WO2012144306A1 - 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物 - Google Patents

非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物 Download PDF

Info

Publication number
WO2012144306A1
WO2012144306A1 PCT/JP2012/058566 JP2012058566W WO2012144306A1 WO 2012144306 A1 WO2012144306 A1 WO 2012144306A1 JP 2012058566 W JP2012058566 W JP 2012058566W WO 2012144306 A1 WO2012144306 A1 WO 2012144306A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbonate
trifluoromethylphenyl
carbon atoms
storage device
Prior art date
Application number
PCT/JP2012/058566
Other languages
English (en)
French (fr)
Inventor
安部 浩司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020137027598A priority Critical patent/KR20140025398A/ko
Priority to JP2013510929A priority patent/JP6070543B2/ja
Priority to US14/112,778 priority patent/US9472828B2/en
Priority to EP12774584.2A priority patent/EP2701230B1/en
Priority to CN201280019666.0A priority patent/CN103493277B/zh
Publication of WO2012144306A1 publication Critical patent/WO2012144306A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/65Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • C07C309/66Methanesulfonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte that can improve the electrochemical characteristics of an electricity storage device over a wide temperature range, an electricity storage device using the same, and a specific trifluoromethylbenzene compound.
  • power storage devices particularly lithium secondary batteries
  • small electronic devices such as mobile phones and notebook computers, electric vehicles, and power storage. Since these electronic devices and automobiles may be used in a wide temperature range such as a high temperature in midsummer or a low temperature in extremely cold, it is required to improve electrochemical characteristics in a wide range of temperatures. .
  • CO 2 emissions there is an urgent need to reduce CO 2 emissions.
  • environmentally friendly vehicles equipped with power storage devices consisting of power storage devices such as lithium secondary batteries and capacitors, hybrid electric vehicles ( HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV) are required to spread quickly.
  • HEV hybrid electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • BEV battery electric vehicles
  • lithium secondary battery Due to the long travel distance of automobiles, automobiles may be used in areas with a wide temperature range from extremely hot areas in the tropics to extremely cold areas. Therefore, in particular, these in-vehicle power storage devices are required not to deteriorate in electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of inserting and extracting lithium, a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent, and the non-aqueous solvent includes ethylene carbonate (EC), Carbonates such as propylene carbonate (PC) are used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • metal lithium metal compounds that can occlude and release lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known, and in particular, lithium can be occluded and released.
  • Lithium secondary batteries using carbon materials such as coke, artificial graphite and natural graphite have been widely put into practical use.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposition product generated by reductive decomposition of a solvent in a non-aqueous electrolyte on the negative electrode surface during charging. It has been found that the gas causes a decrease in cycle characteristics because it inhibits the desired electrochemical reaction of the battery. Moreover, if the decomposition product of the nonaqueous solvent accumulates, the insertion and extraction of lithium into the negative electrode cannot be performed smoothly, and the electrochemical characteristics when used in a wide temperature range are liable to deteriorate.
  • lithium secondary batteries using lithium metal, alloys thereof, simple metals such as tin or silicon, and oxides as negative electrode materials have high initial capacities, but fine powders progress during the cycle.
  • reductive decomposition of a non-aqueous solvent occurs at an accelerated rate, and battery performance such as battery capacity and cycle characteristics is greatly reduced.
  • these anode materials are pulverized or decomposition products of nonaqueous solvents accumulate, lithium cannot be smoothly stored and released, and the electrochemical characteristics when used in a wide temperature range are likely to deteriorate. .
  • a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4, or the like as the positive electrode has a non-aqueous solvent in a non-aqueous electrolyte charged and a positive electrode material and a non-aqueous electrolyte.
  • the degradation products and gas generated by partial oxidative decomposition at the interface of the battery hinder the desired electrochemical reaction of the battery, which also causes degradation of electrochemical characteristics when used in a wide temperature range. I know.
  • Patent Document 1 proposes a nonaqueous electrolytic solution containing methylphenyl carbonate or 4-t-butylphenylmethyl carbonate, and suggests improvement of overcharge characteristics and continuous charge characteristics.
  • An object of the present invention is to provide a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range, an electricity storage device using the nonaqueous electrolytic solution, and a specific trifluoromethylbenzene compound.
  • the present inventors have examined in detail the performance of the above-described prior art non-aqueous electrolyte.
  • the non-aqueous electrolyte of Patent Document 1 cannot be said to be sufficiently satisfactory with respect to the problem of improving electrochemical characteristics in a wide temperature range such as low-temperature discharge characteristics after high-temperature storage. Was the actual situation. Therefore, the present inventors have made extensive studies to solve the above problems, and in a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, one or more specific compounds are contained in the non-aqueous electrolyte solution. It has been found that the inclusion can improve the electrochemical characteristics over a wide temperature range, in particular, the electrochemical characteristics of the lithium battery, and the present invention has been completed.
  • the present invention provides the following (1) to (3).
  • Non-aqueous electrolyte Non-aqueous electrolyte.
  • Y 1 is an alkoxycarbonyl group having 2 to 8 carbon atoms, an alkenyloxycarbonyl group having 3 to 9 carbon atoms, an alkynyloxycarbonyl group having 4 to 9 carbon atoms, or an aryl having 7 to 12 carbon atoms
  • R X represents a halogenated alkyl group having 1 to 4 carbon atoms
  • n represents 1 to 5 represents an integer of.
  • Y 1 is alkoxycarbonyl group and an aryloxycarbonyl group having 6 to 12 carbon atoms having 2 to 12 carbon atoms, the carbon number of R X is 1. Further, in Y 1 (In the substituent shown, at least one hydrogen atom may be substituted with a halogen atom.)
  • a power storage device including a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent, wherein the nonaqueous electrolytic solution is the nonaqueous electrolytic solution according to (1).
  • An electricity storage device including a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent, wherein the nonaqueous electrolytic solution is the nonaqueous electrolytic solution according to (1).
  • Y 2 represents a straight-chain alkoxycarbonyl group having 2 to 8 carbon atoms, an alkenyloxycarbonyl group having 3 to 9 carbon atoms, an alkynyloxycarbonyl group having 4 to 9 carbon atoms, or 7 to 7 carbon atoms
  • 12 represents an aryloxycarbonyl group, an alkanesulfonyl group having 1 to 6 carbon atoms, or an arylsulfonyl group having 6 to 12 carbon atoms, and the substituent represented by Y 2 includes at least one hydrogen atom. (It may be substituted with a halogen atom.)
  • a non-aqueous electrolyte capable of improving the electrochemical characteristics of an electricity storage device over a wide temperature range, particularly low-temperature discharge characteristics after high-temperature storage, an electricity storage device such as a lithium battery using the same, and a specific trifluoromethyl A benzene compound can be provided.
  • the present invention relates to a nonaqueous electrolytic solution, an electricity storage device using the nonaqueous electrolytic solution, and a specific trifluoromethylbenzene compound.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • One or more halogenated alkylbenzene compounds represented by the general formula (I) are contained in the non-aqueous electrolyte. It is a nonaqueous electrolyte characterized by containing.
  • the halogenated alkylbenzene compound represented by the general formula (I) of the present invention has a halogenated alkyl group which is an electron-withdrawing group which does not leave a bulky functional group such as an alkoxycarbonyl group or alkanesulfonyl group having high electrophilicity.
  • a bulky functional group such as an alkoxycarbonyl group or alkanesulfonyl group having high electrophilicity.
  • Decomposability is improved by having a functional group having high electrophilicity and an electron-withdrawing group, and a film derived from a benzene ring having high heat resistance is formed by polymerization on the negative electrode.
  • the halogenated alkyl group is a bulky and non-eliminating substituent, excessive polymerization is suppressed, and a compound having a bulky substituent such as 4-t-butylphenylmethyl carbonate or an electron withdrawing group is sufficient. It is considered that the improvement in low-temperature discharge characteristics after storage at a high temperature, which cannot be achieved with a compound such as (2-fluorophenyl) methyl carbonate, was obtained.
  • the halogenated alkylbenzene compound contained in the nonaqueous electrolytic solution of the present invention is represented by the following general formula (I).
  • Y 1 is an alkoxycarbonyl group having 2 to 8 carbon atoms, an alkenyloxycarbonyl group having 3 to 9 carbon atoms, an alkynyloxycarbonyl group having 4 to 9 carbon atoms, or an aryl having 7 to 12 carbon atoms
  • R X represents a halogenated alkyl group having 1 to 4 carbon atoms
  • n represents 1 to 5 represents an integer of.
  • Y 1 is alkoxycarbonyl group and an aryloxycarbonyl group having 6 to 12 carbon atoms having 2 to 12 carbon atoms, the carbon number of R X is 1. Further, in Y 1 (In the substituent shown, at least one hydrogen atom may be substituted with a halogen atom.)
  • R X in the general formula (I) is preferably a halogenated alkyl group having 1 or 2 carbon atoms, and more preferably a fluorinated alkyl group having 1 or 2 carbon atoms.
  • R X include fluoroalkyl groups such as a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, a perfluoropropyl group, and a perfluorobutyl group.
  • Preferred examples include chloroalkyl groups such as chloromethyl group, trichloromethyl group and 2,2,2-trichloroethyl group, and bromoalkyl groups such as bromomethyl group and 2-bromoethyl group.
  • chloroalkyl groups such as chloromethyl group, trichloromethyl group and 2,2,2-trichloroethyl group
  • bromoalkyl groups such as bromomethyl group and 2-bromoethyl group.
  • carbon number such as difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, chloromethyl group, trichloromethyl group, 2,2,2-trichloroethyl group, etc.
  • a 1 or 2 halogenated alkyl group is preferable, and a fluorinated alkyl group having 1 or 2 carbon atoms such as a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, and a perfluoroethyl group is more preferable. .
  • Y 1 is an alkoxycarbonyl group having 2 to 4 carbon atoms, an alkynyloxycarbonyl group having 3 to 7 carbon atoms, an aryloxycarbonyl group having 7 to 10 carbon atoms, an alkanesulfonyl group having 1 to 4 carbon atoms, or a carbon number
  • An arylsulfonyl group having 6 to 10 carbon atoms is preferable, an alkoxycarbonyl group having 2 to 4 carbon atoms, an alkynyloxycarbonyl group having 3 to 6 carbon atoms, an aryloxycarbonyl group having 7 to 8 carbon atoms, or an alkane having 1 to 2 carbon atoms
  • a sulfonyl group is more preferred.
  • Y 1 examples include (a) straight chain such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, n-butoxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, etc.
  • Branched chain alkoxycarbonyl group such as alkoxycarbonyl group, (b) iso-propoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, tert-amyloxycarbonyl group, (c) fluoromethoxycarbonyl group, tri Alkoxycarbonyl groups in which part of hydrogen atoms such as fluoromethoxycarbonyl group and 2,2,2-trifluoroethoxycarbonyl group are substituted with fluorine atoms, (d) vinyloxycarbonyl group, 1-propenyloxycarbonyl group, 2 -Propenyloxycarbonyl 1-methyl-2-propenyloxycarbonyl group, 1,1-dimethyl-2-propenyloxycarbonyl group, 1-butenyloxycarbonyl group, 2-butenyloxycarbonyl group, 3-butenyloxycarbonyl group, 2 -Alkenyloxycarbonyl group such as pentenyloxycarbonyl group
  • a branched alkanesulfonyl group (h) an alkanesulfonyl group in which a part of hydrogen atoms such as a fluoromethanesulfonyl group, a trifluoromethanesulfonyl group, or a 2,2,2-trifluoroethanesulfonyl group is substituted with a fluorine atom, ( j) Benzenesulfonyl group, 2-methylbenzenesulfonyl group, 3-methyl Benzenesulfonyl group, 4-methylbenzenesulfonyl group, 4-tert-butylbenzenesulfonyl group, 2,4,6-trimethylbenzenesulfonyl group, 2-fluorobenzenesulfonyl group, 3-fluorobenzenesulfonyl group, 4-fluorobenzenesulfonyl Group, 2,4-difluorobenzenesulfon
  • n is preferably 1 to 4, and more preferably 1 or 2.
  • R X preferably has a R X in the ortho or para position, and more preferably has a R X in the ortho position.
  • halogenated alkylbenzene compound represented by the general formula (I) include the following compounds.
  • Y 1 is an alkoxycarbonyl group Methyl (2-trifluoromethylphenyl) carbonate, ethyl (2-trifluoromethylphenyl) carbonate, n-propyl (2-trifluoromethylphenyl) carbonate, n-butyl ( 2-trifluoromethylphenyl) carbonate, n-pentyl (2-trifluoromethylphenyl) carbonate, n-hexyl (2-trifluoromethylphenyl) carbonate, iso-propyl (2-trifluoromethylphenyl) carbonate, sec- Butyl (2-trifluoromethylphenyl) carbonate, tert-butyl (2-trifluoromethylphenyl) carbonate, tert-amyl (2-trifluoromethylphenyl) carbonate, fluoromethyl (2-trifluoromethyl
  • Y 1 is a sulfonyl group 2-trifluoromethylphenyl methanesulfonate, 2-trifluoromethylphenyl ethanesulfonate, 2-trifluoromethylphenyl propane-1-sulfonate, 2-trifluoromethylphenyl butane-1- Sulfonate, 2-trifluoromethylphenyl pentane-1-sulfonate, 2-trifluoromethylphenyl hexane-1-sulfonate, 2-trifluoromethylphenyl propane-2-sulfonate, 2-trifluoromethylphenyl butane-2-sulfonate 2-trifluoromethylphenyl 2-methylpropane-2-sulfonate, 2-trifluoromethylphenyl 2-methylbutane-2-sulfonate, 2-trifluoromethylphenyl fluoromethanesulfonate 2-trifluoromethylphenyl trifluoromethanesulfonate 2-tri
  • methyl (2-trifluoromethylphenyl) carbonate ethyl (2-trifluoromethylphenyl) carbonate, n-propyl (2-trifluoromethyl) Phenyl) carbonate, 2-propynyl (2-trifluoromethylphenyl) carbonate, 2-butynyl (2-trifluoromethylphenyl) carbonate, 3-butynyl (2-trifluoromethylphenyl) carbonate, phenyl (2-trifluoromethyl) Phenyl) carbonate, 2-methylphenyl (2-trifluoromethylphenyl) carbonate, 3-methylphenyl (2-trifluoromethylphenyl) carbonate, 4-methylphenyl (2-trifluoromethylphenyl) carbonate, bis (2-trifluoromethylphenyl) carbonate, 2-trifluoromethylphenyl methanesulfonate, 2-trifluoromethylphenyl methanesulfonate, 2-trifluoromethylphenyl me
  • the content of the halogenated alkylbenzene compound represented by the general formula (I) contained in the non-aqueous electrolyte is 0.001 to 10% by mass in the non-aqueous electrolyte. preferable.
  • the content is 10% by mass or less, there is little possibility that a coating film is excessively formed on the electrode and the low-temperature characteristics are deteriorated.
  • the content is 0.001% by mass or more, the coating film is sufficiently formed and stored at high temperature. The effect of improving the characteristics is increased.
  • the content is preferably 0.05% by mass or more, and more preferably 0.2% by mass or more in the nonaqueous electrolytic solution.
  • the upper limit is preferably 8% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • the halogenated alkylbenzene compound represented by the general formula (I) is combined with a non-aqueous solvent, an electrolyte salt, and other additives described below, so that electrochemical characteristics can be obtained over a wide temperature range. Expresses a unique effect of improving synergistically.
  • Nonaqueous solvent examples include cyclic carbonates, chain esters, lactones, ethers, amides, phosphate esters, sulfones, nitriles, isocyanates, S ⁇ O bond-containing compounds, and the like. It is preferable that both cyclic carbonate and chain ester are included.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Examples thereof include cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • DFEC cis-4,5-difluoro-1,3-dioxolan-2-one
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • the use of at least one of a carbon-carbon double bond or a cyclic carbonate having a fluorine atom is preferable because the low-temperature load characteristics after high-temperature charge storage are further improved, and a cyclic carbonate containing a carbon-carbon double bond is preferred. And a cyclic carbonate having a fluorine atom are more preferable.
  • VC and VEC are more preferable, and as the cyclic carbonate having a fluorine atom, FEC and DFEC are more preferable.
  • the content of the cyclic carbonate having a carbon-carbon double bond is preferably 0.07% by volume or more, more preferably 0.2% by volume or more, and still more preferably 0.7% by volume with respect to the total volume of the nonaqueous solvent.
  • the upper limit is preferably 7% by volume or less, more preferably 4% by volume or less, and still more preferably 2.5% by volume or less, and the Li ion permeability at low temperatures is impaired. This is preferable because the stability of the coating during high temperature storage can be further increased.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, and still more preferably 7% by volume or more with respect to the total volume of the nonaqueous solvent. Is preferably 35% by volume or less, more preferably 25% by volume or less, and even more preferably 15% by volume or less, further improving the stability of the coating during storage at high temperatures without impairing Li ion permeability at low temperatures. Since it can increase, it is preferable.
  • the content of the cyclic carbonate having a carbon-carbon double bond relative to the content of the cyclic carbonate having a fluorine atom Is preferably 0.2% by volume or more, more preferably 3% by volume or more, and further preferably 7% by volume or more.
  • the upper limit is preferably 40% by volume or less, more preferably 30% by volume or less, and still more preferably Is preferably 15% by volume or less, since the stability of the coating during high temperature storage can be further increased without impairing the Li ion permeability at low temperatures.
  • the nonaqueous solvent contains ethylene carbonate and / or propylene carbonate
  • the resistance of the film formed on the electrode is reduced, and the content of ethylene carbonate and / or propylene carbonate is preferably equal to the total volume of the nonaqueous solvent.
  • it is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 7% by volume or more, and the upper limit is preferably 45% by volume or less, more preferably 35% by volume or less. Is 25% by volume or less.
  • These solvents may be used alone, and when two or more types are used in combination, the electrochemical characteristics in a wide temperature range are further improved, and it is preferable to use a combination of three or more types. Particularly preferred.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, PC and VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC And VC and FEC, EC, PC, VC and DFEC are preferred.
  • chain esters examples include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), and diethyl carbonate ( DEC), symmetric chain carbonates such as dipropyl carbonate and dibutyl carbonate, pivalate esters such as methyl pivalate, ethyl pivalate, and propyl pivalate, chains such as methyl propionate, ethyl propionate, methyl acetate, and ethyl acetate Preferred examples include carboxylic acid esters.
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • symmetric chain carbonates such as dipropyl carbonate
  • chain esters having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate, and ethyl acetate are preferable, particularly methyl.
  • a chain carbonate having a group is preferred.
  • chain carbonate it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is further more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is lowered and used in a wide temperature range. Since there is little possibility that an electrochemical characteristic falls, it is preferable that it is the said range.
  • the volume ratio of the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more.
  • the asymmetric chain carbonate has a methyl group, and methyl ethyl carbonate is particularly preferable.
  • the above case is preferable because electrochemical characteristics in a wider temperature range are improved.
  • the ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55, and 15:85 to 40:55 in terms of the cyclic carbonate: chain ester (volume ratio) from the viewpoint of improving electrochemical characteristics in a wide temperature range. 60 is more preferable, and 20:80 to 35:65 is particularly preferable.
  • lactones include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -angelicalactone
  • ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, and 1,4.
  • cyclic ethers such as dioxane, and chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • Examples of the amide include dimethylformamide
  • examples of the phosphate ester include trimethyl phosphate, tributyl phosphate, and trioctyl phosphate
  • examples of the sulfone include sulfolane
  • examples of the nitrile include acetonitrile
  • examples of the isocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, and octamethylene diisocyanate.
  • examples of the isocyanate include pionitrile, succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile.
  • Examples of the compound containing S ⁇ O bond include sultone compounds such as 1,3-propane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, ethylene sulfite, hexahydrobenzo [1,3,3, 2] cyclic sulfite compounds such as dioxathiolane-2-oxide (also referred to as 1,2-cyclohexanediol cyclic sulfite), 5-vinyl-hexahydro-1,3,2-benzodioxathiol-2-oxide, methane S selected from sulfonic acid ester compounds such as 2-propynyl sulfonic acid and methylenemethane disulfonate, vinyl sulfone compounds such as divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, bis (2-vinylsulfonyleth
  • nonaqueous solvents include oxalic acid esters such as dimethyl oxalate, ethyl methyl oxalate, and diethyl oxalate, chain carboxylic acid anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, Cyclic acid anhydrides such as glutaric anhydride, itaconic anhydride, 3-sulfo-propionic anhydride, methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, ethoxyheptafluorocyclotetraphosphazene Cyclic phosphazene compounds such as cyclohexylbenzene, fluorocyclohexylbenzene compounds (1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cycl
  • the above non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a chain carboxylic acid ester, a combination of a cyclic carbonate, a chain carbonate and a lactone, and a combination of a cyclic carbonate, a chain carbonate and an ether.
  • a combination, a combination of a cyclic carbonate, a chain carbonate, and a chain carboxylate, and the like are preferable.
  • Electrode salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts and onium salts.
  • Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 and LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , lithium salts containing a chain-like fluorinated alkyl group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 A lithium salt having a cyclic fluor
  • LiPF 6 LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 is preferable, and LiPF 6 , at least one selected from LiPO 2 F 2 , LiBF 4 and LiN (SO 2 CF 3 ) 2 is more preferable.
  • concentration of the lithium salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and further preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5M or less, more preferably 2.0M or less, and still more preferably 1.6M or less.
  • suitable combinations of these lithium salts include LiPF 6, further LiPO 2 F 2, LiBF 4 and LiN (SO 2 CF 3) at least one lithium salt selected from 2 nonaqueous solution Is preferable.
  • the proportion of lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more, the effect of improving electrochemical characteristics at high temperatures is easily exhibited, and when it is 0.005M or less, electrochemical characteristics at high temperatures. This is preferable because there is little concern that the effect of improving the resistance will decrease.
  • the proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is more preferably 0.01M or more, further preferably 0.03M or more, and particularly preferably 0.04M or more.
  • the upper limit is more preferably 0.4M or less, and still more preferably 0.2M or less.
  • onium salt As an onium salt, the various salts which combined the onium cation and anion shown below are mentioned suitably.
  • Specific examples of onium cations include tetramethylammonium cation, ethyltrimethylammonium cation, diethyldimethylammonium cation, triethylmethylammonium cation, tetraethylammonium cation, N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrole.
  • N, N-diethylpyrrolidinium cation Dinium cation, N, N-diethylpyrrolidinium cation, spiro- (N, N ′)-bipyrrolidinium cation, N, N′-dimethylimidazolinium cation, N-ethyl-N′-methylimidazoli
  • Preferable examples include nium cation, N, N′-diethylimidazolinium cation, N, N′-dimethylimidazolium cation, N-ethyl-N′-methylimidazolium cation, and N, N′-diethylimidazolium cation.
  • anion examples include PF 6 anion, BF 4 anion, ClO 4 anion, AsF 6 anion, CF 3 SO 3 anion, N (CF 3 SO 2 ) 2 anion, N (C 2 F 5 SO 2 ) 2 anion. , Etc. are mentioned suitably.
  • electrolyte salts can be used individually by 1 type or in combination of 2 or more types.
  • the non-aqueous electrolyte of the present invention is, for example, mixed with the non-aqueous solvent, and added to the electrolyte salt and the halogenated alkylbenzene compound represented by the general formula (I) with respect to the non-aqueous electrolyte. Can be obtained.
  • the compound added to the non-aqueous solvent and the non-aqueous electrolyte to be used is one that is purified in advance and has as few impurities as possible within a range that does not significantly reduce the productivity.
  • the non-aqueous electrolyte of the present invention can be used in the following first to fourth electric storage devices, and as the non-aqueous electrolyte, not only a liquid but also a gelled one can be used. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. In particular, it is preferably used for the first electricity storage device (that is, for a lithium battery) or the fourth electricity storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is used for a lithium battery. More preferably, it is more preferably used for a lithium secondary battery.
  • the lithium battery is a general term for a lithium primary battery and a lithium secondary battery.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode can be used without particular limitation.
  • a positive electrode active material for a lithium secondary battery a composite metal oxide with lithium containing one or more of cobalt, manganese, and nickel is used.
  • lithium composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3. Examples thereof include Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , LiCo 0.98 Mg 0.02 O 2 and the like. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc.
  • a part of O may be substituted with S or F, or a compound containing these other elements may be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is at least one element selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05) LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe) More preferred is a lithium composite metal oxide that can be used at 4.4 V or higher, such as a solid solution.
  • M is at least one element selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05
  • the electrochemical characteristics when used in a wide temperature range are liable to deteriorate due to a reaction with the electrolyte during charging, but the lithium secondary battery according to the present invention Then, the deterioration of these electrochemical characteristics can be suppressed.
  • the resistance of the battery tends to increase with the elution of Mn ions from the positive electrode, so that the electrochemical characteristics when used in a wide temperature range tend to be lowered.
  • the lithium secondary battery according to the invention is preferable because it can suppress a decrease in these electrochemical characteristics.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted with one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO or the like alone or two or more metal element oxides or chalcogen compounds, SO 2 , SOCl 2, etc.
  • Examples thereof include a sulfur compound and fluorocarbon (fluorinated graphite) represented by the general formula (CF x ) n .
  • fluorocarbon fluorinated graphite
  • MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples thereof include graphite such as natural graphite (flaky graphite and the like) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode active material is made of a conductive agent such as acetylene black or carbon black, and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black or carbon black
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc.
  • high boiling point solvent such as 1-methyl-2-pyrrolidone.
  • this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is above, More preferably, it is 3.6 g / cm 3 or more.
  • the upper limit is preferably 4 g / cm 3 or less.
  • Examples of the negative electrode active material for a lithium secondary battery include lithium metal, lithium alloy, and a carbon material capable of occluding and releasing lithium (easily graphitized carbon and a (002) plane spacing of 0.37 nm or more).
  • Non-graphitizable carbon, graphite with (002) plane spacing of 0.34 nm or less, etc.] tin (single), tin compound, silicon (single), silicon compound, lithium titanate such as Li 4 Ti 5 O 12 A compound etc. can be used individually by 1 type or in combination of 2 or more types.
  • a highly crystalline carbon material such as artificial graphite and natural graphite
  • the lattice spacing (d 002 ) of the lattice plane ( 002 ) is 0.
  • a carbon material having a graphite type crystal structure of 340 nm (nanometer) or less, particularly 0.335 to 0.337 nm.
  • the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less. 3 or less is more preferable.
  • the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the core material because electrochemical characteristics in a wide temperature range are further improved.
  • the crystallinity of the carbon material of the coating can be confirmed by TEM.
  • Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element.
  • These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased.
  • those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the preparation of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g in order to further increase the battery capacity. / Cm 3 or more. In addition, as an upper limit, 2 g / cm ⁇ 3 > or less is preferable.
  • examples of the negative electrode active material for a lithium primary battery include lithium metal and lithium alloy.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied.
  • a separator for batteries there is no restriction
  • the lithium secondary battery in the present invention is excellent in electrochemical characteristics in a wide temperature range even when the end-of-charge voltage is 4.2 V or more, particularly 4.3 V or more, and further, the electrochemical characteristics are not less than 4.4 V. It is good.
  • the end-of-discharge voltage is usually 2.8 V or higher, and more preferably 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C. Further, the lithium battery in the present invention can be charged / discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed.
  • a current interruption mechanism that senses the internal pressure of the battery and interrupts the current can be provided on the battery lid.
  • Electrode double layer capacitor It is an electricity storage device that stores energy by using an electric double layer capacity between an electrolyte and an electrode interface.
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this electricity storage device is activated carbon. Double layer capacity increases roughly in proportion to surface area.
  • Examples of the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte contains at least a lithium salt such as LiPF 6 .
  • the trifluoromethylbenzene compound of the present invention is represented by the following general formula (II).
  • Y 2 represents a straight-chain alkoxycarbonyl group having 2 to 8 carbon atoms, an alkenyloxycarbonyl group having 3 to 9 carbon atoms, an alkynyloxycarbonyl group having 4 to 9 carbon atoms, or 7 to 7 carbon atoms
  • 12 represents an aryloxycarbonyl group, an alkanesulfonyl group having 1 to 6 carbon atoms, or an arylsulfonyl group having 6 to 12 carbon atoms, and the substituent represented by Y 2 includes at least one hydrogen atom. (It may be substituted with a halogen atom.)
  • Specific examples and preferred examples of the compound represented by the general formula (II) are the same as those described in the general formula (I), and particularly preferable compounds include methyl (2-trifluoromethylphenyl) carbonate, ethyl (2 -Trifluoromethylphenyl) carbonate, 2-propynyl (2-trifluoromethylphenyl) carbonate, bis (2-trifluoromethylphenyl) carbonate, 2-trifluoromethylphenyl methanesulfonate, 2-trifluoromethylphenyl ethanesulfonate, Examples include 2-trifluoromethylphenyl benzenesulfonate, 2-trifluoromethylphenyl 4-methylbenzenesulfonate.
  • the compound represented by the general formula (II) can be synthesized by the following method, but is not limited to this product.
  • A As a synthesis method when Y 2 is an alkoxycarbonyl group, an alkenyloxycarbonyl group, an alkynyloxycarbonyl group, or an aryloxycarbonyl group, a phenol compound is used in a solvent or without a solvent, in the presence of a base or a base In the absence of, a method of reacting with the corresponding haloformate is mentioned.
  • the amount of the haloformate ester, alkanesulfonyl halide, arylsulfonyl halide or the like to be reacted with the phenol compound for the above (a) and (b) is preferably 0.8 to 10 mol relative to 1 mol of the diphenol compound.
  • the amount is preferably 1 to 5 mol, more preferably 1 to 3 mol.
  • the solvent used in the synthesis is not particularly limited as long as it is inert to the reaction.
  • Solvents that can be used include aliphatic hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, esters, and carbonates.
  • aromatic hydrocarbons such as toluene and xylene
  • esters such as ethyl acetate and butyl acetate
  • carbonates such as dimethyl carbonate
  • the amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 15 parts by mass with respect to 1 part by mass of the phenol compound.
  • inorganic bases used include potassium carbonate, sodium carbonate, calcium hydroxide, and calcium oxide.
  • organic base used include aliphatic tertiary amines, unsubstituted or substituted imidazoles, pyridines, and pyrimidines, and particularly trialkylamines such as trimethylamine, triethylamine, tripropylamine, tributylamine, and diisopropylaminoamine.
  • pyridines such as pyridine and N, N-dimethylaminopyridine are preferred.
  • the amount of the base used is preferably 0.8 to 10 mol, more preferably 1 to 5 mol, and still more preferably 1 to 5 mol, relative to 1 mol of the phenol compound.
  • the lower limit of the reaction temperature is preferably ⁇ 30 ° C. or higher, and more preferably ⁇ 10 ° C. or higher so as not to lower the reactivity.
  • the upper limit of the reaction temperature is preferably 100 ° C. or less, and more preferably 80 ° C. or less.
  • the reaction time can be appropriately changed depending on the reaction temperature and scale, but if the reaction time is too short, unreacted substances remain, and conversely if the reaction time is too long, there is a risk of decomposition of the reaction product or side reaction. , Preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • ethyl (2-trifluoromethylphenyl) carbonate Yield 91%.
  • 1 H-NMR measuring instrument: manufactured by JEOL Ltd., “AL300”
  • mass spectrometry mass spectrometry
  • the obtained 2-trifluoromethylphenyl methanesulfonate was subjected to 1 H-NMR and mass spectrometry to confirm its structure. The results are shown below.
  • Examples 1 to 15 and Comparative Examples 1 to 3 [Production of lithium ion secondary battery] LiCoO 2 ; 94% by mass, acetylene black (conductive agent); 3% by mass were mixed, and a solution in which 3% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone was mixed. In addition, the mixture was mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1.
  • Example 16 and Example 17, Comparative Example 4 In place of the negative electrode active material used in Example 3, Example 11, and Comparative Example 1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (single element): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • silicon single element
  • acetylene black conductive agent
  • polyvinylidene fluoride binder
  • Example 3 Except that this negative electrode mixture paste was applied on a copper foil (current collector), dried and pressurized, punched out to a predetermined size, and a negative electrode sheet was produced, Example 3, Example 11, And the coin battery was produced similarly to the comparative example 2, and battery evaluation was performed. The results are shown in Table 3.
  • Example 18 and Example 19, Comparative Example 5 A positive electrode sheet was prepared using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example 3, Example 11, and Comparative Example 1.
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and punched to a predetermined size to produce a positive electrode sheet, and the end-of-charge voltage during battery evaluation was 3.
  • a coin battery was manufactured and evaluated in the same manner as in Example 3, Example 11, and Comparative Example 2 except that 6 V and the discharge end voltage were set to 2.0 V. The results are shown in Table 4.
  • the effect of the present invention is a characteristic effect when a specific compound of the present invention is contained in an amount of 0.001 to 10% by mass in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent. It turned out to be. Further, from the comparison between Example 16 and Example 17 and Comparative Example 4, and the comparison between Example 18 and Example 19 and Comparative Example 5, when silicon (single) Si was used for the negative electrode, or the lithium-containing olivine type for the positive electrode The same effect can be seen when iron phosphate is used. Therefore, it is clear that the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.
  • the non-aqueous electrolyte of the present invention has an effect of improving discharge characteristics in a wide temperature range of the lithium primary battery.
  • the non-aqueous electrolyte of the present invention is used, an electricity storage device having excellent electrochemical characteristics in a wide temperature range can be obtained. Especially when used as a non-aqueous electrolyte for electricity storage devices such as lithium secondary batteries mounted on hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc., the electricity storage devices are unlikely to deteriorate in electrochemical characteristics over a wide temperature range. Can be obtained.
  • electricity storage devices such as lithium secondary batteries mounted on hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc.

Abstract

 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物を提供する。 本発明は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるハロゲン化アルキルベンゼン化合物を1種以上含有することを特徴とする非水電解液、それを用いた蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物である。(式中、Y1は炭素原子数2~8のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示し、RXは炭素数1~4のハロゲン化アルキル基を示し、nは1~5の整数を示す。ただし、Y1が炭素原子数2~12のアルコキシカルボニル基及び炭素原子数6~12のアリールオキシカルボニル基の場合、RXの炭素数は1である。また、Y1で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)

Description

非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物
 本発明は、広い温度範囲で蓄電デバイスの電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物に関する。
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器、電気自動車や電力貯蔵用として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等の広い温度範囲で使用される可能性があるため、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に地球温暖化防止のため、CO2排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の蓄電デバイスからなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、特にこれらの車載用の蓄電デバイスは、高温から低温まで幅広い温度範囲で使用しても電気化学特性が低下しないことが要求されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 リチウム二次電池は、主にリチウムを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、負極としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)や炭素材料が知られており、特にリチウムを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 一方、正極として、例えばLiCoO2、LiMn24、LiNiO2、LiFePO4等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲で使用した場合における電気化学特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲で使用した場合における電気化学特性が低下しやすい状況にある。
 特許文献1には、メチルフェニルカーボネートや4-t-ブチルフェニルメチルカーボネートを含有する非水電解液が提案されており、過充電特性、連続充電特性の向上が示唆されている。
特開2009-231283号公報
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物を提供することを目的とする。
 本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した。その結果、前記特許文献1の非水電解液では、高温保存後の低温放電特性等の広い温度範囲での電気化学特性を向上させるという課題に対しては、十分に満足できるとは言えないのが実情であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に特定の化合物を1種以上含有させることで、広い温度範囲での電気化学特性、特にリチウム電池の電気化学特性を改善できることを見出し、本発明を完成した。
 すなわち、本発明は、下記の(1)~(3)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるハロゲン化アルキルベンゼン化合物を1種以上含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000003
(式中、Y1は炭素原子数2~8のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示し、RXは炭素数1~4のハロゲン化アルキル基を示し、nは1~5の整数を示す。ただし、Y1が炭素原子数2~12のアルコキシカルボニル基及び炭素原子数6~12のアリールオキシカルボニル基の場合、RXの炭素数は1である。また、Y1で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)の非水電解液であることを特徴とする蓄電デバイス。
(3)下記一般式(II)で表されるトリフルオロメチルベンゼン化合物。
  
(式中、Y2は炭素原子数2~8の直鎖のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示す。また、Y2で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
 本発明によれば、広い温度範囲で蓄電デバイスの電気化学特性、特に高温保存後の低温放電特性を向上できる非水電解液、それを用いたリチウム電池等の蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物を提供することができる。
 本発明は、非水電解液、それを用いた蓄電デバイス、及び特定のトリフルオロメチルベンゼン化合物に関する。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物を1種以上含有することを特徴とする非水電解液である。
 本発明の非水電解液が、広い温度範囲での電気化学特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。本願発明の前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物は求電子性の高いアルコキシカルボニル基やアルカンスルホニル基等の官能基とかさ高く脱離しない電子吸引基であるハロゲン化アルキル基を持つフェニル基を有する。求電子性の高い官能基と電子吸引基を持つことで分解性が向上し、負極上で重合することで耐熱性の高いベンゼン環由来の被膜を形成する。更にハロゲン化アルキル基がかさ高く脱離しない置換基であるため過度の重合が抑制され、かさ高いだけの置換基を持つ化合物、例えば4-t-ブチルフェニルメチルカーボネートや電子吸引基を持つだけの化合物、例えば(2-フルオロフェニル)メチルカーボネートでは達成し得ない、著しい高温保存後の低温放電特性の改善が得られたものと考えられる。
 本発明の非水電解液に含まれるハロゲン化アルキルベンゼン化合物は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000005
(式中、Y1は炭素原子数2~8のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示し、RXは炭素数1~4のハロゲン化アルキル基を示し、nは1~5の整数を示す。ただし、Y1が炭素原子数2~12のアルコキシカルボニル基及び炭素原子数6~12のアリールオキシカルボニル基の場合、RXの炭素数は1である。また、Y1で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
 一般式(I)のRXとしては、炭素数1又は2のハロゲン化アルキル基が好ましく、炭素数1又は2のフッ素化アルキル基がより好ましい。
 RXの具体例としてはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基等のフルオロアルキル基、クロロメチル基、トリクロロメチル基、2,2,2-トリクロロエチル基等のクロロアルキル基、ブロモメチル基、2-ブロモエチル基等のブロモアルキル基が好適に挙げられる。これらの中でも、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、クロロメチル基、トリクロロメチル基、2,2,2-トリクロロエチル基等の炭素数1又は2のハロゲン化アルキル基が好ましく、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基等の炭素数1又は2のフッ素化アルキル基がより好ましい。
 Y1としては、炭素数2~4のアルコキシカルボニル基、炭素数3~7のアルキニルオキシカルボニル基、炭素数7~10のアリールオキシカルボニル基、炭素数1~4のアルカンスルホニル基、又は炭素数6~10のアリールスルホニル基が好ましく、炭素数2~4のアルコキシカルボニル基、炭素数3~6のアルキニルオキシカルボニル基、炭素数7~8のアリールオキシカルボニル基、又は炭素数1~2のアルカンスルホニル基がより好ましい。
 前記Y1の具体例としては、(a)メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基等の直鎖のアルコキシカルボニル基、(b)iso-プロポキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、tert-アミルオキシカルボニル基等の分枝鎖のアルコキシカルボニル基、(c)フルオロメトキシカルボニル基、トリフルオロメトキシカルボニル基、2,2,2-トリフルオロエトキシカルボニル基等の水素原子の一部がフッ素原子で置換されたアルコキシカルボニル基、(d)ビニルオキシカルボニル基、1-プロペニルオキシカルボニル基、2-プロペニルオキシカルボニル基、1-メチル-2-プロペニルオキシカルボニル基、1,1-ジメチル-2-プロペニルオキシカルボニル基、1-ブテニルオキシカルボニル基、2-ブテニルオキシカルボニル基、3-ブテニルオキシカルボニル基、2-ペンテニルオキシカルボニル基、2-ヘキセニルオキシカルボニル基等のアルケニルオキシカルボニル基、2-プロピニルオキシカルボニル基、2-ブチニルオキシカルボニル基、3-ブチニルオキシカルボニル基、4-ペンチニルオキシカルボニル基、5-ヘキシニルオキシカルボニル基、1-メチル-2-プロピニルオキシカルボニル基、1-メチル-2-ブチニルオキシカルボニル基、1,1-ジメチル-2-プロピニルオキシカルボニル基等のアルキニルオキシカルボニル基、(e)フェニルオキシカルボニル基、2-メチルフェニルオキシカルボニル基、3-メチルフェニルオキシカルボニル基、4-メチルフェニルオキシカルボニル基、4-tert-ブチルフェニルオキシカルボニル基、2,4,6-トリメチルフェニルオキシカルボニル基、2-フルオロフェニルオキシカルボニル基、3-フルオロフェニルオキシカルボニル基、4-フルオロフェニルオキシカルボニル基、2,4-ジフルオロフェニルオキシカルボニル基、2,6-ジフルオロフェニルオキシカルボニル基、3,4-ジフルオロフェニルオキシカルボニル基、2,4,6-トリフルオロフェニルオキシカルボニル基、ペンタフルオロフェニルオキシカルボニル基、2-トリフルオロメチルフェニルオキシカルボニル基、3-トリフルオロメチルフェニルオキシカルボニル基、4-トリフルオロメチルフェニルオキシカルボニル基等のアリールオキシカルボニル基、(f)メタンスルホニル基、エタンスルホニル基、プロパン-1-スルホニル基、ブタン-1-スルホニル基、ペンタン-1-スルホニル基、ヘキサン-1-スルホニル基等の直鎖のアルカンスルホニル基、(g)プロパン-2-スルホニル基、ブタン-2-スルホニル基、2-メチルプロパン-2-スルホニル基、2-メチルブタン-2-スルホニル基等の分枝鎖のアルカンスルホニル基、(h)フルオロメタンスルホニル基、トリフルオロメタンスルホニル基、2,2,2-トリフルオロエタンスルホニル基等の水素原子の一部がフッ素原子で置換されたアルカンスルホニル基、(j)ベンゼンスルホニル基、2-メチルベンゼンスルホニル基、3-メチルベンゼンスルホニル基、4-メチルベンゼンスルホニル基、4-tert-ブチルベンゼンスルホニル基、2,4,6-トリメチルベンゼンスルホニル基、2-フルオロベンゼンスルホニル基、3-フルオロベンゼンスルホニル基、4-フルオロベンゼンスルホニル基、2,4-ジフルオロベンゼンスルホニル基、2,6-ジフルオロベンゼンスルホニル基、3,4-ジフルオロベンゼンスルホニル基、2,4,6-トリフルオロベンゼンスルホニル基、ペンタフルオロベンゼンスルホニル基、4-トリフルオロメチルベンゼンスルホニル基等のアリールスルホニル基等が好適に挙げられる。
 これらの中でも、(a)メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、(d)2-プロピニルオキシカルボニル基、2-ブチニルオキシカルボニル基、3-ブチニルオキシカルボニル基、(e)フェニルオキシカルボニル基、2-メチルフェニルオキシカルボニル基、3-メチルフェニルオキシカルボニル基、4-メチルフェニルオキシカルボニル基、2-トリフルオロメチルフェニルオキシカルボニル基、3-トリフルオロメチルフェニルオキシカルボニル基、4-トリフルオロメチルフェニルオキシカルボニル基、(f)メタンスルホニル基、エタンスルホニル基、プロパン-1-スルホニル基、ブタン-1-スルホニル基、(j)ベンゼンスルホニル基、2-メチルベンゼンスルホニル基、3-メチルベンゼンスルホニル基、4-メチルベンゼンスルホニル基が好ましく、メトキシカルボニル基、エトキシカルボニル基、2-プロピニルオキシカルボニル基、2-トリフルオロメチルフェニルオキシカルボニル基、メタンスルホニル基、エタンスルホニル基がより好ましい。
 一般式(I)のnとしては1~4が好ましく、1又は2がより好ましい。
 前記置換基が上記範囲にある場合に、広い温度範囲で電気化学特性を大幅に改善できるので好ましい。
 広い温度範囲における電気化学特性の改善効果はRXの位置にも依存し、オルト又はパラ位にRXを有することが好ましく、オルト位にRXを有することがより好ましい。
 一般式(I)で表されるハロゲン化アルキルベンゼン化合物の具体例としては、以下の化合物が挙げられる。
(i)Y1がアルコキシカルボニル基の場合
 メチル (2-トリフルオロメチルフェニル) カーボネート、エチル (2-トリフルオロメチルフェニル) カーボネート、n-プロピル (2-トリフルオロメチルフェニル) カーボネート、n-ブチル (2-トリフルオロメチルフェニル) カーボネート、n-ペンチル (2-トリフルオロメチルフェニル) カーボネート、n-ヘキシル (2-トリフルオロメチルフェニル) カーボネート、iso-プロピル (2-トリフルオロメチルフェニル) カーボネート、sec-ブチル (2-トリフルオロメチルフェニル) カーボネート、tert-ブチル (2-トリフルオロメチルフェニル) カーボネート、tert-アミル (2-トリフルオロメチルフェニル) カーボネート、フルオロメチル (2-トリフルオロメチルフェニル) カーボネート、トリフルオロメチル (2-トリフルオロメチルフェニル) カーボネート、2,2,2-トリフルオロエチル (2-トリフルオロメチルフェニル) カーボネート、ビニル (2-トリフルオロメチルフェニル) カーボネート、1-プロペニル (2-トリフルオロメチルフェニル) カーボネート、2-プロペニル (2-トリフルオロメチルフェニル) カーボネート、1-メチル-2-プロペニル (2-トリフルオロメチルフェニル) カーボネート、1,1-ジメチル-2-プロペニル (2-トリフルオロメチルフェニル) カーボネート、1-ブテニル (2-トリフルオロメチルフェニル) カーボネート、2-ブテニル (2-トリフルオロメチルフェニル) カーボネート、3-ブテニル (2-トリフルオロメチルフェニル) カーボネート、2-ペンテニル (2-トリフルオロメチルフェニル) カーボネート、2-ヘキセニル (2-トリフルオロメチルフェニル) カーボネート、2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、2-ブチニル (2-トリフルオロメチルフェニル) カーボネート、3-ブチニル (2-トリフルオロメチルフェニル) カーボネート、4-ペンチニル (2-トリフルオロメチルフェニル) カーボネート、5-ヘキシニル (2-トリフルオロメチルフェニル) カーボネート、1-メチル-2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、1-メチル-2-ブチニル (2-トリフルオロメチルフェニル) カーボネート、1,1-ジメチル-2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、フェニル (2-トリフルオロメチルフェニル) カーボネート、2-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、3-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、4-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、4-tert-ブチルフェニル (2-トリフルオロメチルフェニル) カーボネート、2,4,6-トリメチルフェニル (2-トリフルオロメチルフェニル) カーボネート、2-フルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、3-フルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、4-フルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、2,4-ジフルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、2,6-ジフルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、3,4-ジフルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、2,4,6-トリフルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、ペンタフルオロフェニル (2-トリフルオロメチルフェニル) カーボネート、ビス(2-トリフルオロメチルフェニル) カーボネート、3-トリフルオロメチルフェニル (2-トリフルオロメチルフェニル) カーボネート、4-トリフルオロメチルフェニル (2-トリフルオロメチルフェニル) カーボネート、メチル (3-トリフルオロメチルフェニル) カーボネート、エチル (3-トリフルオロメチルフェニル) カーボネート、ビニル (3-トリフルオロメチルフェニル) カーボネート、2-プロピニル (3-トリフルオロメチルフェニル) カーボネート、ビス(3-トリフルオロメチルフェニル) カーボネート、メチル (4-トリフルオロメチルフェニル) カーボネート、エチル (4-トリフルオロメチルフェニル) カーボネート、ビニル (4-トリフルオロメチルフェニル) カーボネート、2-プロピニル (4-トリフルオロメチルフェニル) カーボネート、ビス(4-トリフルオロメチルフェニル) カーボネート、3,5-ビス(トリフルオロメチル)フェニル メチル カーボネート、3,5-ビス(トリフルオロメチル)フェニル エチル カーボネート、3,5-ビス(トリフルオロメチル)フェニル ビニル カーボネート、3,5-ビス(トリフルオロメチル)フェニル 2-プロピニル カーボネート、ビス(3,5-ビス(トリフルオロメチル)フェニル) カーボネート、2,3-ビス(トリフルオロメチル)フェニル メチル カーボネート、ビス(2,3-ビス(トリフルオロメチル)フェニル) カーボネート、2,4-ビス(トリフルオロメチル)フェニル メチル カーボネート、ビス(2,4-ビス(トリフルオロメチル)フェニル) カーボネート、2,5-ビス(トリフルオロメチル)フェニル メチル カーボネート、ビス(2,5-ビス(トリフルオロメチル)フェニル) カーボネート、2,6-ビス(トリフルオロメチル)フェニル メチル カーボネート、ビス(2,6-ビス(トリフルオロメチル)フェニル) カーボネート、2,3,4-トリス(トリフルオロメチル)フェニル メチル カーボネート、2,3,5-トリス(トリフルオロメチル)フェニル メチル カーボネート、2,3,6-トリス(トリフルオロメチル)フェニル メチル カーボネート等が好適に挙げられる。
(ii)Y1がスルホニル基の場合
 2-トリフルオロメチルフェニル メタンスルホネート、2-トリフルオロメチルフェニル エタンスルホネート、2-トリフルオロメチルフェニル プロパン-1-スルホネート、2-トリフルオロメチルフェニル ブタン-1-スルホネート、2-トリフルオロメチルフェニル ペンタン-1-スルホネート、2-トリフルオロメチルフェニル へキサン-1-スルホネート、2-トリフルオロメチルフェニル プロパン-2-スルホネート、2-トリフルオロメチルフェニル ブタン-2-スルホネート、2-トリフルオロメチルフェニル 2-メチルプロパン-2-スルホネート、2-トリフルオロメチルフェニル 2-メチルブタン-2-スルホネート、2-トリフルオロメチルフェニル フルオロメタンスルホネート、2-トリフルオロメチルフェニル トリフルオロメタンスルホネート、2-トリフルオロメチルフェニル 2,2,2-トリフルオロエタンスルホネート、2-トリフルオロメチルフェニル ベンゼンスルホネート、2-トリフルオロメチルフェニル 2-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 3-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 4-tert-ブチルベンゼンスルホネート、2-トリフルオロメチルフェニル 2,4,6-トリメチルベンゼンスルホネート、2-トリフルオロメチルフェニル 2-フルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 3-フルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 4-フルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 2,4-ジフルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 2,6-ジフルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 3,4-ジフルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 2,4,6-トリフルオロベンゼンスルホネート、2-トリフルオロメチルフェニル ペンタフルオロベンゼンスルホネート、2-トリフルオロメチルフェニル 2-トリフルオロメチルベンゼンスルホネート、3-トリフルオロメチルフェニル メタンスルホネート、3-トリフルオロメチルフェニル エタンスルホネート、3-トリフルオロメチルフェニル ベンゼンスルホネート、3-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート、4-トリフルオロメチルフェニル メタンスルホネート、4-トリフルオロメチルフェニル エタンスルホネート、4-トリフルオロメチルフェニル ベンゼンスルホネート、4-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート、3,5-ビス(トリフルオロメチル)フェニル メタンスルホネート、3,5-ビス(トリフルオロメチル)フェニル エタンスルホネート、2,3-ビス(トリフルオロメチル)フェニル メタンスルホネート、2,3-ビス(トリフルオロメチル)フェニル エタンスルホネート、2,4-ビス(トリフルオロメチル)フェニル メタンスルホネート、2,4-ビス(トリフルオロメチル)フェニル エタンスルホネート、2,5-ビス(トリフルオロメチル)フェニル メタンスルホネート、2,5-ビス(トリフルオロメチル)フェニル エタンスルホネート、2,6-ビス(トリフルオロメチル)フェニル メタンスルホネート、2,6-ビス(トリフルオロメチル)フェニル エタンスルホネート、2,3,4-トリス(トリフルオロメチル)フェニル メタンスルホネート、2,3,5-トリス(トリフルオロメチル)フェニル メタンスルホネート、2,3,6-トリス(トリフルオロメチル)フェニル メタンスルホネート、2-(2,2,2-トリフルオロエチル)フェニル メタンスルホネート、2-(パーフルオロエチル)フェニル メタンスルホネート、2-(パーフルオロプロピル)フェニル メタンスルホネート、2-(パーフルオロブチル)フェニル メタンスルホネート等が好適に挙げられる。
 前記(i)及び(ii)で表されるハロゲン化アルキルベンゼン化合物の中でも、メチル (2-トリフルオロメチルフェニル) カーボネート、エチル (2-トリフルオロメチルフェニル) カーボネート、n-プロピル (2-トリフルオロメチルフェニル) カーボネート、2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、2-ブチニル (2-トリフルオロメチルフェニル) カーボネート、3-ブチニル (2-トリフルオロメチルフェニル) カーボネート、フェニル (2-トリフルオロメチルフェニル) カーボネート、2-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、3-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、4-メチルフェニル (2-トリフルオロメチルフェニル) カーボネート、ビス(2-トリフルオロメチルフェニル) カーボネート、2-トリフルオロメチルフェニル メタンスルホネート、2-トリフルオロメチルフェニル エタンスルホネート、2-トリフルオロメチルフェニル ベンゼンスルホネート、2-トリフルオロメチルフェニル 2-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 3-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート、3-トリフルオロメチルフェニル メタンスルホネート、3-トリフルオロメチルフェニル エタンスルホネート、3-トリフルオロメチルフェニル ベンゼンスルホネート、3-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート、4-トリフルオロメチルフェニル メタンスルホネート、4-トリフルオロメチルフェニル エタンスルホネート、4-トリフルオロメチルフェニル ベンゼンスルホネート、4-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートが好ましく、メチル (2-トリフルオロメチルフェニル) カーボネート、エチル (2-トリフルオロメチルフェニル) カーボネート、2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、ビス(2-トリフルオロメチルフェニル) カーボネート、2-トリフルオロメチルフェニル メタンスルホネート、2-トリフルオロメチルフェニル エタンスルホネート、2-トリフルオロメチルフェニル ベンゼンスルホネート、2-トリフルオロメチルフェニル 2-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 3-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートがより好ましい。
 本発明の非水電解液において、非水電解液に含有される前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物の含有量は、非水電解液中に0.001~10質量%が好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上が好ましく、0.2質量%以上がより好ましい。また、その上限は、8質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。
 本発明の非水電解液において、一般式(I)で表されるハロゲン化アルキルベンゼン化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、アミド、リン酸エステル、スルホン、ニトリル、イソシアネート、S=O結合含有化合物等が挙げられ、環状カーボネートと鎖状エステルの両方が含まれることが好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が挙げられる。
 これらの中でも、炭素-炭素二重結合又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると高温充電保存後の低温負荷特性が一段と向上するので好ましく、炭素-炭素二重結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合を有する環状カーボネートとしては、VC、VECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC、DFECが更に好ましい。
 炭素-炭素二重結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは7体積%以上であり、また、上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 非水溶媒が炭素-炭素二重結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく更に一段と高温保存時の被膜の安定性を増すことができるので特に好ましい。
 また、非水溶媒がエチレンカーボネート及び/又はプロピレンカーボネートを含むと電極上に形成される被膜の抵抗が小さくなるので好ましく、エチレンカーボネート及び/又はプロピレンカーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、広い温度範囲での電気化学特性が更に向上するので好ましく、3種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、ECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、PCとVCとFEC、ECとPCとVCとFEC等の組合せがより好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、酢酸エチル等の鎖状カルボン酸エステルが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチルから選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲で使用した場合における電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。
 上記の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
 ラクトンとしては、γ-ブチロラクトン、γ-バレロラクトン、及びα-アンゲリカラクトン等が挙げられ、エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、及び1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、及び1,2-ジブトキシエタン等の鎖状エーテル等が挙げられる。
 アミドとしては、ジメチルホルムアミド等が挙げられ、リン酸エステルとしては、リン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル等が挙げられ、スルホンとしては、スルホラン等が挙げられ、ニトリルとしてはアセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリル等が挙げられ、イソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート等が挙げられる。
 S=O結合含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン等のスルトン化合物、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト化合物、メタンスルホン酸2-プロピニル、メチレンメタンジスルホネート等のスルホン酸エステル化合物、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物等から選ばれるS=O結合含有化合物等が挙げられる。
 その他の非水溶媒としては、シュウ酸ジメチル、シュウ酸エチルメチル、シュウ酸ジエチル等のシュウ酸エステル、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、3-スルホ-プロピオン酸無水物等の環状酸無水物、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等の芳香族化合物が好適に挙げられる。
 上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネートとの組合せ、環状カーボネートと鎖状カルボン酸エステルとの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネートとエーテルとの組合せ、環状カーボネートと鎖状カーボネートと鎖状カルボン酸エステルとの組み合わせ等が好適に挙げられる。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩、オニウム塩が好適に挙げられる。
(リチウム塩)
 リチウム塩としては、LiPF6、LiPO22、Li2PO3F、LiBF4、LiClO4等の無機リチウム塩、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso-C373、LiPF5(iso-C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウムやジフルオロ[オキサレート-O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
 これらの中でも、LiPF6、LiPO22、Li2PO3F、LiBF4、LiN(SO2CF32及びLiN(SO2252から選ばれる少なくとも1種が好ましく、LiPF6、LiPO22、LiBF4及びLiN(SO2CF32から選ばれる少なくとも1種がより好ましい。
 リチウム塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
 また、これらのリチウム塩の好適な組み合わせとしては、LiPF6を含み、更にLiPO22、LiBF4及びLiN(SO2CF32から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましい。
 LiPF6以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、高温での電気化学特性の向上効果発揮されやすく、0.005M以下であると高温での電気化学特性の向上効果が低下する懸念が少ないので好ましい。LiPF6以外のリチウム塩が非水溶媒中に占める割合は、より好ましくは0.01M以上、更に好ましくは0.03M以上、特に好ましくは0.04M以上である。その上限は、より好ましくは0.4M以下、更に好ましくは0.2M以下である。
(オニウム塩)
 また、オニウム塩としては、下記に示すオニウムカチオンとアニオンを組み合わせた各種塩が好適に挙げられる。
 オニウムカチオンの具体例としては、テトラメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、N,N-ジメチルピロリジニウムカチオン、N-エチル-N-メチルピロリジニウムカチオン、N,N-ジエチルピロリジニウムカチオン、スピロ-(N,N')-ビピロリジニウムカチオン、N,N'-ジメチルイミダゾリニウムカチオン、N-エチル-N'-メチルイミダゾリニウムカチオン、N,N'-ジエチルイミダゾリニウムカチオン、N,N'-ジメチルイミダゾリウムカチオン、N-エチル-N'-メチルイミダゾリウムカチオン、N,N'-ジエチルイミダゾリウムカチオン等が好適に挙げられる。
 アニオンの具体例としては、PF6アニオン、BF4アニオン、ClO4アニオン、AsF6アニオン、CF3SO3アニオン、N(CF3SO22アニオン、N(C25SO22アニオン、等が好適に挙げられる。
 これらの電解質塩は、1種単独で又は2種以上を組み合わせて使用することができる。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウム二次電池用として用いることが更に好ましい。
〔第1の蓄電デバイス(リチウム電池)〕
 本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから1種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、LiCo0.98Mg0.022等が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから選ばれる少なくとも1種類以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲で使用した場合における電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にMnを含む正極の場合に正極からのMnイオンの溶出に伴い電池の抵抗が増加しやすい傾向にあるため、広い温度範囲で使用した場合における電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の1種単独又は2種以上の金属元素の酸化物又はカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO2、V25、フッ化黒鉛等が好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量をさらに高めるため、好ましくは2g/cm3以上であり、より好ましくは、3g/cm3以上であり、更に好ましくは、3.6g/cm3以上である。なお、その上限としては、4g/cm3以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、Li4Ti512等のチタン酸リチウム化合物等を1種単独又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが更に好ましい。
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温もしくは高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるのでより好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池の容量をさらに高めるため、好ましくは1.5g/cm3以上であり、より好ましくは1.7g/cm3以上である。なお、上限としては、2g/cm3以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても電気化学特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本願発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
 本発明のトリフルオロメチルベンゼン化合物は、下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000006
(式中、Y2は炭素原子数2~8の直鎖のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示す。また、Y2で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
 一般式(II)で表される化合物の具体例及び好適例は、一般式(I)において記載したものと同様であり、特に好ましい化合物としてメチル (2-トリフルオロメチルフェニル) カーボネート、エチル (2-トリフルオロメチルフェニル) カーボネート、2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、ビス(2-トリフルオロメチルフェニル) カーボネート、2-トリフルオロメチルフェニル メタンスルホネート、2-トリフルオロメチルフェニル エタンスルホネート、2-トリフルオロメチルフェニル ベンゼンスルホネート、2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートが挙げられる。
 一般式(II)で表される化合物は、下記の方法により合成することができるが、本製に限定されるものではない。
(a)Y2がアルコキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、又はアリールオキシカルボニル基の場合の合成法としては、フェノール化合物を溶媒中又は無溶媒中で、塩基の存在下又は塩基の非存在下、それぞれ対応するハロギ酸エステルとを反応させる方法が挙げられる。
(b)Y2がアルカンスルホニル基又はアリールスルホニル基の場合の合成法としては、フェノール化合物を溶媒中又は無溶媒中で、塩基の存在下又は塩基の非存在下、アルカンスルホニルハライド又はアリールスルホニルハライドと反応させる方法が挙げられる。
 前記(a)及び(b)についてフェノール化合物と反応させるハロギ酸エステル、アルカンスルホニルハライド又はアリールスルホニルハライド等の使用量は、ジフェノール化合物1モルに対して、好ましくは0.8~10モル、より好ましくは1~5モル、更に好ましくは1~3モルである。
 前記合成に使用される溶媒としては、反応に不活性であれば特に限定されない。使用できる溶媒としては、脂肪族系炭化水素、ハロゲン化炭化水素、芳香族系炭化水素、ハロゲン化芳香族系炭化水素、エーテル類、エステル類、炭酸エステル類が挙げられる。これらの中では、特にトルエン、キシレン等の芳香族系炭化水素、酢酸エチル、酢酸ブチル等のエステル類、ジメチルカーボネートや等の炭酸エステル類が好適に使用できる。前記溶媒の使用量は、フェノール化合物1質量部に対して、好ましくは0~30質量部、より好ましくは1~15質量部である。
 前記合成に使用される塩基としては、無機塩基及び有機塩基のいずれも使用することができる。またこれらは単独で使用しても、混合して使用してもよい。使用される無機塩基としては、炭酸カリウム、炭酸ナトリウム、水酸化カルシウム、及び酸化カルシウムが挙げられる。使用される有機塩基としては、脂肪族3級アミン、無置換又は置換されたイミダゾール、ピリジン、ピリミジンが挙げられ、特にトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジイソプロプルエチルアミン等のトリアルキルアミン類、ピリジン、N,N-ジメチルアミノピリジン等のピリジン類が好ましい。前記塩基の使用量は、フェノール化合物1モルに対して、好ましくは0.8~10モル、より好ましくは1~5モル、更に好ましくは1~5モルである。
 前記反応において、反応温度の下限は-30℃以上が好ましく、反応性を低下させないために-10℃以上がより好ましい。また副反応や生成物の分解を抑制する観点から、反応温度の上限は100℃以下が好ましく、80℃以下がより好ましい。
 また、反応時間は前記反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1~24時間、より好ましくは0.5~12時間である。
 以下、本発明の一般式(II)で表される化合物の合成例、電解液の実施例を示すが、本発明は、これらの実施例に限定されるものではない。
合成例1〔エチル (2-トリフルオロメチルフェニル) カーボネートの合成〕
 o-トリフルオロメチルフェノール3.00g(18.5mmol)とクロロギ酸エチル2.21g(20.4mmol)を酢酸エチル40mlに溶解し、この溶液にトリエチルアミン2.25g(22.2mmol)を内温5~10℃で20分かけて滴下した。室温で1時間撹拌した後、反応液を水20mlで3回洗浄、有機層を分離し、溶媒を減圧留去した。濃縮物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1溶出)で精製し、エチル (2-トリフルオロメチルフェニル) カーボネートを3.94g得た(収率91%)。
 得られたエチル (2-トリフルオロメチルフェニル) カーボネートについて1H-NMR(測定機器:日本電子株式会社製、「AL300」)、質量分析(測定機器:島津製作所製、「GC-MS QP 2010Ultra」)を行い、その構造を確認した。結果を以下に示す。
(1)1H-NMR(300MHz,CDCl3):δ = 7.69-7.31(m, 4 H), 4.34(q, J=7.08Hz, 2 H), 1.39(t, J=7.08Hz, 3 H)
(2)MS(EI): m/z(%) = 189(4), 162(54), 142(100), 114(35)
合成例2〔2-トリフルオロメチルフェニル メタンスルホネートの合成〕
 o-トリフルオロメチルフェノール3.00g(18.5mmol)とメタンスルホニルクロライド2.34g(20.4mmol)を酢酸エチル40mlに溶解し、この溶液にトリエチルアミン2.25g(22.2mmol)を内温5~10℃で20分かけて滴下した。室温で1時間撹拌した後、反応液を水20mlで3回洗浄、有機層を分離し、溶媒を減圧留去した。濃縮物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1溶出)で精製し、2-トリフルオロメチルフェニル メタンスルホネートを4.10g得た(収率93%)。
 得られた2-トリフルオロメチルフェニル メタンスルホネートについて1H-NMR、質量分析を行い、その構造を確認した。結果を以下に示す。
(1)1H-NMR(300MHz,CDCl3):δ = 7.72-7.33(m, 4 H), 3.24(s, 3 H)
(2)MS(EI): m/z(%) = 240(48) [M+], 162(55), 142(100), 133(34), 114(30), 79(20)
合成例3〔2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートの合成〕
 合成例2と同様の方法で2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネート合成した。2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートの1H-NMR、MS分析結果を以下に示す。
(1)1H-NMR(300MHz,CDCl3):δ = 7.86-7.32(m, 8 H), 2.46(s, 3 H)
(2)MS(EI): m/z(%) = 316(24) [M+], 155(92), 91(100)
実施例1~15、比較例1~3
〔リチウムイオン二次電池の作製〕
 LiCoO2;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1及び2に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
<初期の放電容量>
 上記の方法で作製したコイン電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.2Vまで3時間充電し、0℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の0℃の放電容量を求めた。
<高温充電保存試験>
 次に、このコイン電池を85℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで3時間充電し、4.2Vに保持した状態で3日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
<高温充電保存後の放電容量>
 更にその後、初期の放電容量の測定と同様にして、高温充電保存後の0℃の放電容量を求めた。
<高温充電保存後の低温特性>
 高温充電保存後の低温特性を下記の0℃放電容量の維持率より求めた。
 高温充電保存後の0℃放電容量維持率(%)=(高温充電保存後の0℃の放電容量/初期の0℃の放電容量)×100
 また、電池の作製条件及び電池特性を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
実施例16及び実施例17、比較例4
 実施例3、実施例11、及び比較例1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したことの他は、実施例3、実施例11、及び比較例2と同様にコイン電池を作製し、電池評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
実施例18及び実施例19、比較例5
 実施例3、実施例11、及び比較例1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例3、実施例11、及び比較例2と同様にコイン電池を作製し、電池評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000010
 上記実施例1~15のリチウム二次電池は何れも、本願発明の非水電解液において化合物を添加しない場合の比較例1、特許文献1の段落〔0037〕に例示として記載されている(2-フルオロフェニル)メチルカーボネートを添加した非水電解液である比較例2、及び特許文献1の実施例4に記載されている(4-t-ブチルフェニル)メチルカーボネートを添加した非水電解液である比較例3のリチウム二次電池に比べ、広い温度範囲での電気化学特性が顕著に向上している。
 以上のことから、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定の化合物を0.001~10質量%含有させた場合の特有の効果であることが判明した。
 また、実施例16及び実施例17と比較例4の対比、実施例18及び実施例19と比較例5の対比から、負極にケイ素(単体)Siを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、本発明の非水電解液は、リチウム一次電池の広い温度範囲における放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、広い温度範囲における電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載されるリチウム二次電池等の蓄電デバイス用の非水電解液として使用すると、広い温度範囲で電気化学特性が低下しにくい蓄電デバイスを得ることができる。

Claims (9)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるハロゲン化アルキルベンゼン化合物を1種以上含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Y1は炭素原子数2~8のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示し、RXは炭素数1~4のハロゲン化アルキル基を示し、nは1~5の整数を示す。ただし、Y1が炭素原子数2~12のアルコキシカルボニル基及び炭素原子数6~12のアリールオキシカルボニル基の場合、RXの炭素数は1である。また、Y1で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
  2.  前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物の含有量が、非水電解液中で0.001~10質量%である、請求項1に記載の非水電解液。
  3.  前記一般式(I)で表されるハロゲン化アルキルベンゼン化合物が、メチル (2-トリフルオロメチルフェニル) カーボネート、エチル (2-トリフルオロメチルフェニル) カーボネート、2-プロピニル (2-トリフルオロメチルフェニル) カーボネート、ビス(2-トリフルオロメチルフェニル) カーボネート、2-トリフルオロメチルフェニル メタンスルホネート、2-トリフルオロメチルフェニル エタンスルホネート、2-トリフルオロメチルフェニル ベンゼンスルホネート、2-トリフルオロメチルフェニル 2-メチルベンゼンスルホネート、2-トリフルオロメチルフェニル 3-メチルベンゼンスルホネート、及び2-トリフルオロメチルフェニル 4-メチルベンゼンスルホネートから選ばれる少なくとも一種である、請求項1又は2に記載の非水電解液。
  4.  非水溶媒が、環状カーボネート及び鎖状エステルを含有する、請求項1~3のいずれかに記載の非水電解液。
  5.  環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及びビニルエチレンカーボネートから選ばれる少なくとも一種である、請求項4に記載の非水電解液。
  6.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1~5のいずれかに記載の非水電解液であることを特徴とする蓄電デバイス。
  7.  正極がリチウム複合酸化物を含む材料であり、負極が黒鉛型結晶構造を有する炭素材料を含む材料である、請求項6に記載の蓄電デバイス。
  8.  請求項1に記載の一般式(I)で表されるハロゲン化アルキルベンゼン化合物を含有することを特徴とする蓄電デバイスの非水電解液用添加剤。
  9. 下記一般式(II)で表されるトリフルオロメチルベンゼン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Y2は炭素原子数2~8の直鎖のアルコキシカルボニル基、炭素原子数3~9のアルケニルオキシカルボニル基、炭素原子数4~9のアルキニルオキシカルボニル基、炭素原子数7~12のアリールオキシカルボニル基、炭素原子数1~6のアルカンスルホニル基、又は炭素原子数6~12のアリールスルホニル基を示す。また、Y2で示される前記置換基は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
PCT/JP2012/058566 2011-04-22 2012-03-30 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物 WO2012144306A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137027598A KR20140025398A (ko) 2011-04-22 2012-03-30 비수 전해액, 그것을 이용한 축전 디바이스, 및 트라이플루오로메틸벤젠 화합물
JP2013510929A JP6070543B2 (ja) 2011-04-22 2012-03-30 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物
US14/112,778 US9472828B2 (en) 2011-04-22 2012-03-30 Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
EP12774584.2A EP2701230B1 (en) 2011-04-22 2012-03-30 Non-aqueous electrolyte solution, electricity storage device using the same, and trifluoromethylbenzene compound
CN201280019666.0A CN103493277B (zh) 2011-04-22 2012-03-30 非水电解液、使用了该非水电解液的蓄电设备及三氟甲基苯化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096628 2011-04-22
JP2011-096628 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144306A1 true WO2012144306A1 (ja) 2012-10-26

Family

ID=47041421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058566 WO2012144306A1 (ja) 2011-04-22 2012-03-30 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物

Country Status (6)

Country Link
US (1) US9472828B2 (ja)
EP (1) EP2701230B1 (ja)
JP (1) JP6070543B2 (ja)
KR (1) KR20140025398A (ja)
CN (1) CN103493277B (ja)
WO (1) WO2012144306A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
CN106816630B (zh) * 2015-11-30 2020-08-25 比亚迪股份有限公司 成膜添加剂组合物及包含其的锂离子电池电解液与锂离子电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN107195970A (zh) * 2017-07-24 2017-09-22 华南师范大学 一种高压、快充功能电解液及其制备方法与应用
CN108493481B (zh) * 2018-04-04 2019-03-22 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
KR102657068B1 (ko) * 2018-11-16 2024-04-15 엘지전자 주식회사 아이스 메이커의 제어방법
CN111934013B (zh) * 2020-08-19 2021-09-28 四川虹微技术有限公司 一种宽温度范围的锂离子电池电解液
US20230253622A1 (en) 2020-12-29 2023-08-10 Envision Dynamics Technology (Jiangsu) Co., Ltd. Nonaqueous electrolyte additive, nonaqueous electrolyte containing same, power storage device, and electric device
CN116914260B (zh) * 2023-09-08 2023-11-24 河北省科学院能源研究所 一种电解液及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106209A (ja) * 1998-09-30 2000-04-11 Mitsui Chemicals Inc 非水電解液および非水電解液二次電池
JP2002343424A (ja) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2009231283A (ja) 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
WO2011025016A1 (ja) * 2009-08-31 2011-03-03 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906104A (en) 1970-03-09 1975-09-16 Monsanto Co Insecticidal sulfonates
US4310656A (en) * 1980-03-27 1982-01-12 General Electric Company Polycarbonate transesterification
JPS5883651A (ja) 1981-11-14 1983-05-19 Nissan Chem Ind Ltd ジフエニルカ−ボネ−ト誘導体及びその製造法
JPS591444A (ja) 1982-06-28 1984-01-06 Hodogaya Chem Co Ltd ビス(2−クロロ−4−トリフルオロメチルフエニル)カ−ボネ−トの製造法
JP2004087168A (ja) 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
ES2358515T3 (es) 2003-09-17 2011-05-11 Ube Industries, Ltd. Solución electrolítica no acuosa y batería secundaria de litio que la utiliza.
KR101486618B1 (ko) 2007-11-01 2015-01-26 우베 고산 가부시키가이샤 설폰산 페닐 화합물, 그것을 사용한 비수 전해액 및 리튬 전지
KR101658678B1 (ko) 2008-02-29 2016-09-21 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
CA2771323A1 (en) 2009-08-17 2011-02-24 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106209A (ja) * 1998-09-30 2000-04-11 Mitsui Chemicals Inc 非水電解液および非水電解液二次電池
JP2002343424A (ja) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2009231283A (ja) 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
WO2011025016A1 (ja) * 2009-08-31 2011-03-03 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER KOVACIC ET AL.: "Oxygenation of Aromatic Compounds with Diisopropyl Peroxydicarbonate- Cupric Chloride", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 34, no. 11, 11 February 1969 (1969-02-11), pages 3302 - 3308, XP055130780 *
See also references of EP2701230A4 *

Also Published As

Publication number Publication date
EP2701230A4 (en) 2014-10-15
US20140038060A1 (en) 2014-02-06
JP6070543B2 (ja) 2017-02-01
CN103493277A (zh) 2014-01-01
KR20140025398A (ko) 2014-03-04
CN103493277B (zh) 2016-08-17
EP2701230A1 (en) 2014-02-26
EP2701230B1 (en) 2016-11-23
US9472828B2 (en) 2016-10-18
JPWO2012144306A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6225923B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6036687B2 (ja) 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
JP6070543B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びトリフルオロメチルベンゼン化合物
JP6024670B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6380392B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物
JP5979150B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6007915B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6035684B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP6176112B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
KR20120084709A (ko) 비수 전해액 및 그것을 이용한 전기 화학 소자
JPWO2012077623A1 (ja) 非水電解液及びそれを用いた電気化学素子
JP2017147130A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP5822070B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5589796B2 (ja) 非水電解液、それを用いた電気化学素子、及びそれに用いられるトリアルキルシリルオキシ基含有化合物
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5704277B1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2016046242A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2015130286A (ja) 非水電解液およびそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510929

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012774584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774584

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137027598

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE