WO2011010631A1 - 酸化スズ粒子及びその製造方法 - Google Patents

酸化スズ粒子及びその製造方法 Download PDF

Info

Publication number
WO2011010631A1
WO2011010631A1 PCT/JP2010/062162 JP2010062162W WO2011010631A1 WO 2011010631 A1 WO2011010631 A1 WO 2011010631A1 JP 2010062162 W JP2010062162 W JP 2010062162W WO 2011010631 A1 WO2011010631 A1 WO 2011010631A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin oxide
oxide particles
tin
aqueous solution
particles according
Prior art date
Application number
PCT/JP2010/062162
Other languages
English (en)
French (fr)
Inventor
和彦 加藤
暁宏 茂出木
健司 鈴岡
泰規 田平
勇 八島
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2011501040A priority Critical patent/JP5373884B2/ja
Priority to US13/377,602 priority patent/US8491822B2/en
Publication of WO2011010631A1 publication Critical patent/WO2011010631A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a novel tin oxide particle and a method for producing the same.
  • a method for imparting conductivity to a non-conductive material such as plastic a method of adding conductive powder to the plastic is known.
  • the conductive powder for example, tin powder doped with metal powder, carbon black, antimony or the like is known.
  • the resulting plastic becomes black, which may limit the use of the plastic.
  • tin oxide doped with antimony or the like is added to the plastic, the plastic becomes blue-black, and the use of the plastic may be limited as in the case of carbon black.
  • antimony There is also a problem of environmental load caused by the use of antimony. Therefore, various studies have been made on tin oxide not containing a dopant such as antimony.
  • Patent Document 1 describes an alkali-stable tin oxide sol having a particle diameter of 30 nm or less and containing tetramethylammonium hydroxide in an NH 3 / SnO 2 molar ratio in the range of 0.01 to 0.3.
  • This tin oxide sol is produced by adding tetramethylammonium hydroxide to an alkali-type tin oxide sol having a tin oxide concentration of SnO 2 of 15% by mass or less and concentrating.
  • Tin dioxide precursor particles have been proposed (see Patent Document 3).
  • This precursor particle has a sharp peak at about 9 ° in the XRD measurement. According to the document, this peak is derived from a flaky particle shape.
  • the tin oxide particles produced by the above-described technologies have sufficient transparency and conductivity when they are used as a film.
  • divalent tin oxide having an orthorhombic crystal structure with an a-axis of 0.5 nm, a b-axis of 0.572 nm, and a c-axis of 0.1112 nm has been reported.
  • Refer nonpatent literature 1 There is also a report on the space group of tin oxide in this document. Based on these data, when the present inventors calculated the X-ray diffraction peak of this tin oxide, it turned out that it shows a peak at about 28 degrees. It was also found that there was a peak due to the internal structure at about 60 ° or more. However, the document states that this tin oxide is unstable and easily changes to tin oxide having other structures. In addition, the literature does not report any conductivity or transparency of the tin oxide.
  • An object of the present invention is to provide tin oxide particles that can eliminate the various drawbacks of the above-described conventional technology and a method for producing the same.
  • the present invention is also a preferred method for producing the tin oxide particles.
  • An object of the present invention is to provide a method for producing tin oxide particles, which comprises mixing an aqueous solution containing tin (II) and an organic compound having a hydroxyl group with an alkali and heating.
  • the present invention is another preferred method for producing the tin oxide particles, It is characterized by mixing an alkali in such an amount that 0.1 to 1.6 times the number of moles of OH ⁇ is produced with respect to the number of moles of tin (II) while the aqueous solution containing tin (II) is heated.
  • a method for producing tin oxide particles is provided.
  • tin oxide particles having high conductivity and transparency when formed into a film are provided.
  • FIG. 1 is an XRD measurement diagram of tin oxide particles obtained in Examples 1 to 5.
  • FIG. 2 shows the results of X-ray diffraction measurement of the tin oxide particles obtained in Example 1 using the large synchrotron radiation facility SPring-8.
  • FIG. 3 is an XRD measurement diagram of tin oxide particles obtained in each comparative example.
  • FIG. 4 is a graph showing a charge / discharge state of a lithium secondary battery using the tin oxide particles obtained in Example 1 as a negative electrode active material.
  • FIG. 5 is a graph showing a charge / discharge state of a lithium secondary battery in which tin oxide particles obtained in Example 1 and lithium nitrate are mixed and baked in the atmosphere at 400 ° C. as a positive electrode active material.
  • FIG. 6 is an XRD measurement diagram of the tin oxide particles obtained in Examples 10 to 18.
  • Conventionally known tin oxides such as SnO 2 and SnO do not have diffraction peaks at all these angles. That is, tin oxide particles having diffraction peaks at these angles have not been known so far, and the tin oxide particles of the present invention are extremely novel.
  • Conventionally known conductive tin oxide is generally doped with tetravalent tin by doping with dopant elements such as antimony, niobium and tantalum.
  • dopant elements such as antimony, niobium and tantalum.
  • the crystalline state of tin oxide is controlled. By doing so, conductivity is increased.
  • An oxide composed only of divalent tin has conductivity but becomes black, and cannot be used for applications requiring transparency, such as a transparent conductive film.
  • an oxide made of only tetravalent tin cannot have higher conductivity than an oxide made of only divalent tin.
  • the tin oxide particles of the present invention are white, can be used for a transparent conductive film and the like, and have high conductivity, so that the conductivity of the transparent conductive film and the like can be increased. .
  • the strong peaks are the 9 ⁇ 1 ° and 28 ⁇ 1 ° peaks described above.
  • the inventors of the present invention believe that the tin oxide of the present invention has a crystal structure of a layer structure that has a spatial fluctuation with a long period structure or the like existing in the crystal plane as a trigger. I guess.
  • the distance between crystal planes corresponding to the first-order system reflection described above was measured.
  • the value was 0.94 to 0.95 nm, and the standard deviation was less than 1 ⁇ 10 ⁇ 4 nm. It turned out to be. This strongly suggests that the crystal structure of the tin oxide particles of the present invention is the above-described layer structure.
  • Another feature of the tin oxide particles of the present invention is that the 9 ⁇ 1 ° and 28 ⁇ 1 ° peaks described above are very sharp. The sharpness of the peak reflects the high crystallinity. That is, the tin oxide particles of the present invention are highly crystalline. Despite the high crystallinity, regarding the above-described system reflection, the tin oxide particles of the present invention do not show higher-order reflection than the sixth order in the XRD measurement. This unique observation result is also mentioned as a feature of the tin oxide particles of the present invention.
  • Another feature of the tin oxide particles of the present invention is thermal behavior in a reducing atmosphere. Specifically, when heating is performed at 400 ° C. for 2 hours in a nitrogen atmosphere containing 1 to 4% hydrogen, a peak of metal Sn that has not been observed until then is observed in the XRD measurement. In some cases, SnO 2 and SnO peaks are also observed. On the other hand, even if SnO 2 or SnO is heated under the same conditions, no change is observed in the peak in the XRD measurement. As described above, the tin oxide particles of the present invention are reduced in part of tin to metallic tin by heat treatment in a reducing atmosphere, and the crystallinity of SnO 2 and SnO is improved. It has a unique property that valence Sn and tetravalent Sn coexist.
  • the procedure for XRD measurement is as follows.
  • RINT-TTRIII manufactured by Rigaku Corporation
  • a powder X-ray glass holder dedicated to the apparatus was filled with, for example, powder prepared by the method of Example 1 described later, and XRD measurement was performed.
  • the tin oxide particles of the present invention are so-called non-doped particles that contain only tin as a metal and contain only oxygen (in some cases, only oxygen and hydrogen) as other elements and do not substantially contain a dopant element. Preferably there is.
  • highly conductive tin oxide particles can be obtained without using various dopant elements which are expensive and inferior in economic efficiency or have a large environmental load.
  • the dopant element include those conventionally used in the technical field. Examples of such elements include Nb, Ta, Sb, W, P, Ni, and Bi.
  • substantially does not contain is intended to exclude intentionally adding a dopant element, and a small amount of dopant element is inevitably mixed in the production process of tin oxide particles. This is an acceptable purpose.
  • the tin oxide particles of the present invention preferably do not contain a dopant element.
  • a dopant element may be contained.
  • the dopant element is contained in the tin oxide particles, the amount thereof is 0.01 to 20 mol%, particularly 0.05 to 15 mol% with respect to the total amount of tin, without impairing the economy. From the point that the conductivity of the tin oxide particles can be improved.
  • the dopant element that can be contained in this case include one or more of the above-described elements.
  • the tin oxide particles of the present invention preferably have an average primary particle diameter of 1 to 5000 nm, particularly 3 to 3000 nm, particularly 3 to 1000 nm, as observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the tin oxide particles of the present invention are also characterized by high conductivity.
  • the powder has a low resistance of a powder volume resistivity of 10 5 ⁇ ⁇ cm or less, particularly 10 4 ⁇ ⁇ cm or less, particularly 10 3 ⁇ ⁇ cm or less under 500 kgf. A method for measuring the powder volume resistivity will be described later.
  • the tin oxide particles of the present invention are highly transparent when formed into a film.
  • the total light transmittance of visible light of this film is 85% or more, particularly 90% or more, which is highly transparent. It will be a thing. The method for forming the film will be described in detail in Examples described later.
  • divalent tin is used as a raw material, and this is dissolved in water together with an organic compound having a hydroxyl group to obtain a mixed aqueous solution.
  • the mixed aqueous solution is heated and mixed with an alkali.
  • a divalent tin water-soluble compound is prepared as a raw material.
  • a water-soluble compound for example, tin (II) dichloride can be used.
  • concentration of divalent tin ions in the mixed aqueous solution can be 0.01 to 3 mol / L, particularly 0.05 to 1.5 mol / L.
  • tetravalent tin may be used as a raw material, with divalent tin and tetravalent tin, the target oxide can be obtained with bivalent tin than with tetravalent tin. Since it became clear as a result of examination of the present inventors that it is easy, this manufacturing method uses divalent tin as a raw material.
  • an organic compound having a hydroxyl group is prepared.
  • a low molecular weight compound and a high molecular compound can be used.
  • a monohydric alcohol can be used.
  • This monohydric alcohol may be aliphatic, alicyclic, or aromatic.
  • the aliphatic monohydric alcohol include methanol, ethanol, n-butanol and n-hexanol, which are monohydric alcohols having 1 to 6 carbon atoms.
  • Examples of the alicyclic monohydric alcohol include cyclohexanol and terpineol.
  • aromatic monovalent alcohols include benzyl alcohol.
  • examples of the polymer organic compound having a hydroxyl group include polyvinyl alcohol and polyol.
  • polyvinyl alcohol unmodified polyvinyl alcohol itself and modified polyvinyl alcohol can be used.
  • modified polyvinyl alcohol for example, carboxyl group-modified, alkyl-modified, acetoacetyl-modified, acrylic acid-modified, methacrylic acid-modified, pyrrolidone-modified, vinylidene-modified or silanol-modified polyvinyl alcohol can be used.
  • SEC size exclusion chromatography
  • the polyol ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propanediol, butanediol, pentanediol, hexanediol, glycerol, hexanetriol, butanetriol, and petriol can be used.
  • Cellosolves such as methoxyethanol, ethoxyethanol, propoxyethanol, and butoxyethanol
  • carbitols such as methoxyethoxyethanol, ethoxyethoxyethanol, propoxyethoxyethanol, and butoxyethoxyethanol
  • the concentration of the organic compound having a hydroxyl group in the mixed aqueous solution is preferably 0.005 to 30% by weight, particularly 0.01 to 10% by weight. Within this range, the effect of the organic compound having a hydroxyl group is sufficiently exhibited, and problems such as thickening are unlikely to occur, and target tin oxide particles having a uniform particle size can be successfully obtained. For the same reason, when the organic compound having a hydroxyl group is a polymer compound, the concentration of the organic compound is preferably 0.005 to 10% by weight, particularly 0.01 to 5% by weight.
  • the ratio of divalent tin to the organic compound having a hydroxyl group in the mixed aqueous solution is preferably 0.01 to 150, particularly preferably 0.03 to 75, expressed as Sn / OH (molar ratio). Within this range, it is difficult for unreacted Sn ions to remain in the liquid, and SnO 2 or tin oxyhydroxide [Sn 3 O 2 (OH) 2 ] as a by-product is difficult to precipitate.
  • the mixed aqueous solution is heated.
  • the heating temperature is preferably 50 to 105 ° C, particularly 70 to 100 ° C. If the heating temperature is within this range, the target tin oxide particles can be obtained without using a pressurizing device such as an autoclave and while preventing the generation of unintended products SnO and SnO 2. .
  • alkali basic substance
  • divalent tin is neutralized.
  • alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide, carbonates such as NaHCO 3 and NH 4 HCO 3 , ammonia, and the like. Can be mentioned.
  • the pH of the aqueous alkali solution is preferably such that the pH of the mixed aqueous solution after addition of the alkali is 2 to 9, particularly 2.5 to 7. If the pH of the mixed aqueous solution is within this range, target tin oxide particles can be obtained in a single phase.
  • the aqueous alkali solution When adding an aqueous alkali solution to a mixed aqueous solution of divalent tin and an organic compound having a hydroxyl group, the aqueous alkali solution is preferably added gradually over a predetermined time. When alkaline aqueous solutions are added all at once, the target tin oxide particles may not be generated, so care must be taken. When the alkaline aqueous solution is gradually added, it is preferable to adjust the addition rate of the alkaline aqueous solution so that the pH of the mixed aqueous solution is maintained within the above-described range.
  • target tin oxide particles are produced in the liquid.
  • tin oxyhydroxide may coexist as a by-product. Therefore, it is preferable to add hydrogen peroxide to the liquid for the purpose of removing this by-product.
  • hydrogen peroxide By the addition of hydrogen peroxide, the oxidation of tin oxyhydroxide proceeds to produce tin dioxide.
  • the produced tin dioxide is fine and can be separated by a water tank using the difference in sedimentation speed. In this case, the precipitate is the target tin oxide particles, and the supernatant suspension is SnO 2 .
  • SnO 2 is alkaline and disperses, for example, NH 4 OH is used to adjust the pH of the solution to 8 or more and less than 11, and when SnO 2 is highly dispersed by high-speed stirrer or ultrasonic irradiation and water pouring is performed, the separation efficiency increases.
  • hydrogen peroxide is preferably added as an aqueous solution diluted to a predetermined concentration. From this viewpoint, the concentration of diluted hydrogen peroxide is preferably about 1 to 15% by weight.
  • the tin oxide particles obtained in this way can be easily removed with impurities by, for example, repulp washing. Cleaning is preferably performed until the conductivity of water as a dispersion medium is 2000 ⁇ S or less, particularly 1000 ⁇ S or less, from the viewpoint of sufficient removal of impurities.
  • tin oxide sol is obtained.
  • a media mill such as a bead mill can be used.
  • tin oxide particles can be easily brought close to a monodispersed state by adding various pH adjusters to the liquid and performing a granulation operation.
  • pH adjusters examples include acids such as inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.) and carboxylic acids (acetic acid, propionic acid, etc.), and alkalis such as organic amines represented by aqueous ammonia and ethanolamine.
  • acids such as inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.) and carboxylic acids (acetic acid, propionic acid, etc.)
  • alkalis such as organic amines represented by aqueous ammonia and ethanolamine.
  • a tin oxide sol using water as a dispersion medium is obtained.
  • This tin oxide sol is in a state of a transparent dispersion having high storage stability.
  • the concentration of tin oxide particles in the tin oxide sol is preferably 0.1 to 50% by weight, particularly 1 to 40% by weight. In this tin oxide sol, tin oxide particles are highly dispersed.
  • the oxide of tin is generated in the liquid (in water), there is less aggregation and high dispersibility compared to the conventional method in which the tin oxide obtained by firing is pulverized and then solated. A tin oxide sol can be easily obtained.
  • a monodispersed transparent dispersion liquid can be prepared by dispersing the tin oxide particles of the present invention in an organic solvent.
  • an organic solvent for example, polyhydric alcohol, monoalcohol, cellosolve, carbitol, ketone, or a mixed solvent thereof can be used.
  • the concentration of tin oxide particles in the transparent dispersion is preferably 0.1 to 50% by weight, particularly 1 to 40% by weight.
  • This transparent dispersion has high storage stability.
  • This transparent dispersion can be used as an ink raw material, for example, by adding a binder thereto.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propanediol, butanediol, pentanediol, hexanediol, glycerol, hexanetriol, butanetriol, petriol, glycerin and the like.
  • monoalcohol examples include methanol, ethanol, propanol, pentanol, hexanol, octanol, nonanol, decanol, terpineol, benzyl alcohol, and cyclohexanol.
  • Examples of cellosolve include methoxyethanol, ethoxyethanol, propoxyethanol, butoxyethanol and the like.
  • carbitol examples include methoxyethoxyethane, ethoxyethoxyethanol, propoxyethoxyethanol, butoxyethoxyethanol and the like.
  • Examples of the ketone include acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, diacetone alcohol and the like.
  • the heat treatment is performed in an oxygen-containing atmosphere such as an air atmosphere, preferably at 60 to 350 ° C., more preferably 120 to 300 ° C., preferably 0.5 to 24 hours, more preferably 1 to 10 hours.
  • This heat treatment does not change the crystal structure of the tin oxide particles of the present invention (for example, see XRD of Example 1 in FIG. 1 and XRD of Example 18 in FIG. 6 described later).
  • an organic compound having a hydroxyl group is used in combination in the synthesis of the target tin oxide, but instead of this method, a method not using an organic compound having a hydroxyl group can be employed.
  • the aqueous solution containing tin (II) is heated, preferably 0.1 to 1.6 times, more preferably 0.3 to 1.4 times the number of moles of tin (II).
  • An amount of alkali (base) is mixed in such an amount that doubles the number of moles of OH ⁇ is produced.
  • the aqueous solution containing tin (II) used in this production method the same aqueous solution containing tin (II) used in the production method described above can be used. The same applies to the alkali.
  • an aqueous solution containing tin (II) (this aqueous solution does not contain an organic compound having a hydroxyl group) is heated.
  • the heating temperature is preferably 50 to 105 ° C, particularly 70 to 100 ° C.
  • An alkali is added while the aqueous solution is heated to a temperature in this range.
  • divalent tin is neutralized.
  • the amount of alkali added when neutralizing divalent tin is important. In detail, it is necessary to add the alkali of the range mentioned above. This addition amount is smaller than the addition amount of alkali used in the above-described method in which the organic compound having a hydroxyl group is used in combination.
  • aqueous alkali solution When adding an aqueous alkali solution to a divalent tin aqueous solution, it is preferable to gradually add the aqueous alkali solution over a predetermined period of time in the same manner as described above in combination with the organic compound having a hydroxyl group. . In this case, it is preferable to maintain the pH of the divalent tin aqueous solution at 2 to 9, particularly 2.5 to 7.
  • the tin oxide particles obtained in this way can be used, for example, in the fields of printers and copier-related charging rollers, photosensitive drums, toners, electrostatic brushes, flat panel displays, CRTs, Can be applied to a wide range of applications such as paints, inks, and emulsions. Further, taking advantage of the fact that the crystal structure of tin oxide is a layered structure, it can be used as a raw material for a positive electrode active material, a negative electrode active material, and a gas fixing material of a lithium secondary battery.
  • the tin oxide particles are used as a raw material for the positive electrode active material
  • the tin oxide particles are mixed with a lithium-containing compound (for example, lithium nitrate) and then baked in an air atmosphere to form a lithium tin composite oxide.
  • a lithium-containing compound for example, lithium nitrate
  • This lithium tin composite oxide is used as the positive electrode active material.
  • Example 1 4.51 g of sodium hydroxide was dissolved in 418 g of pure water to prepare an aqueous alkali solution for neutralization.
  • 383 g of pure water was placed in a beaker, and 14.97 g of tin dichloride dihydrate was dissolved to obtain a tin aqueous solution.
  • the PVA aqueous solution prepared previously was added in total to the tin aqueous solution and mixed well. A mother liquor was thus obtained.
  • the mother liquor was heated to 90 ° C. while stirring with a paddle blade, and the entire amount of the previously prepared alkaline aqueous solution was fed with a tube pump over 90 minutes (feed rate: about 5 mL / min). At this time, the pH of the mother liquor was 3-4. After completion of the addition of the alkaline aqueous solution, aging was performed for 5 minutes, and then a total amount of an aqueous solution in which 7.5 g of 30% hydrogen peroxide solution was diluted with 30 g of pure water was fed at a rate of 5 mL / min. Thereafter, aging was performed for 5 minutes to obtain a target sol of tin oxide particles. The pH of the sol at this time was 2 to 3.
  • the sol was filtered using a filter paper (Advantech 5C). After filtration, 1 L of pure water was added and washed with water. The cake thus obtained was repulped into pure water, and again filtered and washed with water. This operation was repeated three times to wash the target product.
  • the washed cake was dried in the air with a hot air dryer set at 120 ° C. for 10 hours, crushed with an agate mortar, and then classified with a SUS mesh having an opening of 75 ⁇ m. Elemental analysis was performed on the powder thus obtained. The results are shown in Table 1 below. In this elemental analysis, tin, silicon and iron were quantified using ICP (SPS-3000 / SII Nanotechnology).
  • X-ray diffraction measurement was performed using a large synchrotron radiation facility SPring-8 of the Research Center for High-Intensity Optical Science for the purpose of examining the internal structure of the crystal. .
  • the wavelength of the X-ray used for the measurement is 0.0501326 nm.
  • the measurement sample was filled in a glass capillary tube. At this time, the sample was loosely filled without being oriented in a specific direction.
  • the diffraction lines were recorded using a Debye-Scherrer camera and converted to 2 ⁇ and intensity. The result is shown in FIG. In the figure, the peak at the position indicated by the downward triangle corresponds to the peak at the position indicated by the white circle in FIG.
  • Example 2 Tin oxide particles were obtained in the same manner as in Example 1 except that 0.5 g of ethanol was used instead of PVA used in Example 1. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in FIG.
  • Example 3 Tin oxide particles were obtained in the same manner as in Example 1 except that 0.5 g of n-butanol was used instead of PVA used in Example 1. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in Table 2.
  • Example 4 Tin oxide particles were obtained in the same manner as in Example 1 except that 0.5 g of hexanol was used instead of PVA used in Example 1. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in FIG.
  • Example 5 Tin oxide particles were obtained in the same manner as in Example 1 except that 0.5 g of benzyl alcohol was used instead of PVA used in Example 1. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in FIG.
  • Example 1 Tin oxide particles were obtained in the same manner as in Example 1 except that PVA used in Example 1 was not used. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in FIG.
  • Comparative Example 2 In Comparative Example 1, tin oxide particles were obtained in the same manner as in Example 1 except that the reaction was performed at room temperature (25 ° C.) without heating the mother liquor. The same measurement as in Example 1 was performed on the tin oxide particles. The results are shown in FIG. Further, the elemental analysis described above was performed on the tin oxide particles. The results are shown in Table 3.
  • the tin oxide particles obtained in each example have five peaks at the same position.
  • the tin oxide particles obtained in each comparative example show only the SnO 2 diffraction peak as shown in FIG. 3 (Comparative Example 2), or the SnO 2 diffraction peak and other diffraction peaks. (Comparative Example 1).
  • the tin oxide particles obtained in each example have higher conductivity than the tin oxide particles obtained in each comparative example.
  • the thin film obtained from the tin oxide particle obtained by each Example has high transparency compared with the thin film obtained from the tin oxide particle obtained by each comparative example.
  • Example 6 it is clarified that the tin oxide particles of the present invention are useful as a negative electrode active material for a lithium secondary battery.
  • 2.85 g of tin oxide particles obtained in Example 1, 0.15 g of acetylene black, and 0.33 g of polyvinylidene fluoride were weighed and mixed, and then 3 g of N-methyl-2-pyrrolidinone was added.
  • a slurry was obtained by mixing with a stirring defoamer (manufactured by Sinky Corporation). This slurry was applied to one side of a 18 ⁇ m thick Cu foil and then dried at 120 ° C. After drying, it was cut into a width of 6 cm and pressed with a roll press for 2 tons.
  • a negative electrode was punched into a circle of ⁇ 14 mm and vacuum dried at 120 ° C. overnight to obtain a negative electrode.
  • the amount of tin oxide particles (negative electrode active material) in the negative electrode was equivalent to 6 mg / cm 2 .
  • Li foil was used for the counter electrode, and a solution of 1 mol / L LiPF 6 dissolved in a 1: 1 volume% mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolyte.
  • a CR2032-type coin cell was produced in a glove box in an Ar atmosphere. A charge / discharge test was performed on the obtained coin cell.
  • the charging condition is that the battery is charged to 0.0 V (vs.
  • Example 7 it is clarified that the tin oxide particles of the present invention are useful as a raw material for a positive electrode active material of a lithium secondary battery. 6.00 g of tin oxide particles obtained in Example 1 and 2.61 g of LiNO 3 were mixed well in a mortar and filled into an alumina boat. Firing in the atmosphere at 400 ° C. for 5 hours gave a positive electrode active material composed of a lithium tin composite oxide.
  • this positive electrode active material 0.15 g of acetylene black and 0.33 g of polyvinylidene fluoride were weighed and mixed, and then 3 g of N-methyl-2-pyrrolidinone was added, followed by stirring and defoaming machine (Sinky To obtain a slurry.
  • the slurry was applied to one surface of an Al foil having a thickness of 18 ⁇ m and then dried at 120 ° C. After drying, it was cut into a width of 6 cm and pressed with a roll press for 2 tons. Next, it was punched into a circle of ⁇ 14 mm and vacuum dried at 120 ° C. overnight to obtain a positive electrode.
  • the amount of the positive electrode active material in this positive electrode was equivalent to 6 mg / cm 2 .
  • a CR2032-type coin cell was produced in a glove box in an Ar atmosphere. A charge / discharge test was performed on the obtained coin cell. As charging conditions, the battery was charged to 4.8 V (vs.
  • Example 8 a transparent dispersion using an organic solvent as a dispersion medium was prepared using the tin oxide particles of the present invention.
  • a 50 mL sealed container made of polypropylene 1.57 g of the tin oxide particles obtained in Example 1, 18 g of ethylene glycol, and 140 g of zirconia beads having a diameter of 0.1 mm were pulverized for 3 hours using a paint shaker. After pulverization, the bead and the slurry were solid-liquid separated by filtration under reduced pressure to obtain a transparent dispersion having a beige color. This solution remained in a highly dispersed state without precipitation even after being stored at room temperature for 1 month. The solid concentration when dried at 200 ° C. was 8% by weight, and a glassy solid remained.
  • Example 9 a transparent dispersion using water as a dispersion medium was prepared using the tin oxide particles of the present invention.
  • a transparent dispersion using water as a dispersion medium was prepared using the tin oxide particles of the present invention.
  • 1.39 g of the tin oxide particles obtained in Example 1 16 g of water, and 140 g of zirconia beads having a diameter of 0.1 mm were pulverized for 3 hours using a paint shaker. After pulverization, the beads and the slurry were separated into solid and liquid by vacuum filtration.
  • the pH of the obtained dispersion was 5.4. When a small amount of acetic acid was added to this slurry and the pH was adjusted to 3.0, a light beige transparent dispersion was obtained. This solution remained in a highly dispersed state without precipitation even after being stored at room temperature for 1 month.
  • the solid content concentration when dried at 200 ° C. was 7% by weight, and a vitreous solid content remained.
  • Example 10 Tin oxide particles were obtained in the same manner as in Example 1 except that 12.58 g of anhydrous tin dichloride was used instead of 14.97 g of tin dichloride dihydrate of Example 1. The XRD measurement similar to Example 1 was performed about this tin oxide particle. The result is shown in FIG.
  • Example 11 In Example 10, tin oxide particles were obtained in the same manner as in Example 10 except that the amount of PVA added was increased to 5.0 g. The XRD measurement similar to Example 1 was performed about this tin oxide particle. The result is shown in FIG.
  • Example 15 tin oxide particles were obtained in the same manner as in Example 10 except that PVA was not added and the amount of sodium hydroxide used was reduced to 2.65 g. The XRD measurement similar to Example 1 was performed about this tin oxide particle. The result is shown in FIG.
  • Example 16 In Example 13, instead of the tin aqueous solution, tantalum was obtained in the same manner as in Example 13 except that 12.57 g of anhydrous tin dichloride and 0.016 g of tantalum pentachloride were dissolved and a mixed aqueous solution containing tin and tantalum was used. Doped tin oxide particles were obtained. The obtained particles were dried at 120 ° C. in the air for 10 hours, and classified with a SUS mesh having an opening of 75 ⁇ m. The XRD measurement similar to that in Example 1 was performed on the powder thus obtained. The crystal spacing, dust resistance, and total light transmittance of the thin film were measured in the same manner as in Example 1. The results are shown in FIG.
  • Example 17 The powder obtained in Example 16 was baked in an electric furnace at 300 ° C. for 2 hours in the air. The XRD measurement similar to Example 1 was performed about the powder after baking. The crystal spacing, dust resistance, and total light transmittance of the thin film were measured in the same manner as in Example 1. The results are shown in FIG.
  • Example 18 This example was performed for the purpose of comparison with Example 17.
  • the powder obtained in Example 1 was baked in an electric furnace at 300 ° C. for 2 hours in the air.
  • the XRD measurement similar to Example 1 was performed about the powder after baking.
  • the crystal spacing, dust resistance, and total light transmittance of the thin film were measured in the same manner as in Example 1. The results are shown in FIG.
  • Example 18 Comparing the dust resistance of Example 18 shown in Table 4 with the dust resistance of Example 1 shown in Table 2 above, Example 18 obtained by heat-treating the tin oxide of Example 1 at a high temperature was obtained. It can be seen that tin oxide shows better conductivity. Moreover, when the dust resistance of Example 16 shown in Table 4 is compared with the dust resistance of Example 17, it turns out that the electroconductive improvement by high temperature heat processing becomes more remarkable by doping with tantalum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 XRD測定(Cu/Kα)において、少なくとも2θ(deg)=9±1°及び28±1°に回折ピークを示す構造を有することを特徴とする酸化スズ粒子である。この酸化スズ粒子は、更に2θ(deg)=19±1°、48±1°及び59±1°に回折ピークを示すことが好ましい。この酸化スズ粒子は導電性を有することが好ましい。この酸化スズ粒子は、スズ(II)及び水酸基を有する有機化合物を含む水溶液を加熱した状態下にアルカリと混合することで好適に製造される。

Description

酸化スズ粒子及びその製造方法
 本発明は、新規な酸化スズ粒子及びその製造方法に関する。
 非導電性材料、例えばプラスチックに導電性を付与する方法として、プラスチックに導電性粉末を添加する方法が知られている。導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等をドープした酸化スズ等が知られている。しかし、金属粉末やカーボンブラックをプラスチックに添加すると得られるプラスチックが黒色になり、プラスチックの用途が限定されることがある。一方、アンチモン等をドープした酸化スズをプラスチックに添加すると、プラスチックが青黒色になり、カーボンブラック等と同様にやはりプラスチックの用途が限定されることがある。またアンチモンの使用に起因する環境負荷の問題もある。そこで、アンチモン等のドーパントを含まない酸化スズについての検討が種々行われている。
 例えば特許文献1には、水酸化テトラメチルアンモニウムをNH3/SnO2モル比0.01~0.3の範囲で含有してなる粒子径30nm以下のアルカリ安定型酸化スズゾルが記載されている。この酸化スズゾルは、酸化スズ濃度がSnO2として15質量%以下のアルカリ型酸化スズゾルに水酸化テトラメチルアンモニウムを添加し、濃縮を行うことで製造される。
 酸化スズゾルの製造方法の別法として、特許文献2には、0.1~8規定の塩酸にスズをHCl/Sn(モル比)=0.5~1となるように添加し、この液に過酸化水素水を添加する方法が提案されている。同文献によれば、この方法で得られる酸化スズ粒子の平均粒子径は5~100nmになるとされている。
 酸化スズ粒子そのものではないが、酸化スズ粒子を製造するための前駆体粒子として、薄片状の粒子形状を有し、Snを60~88重量%、有機物をC基準で1~15重量%含有する二酸化スズ前駆体粒子が提案されている(特許文献3参照)。この前駆体粒子は、XRD測定において約9°にシャープなピークを有するものである。同文献によれば、このピークは薄片状の粒子形状に由来するものであるとされている。
 しかし、上述の各技術によって製造された酸化スズ粒子は、これを膜にしたときの透明性や導電性が十分なものとは言えない。
 上述の各技術とは別に、二価の酸化スズに関し、a軸が0.5nm、b軸が0.572nm、c軸が0.1112nmの斜方晶の結晶構造を有するものが報告されている(非特許文献1参照)。同文献には、この酸化スズの空間群についての報告もある。これらのデータに基づき、この酸化スズのX線回折ピークを本発明者らが計算したところ、約28°にピークを示すことが判った。また、約60°以上に、内部構造に起因するピークを有することも判った。しかし、同文献には、この酸化スズは不安定であり、他の構造の酸化スズへ容易に変化すると記載されている。また同文献には、この酸化スズの導電性や透明性については何ら報告されていない。
特開2004-359477号公報 特開2008-222540号公報 特開2008-150258号公報
Acta Crystallographica,vol16,p.22,1963
 発明の目的は、前述した従来技術が有する種々の欠点を解消し得る酸化スズ粒子及びその製造方法を提供することにある。
 本発明は、XRD測定(Cu/Kα)において、少なくとも2θ(deg)=9±1°及び28±1°に回折ピークを示す構造を有することを特徴とする酸化スズ粒子を提供するものである。
 また本発明は、前記の酸化スズ粒子の好適な製造方法であって、
 スズ(II)及び水酸基を有する有機化合物を含む水溶液とアルカリとを混合し、加熱を行うことを特徴とする酸化スズ粒子の製造方法を提供するものである。
 また本発明は、前記の酸化スズ粒子の別の好適な製造方法であって、
 スズ(II)を含む水溶液を加熱した状態下に、スズ(II)のモル数に対して0.1~1.6倍のモル数のOH-が生じる量のアルカリを混合することを特徴とする酸化スズ粒子の製造方法を提供するものである。
 本発明によれば、膜にしたときの導電性や透明性が高い酸化スズ粒子が提供される。
図1は実施例1~5で得られた酸化スズ粒子のXRD測定図である。 図2は実施例1で得られた酸化スズ粒子について、大型放射光施設SPring-8を用いたX線回折測定の結果である。 図3は各比較例で得られた酸化スズ粒子のXRD測定図である。 図4は、実施例1で得られた酸化スズ粒子を負極活物質として用いたリチウム二次電池の充放電状態を示すグラフである。 図5は、実施例1で得られた酸化スズ粒子と硝酸リチウムとを混合し、大気中400℃で焼成したものを正極活物質として用いたリチウム二次電池の充放電状態を示すグラフである。 図6は実施例10~18で得られた酸化スズ粒子のXRD測定図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の酸化スズ粒子は導電性粒子であり、XRD測定(Cu/Kα)において、少なくとも2θ(deg)=9±1°及び28±1°に主たる回折ピークを示す構造を有するものである。これまで知られている酸化スズ、例えばSnO2やSnOはこれらの角度すべてに回折ピークを有していな
い。つまり、これらの角度に回折ピークを有する酸化スズ粒子はこれまで知られておらず、本発明の酸化スズ粒子は極めて新規なものである。
 従来知られている導電性酸化スズは、一般に4価のスズに、アンチモン、ニオブ、タンタル等のドーパント元素をドープして導電性を高めていたところ、本発明においては酸化スズの結晶状態をコントロールすることで、導電性を高めている。この構成を採用することによって、従来用いられてきたドーパント元素が有する不都合、例えば経済的に不利であることや、環境負荷が大きいこと等を克服しつつ、酸化スズ粒子の導電性を高めることが可能となった。2価のスズのみからなる酸化物は、導電性は有するものの黒色となり、透明性が要求される用途、例えば透明導電膜等に利用することができない。一方、4価のスズのみからなる酸化物は、2価のスズのみからなる酸化物に比べて導電性を高くすることができない。これに対して、本発明の酸化スズ粒子は白色系であり、透明導電膜等に利用することができ、かつ導電性が高いので、該透明導電膜等の導電性を高めることが可能となる。
 本発明の酸化スズ粒子においては、上述した2つのピークに加え、更に2θ(deg)=19±1°、48±1°及び59±1°にも回折ピークを示す。尤も、強度の大きいピークは上述した9±1°及び28±1°のピークである。本発明者らは、本発明の酸化スズが、結晶の面内に存在する長周期構造等を引き金として空間的に揺ぎを有するような層構造の結晶構造を有しているのではないかと推測している。この推測に基づけば、2θ=9±1°のピークを仮に(001)面の反射と考えると、19±1°のピークが(002)面による反射、28±1°のピークが(003)面による反射、48±1°のピークが(005)面による反射、59±1°のピークが(006)面による反射に帰属され、これらのピークはすべて系統反射に起因するピークであると結論づけられる。つまり、一次から六次の系統反射であると結論づけられる。なお、(004)面による反射のピークは他と比べて弱いために、実際にはそのピークは観察されない。
 本発明の酸化スズ粒子について、上述した一次の系統反射に対応する結晶面の間隔を測定したところ、その値が0.94~0.95nmであり、その標準偏差は1×10-4nm未満であることが判明した。このことは、本発明の酸化スズ粒子における結晶構造が上述の層構造であることを強く示唆している。
 本発明の酸化スズ粒子の他の特徴として、上述した9±1°及び28±1°のピークが非常にシャープであることが挙げられる。ピークのシャープさは結晶性の高さを反映している。つまり本発明の酸化スズ粒子は結晶性の高いものである。結晶性が高いにもかかわらず、上述した系統反射に関し、本発明の酸化スズ粒子はXRD測定において、六次よりも高次の反射は観察されない。この特異な観察結果も、本発明の酸化スズ粒子の特徴として挙げられる。
 本発明の酸化スズ粒子の他の特徴として、還元雰囲気下での熱挙動が挙げられる。具体的には、1~4%の水素を含む窒素雰囲気下に400℃で2時間加熱を行うと、XRD測定において、それまでは観察されなかった金属Snのピークが観察されるようになる。また、場合によってはSnO2及びSnOのピークも観察されるようになる。これに対して、SnO2やSnOを同条件下に加熱しても、XRD測定におけるピークに変化は観察されない。このように、本発明の酸化スズ粒子は、還元雰囲気下での加熱処理によって、スズの一部が金属スズまで還元するとともに、SnO2やSnOの結晶性が向上し、ゼロ価のSn、2価のSn及び4価のSnが共存するという特異な性質を有している。
 XRD測定の手順は次のとおりである。装置は、「RINT-TTRIII」(リガク社製)を用いた。装置に専用の粉末X線用のガラスホルダーに、例えば、後述する実施例1の手法で準備した粉末を充填し、XRD測定を行った。測定条件は、以下のとおりである。
・測定範囲 2θ(deg./CuKα)=5~90°
・管電圧=50kV
・管電流=300mA
・サンプリング角=0.02°
・走査速度=4°/min
 本発明の酸化スズ粒子は、金属としてスズのみを有し、かつ他の元素として酸素のみ(場合によっては酸素及び水素のみ)を含み、更にドーパント元素を実質的に含有しない、いわゆるノンドープのものであることが好ましい。酸化スズ粒子がノンドープのものであることによって、高価であり経済性に劣るか又は環境負荷の大きい元素である各種のドーパント元素を用いることなく、導電性の高い酸化スズ粒子を得ることができる。ドーパント元素としては、当該技術分野において従来用いられてきたものが挙げられる。そのような元素としては、例えばNb、Ta、Sb、W、P、Ni、Biが挙げられる。なお「実質的に含有しない」とは、意図的にドーパント元素を添加することを除外することを意図するものであり、酸化スズ粒子の製造過程において不可避的に微量のドーパント元素が混入することは許容される趣旨である。
 上述のとおり、本発明の酸化スズ粒子はドーパント元素を含有しないことが好ましい。しかし、酸化スズ粒子の個別具体的な用途によっては、ドーパント元素が含有されていてもよい。酸化スズ粒子にドーパント元素が含有されている場合、その量は、スズの全量に対して0.01~20モル%、特に0.05~15モル%であることが、経済性を損なうことなく、酸化スズ粒子の導電性を高め得る点から好ましい。この場合に含有し得るドーパント元素としては、上述した元素の1種又は2種以上が挙げられる。
 本発明の酸化スズ粒子は、走査型電子顕微鏡(SEM)で観察された一次粒子の平均粒径が1~5000nm、特に3~3000nm、とりわけ3~1000nmであることが好ましい。
 本発明の酸化スズ粒子は導電性が高いことによっても特徴づけられる。具体的には、500kgf下での圧粉体積抵抗率が105Ω・cm以下、特に104Ω・cm以下、とりわけ103Ω・cm以下という低抵抗のものである。圧粉体積抵抗率の測定方法は後述する。
 更に本発明の酸化スズ粒子は、これを膜状に成形した場合に、透明性の高いものである。例えば厚さ2~3μmで、酸化スズ粒子の含有量が30~80%の膜を製造した場合、この膜の可視光の全光線透過率は85%以上、特に90%以上という透明性の高いものとなる。膜の形成方法は、後述する実施例において詳述する。
 次に本発明の酸化スズ粒子の好ましい製造方法について説明する。本製造方法においては、2価のスズを原料として用い、これを、水酸基を有する有機化合物とともに水に溶解して混合水溶液を得、該混合水溶液を加熱した状態下にアルカリと混合する。以下、具体的な工程について説明する。
 先ず原料として2価のスズの水溶性化合物を用意する。そのような水溶性化合物としては例えば二塩化スズ(II)を用いることができる。混合水溶液中における2価のスズのイオンの濃度は0.01~3mol/L、特に0.05~1.5mol/Lとすることかできる。なお、原料として4価のスズを用いることも考えられるが、2価のスズと4価のスズとでは、2価のスズの方が4価のスズよりも、目的とする酸化物が得られやすいことが本発明者らの検討の結果判明したことから、本製造方法では2価のスズを原料として用いている。
 2価のスズの化合物とは別に、水酸基を有する有機化合物を用意する。該有機化合物としては、低分子量の化合物及び高分子化合物を用いることができる。水酸基を有する低分子量の有機化合物としては、例えば一価のアルコールを用いることができる。この一価アルコールは、脂肪族のものでもよく、脂環式のものでもよく、あるいは芳香族のものでもよい。脂肪族の一価のアルコールとしては、例えば炭素数1~6の一価アルコールであるメタノール、エタノール、n-ブタノール、n-ヘキサノール等が挙げられる。脂環式の一価のアルコールとしてはシクロヘキサノール、テルピネオール等が挙げられる。芳香族の一価のアルコールとしては、例えばベンジルアルコール等が挙げられる。
 一方、水酸基を有する高分子有機化合物としてはポリビニルアルコールやポリオールが挙げられる。ポリビニルアルコールとしては、変性されていないポリビニルアルコールそのもの及び変性されたポリビニルアルコールを用いることができる。ポリビニルアルコールは、完全けん化型と部分けん化型(けん化度=80~90%)のどちらでもよい。変性されたポリビニルアルコールとしては、例えばカルボキシル基変性、アルキル変性、アセトアセチル変性、アクリル酸変性、メタクリル酸変性、ピロリドン変性、ビニリデン変性又はシラノール変性ポリビニルアルコール等を用いることができる。ポリビニルアルコール〔-CH(OH)CH2-〕nは、その平均重合度が、n=200~30000、特にn=500~10000のものを用いることが好ましい。この重合度は、例えばサイズ排除クロマトグラフィー(Size Exclusion Chromatography、SEC)を用いて測定することができる。一方、ポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオールを用いることができる。また、メトキシエタノール、エトキシエタノール、プロポキシエタノール及びブトキシエタノール等のセロソルブや、メトキシエトキシエタノール、エトキシエトキシエタノール、プロポキシエトキシエタノール及びブトキシエトキシエタノール等のカルビトールを用いることもできる。
 混合水溶液中における水酸基を有する有機化合物の濃度は、該有機化合物が一価のアルコールである場合、0.005~30重量%、特に0.01~10重量%であることが好ましい。この範囲内であれば、水酸基を有する有機化合物の効果が十分に発現し、また増粘等の問題も起こりにくく、均一な粒径を有する目的とする酸化スズ粒子を首尾良く得ることができる。同様の理由により、水酸基を有する有機化合物が高分子化合物の場合、該有機化合物の濃度は、0.005~10重量%、特に0.01~5重量%であることが好ましい。
 混合水溶液中における2価のスズと水酸基を有する有機化合物との比率は、Sn/OH(モル比)で表して、0.01~150、特に0.03~75であることが好ましい。この範囲内であれば、液中に未反応のSnイオンが残存しにくくなり、また副生成物であるSnO2又はスズオキシ水酸化物〔Sn32(OH)2〕が析出しづらくなる。
 このようにして2価のスズ及び水酸基を有する有機化合物を含む混合水溶液が調製できたら、この混合水溶液を加熱する。加熱温度は、50~105℃、特に70~100℃であることが好ましい。この範囲内の加熱温度であれば、オートクレーブ等の加圧装置を用いることなく、かつ意図しない生成物であるSnOやSnO2の生成を防止しつつ、目的とする酸化スズ粒子を得ることができる。
 混合水溶液を前記の範囲の温度に加熱した状態下に、アルカリ(塩基性物質)を該混合水溶液中に添加する。この操作によって2価のスズが中和される。アルカリとしては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム等のアルカリ土類金属の水酸化物、NaHCO3やNH4HCO3等の炭酸塩、アンモニア等が挙げられる。アルカリの水溶液のpHは、アルカリが添加された後の混合水溶液のpHが2~9、特に2.5~7となるようなものであることが好ましい。混合水溶液のpHがこの範囲内であれば、目的とする酸化スズ粒子を単相で得ることができる。
 2価のスズ及び水酸基を有する有機化合物の混合水溶液にアルカリの水溶液を添加する際には、アルカリの水溶液は所定の時間にわたって徐々に添加することが好ましい。アルカリの水溶液を一括添加した場合には、目的とする酸化スズの粒子が生成しないことがあるので注意を要する。アルカリの水溶液を徐々に添加する場合には、混合水溶液のpHが上述した範囲内に維持されるように、該アルカリの水溶液の添加速度を調節することが好ましい。
 このようにして、目的とする酸化スズ粒子が液中に生成する。この液中には、副生成物としてスズのオキシ水酸化物が共存している場合がある。そこで、この副生成物の除去を目的として、過酸化水素を液中に添加することが好ましい。過酸化水素の添加によってスズのオキシ水酸化物の酸化が進行し、二酸化スズが生成する。生成した二酸化スズは、微粒であり、沈降速度の差を利用した水簸によって分離できる。この場合、沈殿物は目的とする酸化スズ粒子であり、上澄み浮遊物はSnO2である。SnO2はアルカリ性で分散するので、例えばNH4OHを用いて液のpHを8以上11未満とし、更に高速攪拌機又は超音波照射によってSnO2を高分散させ、水簸を行うと分離効率が上がる。スズのオキシ水酸化物の酸化をコントロールすることを目的として、過酸化水素は、所定の濃度に希釈された水溶液として添加されることが好ましい。この観点から、希釈された過酸化水素の濃度は1~15重量%程度であることが好ましい。
 このようにして得られた酸化スズ粒子は、例えばリパルプ洗浄を行うことで、不純物の容易な除去が可能である。洗浄は、分散媒である水の導電率が2000μS以下、特に1000μS以下になるまで行うことが、不純物の十分な除去の点から好ましい。
 リパルプ洗浄によって所定の導電率まで洗浄された酸化スズ粒子の分散液は、解粒操作に付される。それによって、酸化スズゾルが得られる。解粒操作には、例えばビーズミル等のメディアミルを用いることができる。この場合、各種のpH調整剤を液に添加して解粒操作を行うことで、酸化スズ粒子を単分散状態に近づけやすくなる。また、pH調整剤を解粒後に添加してもよい。pH調整剤としては、液のpHを3~10、特に3~6に調整できるものを用いることが好ましい。そのようなpH調整剤としては、例えば無機酸(塩酸、硫酸、硝酸等)やカルボン酸(酢酸、プロピオン酸等)などの酸類、及びアンモニア水やエタノールアミンに代表される有機アミン類等のアルカリ類が挙げられる。
 以上の操作によって、水を分散媒とする酸化スズゾルが得られる。この酸化スズゾルは保存安定性の高い透明分散液の状態となっている。この酸化スズゾルにおける酸化スズ粒子の濃度は0.1~50重量%、特に1~40重量%とすることが好ましい。この酸化スズゾルにおいては、酸化スズ粒子が高度に分散している。
 以上の方法によれば、液中(水中)でスズの酸化物を生成させるので、焼成によって得られた酸化スズを粉砕した後にゾル化する従来の方法に比べて、凝集が少なく分散性の高い酸化スズゾルを容易に得ることができる。
 また、本発明の酸化スズ粒子を有機溶媒に分散させて、単分散した透明分散液を調製することもできる。分散には例えばビーズミルやペイントシェイカーなどを用いることができる。有機溶媒としては、例えば多価アルコール、モノアルコール、セロソルブ、カルビトール、ケトン又はそれらの混合溶媒などを用いることができる。この透明分散液における酸化スズ粒子の濃度は0.1~50重量%、特に1~40重量%とすることが好ましい。この透明分散液は保存安定性の高いものである。この透明分散液は、例えばこれにバインダーを添加することで、インク原料として用いることができる。
 前記の多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオール、グリセリン等が挙げられる。モノアルコールとしては、例えばメタノール、エタノール、プロパノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、テルピネオール、ベンジルアルコール、シクロヘキサノール等が挙げられる。セロソルブとしては、例えばメトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール等が挙げられる。カルビトールとしては、例えばメトキシエトキシエタンール、エトキシエトキシエタノール、プロポキシエトキシエタノール、ブトキシエトキシエタノール等が挙げられる。ケトンとしては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ジアセトンアルコール等が挙げられる。
 本発明の酸化スズ粒子の導電性を一層高める観点から、上述の方法で得られた酸化スズ粒子を熱処理することが有利であることが判明した。熱処理は、大気雰囲気等の含酸素雰囲気中で、好ましくは60~350℃、更に好ましくは120~300℃での加熱を、好ましくは0.5~24時間、更に好ましくは1~10時間行う。この熱処理によっては、本発明の酸化スズ粒子の結晶構造に変化は生じない(例えば、後述する図1の実施例1のXRDと図6の実施例18のXRD参照)。
 以上の製造方法においては、目的とする酸化スズの合成の際に水酸基を有する有機化合物を併用したが、この方法に代えて、水酸基を有する有機化合物を用いない方法を採用することができる。この方法においては、スズ(II)を含む水溶液を加熱した状態下に、スズ(II)のモル数に対して好ましくは0.1~1.6倍、更に好ましくは0.3~1.4倍のモル数のOH-が生じる量のアルカリ(塩基)を混合する。本製造方法において用いられるスズ(II)を含む水溶液としては、先に述べた製造方法において用いられるスズ(II)を含む水溶液と同様のものを用いることができる。アルカリについても同様である。
 本製造方法においては、スズ(II)を含む水溶液(この水溶液には、水酸基を有する有機化合物は含まれていない。)を加熱する。加熱温度は、50~105℃、特に70~100℃であることが好ましい。この範囲の温度に水溶液を加熱した状態下に、アルカリを添加する。この操作によって2価のスズが中和される。本製造方法においては、2価のスズを中和するときのアルカリの添加量が重要である。詳細には、上述した範囲のアルカリを添加する必要がある。この添加量は、先に述べた、水酸基を有する有機化合物を併用する方法で用いられるアルカリの添加量よりも少なくなっている。本製造方法において、スズ(II)のモル数に対し1.6倍を超えるモル数のOH-が生じる量のアルカリ(塩基)を添加すると、黒色板状粗粒であるSnO粒子が生成するという不都合が起こってしまう。
 2価のスズの水溶液にアルカリの水溶液を添加する際には、先に述べた、水酸基を有する有機化合物を併用する方法と同様に、アルカリの水溶液は所定の時間にわたって徐々に添加することが好ましい。この場合、2価のスズの水溶液のpHを2~9、特に2.5~7に維持することが好ましい。
 このようにして、目的とする酸化スズ粒子が液中に生成する。その後は、先に述べた、水酸基を有する有機化合物を併用する方法と同様の操作が行われる。
 このようにして得られた酸化スズ粒子は、例えばその高い導電性を利用して、プリンタや複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシ等の分野、フラットパネルディスプレイ、CRT、ブラウン管等の分野、塗料、インク、エマルジョンの分野等など、幅広い用途に適用できる。また、酸化スズの結晶構造が層状構造であることの利点を生かして、リチウム二次電池の正極活物質材料の原料及び負極活物質材料やガス固定化材料としても用いることができる。酸化スズ粒子を正極活物質材料の原料として用いる場合には、該酸化スズ粒子をリチウム含有化合物(例えば硝酸リチウム等)と混合し、次いで大気雰囲気下に焼成を行いリチウムスズ複合酸化物を生成させる。このリチウムスズ複合酸化物を正極活物質として用いる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。
  〔実施例1〕
 4.51gの水酸化ナトリウムを418gの純水に溶解し、中和用のアルカリ水溶液を調製した。これとは別に、純水100gが入った200mLのビーカーに、ポリビニルアルコール(平均重合度 n=1500~1800 部分けん化型、以下「PVA」という。)0.5gを加え、60℃に加熱しながら溶解させてPVA水溶液を得た。別にビーカーに383gの純水を入れ、二塩化スズ二水和物14.97gを溶解させてスズ水溶液を得た。次いで、先に準備したPVA水溶液を、このスズ水溶液に全量加え、十分に混合した。このようにして母液を得た。
 母液をパドル翼で攪拌しながら90℃に加熱し、この中に、先に準備したアルカリ水溶液をチューブポンプで90分かけて全量フィードした(フィード速度:約5mL/分)。このときの母液のpHは3~4であった。アルカリ水溶液の添加完了後、5分間エージングを行い、次いで30%過酸化水素水7.5gを純水30gに希釈した水溶液を、5mL/分で全量フィードした。その後、5分間エージングし、目的とする酸化スズ粒子のゾルを得た。このときのゾルのpHは2~3であった。
 このゾルを、濾紙(アドバンテック5C)を用いて濾過し、濾過後、1Lの純水を加え通水洗浄した。このようにして得られたケーキを純水にリパルプし、再度、濾過及び通水洗浄を行った。この操作を3回繰り返して目的物を洗浄した。洗浄ケーキを120℃に設定した熱風乾燥機で大気中において10時間乾燥させた後、メノウ乳鉢で解砕し、次いで目開き75μmのSUSメッシュで分級した。このようにして得られた粉末について、元素分析を行った。その結果を以下の表1に示す。この元素分析においては、スズ、ケイ素及び鉄をICP(SPS-3000/SIIナノテクノロジー社製)を用いて定量した。酸素はガス分析装置(EMGA-620/堀場製作所社製)を用いて定量した。炭素はガス分析装置(EMIA-920V/堀場製作所社製)を用いて定量した。塩素は吸光光度法(硝酸銀比濁法)によって定量した(無機応用比色分析編集委員会編「無機比色分析2」、共立出版、を参照)。
Figure JPOXMLDOC01-appb-T000001
 また、得られた粉末についてXRDを上述の手順で測定した。また結晶の面間隔、圧粉抵抗及び薄膜の全光透過率を以下の方法で測定した。それらの結果を、図1及び表2に示す。
  〔結晶の面間隔〕
 2θ=9°から59°までの範囲に観察される上述の5本のピークを、それぞれ001、002、003、005、006であると解釈することにより、面間隔を最小二乗法により決定した。
  〔圧粉抵抗〕
 得られた酸化スズ粒子を圧力500kgfで圧縮して得られたサンプルについて、三菱化学株式会社製ロレスタPAPD-41を用い、四端子法に従い抵抗を測定した。
  〔薄膜の全光透過率〕
 酸化スズ粒子7.4gを市販のアクリル樹脂6.4gとともにトルエン:ブタノール=7:3(重量比)混合溶液10gに添加し、ペイントシェーカを用いてビーズ分散して分散液を調製した。この分散液をPETフィルムに塗布し、1時間風乾して透明薄膜を形成した。この薄膜の膜厚を電子顕微鏡で観察したところ2μmであった。この薄膜を日本電色工業社の光線透過率測定装置NDH-1001DPを用いて全光線透過率を測定した。
 更に、本実施例で得られた酸化スズの粉末について、結晶の内部構造を調べる目的で、財団法人高輝度光科学研究センターの大型放射光施設SPring-8を用いたX線回折測定を行った。測定に用いたX線の波長は0.0501326nmである。測定試料は、ガラス製のキャピラリー管に充填した。このとき、試料が、ある特定の向きに配向することなくルーズに充填されるようにした。回折線は、デバイ-シェラーカメラを用いて記録し、2θと強度に変換した。その結果を図2に示す。同図中、下向きの三角形で示す位置のピークが、図1における白抜きの丸形で示す位置のピークに対応している。
  〔実施例2〕
 実施例1で用いたPVAに代えて、0.5gのエタノールを用いた以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を図1及び表2に示す。
  〔実施例3〕
 実施例1で用いたPVAに代えて、0.5gのn-ブタノールを用いた以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を表2に示す。
  〔実施例4〕
 実施例1で用いたPVAに代えて、0.5gのヘキサノールを用いた以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を図1及び表2に示す。
  〔実施例5〕
 実施例1で用いたPVAに代えて、0.5gのベンジルアルコールを用いた以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を図1及び表2に示す。
  〔比較例1〕
 実施例1で用いたPVAを用いなかった以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を図3及び表2に示す。
  〔比較例2〕
 比較例1において母液を加熱せず室温(25℃)で反応を行った以外は実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様の測定を行った。その結果を図3及び表2に示す。また、この酸化スズ粒子について、先に述べた元素分析を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1に示す結果から明らかなように、各実施例で得られた酸化スズ粒子は、いずれも同じ位置に5本のピークを有するものであることが判る。これに対して、各比較例で得られた酸化スズ粒子は、図3に示すようにSnO2の回折ピークのみを示すか(比較例2)、あるいはSnO2の回折ピーク及びその他の回折ピークを示す(比較例1)ものであった。更に、表2に示す結果から明らかなように、各実施例で得られた酸化スズ粒子は、各比較例で得られた酸化スズ粒子に比べて導電性が高いことが判る。また各実施例で得られた酸化スズ粒子から得られた薄膜は、各比較例で得られた酸化スズ粒子から得られた薄膜に比べて透明性が高いことが判る。
 また、図1と図2との対比から明らかなように、図2においても、図1に示すXRD測定で観察されるピークが観察されることが判る。更に、図2においては、図1に示すXRD測定で観察されるピーク以外のピークも観察される。このことは、本実施例で得られた酸化スズの結晶が内部構造を有していることを示唆している。
  〔実施例6〕
 本実施例では、本発明の酸化スズ粒子が、リチウム二次電池の負極活物質として有用であることを明らかにする。実施例1で得られた酸化スズ粒子2.85gと、アセチレンブラック0.15gと、ポリフツ化ビニリデン0.33gとを秤量し、これらを混合した後に3gのN-メチル-2-ピロリジノンを加え、攪拌脱泡機(シンキー社製)で混合してスラリーを得た。このスラリーを18μm厚のCu箔の一面に塗布した後、120℃で乾燥させた。乾燥後、6cm幅に裁断し、ロールプレスで2ton加圧した。次いでφ14mmの円形に打ち抜き、120℃で一晩真空乾燥して負極を得た。この負極における酸化スズ粒子(負極活物質)の量は6mg/cm2に相当した。対極にLi箔を用い、また電解液として、エチレンカーボネートとジエチルカーボネートの1:1体積%混合溶媒に1mol/LのLiPF6を溶解した溶液を用いた。これらを用いて、CR2032タイプのコインセルを、Ar雰囲気中のグローブボックス内で作製した。得られたコインセルについて充放電試験を行った。充電条件は、定電流(0.175mA/cm2)にて0.0V(対Li+/Li)まで充電し、その後、0.0Vの定電圧にて、電流密度が0.035mA/cm2以下となるまで充電した。放電条件は、定電流(0.175mA/cm2)にて2.5V(対Li+/Li)まで放電した。その結果を図4に示す。同図に示すように、本発明の酸化スズ粒子は充放電容量を有し、リチウム二次電池の負極活物質として有用であることが明らかとなった。
  〔実施例7〕
 本実施例では、本発明の酸化スズ粒子が、リチウム二次電池の正極活物質の原料として有用であることを明らかにする。実施例1で得られた酸化スズ粒子6.00gと、2.61gのLiNO3とを乳鉢でよく混合し、アルミナボートに充填した。大気中で400℃×5時間焼成し、リチウムスズ複合酸化物からなる正極活物質を得た。この正極活物質2.85gと、アセチレンブラック0.15gと、ポリフツ化ビニリデン0.33gとを秤量し、これらを混合した後に3gのN-メチル-2-ピロリジノンを加え、攪拌脱泡機(シンキー社製)で混合してスラリーを得た。このスラリーを18μm厚のAl箔の一面に塗布した後、120℃で乾燥させた。乾燥後、6cm幅に裁断し、ロールプレスで2ton加圧した。次いでφ14mmの円形に打ち抜き、120℃で一晩真空乾燥して正極を得た。この正極における正極活物質の量は6mg/cm2に相当した。これを正極活物質とし、対極にLi箔を用い、また電解液として、エチレンカーボネートとジエチルカーボネートの1:1体積%混合溶媒に1mol/LのLiPF6を溶解した溶液を用いた。これらを用いて、CR2032タイプのコインセルを、Ar雰囲気中のグローブボックス内で作製した。得られたコインセルについて充放電試験を行った。充電条件は、定電流(0.175mA/cm2)にて4.8V(対Li+/Li)まで充電し、その後、4.8Vの定電圧にて、電流密度が0.035mA/cm2以下となるまで充電した。放電条件は、定電流(0.175mA/cm2)にて2.7V(対Li+/Li)まで放電した。その結果を図5に示す。同図に示すように、本発明の酸化スズ粒子は充放電容量を有し、リチウム二次電池の正極活物質として有用であることが明らかとなった。
  〔実施例8〕
 本実施例では、本発明の酸化スズ粒子を用いて有機溶媒を分散媒とする透明分散液を調製した。50mLのポリプロピレン製の密閉容器に、実施例1で得られた酸化スズ粒子1.57gとエチレングリコール18gとφ0.1mmのジルコニアビーズ140gとを入れ、ペイントシェーカを用いて3時間粉砕した。粉砕後、減圧濾過によってビーズとスラリーを固液分離し、ベージュ色をした透明分散液を得た。この液は、常温中で1ケ月保存した後も沈殿を生じることなく高分散状態を維持したままであった。200℃で乾燥させたときの固形分濃度は8重量%であり、ガラス質の固形分が残存していた。
  〔実施例9〕
 本実施例では、本発明の酸化スズ粒子を用いて水を分散媒とする透明分散液を調製した。50mLのポリプロビレン製の密閉容器に、実施例1で得られた酸化スズ粒子1.39gと水16gとφ0.1mmのジルコニアビーズ140gとを入れ、ペイントシェーカを用いて3時間粉砕した。粉砕後、減圧濾過によってビーズとスラリーを固液分離した。得られた分散液のpHは5.4であった。このスラリーに酢酸を少量添加し、pHを3.0に調整したところ、淡いベージュ色をした透明分散液を得た。この液は、常温中で1ケ月保存した後も沈殿を生じることなく高分散状態を維持したままであった。200℃で乾燥させたときの固形分濃度は7重量%であり、ガラス質の固形分が残存していた。
  〔実施例10〕
 実施例1の二塩化スズ二水和物14.97gの代わりに、無水二塩化スズ12.58gを使用した以外は、実施例1と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例11〕
 実施例10において、PVAの添加量を5.0gに増量した以外は、実施例10と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例12〕
 実施例11において、PVAとして平均重合度n=500の部分けん化型PVA(けん化度=)を用いた以外は、実施例11と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例13〕
 実施例11において、PVAとして平均重合度n=400~600の完全けん化型PVAを用いた以外は、実施例11と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例14〕
 実施例11において、PVAとして平均重合度n=900~1100の完全けん化型PVAを用いた以外は、実施例11と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例15〕
 実施例10において、PVAを添加せず、水酸化ナトリウムの使用量を2.65gに減量した以外は、実施例10と同様にして酸化スズ粒子を得た。この酸化スズ粒子について実施例1と同様のXRD測定を行った。その結果を図6に示す。
  〔実施例16〕
 実施例13において、スズ水溶液に代えて、無水二塩化スズ12.57gと五塩化タンタル0.016gを溶解させてスズとタンタルを含む混合水溶液を用いた以外は、実施例13と同様にしてタンタルドープ酸化スズ粒子を得た。得られた粒子を120℃で大気中において10時間乾燥させ、目開き75μmのSUSメッシュで分級した。このようにして得られた粉末について、実施例1と同様のXRD測定を行った。また結晶の面間隔、圧粉抵抗及び薄膜の全光透過率を実施例1と同様に測定した。それらの結果を、図6及び表4に示す。
  〔実施例17〕
 実施例16で得られた粉末を、電気炉で大気中300℃で2時間焼成した。焼成後の粉末について、実施例1と同様のXRD測定を行った。また結晶の面間隔、圧粉抵抗及び薄膜の全光透過率を実施例1と同様に測定した。それらの結果を、図6及び表4に示す。
  〔実施例18〕
 本実施例は、実施例17との比較の目的で行った。実施例1で得られた粉末を、電気炉で大気中300℃で2時間焼成した。焼成後の粉末について、実施例1と同様のXRD測定を行った。また結晶の面間隔、圧粉抵抗及び薄膜の全光透過率を実施例1と同様に測定した。それらの結果を、図6及び表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す実施例18の圧粉抵抗と、上述した表2に示す実施例1の圧粉抵抗とを比較すると、実施例1の酸化スズを高温で熱処理して得られた実施例18の酸化スズの方が、良好な導電性を示すことが判る。また、表4に示す実施例16の圧粉抵抗と、実施例17の圧粉抵抗とを比較すると、タンタルをドープすることで高温熱処理による導電性の向上が一層顕著になることが判る。

Claims (11)

  1.  XRD測定(Cu/Kα)において、少なくとも2θ(deg)=9±1°及び28±1°に回折ピークを示す構造を有することを特徴とする酸化スズ粒子。
  2.  導電性を有する請求項1記載の酸化スズ粒子。
  3.  更に2θ(deg)=19±1°、48±1°及び59±1°に回折ピークを示す請求項1又は2記載の酸化スズ粒子。
  4.  前記回折ピークは、前記酸化スズの特定の結晶面に系統反射に基づくものであり、該系統反射の一次反射に対応する結晶面間隔が0.94~0.95nmである請求項1ないし3のいずれか一項に記載の酸化スズ粒子。
  5.  ドーパント元素を実質的に含まない請求項1ないし4のいずれか一項に記載の酸化スズ粒子。
  6.  リチウム二次電池の正極活物質材料の原料、又は負極活物質材料として用いられる請求項1ないし5のいずれか一項に記載の酸化スズ粒子。
  7.  請求項1記載の酸化スズ粒子が水又は有機溶媒に分散してなる透明分散液。
  8.  請求項1記載の酸化スズ粒子の製造方法であって、
     スズ(II)及び水酸基を有する有機化合物を含む水溶液を加熱した状態下にアルカリとを混合することを特徴とする酸化スズ粒子の製造方法。
  9.  水酸基を有する有機化合物が、ポリビニルアルコール、ポリオール又は一価の低級アルコールである請求項8記載の酸化スズ粒子の製造方法。
  10.  アルカリと混合した後に、更に過酸化水素を添加する請求項8又は9記載の酸化スズ粒子の製造方法。
  11.  請求項1記載の酸化スズ粒子の製造方法であって、
     スズ(II)を含む水溶液を加熱した状態下に、スズ(II)のモル数に対して0.1~1.6倍のモル数のOH-が生じる量のアルカリを混合することを特徴とする酸化スズ粒子の製造方法。
PCT/JP2010/062162 2009-07-21 2010-07-20 酸化スズ粒子及びその製造方法 WO2011010631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011501040A JP5373884B2 (ja) 2009-07-21 2010-07-20 酸化スズ粒子及びその製造方法
US13/377,602 US8491822B2 (en) 2009-07-21 2010-07-20 Tin oxide particles and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-169712 2009-07-21
JP2009169712 2009-07-21
JP2009-245735 2009-10-26
JP2009245735 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011010631A1 true WO2011010631A1 (ja) 2011-01-27

Family

ID=43499103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062162 WO2011010631A1 (ja) 2009-07-21 2010-07-20 酸化スズ粒子及びその製造方法

Country Status (3)

Country Link
US (1) US8491822B2 (ja)
JP (1) JP5373884B2 (ja)
WO (1) WO2011010631A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (ja) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 酸化スズ粒子及びその製造方法
WO2012124499A1 (ja) * 2011-03-16 2012-09-20 三井金属鉱業株式会社 塩素ドープ酸化スズ粒子及びその製造方法
US20140093734A1 (en) * 2011-03-16 2014-04-03 Mitsui Mining & Smelting Co., Ltd. Fluorine-doped tin-oxide particles and manufacturing method therefor
JP2014169218A (ja) * 2013-02-05 2014-09-18 Mitsui Mining & Smelting Co Ltd リンを含む酸化スズ粒子及びリンを含む酸化スズゾルの製造方法
JP2014229539A (ja) * 2013-05-24 2014-12-08 日本電気硝子株式会社 蓄電デバイス用負極活物質およびその製造方法
JP2014232680A (ja) * 2013-05-30 2014-12-11 日本電気硝子株式会社 蓄電デバイス用負極活物質およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623680B1 (ja) * 2013-03-06 2014-11-12 三井金属鉱業株式会社 燃料電池電極材料用タンタル含有酸化スズ
CN109841829A (zh) * 2019-04-08 2019-06-04 陕西科技大学 一种多孔SnO2一维纳米镁-锂双盐离子电池正极材料的制备方法及应用
CN110085746A (zh) * 2019-05-08 2019-08-02 苏州协鑫纳米科技有限公司 电子传输层及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065724A (ja) * 1983-09-17 1985-04-15 Mitsubishi Mining & Cement Co Ltd 酸化錫系微粉体の合成方法
JPH0354114A (ja) * 1989-07-20 1991-03-08 Sumitomo Metal Mining Co Ltd 酸化インジウム‐酸化錫微粉末の製造方法
JPH10294103A (ja) * 1997-04-17 1998-11-04 Tokuyama Corp 非水電解液二次電池用負極活物質の製造方法および非水電解液二次電池
JP2000195505A (ja) * 1998-12-25 2000-07-14 Tokuyama Corp 非水電解液二次電池負極材料の製造方法
JP2008150258A (ja) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd 二酸化スズ前駆体粒子及びその製造方法並びにそれを用いてなる二酸化スズの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200674B1 (en) * 1998-03-13 2001-03-13 Nanogram Corporation Tin oxide particles
US6787231B1 (en) * 2003-04-11 2004-09-07 Electroplated Metal Solutions, Inc. Tin (IV) oxide nanopowder and methods for preparation and use thereof
JP3980523B2 (ja) 2003-06-02 2007-09-26 多木化学株式会社 アルカリ安定型酸化スズゾル及びその製造方法
JP4794494B2 (ja) 2007-03-09 2011-10-19 第一稀元素化学工業株式会社 酸化スズゾルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065724A (ja) * 1983-09-17 1985-04-15 Mitsubishi Mining & Cement Co Ltd 酸化錫系微粉体の合成方法
JPH0354114A (ja) * 1989-07-20 1991-03-08 Sumitomo Metal Mining Co Ltd 酸化インジウム‐酸化錫微粉末の製造方法
JPH10294103A (ja) * 1997-04-17 1998-11-04 Tokuyama Corp 非水電解液二次電池用負極活物質の製造方法および非水電解液二次電池
JP2000195505A (ja) * 1998-12-25 2000-07-14 Tokuyama Corp 非水電解液二次電池負極材料の製造方法
JP2008150258A (ja) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd 二酸化スズ前駆体粒子及びその製造方法並びにそれを用いてなる二酸化スズの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (ja) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 酸化スズ粒子及びその製造方法
US8916070B2 (en) 2011-01-19 2014-12-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and method for producing same
WO2012124499A1 (ja) * 2011-03-16 2012-09-20 三井金属鉱業株式会社 塩素ドープ酸化スズ粒子及びその製造方法
US20140093734A1 (en) * 2011-03-16 2014-04-03 Mitsui Mining & Smelting Co., Ltd. Fluorine-doped tin-oxide particles and manufacturing method therefor
US9269472B2 (en) * 2011-03-16 2016-02-23 Mitsui Mining & Smelting Co., Ltd. Fluorine-doped tin-oxide particles and manufacturing method therefor
JP2014169218A (ja) * 2013-02-05 2014-09-18 Mitsui Mining & Smelting Co Ltd リンを含む酸化スズ粒子及びリンを含む酸化スズゾルの製造方法
JP2014229539A (ja) * 2013-05-24 2014-12-08 日本電気硝子株式会社 蓄電デバイス用負極活物質およびその製造方法
JP2014232680A (ja) * 2013-05-30 2014-12-11 日本電気硝子株式会社 蓄電デバイス用負極活物質およびその製造方法

Also Published As

Publication number Publication date
US8491822B2 (en) 2013-07-23
JPWO2011010631A1 (ja) 2012-12-27
JP5373884B2 (ja) 2013-12-18
US20120085979A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5373884B2 (ja) 酸化スズ粒子及びその製造方法
US10749173B2 (en) Process for the preparation of lithium titanium spinel and its use
Köse et al. Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method
TWI568678B (zh) 鋰鎳錳鈷氧化物陰極材料之碳酸鹽前驅物及其製造方法
JP5218782B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
TWI583623B (zh) 金屬磷酸鹽及製造彼之方法
JP5827950B2 (ja) 酸化マンガン粒子及びその製造方法
CN105377766B (zh) 镍-锰系复合羟基氧化物、其制造方法及其用途
TWI576312B (zh) 含錳之金屬磷酸鹽以及其製法
KR20080048442A (ko) 리튬 2 차 전지 양극용의 리튬 함유 복합 산화물의 제조방법
JP5788694B2 (ja) フッ素ドープ酸化スズ粒子及びその製造方法
WO2010004912A1 (ja) Ito粒子の製造方法、およびito粉末、透明導電材用塗料並びに透明導電膜
KR20150065866A (ko) 계층화된 스피넬 티탄산 리튬들 및 이를 준비하기 위한 프로세스들
WO2015028718A1 (en) Transition metal oxide particles and method of producing the same
US20140363368A1 (en) Titanium Dioxide Nanoparticle, Titanate, Lithium Titanate Nanoparticle, and Preparation Methods Thereof
JP6243932B2 (ja) チタンニオブ酸化物の製造方法、及びこれから得られるチタンニオブ酸化物を用いたチタンニオブ酸化物負極活物質の製造方法
CN113348150B (zh) 钛氧化物、钛氧化物的制造方法以及使用含有钛氧化物的电极活性物质的锂二次电池
JP4674347B2 (ja) 層状二酸化マンガンナノベルト及びその製造方法
WO2016030577A1 (en) Crystalline transition metal oxide particles and continuous method of producing the same
JP5711981B2 (ja) 酸化スズ粒子及びその製造方法
WO2012124499A1 (ja) 塩素ドープ酸化スズ粒子及びその製造方法
CN113490642B (zh) 二氧化钛结构的制造
WO2024014550A1 (ja) 前駆体及びリチウム二次電池用正極活物質の製造方法
Julien et al. Nanotechnology for Energy Storage
CN110997573A (zh) 将钛均匀地引入固体材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011501040

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13377602

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802251

Country of ref document: EP

Kind code of ref document: A1