WO2011002037A1 - X線装置、その使用方法およびx線照射方法 - Google Patents

X線装置、その使用方法およびx線照射方法 Download PDF

Info

Publication number
WO2011002037A1
WO2011002037A1 PCT/JP2010/061198 JP2010061198W WO2011002037A1 WO 2011002037 A1 WO2011002037 A1 WO 2011002037A1 JP 2010061198 W JP2010061198 W JP 2010061198W WO 2011002037 A1 WO2011002037 A1 WO 2011002037A1
Authority
WO
WIPO (PCT)
Prior art keywords
rays
ray
reflector
ray apparatus
selection unit
Prior art date
Application number
PCT/JP2010/061198
Other languages
English (en)
French (fr)
Inventor
小澤 哲也
松尾 隆二
ジャン、リーサイ
ヴァーマン、ボリス
表 和彦
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to DE112010001478.7T priority Critical patent/DE112010001478B4/de
Priority to US13/142,787 priority patent/US9336917B2/en
Priority to EP10794205.4A priority patent/EP2442097A4/en
Priority to CN201080029423.6A priority patent/CN102472714B/zh
Priority to JP2011520966A priority patent/JP5525523B2/ja
Publication of WO2011002037A1 publication Critical patent/WO2011002037A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • H01J2237/1516Multipoles

Definitions

  • the present invention relates to an X-ray apparatus capable of measuring X-ray diffraction with high resolution, a method for using the same, and an X-ray irradiation method.
  • the sample is irradiated with a parallel X-ray beam, and a parallel beam method in which a diffracted X-ray is detected by a two-dimensional X-ray detector;
  • a concentrated method so-called Bragg-Brentano optical system (BB optical system)
  • BB optical system Bragg-Brentano optical system
  • the diffracted X-ray intensity obtained by an optical system that collects X-rays at one point of the sample position is much weaker than an optical system that irradiates a wide area at the sample position.
  • the normal concentration method BB method
  • the angular resolution of X-ray diffraction is low.
  • crystal structure analysis has become possible by powder X-ray diffraction, and improvement in analysis accuracy is expected.
  • an apparatus that realizes a wide irradiation region on the sample is necessary so that a sufficient X-ray diffraction intensity can be obtained with an optical system capable of separating a narrow energy width, and various samples (of the X-ray absorption coefficient of the sample) are required. It was necessary to realize switching to a parallel beam in order to cope with the size and the crystallinity.
  • An X-ray apparatus that generates a virtual radiation source with a narrow energy width and enables high-resolution X-ray diffraction measurement, a method of using the same, and X-ray irradiation It aims to provide a method.
  • an X-ray apparatus includes a spectroscope that condenses and diverges divergent X-rays from an X-ray source, and a condensing position of the condensed X-rays. And a selection unit that selects and transmits X-rays having a wavelength in a specific range and generates a virtual source.
  • the sample may be irradiated with the X-rays that have passed through the selection unit, or may be shaped with a reflector.
  • a virtual radiation source having a narrow energy width can be generated, and high resolution X-ray diffraction measurement can be performed by the virtual radiation source.
  • a characteristic X-ray can be selected as a virtual source, or a part of continuous X-rays can be cut out as a virtual source.
  • squeeze which has elongated holes like a slit, a knife edge, or a block is mentioned.
  • the X-ray apparatus is further characterized by further comprising one or more reflectors for shaping the X-rays that have passed through the selection unit.
  • the incident X-rays to the reflector can be shaped into a parallel light beam or a condensed beam.
  • the X-ray apparatus is characterized in that the reflector shapes the X-rays that have passed through the selection unit and generates a parallel light beam. Thereby, a parallel light beam having a narrow wavelength range with high intensity can be generated, and high-resolution X-ray diffraction measurement using the parallel beam method can be performed.
  • the X-ray apparatus is characterized in that the reflector shapes the X-rays that have passed through the selection unit and generates a focused beam. As a result, a condensed beam having a narrow wavelength range with high intensity can be generated, and high-resolution X-ray diffraction measurement using the condensed beam method can be performed.
  • the spectroscope is fixed, and the reflector shapes the incident X-ray into a condensed beam and the incident X-ray into a parallel beam. It is characterized by being exchangeable. Since the reflectors can be exchanged in this way, a parallel light beam and a condensed beam can be used without changing the arrangement of the spectrometers.
  • the X-ray apparatus shapes a path for shaping the X-rays emitted from the virtual ray source into a condensed beam, and shapes the X-rays emitted from the virtual ray source into a parallel beam. It is further characterized by further comprising a switching mechanism that enables switching between routes. This makes it possible to easily switch between the parallel light beam and the focused beam without changing the arrangement of the spectrometer.
  • the X-ray apparatus includes, as the one or more reflectors, a reflector that shapes the X-rays that have passed through the selection unit and generates a parallel light beam, and the selection unit.
  • a reflector that shapes the X-rays that have passed and generates a condensed beam, and the switching mechanism generates a collimated beam through the reflector, a path that generates a parallel light beam through the reflector. It is characterized in that the path can be switched among the path to be generated and the path to generate the condensed beam without passing through the reflector. This facilitates switching between the case where the reflector is used and the case where the reflector is not used, and switching between the parallel light beam and the condensed beam.
  • the X-ray apparatus is characterized in that the reflector is a multilayer mirror.
  • the lattice constant can be changed depending on the X-ray incident position on the reflector. Therefore, diffraction can be caused by adjusting the lattice constant even when the incident angle changes. As a result, it is possible to selectively extract only X-rays having a specific wavelength for focusing on the sample and perform measurement with good angular resolution.
  • the X-ray apparatus is characterized by further comprising an X-ray source that generates characteristic X-rays as the divergent X-rays.
  • an X-ray source that generates characteristic X-rays as the divergent X-rays.
  • the X-ray apparatus is characterized in that the spectrometer is a Johann spectrometer or a Johansson spectrometer.
  • the beam diffracted on the surface of the spectrometer is focused on the equator plane (a plane perpendicular to the axis), and a portion with a large divergence angle of the divergent beam from the X-ray source can be used. It becomes easy to use as.
  • the spectroscope is a Johansson type spectroscope
  • the curvature radius of the Roland circle C1 is R
  • the surface curvature of the spectroscope is along the radius R, which contributes to the X-ray spectroscopy of the spectroscope.
  • the radius of curvature of the crystal lattice plane is twice R (2R). For this reason, the beam diffracted by the spectroscope is focused on the equator plane (plane perpendicular to the axis) more strictly than the Johann spectroscope. Easy and desirable.
  • the X-ray apparatus further includes a detector that detects X-rays collected by the reflector and transmitted or reflected by the sample, and the detector is an elongated shape arranged in parallel. It is possible to discriminate X-rays whose energy is between the upper limit value and the lower limit value by converting the X-rays received in the unit detection area into an electric signal and detecting the electric signal. It is characterized by that. Thereby, X-ray diffraction line measurement with high angular resolution and high detection intensity can be performed by a one-dimensional high resolution detector.
  • the method of using the X-ray apparatus according to the present invention is characterized in that the X-ray apparatus described above separates X-rays having a wavelength in a specific range by the selection unit. By selecting K ⁇ 1 by the selection unit, a virtual radiation source having a high intensity can be generated, and high-resolution X-ray diffraction can be performed.
  • a divergent X-ray is condensed with a spectroscope, and an X-ray having a wavelength in a specific range is collected at a condensing position of the condensed X-ray. It is characterized in that it is selected and passed to generate a virtual radiation source. Thereby, a virtual radiation source having a narrow energy width can be generated, and high resolution X-ray diffraction measurement can be performed by the virtual radiation source.
  • a virtual radiation source having a narrow energy width is generated to enable high-resolution X-ray diffraction measurement.
  • FIG. 1 is a schematic diagram showing the configuration of the X-ray apparatus 100.
  • the X-ray apparatus 100 includes an X-ray source 101, a spectroscope 105, a slit 107, a reflector 115, a sample stage 117, and a detector 120, and enables measurement of the sample S1.
  • the example shown in FIG. 1 is an optical system that performs a transmission method using a focused beam.
  • the X-ray source 101 generates divergent X-rays. Copper can be used as the anode metal. Other metals that generate characteristic X-rays include chromium, iron, cobalt, gallium, molybdenum, silver, tungsten, and gold. When such an anode metal is used, a virtual X-ray source can be obtained by using characteristic X-rays with high intensity.
  • characteristic X-rays there are K ⁇ 1, K ⁇ 2 lines, L ⁇ 1, L ⁇ 2 lines, L ⁇ 1, L ⁇ 3, L ⁇ 4 lines and the like due to the energy level difference of the electron orbit, and their energies are very close. For example, the energy of copper K ⁇ 1 line is 8.0478 keV, the energy of K ⁇ 2 line is 8.0280 keV, and the difference is only 19.8 ⁇ 10 ⁇ 3 keV.
  • the spectroscope 105 collects light while dispersing divergent X-rays.
  • the spectroscope 105 is disposed near the tube of the X-ray source 101.
  • the reflector 115 can be replaced, the arrangement of the spectroscope 105 is not changed. Thereby, a parallel beam method and a condensing method can be easily performed with the same apparatus, and a user's convenience improves.
  • An optical system that generates a virtual radiation source with a narrow energy width and can handle both the parallel beam method and the condensing method has not existed in the past.
  • a method of preparing two systems, exchanging them, and realizing the condensing method and the parallel beam method is not practical for a high-precision measurement system. This is because it is extremely difficult to move Johann crystals and Johansson crystals arranged with high precision.
  • the X-ray apparatus 100 enables high-resolution X-ray diffraction measurement by the parallel beam method and the condensing method without changing the arrangement of the spectrometer 105.
  • a highly accurate crystal as the spectroscope 105 in order to prevent the K ⁇ 1 ray focus 110 from containing the K ⁇ 2 ray component and to ensure a certain level of X-ray intensity.
  • a curved crystal is preferably used as the spectroscope 105 in order to collect the X-ray while dispersing it. Examples of curved crystals include Johann crystals and Johansson crystals.
  • Both the Johann crystal and Johansson crystal have crystal lattice planes with a curvature twice that of the Roland circle C1 passing through the three points of the incident side focal position (X-ray source 101), the emission side focal position (focal point 110) and the reflection position. Is a curved crystal.
  • Examples of the material of the Johann crystal or Johansson crystal include germanium and silicon.
  • the Johansson crystal has a shape whose surface is polished with the curvature of the Roland circle C1, and has no astigmatism. Therefore, the beam diffracted on the surface of the Johansson type crystal is strictly focused on the equator plane (plane perpendicular to the axis).
  • Johansson crystal Due to such characteristics, when a Johansson crystal is used, it is easy to use X-rays having a large divergence angle. Since the Johansson type crystal is arranged with high accuracy, it is preferable that no movement or exchange operation is required in accordance with a change in the measurement conditions of the X-ray diffraction sample.
  • the slit 107 (selection unit) is installed at the condensing position of the condensed X-rays, and allows X-rays having a specific range of wavelengths to pass therethrough.
  • a virtual source having a narrow energy width selected at the condensing position can be created.
  • the separation line can be a virtual ray source obtained by separating a part of a continuous X-ray or a virtual ray source obtained by separating L series X-rays having a close energy difference.
  • a knife edge or a block may be used instead of the slit.
  • the reflector 115 reflects and shapes the X-rays that have passed through the slit (selection unit).
  • the reflector 115 is either one that shapes the X-rays that have passed through the slit into a condensed beam or one that shapes the parallel light beam, and can be selected by replacement.
  • the reflector 115 shown in FIG. 1 shapes incident X-rays into a condensed beam.
  • an elliptical mirror can be cited. When a focused beam is used, high resolution analysis is possible.
  • the reflector 115 include a multilayer mirror.
  • the lattice constant can be changed depending on the X-ray incident position on the reflector 115.
  • the sample stage 117 supports the sample S1, and rotates the sample S1 around the central axis at the time of measurement.
  • the sample S1 is irradiated with X-rays shaped by the reflector 115.
  • the sample S1 takes a form according to the application. For example, when performing a powder method, a sample in which powder is enclosed in a capillary is used.
  • the detector 120 is installed on the focal circle C2, and detects X-rays transmitted or reflected by the sample S1.
  • the detector 120 is preferably a high-resolution one-dimensional detector.
  • FIG. 2 is a diagram illustrating an example of the configuration of the detector 120.
  • the detector 120 converts the X-rays received in the elongated unit detection regions arranged in parallel into an electric signal, and discriminates the X-rays whose energy is between the upper limit value and the lower limit value by detecting the electric signal. .
  • the detector 120 is a silicon strip detector (SSD), and includes a detection element 122 and a detection circuit 124.
  • the detection element 122 has a plurality of elongated unit detection regions 126, and the unit detection regions 126 are elongated in the X direction in the drawing.
  • the length L is about 20 mm and the width W is about 0.1 mm.
  • These unit detection areas 126 are arranged in parallel to each other.
  • the detector 120 is a one-dimensional position sensitive detector that can distinguish the detection position in the Y direction with high accuracy.
  • Each unit detection area 126 is connected to a detection circuit 124.
  • the unit detection region 126 has a function of detecting X-ray photons one by one, and outputs an electrical signal corresponding to the received X-ray energy.
  • the detection circuit 124 counts only signals corresponding to X-ray energy between a predetermined upper limit value and lower limit value.
  • the predetermined upper limit value and lower limit value can be arbitrarily set by the user. Thereby, it can measure with high energy resolution. In this way, X-rays having an extremely narrow energy width are diffracted by being applied to the sample, and the diffracted X-rays are detected by the high-resolution detector 120, thereby enabling highly accurate measurement.
  • the target of the above embodiment is an optical system that performs the transmission method using the condensed beam shaped by the reflector 115.
  • the sample is irradiated with the condensed beam that has passed through the slit 107 (selection unit) as it is.
  • FIG. 3A is a plan view showing the configuration of the X-ray apparatus 200 that does not use the reflector 115.
  • FIG. 3B is a plan view showing an embodiment in which the X-ray apparatus 200 shown in FIG. 3A is modified.
  • the slit 202 is arranged in the Roland circle C1
  • the slit 202 is arranged in the focal circle C2.
  • the X-ray apparatus 200 includes an X-ray source 101, a slit 202, a spectroscope 105, a slit 107, a sample stage 117, and a detector 120, and enables measurement of the sample S2. ing. If the spectroscope 105 is appropriately sized, the slit 202 is not necessary. That is, the slit 202 is not an essential component part. X-rays from the X-ray source 101 are reflected by the spectrometer 105, and only X-rays having a specific range of wavelengths pass through the slit 107.
  • the X-rays that have passed through the slit 107 are applied to the sample S2, and the X-rays reflected by the sample S2 are detected by the detector 120.
  • the K ⁇ 2 line cannot pass through the slit at the position of the focal point 111, and therefore the K ⁇ 1 line and the K ⁇ 2 line can be separated. Is possible. This also applies to the separation form of the K ⁇ 1 line and the K ⁇ 2 line in the first embodiment.
  • incident X-rays are shaped into a focused beam, but can be shaped into a parallel light beam by replacing the reflector. In that case, the structure of the sample can be analyzed by the parallel beam method.
  • FIG. 4 is a plan view showing a configuration of an X-ray apparatus 300 including a reflector 315 that shapes incident X-rays into parallel light beams.
  • the X-ray apparatus 300 includes an X-ray source 101, a spectroscope 105, a slit 107 (selection unit), a reflector 315, a sample stage 117, and a detector 320, and measures the sample S3. It is possible.
  • the apparatus configuration is substantially the same as that of the X-ray apparatus 100, and the reflector 315 and the detector 320 are different.
  • the reflector 315 shapes incident X-rays into parallel light beams.
  • a parabolic mirror is used for the reflector 315.
  • the reflector 315 and the reflector 115 can be interchanged.
  • the sample S3 is a sample for structural analysis prepared for the transmission method, and a powder crystal or the like is used.
  • the detector 320 is preferably a two-dimensional detector.
  • FIG. 5 shows an X-ray apparatus 300 in the case where measurement is performed by the Debye Scherrer method.
  • the X-ray apparatus 300 irradiates the sample S4 with the parallel light beam X-ray shaped by the reflector 315.
  • the X-ray apparatus 300 detects the X-ray diffracted by the sample S4 with the detector 325.
  • a crystal analyzer can be mounted between the sample and the detector 325.
  • As the crystal analyzer it is preferable to use a high-intensity high-resolution crystal analyzer (CALSA) disclosed in US Patent Application Publication No. 2009/0086921.
  • CALSA high-intensity high-resolution crystal analyzer
  • FIG. 6 shows an X-ray apparatus 400 in the case where measurement is performed by the Debye Scherrer method using a sample horizontal goniometer.
  • the X-ray apparatus 400 irradiates the sample S5 with the parallel light beam X-ray shaped by the reflector 315.
  • the X-ray apparatus 400 detects the X-ray diffracted by the sample S5 with the detector 325.
  • a crystal analyzer can be attached between the sample and the detector 325.
  • the crystal analyzer the above-described high-intensity high-resolution crystal analyzer (CALSA) is preferably used.
  • As the sample S5, a flat plate is used.
  • the sample stage 417 is a horizontal goniometer, for example, and rotates the flat sample S5 in-plane with respect to the surface thereof (in the direction of the arrow shown in FIG. 6).
  • FIG. 7 is a plan view showing a configuration of an X-ray apparatus 500 that applies a parallel light beam to a thin film sample.
  • the X-ray apparatus 500 is configured in the same manner as the X-ray apparatus 200 except for the detector 330, and enables measurement of a thin film sample S6.
  • the detector 330 is a detector for thin film measurement.
  • the reflector 315 shapes the divergent X-ray emitted from the focal point 110 into a parallel light beam, and the obtained parallel light beam is incident on the surface of the sample S6 from a low angle direction. As a result, X-rays can be incident on an area having a large surface area, and high-intensity X-rays can be detected.
  • the X-ray apparatus of the present invention can be used for structural analysis of powder samples and thin film samples, and can be used in various ways depending on the purpose of the user.
  • switching between the high resolution BB method using the K ⁇ 1 line, the parallel beam method using a parabolic mirror, and the transmission Debye camera method using a condensing method using an elliptical condensing mirror does not change the optical system and sample position. It can be done easily.
  • high-resolution powder X-ray diffraction effective for powder structure analysis and Rietveld analysis can be measured with relatively strong intensity.
  • a beam can be collected on a detector and a transmission optical system using a capillary can be used.
  • high-accuracy lattice constant measurement (temperature change) by the parallel beam method can be easily used.
  • the X-ray apparatus has a switching mechanism, and the X-ray is applied to the sample via the reflector using the same apparatus.
  • the X-ray path for irradiating the sample and the X-ray path for irradiating the sample with X-rays without using a reflector may be switched.
  • the reflector can also be switched between an X-ray path via a reflector that shapes the light beam into a parallel light beam and an X-ray path that passes through the reflector that shapes the light beam.
  • an X-ray path switching mechanism for example, a mechanism for selecting an X-ray path by opening and closing a slit can be considered.
  • X-ray apparatus 100, 200, 300, 400, 500 X-ray apparatus 101 X-ray source 105 Spectrometer 107 Slit (selection unit) 110 Focal point 111 K ⁇ 2 focal position 115, 315 Reflector 117, 417 Sample stage 120, 320, 325, 330 Detector 122 Detection element 124 Detection circuit 126 Unit detection area 202 Slit C1 Roland circle C2 Focus circles S1 to S6 Sample

Abstract

 エネルギー幅の狭い仮想線源を生成し、高分解能なX線回折測定を可能にするX線装置、その使用方法およびX線照射方法を提供する。X線装置100は、発散X線を分光しつつ集光する分光器105と、集光されたX線の集光位置に設置され、特定範囲の波長のX線を選択して通過させ、仮想線源を生成する選択部107を備える。これにより、狭いエネルギー幅を有する仮想線源を焦点110に生成することができ、その仮想線源により、高分解能のX線回折測定が可能になる。X線装置100を用いることで、たとえば、Kα1線とKα2線ほどの極めて狭いエネルギー幅のX線を十分に分離できる。また、連続X線の一部を切り出して仮想線源とすることもできる。

Description

X線装置、その使用方法およびX線照射方法
 本発明は、高分解能でX線回折を計測できるX線装置、その使用方法およびX線照射方法に関する。
 従来、試料に平行X線ビームを照射すると共に、回折X線を2次元X線検出器で検出する平行ビーム法と、試料に発散ビームを当て、焦点円上に集中する回折X線を0次元または1次元X線検出器により検出する集中法(いわゆるブラッグ・ブレンターノ光学系(B-B光学系))が知られている。これらの方法で測定する際には各光学系を構成する必要があり、基本的には別装置が用いられる。これに対し、平行ビーム法と集中法との両方に基づいて測定できる装置が提案されている(たとえば、特許文献1参照)。
 また、試料上の狭い領域にX線ビームを集光して当てるために、X線源から発散するX線をヨハンソン型結晶を用いて、試料上の一点に集光して、試料のその点からのX線回折を測定する装置が提案されている(たとえば特許文献2参照)。
米国特許第6807251号明細書 欧州特許出願公開第1571441号明細書
 しかしながら、試料位置の1点にX線を集光した光学系で得られる回折X線強度は、試料位置で広い領域にX線を照射する光学系に比べて格段に弱い。一方、通常の集中法(B-B法)では、X線回折の角度分解能が低い。近年、粉末X線回折により結晶構造解析が可能になり、解析精度の向上が期待されている。しかし、狭いエネルギー幅を分離できる光学系で十分なX線回折強度が得られるように試料上で広い照射領域を実現する装置が必要であり、なおかつ、多様な試料(試料のX線吸収係数の大小や、結晶性の良し悪し)に対応するために平行ビームとの切り換えを実現する必要があった。
 本発明は、このような事情に鑑みてなされたものであり、エネルギー幅の狭い仮想線源を生成し、高分解能なX線回折測定を可能にするX線装置、その使用方法およびX線照射方法を提供することを目的とする。
 (1)上記の目的を達成するため、本発明に係るX線装置は、X線源からの発散X線を分光しつつ集光する分光器と、前記集光されたX線の集光位置に設置され、特定範囲の波長のX線を選択して通過させ、仮想線源を生成する選択部を備えることを特徴としている。このようにして選択部を通過したX線をそのまま試料に照射してもよいし、反射器で整形してもよい。これにより、狭いエネルギー幅を有する仮想線源を生成することができ、その仮想線源により、高分解能のX線回折測定が可能になる。たとえば、特性X線を選択して仮想線源とすることもできるし、連続X線の一部を切り出して仮想線源とすることもできる。なお、選択部としては、スリット、ナイフエッジ、またはブロックのような細長孔を有する絞りが挙げられる。
 (2)また、本発明に係るX線装置は、前記選択部を通過したX線を整形する1または2以上の反射器を更に備えることを特徴としている。これにより、反射器への入射X線を平行光ビームまたは集光ビームに整形することができる。
 (3)また、本発明に係るX線装置は、前記反射器が、前記選択部を通過したX線を整形し、平行光ビームを発生させることを特徴としている。これにより、強度の大きい狭い範囲の波長を有する平行光ビームを発生させ、平行ビーム法を用いた高分解能のX線回折計測をすることができる。
 (4)また、本発明に係るX線装置は、前記反射器が、前記選択部を通過したX線を整形し、集光ビームを発生させることを特徴としている。これにより、強度の大きい狭い範囲の波長を有する集光ビームを発生させ、集光ビーム法を用いた高分解能のX線回折計測をすることができる。
 (5)また、本発明に係るX線装置は、前記分光器が、固定され、前記反射器が、入射X線を集光ビームに整形するものと入射X線を平行ビームに整形するものとを交換可能であることを特徴としている。このように反射器が交換可能であるため、分光器の配置を変えることなく、平行光ビームと集光ビームを用いることができる。
 (6)また、本発明に係るX線装置は、前記仮想線源から出射されたX線を集光ビームに整形する経路と、前記仮想線源から出射されたX線を平行ビームに整形する経路との間で経路の切換えを可能にする切換え機構を更に備えることを特徴としている。これにより、分光器の配置を変えることなく、平行光ビームと集光ビームとを容易に切り換えることが可能になる。
 (7)また、本発明に係るX線装置は、前記1または2以上の反射器として、前記選択部を通過したX線を整形し、平行光ビームを発生させる反射器と、前記選択部を通過したX線を整形し、集光ビームを発生させる反射器とを備え、前記切換え機構は、前記反射器を介して平行光ビームを発生させる経路、前記反射器を介して集光ビームを発生させる経路および前記反射器を介さずに集光ビームを発生させる経路のうちで経路の切換えを可能にすることを特徴としている。これにより、反射器を用いる場合と用いない場合との切換えや平行光ビームと集光ビームとの切換えが容易になる。
 (8)また、本発明に係るX線装置は、前記反射器は、多層膜ミラーであることを特徴としている。これにより、反射器へのX線の入射位置により格子定数を変化させることができる。そのため、入射角が変わったときでも格子定数を調整して回折を起こさせることができる。その結果、試料への集光について、特定の波長のX線のみを選択的に取り出し、角度分解能の良い測定が可能になる。
 (9)また、本発明に係るX線装置は、前記発散X線として、特性X線を発生させるX線源を更に備えることを特徴としている。これにより、分光された特性X線群の1本を選択部で分離し、狭いエネルギー幅の強度の大きい仮想線源を生成でき、高分解能のX線回折が可能になる。
 (10)また、本発明に係るX線装置は、前記分光器は、ヨハン型分光器またはヨハンソン型分光器であることを特徴としている。これにより、分光器表面で回折されたビームが赤道面(軸に垂直な平面)上で焦点を結び、X線源からの発散ビームの発散角の大きい部分を利用できるので、効率のよい分光器として用いることが容易になる。
 また、前記分光器が、ヨハンソン型分光器である場面は、ローランド円C1の曲率半径をRとしたとき、分光器の表面曲率は半径Rに沿っているが、分光器のX線分光に寄与する結晶格子面の曲率半径は、Rの2倍(2R)になっている。そのため、分光器で回折されたビームが赤道面(軸に垂直な平面)上で、ヨハン型分光器に比べ、さらに厳密に焦点を結ぶため、発散角の大きい部分を発散光として用いることがさらに容易になり望ましい。
 (11)また、本発明に係るX線装置は、前記反射器により集光され、試料を透過または反射したX線を検出する検出器を更に備え、前記検出器は、平行に配置された細長の単位検出領域を有し、前記単位検出領域で受光したX線を電気信号に変換し、前記電気信号を検出することでエネルギーが上限値と下限値の間にあるX線を弁別可能であることを特徴としている。これにより、一次元の高分解能の検出器により、高角度分解能で高検出強度のX線回折線測定を行うことができる。
 (12)また、本発明に係るX線装置の使用方法は、上記のX線装置で、前記選択部により特定範囲の波長のX線を分離することを特徴としている。選択部によりKα1を選別することで、強度の大きい仮想線源を生成でき、高分解能のX線回折が可能になる。
 (13)また、本発明に係るX線照射方法は、分光器により、発散X線を分光しつつ集光し、前記集光されたX線の集光位置で特定範囲の波長のX線を選択して通過させて、仮想線源を生成することを特徴としている。これにより、狭いエネルギー幅を有する仮想線源を生成することができ、その仮想線源により、高分解能のX線回折測定が可能になる。
 本発明によれば、エネルギー幅の狭い仮想線源を生成し、高分解能なX線回折測定を可能にする。
第1の実施形態に係るX線装置の構成を示す平面図である。 検出器の構成を示す概略図である。 第2の実施形態に係るX線装置の構成を示す平面図である。 第2の実施形態の変形例に係るX線装置の構成を示す平面図である。 第3の実施形態に係るX線装置の構成を示す平面図である。 第3の実施形態に係るX線装置の構成を示す平面図である。 第3の実施形態に係るX線装置の構成を示す平面図である。 第3の実施形態に係るX線装置の構成を示す平面図である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。
 [第1の実施形態]
 (全体構成)
 図1は、X線装置100の構成を示す概略図である。図1に示すように、X線装置100は、X線源101、分光器105、スリット107、反射器115、試料台117および検出器120を備えており、試料S1の測定を可能にしている。図1に示す例は、集光ビームを用いて透過法を行う光学系である。
 X線源101は、発散X線を発生させる。陽極金属としては銅を用いることができる。その他、特性X線を発生させる金属としては、クロム、鉄、コバルト、ガリウム、モリブデン、銀、タングステン、金が挙げられる。このような陽極金属を用いる場合には、強度の大きい特性X線を利用し、仮想線源とすることが可能になる。特性X線としては電子軌道のエネルギー準位差に起因するKα1、Kα2線やLα1、Lα2線、Lβ1、Lβ3、Lβ4線などが生じるが、それらのエネルギーは極めて近接している。たとえば銅のKα1線のエネルギーは、8.0478keVであり、Kα2線のエネルギーは、8.0280keVであり、その差は、わずか19.8×10-3keVである。
 分光器105は、発散X線を分光しつつ集光する。分光器105は、X線源101の管球の近くに配置される。後述するように、反射器115を取り換え可能にしている一方で、分光器105の配置は変えない。これにより、平行ビーム法および集光法を同一装置で簡易に行うことができ、ユーザの利便性が向上する。
 エネルギー幅の狭い仮想線源を生成し、平行ビーム法および集光法のいずれにも対応できる光学系は従来には存在しない。焦点位置の非対称なヨハンソン型結晶で集光点を検出器上に集光させる光学系と、焦点位置の非対称なヨハンソン型結晶で、その集光位置を擬似的に無限長にした光学系とを、2系統用意して、それらを移動交換し、集光法と平行ビーム法を実現する方法は、高精度測定システムとしては現実的でない。それは高精度で配置されたヨハン型結晶やヨハンソン型結晶を移動することは極めて困難だからである。また、ヨハン型結晶やヨハンソン型結晶により、離れた位置に焦点を結ぶ系を構成する場合には、集光が不十分となり、精度が低下する。X線装置100は、分光器105の配置を変えることなく、平行ビーム法および集光法により高分解能なX線回折測定を可能にしている。
 Kα1線の焦点110にKα2線の成分が含まれないようにし、かつ一定以上のX線強度を確保するためには、分光器105として高精度な結晶を用いることが好ましい。また、X線を分光しつつ集光するためには、分光器105として湾曲結晶が用いられることが好ましい。湾曲結晶としては、たとえばヨハン型結晶やヨハンソン型結晶が挙げられる。
 ヨハン型結晶およびヨハンソン型結晶は、いずれも入射側焦点位置(X線源101)および出射側焦点位置(焦点110)と反射位置の3点を通るローランド円C1の2倍の曲率で結晶格子面を湾曲させた結晶である。ヨハン型結晶やヨハンソン型結晶の材料としてはゲルマニウムやシリコンが挙げられる。なお、ヨハンソン型結晶は、表面がローランド円C1の曲率で研磨された形状を有し、非点収差がない。したがって、ヨハンソン型結晶の表面で回折されたビームは、赤道面(軸に垂直な平面)上で厳密に焦点を結ぶ。このような特徴により、ヨハンソン型結晶を用いる場合には発散角の大きいX線を利用し易い。なお、ヨハンソン型結晶は高精度で配置されるものであるため、X線回折試料の測定条件変更に伴い、移動や交換操作が不要なことが好ましい。
 スリット107(選択部)は、集光されたX線の集光位置に設置され、特定範囲の波長のX線を通過させる。その結果、その集光位置で選択された狭いエネルギー幅の仮想線源を作ることができる。たとえば、Kα1線とKα2線が含まれている特性X線ビームからKα1線のみを分離して取り出し、仮想線源とすることも可能となる。さらに分離線は、エネルギー差が近いL系列のX線同士の分離させた仮想線源や、連続X線の一部を分離させて、仮想線源とすることも可能となる。なお、スリットに代えて、ナイフエッジやブロックを用いてもよい。
 反射器115は、スリット(選択部)を通過したX線を反射し、整形する。反射器115は、スリットを通過したX線を集光ビームに整形するものと、平行光ビームに整形するもののいずれかであって、交換により選択可能となっている。たとえば、図1に示す反射器115は、入射X線を集光ビームに整形している。集光ビームの発生に好適な反射器115として楕円ミラーが挙げられる。集光ビームを用いる場合には、高分解能の解析が可能になる。
 具体的な反射器115としては、多層膜ミラーが挙げられる。多層膜ミラーを用いると反射器115へのX線の入射位置により格子定数を変化させることができる。その結果、検出器への集光について、特定の波長のX線のみを選択的に取り出し、角度分解能の良い測定が可能になる。なお、反射器115に代えて、入射X線を整形しない平板のミラーを配置することでも精度を向上させることは可能であるが、その場合X線の強度が小さくなりすぎ、適当とはいえない。
 試料台117は、試料S1を支持し、測定時には試料S1を中心軸回りに回転させる。試料S1には、反射器115により整形されたX線が照射される。試料S1は、用途に応じた形態をとるが、たとえば粉末法を行う場合にはキャピラリに粉末を封入したものを用いる。
 検出器120は、焦点円C2上に設置され、試料S1を透過または反射したX線を検出する。検出器120は、高分解能な1次元検出器であることが好ましい。図2は、検出器120の構成の一例を示す図である。検出器120は、平行に配置された細長の単位検出領域で受光したX線を電気信号に変換し、電気信号を検出することでエネルギーが上限値と下限値の間にあるX線を弁別する。
 検出器120は、シリコン・ストリップ検出器(Silicon Strip Detector: SSD)であり、検出素子122および検出回路124を備えている。検出素子122は、複数の細長の単位検出領域126を有し、単位検出領域126は図中のX方向に細長く延びている。そのサイズは、たとえば、長さLが約20mmで、幅Wが約0.1mmである。これらの単位検出領域126が互いに平行に配置されている。検出器120は、Y方向の検出位置を高精度で区別できる1次元の位置感応型検出器である。
 それぞれの単位検出領域126は、検出回路124に接続されている。単位検出領域126は、X線の光子をひとつずつ検出する機能を有し、受光したX線のエネルギーに応じた電気信号を出力する。検出回路124は、所定の上限値と下限値の間のX線エネルギーに相当する信号だけをカウントする。所定の上限値と下限値は、ユーザが任意に設定できる。これにより、高いエネルギー分解能で測定できる。このように、エネルギー幅の極めて狭いX線を試料に当てて回折させ、回折されたX線を高分解能の検出器120で検出することで、高精度な測定が可能となる。
 [第2の実施形態]
 上記の実施形態の対象は、反射器115により整形された集光ビームを用いて透過法を行う光学系であるが、スリット107(選択部)を通過した集光ビームをそのまま試料に照射してもよい。図3Aは、反射器115を用いないX線装置200の構成を示す平面図である。また、図3Bは、図3Aが示すX線装置200を変形した実施形態を示す平面図である。図3Aに示すX線装置200ではスリット202がローランド円C1内に配置されるのに対し、図3Bに示すX線装置200ではスリット202が焦点円C2内に配置されている。図3Aおよび図3Bに示すように、X線装置200は、X線源101、スリット202、分光器105、スリット107、試料台117および検出器120を備えており、試料S2の測定を可能にしている。分光器105の大きさを適切なものにすれば、スリット202は必要がない。すなわち、スリット202は必須の構成要素部品ではない。X線源101からのX線は分光器105で反射され、特定範囲の波長のX線のみが、スリット107を通過する。そして、スリット107を通過したX線は、試料S2に照射され、試料S2で反射されたX線が検出器120で検出される。このような構成により、たとえばスリット107の位置を厳密にKα1線の焦点110の位置に合わせると、Kα2線はその焦点111の位置でスリットを通過できないため、Kα1線とKα2線を分離することが可能である。このことは、第1の実施形態におけるKα1線とKα2線との分離形態にもあてはまる。
 [第3の実施形態]
 上記の実施形態では、入射X線を集光ビームに整形しているが、反射器を交換することで平行光ビームに整形することも可能である。その場合には平行ビーム法により、試料の構造解析を行うことができる。
 図4は、入射X線を平行光ビームに整形する反射器315を備えるX線装置300の構成を示す平面図である。図4に示すように、X線装置300は、X線源101、分光器105、スリット107(選択部)、反射器315、試料台117および検出器320を備えており、試料S3の測定を可能にしている。装置構成は概ねX線装置100と同様であり、反射器315および検出器320が異なっている。
 反射器315は、入射X線を平行光ビームに整形する。反射器315には、たとえば、放物面ミラーが用いられる。なお、反射器315と反射器115とは取り換え可能となっている。試料S3は、透過法用に準備された構造解析のための試料であり、粉末結晶等が用いられる。検出器320は、2次元検出器であることが好ましい。
 図5は、デバイシェーラー法により測定を行う場合のX線装置300を示している。X線装置300は、反射器315で整形した平行光ビームX線を試料S4に照射する。X線装置300は、試料S4で回折したX線を検出器325で検出する。試料と検出器325との間に、結晶アナライザーを装着することができる。結晶アナライザーとしては、米国特許出願公開第2009/0086921号明細書で開示されている高強度高分解能結晶アナライザ(CALSA)を用いることが好ましい。試料S4としては、キャピラリに粉末を封入したものを用い、試料台117はキャピラリの軸回りに回転させる(図5に示す矢印方向)。
 図6は、試料水平ゴニオメータを用いたデバイシェーラー法により測定を行う場合のX線装置400を示している。X線装置400は、反射器315で整形した平行光ビームX線を試料S5に照射する。X線装置400は、試料S5で回折したX線を検出器325で検出する。試料と検出器325との間には、結晶アナライザーを装着することができる。結晶アナライザーとしては前記の高強度高分解能結晶アナライザ(CALSA)を用いることが好ましい。試料S5としては、平板状のものを用いる。試料台417は、たとえば水平ゴニオメータであり、平板状の試料S5をその表面に対して面内回転させる(図6に示す矢印方向)。
 図7は、平行光ビームを薄膜試料に当てるX線装置500の構成を示す平面図である。図7に示すように、X線装置500は、検出器330以外はX線装置200と同様に構成され、薄膜の試料S6の測定を可能にしている。検出器330は、薄膜測定用の検出器である。焦点110からの放射される発散X線を反射器315が平行光ビームに整形し、得られた平行光ビームを試料S6の表面へ低角度方向から入射させる。その結果、広い表面積の領域にX線を入射させることができ、高強度のX線を検出することができる。
 このように、本発明のX線装置は、粉末試料や薄膜試料の構造解析に用いることができ、ユーザの目的により多様に利用できる。また、Kα1線による高分解能B-B法、放物面ミラーによる平行ビーム法、楕円集光ミラーによる集光法を利用した透過型デバイカメラ法などの切り替えが、光学系および試料位置を変えないで、容易にできる。
 また、粉末構造解析やリートベルト解析に有効な高分解能の粉末X線回折が比較的強い強度で測定できる。反射法では分解能が低下する軽元素(有機結晶)試料においては、検出器上でビームを集光し、キャピラリを用いた透過光学系を用いることもできる。また、平行ビーム法による、高精度格子定数測定(温度変化)も容易に利用できる。
 以上の実施形態では、反射器を用いる場合と用いない場合とで別個の構成として説明しているが、X線装置が切換え機構を有し、同一の装置で反射器を介して試料にX線を照射するX線経路と反射器を介さずに試料にX線を照射するX線経路とを切り換え可能にしてもよい。また、反射器についても、平行光ビームに整形する反射器を介するX線経路と集光ビームに整形する反射器を介するX線経路とを切換え可能にすることもできる。このようなX線経路の切換え機構としては、たとえばスリットの開閉によりX線の経路を選択するものが考えられる。
100、200、300、400、500 X線装置
101 X線源
105 分光器
107 スリット(選択部)
110 焦点
111 Kα2の焦点位置
115、315 反射器
117、417 試料台
120、320、325、330 検出器
122 検出素子
124 検出回路
126 単位検出領域
202 スリット
C1 ローランド円
C2 焦点円
S1~S6 試料

Claims (13)

  1.  発散X線を分光しつつ集光する分光器と、
     前記集光されたX線の集光位置に設置され、特定範囲の波長のX線を選択して通過させ、仮想線源を生成する選択部を備えることを特徴とするX線装置。
  2.  前記選択部を通過したX線を整形する1または2以上の反射器を更に備えることを特徴とする請求項1記載のX線装置。
  3.  前記反射器は、前記選択部を通過したX線を整形し、平行光ビームを発生させることを特徴とする請求項2記載のX線装置。
  4.  前記反射器は、前記選択部を通過したX線を整形し、集光ビームを発生させることを特徴とする請求項2記載のX線装置。
  5.  前記分光器は、固定され、
     前記反射器は、入射X線を集光ビームに整形するものと入射X線を平行ビームに整形するものとを交換可能であることを特徴とする請求項2記載のX線装置。
  6.  前記仮想線源から出射されたX線を集光ビームに整形する経路と、前記仮想線源から出射されたX線を平行ビームに整形する経路との間で経路の切換えを可能にする切換え機構を更に備えることを特徴とする請求項2記載のX線装置。
  7.  前記1または2以上の反射器として、前記選択部を通過したX線を整形し、平行光ビームを発生させる反射器と、前記選択部を通過したX線を整形し、集光ビームを発生させる反射器とを備え、
     前記切換え機構は、前記反射器を介して平行光ビームを発生させる経路、前記反射器を介して集光ビームを発生させる経路および前記反射器を介さずに集光ビームを発生させる経路のうちで経路の切換えを可能にすることを特徴とする請求項6記載のX線装置。
  8.  前記反射器は、多層膜ミラーであることを特徴とする請求項2記載のX線装置。
  9.  前記発散X線として、特性X線を発生させるX線源を更に備えることを特徴とする請求項1記載のX線装置。
  10.  前記分光器は、ヨハン型分光器またはヨハンソン型分光器であることを特徴とする請求項1記載のX線装置。
  11.  前記反射器により集光され、試料を透過または反射したX線を検出する検出器を更に備え、
     前記検出器は、平行に配置された細長の単位検出領域を有し、前記単位検出領域で受光したX線を電気信号に変換し、前記電気信号を検出することでエネルギーが上限値と下限値の間にあるX線を弁別可能であることを特徴とする請求項2記載のX線装置。
  12.  請求項8記載のX線装置で、前記選択部により特定範囲の波長のX線を分離することを特徴とするX線装置の使用方法。
  13.  分光器により、発散X線を分光しつつ集光し、
     前記集光されたX線の集光位置で特定範囲の波長のX線を選択して通過させて、仮想線源を生成することを特徴とするX線照射方法。
PCT/JP2010/061198 2009-07-01 2010-06-30 X線装置、その使用方法およびx線照射方法 WO2011002037A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112010001478.7T DE112010001478B4 (de) 2009-07-01 2010-06-30 Verwendung einer Röntgenvorrichtung
US13/142,787 US9336917B2 (en) 2009-07-01 2010-06-30 X-ray apparatus, method of using the same and X-ray irradiation method
EP10794205.4A EP2442097A4 (en) 2009-07-01 2010-06-30 X-RAY DEVICE, ITS METHOD OF USE, AND METHOD OF APPLYING X-RAY
CN201080029423.6A CN102472714B (zh) 2009-07-01 2010-06-30 X射线装置、其使用方法以及x射线照射方法
JP2011520966A JP5525523B2 (ja) 2009-07-01 2010-06-30 X線装置、その使用方法およびx線照射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-157326 2009-07-01
JP2009157326 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011002037A1 true WO2011002037A1 (ja) 2011-01-06

Family

ID=43411107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061198 WO2011002037A1 (ja) 2009-07-01 2010-06-30 X線装置、その使用方法およびx線照射方法

Country Status (6)

Country Link
US (1) US9336917B2 (ja)
EP (2) EP2442097A4 (ja)
JP (1) JP5525523B2 (ja)
CN (1) CN102472714B (ja)
DE (2) DE112010006114A5 (ja)
WO (1) WO2011002037A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339332A2 (de) 2009-12-08 2011-06-29 Bruker AXS GmbH Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
JP2017223638A (ja) * 2015-12-08 2017-12-21 株式会社島津製作所 X線分光分析装置及び元素分析方法
JP2018173403A (ja) * 2017-03-09 2018-11-08 マルバーン パナリティカル ビー ヴィ 高分解能x線回折方法および装置
US11210366B2 (en) 2017-07-14 2021-12-28 Malvern Panalytical B.V. Analysis of X-ray spectra using fitting
JP2023518122A (ja) * 2020-05-18 2023-04-27 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP5838114B2 (ja) 2012-04-02 2015-12-24 株式会社リガク X線トポグラフィ装置
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
JP6395389B2 (ja) 2014-02-05 2018-09-26 浜松ホトニクス株式会社 分光器
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
JP6322172B2 (ja) * 2015-09-11 2018-05-09 株式会社リガク X線小角光学系装置
US11054375B2 (en) 2016-09-15 2021-07-06 University Of Washington X-ray spectrometer and methods for use
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
CN106802428B (zh) * 2017-01-19 2019-01-01 中国科学院上海应用物理研究所 一种耐辐射和高热负载的x射线成像探测器
WO2018175570A1 (en) * 2017-03-22 2018-09-27 Sigray, Inc. Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
EP3627146A4 (en) * 2017-05-18 2020-05-13 Shimadzu Corporation X-RAY SPECTROMETER
WO2019064360A1 (ja) 2017-09-27 2019-04-04 株式会社島津製作所 X線分光分析装置、及び該x線分光分析装置を用いた化学状態分析方法
JP6937025B2 (ja) * 2018-03-20 2021-09-22 株式会社リガク X線回折装置
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
CN112638261A (zh) 2018-09-04 2021-04-09 斯格瑞公司 利用滤波的x射线荧光的系统和方法
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
WO2021162947A1 (en) 2020-02-10 2021-08-19 Sigray, Inc. X-ray mirror optics with multiple hyperboloidal / hyperbolic surface profiles
DE112021004828T5 (de) 2020-09-17 2023-08-03 Sigray, Inc. System und verfahren unter verwendung von röntgenstrahlen für tiefenauflösende messtechnik und analyse
KR20230109735A (ko) 2020-12-07 2023-07-20 시그레이, 아이엔씨. 투과 x-선 소스를 이용한 고처리량 3D x-선 이미징 시스템
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313458A (ja) * 1995-05-17 1996-11-29 Rigaku Corp X線装置
JPH10318945A (ja) * 1997-05-16 1998-12-04 Toyota Motor Corp 軟x線反射率測定方法とそのための装置
US6807251B2 (en) 2001-12-28 2004-10-19 Rigaku Corporation X-ray diffraction apparatus
EP1571441A1 (en) 2004-03-01 2005-09-07 Panalytical B.V. Monitoring epitaxial growth in situ by means of an angle dispersive X-ray diffractometer
WO2006022333A1 (ja) * 2004-08-27 2006-03-02 Tohoku University 曲率分布結晶レンズ、曲率分布結晶レンズを有するx線装置及び曲率分布結晶レンズの作製方法
JP2009002805A (ja) * 2007-06-21 2009-01-08 Rigaku Corp 小角広角x線測定装置
US20090086921A1 (en) 2007-09-28 2009-04-02 Rigaku Corporation X-ray diffraction apparatus and x-ray diffraction method
JP2009085669A (ja) * 2007-09-28 2009-04-23 Rigaku Corp X線回折装置およびx線回折方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735330A (en) * 1956-02-21 Spectrog
US1571441A (en) 1924-05-28 1926-02-02 Eastman Machine Co Knife for cloth-cutting machines or the like
US2741941A (en) * 1950-06-15 1956-04-17 Beckman Instruments Inc Spectrophotometer with slit-width control
US2995973A (en) * 1959-10-23 1961-08-15 Barnes Eng Co In-line spectrometer
DE1124720B (de) * 1960-09-23 1962-03-01 Dr Heinz Jagodzinski Kleinwinkelkamera
US3460892A (en) * 1966-05-27 1969-08-12 Warner Swasey Co Rapid scan spectrometer that sweeps corner mirrors through the spectrum
US3628040A (en) * 1969-05-19 1971-12-14 Massachusetts Inst Technology High-dispersion, high-resolution x-ray spectrometer having means for detecting a two-dimensional spectral pattern
DE2907160C2 (de) * 1979-02-23 1986-09-25 Siemens AG, 1000 Berlin und 8000 München Röntgen-Pulverdiffraktometer
DE2933047C2 (de) 1979-08-16 1982-12-30 Stoe & Cie. GmbH, 6100 Darmstadt Verfahren und Vorrichtung der Röntgendiffraktion
NL8302263A (nl) * 1983-06-27 1985-01-16 Philips Nv Roentgen analyse apparaat met dubbel gebogen monochromator kristal.
DE3442061A1 (de) * 1984-11-17 1986-05-28 Erno Raumfahrttechnik Gmbh, 2800 Bremen Verfahren zum zerstoerungsfreien pruefen inhomogener werkstoffe
DE4407278A1 (de) * 1994-03-04 1995-09-07 Siemens Ag Röntgen-Analysegerät
EP0873565B1 (de) * 1996-01-10 1999-10-20 Bastian Niemann Kondensor-monochromator-anordnung für röntgenstrahlung
DE19820861B4 (de) * 1998-05-09 2004-09-16 Bruker Axs Gmbh Simultanes Röntgenfluoreszenz-Spektrometer
DE19833524B4 (de) 1998-07-25 2004-09-23 Bruker Axs Gmbh Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
US7248667B2 (en) * 1999-05-04 2007-07-24 Carl Zeiss Smt Ag Illumination system with a grating element
US6697454B1 (en) * 2000-06-29 2004-02-24 X-Ray Optical Systems, Inc. X-ray analytical techniques applied to combinatorial library screening
US6829327B1 (en) * 2000-09-22 2004-12-07 X-Ray Optical Systems, Inc. Total-reflection x-ray fluorescence apparatus and method using a doubly-curved optic
US6870896B2 (en) 2000-12-28 2005-03-22 Osmic, Inc. Dark-field phase contrast imaging
DE10107914A1 (de) * 2001-02-14 2002-09-05 Fraunhofer Ges Forschung Anordnung für röntgenanalytische Anwendungen
US6816570B2 (en) * 2002-03-07 2004-11-09 Kla-Tencor Corporation Multi-technique thin film analysis tool
DE10236640B4 (de) * 2002-08-09 2004-09-16 Siemens Ag Vorrichtung und Verfahren zur Erzeugung monochromatischer Röntgenstrahlung
JP2004333131A (ja) 2003-04-30 2004-11-25 Rigaku Corp 全反射蛍光xafs測定装置
US7415096B2 (en) * 2005-07-26 2008-08-19 Jordan Valley Semiconductors Ltd. Curved X-ray reflector
US7412030B1 (en) * 2006-03-03 2008-08-12 O'hara David Apparatus employing conically parallel beam of X-rays
JP4860418B2 (ja) * 2006-10-10 2012-01-25 株式会社リガク X線光学系
CN101093200B (zh) 2007-05-14 2011-06-29 北京逸东机电技术开发有限公司 一种x射线的连续衍射分光与探测的控制方法及其装置
JP4861283B2 (ja) * 2007-09-28 2012-01-25 株式会社リガク X線回折装置およびx線回折方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313458A (ja) * 1995-05-17 1996-11-29 Rigaku Corp X線装置
JPH10318945A (ja) * 1997-05-16 1998-12-04 Toyota Motor Corp 軟x線反射率測定方法とそのための装置
US6807251B2 (en) 2001-12-28 2004-10-19 Rigaku Corporation X-ray diffraction apparatus
EP1571441A1 (en) 2004-03-01 2005-09-07 Panalytical B.V. Monitoring epitaxial growth in situ by means of an angle dispersive X-ray diffractometer
WO2006022333A1 (ja) * 2004-08-27 2006-03-02 Tohoku University 曲率分布結晶レンズ、曲率分布結晶レンズを有するx線装置及び曲率分布結晶レンズの作製方法
JP2009002805A (ja) * 2007-06-21 2009-01-08 Rigaku Corp 小角広角x線測定装置
US20090086921A1 (en) 2007-09-28 2009-04-02 Rigaku Corporation X-ray diffraction apparatus and x-ray diffraction method
JP2009085669A (ja) * 2007-09-28 2009-04-23 Rigaku Corp X線回折装置およびx線回折方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442097A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339332A2 (de) 2009-12-08 2011-06-29 Bruker AXS GmbH Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
EP2339332A3 (de) * 2009-12-08 2013-05-29 Bruker AXS GmbH Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
DE102009047672C5 (de) * 2009-12-08 2014-06-05 Bruker Axs Gmbh Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
JP2017223638A (ja) * 2015-12-08 2017-12-21 株式会社島津製作所 X線分光分析装置及び元素分析方法
US10948434B2 (en) 2015-12-08 2021-03-16 Shimadzu Corporation X-ray spectroscopic analysis apparatus and elementary analysis method
JP2018173403A (ja) * 2017-03-09 2018-11-08 マルバーン パナリティカル ビー ヴィ 高分解能x線回折方法および装置
US10753890B2 (en) 2017-03-09 2020-08-25 Malvern Panalytical B.V. High resolution X-ray diffraction method and apparatus
US11210366B2 (en) 2017-07-14 2021-12-28 Malvern Panalytical B.V. Analysis of X-ray spectra using fitting
JP2023518122A (ja) * 2020-05-18 2023-04-27 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法
JP7395775B2 (ja) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法

Also Published As

Publication number Publication date
DE112010001478T5 (de) 2012-08-02
JP5525523B2 (ja) 2014-06-18
DE112010001478B4 (de) 2016-05-04
US9336917B2 (en) 2016-05-10
EP2442097A4 (en) 2014-04-23
EP2442097A1 (en) 2012-04-18
US20110268252A1 (en) 2011-11-03
EP3121592A1 (en) 2017-01-25
CN102472714B (zh) 2014-08-13
CN102472714A (zh) 2012-05-23
DE112010006114A5 (de) 2016-03-17
JPWO2011002037A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5525523B2 (ja) X線装置、その使用方法およびx線照射方法
US20170052128A1 (en) Detector for x-rays with high spatial and high spectral resolution
US7245696B2 (en) Element-specific X-ray fluorescence microscope and method of operation
US6934359B2 (en) Wavelength dispersive XRF system using focusing optic for excitation and a focusing monochromator for collection
US5497008A (en) Use of a Kumakhov lens in analytic instruments
JP2020514764A (ja) X線分光を実施するための方法およびx線吸収分光システム
CN110530907B (zh) X射线吸收测量系统
US20090161829A1 (en) Monochromatic x-ray micro beam for trace element mapping
JP5990734B2 (ja) 蛍光x線分析装置
EP2772752A1 (en) X-ray spectrometry detector device
JP6392850B2 (ja) ビーム生成ユニットおよびx線小角散乱装置
KR100862332B1 (ko) 엑스선 형광분석장치 및 그 장치를 이용한 엑스선 형광분석방법
EP2896960B1 (en) X-ray apparatus for SAXS and Bragg-Brentano measurements
CN110621986B (zh) 执行x射线光谱分析的方法和x射线吸收光谱仪系统
JP2004333131A (ja) 全反射蛍光xafs測定装置
JP5039971B2 (ja) 非走査型波長分散型x線分析装置及びそれを用いた測定方法
Prat et al. A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 1. Principles and implementation
EP4095522B1 (en) X-ray scattering apparatus and x-ray scattering method
JPH08105846A (ja) X線分析装置
CN115931928A (zh) 一种基于椭圆弯晶的x射线吸收谱仪
JPH04299240A (ja) レーザープラズマ軟x線用分光回折装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029423.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13142787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011520966

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100014787

Country of ref document: DE

Ref document number: 112010001478

Country of ref document: DE

REEP Request for entry into the european phase

Ref document number: 2010794205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010794205

Country of ref document: EP