WO2011018994A1 - フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物 - Google Patents

フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物 Download PDF

Info

Publication number
WO2011018994A1
WO2011018994A1 PCT/JP2010/063370 JP2010063370W WO2011018994A1 WO 2011018994 A1 WO2011018994 A1 WO 2011018994A1 JP 2010063370 W JP2010063370 W JP 2010063370W WO 2011018994 A1 WO2011018994 A1 WO 2011018994A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mass
parts
phthalocyanine compound
general formula
Prior art date
Application number
PCT/JP2010/063370
Other languages
English (en)
French (fr)
Inventor
近藤 仁
義之 佐野
豊 立川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2011526744A priority Critical patent/JP4962812B2/ja
Priority to US13/389,283 priority patent/US8809427B2/en
Priority to EP10808177.9A priority patent/EP2465860B1/en
Priority to CN201080035714.6A priority patent/CN102596966B/zh
Priority to KR1020127003604A priority patent/KR101672390B1/ko
Publication of WO2011018994A1 publication Critical patent/WO2011018994A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/26Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0673Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having alkyl radicals linked directly to the Pc skeleton; having carbocyclic groups linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0678Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having-COOH or -SO3H radicals or derivatives thereof directly linked to the skeleton

Definitions

  • the present invention relates to a phthalocyanine compound that can be used as a green pigment, a method for producing the same, and a colored composition containing the phthalocyanine compound.
  • a typical example of a conventionally known green pigment is polyhalogenated copper phthalocyanine.
  • This polyhalogenated copper phthalocyanine has excellent fastness, but since it has a large amount of halogen atoms such as chlorine and bromine in the molecule, there are concerns about its safety and environmental burden in recent years.
  • polyhalogenated phthalocyanine since polyhalogenated phthalocyanine has a large amount of halogen atoms, there is a problem that the molecular weight is increased and the coloring power is lowered. Therefore, a pigment that can be colored green with a compound having no halogen atom is required.
  • a halogen-free compound having a single green hue for example, a phthalocyanine compound into which an imidazolone ring is introduced is reported in Patent Document 3, and a phthalocyanine compound into which a pyrido skeleton is introduced is reported in Patent Document 4. Since the phthalocyanine compound described in Patent Document 3 exhibits a green hue, there is no need for toning, and it has characteristics of having an organic solvent and acid resistance. However, there was a problem of low saturation.
  • An object of the present invention is to provide a phthalocyanine compound having a halogen-free, green hue, excellent resistance to organic solvents and acids, and high chroma.
  • N, N′-disubstituted imidazolone structure or piperazinedione structure represented by the following general formula (1-1) or (1-2): It has been found that the introduced phthalocyanine compound has a halogen-free green hue, excellent resistance to organic solvents and acids, and high chroma.
  • the present invention provides a phthalocyanine compound represented by the general formula (1-1) or the general formula (1-2).
  • R 1 to R 8 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aralkyl group having 7 to 9 carbon atoms.
  • M represents a divalent to tetravalent metal atom (wherein the metal atom may be oxidized).
  • the present invention also provides a phthalonitrile compound represented by the general formula (2), which is a raw material for synthesizing the phthalocyanine compound described above.
  • R 9 and R 10 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms.
  • the present invention also provides a phthalonitrile compound represented by the general formula (3), which is a raw material for synthesizing the phthalocyanine compound described above.
  • R 9 and R 10 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms.
  • the present invention also provides a phthalonitrile compound represented by the general formula (2) or (3) alone or a metal corresponding to a divalent to tetravalent metal atom represented by M in the general formula (1-1).
  • a method for producing the phthalocyanine compound described above is characterized in that a mixture with a salt is thermally condensed.
  • the present invention also provides a coloring composition containing the phthalocyanine compound described above and a synthetic resin.
  • the phthalocyanine compound of the present invention has a green hue, is excellent in resistance to organic solvents and acids, and has high chroma, so it is useful as a green pigment. Particularly, since it has a structure in which all benzene rings are substituted with nitrogen-containing rings, it exhibits a strong yellowish green color. Aggregation is also difficult to occur.
  • the phthalocyanine compound of the present invention is halogen-free, it is characterized by high safety and low environmental load. Therefore, it is very useful as a substitute for a halogenated phthalocyanine pigment, which is an existing green pigment, for applications requiring environmental measures.
  • the phthalocyanine compound of the present invention has the above characteristics, it can be used as a colorant for a wide range of applications such as printing inks, paints, colored plastics, toners, inkjet inks, and color filters.
  • the phthalocyanine compound represented by the general formula (1-1) or the general formula (1-2) of the present invention has an N, N′-disubstituted imidazolone structure or a piperazinedione structure on each of the four benzene skeletons of the phthalocyanine. It is an introduced compound.
  • a compound in which a metal is complexed at the central portion of phthalocyanine is represented by the general formula (1-1), and a metal-free compound is represented by the general formula (1-2). Both are green.
  • the phthalocyanine compound represented by the general formula (1-1) is referred to as a compound (1-1), and the phthalocyanine compound represented by the general formula (1-2) is referred to as a compound (1-2).
  • R 9 and R 10 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms.
  • R 9 and R 10 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms.
  • a dicyanobenzimidazolone compound represented by the following formula (5) (hereinafter referred to as “compound (5)”) can be obtained.
  • the compound (5) is dissolved in an organic solvent such as N, N-dimethylformamide, N-methyl-2-pyrrolidinone, dimethyl sulfoxide in the presence of a base such as sodium hydride, cesium carbonate, potassium carbonate, potassium t-butoxide,
  • An N, N′-disubstituted dicyanobenzimidazolone compound (hereinafter referred to as “compound (2)” represented by the general formula (2) by reacting with one of the compounds such as alkyl halide and halogenated aralkyl.
  • the compound (6) in which R 9 and R 10 are the same can be obtained.
  • R 11 represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms.
  • X represents a chlorine atom, bromine atom, iodine atom or tosyl group, (Represents a sulfonic acid ester group such as a mesyl group or a trifluoromethanesulfonic acid group.)
  • a compound in which R 9 and R 10 are different from each other in the general formula (2) (hereinafter, the case where R 9 and R 10 are different is represented by R 12 and R 13 and such a compound is represented by the general formula (12)) is, for example, It can be synthesized by the following method.
  • Compound (8) is obtained by replacing the nitro group of compound (7) obtained by dinitrating o-dibromobenzene at positions 4 and 5 with an amine. The bromine atom is then replaced with a cyano group, and the nitro group is reduced.
  • the obtained diamino compound (10) can be converted to an N, N′-disubstituted dicyanobenzimidazolone compound (12) in which R 9 and R 10 are different in the general formula (2) by the method described above. Details of this synthesis method are described in Chemical Communications, 2236 (2002).
  • R 12 and R 13 each independently represent an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms (provided that R 12 and R 13 are the same group)
  • X represents the same as described above.
  • R 9 and R 10 are the same compounds other than hydrogen (hereinafter, R 9 and R 10 are the same except for hydrogen and are represented by R 11 ; such compounds are represented by the general formula (14)
  • Compound (13) is an alkyl halide, halogenated in the presence of a base such as cesium carbonate, sodium hydride, potassium t-butoxide in a solvent such as N, N-dimethylformamide, N-methyl-2-pyrrolidinone, dimethyl sulfoxide.
  • R 9 and R 10 in the dicyanotetrahydroquinoxalinedione compound represented by the general formula (3) react with one kind of compound such as aralkyl fluoride.
  • compound (3) reacts with one kind of compound such as aralkyl fluoride.
  • compound (14) is obtained except for hydrogen.
  • R 11 represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms
  • X represents a chlorine atom, bromine atom, iodine atom or tosyl group, mesyl group, trifluoromethane.
  • a compound in which R 9 and R 10 are different in the general formula (3) (hereinafter, the case where R 9 and R 10 are different is represented by R 12 and R 13 and such a compound is represented by the general formula (20)) is, for example, It can be synthesized by the following method.
  • Compound (16) is obtained by substituting the nitro group of compound (15) obtained by dinitrating o-dibromobenzene at positions 4 and 5 with an amine. The bromine atom is then substituted with a cyano group to give compound (17), and the nitro group is reduced to give diamino compound (18).
  • Compound (18) can be converted to a dicyanotetrahydroquinoxalinedione compound (20) in which R 9 and R 10 are different from each other in the general formula (3) by the method described above. Details of this synthesis method are described in Chemical Communications, 2236 (2002).
  • R 12 and R 13 each independently represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 9 carbon atoms (provided that R 12 and R 13 are the same group).
  • X represents the same as described above.
  • the compound (1-1) of the present invention includes the compound (2) or compound (3) obtained by the above synthesis method, and a divalent to tetravalent metal atom represented by M in the general formula (1-1). It can be obtained by subjecting the corresponding metal salt to heat condensation at 120 to 250 ° C. in an organic solvent.
  • compounds (2) or compounds (3) having different R 9 and R 10 compounds having different R 1 to R 8 in the general formula (1-1) can be obtained. It can.
  • the compound (1-2) of the present invention can be obtained by synthesis without using a metal salt corresponding to the divalent to tetravalent metal atom in the synthesis method.
  • Examples of the divalent to tetravalent metal atom represented by M in the general formula (1-1) include magnesium, aluminum, titanium, vanadium, iron, cobalt, nickel, copper, zinc, platinum, and palladium. It is done. Of these, titanium, vanadium, iron, cobalt, nickel, copper, and zinc are preferable, and vanadium, cobalt, copper, and zinc are most preferable. These metals may be oxidized.
  • metal salt corresponding to the divalent to tetravalent metal atom various salts such as halogen salts, acetates, sulfates, nitrates, carbonates and the like can be used, preferably halogen salts and acetates.
  • Examples of the organic solvent used in the synthesis of the compound (1-1) or the compound (1-2) include alcohols, glycols, trichlorobenzene, quinoline, ⁇ -chloronaphthalene, nitrobenzene, sulfolane, N, N -Dimethylformamide and the like. Moreover, you may react without a solvent.
  • an alkali or 1,8-diazabicyclo [5,4,0] undec-7-ene (hereinafter referred to as “DBU”) is used as a catalyst. It is preferable to use an organic amine such as cyclohexylamine because the yield is improved.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 to R 8 in the compound (1-1) and the compound (1-2) include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. , A pentyl group, a hexyl group, and the like.
  • Examples of the aralkyl group having 7 to 9 carbon atoms include benzyl group, 2-phenylethyl group, and 3-phenylpropyl group.
  • R 1 to R 8 in the general formula (1-1) and the general formula (1-2) are preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and a methyl group, an ethyl group, and a propyl group are preferable. Particularly preferred.
  • the compound having a substituent other than a hydrogen atom on the nitrogen atom of the imidazolone ring or piperazinedione ring does not cause aggregation and has a high chroma hue. It is thought that it is obtained.
  • the compound (1-1) or compound (1-2) is obtained as a green crude pigment by the above synthesis method, it is preferably subjected to a pigmentation treatment when used as a colorant.
  • a pigmentation treatment examples include solvent salt milling, salt milling, dry milling, solvent milling, grinding treatment such as acid pasting, solvent heating treatment, and the like.
  • the phthalocyanine compound of the present invention When used as a green pigment, it is preferable to perform the pigmentation treatment as described above and adjust the particle diameter of the pigment to a range of 0.01 to 1 ⁇ m. Solvent salt milling in which the average length / width ratio of particles (so-called average aspect ratio) is less than 3 and closer to 1 and a narrower particle size distribution is obtained in the electron micrograph of the obtained pigment is a preferred pigment. Process.
  • the colored composition of the present invention is a composition containing the phthalocyanine compound of the present invention as a colorant together with a synthetic resin, and includes, for example, printing inks, paints, colored plastics, toners, inkjet inks, color filter color pastes, and the like. Examples include color resists.
  • Synthetic resins used for the preparation of the colored composition of the present invention include, for example, polymerization resins and condensation resins, particularly urea resins / formaldehyde resins and melamine / formaldehyde resins, alkyd resins, phenol resins, polyester resins, polyamide resins, and polyvinyl chloride. , Polyurethane, acrylic / melamine, polystyrene, cellulose ether, nitrocellulose, polyacrylate, polyacrylonitrile, polyolefin and the like. These can be used alone or as a mixture.
  • the coloring composition of the present invention is easily prepared by mixing, for example, so as to be 100 to 2,000 parts of a synthetic resin (nonvolatile content) per 100 parts of the phthalocyanine compound of the present invention, depending on the coloring application. I can do it.
  • filler used when preparing printing ink, paint, colored plastic, etc. for example, various metal foils, titanium oxide, silica and the like can be used.
  • various additives include surfactants and preservatives
  • examples of the solvent include water and various organic solvents that do not change the crystal state of the pigment.
  • NMR analysis Nuclear magnetic resonance apparatus “JNM-LA300” manufactured by JEOL Ltd., using TMS as an internal standard substance
  • Infrared spectroscopic analysis Infrared spectrophotometer “FT / IR-4200” manufactured by JASCO Corporation or PERKIN ELMER
  • Infrared spectrophotometer "SPECTRUM ONE” FD / MS analysis mass spectrometer “JMS-700” manufactured by JEOL Ltd.
  • UV-Vis spectrophotometry Spectrophotometer "U-4100” manufactured by Hitachi, Ltd.
  • the obtained compound was subjected to 1 H- and 13 C-NMR analysis in a dimethyl sulfoxide (hereinafter referred to as “DMSO”)-d 6 solution and infrared spectroscopic analysis using the KBr tablet method. Results were obtained.
  • DMSO dimethyl sulfoxide
  • the reaction mixture was poured into 300 parts by mass of ice water, and the precipitated solid was filtered, washed with water and n-hexane, and dried under reduced pressure to obtain 8.45 parts by mass of the target compound (yield 82%).
  • the compound obtained in Synthesis Example 2 was subjected to 1 H- and 13 C-NMR analysis in DMSO-d 6 solution and infrared spectroscopic analysis using the KBr tablet method, and the following analysis results were obtained.
  • the reaction mixture was poured into 400 parts by mass of ice water, and the precipitated solid was filtered, washed with water and n-hexane, and dried under reduced pressure to obtain 14.2 parts by mass (yield 85%) of the target compound.
  • the compound obtained in Synthesis Example 3 was subjected to 1 H- and 13 C-NMR analysis in DMSO-d 6 solution and infrared spectroscopic analysis by KBr tablet method, and the following analysis results were obtained.
  • the reaction mixture was poured into 200 parts by mass of ice water, and the precipitated solid was filtered, washed with water and n-hexane, and dried under reduced pressure to obtain 4.43 parts by mass of the target compound (yield 76%).
  • the compound obtained in Synthesis Example 4 was subjected to 1 H- and 13 C-NMR analysis in DMSO-d 6 solution and infrared spectroscopic analysis using the KBr tablet method, and the following analysis results were obtained.
  • the obtained crude product was suspended in a mixed solvent of acetone, ethyl acetate, and hexane (mass ratio: 10, 10, 40), and heated to reflux. After cooling to room temperature, the solid was separated by filtration to obtain 1.69 parts by mass of the target compound (yield 36%).
  • the compound obtained in Synthesis Example 6 was subjected to 1 H- and 13 C-NMR analysis in DMSO-d 6 solution and infrared spectroscopic analysis by KBr tablet method, and the following analysis results were obtained.
  • the obtained crude product was suspended in 60 parts by mass of ethyl acetate, heated and refluxed, 45 parts by mass of hexane was added, and the precipitated solid was separated by filtration to obtain 2.64 parts by mass of the target compound (yield 42). %).
  • To 20 parts by mass of 1-pentanol 2.0 parts by mass of the dicyanobenzimidazolone compound (21) obtained in Synthesis Example 2, 0.432 parts by mass of zinc acetate and 1.45 parts by mass of DBU were added, and the mixture was stirred. Heated to reflux for 5 hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide and methanol in this order to obtain 1.89 parts by mass (concentration of the desired phthalocyanine compound). 88%) was obtained as a green solid.
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide and methanol in this order, and 4.52 parts by mass of the desired phthalocyanine compound (incl. 89%) was obtained as a green solid.
  • 8.82 parts by mass of 1-pentanol was added with 8.67 parts by mass of the dicyanobenzimidazolone compound (22) obtained in Synthesis Example 3, 1.66 parts by mass of zinc acetate and 5.49 parts by mass of DBU, and the mixture was stirred while stirring. Heated to reflux for hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • the compound obtained above was subjected to FD / MS analysis, infrared spectroscopic analysis by the KBr tablet method, and ultraviolet-visible spectroscopic analysis in an N-methyl-2-pyrrolidinone solution, and the following analytical results were obtained.
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide, and methanol in this order, and 1.96 parts by mass of the desired phthalocyanine compound (incl. 76%) was obtained as a green solid.
  • ⁇ FD / MS analysis 1023 M + ⁇ Infrared spectroscopic analysis> 2969 (ethyl group C—H stretching vibration), 1710 (C ⁇ O stretching vibration), 1490, 1428, 1083, 746, 588 cm ⁇ 1.
  • ⁇ Ultraviolet visible spectroscopy 467, 730, 829 nm
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass ammonia water, hot N, N-dimethylformamide and methanol in this order to obtain 1.41 parts by mass (yield of the desired phthalocyanine compound). 44%) as a dark green solid.
  • the compound obtained above was subjected to FD / MS analysis, infrared spectroscopic analysis by the KBr tablet method, and ultraviolet-visible spectroscopic analysis in an N-methyl-2-pyrrolidinone solution, and the following analytical results were obtained.
  • ⁇ FD / MS analysis 1019 M + ⁇ Infrared spectroscopic analysis> 2978 (ethyl group C—H stretching vibration), 1706 (C ⁇ O stretching vibration), 1490, 1434, 1082, 749, 587 cm ⁇ 1.
  • ⁇ Ultraviolet visible spectroscopy 379, 620, 691 nm
  • Example 5 cobalt tetrabenzimidazolonoporphyrazine represented by the following formula (31).
  • the obtained crude product was washed with hot ethanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide and methanol in this order to obtain 0.823 part by mass (concentration of the desired phthalocyanine compound). 39%) was obtained as a green solid.
  • the compound obtained above was subjected to FD / MS analysis, infrared spectroscopic analysis by the KBr tablet method, and ultraviolet-visible spectroscopic analysis in an N-methyl-2-pyrrolidinone solution, and the following analytical results were obtained.
  • the obtained crude product was washed with hot ethanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide and methanol in this order, and 1.20 parts by mass (contracted) of the desired phthalocyanine compound. 57%) was obtained as a green solid.
  • the compound obtained above was subjected to FD / MS analysis, infrared spectroscopic analysis by the KBr tablet method, and ultraviolet-visible spectroscopic analysis in an N-methyl-2-pyrrolidinone solution, and the following analytical results were obtained.
  • ⁇ FD / MS analysis 1136 M + ⁇ Infrared spectroscopic analysis> 2967 (propyl group C—H stretching vibration), 1714 (C ⁇ O stretching vibration), 1488, 1419, 1090, 748 cm ⁇ 1.
  • ⁇ Ultraviolet visible spectroscopy 306, 363, 623, 692 nm
  • To 8.15 parts by mass of 1-pentanol 1.00 parts by mass of the dicyanobenzimidazolone compound (21) obtained in Synthesis Example 2 and 0.72 parts by mass of DBU were added, and the mixture was heated to reflux with stirring for 24 hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass aqueous ammonia, hot N, N-dimethylformamide and methanol in this order, and 0.13 parts by mass (contracted) of the desired phthalocyanine compound. 13%) was obtained as a green solid.
  • the obtained crude product was washed with hot methanol, hot acetone, 1 mol / l hydrochloric acid, 8% by mass ammonia water, hot N, N-dimethylformamide and methanol in this order, and 5.53 parts by mass of the desired phthalocyanine compound (inc. Yield 55%) as a green solid.
  • To 25 parts by mass of 1-pentanol 2.40 parts by mass of the dicyanotetrahydroquinoxalinedione compound (24) obtained in Synthesis Example 5, 0.46 parts by mass of zinc acetate and 1.52 parts by mass of DBU were added, and the mixture was stirred. Heated to reflux for hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • the green solid obtained above was subjected to FD / MS analysis, infrared spectroscopic analysis by the KBr tablet method, and UV-visible spectroscopic analysis in N, N-dimethylformamide solution, and the following analytical results were obtained. .
  • To 4 parts by mass of 1-pentanol 0.10 parts by mass of the dicyanotetrahydroquinoxalinedione compound (24) obtained in Synthesis Example 5, 0.0107 parts by mass of copper (I) chloride and 0.0761 parts by mass of DBU were added and stirred. The mixture was heated to reflux for 4.5 hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • To 1.20 parts by mass of 1-pentanol 1.67 parts by mass of the dicyanotetrahydroquinoxalinedione compound (25) obtained in Synthesis Example 6 and 0.29 parts by mass of zinc acetate and 0.95 parts by mass of DBU were added, and the mixture was stirred. Heated to reflux for hours. After cooling the reaction solution to 70 ° C. or lower, the precipitated solid was separated by filtration.
  • Example 15 0.50 part by mass of the phthalocyanine compound (29) obtained in Example 3 was ground together with 1.50 parts by mass of sodium chloride and 0.75 part by mass of diethylene glycol. Thereafter, this mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. The water-insoluble matter was separated by filtration and washed well with warm water, and then dried under reduced pressure at 80 ° C. to form a pigment.
  • the particle diameter of the pigment was 300 nm or less, and the average length / width ratio of the particles was less than 3.
  • the obtained green pigment of the phthalocyanine compound (29) the following baking film color development test and chemical resistance test were conducted.
  • the UV-visible spectrum and color characteristics of the coating film obtained above were measured using a spectrophotometer (using a spectrophotometer “UV-2450” manufactured by Shimadzu Corporation).
  • the absorption wavelength of this coating film is shown in Table 2 below, and the measurement results of color characteristics are shown in Table 4.
  • the light absorption spectrum obtained by this measurement is shown in FIG.
  • ⁇ Chemical resistance test 1 part by mass of the green pigment of the phthalocyanine compound (29) and 20 parts by mass of the organic solvent or acid listed in Table 1 below were added to a container with a lid, sealed and shaken for 30 seconds, and then allowed to stand for 15 minutes. Subsequently, the mixture was shaken again for 30 seconds, allowed to stand for 30 minutes, filtered, and the color of the filtrate was visually confirmed and evaluated according to the following criteria. : No coloration of the filtrate, ⁇ : Coloration of the filtrate
  • Example 16 Baking film color development test and chemical resistance test in the same manner as in Example 15 except that the phthalocyanine compound (30) obtained in Example 4 was used as the green pigment instead of the green pigment of the phthalocyanine compound (29). Went.
  • Example 17 Baking film color development test and chemical resistance test in the same manner as in Example 15 except that the phthalocyanine compound (33) obtained in Example 7 was used as the green pigment instead of the green pigment of the phthalocyanine compound (29). Went.
  • Example 18 Baking film color development test and chemical resistance test in the same manner as in Example 15 except that the phthalocyanine compound (35) obtained in Example 9 was used as the green pigment instead of the green pigment of the phthalocyanine compound (29). Went.
  • Example 19 Baking film color development test and chemical resistance test in the same manner as in Example 15 except that the phthalocyanine compound (36) obtained in Example 10 was used as the green pigment instead of the green pigment of the phthalocyanine compound (29). Went.
  • Example 15 was repeated except that a brominated copper phthalocyanine pigment (“Fastogen Green 2YK-CF” manufactured by DIC Corporation, CI Pigment Green 36) was used instead of the green pigment of the phthalocyanine compound (29). Then, a baking coating color development test and a chemical resistance test were conducted.
  • a brominated copper phthalocyanine pigment (“Fastogen Green 2YK-CF” manufactured by DIC Corporation, CI Pigment Green 36) was used instead of the green pigment of the phthalocyanine compound (29).
  • the phthalocyanine compound of the present invention can be used as a clear, halogen-free green pigment, and is known as a green pigment having high chemical resistance, and is known as chlorinated copper phthalocyanine or brominated chlorinated copper. It turns out that it has the tolerance with respect to the organic solvent and acid equivalent to a phthalocyanine pigment.
  • the phthalocyanine compound of the present invention has a clear green color and is halogen-free, it is useful as a colorant for paints, plastics, printing inks, rubber, leather, textile printing, color filters, jet inks, thermal transfer inks and the like as green pigments. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 ハロゲンフリーで緑色の色相を有し、有機溶剤および酸に対する耐性に優れ、かつ高彩度なフタロシアニン化合物を提供する。 特定一般式(1‐1)、(1-2)で表される、N,N'-二置換イミダゾロン構造またはピペラジンジオン構造を導入した無金属フタロシアニン化合物または金属フタロシアニン化合物、並びに当該化合物と合成樹脂とを含有してなる着色組成物。 本発明のフタロシアニン化合物は、鮮明な緑色を呈しハロゲンフリーであるので、緑色顔料として塗料、プラスチック、印刷インキ、ゴム、レザー、捺染、カラーフィルター、ジェットインキ、熱転写インキなどの着色材として有用である。

Description

フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
 本発明は、緑色顔料として用いることが出来るフタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含む着色組成物に関する。
 従来から知られている緑色顔料の代表的なものとして、ポリハロゲン化銅フタロシアニンが挙げられる。このポリハロゲン化銅フタロシアニンは優れた堅牢性を有しているが、分子内に塩素、臭素等のハロゲン原子を多量に有するため、近年その安全性や環境への負荷が懸念されている。また、ポリハロゲン化フタロシアニンはハロゲン原子を多量に有するために分子量が大きくなり、着色力が低くなる問題がある。そこで、ハロゲン原子を有しない化合物で緑色に着色できる顔料が求められている。
 ハロゲン原子を有しない(以下、「ハロゲンフリー」という。)化合物で緑色に着色する方法として、青色顔料である銅フタロシアニンと黄色の有機顔料を混合し、緑色に調色する方法が提案されている(例えば、特許文献1および2参照。)しかし、この方法では化学構造が全く異なる2種類の顔料を混合するために色別れを生じる問題や、混合した顔料の種類により各々耐光性が異なるため、太陽光暴露等での色相変化が大きいという問題があった。
 一方、単一で緑色の色相を有するハロゲンフリーの化合物として、例えばイミダゾロン環を導入したフタロシアニン化合物が特許文献3で、ピリド骨格を導入したフタロシアニン化合物が特許文献4で報告されている。特許文献3に記載のフタロシアニン化合物は、緑色の色相を呈するので調色の必要もなく、且つ有機溶剤及び酸耐性を有する特性を有する。しかしながら彩度が低いという問題があった。
特開2001-64534号公報 特開2002-194242号公報 特開2007-16203号公報 特開2006-291088号公報
 本発明の目的は、ハロゲンフリーで緑色の色相を有し、有機溶剤および酸に対する耐性に優れ、かつ高彩度なフタロシアニン化合物を提供することである。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記一般式(1-1)又は(1-2)で表されるN,N’-二置換イミダゾロン構造またはピペラジンジオン構造を導入したフタロシアニン化合物が、ハロゲンフリーで緑色の色相を有し、有機溶剤および酸に対する耐性に優れ、かつ高い彩度を有することを見出した。
 すなわち、本発明は、一般式(1-1)又は一般式(1-2)で表されるフタロシアニン化合物を提供する。
Figure JPOXMLDOC01-appb-C000004
(但し、
1)n=1の場合、R~Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数7~9のアラルキル基を表し、
2)n=2の場合、R~Rは各々独立して水素原子、炭素原子数1~6のアルキル基又は炭素原子数7~9のアラルキル基を表す。
また、一般式(1-1)中、Mは2~4価の金属原子(但し金属原子は酸化されていてもよい)を表す。)
 また本発明は、前記記載のフタロシアニン化合物の合成原料であって、一般式(2)で表されるフタロニトリル化合物を提供する。
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、RおよびR10は各々独立して炭素原子数1~6のアルキル基または炭素数7~9のアラルキル基を表す。)
 また本発明は、前記記載のフタロシアニン化合物の合成原料であって、一般式(3)で表されるフタロニトリル化合物を提供する。
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、RおよびR10は各々独立して炭素原子数1~6のアルキル基又は炭素数7~9のアラルキル基を表す。)
 また本発明は、前記一般式(2)又は(3)で表されるフタロニトリル化合物単独もしくは前記一般式(1-1)中のMで表される2~4価の金属原子に対応する金属塩との混合物を熱縮合させることを特徴とする前記記載のフタロシアニン化合物の製造法を提供する。
 また本発明は、前記記載のフタロシアニン化合物と、合成樹脂とを含有する着色組成物を提供する。
 本発明のフタロシアニン化合物は緑色の色相を有し、有機溶剤および酸に対する耐性にすぐれ、かつ高彩度であるため、緑色顔料として有用である。特に全てのベンゼン環を含窒素環で置換した構造を有するので、黄味の強い緑色を呈する。また凝集も生じにくい。
 また、本発明のフタロシアニン化合物はハロゲンフリーであるため、安全性が高く、環境負荷が低いという特徴も有する。したがって、環境対策が要求されている用途には、既存の緑色顔料であるハロゲン化フタロシアニン系顔料の代替品として非常に有用である。
 本発明のフタロシアニン化合物は、上記特徴を有することから、印刷インキ、塗料、着色プラスチック、トナー、インクジェット用インキ、カラーフィルター等の広範囲な用途の着色剤として用いることができる。
化合物(29)の赤外分光スペクトルである。 化合物(29)のN-メチルピロリジン-2-オン溶液中での紫外可視分光スペクトルである。 化合物(30)の赤外分光スペクトルである。 化合物(30)の硫酸溶液中での紫外可視分光スペクトルである。 本発明の実施例15、16および比較例1~3における焼付塗膜展色試験で得られた焼付塗膜の光吸収スペクトルである。 化合物(36)の赤外分光スペクトルである。 化合物(36)のN,N-ジメチルホルムアミド中での紫外可視分光スペクトルである。 本発明の実施例19および比較例1~3における焼付塗膜展色試験で得られた焼付塗膜の光吸収スペクトルである。
 本発明の一般式(1-1)又は一般式(1-2)で表されるフタロシアニン化合物は、フタロシアニンの4つのベンゼン骨格のそれぞれに、N,N’-二置換イミダゾロン構造またはピペラジンジオン構造を導入した化合物である。本願においては、フタロシアニンの中心部分に金属が錯形成した化合物を一般式(1-1)で表し、無金属の化合物を一般式(1-2)で表した。なおいずれも緑色を呈す。
 なお、一般式(1-1)で表されるフタロシアニン化合物を化合物(1-1)とし、一般式(1-2)で表されるフタロシアニン化合物を化合物(1-2)と称す。
 本発明の化合物(1-1)又は化合物(1-2)の合成例を以下に記載する。
前記化合物(1-1)又は化合物(1-2)を合成するためには、まず、その中間体であるN,N’-二置換イミダゾロン環を有するジニトリル化合物である下記一般式(2)で表されるジシアノベンツイミダゾロン化合物、又はピペラジンジオン環を有するジニトリル化合物である下記一般式(3)で表されるジシアノテトラヒドロキノキサリンジオン化合物を下記の合成方法により合成する。
Figure JPOXMLDOC01-appb-C000007
(式中、RおよびR10は各々独立して炭素数1~6のアルキル基または炭素数7~9のアラルキル基を表す。)
Figure JPOXMLDOC01-appb-C000008
(一般式(3)中、RおよびR10は各々独立して炭素原子数1~6のアルキル基又は炭素数7~9のアラルキル基を表す。)
(N,N’-二置換ジシアノベンツイミダゾロン化合物の合成)
 前記一般式(2)においてRとR10が同一の化合物(以下RとR10が同一の場合をR11で表し、そのような化合物を一般式(6)で表す)については、例えば以下の方法で合成することができる。1,2-ジアミノ-4,5-ジシアノベンゼン(下記式(4))と、ホスゲン、クロロ炭酸エステル、尿素または1,1’-カルボニルビス-1H-イミダゾールをアセトニトリル等の有機溶媒中、0~130℃で1~6時間程度反応させることにより、下記式(5)で表されるジシアノベンズイミダゾロン化合物(以下、「化合物(5)」という。)を得ることができる。次いで化合物(5)をN,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、ジメチルスルホキシド等の有機溶媒中で水素化ナトリウム、炭酸セシウム、炭酸カリウム、カリウムt-ブトキシド等の塩基の存在下、ハロゲン化アルキル、ハロゲン化アラルキル等の化合物のうち1種の化合物と反応することにより前記一般式(2)で表されるN,N’-二置換ジシアノベンツイミダゾロン化合物(以下、「化合物(2)」という。)においてRとR10が同一の化合物(6)を得ることができる。
Figure JPOXMLDOC01-appb-C000009
(一般式(6)中、R11は炭素数1~6のアルキル基または炭素数7~9のアラルキル基を表す。また前記反応式中Xは塩素原子、臭素原子、ヨウ素原子またはトシル基、メシル基、トリフルオロメタンスルホン酸基等のスルホン酸エステル基を表す。)
 なお、1,2-ジアミノ-4,5-ジシアノベンゼンの合成法についてはケミストリー ヨーロピアン ジャーナル(Chemistry-A European Journal),9(5),1233(2003)、ジャーナル オブ オーガニック ケミストリー(Journal of Organic Chemistry),71,3345(2006)、シンセシス(Synthesis),1179(2008)に記載されている。
 前記一般式(2)においてRとR10が異なる化合物(以下RとR10が異なる場合をR12及びR13で表し、そのような化合物を一般式(12)で表す)は、例えば以下の方法で合成できる。o-ジブロモベンゼンの4,5位をジニトロ化して得られた化合物(7)のニトロ基をアミンにより置換して化合物(8)を得る。次いで臭素原子をシアノ基で置換、ニトロ基を還元する。得られたジアミノ化合物(10)は上記記載の方法により前記一般式(2)においてRとR10が異なるN,N’-二置換ジシアノベンズイミダゾロン化合物(12)に変換できる。この合成方法の詳細については、ケミカル コミュニケーションズ(Chemical Communications),2236(2002)に記載されている。
Figure JPOXMLDOC01-appb-C000010
(一般式(12)中、R12およびR13は各々独立して炭素数1~6のアルキル基または炭素数7~9のアラルキル基を表す(但しR12およびR13が同一の基である場合を除く)。また前記反応式中Xは前記と同じものを表す。)
(ジシアノテトラヒドロキノキサリンジオン化合物の合成)
 下記式(13)で表されるピペラジンジオン環の窒素原子上の置換基が水素であるジシアノテトラヒドロキノキサリンジオン化合物(以下、「化合物(13)」という。)の合成法については、ヨーロピアン ジャーナル オブ オーガニック ケミストリー(European Journal of Organic Chemistry,4535(2007))に合成例が記載されている。
 前記一般式(3)においてRとR10が水素以外で同一の化合物(以下、RとR10が水素以外で同一の場合をR11で表し、そのような化合物を一般式(14)で表す。)については例えば以下の方法で合成することが出来る。化合物(13)をN,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、ジメチルスルホキシド等の溶剤中で炭酸セシウム、水素化ナトリウム、カリウムt-ブトキシド等の塩基の存在下でハロゲン化アルキル、ハロゲン化アラルキル等の化合物のうち1種類の化合物と反応することにより、前記一般式(3)で表されるジシアノテトラヒドロキノキサリンジオン化合物(以下、化合物(3)と呼ぶ。)においてRとR10が水素以外で同一の化合物(14)が得られる。
Figure JPOXMLDOC01-appb-C000011
(一般式(14)中、R11は炭素数1~6のアルキル基または炭素数7~9のアラルキル基を表し、Xは塩素原子、臭素原子、ヨウ素原子またはトシル基、メシル基、トリフルオロメタンスルホン酸基等のスルホン酸エステル基を表す。)
 前記一般式(3)においてRとR10が異なる化合物(以下RとR10が異なる場合をR12及びR13で表し、そのような化合物を一般式(20)で表す)は、例えば以下の方法で合成できる。o-ジブロモベンゼンの4,5位をジニトロ化して得られた化合物(15)のニトロ基をアミンにより置換して化合物(16)を得る。次いで臭素原子をシアノ基で置換して化合物(17)とし、ニトロ基を還元してジアミノ化合物(18)を得る。化合物(18)は上記記載の方法により前記一般式(3)においてRとR10が異なるジシアノテトラヒドロキノキサリンジオン化合物(20)に変換できる。この合成方法の詳細については、ケミカル コミュニケーションズ(Chemical Communications),2236(2002)に記載されている。
Figure JPOXMLDOC01-appb-C000012
(一般式(20)中、R12およびR13は各々独立して炭素数1~6のアルキル基または炭素数7~9のアラルキル基を表す(但しR12およびR13が同一の基である場合を除く)。また前記反応式中Xは前記と同じものを表す。)
(化合物(1-1)又は化合物(1-2)の合成)
 本発明の化合物(1-1)は前記合成法により得られる化合物(2)又は化合物(3)と、前記一般式(1-1)中のMで表される2~4価の金属原子に対応する金属塩とを有機溶媒中、120~250℃で加熱縮合することによって得ることができる。また、R,R10の異なる2種類以上の化合物(2)又は化合物(3)を用いることで、前記一般式(1-1)中のR~Rがそれぞれ異なる化合物を得ることができる。前記一般式(1-1)においてn=2、R~Rが水素である化合物は化合物(13)を原料として同様の方法で合成できる。
 また、本発明の化合物(1-2)は、該合成方法において前記2~4価の金属原子に対応する金属塩を用いずに合成することで得ることができる。
 前記一般式(1-1)中のMで表される2~4価の金属原子としては、例えばマグネシウム、アルミニウム、チタン、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛、プラチナ、パラジウム等が挙げられる。中でもチタン、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛が好ましく、バナジウム、コバルト、銅、亜鉛が最も好ましい。またこれらの金属は酸化されていてもよい。
 前記2~4価の金属原子に対応する金属塩は、ハロゲン塩、酢酸塩、硫酸塩、硝酸塩、炭酸塩等の種々のものを用いることができるが、好ましくはハロゲン塩、酢酸塩である。
 前記化合物(1-1)又は化合物(1-2)の合成の際に用いる有機溶媒としては、例えば、アルコール類、グリコール類、トリクロロベンゼン、キノリン、α-クロロナフタレン、ニトロベンゼン、スルホラン、N,N-ジメチルホルムアミド等が挙げられる。また、無溶媒で反応しても構わない。
 また化合物(1-1)又は化合物(1-2)の合成の際に、触媒としてアルカリや1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(以下、「DBU」という。)、シクロヘキシルアミン等の有機アミンを用いると収率が向上するため好ましい。
 前記化合物(1-1)及び化合物(1-2)中のR~Rで表される炭素原子数1~6のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。炭素原子数7~9のアラルキル基としてはベンジル基、2-フェニルエチル基、3-フェニルプロピル基等が挙げられる。アルキル基またはアラルキル基の炭素原子数が多くなると有機溶剤に対する耐久性が低下する傾向にある。
 中でも、前記一般式(1-1)及び一般式(1-2)中のR~Rとしてはメチル基、エチル基、プロピル基、ブチル基が好ましく、メチル基、エチル基、プロピル基が特に好ましい。
 前記一般式(1-1)及び一般式(1-2)中のn=1でありR~Rが水素原子を含む特許文献3に記載の化合物、前記一般式(1-1)及び一般式(1-2)中のn=2でありR~Rが水素原子を含む化合物は彩度が低いが、該化合物は強い凝集が生じる。これは、イミダゾロン環およびピペラジンジオン環の窒素原子上に水素原子を有するために分子間の強い水素結合力が生じ凝集が激しくなり、これが原因で彩度が低下すると考えられる。本願の化合物(1-1)又は化合物(1-2)においてイミダゾロン環又はピペラジンジオン環の窒素原子上に水素原子以外の置換基を有する化合物は、凝集が生じずに、彩度の高い色相が得られると考えられる。
 上記合成法によって、化合物(1-1)又は化合物(1-2)は緑色の粗顔料として得られるが、着色剤として用いる際には顔料化処理を行うことが好ましい。この顔料化処理の方法としては、例えば、ソルベントソルトミリング、ソルトミリング、ドライミリング、ソルベントミリング、アシッドペースティング等の磨砕処理、溶媒加熱処理などが挙げられる。これらの顔料化処理によって、顔料の粒子径の調製も同時に行うことができる。
 本発明のフタロシアニン化合物を緑色顔料として用いる場合は、上記のような顔料化処理を行い、顔料の粒子径を0.01~1μmの範囲に調製して用いることが好ましい。得られる顔料の電子顕微鏡写真において、粒子の平均長さ/幅比(いわゆる平均アスペクト比)が3未満でより1に近く、しかも粒子径分布がより狭い顔料が得られるソルベントソルトミリングは、好ましい顔料化処理である。
 本発明の着色組成物は、本発明のフタロシアニン化合物を着色剤として、合成樹脂と共に含有する組成物であり、例えば、印刷インキ、塗料、着色プラスチック、トナー、インクジェット用インキ、カラーフィルター用カラーペーストおよびカラーレジスト等が挙げられる。
 本発明の着色組成物の調製に用いる合成樹脂としては、例えば、重合樹脂や縮合樹脂、特に尿素樹脂/ホルムアルデヒド樹脂およびメラミン/ホルムアルデヒド樹脂、アルキド樹脂、フェノール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリ塩化ビニル、ポリウレタン、アクリル/メラミン、ポリスチレン、セルロースエーテル、ニトロセルロース、ポリアクリレート、ポリアクリロニトリル、ポリオレフィン等が挙げられる。これらは単独または混合物として使用することが出来る。
 本発明の着色組成物は、着色用途に応じて、本発明のフタロシアニン化合物100部当たり、例えば、合成樹脂(不揮発分)100~2,000部となる様に混合することで、容易に調製することが出来る。
 また印刷インキ、塗料、着色プラスチック等を調製する際に用いる充填剤としては、例えば、各種金属箔、酸化チタン、シリカ等を用いることが出来る。各種添加剤としては、例えば、界面活性剤、防腐剤等を、溶媒としては、水の他、顔料の結晶状態を変化させない各種有機溶剤を用いることが出来る。
 以下、本発明を実施例によりさらに詳細に説明する。合成した化合物の分析は特に記載のない限り次の機器を使用した。
  NMR分析:日本電子株式会社製核磁気共鳴装置「JNM-LA300」、内部標準物質としてTMSを使用
  赤外分光分析:日本分光株式会社製赤外分光光度計「FT/IR-4200」またはPERKIN ELMER社製赤外分光光度計「SPECTRUM ONE」
  FD/MS分析:日本電子株式会社製質量分析計「JMS-700」
  紫外可視分光分析:株式会社日立製作所製分光光度計「U-4100」
[合成例1]
(化合物(5)の合成)
 脱水アセトニトリル245質量部中に、1,2-ジアミノ-4,5-ジシアノベンゼン39.0質量部および1,1’-カルボニルビス-1H-イミダゾール50.8質量部を加え、70℃で4時間攪拌した。次いで、得られた反応混合物を室温に冷却し、析出した固体をろ過、アセトニトルで洗浄し、減圧下乾燥して目的化合物43.5質量部(収率96%)を得た。
 得られた化合物について、ジメチルスルホキシド(以下、「DMSO」という。)-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ7.61(s,2H),11.7(br,2H)。
13C-NMR(DMSO-d):δ105.7,111.9,115.7,132.2,153.9。
<赤外分光分析>
3314(N-H伸縮振動)、2241(シアノ基CN伸縮振動)、1728(C=O伸縮振動)cm-1
 上記の結果より、合成例1で得られた化合物は、前記式(5)で表されるジシアノベンツイミダゾロン化合物であることを確認した。
[合成例2]
(前記一般式(2)においてRおよびR10がメチル基であるジシアノベンツイミダゾロン化合物の合成)
 脱水N,N-ジメチルホルムアミド95質量部中に水素化ナトリウム(60%パラフィン分散体)3.91質量部を加え、氷冷して内温を25~30℃に保ちながら化合物(5)9.0質量部を添加した。次いでヨウ化メチル14.6質量部を滴下し、さらに室温で1時間攪拌した。反応混合物を氷水300質量部に注ぎ、析出した固体をろ過、水およびn-へキサンで洗浄し、減圧下乾燥して目的化合物8.45質量部(収率82%)を得た。
合成例2で得られた化合物について、DMSO-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ3.40(s,6H),8.00(s,2H)。
13C-NMR(DMSO-d):δ27.6,106.7,112.6,116.8,133.0,153.9。
<赤外分光分析>
2955(メチル基C-H伸縮振動)、2226(シアノ基CN伸縮振動)、1728(C=O伸縮振動)cm-1
 以上の分析結果より、合成例2で得られた化合物が下記式(21)で表されるN,N’-二置換ジシアノベンツイミダゾロン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000013
[合成例3]
(前記一般式(2)においてRおよびR10がエチル基であるジシアノベンツイミダゾロン化合物の合成)
 脱水N,N-ジメチルホルムアミド115質量部中に水素化ナトリウム(60%パラフィン分散体)5.70質量部を加え、氷冷して内温を20~35℃に保ちながら化合物(5)12.8質量部を添加した。次いで脱水N,N-ジメチルホルムアミド19質量部に溶解したヨウ化エチル22.2質量部を滴下し、さらに室温で4時間攪拌した。反応混合物を氷水400質量部に注ぎ、析出した固体をろ過、水およびn-へキサンで洗浄し、減圧下乾燥して目的化合物14.2質量部(収率85%)を得た。
合成例3で得られた化合物について、DMSO-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ1.21(t,j=7.1Hz,6H),3.93(q,j=7.1Hz,4H),8.07(s,2H)。
13C-NMR(DMSO-d):δ13.3,36.1,106.8,112.7,116.8,132.0,152.9。
<赤外分光分析>
2924(エチル基C-H伸縮振動)、2228(シアノ基CN伸縮振動)、1716(C=O伸縮振動)cm-1
 以上の分析結果より、合成例3で得られた化合物が下記式(22)で表されるN,N’-二置換ジシアノベンツイミダゾロン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000014
[合成例4]
(前記一般式(2)においてRおよびR10がプロピル基であるジシアノベンツイミダゾロン化合物の合成)
 脱水N,N-ジメチルホルムアミド38質量部中に水素化ナトリウム(60%パラフィン分散体)1.78質量部を加え、氷冷して内温を20~35℃に保ちながら化合物(5)4.0質量部を添加した。次いで脱水N,N-ジメチルホルムアミド9質量部に溶解したヨウ化プロピル7.57質量部を滴下し、さらに室温で5時間攪拌した。反応混合物を氷水200質量部に注ぎ、析出した固体をろ過、水およびn-へキサンで洗浄し、減圧下乾燥して目的化合物4.43質量部(収率76%)を得た。
合成例4で得られた化合物について、DMSO-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ0.86(t,j=7.4Hz,6H),1.67(m,4H),3.87(t,j=7.2Hz,4H),8.11(s,2H)。
13C-NMR(DMSO-d):δ10.8,21.0,42.5,106.8,112.8,116.8,132.4,153.5。
<赤外分光分析>
2964(プロピル基C-H伸縮振動)、2224(シアノ基CN伸縮振動)、1710(C=O伸縮振動)cm-1
 以上の分析結果より、合成例4で得られた化合物が下記式(23)で表されるN,N’-二置換ジシアノベンツイミダゾロン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000015
〔合成例5〕
(前記一般式(3)においてRおよびR10がメチル基であるジシアノテトラヒドロキノキサリンジオン化合物の合成)
 脱水N,N-ジメチルホルムアミド120質量部中に化合物(13)5.00質量部、炭酸セシウム19.2質量部を加えて攪拌した。この混合物に室温でヨウ化メチル8.36質量部を加え、室温で1晩攪拌した。反応混合物に酢酸エチル270質量部を加え、析出した固体をろ過分離した。ろ液に水600質量部を加え、有機層を分離し、無水硫酸ナトリウムで乾燥後、濃縮した。最初に得られた固体と濃縮残渣をあわせ、アセトン・酢酸エチル・ヘキサン(質量比10:10:40)の混合溶媒より再結晶し、目的化合物4.02質量部を得た(収率71%)。
 合成例5で得られた化合物について、ジメチルスルホキシド(以下、「DMSO」という。)-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ3.55(s,6H),8.17(s,2H)。
13C-NMR(DMSO-d):δ30.3,108.8,115.8,120.2,131.4,153.5。
<赤外分光分析>
2960(メチル基C-H伸縮振動)、2234(シアノ基CN伸縮振動)、1695(C=O伸縮振動)cm-1
以上の分析結果より、合成例5で得られた化合物が、下記式(24)で表されるジシアノテトラヒドロキノキサリンジオン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000016
[合成例6]
(前記一般式(2)においてRおよびR10がエチル基であるジシアノテトラヒドロキノキサリンジオン化合物の合成)
 脱水N,N-ジメチルホルムアミド90質量部中に、水素化ナトリウム(60%パラフィン分散体)1.54質量部を加え、室温で攪拌した。この混合物に化合物(13)3.71質量部、次いでヨウ化エチル6.55質量部を添加し、室温で1晩攪拌した。反応混合物を水800質量部に注ぎ、析出した固体をろ過分離した。得られた粗生成物をアセトン・酢酸エチル・ヘキサン(質量比10・10・40)の混合溶媒中に懸濁し、加熱還流した。室温に冷却後、固体をろ過分離し、目的化合物1.69質量部を得た(収率36%)。
合成例6で得られた化合物について、DMSO-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ1.19(t,J=7.0Hz,6H),4.17(q,J=7.0Hz,4H),8.21(s,2H)。
13C-NMR(DMSO-d):δ11.7,38.1,109.0,115.9,120.2,130.6,153.2。
<赤外分光分析>
2975(エチル基C-H伸縮振動)、2232(シアノ基CN伸縮振動)、1709(C=O伸縮振動)cm-1
 以上の分析結果より、合成例6で得られた化合物が、下記式(25)で表されるジシアノテトラヒドロキノキサリンジオン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000017
[合成例7]
(前記一般式(3)においてRおよびR10が1-プロピル基であるジシアノテトラヒドロキノキサリンジオン化合物の合成)
 脱水N,N-ジメチルホルムアミド95質量部中に化合物(13)4.45質量部、炭酸セシウム17.1質量部を加えて攪拌した。この混合物に室温で1-ヨウ化プロピル8.93質量部を加え、35℃で3日間攪拌した。反応混合物を水400質量部に注ぎ、析出した固体をろ過分離した。得られた粗生成物を酢酸エチル60質量部に懸濁し、加熱還流した後、へキサン45質量部を加えて析出した固体をろ過分離し、目的化合物2.64質量部をえた(収率42%)。
 合成例7で得られた化合物について、DMSO-d溶液中でのH-および13C-NMR分析、KBr錠剤法での赤外分光分析を行ったところ下記の分析結果が得られた。
<NMR分析>
H-NMR(DMSO-d):δ0.95(t,J=7.3Hz,6H),1.61(m,4H),4.08(t,J=7.7Hz,4H),8.23(s,2H)。
13C-NMR(DMSO-d):δ10.9,19.5,44.3,108.9,115.9,120.3,130.7,153.3。
<赤外分光分析>
2967(プロピル基C-H伸縮振動)、2231(シアノ基CN伸縮振動)、1709(C=O伸縮振動)cm-1
以上の分析結果より、合成例7で得られた化合物が、下記式(26)で表されるジシアノテトラヒドロキノキサリンジオン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000018
[実施例1]
(前記一般式(1-1)(n=1)においてMが亜鉛原子であり、R~Rすべてがメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール20質量部中に合成例2で得られたジシアノベンツイミダゾロン化合物(21)2.0質量部、酢酸亜鉛0.432質量部およびDBU1.45質量部を加え、攪拌しながら6.5時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.89質量部(収率88%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
912 M
<赤外分光分析>
2942(メチル基C-H伸縮振動),1695(C=O伸縮振動),1494,1081,745,585cm-1
<紫外可視分光分析>
316,459,722,817nm
 上記の結果より、実施例1で得られた緑色固体が、下記式(27)で表される亜鉛テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000019
[実施例2]
(前記一般式(1-1)(n=1)においてMが銅原子であり、R~Rすべてがメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール45質量部中に合成例2で得られたジシアノベンツイミダゾロン化合物(21)4.71質量部、塩化銅(I)0.633質量部およびDBU3,90質量部を加え、攪拌しながら9時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物4.52質量部(収率89%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
911 M
<赤外分光分析>
1704(C=O伸縮振動),1493,1439,1083,745,583cm-1
<紫外可視分光分析>
463,728,825nm
 上記の結果より、実施例2で得られた緑色固体が、下記式(28)で表される銅テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000020
[実施例3]
(前記一般式(1-1)(n=1)においてMが亜鉛原子であり、R~Rすべてがエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール82質量部中に合成例3で得られたジシアノベンツイミダゾロン化合物(22)8.67質量部、酢酸亜鉛1.66質量部およびDBU5.49質量部を加え、攪拌しながら7時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物5.42質量部(収率59%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
1024 M
<赤外分光分析>
2973(エチル基C-H伸縮振動)、1693(C=O伸縮振動),1487,1417.1080,731,586cm-1
<紫外可視分光分析>
307,363,622,691nm
 上記の結果より、実施例3で得られた緑色固体が、下記式(29)で表される亜鉛テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000021
[実施例4]
(前記一般式(1-1)(n=1)においてMが銅原子であり、R~Rすべてがエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール20質量部中に合成例3で得られたジシアノベンツイミダゾロン化合物(22)2.40質量部、塩化銅(I)0.250質量部およびDBU1.52質量部を加え、攪拌しながら7時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.96質量部(収率76%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
1023 M
<赤外分光分析>
2969(エチル基C-H伸縮振動),1710(C=O伸縮振動),1490,1428,1083,746,588cm-1
<紫外可視分光分析>
467,730,829nm
上記の結果より、実施例4で得られた緑色固体が、下記式(30)で表される銅テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000022
[実施例5]
(前記一般式(1-1)(n=1)においてMがコバルト原子であり、R~Rすべてがエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール30質量部中に合成例3で得られたジシアノベンツイミダゾロン化合物(22)3.00質量部、臭化コバルト(II)0.683質量部およびDBU1.90質量部を加え、攪拌しながら8時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.41質量部(収率44%)を濃緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
1019 M
<赤外分光分析>
2978(エチル基C-H伸縮振動),1706(C=O伸縮振動),1490,1434,1082,749,587cm-1
<紫外可視分光分析>
379,620,691nm
 上記の結果より、実施例5で得られた濃緑色固体が、下記式(31)で表されるコバルトテトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000023
[実施例6]
(前記一般式(1-1)(n=1)においてMがV=Oであり、R~Rすべてがエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール25質量部中に合成例3で得られたジシアノベンツイミダゾロン化合物(22)2.00質量部、塩化バナジウム(III)0.344質量部およびDBU1.27質量部を加え、攪拌しながら9時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱エタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物0.823質量部(収率39%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
1027 M
<赤外分光分析>
2978(エチル基C-H伸縮振動),1709(C=O伸縮振動),1493,1427,1081,754,587cm-1
<紫外可視分光分析>
315,344,444,649,723nm
上記の結果より、実施例6で得られた緑色固体が、下記式(32)で表される酸化バナジウムテトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000024
[実施例7]
(前記一般式(1-1)(n=1)においてMが亜鉛原子であり、R~Rすべてがプロピル基であるフタロシアニン化合物の合成)
 1-ペンタノール20質量部中に合成例4で得られたジシアノベンツイミダゾロン化合物(23)2.00質量部、酢酸亜鉛0.349質量部およびDBU1.13質量部を加え、攪拌しながら9時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱エタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.20質量部(収率57%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
1136 M
<赤外分光分析>
2967(プロピル基C-H伸縮振動),1714(C=O伸縮振動),1488,1419,1090,748cm-1
<紫外可視分光分析>
306,363,623,692nm
上記の結果より、実施例7で得られた緑色固体が、下記式(33)で表される亜鉛テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000025
[実施例8]
(前記一般式(1-2)(n=1)において、R~Rすべてがメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール8.15質量部中に合成例2で得られたジシアノベンツイミダゾロン化合物(21)1.00質量部およびDBU0.72質量部を加え、攪拌しながら24時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物0.13質量部(収率13%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
850 M
<赤外分光分析>
1705(C=O伸縮振動),1494,1080,1024,742,582cm-1
<紫外可視分光分析>
312,459,781,825,871nm
 上記の結果より、実施例8で得られた緑色固体が、下記式(34)で表される無金属テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000026
[実施例9]
(前記一般式(1-2)(n=1)においてR~Rすべてがエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール82質量部中に合成例3で得られたジシアノベンツイミダゾロン化合物(22)10.0質量部およびDBU6.34質量部を加え、攪拌しながら9時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物5.53質量部(収率55%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
962 M
<赤外分光分析>
2978(エチル基C-H伸縮振動)、1710(C=O伸縮振動),1492,1473.1077,1027,749,587cm-1
<紫外可視分光分析>
313,465,785,827,876nm
 上記の結果より、実施例9で得られた緑色固体が、下記式(35)で表される無金属テトラベンツイミダゾロノポルフィラジンであることを確認した。
Figure JPOXMLDOC01-appb-C000027
[実施例10]
((前記一般式(1-1)(n=2)においてMが亜鉛原子であり、R~Rがすべてメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール25質量部中に合成例5で得られたジシアノテトラヒドロキノキサリンジオン化合物(24)2.40質量部、酢酸亜鉛0.46質量部およびDBU1.52質量部を加え、攪拌しながら7時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水,水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.74質量部を緑色固体として得た(収率68%)。
 上記で得られた緑色固体についてFD/MS分析、KBr錠剤法による赤外分光分析、N,N-ジメチルホルムアミド溶液中での紫外可視分光分析の測定を行ったところ下記の分析結果が得られた。
<FD/MS分析>
 m/z=1024 M
<赤外分光分析>
1678(C=O伸縮振動),1461,1383,1104,744cm-1
<紫外可視分光分析>
吸収波長:313,375,693nm
 上記の結果より、実施例10で得られた緑色固体が、下記式(36)で表される亜鉛テトラ(テトラヒドロキノキサリンジオノ)ポルフィラジン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000028
[実施例11]
(前記一般式(1-1)(n=2)においてMが銅原子であり、R~Rがすべてメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール4質量部中に合成例5で得られたジシアノテトラヒドロキノキサリンジオン化合物(24)0.10質量部、塩化銅(I)0.0107質量部およびDBU0.0761質量部を加え、攪拌しながら4.5時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱アセトン、1mol/l塩酸、8質量%アンモニア水,水、熱N,N-ジメチルホルムアミド、アセトンの順で洗浄し、目的のフタロシアニン化合物0.0932質量部を緑色固体として得た(収率87%)。
 上記で得られた緑色固体についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ下記の分析結果が得られた。
<FD/MS分析>
 m/z=1023 M
<赤外分光分析> 
1679(C=O伸縮振動),1464,1387,1113,745cm-1
<紫外可視分光分析>
吸収波長:326,769,798nm
 上記の結果より、実施例11で得られた緑色固体が、下記式(37)で表される銅テトラ(テトラヒドロキノキサリンジオノ)ポルフィラジン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000029
[実施例12]
(前記一般式(1-1)(n=2)においてMが亜鉛原子であり、R~Rがすべてエチル基であるフタロシアニン化合物の合成)
 1-ペンタノール20質量部中に合成例6で得られたジシアノテトラヒドロキノキサリンジオン化合物(25)1.67質量部、酢酸亜鉛0.29質量部およびDBU0.95質量部を加え、攪拌しながら6時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水,水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物0.61質量部を緑色固体として得た(収率34%)。
 上記で得られた緑色固体についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析の測定を行ったところ下記の分析結果が得られた。
<FD/MS分析>
 m/z=1136 M
<赤外分光分析> 
2981(エチル基C-H伸縮振動),1667(C=O伸縮振動),1469,1401,1107,744cm-1
<紫外可視分光分析>
吸収波長:317,366,698nm
 上記の結果より、実施例12で得られた緑色固体が、下記式(38)で表される亜鉛テトラ(テトラヒドロキノキサリンジオノ)ポルフィラジン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000030
[実施例13]
(前記一般式(1-1)(n=2)においてMが亜鉛原子であり、R~Rがすべてプロピル基であるフタロシアニン化合物の合成)
 1-ペンタノール25質量部中に合成例7で得られたジシアノテトラヒドロキノキサリンジオン化合物(26)2.64質量部、酢酸亜鉛0.42質量部およびDBU1.36質量部を加え、攪拌しながら8.5時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、1mol/l塩酸、8質量%アンモニア水,水、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物1.34質量部を緑色固体として得た(収率48%)。
 上記で得られた緑色固体についてFD/MS分析、KBr錠剤法による赤外分光分析、N-メチル-2-ピロリジノン溶液中での紫外可視分光分析の測定を行ったところ下記の分析結果が得られた。
<FD/MS分析>
 m/z=1248 M
<赤外分光分析> 
2963(プロピル基C-H伸縮振動),1677(C=O伸縮振動),1469,1398,1104,744cm-1
<紫外可視分光分析>
吸収波長:317,371,697nm
 上記の結果より、実施例13で得られた緑色固体が、下記式(39)で表される亜鉛テトラ(テトラヒドロキノキサリンジオノ)ポルフィラジン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000031
[実施例14]
(前記一般式(1-2)(n=2)において、R~Rすべてがメチル基であるフタロシアニン化合物の合成)
 1-ペンタノール8.15質量部中に合成例5で得られたジシアノテトラヒドロキノキサリンジオン化合物(24)1.00質量部およびDBU0.64質量部を加え、攪拌しながら9時間加熱還流した。反応液を70℃以下に冷却後、析出した固体をろ過分離した。得られた粗生成物を熱メタノール、熱アセトン、熱N,N-ジメチルホルムアミド、メタノールの順で洗浄し、目的のフタロシアニン化合物0.63質量部(収率63%)を緑色固体として得た。
 上記で得られた化合物についてFD/MS分析、KBr錠剤法による赤外分光分析、硫酸溶液中での紫外可視分光分析を行ったところ、下記の分析結果が得られた。
<FD/MS分析>
m/z=962 M
<赤外分光分析>
1666(C=O伸縮振動),1464,1384,1116,743cm-1
<紫外可視分光分析>
吸収波長:336,776,819nm
上記の結果より、実施例14で得られた緑色固体が、下記式(40)で表される無金属テトラ(テトラヒドロキノキサリンジオノ)ポルフィラジン化合物であることを確認した。
Figure JPOXMLDOC01-appb-C000032
(40)
(色特性の測定)
 実施例で合成したフタロシアニン化合物0.3質量部をロジン変性フェノール樹脂使用ワニス2.0質量部に分散した。得られた着色組成物を白色紙上に展色し、分光光度計(GetragMacbeth社製SpectroEye)を用いて色特性を測定した。得られた結果を表1に示す。
(光源D65、2度視野)
表1中、Cは彩度を表し、hは色相角を表す。各々合成した化合物は緑色の色相を有した。
Figure JPOXMLDOC01-appb-T000033
[実施例15](顔料化)
 実施例3で得られたフタロシアニン化合物(29)0.50質量部を塩化ナトリウム1.50質量部、ジエチレングリコール0.75質量部とともに磨砕した。その後、この混合物を600質量部の温水に投じ、1時間攪拌した。水不溶分を濾過分離して温水でよく洗浄した後、80℃で減圧下乾燥し、顔料化を行った。顔料の粒子径は、300nm以下、粒子の平均長さ/幅比は3未満であった。
 得られたフタロシアニン化合物(29)の緑色顔料を用いて、下記の焼付塗膜展色試験および耐薬品性試験を行った。
<焼付塗膜展色試験>
 フタロシアニン化合物(29)の緑色顔料4質量部、アルキッド樹脂(DIC株式会社製「ベッコール J-524-IM-60」)70%と、メラミン樹脂(DIC株式会社製「スーパーベッカミン G-821-60」)30%との混合樹脂10質量部、キシレン7質量部およびn-ブタノール3質量部を、媒体にガラスビーズを用いてペイントコンディショナーで2時間分散した。その後、アクリルメラミン樹脂を50質量部追加し、さらにペイントコンディショナーで5分間混合し、緑色着色組成物を得た。
得られた緑色着色組成物を、アプリケーターを用いてポリエステルフィルムに塗布し、130℃で30分間焼き付けた。得られた塗膜は光沢のある鮮明な緑色であった。
 上記で得られた塗膜について、分光光度計(株式会社島津製作所製分光光度計「UV-2450」を使用)を用いて紫外可視分光スペクトルと色特性を測定した。この塗膜の吸収波長を下記の表2に、色特性の測定結果を表4に示す。なお、この測定で得られた光吸収スペクトルを図5に示す。
<耐薬品性試験>
 フタロシアニン化合物(29)の緑色顔料1質量部、及び下記表1に挙げた有機溶剤または酸20質量部をフタ付きの容器に加え、密封して30秒間振り混ぜた後、15分間静置した。次いで、再び30秒間振り混ぜ、30分間静置後、ろ過し、ろ液の着色を目視で確認し、下記基準で評価した。
:ろ液の着色なし、×:ろ液に着色あり
[実施例16]
 フタロシアニン化合物(29)の緑色顔料に代えて、実施例4で得られたフタロシアニン化合物(30)を緑色顔料として用いた以外は、実施例15と同様に焼付塗膜展色試験および耐薬品性試験を行った。
〔実施例17〕
 フタロシアニン化合物(29)の緑色顔料に代えて、実施例7で得られたフタロシアニン化合物(33)を緑色顔料として用いた以外は、実施例15と同様に焼付塗膜展色試験および耐薬品性試験を行った。
〔実施例18〕
 フタロシアニン化合物(29)の緑色顔料に代えて、実施例9で得られたフタロシアニン化合物(35)を緑色顔料として用いた以外は、実施例15と同様に焼付塗膜展色試験および耐薬品性試験を行った。
〔実施例19〕
 フタロシアニン化合物(29)の緑色顔料に代えて、実施例10で得られたフタロシアニン化合物(36)を緑色顔料として用いた以外は、実施例15と同様に焼付塗膜展色試験および耐薬品性試験を行った。
[比較例1]
 フタロシアニン化合物(29)の緑色顔料に代えて塩素化銅フタロシアニン顔料(DIC株式会社製「Fastogen Green S」、C.I.Pigment Green 7)を用いた以外は、実施例15と同様にして、焼付塗膜展色試験および耐薬品性試験を行った。
[比較例2]
 フタロシアニン化合物(29)の緑色顔料に代えて臭素化銅フタロシアニン顔料(DIC株式会社製「Fastogen Green 2YK-CF」、C.I.Pigment Green 36)を用いた以外は、実施例15と同様にして、焼付塗膜展色試験および耐薬品性試験を行った。
[比較例3]
 フタロシアニン化合物(29)の緑色顔料に代えて特許文献3に記載された方法で合成した下記式(41)で表されるフタロシアニン化合物の緑色顔料を用いた以外は、実施例15と同様にして、焼付塗膜展色試験を行った。
Figure JPOXMLDOC01-appb-C000034
 実施例15~19および比較例1~3の緑色顔料の試験結果を表2(実施例)及び表3(比較例)に示す。なお、表1中のハロゲンフリーの項目は、ハロゲンフリーであるものを「○」と表記し、ハロゲンフリーでないものを「×」と表記した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
表3の結果から、本発明のフタロシアニン化合物は、鮮明でハロゲンフリーの緑色顔料として用いることができ、既存の耐薬品性が高い緑色顔料として知られている塩素化銅フタロシアニンや臭素化塩素化銅フタロシアニン顔料と同等の有機溶剤および酸に対する耐性を有することが分かる。
Figure JPOXMLDOC01-appb-T000037
(C光源2度視野でのCIE色空間値)
表4の結果から、本発明のフタロシアニン化合物は、比較例3の化合物(41)と比べて彩度(C)が著しく向上していることが分かる。また、化合物(29)、(30)、(35)は臭素化銅フタロシアニンに近い黄味の緑色の色相を有することが分かる。
 本発明のフタロシアニン化合物は、鮮明な緑色を呈しハロゲンフリーであるので、緑色顔料として塗料、プラスチック、印刷インキ、ゴム、レザー、捺染、カラーフィルター、ジェットインキ、熱転写インキなどの着色材として有用である。

Claims (7)

  1. 一般式(1-1)又は(1-2)で表されるフタロシアニン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (但し、
    1)n=1の場合、R~Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数7~9のアラルキル基を表し、
    2)n=2の場合、R~Rは各々独立して水素原子、炭素原子数1~6のアルキル基又は炭素原子数7~9のアラルキル基を表す。
    また、一般式(1-1)中、Mは2~4価の金属原子(但し金属原子は酸化されていてもよい)を表す。)
  2. 前記一般式(1-1)において、Mで表される2~4価の金属原子が銅又は亜鉛である請求項1に記載のフタロシアニン化合物。
  3. 前記一般式(1-1)又は一般式(1-2)においてR~Rが各々独立して炭素原子数1~4のアルキル基である請求項1又は2に記載のフタロシアニン化合物。
  4. 請求項1~3のいずれかに記載のn=1である場合のフタロシアニン化合物の合成原料であって、一般式(2)で表されるフタロニトリル化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、RおよびR10は各々独立して炭素原子数1~6のアルキル基又は炭素数7~9のアラルキル基を表す。)
  5. 請求項1~3のいずれかに記載のn=2である場合のフタロシアニン化合物の合成原料であって、一般式(3)で表されるフタロニトリル化合物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、RおよびR10は各々独立して炭素原子数1~6のアルキル基又は炭素数7~9のアラルキル基を表す。)
  6. 前記一般式(2)又は(3)で表されるフタロニトリル化合物単独もしくは前記一般式(1-1)中のMで表される2~4価の金属原子に対応する金属塩との混合物を熱縮合させることを特徴とする請求項1~3のいずれかに記載のフタロシアニン化合物の製造法。
  7. 請求項1~3のいずれかに記載のフタロシアニン化合物と、合成樹脂とを含有する着色組成物。
PCT/JP2010/063370 2009-08-13 2010-08-06 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物 WO2011018994A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011526744A JP4962812B2 (ja) 2009-08-13 2010-08-06 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
US13/389,283 US8809427B2 (en) 2009-08-13 2010-08-06 Phthalocyanine compound and production method therefor, and coloring composition containing the phthalocyanine compound
EP10808177.9A EP2465860B1 (en) 2009-08-13 2010-08-06 Phthalocyanine compound, preparation method therefor, and coloring composition including said phthalocyanine compound
CN201080035714.6A CN102596966B (zh) 2009-08-13 2010-08-06 酞菁化合物及其制造方法、以及含有该酞菁化合物的着色组合物
KR1020127003604A KR101672390B1 (ko) 2009-08-13 2010-08-06 프탈로시아닌 화합물 및 그 제조 방법, 및 당해 프탈로시아닌 화합물을 함유하는 착색 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-187704 2009-08-13
JP2009187704 2009-08-13
JP2009199797 2009-08-31
JP2009-199797 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011018994A1 true WO2011018994A1 (ja) 2011-02-17

Family

ID=43586171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063370 WO2011018994A1 (ja) 2009-08-13 2010-08-06 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物

Country Status (7)

Country Link
US (1) US8809427B2 (ja)
EP (1) EP2465860B1 (ja)
JP (1) JP4962812B2 (ja)
KR (1) KR101672390B1 (ja)
CN (1) CN102596966B (ja)
TW (1) TWI372168B (ja)
WO (1) WO2011018994A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029903A1 (ja) * 2015-08-17 2017-02-23 Dic株式会社 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有するカラーフィルタ、着色組成物
JP2020105170A (ja) * 2018-12-25 2020-07-09 東洋インキScホールディングス株式会社 蛍光標識剤、光線力学治療剤およびフタロシアニン

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845518B (zh) * 2019-11-19 2022-04-29 先尼科化工(上海)有限公司 一种绿色酞菁化合物及其制备方法
CN110845519B (zh) * 2019-11-19 2022-06-14 先尼科化工(上海)有限公司 一种绿色酞菁化合物及其制备方法
CN112341473B (zh) * 2020-10-23 2023-03-14 先尼科化工(上海)有限公司 一种新型绿色酞菁衍生物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064534A (ja) * 1999-06-21 2001-03-13 Toyo Ink Mfg Co Ltd ハロゲンを含有しない緑色顔料組成物
JP2002194242A (ja) * 2000-12-22 2002-07-10 Toyo Ink Mfg Co Ltd ハロゲン原子を含有しない緑色顔料組成物
JP2006291088A (ja) * 2005-04-13 2006-10-26 Dainippon Ink & Chem Inc フタロシアニン化合物およびそれを含有する着色組成物
JP2007016203A (ja) * 2005-02-18 2007-01-25 Dainippon Ink & Chem Inc フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527281B2 (ja) 1991-07-17 1996-08-21 三井東圧化学株式会社 アルコキシフタロシアニンの製造方法
JPH11349588A (ja) * 1998-04-10 1999-12-21 Mitsubishi Chemical Corp フタロシアニン誘導体の製造方法
TW200641058A (en) * 2005-02-18 2006-12-01 Dainippon Ink & Chemicals Phthalocyanine compounds, process for production thereof and coloring composition containing the same
CN100567300C (zh) * 2006-07-14 2009-12-09 浙江理工大学 反应性金属酞菁衍生物及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064534A (ja) * 1999-06-21 2001-03-13 Toyo Ink Mfg Co Ltd ハロゲンを含有しない緑色顔料組成物
JP2002194242A (ja) * 2000-12-22 2002-07-10 Toyo Ink Mfg Co Ltd ハロゲン原子を含有しない緑色顔料組成物
JP2007016203A (ja) * 2005-02-18 2007-01-25 Dainippon Ink & Chem Inc フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
JP2006291088A (ja) * 2005-04-13 2006-10-26 Dainippon Ink & Chem Inc フタロシアニン化合物およびそれを含有する着色組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2465860A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029903A1 (ja) * 2015-08-17 2017-02-23 Dic株式会社 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有するカラーフィルタ、着色組成物
JP6098913B1 (ja) * 2015-08-17 2017-03-22 Dic株式会社 フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有するカラーフィルタ、着色組成物
US9994580B2 (en) 2015-08-17 2018-06-12 Dic Corporation Phthalocyanine compound and method of preparing the same, color filter containing phthalocyanine compound, and coloring composition
JP2020105170A (ja) * 2018-12-25 2020-07-09 東洋インキScホールディングス株式会社 蛍光標識剤、光線力学治療剤およびフタロシアニン

Also Published As

Publication number Publication date
TWI372168B (en) 2012-09-11
KR20120055555A (ko) 2012-05-31
EP2465860A4 (en) 2013-01-16
TW201109390A (en) 2011-03-16
KR101672390B1 (ko) 2016-11-03
CN102596966A (zh) 2012-07-18
EP2465860A1 (en) 2012-06-20
US8809427B2 (en) 2014-08-19
JP4962812B2 (ja) 2012-06-27
EP2465860B1 (en) 2014-03-26
CN102596966B (zh) 2015-04-29
JPWO2011018994A1 (ja) 2013-01-17
US20120232194A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
US7799911B2 (en) Phthalocyanine compound and method for producing the same, and coloring composition containing the phthalocyanine compound
JP5619729B2 (ja) 改良された赤色フィルター組成物
JP4962812B2 (ja) フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
KR102482176B1 (ko) 퀴노프탈론 화합물
JP2018203798A (ja) キノフタロン化合物
US7211664B2 (en) Process for the production of epsilon crystal form copper phthalocyanine
TW202020061A (zh) 顏料組成物、著色組成物及濾色器
JP4385985B2 (ja) フタロシアニン化合物およびそれを含有する着色組成物
JPS5884857A (ja) ジオキサジン化合物の混合物およびその製法
JP5439693B2 (ja) 新規な顔料誘導体
JP2007016203A (ja) フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
TW201718515A (zh) 酞青素化合物及其製造方法、以及含有該酞青素化合物之彩色濾光片、著色組成物
JPWO2020045200A1 (ja) アルキレン化合物、キノフタロン化合物及びキノフタロン混合物
JPS63207858A (ja) 銅フタロシアニン顔料の製造方法
JP6992931B2 (ja) キノフタロン化合物、顔料組成物及びカラーフィルタ
EP1344778B1 (en) Bipyrrolinonylidene-type compound, its use as colorant, and method of production thereof
JP2003003088A (ja) キノロノキノロン−イソインドリノン固溶体及び顔料
JPH064771B2 (ja) イソインドリン色素
JPH09328621A (ja) アルミニウムフタロシアニン顔料、顔料組成物及びその製造方法
Chamberlain Quinacridone Pigments
JPS63248862A (ja) 銅フタロシアニン顔料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035714.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526744

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003604

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010808177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389283

Country of ref document: US