WO2011021570A1 - 非水電解液及びそれを用いた電気化学素子 - Google Patents

非水電解液及びそれを用いた電気化学素子 Download PDF

Info

Publication number
WO2011021570A1
WO2011021570A1 PCT/JP2010/063715 JP2010063715W WO2011021570A1 WO 2011021570 A1 WO2011021570 A1 WO 2011021570A1 JP 2010063715 W JP2010063715 W JP 2010063715W WO 2011021570 A1 WO2011021570 A1 WO 2011021570A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbonate
methanesulfonate
carbon atoms
lithium
Prior art date
Application number
PCT/JP2010/063715
Other languages
English (en)
French (fr)
Inventor
安部 浩司
三好 和弘
和幸 川辺
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CA2771323A priority Critical patent/CA2771323A1/en
Priority to EP10809915.1A priority patent/EP2469638B1/en
Priority to CN201080033357.XA priority patent/CN102484280B/zh
Priority to BR112012003251A priority patent/BR112012003251A2/pt
Priority to JP2011527654A priority patent/JP5594288B2/ja
Priority to US13/386,841 priority patent/US9029024B2/en
Publication of WO2011021570A1 publication Critical patent/WO2011021570A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolytic solution capable of improving electrochemical characteristics and an electrochemical element using the same.
  • lithium secondary batteries have been widely used as power sources for electronic devices such as mobile phones and laptop computers, or for power sources and power storage for electric vehicles. Since these electronic devices and automobiles may be used in a wide temperature range, such as high temperatures in midsummer and low temperatures in extremely cold temperatures, improvement of discharge capacity in a wide temperature range is required even after long-term use. .
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • a decomposition product generated by reductive decomposition on the negative electrode surface when a solvent in a non-aqueous electrolyte is charged It has been found that the cycle characteristics are degraded because it inhibits the desired electrochemical reaction of the battery. Further, when the decomposition product of the non-aqueous solvent accumulates, it becomes impossible to smoothly occlude and release lithium from the negative electrode, and load characteristics at low temperatures are likely to deteriorate.
  • lithium secondary batteries using lithium metal, alloys thereof, simple metals using tin or silicon, or oxides as negative electrode materials have a high initial capacity, but fine powders progress during the cycle. It is known that reductive decomposition of a non-aqueous solvent occurs more rapidly than the negative electrode of the material, and battery performance such as battery capacity and cycle characteristics is greatly reduced. In addition, if these anode materials are pulverized or a decomposition product of a nonaqueous solvent accumulates, the insertion and extraction of lithium into the anode cannot be performed smoothly, and load characteristics particularly at low temperatures are likely to deteriorate.
  • a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 as the positive electrode is a positive electrode material when the non-aqueous solvent in the non-aqueous electrolyte becomes a high temperature in a charged state.
  • the degradation product generated by partial oxidative decomposition at the interface between the electrolyte and the non-aqueous electrolyte inhibits the desired electrochemical reaction of the battery, resulting in degradation of cycle characteristics and low-temperature characteristics after cycling. I know that.
  • the battery performance was lowered by inhibiting the migration of lithium ions due to the decomposition products when the nonaqueous electrolytic solution decomposes on the positive electrode and the negative electrode.
  • electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional and power consumption is increasing.
  • the capacity of lithium secondary batteries has been increasing, and the volume occupied by non-aqueous electrolyte in the battery has become smaller, such as increasing the electrode density and reducing the useless space volume in the battery. . Therefore, the performance of the battery at low temperatures is likely to deteriorate with a slight decomposition of the non-aqueous electrolyte.
  • Patent Document 1 a compound in which two specific sulfonyloxy groups are bonded by a linking group ([Chemical Formula 1] of [Claim 1]) is a circuit voltage between battery terminals of 4.25 V at 25 ° C. at the end of charging. It has been shown that the lithium secondary battery as described above is effective in suppressing the generation of gas in cycle characteristics at 25 ° C. and continuous charging at 60 ° C. Furthermore, paragraph [0039] includes 1,4-benzenediol disulfonates having only two sulfonyloxy groups, which are the same substituents, on one benzene ring. However, even when these compounds are added to the non-aqueous electrolyte, the low temperature characteristics after the high temperature cycle are not sufficiently satisfactory.
  • Patent Document 2 provides a reagent that functions sufficiently as an overcharge prevention mechanism even when used in a 4V class battery that is charged with a large current. By using this reagent, energy density is high and safety is improved. An excellent non-aqueous electrolyte secondary battery that is advantageous for cost reduction is shown.
  • a reagent only two alkoxy groups that are the same substituents are present on one benzene ring. Although 2-dimethoxybenzene is shown, there is a problem that the low temperature characteristics after the high temperature cycle are rather deteriorated.
  • Patent Document 3 by using an electrolytic solution to which a biphenyl derivative such as 4-phenylphenyl methanesulfonate is added, the upper limit voltage is higher than 4.1 V and / or in a high temperature state of 40 ° C. or higher, It has been shown that a lithium secondary battery excellent in battery cycle characteristics and battery characteristics such as electric capacity and storage characteristics in a charged state can be obtained.
  • Patent Document 4 shows that the use of an electrolytic solution to which 2-cyclohexylphenylmethyl carbonate is added can improve the safety and high-temperature storage characteristics of a lithium secondary battery during overcharging.
  • a lithium primary battery for example, a lithium primary battery having manganese dioxide or graphite fluoride as a positive electrode and lithium metal as a negative electrode is used, and it is widely used because of its high energy density. There is a need to suppress an increase in internal resistance after storage and to improve discharge characteristics over a wide temperature range even after storage.
  • the present inventor has studied in detail the performance of the above-described prior art non-aqueous electrolyte. As a result, none of the above documents focuses on high-temperature cycle characteristics or low-temperature characteristics after cycling, and according to actual experiments, there is almost no effect of improving high-temperature cycle characteristics, It was found that the later low temperature characteristics also deteriorated.
  • the present invention relates to a non-aqueous electrolyte excellent in low temperature discharge characteristics after high temperature storage of primary batteries, cycle characteristics when secondary batteries are used at high temperatures, and low temperature characteristics after high temperature cycles, and an electrochemical device using the same. The issue is to provide.
  • sulfonyloxy group is used as a concept including an alkanesulfonyloxy group and an arylsulfonyl group
  • sulfonate is also used as a concept including an alkanesulfonate and an arylsulfonate.
  • the present inventor added a compound having three of a cyclohexane ring, a benzene ring, and a sulfonyloxy group (—OS ( ⁇ O) 2 R 2 group) to a non-aqueous electrolyte solution, thereby allowing long-term use of the battery. It was found that the load characteristics and the low temperature characteristics do not deteriorate even after the high temperature cycle assuming the above. That is, the present invention provides the following (1) and (2).
  • a sulfonate compound represented by any one of the following general formulas (I) to (III) is added to the non-aqueous electrolyte solution in an amount of 0.01 to A non-aqueous electrolyte characterized by containing 10 mass%.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms
  • R 2 represents an alkyl group having 1 to 6 carbon atoms
  • n is an integer of 0 to 4
  • R 4 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or carbon Represents an alkoxy group of formula 1-6.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms in which at least one of hydrogen atoms may be substituted with a halogen atom, or 6 to 12 carbon atoms in which a hydrogen atom may be substituted with a halogen atom.
  • R 6 represents a hydrogen atom, a halogen atom, an alkanesulfonyloxy group having 1 to 6 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, or a hydrogen atom that is substituted with a halogen atom
  • a good arylsulfonyloxy group having 6 to 12 carbon atoms, and m is an integer of 0 to 4.
  • the present invention it is possible to provide a nonaqueous electrolytic solution excellent in storage characteristics of a primary battery, cycle characteristics when a secondary battery is used at a high temperature and low temperature characteristics after cycling, and an electrochemical element using the same. it can.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and an alkane sulfonate compound represented by any one of the following general formulas (I) to (III) is non-aqueous electrolyzed. It is characterized by containing 0.01 to 10% by mass in the liquid.
  • ⁇ Sulfonate compound represented by formula (I)> The sulfonate compound represented by the general formula (I) has two completely different substituents, an alkoxy group and a sulfonyloxy group, on one benzene ring.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms
  • R 2 represents an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, or at least one of hydrogen atoms is halogen.
  • R 3 represents hydrogen An atom, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, an —OR 1 group, an —OS ( ⁇ O) 2 R 2 group, an —OC ( ⁇ O) R 4 group, or a halogen atom
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms as R 1 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, and 2-propyl group. And straight-chain or branched alkyl groups such as tert-butyl group and tert-pentyl group. Among them, methyl group and ethyl group are preferable.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms as R 2 include straight chain alkyl groups such as methyl group, ethyl group, propyl group and butyl group, and branched alkyl groups such as 2-propyl group. Is mentioned.
  • halogenated alkyl group having 1 to 6 carbon atoms as R 2 include a trifluoromethyl group, a 2,2,2-trifluoroethyl group.
  • a trifluoromethyl group, a methyl group, and an ethyl group are preferable, and a methyl group and an ethyl group are more preferable.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, —OR 1 group, —OS ( ⁇ O) 2 R 2 group, —OC ( ⁇ O) R 4 , halogen, Any of the atoms, preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an —OR 1 group, or an —OS ( ⁇ O) 2 R 2 group, and an alkyl group having 1 to 6 carbon atoms; Group, —OR 1 group is more preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a branched alkyl group having 3 to 4 carbon atoms is more preferable.
  • R 3 is a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 3 is a linear or branched alkyl group having 1 to 4 carbon atoms
  • n Preferred examples include -hexyl group, 2-propyl group, tert-butyl group, tert-pentyl group, tert-pentyl group and the like.
  • a methyl group, an ethyl group, a tert-butyl group, and a tert-pentyl group are preferable, and a tert-butyl group is more preferable.
  • R 3 is tert- butyl and tert- pentyl group are novel substances.
  • the preferred embodiments of R 1 and R 2 when R 3 is —OR 1 group or —OS ( ⁇ O) 2 R 2 group are the same as the preferred embodiments of R 1 and R 2 described above.
  • the substitution position of the sulfonyloxy group (—OS ( ⁇ O) 2 R 2 group) may be any of the ortho, meta, and para positions relative to the alkoxy group (—OR 1 group). From the viewpoint of improving cycle characteristics and low temperature characteristics after a high temperature cycle, the ortho position and the para position are preferable, and the para position is more preferable.
  • R 4 is a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched group having 1 to 6 carbon atoms. Indicates an alkoxy group of a chain.
  • R 4 include hydrogen atom, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, 2-propyl group, tert-butyl group, tert- Examples include pentyl group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, 2-propoxy group, tert-butoxy group, tert-pentyloxy group and the like.
  • a hydrogen atom, a methyl group, an ethyl group, a methoxy group, and an ethoxy group are preferable, and a hydrogen atom and a methyl group are more preferable.
  • R 3 is a halogen atom, a fluorine atom, a chlorine atom or a bromine atom is preferable, and a fluorine atom is more preferable.
  • alkanesulfonate compound represented by the general formula (I) are as follows.
  • (I-1) When R 1 and R 2 are both methyl groups and R 3 is a hydrogen atom 2-methoxyphenyl methanesulfonate, 3-methoxyphenylmethanesulfonate, 4-methoxyphenylmethanesulfonate and the like can be mentioned.
  • R 1 and R 2 are both methyl groups and R 3 is an alkyl group 2-methoxy-3-methylphenyl methanesulfonate, 2-methoxy-4-methylphenyl methanesulfonate, 2-methoxy-5 -Methylphenyl methanesulfonate, 3-methoxy-2-methylphenyl methanesulfonate, 3-methoxy-4-methylphenyl methanesulfonate, 3-methoxy-5-methylphenyl methanesulfonate, 4-methoxy-2-methylphenyl methanesulfonate, 4-methoxy-3-methylphenyl methanesulfonate, 3-tert-butyl-2-methoxyphenyl methanesulfonate, 4-tert-butyl-2-methoxyphenyl methanesulfonate, 5-tert-butyl-2-methoxyphenyl methanesulfonate 2-tert-
  • R 1 and R 2 are both methyl groups and R 3 is —OR 1 group 2,3-dimethoxyphenyl methanesulfonate, 2,4-dimethoxyphenylmethanesulfonate, 2,5-dimethoxyphenyl methane Examples thereof include sulfonate, 2,6-dimethoxyphenyl methanesulfonate, 3,4-dimethoxyphenyl methanesulfonate, 3,5-dimethoxyphenyl methanesulfonate, and the like.
  • R 1 and R 2 are both methyl groups and R 3 is —OS ( ⁇ O) 2 R 2 group 3-methoxy-1,2-phenylene dimethanesulfonate, 4-methoxy-1, 2-phenylene dimethanesulfonate, 2-methoxy-1,3-phenylene dimethanesulfonate, 4-methoxy-1,3-phenylene dimethanesulfonate, 5-methoxy-1,3-phenylene dimethanesulfonate, 2-methoxy- Examples include 1,4-phenylene dimethanesulfonate, 3-methoxy-1,4-phenylene dimethanesulfonate, and the like.
  • R 1 and R 2 are both methyl groups and R 3 is —OC ( ⁇ O) R 4 group 3-formyl-2-methoxyphenyl methanesulfonate, 4-formyl-2-methoxyphenyl methane Sulfonate, 5-formyl-2-methoxyphenyl methanesulfonate, 2-formyl-3-methoxyphenyl methanesulfonate, 4-formyl-3-methoxyphenyl methanesulfonate, 5-formyl-3-methoxyphenyl methanesulfonate, 2-formyl- 4-methoxyphenyl methanesulfonate, 3-formyl-4-methoxyphenyl methanesulfonate, 3-acetoxy-2-methoxyphenyl methanesulfonate, 4-acetoxy-2-methoxyphenyl methanesulfonate, 5-acetoxy-2-methoxyphenyl methanesulfonate
  • R 1 is an alkyl group having 2 to 6 carbon atoms
  • R 2 is an alkyl group having 2 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or a 6 to 12 carbon atoms
  • R 1 and R 2 of the compounds (I-1) to (I-6) are changed can be exemplified similarly.
  • 2-methoxyphenyl methanesulfonate 4-methoxyphenyl methanesulfonate, 2-methoxy-4-methylphenyl methanesulfonate, 2-methoxy-5-methyl Phenyl methanesulfonate, 2-tert-butyl-4-methoxyphenyl methanesulfonate, 2,6-dimethoxyphenyl methanesulfonate, 3,5-dimethoxyphenyl methanesulfonate, 3,4-dimethoxyphenyl methanesulfonate, 3-methoxy-1, 2-phenylene dimethanesulfonate, 2-methoxy-1,4-phenylene dimethanesulfonate, 5-methoxy-1,3-phenylene dimethanesulfonate, 2-fluoro-4-methoxyphenyl methanesulfonate 4-fluoro-2-methoxy
  • Methane sulfonate, 2,6-dimethoxyphenyl methane sulfonate, and 2-tert-butyl-4-methoxyphenyl methane sulfonate are more preferable, and 2-tert-butyl-4-methoxyphenyl methane sulfonate is more preferable.
  • the sulfonate compound represented by the general formula (I) can improve the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is not necessarily clear, but is considered to be due to the following reasons. Since the sulfonate compound represented by the general formula (I) forms a stable film containing sulfur atoms on both the positive electrode and the negative electrode by electrochemical decomposition, it decomposes the solvent in the non-aqueous electrolyte. Can be suppressed. Although a film having a sulfur atom rarely decreases lithium ion conductivity, the sulfonate compound represented by the general formula (I) further contains an alkoxy group, so that the movement of lithium ions is improved.
  • the above effect is further improved because oxygen atoms, which are lithium ion trap sites, are uniformly present in the film when the substitution position of the sulfonyloxy group is para to the alkoxy group.
  • the substituent R 3 has an alkyl group, an alkoxy group, a sulfonyloxy group, a carbonyloxy group, a halogen atom, or the like, the low temperature characteristics after the high temperature cycle are further improved in order to prevent the film from being excessively densified. .
  • the sulfonate compound represented by formula (II) or (III) has a cyclohexane ring, a benzene ring, and a sulfonyloxy group.
  • R 5 is an alkyl group having 1 to 6, preferably 1 to 4 carbon atoms, in which at least one of hydrogen atoms may be substituted with a halogen atom, or a hydrogen atom may be substituted with a halogen atom.
  • An aryl group having 6 to 12 carbon atoms R 6 represents a hydrogen atom, a halogen atom, or a sulfonyloxy group having 1 to 6, preferably 1 to 4 carbon atoms, and m is an integer of 0 to 4.
  • the sulfonate compound represented by the general formula (II) can also be represented as a sulfonyloxybenzene compound represented by the following general formula (IV), and the sulfonate compound represented by the general formula (III) is represented by the following general formula ( It can also be represented as a sulfonyloxybenzene compound represented by V).
  • R 11 ⁇ R 15 is a hydrogen atom, a halogen atom, having 1 to 6 carbon atoms, either preferably a linear or branched alkylsulfonyloxy group having 1 to 4, the R 11 ⁇ R 15 Among them, at least one is a linear or branched sulfonyloxy group having 1 to 6, preferably 1 to 4 carbon atoms, and at least one hydrogen atom of the sulfonyloxy group is substituted with a halogen atom. May be.
  • R 16 - R 19 is a hydrogen atom, a halogen atom, 6, is either preferably a linear or branched alkylsulfonyloxy group having 1 to 4 of R 16 - R 19 Among them, at least one is a linear or branched sulfonyloxy group having 1 to 6, preferably 1 to 4 carbon atoms, and at least one hydrogen atom of the sulfonyloxy group is substituted with a halogen atom. May be.
  • a linear or branched sulfonyloxy group having 1 to 6 a methanesulfonyloxy group, an ethanesulfonyloxy group, a propanesulfonyloxy group, a butanesulfonyloxy group, a pentanesulfonyloxy group, a hexanesulfonyloxy group, A benzenesulfonyloxy group, a 4-methylbenzenesulfonyloxy group, a 2,4,6-trimethylbenzenesulfonyloxy group and the like are preferable.
  • a methanesulfonyloxy group, an ethanesulfonyloxy group, a propanesulfonyloxy group, and a 4-methylbenzenesulfonyloxy group are more preferable, and a methanesulfonyloxy group is still more preferable.
  • one or more hydrogen atoms of the sulfonyloxy group are substituted with fluorine atoms.
  • a trifluoromethanesulfonyloxy group and a 2,2,2-trifluoroethanesulfonyloxy group are particularly preferable.
  • R 11 to R 19 in the general formula (IV) or (V) is a halogen atom, a fluorine atom, a chlorine atom or a bromine atom is preferable, and a fluorine atom is more preferable.
  • the substitution position of the sulfonyloxy group may be any of the ortho position, the meta position, and the para position with respect to the cyclohexyl group, but the ortho position and the para position are preferable.
  • the para position is more preferable. That is, in the case of the general formula (IV), the ortho position (R 11 or R 15 ) or the para position (R 13 ) is preferable with respect to the cyclohexyl group, and the para position (R 13 ) is more preferable.
  • the substitution position of the sulfonyloxy group may be any of R 16 to R 19 , but is preferably substituted with R 17 or R 18 . In the case of the above substituents and substitution positions, the low temperature characteristics after the high temperature cycle are improved, which is preferable.
  • sulfonate compound represented by the general formula (II) (general formula (IV)) specific examples when the sulfonyloxy group is a methanesulfonyloxy group include 2-cyclohexylphenyl methanesulfonate, 3-cyclohexylphenyl methanesulfonate, 4-cyclohexylphenyl methanesulfonate, 4-cyclohexyl-1,3-phenylene dimethanesulfonate, 4-cyclohexyl-3-fluorophenyl methanesulfonate, 4-cyclohexyl-2-fluorophenyl methanesulfonate, 4-cyclohexyl-2,3- Difluorophenyl methanesulfonate, 4-cyclohexyl-3,5-difluorophenyl methanesulfonate, 4-cyclohexyl-2,5-difluorophenyl
  • 2-cyclohexylphenyl methanesulfonate, 3-cyclohexylphenyl methanesulfonate, 4-cyclohexylphenyl methanesulfonate are preferable, 2-cyclohexylphenyl methanesulfonate, 4-cyclohexylphenyl methanesulfonate are more preferable, and 4-cyclohexylphenyl methanesulfonate.
  • Sulfonate is particularly preferred.
  • sulfonate compound represented by the general formula (III) when the sulfonyloxy group is a methanesulfonyloxy group include 5,6,7,8-tetrahydronaphthalen-1-yl.
  • 5,6,7,8-tetrahydronaphthalen-1-yl methanesulfonate and 5,6,7,8-tetrahydronaphthalen-2-yl methanesulfonate are more preferable, and 5,6,7,8- Tetrahydronaphthalen-2-yl methanesulfonate is particularly preferred.
  • the sulfonyloxy group is a substitution other than methanesulfonyloxy group such as ethanesulfonyloxy group.
  • the specific example in the case of group can mention the compound which changed this substituent similarly in the said compound.
  • the sulfonate compounds represented by the general formula (II) include 2-cyclohexylphenyl ⁇ ⁇ ⁇ methanesulfonate, 4-cyclohexylphenyl methanesulfonate, 2-cyclohexylphenyl ethanesulfonate, 4- Cyclohexylphenyl ethanesulfonate, 2-cyclohexylphenyl trifluoromethanesulfonate, 4-cyclohexylphenyl trifluoromethanesulfonate, 2-cyclohexylphenyl 2,2,2-trifluoroethanesulfonate, 4-cyclohexylphenyl 2,2,2-trifluoroethanesulfonate 2-cyclohexylphenyl 4-methylbenzenesulfonate, 4-cyclohexylphenyl 4-methylbenzenesulfonate, etc.
  • Examples of the sulfonate compound represented by the general formula (III) include 5,6,7,8-tetrahydronaphthalen-1-yl methanesulfonate, 5,6,7,8-tetrahydronaphthalene- 2-yl methanesulfonate, 5,6,7,8-tetrahydronaphthalen-1-yl ethanesulfonate, 5,6,7,8-tetrahydronaphthalen-2-yl ethanesulfonate, 5,6,7,8-tetrahydronaphthalene -1-yl trifluoromethanesulfonate, 5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfonate, 5,6,7,8-tetrahydronaphthalen-1-yl 2,2,2-trifluoroethanesulfonate 5,6,7,8-2,2,2-tetrahydronaphthalen-2-y
  • sulfonate compound represented by the general formula (II) (general formula (IV)) or the general formula (III) (general formula (V)) include 2-cyclohexylphenyl methanesulfonate and 4-cyclohexylphenyl methane.
  • 2-cyclohexylphenyl ethanesulfonate 5,6,7,8-tetrahydronaphthalen-1-yl methanesulfonate, 5,6,7,8-tetrahydronaphthalen-2-yl methanesulfonate .
  • These specific compounds are preferable because they are particularly excellent in the effect of improving the low temperature characteristics after the high temperature cycle.
  • the compound represented by the general formula (II) is more preferable than the compound represented by the general formula (I) because the low temperature property improving effect after the high temperature cycle is excellent.
  • the reason why the sulfonate compound represented by the general formula (II) (general formula (IV)) or the general formula (III) (general formula (V)) can improve the low temperature characteristics after the high temperature cycle is not necessarily clear, The reason is considered as follows.
  • the sulfonate compound represented by general formula (II) (general formula (IV)) or general formula (III) (general formula (V)) is sulfurized on both the positive electrode and the negative electrode by electrochemical decomposition. Since a stable film is formed even at a high temperature containing atoms, decomposition of the solvent in the non-aqueous electrolyte can be suppressed.
  • a film having a sulfur atom reduces the lithium ion conductivity of the negative electrode, and Li metal is likely to be deposited, but it is rare that the general formula (II) (general formula (IV)) or general formula (III) (general Since the sulfonate compound represented by the formula (V) further contains a cyclohexane ring, it is oxidized on the positive electrode in a very small amount and can promote the generation of protons. It is considered that the precipitation of Li metal is suppressed. Therefore, even after the high temperature cycle, the resistances of both the positive electrode and the negative electrode are unlikely to increase, so it is considered that the load characteristics and the low temperature characteristics are not easily deteriorated even after the high temperature cycle.
  • the above effect is obtained by using 4-phenylphenyl methanesulfonate having a benzene ring instead of the cyclohexane ring of the sulfonate compound or 2-cyclohexylphenylmethyl carbonate having a methoxycarbonyloxy group instead of the methanesulfonyloxy group of the sulfonate compound.
  • 4-phenylphenyl methanesulfonate having a benzene ring instead of the cyclohexane ring of the sulfonate compound
  • 2-cyclohexylphenylmethyl carbonate having a methoxycarbonyloxy group instead of the methanesulfonyloxy group of the sulfonate compound.
  • the content of the compound is 0.01% by mass or more in the non-aqueous electrolyte, more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is 10 mass% or less, 5 mass% or less is more preferable, and 3 mass% or less is still more preferable.
  • Nonaqueous solvent examples of the nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention include cyclic carbonate, chain carbonate, chain ester, ether, amide, phosphate ester, sulfone, lactone, nitrile, S ⁇ O bond-containing compound, carvone An acid anhydride, an aromatic compound, etc. are mentioned.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro- Examples include 1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like.
  • DFEC 1,3-dioxolan-2-one
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • the use of at least one cyclic carbonate having a carbon-carbon double bond or fluorine is preferable because the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is further improved.
  • VC, VEC, and the cyclic carbonate containing fluorine are preferably FEC and DFEC.
  • These solvents may be used alone, but when two or more types are used in combination, the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is further improved, and preferably three or more types are used. Particularly preferred.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, FEC and VC, FEC and EC, FEC and PC, FEC and DFEC, DFEC and EC, DFEC and PC, DFEC and VC , DFEC and VEC, EC and PC and VC, EC and FEC and PC, EC and FEC and VC, EC and VC and VEC, FEC and PC and VC, DFEC and EC and VC, DFEC and PC and VC, FEC and EC And PC and VC, DFEC and EC, PC, and VC.
  • EC and VC FEC and PC
  • DFEC and PC EC and FEC and PC
  • EC and FEC and VC EC and VC and VEC
  • the content of the cyclic carbonate is not particularly limited, but it is preferably used in the range of 10 to 40% by volume with respect to the total volume of the nonaqueous solvent. If the content is 10% by volume or more, the electrical conductivity of the electrolytic solution is less likely to decrease, and an increase in the internal resistance of the battery can be suppressed. The effect of improving the later low temperature characteristics is enhanced.
  • chain carbonates examples include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), and diethyl carbonate.
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • symmetric chain carbonates such as dipropyl carbonate and dibutyl carbonate.
  • it is preferable to include a chain carbonate having a methyl group more preferably to include at least one of DMC, MEC, MPC, and MIPC, and particularly to include at least one of DMC and MEC. preferable.
  • the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle tends to be improved, and it is more preferable to use the asymmetric chain carbonate and the symmetric chain carbonate in combination.
  • the ratio of the asymmetric linear carbonate contained in a linear carbonate is 50 volume% or more.
  • the asymmetric chain carbonate those having a methyl group are preferable, and MEC is most preferable. These chain carbonates may be used alone, but it is preferable to use a combination of two or more types since the above effect is further improved.
  • the content of the chain carbonate is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or less, the viscosity of the electrolytic solution is less likely to increase, and if it is 90% by volume or less, the electrical conductivity of the electrolytic solution does not decrease and the electrochemical characteristics such as high-temperature cycle characteristics deteriorate. Therefore, the above range is preferable.
  • the ratio of cyclic carbonates to chain carbonates is cyclic carbonate: chain carbonate (volume ratio) from the viewpoint of improving high temperature cycle characteristics, low temperature characteristics after high temperature cycling, and improving gas generation suppression during charge storage. Is preferably 10:90 to 40:60, more preferably 15:85 to 35:65, and particularly preferably 20:80 to 30:70.
  • non-aqueous solvents include methyl acetate, ethyl acetate, methyl propionate, methyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, dimethyl oxalate, ethyl methyl oxalate, diethyl oxalate, etc.
  • Esters tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane and other cyclic ethers, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2- Chain ethers such as dibutoxyethane, amides such as dimethylformamide, phosphate esters such as trimethyl phosphate, tributyl phosphate and trioctyl phosphate, sulfones such as sulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -angelica lactone Lactone, acetonitrile, Nitriles such as pionitrile, succinonitrile, glutaronitrile, adiponitrile, sultone compounds such as 1,3-butane sultone and 1,4-butane sultone, ethylene sulfite, hex
  • non-aqueous solvents in particular, at least one selected from S ⁇ O bond-containing compounds, carboxylic acid anhydrides, and aromatic compounds is used in combination with the sulfonate compounds represented by the general formulas (I) to (III). Then, since the effect which improves the high temperature cycling characteristic and the low temperature characteristic after a high temperature cycle improves, it is preferable.
  • the S ⁇ O bond-containing compound is more preferably a cyclic sulfite compound
  • the carboxylic acid anhydride is more preferably a cyclic carboxylic acid anhydride.
  • At least selected from ethylene sulfite, hexahydrobenzo [1,3,2] dioxathiolane-2-oxide, 5-vinyl-hexahydro1,3,2-benzodioxathiol-2-oxide, and succinic anhydride One kind of compound.
  • any of a biphenyl derivative, an aromatic compound having a branched alkylene group, and a naphthalene derivative is preferable, and biphenyl, o-terphenyl, cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, It is at least one compound selected from 1,2,3,4-tetrahydronaphthalene. Most preferred is cyclohexylbenzene.
  • the amount of these compounds used in combination with the sulfonate compound represented by the general formula (I) exceeds 5% by mass, the high-temperature cycle characteristics and the low-temperature characteristics after the high-temperature cycle may be deteriorated.
  • the content is preferably 0.05% by mass or more, and more preferably 0.5% by mass or more in the mass of the nonaqueous electrolytic solution.
  • the upper limit is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • the above non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of cyclic carbonate and chain carbonate, a combination of cyclic carbonate, chain carbonate and lactone, a combination of cyclic carbonate, chain carbonate and chain ester, cyclic carbonate and chain carbonate, Examples include combinations of ethers, combinations of cyclic carbonates, chain carbonates, and S ⁇ O bond-containing compounds.
  • Electrode salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts and onium salts.
  • Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , and LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso A lithium salt containing a chain-like fluorinated alkyl group such as —C 3 F 7 ), or a cyclic fluoride such as (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi
  • a particularly preferable electrolyte salt is at least one selected from LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 .
  • These electrolyte salts can be used singly or in combination of two or more.
  • a lithium salt containing LiPF 6 and containing a nitrogen atom or a boron atom examples include a combination containing at least one selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 .
  • a combination of LiPF 6 and LiBF 4 a combination of LiPF 6 and LiN (SO 2 CF 3) 2 , combinations and the like of LiPF 6 and LiN (SO 2 C 2 F 5 ) 2.
  • LiPF 6 [LiBF 4 or LiN (SO 2 CF 3 ) 2 or LiN (SO 2 C 2 F 5 ) 2 ] (molar ratio) when the ratio of LiPF 6 is lower than 70:30, and from 99: 1
  • LiPF 6 [LiBF 4 or LiN (SO 2 CF 3 ) 2 or LiN (SO 2 C 2 F 5 ) 2 ] (molar ratio) is preferably in the range of 70:30 to 99: 1, and 80:20 A range of ⁇ 98: 2 is more preferred.
  • Electrolyte salts can be mixed in any proportion, but other electrolytes except LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 when used in combination with LiPF 6.
  • the ratio of the salt to the total electrolyte salt (molar fraction) is 0.01% or more, the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is sufficient, and if the ratio is 45% or less, the high temperature cycle. There is little possibility of deterioration of characteristics. Therefore, the ratio (molar fraction) is preferably 0.01 to 45%, more preferably 0.03 to 20%, still more preferably 0.05 to 10%, and most preferably 0.05 to 5%. is there.
  • the concentration used by dissolving all the electrolyte salts is usually preferably 0.3M or more, more preferably 0.5M or more, and most preferably 0.7M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5M or less, more preferably 2.0M or less, further preferably 1.5M or less, and most preferably 1.2M or less.
  • onium salt As an onium salt, the various salts which combined the onium cation and anion shown below are mentioned suitably.
  • Specific examples of onium cations include tetramethylammonium cation, ethyltrimethylammonium cation, diethyldimethylammonium cation, triethylmethylammonium cation, tetraethylammonium cation, N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrole.
  • N, N-diethylpyrrolidinium cation Dinium cation, N, N-diethylpyrrolidinium cation, spiro- (N, N ′)-bipyrrolidinium cation, N, N′-dimethylimidazolinium cation, N-ethyl-N′-methylimidazoli
  • Preferable examples include nium cation, N, N′-diethylimidazolinium cation, N, N′-dimethylimidazolium cation, N-ethyl-N′-methylimidazolium cation, and N, N′-diethylimidazolium cation.
  • anions include PF 6 anion, BF 4 anion, ClO 4 anion, AsF 6 anion, CF 3 SO 3 anion, N (CF 3 SO 2 ) 2 anion, N (C 2 F 5 SO 2 ) 2 anion. , Etc. are mentioned suitably.
  • the nonaqueous electrolytic solution of the present invention is prepared, for example, by mixing the nonaqueous solvent, adding the electrolyte salt thereto, and further adding the sulfonate compounds represented by the general formulas (I) to (III) to the nonaqueous electrolyte. It can be prepared by adding 0.01 to 10% by mass in the liquid. At this time, it is preferable to use a nonaqueous solvent and a compound to be added to the electrolytic solution that are purified in advance and have as few impurities as possible within a range that does not significantly reduce productivity.
  • the nonaqueous electrolytic solution of the present invention can be used in the following first to fourth electrochemical elements, and as the nonaqueous electrolyte, not only a liquid but also a gelled one can be used. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. Among them, it is preferable to use for a first electrochemical element (that is, for a lithium battery) or a fourth electrochemical element (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and for a lithium battery. More preferably, it is most suitable to be used for a lithium secondary battery.
  • the lithium battery of the present invention is a generic term for a lithium primary battery and a lithium secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
  • a positive electrode active material for a lithium secondary battery a composite metal oxide with lithium containing at least one of cobalt, manganese, and nickel is used. These positive electrode active materials can be used singly or in combination of two or more.
  • lithium composite metal oxides examples include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3. Examples thereof include Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , LiCo 0.98 Mg 0.02 O 2 and the like. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc.
  • a part of O may be substituted with S or F, or a compound containing these other elements may be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is at least one element represented by Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05) And lithium mixed metal oxides usable at 4.4 V or higher, such as LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 1/2 Mn 3/2 O 4 .
  • the lithium composite metal composite oxide with a high charge voltage When a lithium composite metal composite oxide with a high charge voltage is used, the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is likely to decrease due to the reaction with the electrolyte during charging, but the lithium secondary according to the present invention In the battery, it is possible to suppress a decrease in these electrochemical characteristics.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from Fe, Co, Ni and Mn is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted with one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO and other oxides of one or more metal elements or chalcogen compounds, sulfur such as SO 2 and SOCl 2 Examples thereof include compounds, and fluorocarbons (fluorinated graphite) represented by the general formula (CF x ) n . Of these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • Ni when Ni is contained as an element in the positive electrode, impurities such as LiOH in the positive electrode active material tend to increase, and the decomposition of the electrolytic solution is easily promoted. Therefore, by using the nonaqueous electrolytic solution of the present invention, This is preferable because the effect of improving the high temperature cycle characteristics and the low temperature characteristics after the high temperature cycle is more easily obtained.
  • the case where the atomic concentration of Ni in the positive electrode active material is 5 to 25 atomic% is more preferable, and the case where it is 8 to 21 atomic% is particularly preferable.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples thereof include graphite such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphites and carbon blacks may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • binder such as copolymer (NBR), carb
  • this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 More preferably, it is 3.6 g / cm 3 or more. In addition, as an upper limit, 4 g / cm ⁇ 3 > or less is preferable.
  • the negative electrode active material one kind of lithium metal, lithium alloy, carbon material capable of inserting and extracting lithium (graphite such as artificial graphite and natural graphite), metal compound capable of inserting and extracting lithium, etc. It can use individually or in combination of 2 or more types.
  • the carbon material capable of inserting and extracting lithium include graphitizable carbon, non-graphitic carbon having a (002) plane spacing of 0.37 nm or more, and a (002) plane spacing of 0. A graphite of 34 nm or less is preferable.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions
  • the lattice spacing ( 002 ) spacing (d 002 ) is 0.340 nm
  • a carbon material having a graphite type crystal structure of nanometer or less, particularly 0.335 to 0.337 nm.
  • a mechanical action such as compression force, friction force, shear force, etc.
  • the electrolytic solution of the present invention when used, the above effect is further improved. With the above More preferably Rukoto, particularly preferably of 0.1 or more. Moreover, since it may process too much and crystallinity may fall and the discharge capacity of a battery may fall, 0.5 or less is preferable and 0.3 or less is still more preferable.
  • Rukoto particularly preferably of 0.1 or more.
  • 0.5 or less is preferable and 0.3 or less is still more preferable.
  • a highly crystalline carbon material it tends to react with a non-aqueous electrolyte during charging and tends to deteriorate electrochemical characteristics such as high-temperature cycle characteristics and low-temperature characteristics after high-temperature cycles. In the secondary battery, the reaction with the non-aqueous electrolyte can be suppressed.
  • the highly crystalline carbon material is coated with the low crystalline carbon material because decomposition of the nonaqueous electrolytic solution is further suppressed.
  • Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the preparation of the positive electrode described above to form a negative electrode mixture, and then this negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. Moreover, lithium metal or a lithium alloy is used as a negative electrode active material for a lithium primary battery.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.4 g / cm 3 or more, and preferably 1.6 g / cm 3 in order to further increase the battery capacity. 3 or more, particularly preferably 1.7 g / cm 3 or more. In addition, as an upper limit, 2 g / cm ⁇ 3 > or less is preferable.
  • the lithium battery there is no particular limitation on the structure of the lithium battery, and a coin battery, a cylindrical battery, a square battery, a laminate battery, or the like having a single-layer or multi-layer separator can be applied. Although it does not restrict
  • stacking of polyolefin, such as a polypropylene and polyethylene, a woven fabric, a nonwoven fabric, etc. can be used.
  • the lithium secondary battery of the present invention is excellent in the effect of improving the high-temperature cycle characteristics and the low-temperature characteristics after the high-temperature cycle even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher. The characteristics are also good.
  • the end-of-discharge voltage is usually 2.8 V or higher, and more preferably 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 3C. Further, the lithium battery in the present invention can be charged and discharged at ⁇ 40 to 100 ° C., preferably 0 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed.
  • the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.
  • Electrode (electric double layer capacitor) It is an electrochemical element that stores energy by using the electric double layer capacity at the electrolyte / electrode interface.
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used in this electrochemical device is activated carbon. Double layer capacity increases roughly in proportion to surface area.
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a ⁇ -conjugated polymer electrode doping / dedoping reaction.
  • the electrolyte contains at least a lithium salt such as LiPF 6 .
  • Examples I-1 to I-11, Comparative Examples I-1 to I-3 [Production of lithium ion secondary battery] LiNi 1/3 Mn 1/3 Co 1/3 O 2 (positive electrode active material); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binder); 3% in advance. % was added to a solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied on both surfaces of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • Example I-12, Comparative Example I-4 A negative electrode sheet was produced using silicon (negative electrode active material) instead of the negative electrode active material used in Example I-2 and Comparative Example I-1. Silicon (simple substance): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • Example I-13, Comparative Example I-5 A positive electrode sheet was prepared using LiFePO 4 (positive electrode active material) instead of the positive electrode active material used in Example I-2 and Comparative Example I-1.
  • LiFePO 4 90% by mass, acetylene black (conductive agent); 5% by mass are mixed, and added to a solution in which 5% by mass of polyvinylidene fluoride (binder) is previously dissolved in 1-methyl-2-pyrrolidone. And mixed to prepare a positive electrode mixture paste.
  • This positive electrode mixture paste was applied on an aluminum foil (current collector), dried, pressurized and punched to a predetermined size to produce a positive electrode sheet, evaluation of cycle characteristics and evaluation of gas generation amount
  • a coin battery was prepared and evaluated in the same manner as in Example I-2 and Comparative Example I-1, except that the final charge voltage was 3.6 V and the final discharge voltage was 2.0 V. The results are shown in Table 3.
  • Example I-12 and Comparative Example I-4 when lithium-containing olivine-type iron phosphate is used for the positive electrode, The same effect can be seen when using. Therefore, it is clear that the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.
  • Examples II-1 to II-9, Comparative Examples II-1 to II-3 [Production of lithium ion secondary battery] LiNi 1/3 Mn 1/3 Co 1/3 O 2 (positive electrode active material); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binder); 3% in advance. % was added to a solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and punched out to a predetermined size to produce a positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.4 g / cm 3 .
  • the negative electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • I (110) / I (004) was 0.1. And it laminated
  • the low temperature characteristics after the high temperature cycle test were evaluated. Table 4 shows battery fabrication conditions and battery characteristics.
  • Example II-10 Comparative Example II-4
  • Si negative electrode active material
  • Comparative Example II-1 A negative electrode sheet was prepared using Si (negative electrode active material) instead of the negative electrode active material used in Example II-2 and Comparative Example II-1.
  • Si 80% by mass, acetylene black (conductive agent); 15% by mass are mixed, and added to a solution in which 5% by mass is previously dissolved in 1-methyl-2-pyrrolidone; polyvinylidene fluoride (binder); And mixed to prepare a negative electrode mixture paste.
  • a coin battery was prepared in the same manner as II-1, and the battery was evaluated. The results are shown in Table 5.
  • Example II-11, Comparative Example II-5 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example II-2 and Comparative Example II-1.
  • LiFePO 4 coated with amorphous carbon 90% by mass, acetylene black (conductive agent); 5% by mass are mixed, and polyvinylidene fluoride (binder); 5% by mass is dissolved in 1-methyl-2-pyrrolidone in advance.
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution thus prepared.
  • This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressed and punched to a predetermined size to produce a positive electrode sheet, and evaluation of low temperature characteristics after a high temperature cycle
  • a coin battery was manufactured and evaluated in the same manner as in Example II-2 and Comparative Example II-1, except that the charge end voltage was 3.6 V and the discharge end voltage was 2.0 V. The results are shown in Table 6.
  • the effect of the present invention is specific to a compound having three of a cyclohexane ring, a benzene ring, and an alkanesulfonyloxy group. Further, from the comparison between Example II-10 and Comparative Example II-4 and the comparison between Example II-11 and Comparative Example II-5, when lithium-containing olivine-type iron phosphate was used for the positive electrode, The same effect can be seen when using. Therefore, it is clear that the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.
  • the non-aqueous electrolyte of the present invention also has an effect of improving the low temperature discharge characteristics after high temperature storage of the lithium primary battery.
  • nonaqueous electrolytic solution of the present invention an electrochemical element having excellent electrochemical characteristics can be obtained.
  • an electrochemical element having excellent electrochemical characteristics can be obtained.
  • electrochemical devices excellent in high temperature cycle characteristics and low temperature characteristics after high temperature cycles Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 非水溶媒に電解質塩が溶解されている非水電解液において、特定の構造を有するスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする非水電解液、及び該非水電解液を含む電気化学素子である。この非水電解液は、一次電池の保存特性や二次電池を高温で使用した際のサイクル特性や高温サイクル後の低温特性を改善する効果に優れている。

Description

非水電解液及びそれを用いた電気化学素子
 本発明は、電気化学特性を向上できる非水電解液、及びそれを用いた電気化学素子に関する。
 近年、電気化学素子、特にリチウム二次電池は携帯電話やノート型パソコン等電子機器の電源、あるいは電気自動車の電源用や電力貯蔵用として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等広い温度範囲で使用される可能性があるため、長期の使用後も広い温度範囲での放電容量の改善が求められている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物が電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズに出来なくなり、特に低温下での負荷特性が低下しやすくなる。
 更に、リチウム金属やその合金、又は、スズあるいはケイ素等を用いた金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズに出来なくなり、特に低温下での負荷特性が低下しやすくなる。
 一方、正極として、例えばLiCoO2、LiMn24、LiNiO2、LiFePO4を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で高温になった場合に、正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物が電池の望ましい電気化学的反応を阻害するため、やはりサイクル特性やサイクル後の低温特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物により、リチウムイオンの移動を阻害することで電池性能を低下させていた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、低温での電池の性能が低下しやすい状況にある。
 特許文献1には、2個の特定のスルホニルオキシ基を連結基で結合した化合物(〔請求項1〕の〔化1〕)が、充電終了時の25℃における電池端子間回路電圧4.25V以上となるリチウム二次電池において、25℃でのサイクル特性や60℃での連続充電におけるガス発生抑制に効果があることが示されている。さらに、段落〔0039〕には、2つの同じ置換基であるスルホニルオキシ基のみを1つのベンゼン環上に有する1,4-ベンゼンジオールジスルホネート類等が挙げられている。しかしながら、これらの化合物を非水電解液に添加しても、高温サイクル後の低温特性は十分満足できるものではなかった。
 特許文献2には、大電流で充電が行われる4V級電池に使用した場合でも、過充電防止機構として十分に機能する試薬を提供し、これを用いることで、エネルギー密度が高く、安全性に優れ、しかも低コスト化に有利な非水電解液二次電池が示されており、このような試薬の一例として、2つの同じ置換基であるアルコキシ基のみを1つのベンゼン環上に有する1,2-ジメトキシベンゼンが示されているが、高温サイクル後の低温特性はむしろ低下してしまうという問題があった。
 特許文献3には、4-フェニルフェニル メタンスルホネート等のビフェニル誘導体を添加した電解液を使用することにより、上限電圧が4.1Vより高電圧及び/又は40℃以上の高温状態の充放電において、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性等の電池特性にも優れたリチウム二次電池が得られることが示されている。
 特許文献4には、2-シクロヘキシルフェニルメチルカーボネートを添加した電解液を使用することにより、リチウム二次電池の過充電時の安全性と高温保存特性を改善できることが示されている。
 また、リチウム一次電池として、例えば二酸化マンガンやフッ化黒鉛を正極とし、リチウム金属を負極とするようなリチウム一次電池が使用されており、高いエネルギー密度であることから広く使用されているが、高温保存後の内部抵抗の増加を抑制し、保存後も広い温度範囲で放電特性を向上させることが求められている。
 更に、近年、電気自動車用又はハイブリッド電気自動車用の新しい電源として、出力密度の点から、活性炭等を電極に用いる電気二重層キャパシタ、エネルギー密度と出力密度の両立の観点から、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリッドキャパシタ(リチウムの吸蔵・放出による容量と電気二重層容量の両方を活用)又はリチウムイオンキャパシタとも呼ばれる蓄電装置の開発が行われ、長期の使用後も広い温度範囲での放電性能の改善が求められている。
特開2006-351337号 特開2000-156243号 特開2001-332297号 特開2009-231283号
 本発明者は、上記従来技術の非水電解液の性能について詳細に検討した。その結果、上記の文献は何れも、高温でのサイクル特性や、サイクル後の低温特性に着目しておらず、実際の実験によると、高温でのサイクル特性を改善する効果はほとんど無く、高温サイクル後の低温特性も低下することが分かった。
 本発明は、一次電池の高温保存後の低温放電特性や二次電池を高温で使用した際のサイクル特性や高温サイクル後の低温特性に優れた非水電解液及びそれを用いた電気化学素子を提供することを課題とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、2つの全く異なる置換基であるアルコキシ基(-OR1基)とスルホニルオキシ基(-OS(=O)22基)〔R2はアルキル又はアリール〕の両方の置換基を1つのベンゼン環上に有するアルコキシフェニルアルカンスルホネート化合物又はアルコキシフェニルアリールスルホネート化合物を非水電解液に少量添加することにより、長期の電池の使用を想定した高温サイクルを行なった後も負荷特性や低温特性が低下しないという著しい効果を見出した。この効果は、同一のアルコキシ基2つのみを1つのベンゼン環上に有する化合物、又は同一のスルホニルオキシ基2つのみを1つのベンゼン環上に有する化合物を非水電解液に添加した場合にはみられない効果である。
 なお、本明細書において、「スルホニルオキシ基」とはアルカンスルホニルオキシ基およびアリールスルホニル基を含む概念として用い、「スルホネート」も同様に、アルカンスルホネート及びアリールスルホネートを含む概念として用いる。
 また、本発明者は、シクロヘキサン環とベンゼン環とスルホニルオキシ基(-OS(=O)22基)の3つを有する化合物を非水電解液に添加することにより、長期の電池の使用を想定した高温サイクルを行なった後も負荷特性や低温特性が低下しないという著しい効果を見出した。
 すなわち、本発明は、下記の(1)及び(2)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)~(III)のいずれかで表されるスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000004
(R1は炭素数1~6のアルキル基を示し、R2は炭素数1~6のアルキル基、又は水素原子のうち少なくとも1つがハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R3は水素原子、炭素数1~6のアルキル基、-OR1基、-OS(=O)22基、-OC(=O)R4基、又はハロゲン原子を示し、nは0~4の整数であり、R4は水素原子、炭素数1~6のアルキル基、又は炭素数1~6のアルコキシ基を示す。)
Figure JPOXMLDOC01-appb-C000005
(式中、R5は水素原子のうち少なくとも1つがハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R6は水素原子、ハロゲン原子、水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルカンスルホニルオキシ基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリールスルホニルオキシ基を示し、mは0~4の整数である。)
Figure JPOXMLDOC01-appb-C000006
(式中、R5及びR6は前記と同じであり、pは0~3の整数である。)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなる電気化学素子において、前記一般式(I)~(III)のいずれかで表されるスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする電気化学素子。
 本発明によれば、一次電池の保存特性や二次電池を高温で使用した際のサイクル特性やサイクル後の低温特性に優れた非水電解液及びそれを用いた電気化学素子を提供することができる。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)~(III)のいずれかで表されるアルカンスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする。
<一般式(I)で表されるスルホネート化合物>
 一般式(I)で表されるスルホネート化合物は、2つの全く異なる置換基であるアルコキシ基とスルホニルオキシ基の両方の置換基を1つのベンゼン環上に有する。
Figure JPOXMLDOC01-appb-C000007
 式中、R1は炭素数1~6、好ましくは1~4のアルキル基を示し、R2は炭素数1~6、好ましくは1~4のアルキル基、又は水素原子のうち少なくとも1つがハロゲン原子で置換された炭素数1~6、好ましくは1~4のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R3は水素原子、炭素数1~6、好ましくは1~4のアルキル基、-OR1基、-OS(=O)22基、-OC(=O)R4基、又はハロゲン原子を示し、nは0~4の整数であり、R4は水素原子、炭素数1~6、好ましくは1~4のアルキル基、又は炭素数1~6、好ましくは1~4のアルコキシ基を示す。
 R1である炭素数が1~6個のアルキル基の具体的としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、2-プロピル基、tert-ブチル基、tert-ペンチル基等の直鎖又は分枝鎖のアルキル基が挙げられるが、中でもメチル基、エチル基が好ましい。
 R2である炭素数が1~6個のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等の直鎖のアルキル基、2-プロピル基等の分枝のアルキル基が挙げられる。R2である炭素数が1~6個のハロゲン化アルキル基の具体的としては、トリフルオロメチル基、2、2、2-トリフルオロエチル基が挙げられる。これらの中では、トリフルオロメチル基、メチル基、エチル基が好ましく、メチル基、エチル基がより好ましい。
 R3は、水素原子、直鎖又は分枝の炭素数が1~6個のアルキル基、-OR1基、-OS(=O)22基、-OC(=O)R4、ハロゲン原子のいずれかを示すが、水素原子、炭素数が1~6個のアルキル基、-OR1基、又は-OS(=O)22基が好ましく、炭素数が1~6個のアルキル基、-OR1基がより好ましく、炭素数が1~4個のアルキル基がより好ましく、炭素数3~4個の分枝のアルキル基が更に好ましい。
 R3が直鎖又は分枝の炭素数が1~4個のアルキル基である場合の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、2-プロピル基、tert-ブチル基、tert-ペンチル基、tert-ペンチル基等が好適に挙げられる。これらの中では、メチル基、エチル基、tert-ブチル基、tert-ペンチル基が好ましく、tert-ブチル基がより好ましい。R3がtert-ブチル基及びtert-ペンチル基の場合は新規物質である。
 R3が-OR1基、又は-OS(=O)22基の場合のR1、R2の好ましい態様は、前記のR1、R2の好ましい態様と同じである。
 スルホニルオキシ基(-OS(=O)22基)の置換位置は、アルコキシ基(-OR1基)に対して、オルト位、メタ位、パラ位のいずれであってもよいが、高温サイクル特性や高温サイクル後の低温特性向上の観点から、オルト位、パラ位である場合が好ましく、パラ位の場合がより好ましい。
 R3が-OC(=O)R4である場合、R4は水素原子、炭素数1~4個の直鎖又は分枝鎖のアルキル基、炭素数1~6個の直鎖又は分枝鎖のアルコキシ基を示す。R4の具体例としては、水素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、2-プロピル基、tert-ブチル基、、tert-ペンチル基メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-プロポキシ基、tert-ブトキシ基、tert-ペンチルオキシ基等が挙げられる。これらの中では、水素原子、メチル基、エチル基、メトキシ基、エトキシ基が好ましく、水素原子、メチル基がより好ましい。
 R3がハロゲン原子の場合、フッ素原子、塩素原子、臭素原子が好ましく、フッ素原子がより好ましい。
 nは0~4の整数であり、1~4が好ましく、n=1の場合が特に好ましい。また、n=0の場合は、R3が水素原子の場合と同じである。
 一般式(I)で表されるアルカンスルホネート化合物の具体例は以下のとおりである。(I-1)R1、R2が共にメチル基で、R3が水素原子の場合
 2-メトキシフェニルメタンスルホネート、3-メトキシフェニルメタンスルホネート、4-メトキシフェニルメタンスルホネート等が挙げられる。
(I-2)R1、R2が共にメチル基で、R3がアルキル基の場合
 2-メトキシ-3-メチルフェニル メタンスルホネート、2-メトキシ-4-メチルフェニル メタンスルホネート、2-メトキシ-5-メチルフェニル メタンスルホネート、3-メトキシ-2-メチルフェニル メタンスルホネート、3-メトキシ-4-メチルフェニル メタンスルホネート、3-メトキシ-5-メチルフェニル メタンスルホネート、4-メトキシ-2-メチルフェニル メタンスルホネート、4-メトキシ-3-メチルフェニル メタンスルホネート、3-tert-ブチル-2-メトキシフェニル メタンスルホネート、4-tert-ブチル-2-メトキシフェニル メタンスルホネート、5-tert-ブチル-2-メトキシフェニル メタンスルホネート、2-tert-ブチル-3-メトキシフェニル メタンスルホネート、4-tert-ブチル-3-メトキシフェニル メタンスルホネート、5-tert-ブチル-3-メトキシフェニル メタンスルホネート、2-tert-ブチル-4-メトキシフェニルメタンスルホネート、3-tert-ブチル-4-メトキシフェニル メタンスルホネート等が挙げられる。
(I-3)R1、R2が共にメチル基で、R3が-OR1基の場合
 2,3-ジメトキシフェニル メタンスルホネート、2,4-ジメトキシフェニルメタンスルホネート、2,5-ジメトキシフェニル メタンスルホネート、2,6-ジメトキシフェニル メタンスルホネート、3,4-ジメトキシフェニル メタンスルホネート、3,5-ジメトキシフェニル メタンスルホネート等が挙げられる。
(I-4)R1、R2が共にメチル基で、R3が-OS(=O)22基の場合
 3-メトキシ-1,2-フェニレン ジメタンスルホネート、4-メトキシ-1,2-フェニレン ジメタンスルホネート、2-メトキシ-1,3-フェニレン ジメタンスルホネート、4-メトキシ-1,3-フェニレン ジメタンスルホネート、5-メトキシ-1,3-フェニレン ジメタンスルホネート、2-メトキシ-1,4-フェニレン ジメタンスルホネート、3-メトキシ-1,4-フェニレン ジメタンスルホネート等が挙げられる。
(I-5)R1、R2が共にメチル基で、R3が-OC(=O)R4基の場合
 3-ホルミル-2-メトキシフェニル メタンスルホネート、4-ホルミル-2-メトキシフェニル メタンスルホネート、5-ホルミル-2-メトキシフェニル メタンスルホネート、2-ホルミル-3-メトキシフェニル メタンスルホネート、4-ホルミル-3-メトキシフェニル メタンスルホネート、5-ホルミル-3-メトキシフェニル メタンスルホネート、2-ホルミル-4-メトキシフェニル メタンスルホネート、3-ホルミル-4-メトキシフェニル メタンスルホネート、3-アセトキシ-2-メトキシフェニル メタンスルホネート、4-アセトキシ-2-メトキシフェニル メタンスルホネート、5-アセトキシ-2-メトキシフェニル メタンスルホネート、2-アセトキシ-3-メトキシフェニル メタンスルホネート、4-アセトキシ-3-メトキシフェニル メタンスルホネート、5-アセトキシ-3-メトキシフェニル メタンスルホネート、2-アセトキシ-4-メトキシフェニル メタンスルホネート、3-アセトキシ-4-メトキシフェニル メタンスルホネート、2-メトキシ-3-メトキシカルボニルオキシフェニル メタンスルホネート、2-メトキシ-4-メトキシカルボニルオキシフェニル メタンスルホネート、2-メトキシ-5-メトキシカルボニルオキシフェニル メタンスルホネート、3-メトキシ-2-メトキシカルボニルオキシフェニル メタンスルホネート、3-メトキシ-4-メトキシカルボニルオキシフェニル メタンスルホネート、3-メトキシ-5-メトキシカルボニルオキシフェニル メタンスルホネート、4-メトキシ-2-メトキシカルボニルオキシフェニル メタンスルホネート、4-メトキシ-3-メトキシカルボニルオキシフェニルメタンスルホネート等が挙げられる。
(I-6)R1、R2が共にメチル基で、R3がハロゲン原子の場合
 3-フルオロ-2-メトキシフェニル メタンスルホネート、4-フルオロ-2-メトキシフェニル メタンスルホネート、5-フルオロ-2-メトキシフェニル メタンスルホネート、2-フルオロ-3-メトキシフェニル メタンスルホネート、4-フルオロ-3-メトキシフェニル メタンスルホネート、5-フルオロ-3-メトキシフェニル メタンスルホネート、2-フルオロ-4-メトキシフェニル メタンスルホネート、3-フルオロ-4-メトキシフェニル メタンスルホネート、3,4-ジフルオロ-2-メトキシフェニル メタンスルホネート、3,5-ジフルオロ-2-メトキシフェニル メタンスルホネート、3,6-ジフルオロ-2-メトキシフェニル メタンスルホネート、4,5-ジフルオロ-2-メトキシフェニル メタンスルホネート、2,4-ジフルオロ-3-メトキシフェニル メタンスルホネート、2,5-ジフルオロ-3-メトキシフェニル メタンスルホネート、4,5-ジフルオロ-3-メトキシフェニル メタンスルホネート、4,6-ジフルオロ-3-メトキシフェニル メタンスルホネート、2,3-ジフルオロ-4-メトキシフェニル メタンスルホネート、2,5-ジフルオロ-4-メトキシフェニル メタンスルホネート、2,6-ジフルオロ-4-メトキシフェニル メタンスルホネート、3,4,5-トリフルオロ-2-メトキシフェニル メタンスルホネート、3,4,6-トリフルオロ-2-メトキシフェニル メタンスルホネート、2,4,5-トリフルオロ-3-メトキシフェニル メタンスルホネート、2,4,6-トリフルオロ-3-メトキシフェニル メタンスルホネート、4,5,6-トリフルオロ-3-メトキシフェニル メタンスルホネート、2,3,5-トリフルオロ-4-メトキシフェニル メタンスルホネート、2,3,6-トリフルオロ-4-メトキシフェニルメタンスルホネート、3,4,5,6-テトラフルオロ-2-メトキシフェニル メタンスルホネート、2,4,5,6-テトラフルオロ-3-メトキシフェニル メタンスルホネート、2,3,5,6-テトラフルオロ-4-メトキシフェニル メタンスルホネート等が挙げられる。
(I-7)R1が炭素数が2~6個のアルキル基で、R2が炭素数2~6のアルキル基又は、炭素数1~6のハロゲン化アルキル基又は炭素数6~12のアリール基である場合
 前記(I-1)~(I-6)の化合物のR1、R2の置換基を変えた化合物を、同様に挙げることができる。
 前記(I-1)~(I-7)の化合物の中では、2-メトキシフェニル メタンスルホネート、4-メトキシフェニル メタンスルホネート、2-メトキシ-4-メチルフェニル メタンスルホネート、2-メトキシ-5-メチルフェニル メタンスルホネート、2-tert-ブチル-4-メトキシフェニル メタンスルホネート、2,6-ジメトキシフェニル メタンスルホネート、3,5-ジメトキシフェニル メタンスルホネート、3,4-ジメトキシフェニル メタンスルホネート、3-メトキシ-1,2-フェニレン ジメタンスルホネート、2-メトキシ-1,4-フェニレン ジメタンスルホネート、5-メトキシ-1,3-フェニレン ジメタンスルホネート、2-フルオロ-4-メトキシフェニル メタンスルホネート、4-フルオロ-2-メトキシフェニル メタンスルホネート、4-メトキシフェニル ベンゼンスルホネート、4-メトキシフェニル 4-メチルベンゼンスルホネート、4-メトキシフェニル 2,4,6-トリメチルベンゼンスルホネート、が好ましく、4-メトキシフェニル メタンスルホネート、2,6-ジメトキシフェニル メタンスルホネート、2-tert-ブチル-4-メトキシフェニルメタンスルホネートがより好ましく、2-tert-ブチル-4-メトキシフェニル メタンスルホネートが更に好ましい。
 一般式(I)で表されるスルホネート化合物が、高温サイクル特性や高温サイクル後の低温特性を改善できる理由は必ずしも明らかではないが、以下の理由によると考えられる。
 一般式(I)で表されるスルホネート化合物は、電気化学的に分解することにより正極と負極の両方の上に硫黄原子を含む安定な被膜を形成するため、非水電解液中の溶媒の分解を抑制できるようになる。硫黄原子を有する被膜はリチウムイオン伝導性を低下させることが稀にあるが、一般式(I)で表されるスルホネート化合物は、アルコキシ基を更に含有しているため、リチウムイオンの移動が良好となり、高温サイクル後も負荷特性や低温特性が低下しにくいと考えられる。この様な効果は、1つのベンゼン環上に全く異なる2つの置換基であるアルコキシ基(-OR1基)とスルホニルオキシ基(-OS(=O)22基)の両方の置換基を有する場合に特異的であって、同一の2つの置換基のみを有する、1,4-ベンゼンジオールジメタンスルホネート(2つのスルホニルオキシ基のみを有する)や1,2-ジメトキシベンゼン(2つのアルコキシ基のみを有する)を添加した場合には効果がなかった。
 上記の効果は、スルホニルオキシ基の置換位置がアルコキシ基に対してパラ位の場合にリチウムイオンのトラップサイトである酸素原子が被膜中に均一に存在するようになるため更に向上する。また、置換基R3としてアルキル基、アルコキシ基、スルホニルオキシ基、カルボニルオキシ基、ハロゲン原子等を有する場合、被膜が過度に緻密化するのを防ぐため、高温サイクル後の低温特性が更に向上する。
<一般式(II)又は(III)で表されるスルホネート化合物>
 一般式(II)又は(III)で表されるスルホネート化合物は、シクロヘキサン環とベンゼン環とスルホニルオキシ基の3つを有する。
Figure JPOXMLDOC01-appb-C000008
(式中、R5は水素原子のうち少なくとも1つがハロゲン原子で置換されていてもよい炭素数1~6、好ましくは1~4のアルキル基又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R6は水素原子、ハロゲン原子、又は炭素数1~6、好ましくは1~4のスルホニルオキシ基を示し、mは0~4の整数である。)
Figure JPOXMLDOC01-appb-C000009
(式中、R5及びR6は前記と同じであり、pは0~3の整数である。)
 一般式(II)で表されるスルホネート化合物は、下記一般式(IV)で表されるスルホニルオキシベンゼン化合物として表すこともでき、一般式(III)で表されるスルホネート化合物は、下記一般式(V)で表されるスルホニルオキシベンゼン化合物として表すこともできる。
Figure JPOXMLDOC01-appb-C000010
(式中、R11~R15は水素原子、ハロゲン原子、炭素数1~6、好ましくは1~4の直鎖又は分枝鎖のスルホニルオキシ基の何れかであり、R11~R15のうち、少なくとも1つは炭素数1~6、好ましくは1~4の直鎖又は分枝鎖のスルホニルオキシ基であり、該スルホニルオキシ基の水素原子のうち少なくとも1つはハロゲン原子で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(式中、R16~R19は水素原子、ハロゲン原子、炭素数1~6、好ましくは1~4の直鎖又は分枝鎖のスルホニルオキシ基の何れかであり、R16~R19のうち、少なくとも1つは炭素数1~6、好ましくは1~4の直鎖又は分枝鎖のスルホニルオキシ基であり、該スルホニルオキシ基の水素原子のうち少なくとも1つはハロゲン原子で置換されていてもよい。)
 一般式(II)又は(III)のスルホニルオキシ基(-OS(=O)22基)としては、即ち一般式(IV)又は(V)のR11~R19のいずれかが、炭素数1~6の直鎖又は分枝鎖のスルホニルオキシ基である場合は、メタンスルホニルオキシ基、エタンスルホニルオキシ基、プロパンスルホニルオキシ基、ブタンスルホニルオキシ基、ペンタンスルホニルオキシ基、ヘキサンスルホニルオキシ基、ベンゼンスルホニルオキシ基、4-メチルベンゼンスルホニルオキシ基、2,4,6-トリメチルベンゼンスルホニルオキシ基等が好ましい。これらの中でも、メタンスルホニルオキシ基、エタンスルホニルオキシ基、プロパンスルホニルオキシ基、4-メチルベンゼンスルホニルオキシ基がより好ましく、メタンスルホニルオキシ基が更に好ましい。
 また、前記スルホニルオキシ基の水素原子が1つ以上フッ素原子で置換されていると更に好ましい。中でも、トリフルオロメタンスルホニルオキシ基や2,2,2-トリフルオロエタンスルホニルオキシ基等が特に好ましい。
 前記一般式(IV)又は(V)のR11~R19のいずれかがハロゲン原子の場合、フッ素原子、塩素原子、臭素原子が好ましく、フッ素原子が更に好ましい。
 スルホニルオキシ基の置換位置は、一般式(II)の場合、シクロヘキシル基に対して、オルト位、メタ位、パラ位のいずれであってもよいが、オルト位、パラ位である場合が好ましく、パラ位の場合がより好ましい。即ち、一般式(IV)の場合、シクロヘキシル基に対して、オルト位(R11又はR15)、パラ位(R13)である場合が好ましく、パラ位(R13)の場合がより好ましい。また、一般式(V)の場合、スルホニルオキシ基の置換位置はR16~R19の何れであってもよいが、R17又はR18に置換している方が好ましい。
 上記の置換基や置換位置の場合に、高温サイクル後の低温特性が向上するため好ましい。
 一般式(II)(一般式(IV))で表されるスルホネート化合物において、スルホニルオキシ基がメタンスルホニルオキシ基の場合の具体例としては、2-シクロヘキシルフェニル メタンスルホネート、3-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシル-1,3-フェニレン ジメタンスルホネート、4-シクロヘキシル-3-フルオロフェニル メタンスルホネート、4-シクロヘキシル-2-フルオロフェニル メタンスルホネート、4-シクロヘキシル-2,3-ジフルオロフェニル メタンスルホネート、4-シクロヘキシル-3,5-ジフルオロフェニル メタンスルホネート、4-シクロヘキシル-2,5-ジフルオロフェニル メタンスルホネート、4-シクロヘキシル-2,6-ジフルオロフェニル メタンスルホネート、4-シクロヘキシル-2,3,5-トリフルオロフェニル メタンスルホネート、4-シクロヘキシル-2,3,6-トリフルオロフェニル メタンスルホネート、4-シクロヘキシル-2,3,5,6-テトラフルオロフェニル メタンスルホネート等が挙げられる。
 これらの中では、2-シクロヘキシルフェニル メタンスルホネート、3-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネートが好ましく、2-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネートがより好ましく、4-シクロヘキシルフェニル メタンスルホネートが特に好ましい。
 一般式(III)(一般式(V))で表されるスルホネート化合物において、スルホニルオキシ基がメタンスルホニルオキシ基の場合の具体例としては、5,6,7,8-テトラヒドロナフタレン-1-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2,3-ジイル ジメタンスルホネート、1-フルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、3-フルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、4-フルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、1,3-ジフルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、1,4-ジフルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、3,4-ジフルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、1,3,4-トリフルオロ-5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート等が挙げられる。
 これらの中では、5,6,7,8-テトラヒドロナフタレン-1-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネートがより好ましく、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネートが特に好ましい。
 一般式(II)(一般式(IV))又は一般式(III)(一般式(V))で表されるスルホネート化合物において、スルホニルオキシ基がエタンスルホニルオキシ基等のメタンスルホニルオキシ基以外の置換基の場合の具体例は、前記の化合物において該置換基を変えた化合物を同様に挙げることができる。
 上記の化合物の中でも、一般式(II)(一般式(IV))で表されるスルホネート化合物としては、2-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネート、2-シクロヘキシルフェニル エタンスルホネート、4-シクロヘキシルフェニル エタンスルホネート、2-シクロヘキシルフェニル トリフルオロメタンスルホネート、4-シクロヘキシルフェニル トリフルオロメタンスルホネート、2-シクロヘキシルフェニル 2,2,2-トリフルオロエタンスルホネート、4-シクロヘキシルフェニル 2,2,2-トリフルオロエタンスルホネート、2-シクロヘキシルフェニル 4-メチルベンゼンスルホネート、4-シクロヘキシルフェニル 4-メチルベンゼンスルホネート等が好ましく、一般式(III)(一般式(V))で表されるスルホネート化合物としては、5,6,7,8-テトラヒドロナフタレン-1-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル エタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル エタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル トリフルオロメタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル トリフルオロメタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル 2,2,2-トリフルオロエタンスルホネート、5,6,7,8-2,2,2-テトラヒドロナフタレン-2-イル トリフルオロエタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル 4-メチルベンゼンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル 4-メチルベンゼンスルホネート等が好ましい。
 一般式(II)(一般式(IV))又は一般式(III)(一般式(V))で表されるスルホネート化合物の特に好適な例は、2-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネート、2-シクロヘキシルフェニル エタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネートから選ばれる1種以上である。これらの具体的化合物は高温サイクル後の低温特性向上効果が特に優れているため好ましい。
 また、一般式(I)で表される化合物よりも、一般式(II)で表される化合物の方が、高温サイクル後の低温特性向上効果が優れているため好ましい。
 一般式(II)(一般式(IV))又は一般式(III)(一般式(V))で表されるスルホネート化合物が、高温サイクル後の低温特性を改善できる理由は必ずしも明らかではないが、以下の理由によると考えられる。
 一般式(II)(一般式(IV))又は一般式(III)(一般式(V))で表されるスルホネート化合物は、電気化学的に分解することにより正極と負極の両方の上に硫黄原子を含む高温でも安定な被膜を形成するため、非水電解液中の溶媒の分解を抑制できるようになる。硫黄原子を有する被膜は負極のリチウムイオン伝導性を低下させ、Li金属が析出しやすくなることが稀にあるが、一般式(II)(一般式(IV))又は一般式(III)(一般式(V))で表されるスルホネート化合物は、シクロヘキサン環を更に含有しているため、極微量に正極上で酸化され、プロトンの生成を促進することができるので、プロトンの還元により負極上でのLi金属の析出が抑制されると考えられる。従って、高温サイクルを行なった後も、正極、負極の両方の抵抗が増加し難いので、高温サイクル後も負荷特性や低温特性が低下しにくいと考えられる。
 上記の効果は、前記スルホネート化合物のシクロヘキサン環の代わりにベンゼン環を有する4-フェニルフェニル メタンスルホネートや、前記スルホネート化合物のメタンスルホニルオキシ基の代わりにメトキシカルボニルオキシ基を有する2-シクロヘキシルフェニルメチルカーボネートのような化合物ではみられず、本願発明の化合物ように、シクロヘキサン環とベンゼン環とスルホニルオキシ基の3つを有する化合物に特異的な効果であることが分かった。
〔一般式(I)~(III)で表されるスルホネート化合物の含有量〕
 本発明の非水電解液において、非水電解液中に含有される一般式(I)~(III)で表されるスルホネート化合物の含有量は、5質量%以下であれば、電極上に過度に被膜が形成され高温サイクル特性後の低温特性等の電気化学特性が低下するおそれが少なく、また、0.01質量%以上であれば正極や負極を保護する効果が十分であり、高温サイクル後の低温特性を改善する効果が高まる。したがって、該化合物の含有量は、非水電解液中に0.01質量%以上であり、0.5質量%以上がより好ましく、1質量%以上が更に好ましい。また、その上限は10質量%以下であり、5質量%以下がより好ましく、3質量%以下が更に好ましい。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状カーボネート、鎖状エステル、エーテル、アミド、リン酸エステル、スルホン、ラクトン、ニトリル、S=O結合含有化合物、カルボン酸無水物、芳香族化合物等が挙げられる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が挙げられる。これらの中でも、炭素-炭素二重結合又はフッ素を有する環状カーボネートを少なくとも1種を使用すると高温サイクル特性や高温サイクル後の低温特性を改善する効果が一段と向上するので好ましく、炭素-炭素二重結合を含む環状カーボネートとフッ素を有する環状カーボネートを両方含むことが特に好ましい。炭素-炭素二重結合を含有する環状カーボネートとしては、VC、VEC、フッ素を含有する環状カーボネートとしては、FEC、DFECが好ましい。
 これらの溶媒は1種類で使用してもよいが、2種類以上を組み合わせて使用した場合は、高温サイクル特性や高温サイクル後の低温特性を改善する効果がさらに向上するので好ましく、3種類以上が特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、FECとVC、FECとEC、FECとPC、FECとDFEC、DFECとEC、DFECとPC、DFECとVC、DFECとVEC、ECとPCとVC、ECとFECとPC、ECとFECとVC、ECとVCとVEC、FECとPCとVC、DFECとECとVC、DFECとPCとVC、FECとECとPCとVC、DFECとECとPCとVC等が挙げられる。前記の組合せのうち、より好ましくはECとVC、FECとPC、DFECとPC、ECとFECとPC、ECとFECとVC、ECとVCとVEC等の組合せが挙げられる。
 環状カーボネートの含有量は、特に制限はされないが、非水溶媒の総体積に対して、10~40体積%の範囲で用いるのが好ましい。該含有量が10体積%以上であれば電解液の電気伝導度が低下するおそれが少なく、電池の内部抵抗の増加を抑制することができ、40体積%以下であれば高温サイクル特性や高温サイクル後の低温特性を改善する効果が高まる。
 鎖状カーボネート類としては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネートが挙げられる。
 これらの中では、メチル基を有する鎖状カーボネートを含むことが好ましく、DMC、MEC、MPC、MIPCのうちの少なくとも一種を含むことが更に好ましく、DMC、MECのうちの少なくとも一種を含むことが特に好ましい。
 また、非対称鎖状カーボネートを含むと高温サイクル特性や高温サイクル後の低温特性を改善する効果が向上する傾向があるので好ましく、非対称鎖状カーボネートと対称鎖状カーボネートを併用することがより好ましい。また、鎖状カーボネートに含まれる非対称鎖状カーボネートの割合が50容量%以上であることが好ましい。非対称鎖状カーボネートとしては、メチル基を有するものが好ましく、MECが最も好ましい。
 これらの鎖状カーボネート類は1種類で使用してもよいが、2種類以上を組み合わせて使用すると、上記効果が更に向上するので好ましい。
 鎖状カーボネートの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以下であれば電解液の粘度が上昇するおそれが少なく、90体積%以下であれば電解液の電気伝導度が低下せず、高温サイクル特性等の電気化学特性の低下を抑えられるので上記範囲であることが好ましい。
 環状カーボネート類と鎖状カーボネート類の割合は、高温サイクル特性や高温サイクル後の低温特性の向上効果、充電保存時のガス発生抑制効果の向上の観点から、環状カーボネート:鎖状カーボネート(体積比)が10:90~40:60が好ましく、15:85~35:65がより好ましく、20:80~30:70が特に好ましい。
 その他の非水溶媒としては、酢酸メチル、酢酸エチル、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸ブチル、ピバリン酸ヘキシル、ピバリン酸オクチル、シュウ酸ジメチル、シュウ酸エチルメチル、シュウ酸ジエチル等の鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル等のリン酸エステル、スルホラン等のスルホン、γ-ブチロラクトン、γ-バレロラクトン、α-アンゲリカラクトン等のラクトン、アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル等のニトリル、1,3-ブタンスルトン、1,4-ブタンスルトン等のスルトン化合物、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト化合物、1,2-エタンジオールジメタンスルホネート、1,2-プロパンジオールジメタンスルホネート、1,4-ブタンジオールジメタンスルホネート、1,3-ブタンジオールジメタンスルホネート等のジスルホン酸ジエステル化合物、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物等から選ばれるS=O結合含有化合物、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、無水グルタル酸、無水イタコン酸等の環状のカルボン酸無水物、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝鎖アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ナフタレン、1,2,3,4-テトラヒドロナフタレン等のナフタレン誘導体、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等の芳香族化合物が好適に挙げられる。
 上記の非水溶媒のうち、特に、S=O結合含有化合物、カルボン酸無水物、芳香族化合物から選ばれる少なくとも1種以上を一般式(I)~(III)で表されるスルホネート化合物と併用すると、高温サイクル特性や高温サイクル後の低温特性を改善する効果が向上するので好ましい。
 S=O結合含有化合物としては、環状サルファイト化合物、カルボン酸無水物としては、環状のカルボン酸無水物が更に好ましい。特に好ましくはエチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド、5-ビニル-ヘキサヒドロ1,3,2-ベンゾジオキサチオール-2-オキシド、無水コハク酸から選ばれる少なくとも1種の化合物である。
 芳香族化合物としては、ビフェニル誘導体、分枝アルキレン基を有する芳香族化合物、ナフタレン誘導体の何れか好ましく、特に好ましくは、ビフェニル、o-テルフェニル、シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、1,2,3,4-テトラヒドロナフタレンから選ばれる少なくとも1種の化合物である。最も好ましくは、シクロヘキシルベンゼンである。
 一般式(I)で表されるスルホネート化合物と併用するこれらの化合物の添加量は、5質量%を超えると高温サイクル特性や高温サイクル後の低温特性が低下する場合があり、また、0.05質量%に満たないと特性を改善する効果が十分に得られない場合がある。したがって、該含有量は、非水電解液の質量中に0.05質量%以上含むことが好ましく、0.5質量%以上がより好ましい。また、その上限は5質量%以下が好ましく、3質量%以下がより好ましい。
 上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネートの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネート類と鎖状エステル類との組合せ、環状カーボネートと鎖状カーボネートとエーテルの組合せ、環状カーボネートと鎖状カーボネートとS=O結合含有化合物との組合せ等が挙げられる。
 これらの中でも、少なくとも環状カーボネートと鎖状カーボネートを組合せた非水溶媒を用いると、高温サイクル特性や高温サイクル後の低温特性を改善する効果を向上するために好ましい。より具体的には、EC、PC、VC、VEC、FECから選ばれる1種以上の環状カーボネート類と、DMC、MEC、DECから選ばれる1種以上の鎖状カーボネート類との組合せが挙げられる。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩、オニウム塩が好適に挙げら
れる。
(リチウム塩)
 リチウム塩としては、LiPF6、LiPO22、LiBF4、LiClO4等の無機リチウム塩、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso-C373、LiPF5(iso-C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を含有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウムやジフルオロ[オキサレート-O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が挙げられる。これらの中でも、特に好ましい電解質塩は、LiPF6、LiBF4、LiN(SO2CF32、及びLiN(SO2252から選ばれる少なくとも1種である。これらの電解質塩は、1種単独で又は2種以上を組み合わせて使用することができる。
 これらの電解質塩の好適な組合せとしては、LiPF6を含み、かつ窒素原子またはホウ素原子を含むリチウム塩を含有することが好ましい。窒素原子又はホウ素原子を含むリチウム塩としては、LiBF4、LiN(SO2CF32及びLiN(SO2252から選ばれる少なくとも1種を含む組合せが挙げられる。好ましくは、LiPF6とLiBF4との組合せ、LiPF6とLiN(SO2CF32との組合せ、LiPF6とLiN(SO2252との組合せ等が挙げられる。LiPF6:[LiBF4又はLiN(SO2CF32又はLiN(SO2252] (モル比)が70:30よりもLiPF6の割合が低い場合、及び99:1よりもLiPF6の割合が高い場合には高温サイクル特性や充電保存時のガス発生抑制効果が低下する場合がある。したがって、LiPF6:[LiBF4 又はLiN(SO2CF32又はLiN(SO2252](モル比)は、70:30~99:1の範囲が好ましく、80:20~98:2の範囲がより好ましい。上記範囲の組合せで使用することにより、高温サイクル特性や高温サイクル後の低温特性を改善する効果を更に向上させることができる。
 電解質塩は任意の割合で混合することができるが、LiPF6と組み合わせて使用する場合のLiBF4、LiN(SO2CF32及びLiN(SO2252を除く他の電解質塩が全電解質塩に占める割合(モル分率)は、0.01%以上であれば高温サイクル特性や高温サイクル後の低温特性を改善する効果が十分であり、45%以下であれば高温サイクル特性が低下するおそれが少ない。したがって、その割合(モル分率)は、好ましくは0.01~45%、より好ましくは0.03~20%、更に好ましくは0.05~10%、最も好ましくは0.05~5%である。
 これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.5M以上がより好ましく、0.7M以上が最も好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.5M以下が更に好ましく、1.2M以下が最も好ましい。
(オニウム塩)
 また、オニウム塩としては、下記に示すオニウムカチオンとアニオンを組み合わせた各種塩が好適に挙げられる。
 オニウムカチオンの具体例としては、テトラメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、N,N-ジメチルピロリジニウムカチオン、N-エチル-N-メチルピロリジニウムカチオン、N,N-ジエチルピロリジニウムカチオン、スピロ-(N,N')-ビピロリジニウムカチオン、N,N'-ジメチルイミダゾリニウムカチオン、N-エチル-N'-メチルイミダゾリニウムカチオン、N,N'-ジエチルイミダゾリニウムカチオン、N,N'-ジメチルイミダゾリウムカチオン、N-エチル-N'-メチルイミダゾリウムカチオン、N,N'-ジエチルイミダゾリウムカチオン等が好適に挙げられる。
 アニオンの具体例としては、PF6アニオン、BF4アニオン、ClO4アニオン、AsF6アニオン、CF3SO3アニオン、N(CF3SO22アニオン、N(C25SO22アニオン、等が好適に挙げられる。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩を加え、更に前記一般式(I)~(III)で表されるスルホネート化合物を該非水電解液中に0.01~10質量%含有させるように添加して調製することができる。
 この際、用いる非水溶媒及び電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の電気化学素子に使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の電気化学素子用(即ち、リチウム電池用)又は第4の電気化学素子用(即ち、リチウムイオンキャパシター用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。
〔第1の電気化学素子(リチウム電池)〕
 本発明のリチウム電池は、リチウム一次電池及びリチウム二次電池を総称する。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから1種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、LiCo0.98Mg0.022等が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから表される少なくとも1種類以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧のリチウム複合金属複合酸化物を使用すると、充電時における電解液との反応により高温サイクル特性や高温サイクル後の低温特性を改善する効果が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特にFe、Co、Ni及びMnから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の、一種もしくは二種以上の金属元素の酸化物あるいはカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。中でも、MnO2、V25、フッ化黒鉛等が好ましい。
 また、正極中に元素としてNiが含まれる場合、正極活物質中のLiOH等の不純物が増える傾向があり、電解液の分解が促進されやすくなるため、本願発明の非水電解液の使用により、高温サイクル特性や高温サイクル後の低温特性を改善する効果が一段と得られやすいので好ましい。正極活物質中のNiの原子濃度が5~25atomic%である場合が更に好ましく、8~21atomic%である場合が特に好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類等が挙げられる。また、グラファイト類とカーボンブラック類を適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量をさらに高めるため、好ましくは2g/cm3以上であり、さらに好ましくは、3g/cm3以上であり、特に好ましくは、3.6g/cm3以上である。なお、上限としては、4g/cm3以下が好ましい。
 負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料(人造黒鉛や天然黒鉛等のグラファイト類)、リチウムを吸蔵及び放出可能な金属化合物等を1種単独又は2種以上を組み合わせて用いることができる。
 リチウムを吸蔵及び放出することが可能な炭素材料としては、易黒鉛性炭素や、(002)面の面間隔が0.37nm以上の難黒鉛性炭素や、(002)面の面間隔が0.34nm以下の黒鉛などが好ましい。
 これらの中では、リチウムイオンの吸蔵及び放出能力において人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると、高温サイクル中の電解液の分解によりLiイオンの吸蔵及び放出サイトを塞がれて高温サイクル後の低温特性が低下しやすくなるが、本願発明の電解液を使用すると、上記の効果が一段と向上するので好ましく、0.05以上となることが更に好ましく、0.1以上となることが特に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下が更に好ましい。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応しやすく、高温サイクル特性や高温サイクル後の低温特性等の電気化学特性が低下する傾向があるが、本発明に係るリチウム二次電池では非水電解液との反応を抑制することができる。また、高結晶性の炭素材料が低結晶性の炭素材料によって被膜されていると非水電解液の分解が一段と抑制されるので好ましい。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるので特に好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 また、リチウム一次電池用負極活物質としては、リチウム金属、あるいはリチウム合金が使用される。
 負極活物質に黒鉛を用いた場合、負極の集電体を除く部分の密度は、通常は1.4g/cm3以上であり、電池の容量をさらに高めるため、好ましくは、1.6g/cm3以上であり、特に好ましくは、1.7g/cm3以上である。なお、上限としては、2g/cm3以下が好ましい。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート式電池等を適用できる。
 電池用セパレータのとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温サイクル特性や高温サイクル後の低温特性を改善する効果に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本願発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~3Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは0~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の電気化学素子(電気二重層キャパシタ)〕
 電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する電気化学素子である。本発明の一例は、電気二重層キャパシタである。この電気化学素子に用いられる最も典型的な電極活物質は活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の電気化学素子〕
 電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する電気化学素子である。この電気化学素子に用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の電気化学素子(リチウムイオンキャパシタ)〕
 負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する電気化学素子である。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
 以下、本発明の新規化合物の合成例、及びそれを用いた電解液の実施例を示すが、本発明は、これらの実施例に限定されるものではない。
合成例1〔2-tert-ブチル-4-メトキシフェニル メタンスルホネートの合成〕
 4-ヒドロキシ-3-tert-ブチルアニソール15.0g(83.2mmol)、トリエチルアミン10.5g(104mmol)を炭酸ジメチル250ml(溶媒)に溶解させ、メタンスルホニルクロライド11.9g(104mmol)を内温5℃以下に制御し、25分かけて滴下した。滴下終了後、25℃で1.5時間攪拌し、反応液を飽和重曹水溶液にあけ、水層を分離し、有機層を2回水洗した後、有機層を分離濃縮した。濃縮物を蒸留精製し(139℃/32pa)、メタンスルホン酸2-tert-ブチル-4-メトキシフェニル メタンスルホネート16.3g(76%収率)を得た。
 得られた2-tert-ブチル-4-メトキシフェニル メタンスルホネートについて、1H-NMR(測定機器:日本電子株式会社製、「AL300」)、及び質量分析(測定機器:株式会社日立製作所製、「M80B」)の測定を行い、その構造を確認した。
(1)1H-NMR(300MHz,CDCl3):δ=7.45(d,J=9.0Hz,1H),6.95(d,J=3.2Hz,1H),6.71(dd,J=9.0Hzx3.2Hz,1H),3.79(s,3H),3.21(s,3H),1.39(s,9H).
(2)質量分析:MS(EI)m/z(%)=258(19)[M+]179(100),151(20),139(18),119(13),91(13),76(11),41(10)
実施例I-1~I-11、比較例I-1~I-3
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/32(正極活物質);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製した。負極の集電体を除く部分の密度は1.7g/cm3であった。そして、正極シート、微孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温サイクル試験後の低温特性の評価〕
(初期の放電容量)
 上記の方法で作製したコイン電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.1Vまで3時間充電し、0℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の0℃での放電容量を求めた。
(高温サイクル試験)
 次に、このコイン電池を60℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.1Vまで3時間充電し、次に1Cの定電流下終止電圧2.75Vまで放電することを1サイクルとし、これを100サイクルに達するまで繰り返した。
(高温サイクル後の放電容量)
 更にその後、初期の放電容量の測定と同様にして、高温サイクル後の0℃の放電容量を求めた。
(高温サイクル試験後の低温特性)
 高温サイクル後の低温特性を下記の0℃放電容量の維持率より調べた。
 高温サイクル後の0℃放電容量維持率(%)=(高温サイクル後の0℃の放電容量/初期の0℃の放電容量)×100
 電池の作製条件及び電池特性を表1に示す。
Figure JPOXMLDOC01-appb-T000012
実施例I-12、比較例I-4
 実施例I-2、比較例I-1で用いた負極活物質に変えて、ケイ素(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例I-2、比較例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
実施例I-13、比較例I-5
 実施例I-2、比較例I-1で用いた正極活物質に変えて、LiFePO4(正極活物質)を用いて、正極シートを作製した。LiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、サイクル特性の評価及びガス発生量の評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例I-2、比較例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000014
 上記実施例I-1~I-11のリチウム二次電池は何れも、アルコキシフェニルアルカンスルホネート化合物を添加しない比較例I-1、同一の2個のアルコキシ基のみを有する1,2-ジメトキシベンゼンを添加した比較例I-2や同一の2個のアルカンスルホニルオキシ基のみを有する1,4-フェニレン ジメタンスルホネートを添加した比較例I-3のリチウム二次電池に比べ、高温サイクル後の低温特性を改善する効果が顕著に向上している。以上より、本発明の効果は、1つのベンゼン環上にスルホニルオキシ基とアルコキシ基の異なる2つの置換基を有する化合物に特有の効果であることが判明した。
 また、実施例I-12と比較例I-4の対比、実施例I-13と比較例I-5の対比から、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合や、負極にSiを用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
実施例II-1~II-9、比較例II-1~II-3
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/32(正極活物質);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き正極シートを作製した。正極の集電体を除く部分の密度は3.4g/cm3であった。また、低結晶性の炭素材料によって被膜された人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、I(110)/I(004)は0.1であった。そして、正極シート、微孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 前記実施例Iと同様にして、高温サイクル試験後の低温特性を評価した。電池の作製条件及び電池特性を表4に示す。
Figure JPOXMLDOC01-appb-T000015
実施例II-10、比較例II-4
 実施例II-2、比較例II-1で用いた負極活物質に変えて、Si(負極活物質)を用いて、負極シートを作製した。Si;80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例II-2、比較例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
実施例II-11、比較例II-5
 実施例II-2、比較例II-1で用いた正極活物質に変えて、非晶質炭素で被覆したLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆したLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、高温サイクル後の低温特性の評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例II-2、比較例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000017
 上記実施例II-1~II-9のリチウム二次電池は何れも、アルカンスルホニルオキシベンゼン化合物を添加しない比較例II-1、実施例II-1のアルカンスルホニルオキシベンゼン化合物のシクロヘキサン環の代わりにベンゼン環を有する4-フェニルフェニル メタンスルホネートを添加した比較例II-2や実施例II-4のアルカンスルホニルオキシベンゼン化合物のメタンスルホニルオキシ基の代わりにメトキシカルボニルオキシ基を有する2-シクロヘキシルフェニルメチルカーボネートを添加した比較例3のリチウム二次電池に比べ、高温サイクル後の低温特性を改善する効果が顕著に向上している。以上より、本発明の効果は、シクロヘキサン環とベンゼン環とアルカンスルホニルオキシ基の3つを有する化合物に特異的な効果であることが判明した。
 また、実施例II-10と比較例II-4の対比、実施例II-11と比較例II-5の対比から、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合や、負極にSiを用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、本発明の非水電解液は、リチウム一次電池の高温保存後の低温放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、電気化学特性に優れた電気化学素子を得ることができる。特にハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等に搭載される電気化学素子用の非水電解液として使用される場合、高温サイクル特性や高温サイクル後の低温特性に優れた電気化学素子を得ることができる。

Claims (9)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)~(III)のいずれかで表されるスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数1~6のアルキル基を示し、R2は炭素数1~6のアルキル基、又は水素原子のうち少なくとも1つがハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R3は水素原子、炭素数1~6のアルキル基、-OR1基、-OS(=O)22基、-OC(=O)R4基、又はハロゲン原子を示し、nは0~4の整数であり、R4は水素原子、炭素数1~6のアルキル基、又は炭素数1~6のアルコキシ基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R5は水素原子のうち少なくとも1つがハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基を示し、R6は水素原子、ハロゲン原子、水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルカンスルホニルオキシ基、又は水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリールスルホニルオキシ基を示し、mは0~4の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R5及びR6は前記と同じであり、pは0~3の整数である。)
  2.  前記一般式(II)又は(III)で表されるスルホネート化合物が、2-シクロヘキシルフェニル メタンスルホネート、4-シクロヘキシルフェニル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-1-イル メタンスルホネート、5,6,7,8-テトラヒドロナフタレン-2-イル メタンスルホネートから選ばれる少なくとも1種である請求項1に記載の非水電解液。
  3.  前記非水溶媒が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、ビニルエチレンカーボネートから選ばれる少なくとも1種の環状カーボネートを含む請求項1に記載の非水電解液。
  4.  前記非水溶媒が、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる非対称鎖状カーボネート、並びにジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる対称鎖状カーボネートから選ばれる少なくとも1種の鎖状カーボネートを含む請求項1に記載の非水電解液。
  5.  前記の電解質塩が、LiPF6、LiBF4、LiN(SO2CF32、及びLiN(SO2252から選ばれる少なくとも1種を含む請求項1に記載の非水電解液。
  6.  さらに、ビフェニル、o-テルフェニル、シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、及び1,2,3,4-テトラヒドロナフタレンから選ばれる少なくとも1種の芳香族化合物を含む請求項1に記載の非水電解液。
  7.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなる電気化学素子において、前記一般式(I)~(III)のいずれかで表されるスルホネート化合物を非水電解液中に0.01~10質量%含有することを特徴とする電気化学素子。
  8.  前記正極が、正極活物質として、コバルト、マンガン及びニッケルから選ばれる1種以上を含有するリチウムとの複合金属酸化物及び/又はFe、Co、Ni及びMnから選ばれる1種以上含むリチウム含有オリビン型リン酸塩を含む請求項7に記載の電気化学素子。
  9.  前記負極が、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、及びSn又はSiを含む金属化合物から選ばれる1種以上である請求項7に記載の電気化学素子。
PCT/JP2010/063715 2009-08-17 2010-08-12 非水電解液及びそれを用いた電気化学素子 WO2011021570A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2771323A CA2771323A1 (en) 2009-08-17 2010-08-12 Nonaqueous electrolyte solution and electrochemical element using same
EP10809915.1A EP2469638B1 (en) 2009-08-17 2010-08-12 Non-aqueous electrolytic solution and electrochemical device using the same
CN201080033357.XA CN102484280B (zh) 2009-08-17 2010-08-12 非水电解液以及使用其的电化学元件
BR112012003251A BR112012003251A2 (pt) 2009-08-17 2010-08-12 solução eletrolítica não aquosa e elemento eletroquímico usando a mesma
JP2011527654A JP5594288B2 (ja) 2009-08-17 2010-08-12 非水電解液及びそれを用いた電気化学素子
US13/386,841 US9029024B2 (en) 2009-08-17 2010-08-12 Nonaqueous electrolyte solution and electrochemical element using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-188470 2009-08-17
JP2009188470 2009-08-17
JP2009264876 2009-11-20
JP2009-264876 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011021570A1 true WO2011021570A1 (ja) 2011-02-24

Family

ID=43607025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063715 WO2011021570A1 (ja) 2009-08-17 2010-08-12 非水電解液及びそれを用いた電気化学素子

Country Status (8)

Country Link
US (1) US9029024B2 (ja)
EP (1) EP2469638B1 (ja)
JP (1) JP5594288B2 (ja)
KR (1) KR20120084709A (ja)
CN (1) CN102484280B (ja)
BR (1) BR112012003251A2 (ja)
CA (1) CA2771323A1 (ja)
WO (1) WO2011021570A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175959A (ja) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
JP2013038103A (ja) * 2011-08-03 2013-02-21 Osaka Gas Co Ltd キャパシタの製造方法およびキャパシタ
EP2615680A1 (en) * 2012-01-11 2013-07-17 Samsung SDI Co., Ltd. Rechargeable lithium battery
EP2701230A1 (en) * 2011-04-22 2014-02-26 Ube Industries, Ltd. Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
JP2014192145A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 非水二次電池及び二次電池用電解液
WO2023277164A1 (ja) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 電解液用添加剤、電解液、及び電気化学デバイス

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602856B1 (en) 2010-08-05 2017-02-22 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
CN103069636B (zh) * 2010-08-05 2016-01-20 和光纯药工业株式会社 非水系电解液、其制造法和使用该电解液的非水系电解液电池
KR20140068413A (ko) 2012-11-28 2014-06-09 한양대학교 산학협력단 전해질 염 용해용 용매로 알킬메탄설포네이트를 사용하는 비수계 전해액을 포함하는 이차전지
US20150380176A1 (en) * 2013-02-08 2015-12-31 Lg Electronics Inc. Graphene lithium ion capacitor
CN104752765B (zh) * 2013-12-30 2017-01-25 比亚迪股份有限公司 非水电解液添加剂及含该添加剂的非水电解液
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
KR102327302B1 (ko) * 2014-07-07 2021-11-17 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
WO2017032582A1 (de) 2015-08-26 2017-03-02 Evonik Degussa Gmbh Verwendung bestimmter polymere als ladungsspeicher
KR101989727B1 (ko) 2015-08-26 2019-06-14 에보니크 데구사 게엠베하 전하 저장체로서의 특정 중합체의 용도
KR102233778B1 (ko) * 2016-01-28 2021-03-30 삼성에스디아이 주식회사 전해질 및 이를 포함하는 이차 전지
TWI686415B (zh) 2016-08-05 2020-03-01 德商贏創運營有限公司 含有噻嗯之聚合物作為電荷儲存裝置之用途
CN108336408B (zh) * 2018-03-15 2021-12-10 桑顿新能源科技(长沙)有限公司 一种锂离子电池用非水电解液
CN110429336B (zh) * 2019-07-24 2022-07-12 江苏国泰超威新材料有限公司 一种非水电解液及锂离子电池
CN110668978A (zh) * 2019-09-23 2020-01-10 广州天赐高新材料股份有限公司 双磺酸酯化合物及其制备方法以及电解液和储能装置
CN111342134B (zh) * 2020-03-13 2022-09-13 河南电池研究院有限公司 一种宽温域锂离子电池非水电解液及其制备方法
CN113851711B (zh) * 2020-06-28 2023-06-30 深圳市研一新材料有限责任公司 电池电解液及其中苯磺酸酯化合物的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156243A (ja) 1998-11-18 2000-06-06 Sony Corp 非水電解液電池
JP2001332297A (ja) 2000-05-25 2001-11-30 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2004087168A (ja) * 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
JP2006172950A (ja) * 2004-12-16 2006-06-29 Nec Corp 二次電池用電解液及び二次電池
JP2006351337A (ja) 2005-06-15 2006-12-28 Mitsubishi Chemicals Corp リチウム二次電池
JP2008021624A (ja) * 2006-06-16 2008-01-31 Sony Corp 非水電解質組成物及び非水電解質二次電池
WO2008123014A1 (ja) * 2007-03-06 2008-10-16 Ube Industries, Ltd. スルホン酸tert-ブチルフェニル化合物及びそれを用いたリチウム二次電池用非水電解液、並びにそれを用いたリチウム二次電池
JP2009093839A (ja) * 2007-10-04 2009-04-30 Ube Ind Ltd ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
JP2009231283A (ja) 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863572B2 (ja) * 2001-05-22 2012-01-25 三井化学株式会社 非水電解液、およびそれを用いた二次電池
US7537861B2 (en) * 2002-07-31 2009-05-26 Ube Industries, Ltd. Lithium secondary battery employing fluorine-substituted cyclohexylbenzene containing electrolytic solution
DE602004031643D1 (de) 2003-09-17 2011-04-14 Ube Industries Nichtwässrige elektrolytlösung und lithium-sekundärbatterie dieselbe verwendend
CN101842349B (zh) * 2007-11-01 2013-07-17 宇部兴产株式会社 磺酸苯酯化合物、使用它的非水电解液及锂电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156243A (ja) 1998-11-18 2000-06-06 Sony Corp 非水電解液電池
JP2001332297A (ja) 2000-05-25 2001-11-30 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2004087168A (ja) * 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
JP2006172950A (ja) * 2004-12-16 2006-06-29 Nec Corp 二次電池用電解液及び二次電池
JP2006351337A (ja) 2005-06-15 2006-12-28 Mitsubishi Chemicals Corp リチウム二次電池
JP2008021624A (ja) * 2006-06-16 2008-01-31 Sony Corp 非水電解質組成物及び非水電解質二次電池
WO2008123014A1 (ja) * 2007-03-06 2008-10-16 Ube Industries, Ltd. スルホン酸tert-ブチルフェニル化合物及びそれを用いたリチウム二次電池用非水電解液、並びにそれを用いたリチウム二次電池
JP2009093839A (ja) * 2007-10-04 2009-04-30 Ube Ind Ltd ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
JP2009231283A (ja) 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2469638A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175959A (ja) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
EP2701230A1 (en) * 2011-04-22 2014-02-26 Ube Industries, Ltd. Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
EP2701230A4 (en) * 2011-04-22 2014-10-15 Ube Industries NON-ACID ELECTROLYTE SOLUTION, ELECTRICITY STORAGE DEVICE THEREFOR AND TRIFLUOROMETHYLBENZEN COMPOUND
US9472828B2 (en) 2011-04-22 2016-10-18 Ube Industries, Ltd. Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
JP2013038103A (ja) * 2011-08-03 2013-02-21 Osaka Gas Co Ltd キャパシタの製造方法およびキャパシタ
EP2615680A1 (en) * 2012-01-11 2013-07-17 Samsung SDI Co., Ltd. Rechargeable lithium battery
US9130246B2 (en) 2012-01-11 2015-09-08 Samsung Sdi Co., Ltd. Rechargeable lithium battery having lithium difluorophosphate and a sultone-based compound
JP2014192145A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 非水二次電池及び二次電池用電解液
WO2023277164A1 (ja) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 電解液用添加剤、電解液、及び電気化学デバイス

Also Published As

Publication number Publication date
BR112012003251A2 (pt) 2016-03-01
CN102484280A (zh) 2012-05-30
CA2771323A1 (en) 2011-02-24
US20120189919A1 (en) 2012-07-26
EP2469638A4 (en) 2014-03-12
EP2469638A1 (en) 2012-06-27
EP2469638B1 (en) 2014-10-01
KR20120084709A (ko) 2012-07-30
CN102484280B (zh) 2014-05-07
US9029024B2 (en) 2015-05-12
JP5594288B2 (ja) 2014-09-24
JPWO2011021570A1 (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5594288B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP6024670B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6222106B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5979150B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6007915B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5907070B2 (ja) リチウム電池又はリチウムイオンキャパシタ用の非水電解液及びそれを用いた電気化学素子
JP6035684B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP5708491B2 (ja) リチウム二次電池及びそれに用いられる非水電解液
JP2017157557A (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5545219B2 (ja) 非水電解液及びそれを用いたリチウム電池
WO2012144306A1 (ja) 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物
WO2013024748A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5686100B2 (ja) 非水電解液及びそれを用いた電気化学素子
WO2017047554A1 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JP5822070B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2011171282A (ja) 非水電解液及びそれを用いた電気化学素子
JP5589796B2 (ja) 非水電解液、それを用いた電気化学素子、及びそれに用いられるトリアルキルシリルオキシ基含有化合物
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033357.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527654

Country of ref document: JP

Ref document number: 2010809915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1415/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2771323

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127004102

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13386841

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003251

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003251

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120213