム塩を、適宜選択して使用することができる。かかるリチウム塩として、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特に好ましい例として、LiPFが挙げられる。上記非水電解液は、例えば、上記支持塩の濃度が0.7~1.3mol/Lの範囲内となるように調製することが好ましい。
 上記非水溶媒としては、一般的なリチウムイオン二次電池に用いられる有機溶媒を適宜選択して使用することができる。特に好ましい非水溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等のカーボネート類が例示される。これら有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。例えば、ECとDMCとEMCとを体積比2~5:2~5:2~5程度で混合したものを用いることができる。
 上記添加剤Aとしては、カルボン酸無水物およびジカルボン酸から選択される一種を単独で、あるいは二種以上を組み合わせて用いることができる。
 カルボン酸無水物としては、例えば、無水マレイン酸、無水コハク酸、無水シトラコン酸、無水グルタル酸、ジグリコール酸無水物、シクロヘキサンジカルボン酸無水物、無水フェニルコハク酸、無水2-フェニルグルタル酸等が好ましく使用される。特に好ましいカルボン酸無水物として、無水マレイン酸が例示される。
 上記ジカルボン酸としては、シュウ酸、マロン酸、マレイン酸、コハク酸、シトラコン酸、グルタル酸、ジグリコール酸、シクロヘキサンジカルボン酸、フェニルコハク酸、2-フェニルグルタル酸等が好ましく使用される。特に好ましいジカルボン酸として、シュウ酸が例示される。
 上記非水電解液に含まれる添加剤Aの総量は、凡そ0.05~5質量%(より好ましくは、凡そ0.1~1質量%)の範囲にあることが好ましい。
 上記添加剤Bとしては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される一種を単独で、あるいは二種以上を組み合わせて用いることができる。
 上記非水電解液に含まれる添加剤Bの量は、凡そ0.05~5質量%(より好ましくは、凡そ0.1~1質量%)の範囲にあることが好ましい。
 上記非水電解液に含まれる添加剤Aと添加剤Bとの質量比は、1:4~4:1(より好ましくは1:2~2:1)程度とすることが好ましい。例えば、添加剤Aが無水マレイン酸、添加剤BがVCの場合に、上記質量比(添加量比)を好ましく採用することができる。
 ここに開示される技術は、かかる非水電解液を用いたリチウムイオン二次電池の製造に好ましく適用することができる。その製造方法は、上記電極体と上記非水電解液とを電池ケースに収容して電池を組み立てる工程;その組み立てた電池に対して、所定電位値に至るまで初期充電(予備充電処理)を行う工程;および、初期充電を行った該電池に対して、所定の温度域で所定時間保持してエージング処理を施す工程;を包含する。
 以下、図面を参照しつつ、本発明に係るリチウムイオン二次電池の製造方法について、電極体および非水電解液を角型形状の電池ケースに収容した構成のリチウムイオン二次電池100(図1)を例にして詳細に説明するが、本発明はかかる実施形態に限定されない。すなわち、本発明に係るリチウムイオン二次電池の形状は特に限定されず、その電池ケース、電極体等は、用途や容量に応じて、素材、形状、大きさ等を適宜選択することができる。例えば、電池ケースは、直方体状、扁平形状、円筒形状等であり得る。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 ここに開示されるリチウムイオン二次電池の製造方法は、正極活物質を含む正極および負極活物質を含む負極を備える電極体と、上記非水電解液とを電池ケースに収容して電池を組み立てる工程を含む。本実施形態に係るリチウムイオン二次電池、すなわちここで開示される技術の適用対象であるリチウムイオン二次電池100は、図1および図2に示されるように、捲回電極体20を、図示しない電解液とともに、該電極体20の形状に対応した扁平な箱状の電池ケース10の開口部12より内部に収容し、該ケース10の開口部12を蓋体14で塞ぐことによって構築することができる。また、蓋体14には、外部接続用の正極端子38および負極端子48が、それら端子の一部が蓋体14の表面側に突出するように設けられている。
 上記電極体20は、長尺シート状の正極集電体32の表面に正極活物質層34が形成された正極シート30と、長尺シート状の負極集電体42の表面に負極活物質層44が形成された負極シート40とを、2枚の長尺シート状のセパレータ50と共に重ね合わせて捲回し、得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。
 また、正極シート30は、その長手方向に沿う一方の端部において、正極活物質層34が設けられておらず(あるいは除去されて)、正極集電体32が露出するよう形成されている。同様に、捲回される負極シート40は、その長手方向に沿う一方の端部において、負極活物質層44が設けられておらず(あるいは除去されて)、負極集電体42が露出するように形成されている。そして、正極集電体32の該露出端部に正極端子38が、負極集電体42の該露出端部には負極端子48がそれぞれ接合され、上記扁平形状に形成された捲回電極体20の正極シート30または負極シート40と電気的に接続されている。正負極端子38,48と正負極集電体32,42とは、例えば超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 次いで、上述のようにして組み立てた電池100に対して、初期充電処理を行う。この初期充電工程では、該電池の正極(正極端子38)と負極(負極端子48)との間に外部電源を接続し、常温(典型的には25℃程度)で、端子間の電圧が所定値となるまで予備充電処理を行う。
 上記所定の端子間電圧値は、2.5V~4.2Vの範囲内であることが好ましく、特に3.0V~4.1Vの範囲内にあることが好ましい。上記初期充電工程は、例えば、充電開始から端子間電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、次いでSOC(State of Charge)が60%~100%程度となるまで定電圧で充電する定電流定電圧充電(CC-CV充電)により行うことができる。あるいは、充電開始から少なくともSOC20%に至るまでの間は1/3C以下(典型的には、1/20C~1/3C)の充電レート(電流値)で行い、次いで端子間電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、さらにSOCが60%~100%程度となるまで定電圧で充電してもよい。
 なお、上記初期充電工程は、例えば上記リチウムイオン二次電池100における正極端子38と負極端子48との間に電圧計を接続し、この電圧計により測定電圧値をモニタリングし、予め設定された所定の電圧値に到達した時点で終了すればよい。また、かかる初期充電工程の終了後、コンディショニング処理として、上記定電流充電時の充電レートと同程度の電流値で放電処理を実施してもよく、次いでさらに上記電流値と同程度のレートで充放電サイクルを数回繰り返してもよい。あるいは、該充放電サイクルの充放電レートとは異なるレートで充放電サイクルを数回繰り返してもよい。
 次いで、上記エージング処理工程では、上記初期充電を施した電池100を、35℃以上の温度で6時間以上(好ましくは30時間以上、より好ましくは40時間以上)保持(例えば放置)する。これにより、処理後の内部抵抗を、処理前よりも低く抑えることができる。上記エージング温度は、好ましくは35℃~85℃(より好ましくは40℃~80℃、更に好ましくは50℃~70℃)程度とする。このエージング温度が上記範囲より低すぎると、初期内部抵抗の低減効果が十分でないことがある。上記範囲より高すぎると、非水溶媒や支持塩が分解するなどして電解液が劣化し、内部抵抗が増加することがある。エージング時間の上限は特にないが、50時間程度を超えると、初期内部抵抗の低下が著しく緩慢になり、該抵抗値がほとんど変化しなくなることがある。したがって、コスト低減の観点から、エージング時間は、6~50時間(より好ましくは30~50時間、更に好ましくは40~50時間)程度とすることが好ましい。
 電池100を上述のような高温下で保持する方法としては、従来公知の加熱手段を好ましく用いることができる。例えば、赤外線ヒーター等の熱源(加熱装置)を上記リチウムイオン二次電池100に直接接触させて高温域まで加熱してもよい。また、上記電池100を恒温装置等の加熱容器に収容し、該容器内を上記範囲内の所定温度に維持する(制御する)ことにより上記電池100を上記エージング温度に保持してもよい。
 なお、後述する例3~8に示されるように、通常、初期充電後のリチウムイオン二次電池は、高温域(例えば、40℃~80℃)でのエージング処理により、エージング処理前または室温でのエージングに比べて内部抵抗が上昇する傾向にある。ここに開示される組成の非水電解液において、上記通常の傾向とは逆に高温域でのエージング処理によって寧ろ内部抵抗が低減されることは、本発明者により見出された予想外の効果である。
 本発明を実施する上で、上述の初期充電工程およびエージング処理工程のそれぞれで起こっている現象について解明する必要はないが、以下のようなことが考えられる。
 上記初期充電工程において、非水電解液成分(有機溶媒、支持塩、添加剤A、添加剤B等)の還元分解や重合等(初期劣化とも把握され得る。)により生成した化合物が、負極表面にSEI膜として付着する。ここで、室温より高い温度で所定時間保持する上記エージング処理を施すことで上記SEI膜の改質や電解液への一部溶出等が起こり、該SEI膜の均質性や安定性が向上し得る。あるいは、該SEI膜の膜厚が薄くなり得る。これにより、電池100の初期内部抵抗を低く抑えることができ、また更なる非水電解液成分の劣化を抑制することができる。そして、長期間の高温保存によっても、この初期内部抵抗の低減分、内部抵抗の増加が低め水準で推移することが、より優れた高温保存性の実現に寄与し得る。
 以下、上述した以外の構成要素について詳しく説明する。
 上記正極活物質層34は、例えば、正極活物質を、必要に応じて導電材、結着剤(バインダ)等とともに適当な溶媒に分散させたペーストまたはスラリー状の組成物(正極合材)を正極集電体32に付与し、該組成物を乾燥させることにより好ましく作製することができる。
 正極活物質としては、リチウムを吸蔵および放出可能な正極材料が用いられ、従来からリチウムイオン二次電池に用いられる物質(例えば層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムマグネシウム系複合酸化物等のリチウム含有複合酸化物が挙げられる。
 ここで、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合(典型的にはニッケルよりも少ない割合)で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、コバルト(Co),アルミニウム(Al),マンガン(Mn),クロム(Cr),鉄(Fe),バナジウム(V),マグネシウム(Mg),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),モリブデン(Mo),タングステン(W),銅(Cu),亜鉛(Zn),ガリウム(Ga),インジウム(In),スズ(Sn),ランタン(La)およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。なお、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物およびリチウムマグネシウム系複合酸化物についても同様の意味である。
 また、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。
 正極合材に含まれる正極活物質の量は、例えば、80~95質量%程度とすることができる。
 導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。導電材は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 正極合材に含まれる導電材の量は、正極活物質の種類や量に応じて適宜選択すればよく、例えば、4~15質量%程度とすることができる。
 結着剤としては、例えば、水に溶解する水溶性ポリマーや、水に分散するポリマー、非水溶媒(有機溶媒)に溶解するポリマー等から適宜選択して用いることができる。また、一種のみを単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 水溶性ポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)等が挙げられる。
 水分散性ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類等が挙げられる。
 非水溶媒(有機溶媒)に溶解するポリマーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等が挙げられる。
 結着剤の添加量は、正極活物質の種類や量に応じて適宜選択すればよく、例えば、上記正極合材の1~5質量%程度とすることができる。
 正極集電体32には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体32の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態ではシート状のアルミニウム製の正極集電体32が用いられ、捲回電極体20を備えるリチウムイオン二次電池100に好ましく使用され得る。かかる実施形態では、例えば、厚みが10μm~30μm程度のアルミニウムシートが好ましく使用され得る。
 また、上記負極活物質層44は、例えば、負極活物質を、結着剤(バインダ)等ともに適当な溶媒に分散させたペーストまたはスラリー状の組成物(負極合材)を負極集電体42に付与し、該組成物を乾燥させることにより好ましく作製することができる。
 負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。中でも特に、天然黒鉛等の黒鉛粒子を好ましく使用することができる。黒鉛粒子は、電荷担体としてのリチウムイオンを好適に吸蔵することができるため導電性に優れる。また、粒径が小さく単位体積当たりの表面積が大きいことからより急速充放電(例えば高出力放電)に適した負極活物質となり得る。
 負極合材に含まれる負極活物質の量は特に限定されないが、好ましくは90~99質量%程度、より好ましくは95~99質量%程度である。
 結着剤には、上述の正極と同様のものを、一種のみを単独で、または二種以上を組み合わせて用いることができる。結着剤の添加量は、負極活物質の種類や量に応じて適宜選択すればよく、例えば、負極合材の1~5質量%程度とすることができる。
 負極集電体42としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。また、負極集電体42の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態ではシート状の銅製の負極集電体42が用いられ、捲回電極体20を備えるリチウムイオン二次電池100に好ましく使用され得る。かかる実施形態では、例えば、厚みが6μm~30μm程度の銅製シートを好ましく使用され得る。
 また、上記セパレータ50は、正極シート30および負極シート40の間に介在するシートであって、正極シート30の正極活物質層34と、負極シート40の負極活物質層44にそれぞれ接するように配置される。そして、正極シート30と負極シート40における両電極活物質層34,44の接触に伴う短絡防止や、該セパレータ50の空孔内に上記電解液を含浸させることにより電極間の伝導パス(導電経路)を形成する役割を担っている。かかるセパレータ50の構成材料としては、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン等の多孔質ポリオレフィン系樹脂が好ましい。特に、PEシート、PPシート、PE層とPP層とが積層された二層構造シート等を好適に使用し得る。セパレータの厚みは、例えば、凡そ10μm~40μmの範囲内で設定することが好ましい。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
  [電池の作製]
  <例1~2>
 正極合材として、正極活物質粉末と、アセチレンブラック(導電材)と、PVDF(バインダ)とを、質量比が85:10:5、固形分濃度(NV)が約50%となるようにN-メチル-2-ピロリドン(NMP)と混合して、スラリー状の組成物を調製した。ここで、正極活物質としては、平均粒径7μm、比表面積1m/g、理論放電容量90mA/gの粉末状のリチウムマンガン酸化物(LiMn)を使用した。
 この正極合材を、厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に、それら両面の合計塗布量が240g/m(NV基準)となるように塗布した。これを乾燥後、全体の厚みが約110μmとなるようにプレスして正極シートを得た。
 負極合材として、天然黒鉛とSBRとCMCとを、質量比が98:1:1、NVが約45%となるようにイオン交換水と混合して、スラリー状の組成物を調製した。この負極合材を、厚さ10μmの長尺状銅箔(負極集電体)の両面に、それら両面の合計塗布量が80g/m(NV基準)となるように塗布した。これを乾燥後、全体の厚みが約65μmとなるようにプレスして負極シートを得た。
 非水電解液として、ECとDMCとEMCとの体積比1:1:1の混合溶媒を用いて、濃度が1mol/LのLiPF溶液を調製し、これに、無水マレイン酸(添加剤A)およびVC(添加剤B)を、それぞれ1質量%加えた。
 セパレータとして、厚さ20μmの長尺状の多孔質ポリエチレンシートを二枚用意した。
 これら電池部材を用いて、以下に示す手順で、18650型(直径18mm、高さ65mmの円筒型)リチウムイオン二次電池200を作製した。すなわち、上記正極シートと上記負極シートとを上記二枚のセパレータとともに積層し、その積層体を長手方向に捲回して捲回電極体を作製した。この電極体を、上記非水電解液とともに円筒型容器に収容し、該容器を封止して電池を構築した。
  [初期充電処理]
 構築した上記電池に対して、1/10Cのレートで3時間の定電流充電を行い、次いで、1/3Cのレートで4.1Vまで充電する操作と、1/3Cのレートで3.0Vまで放電させる操作とを3回繰り返し、例1に係る電池を得た。
 例1と同様にして、例2に係る電池を得た。
  <例3~4>
 電解液に添加剤Aを加えなかった他は例1と同様にして、例3および例4に係る電池をそれぞれ得た。
  <例5~6>
 電解液に添加剤Bを加えなかった他は例1と同様にして、例5および例6に係る電池をそれぞれ得た。
  <例7~8>
 電解液に添加剤Aおよび添加剤Bのいずれも加えなかった他は例1と同様にして、例7および例8に係る電池をそれぞれ得た。
  [エージング処理]
 例1、3、5、7の各電池に対し、60℃で24時間保持するエージング処理を施した。
 例2、4、6、8の各電池に対し、室温(23℃)で24時間保持するエージング処理を施した。
  [初期内部抵抗の測定]
 エージング処理後の各電池を、SOC(State of Charge)60%に調整し、25℃にて、0.2A、0.4A、0.6A、1.2Aの各電流(I)を流して10秒後の電池電圧(V)を測定した。各電池に流した電流値I(X軸)と電圧値V(Y軸)とを直線回帰し、その傾きから初期IV抵抗(mΩ)を求めた。
  [容量維持率の測定]
 各電池を、SOC80%に調整し、室温(23℃)にて、SOCが0%となるまで1/3CでCC放電させ、このときの放電容量を測定し、初期容量値とした。
 各電池につき、60℃で30日間保存した後、初期容量の測定と同様にして保存後の放電容量を測定した。容量維持率(%)を、初期容量に対する保存後の放電容量の百分率として求めた。
  [内部抵抗増加量の測定]
 上記保存後の各電池につき、初期内部抵抗の測定と同様にして保存後のIV抵抗値(mΩ)を測定した。内部抵抗増加量(mΩ)を、初期IV抵抗値と保存後のIV抵抗値との差として求めた。
 例1~8の電池について、これらの測定結果を、添加剤AおよびBの使用量、エージング処理条件とともに表1に示す。
  [エージング処理時間と内部抵抗との相関試験]
 例1と同様にして作製した電池に対し、温度を60℃に固定し、時間を6~60時間の間で異ならせてエージング処理を施し、各時間設定における処理後のIV抵抗値を上述の方法で測定した。エージング処理時間は、6時間から60時間まで6時間刻みで設定した。その結果を図3に示す。
 なお、温度を室温(23℃)に固定した場合、時間を6~60時間の間で異ならせてエージング処理を施しても、IV抵抗値は49%のままほとんど変動しなかった。
  [エージング処理温度と内部抵抗との相関試験]
 例1と同様にして作製した電池に対し、時間を24時間に固定し、温度を30℃~90℃の間で異ならせてエージング処理を施し、各温度設定における処理後のIV抵抗値を上述の方法で測定した。エージング温度は、30℃~90℃まで10℃刻みで設定した。その結果を図4に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、添加剤A、Bのいずれも含まない非水電解液を用いた例7,8の電池のうち、60℃で24時間エージングさせた例7の電池は、室温で同時間エージングさせた例8の電池に比べて内部抵抗値が高くなり、高温保存性に劣ることが確認された。より具体的には、例8の電池に比べて例7の電池は、初期内部抵抗および60℃30日間保存後の内部抵抗がいずれもより高く、保存による抵抗増加量もより大きかった。
 60℃でエージングを行うと室温保存に比べて内部抵抗値および高温保存性が低下するという上記の傾向は、添加剤Aを単独で用いた(すなわち添加剤Bを使用しない)例3,4の電池、および、添加剤Bを単独で用いた(すなわち添加剤Aを使用しない)例5,6の電池でも同様であった。
 これに対して、添加剤AおよびBの両方を含む組成の非水電解液を用いた例1,2の電池では、60℃でのエージングが内部抵抗値および高温保存性に及ぼす影響の傾向が例3~8とは逆転した。すなわち、添加剤AおよびBを1質量%ずつ添加してなる非水電解液を用いた例1~2の電池のうち、60℃で24時間エージングさせた例1の電池は、室温で同時間エージングさせた例2の電池と比べ、初期内部抵抗が低下し、60℃で30日間保存した後も内部抵抗値がより低く抑えられた。また、例1、例2の電池は、いずれも略90%という高い容量維持率を示した。
 また、図3に示されるように、例1と同様にして作製した電池を、60℃で6時間~60時間エージングさせた場合、6時間~50時間までの間は徐々にIV抵抗値が低下し、50時間を超えたところでは、IV抵抗値の低下率が著しく緩やかになった。
 また、図4に示されるように、例1と同様にして作製した電池を、30℃~90℃で24時間エージングさせた場合、30℃では室温で同時間保持した場合と比べ、初期抵抗に変化はなかった。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
1  車両
20 捲回電極体
30 正極シート
32 正極集電体
34 正極活物質層
38 正極端子
40 負極シート
42 負極集電体
44 負極活物質層
48 負極端子
50 セパレータ
100,200 リチウムイオン二次電池

Claims (5)

  1.  リチウムイオンを吸蔵および放出可能な正負の電極と、リチウム塩を有機溶媒中に含む非水電解液と、を備えたリチウムイオン二次電池の製造方法であって、
     前記製造方法は:
     以下の成分:
     支持塩としてのリチウム塩;
     添加剤Aとして、カルボン酸無水物およびジカルボン酸から選択される少なくとも一種;および、
     添加剤Bとして、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;
    を有機溶媒中に含む非水電解液と、前記正負の電極と、を用いてリチウムイオン二次電池を組み立てる工程;
     前記組み立てた電池に対して、所定電圧値まで初期充電を行う工程;および、
     前記電池を、35℃以上の温度で6時間以上保持してエージング処理する工程;
    を含む、リチウムイオン二次電池の製造方法。
  2.  前記エージング処理工程において、前記電池を、前記温度で40~50時間保持する、請求項1記載の方法。
  3.  前記エージング処理工程において、前記電池を、40~80℃の温度で前記時間保持する、請求項1または2に記載の方法。
  4.  請求項1から3のいずれか一項に記載の方法により製造された、リチウムイオン二次電池。
  5.  請求項4に記載のリチウムイオン二次電池を備える、車両。
PCT/JP2009/064717 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池の製造方法 WO2011024250A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980161097.1A CN102549831B (zh) 2009-08-24 2009-08-24 非水电解液型锂离子二次电池的制造方法
KR1020127007509A KR101364828B1 (ko) 2009-08-24 2009-08-24 비수 전해액형 리튬 이온 2차 전지의 제조 방법
PCT/JP2009/064717 WO2011024250A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池の製造方法
US13/390,565 US8597837B2 (en) 2009-08-24 2009-08-24 Method for producing nonaqueous electrolyte lithium-ion secondary battery
JP2011528533A JP5408509B2 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064717 WO2011024250A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2011024250A1 true WO2011024250A1 (ja) 2011-03-03

Family

ID=43627377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064717 WO2011024250A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池の製造方法

Country Status (5)

Country Link
US (1) US8597837B2 (ja)
JP (1) JP5408509B2 (ja)
KR (1) KR101364828B1 (ja)
CN (1) CN102549831B (ja)
WO (1) WO2011024250A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506345A1 (en) * 2011-03-31 2012-10-03 Fuji Jukogyo Kabushiki Kaisha Method of manufacturing lithium ion storage device
CN103227346A (zh) * 2012-01-27 2013-07-31 三洋电机株式会社 非水电解质二次电池的制造方法、非水电解质二次电池
CN103354299A (zh) * 2013-07-03 2013-10-16 江西省福斯特新能源有限公司 一种锂离子电池的高温老化处理方法
JP2014017191A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2014035877A (ja) * 2012-08-08 2014-02-24 Toyota Motor Corp 非水電解質二次電池の製造方法
US20140059844A1 (en) * 2012-08-28 2014-03-06 Chin-Huang Tsai Method for manufacturing gel lithim battery
US20150004474A1 (en) * 2013-07-01 2015-01-01 Samsung Sdl Co., Ltd. Secondary battery
JP2016021301A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 非水系二次電池の製造方法
JP2016091998A (ja) * 2014-10-30 2016-05-23 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP2017098238A (ja) * 2015-11-13 2017-06-01 株式会社半導体エネルギー研究所 リチウムイオン二次電池及びその製造方法、電子機器
JP2019526886A (ja) * 2017-02-22 2019-09-19 トヨタ モーター ヨーロッパ リチウムイオン電池の高温エージングプロセス

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478828B2 (en) 2012-12-04 2016-10-25 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
CN105556729B (zh) * 2013-04-04 2019-04-09 索尔维公司 非水电解质组合物
JP5920639B2 (ja) * 2014-02-25 2016-05-18 トヨタ自動車株式会社 非水電解質二次電池の製造方法
JP6066213B2 (ja) 2014-03-14 2017-01-25 トヨタ自動車株式会社 二次電池の製造方法および二次電池
WO2016063176A1 (en) * 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and fabricating method thereof
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US20170194672A1 (en) * 2015-12-30 2017-07-06 Nissan North America, Inc. High current treatment for lithium ion batteries having metal based anodes
US10297828B2 (en) 2016-06-15 2019-05-21 Ricoh Company, Ltd. Non-aqueous electrolyte storage element including positive electrode having solid electrolyte interface material on surface of carbon material
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN110495043A (zh) * 2017-03-23 2019-11-22 松下知识产权经营株式会社 非水电解液和非水电解液二次电池
JP6944641B2 (ja) * 2017-04-24 2021-10-06 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JP6944644B2 (ja) * 2017-10-19 2021-10-06 トヨタ自動車株式会社 リチウム二次電池用電解液
CN111344886B (zh) * 2017-11-17 2023-05-09 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP7096973B2 (ja) * 2018-06-22 2022-07-07 トヨタ自動車株式会社 非水電解液二次電池の製造方法および製造システム
CN109449486A (zh) * 2018-10-15 2019-03-08 苏州大学 一种电解液添加剂的应用
KR102505723B1 (ko) * 2018-11-20 2023-03-03 주식회사 엘지에너지솔루션 이차 전지의 활성화 방법
CN110568375A (zh) * 2019-09-03 2019-12-13 昆山宝创新能源科技有限公司 动力电池健康状态soh确定方法及装置
KR20210061111A (ko) * 2019-11-19 2021-05-27 주식회사 엘지화학 이차전지 제조방법 및 그의 제조설비
JP7232801B2 (ja) * 2020-10-15 2023-03-03 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン電池の製造方法
KR102640466B1 (ko) * 2021-09-10 2024-02-27 주식회사 엘지에너지솔루션 이차전지의 활성화 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008717A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液とそれを用いた二次電池
JP2002158035A (ja) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2007053083A (ja) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158053A (ja) * 2000-11-21 2002-05-31 Shin Etsu Polymer Co Ltd 圧接挟持型コネクタ及びその接続構造
JP2002359002A (ja) 2001-05-30 2002-12-13 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
CN1215595C (zh) * 2001-07-10 2005-08-17 三菱化学株式会社 非水系电解液和使用该电解液的蓄电池
JP2007134047A (ja) 2001-07-16 2007-05-31 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液二次電池用電解液
JP4151060B2 (ja) 2001-11-14 2008-09-17 株式会社ジーエス・ユアサコーポレーション 非水系二次電池
CN100481581C (zh) * 2004-07-20 2009-04-22 三菱化学株式会社 锂二次电池用负极材料及其制造方法和使用该材料的锂二次电池用负极及锂二次电池
CN100563058C (zh) * 2005-07-21 2009-11-25 松下电器产业株式会社 非水电解质二次电池及其制造方法
JP4396675B2 (ja) * 2006-06-16 2010-01-13 ソニー株式会社 非水電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008717A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液とそれを用いた二次電池
JP2002158035A (ja) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2007053083A (ja) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738514A (zh) * 2011-03-31 2012-10-17 富士重工业株式会社 锂离子蓄电装置的制造方法
EP2506345A1 (en) * 2011-03-31 2012-10-03 Fuji Jukogyo Kabushiki Kaisha Method of manufacturing lithium ion storage device
CN103227346A (zh) * 2012-01-27 2013-07-31 三洋电机株式会社 非水电解质二次电池的制造方法、非水电解质二次电池
JP2014017191A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp リチウムイオン二次電池の製造方法
US20150263376A1 (en) * 2012-08-08 2015-09-17 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014035877A (ja) * 2012-08-08 2014-02-24 Toyota Motor Corp 非水電解質二次電池の製造方法
US10505215B2 (en) 2012-08-08 2019-12-10 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20140059844A1 (en) * 2012-08-28 2014-03-06 Chin-Huang Tsai Method for manufacturing gel lithim battery
US20150004474A1 (en) * 2013-07-01 2015-01-01 Samsung Sdl Co., Ltd. Secondary battery
CN103354299A (zh) * 2013-07-03 2013-10-16 江西省福斯特新能源有限公司 一种锂离子电池的高温老化处理方法
JP2016021301A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 非水系二次電池の製造方法
JP2016091998A (ja) * 2014-10-30 2016-05-23 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP2017098238A (ja) * 2015-11-13 2017-06-01 株式会社半導体エネルギー研究所 リチウムイオン二次電池及びその製造方法、電子機器
JP2021141077A (ja) * 2015-11-13 2021-09-16 株式会社半導体エネルギー研究所 リチウムイオン二次電池の製造方法
JP7227309B2 (ja) 2015-11-13 2023-02-21 株式会社半導体エネルギー研究所 リチウムイオン二次電池の製造方法
JP2019526886A (ja) * 2017-02-22 2019-09-19 トヨタ モーター ヨーロッパ リチウムイオン電池の高温エージングプロセス
US11024898B2 (en) 2017-02-22 2021-06-01 Toyota Motor Europe Lithium-ion battery high temperature aging process

Also Published As

Publication number Publication date
KR101364828B1 (ko) 2014-02-19
CN102549831A (zh) 2012-07-04
US8597837B2 (en) 2013-12-03
JPWO2011024250A1 (ja) 2013-01-24
US20120141869A1 (en) 2012-06-07
KR20120061917A (ko) 2012-06-13
JP5408509B2 (ja) 2014-02-05
CN102549831B (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5408509B2 (ja) 非水電解液型リチウムイオン二次電池の製造方法
JP5648869B2 (ja) 電池用電極およびその利用
JP5229598B2 (ja) リチウム二次電池及びその製造方法
JP5854279B2 (ja) 非水電解液二次電池の製造方法
JP5960503B2 (ja) 非水二次電池の製造方法
JP2010287512A (ja) リチウムイオン二次電池の製造方法
US10199689B2 (en) Nonaqueous electrolyte secondary battery
JP5448001B2 (ja) 非水電解液型リチウムイオン二次電池
JP5448002B2 (ja) 非水電解液型リチウムイオン二次電池
JP5472755B2 (ja) 非水電解液型リチウムイオン二次電池
JP5517009B2 (ja) リチウムイオン二次電池製造方法
JP2011028898A (ja) リチウム二次電池用の正極とその製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
WO2020017580A1 (ja) 蓄電素子
JP2010153337A (ja) リチウム二次電池の製造方法
JP7096981B2 (ja) リチウムイオン二次電池
JP6810897B2 (ja) 非水電解液二次電池の製造方法
JP2019075274A (ja) 非水電解液二次電池の製造方法
JP2023105638A (ja) 正極およびこれを備える二次電池
JP2011181234A (ja) 非水電解液型リチウムイオン二次電池
JP2018181577A (ja) 非水電解液二次電池の製造方法
JP2018092769A (ja) 非水電解液二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161097.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848698

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13390565

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011528533

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127007509

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09848698

Country of ref document: EP

Kind code of ref document: A1