WO2010150537A1 - 耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法 - Google Patents

耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法 Download PDF

Info

Publication number
WO2010150537A1
WO2010150537A1 PCT/JP2010/004176 JP2010004176W WO2010150537A1 WO 2010150537 A1 WO2010150537 A1 WO 2010150537A1 JP 2010004176 W JP2010004176 W JP 2010004176W WO 2010150537 A1 WO2010150537 A1 WO 2010150537A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
plating
plated steel
wire
less
Prior art date
Application number
PCT/JP2010/004176
Other languages
English (en)
French (fr)
Inventor
下田信之
樽井敏三
児玉順一
小坂誠
山崎真吾
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010540981A priority Critical patent/JP4782246B2/ja
Priority to US13/261,050 priority patent/US9243315B2/en
Priority to KR1020117004678A priority patent/KR101302291B1/ko
Priority to EP10791859.1A priority patent/EP2447389A4/en
Priority to CN2010800024561A priority patent/CN102137949B/zh
Publication of WO2010150537A1 publication Critical patent/WO2010150537A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength Zn—Al-plated steel wire for bridges suitable for main cables such as suspension bridges and cable-stayed bridges, a manufacturing method thereof, and a wire for high-strength Zn—Al-plated steel wires for bridges.
  • This application includes Japanese Patent Application No. 2009-151303 filed in Japan on June 25, 2009, Japanese Patent Application No. 2009-151304 filed in Japan on June 25, 2009, and Japanese Patent Application No. 2009-151304 on June 25, 2009. Priority is claimed based on Japanese Patent Application No. 2009-151438 filed in Japan, the contents of which are incorporated herein by reference.
  • Steel wires for bridges used in suspension bridges, cable stayed bridges, etc. are manufactured by subjecting the wire material after hot rolling to patenting, wire drawing, and surface treatment such as hot-dip Zn plating. Yes.
  • the patenting process is a heat treatment for securing the strength of the steel wire and improving the cold workability of the wire drawing.
  • the wire rod after hot rolling is kept as it is in an atmosphere such as air (Stelmore method), molten salt, or boiling water, or after reheating the wire rod, it is put into a Pb bath or the like. A dipping method or the like is employed.
  • the strength of the steel wire is adjusted by cold drawing, and surface treatment is applied to improve the corrosion resistance.
  • the surface treatment for improving the corrosion resistance of the steel wire is hot-dip Zn plating.
  • suspension bridges and cable-stayed bridges are expected to be used for a long period of more than 100 years, and it is an important issue to improve the corrosion resistance of steel wires for bridges. Therefore, steel wires that have been subjected to hot-dip Zn—Al plating with higher corrosion resistance instead of hot-dip Zn plating have been proposed (see, for example, Patent Documents 1 to 3).
  • hot-dip Zn-Al plating in the same process as conventional hot-dip Zn plating. This is because the ammonium chloride flux used for the production of hot-dip Zn-plated steel wire is decomposed in a Zn—Al plating bath containing Al. For example, when a hot-dip Zn—Al plated steel wire is manufactured by the flux method using ammonium chloride, defects such as non-plating may occur.
  • the Fe—Zn alloy layer formed at the interface between the hot-dip Zn-plated steel wire and the steel wire further grows when immersed in a hot-dip Zn—Al plating bath at around 450 ° C.
  • a hot-dip Zn—Al plating bath at around 450 ° C.
  • this method has been proposed a method of suppressing the growth of the Fe—Zn alloy layer by performing hot Zn—Al plating after electro Zn plating (see, for example, Patent Document 6).
  • this method is also disadvantageous in terms of manufacturing cost because it requires more steps.
  • JP-A-5-156418 Japanese Patent Laid-Open No. 7-18590 Japanese Patent Laid-Open No. 6-235054 JP 2002-371343 A JP 2003-129205 A JP 2003-155549 A JP-A-8-53779
  • One embodiment of the present invention solves the problems in producing a Zn—Al plated steel wire having excellent corrosion resistance by a one-bath method, refines the Al-rich phase (Al-rich primary crystal) of the plating layer, and The formation of an alloy layer at the interface between the steel wire and the steel wire is suppressed, and a molten Zn—Al-based plated steel wire for bridges having high corrosion resistance and fatigue properties significantly exceeding those of a conventional Zn—Al plated steel wire is provided.
  • a wire diameter used in a suspension bridge or a cable-stayed bridge is 4 to 8 mm, and a tensile strength is 1500 MPa to 1800 MPa, 1800 MPa to 2000 MPa, or 2000 MPa, It is possible to provide a high-strength Zn-Al plated steel wire for bridges having excellent corrosion resistance and fatigue characteristics obtained by applying Zn-Al plating to the surface of the steel wire.
  • the other aspect of this invention can provide the manufacturing method of the said plated steel wire, and the wire which is the raw material of the said plated steel wire.
  • the present invention is a high-strength Zn-Al plating in which fatigue strength is also improved by applying one-step Zn-Al plating using a flux to a high-strength steel wire, that is, Zn-Al plating excellent in corrosion resistance by a one-bath method. It is a plated steel wire.
  • Inventors of the present invention in this plated steel wire, the structure of the plated layer of Zn—Al plating and the state of the alloy layer formed at the interface between the plated layer and the steel wire are important for achieving both corrosion resistance and fatigue characteristics. I found out.
  • the inventors have further found out that it is important to optimally control the structure of the wire rod, which is a material, in order to prevent the ductility from being lowered due to the increase in strength of the plated steel wire for bridges.
  • the present invention has been made based on these findings.
  • the gist of the present invention is as follows.
  • a plated steel wire includes a steel wire; a plated main body layer, and an Fe—Al-based alloy generated layer generated at an interface between the surface layer of the steel wire and the plated main body layer.
  • a high-strength Zn-Al-plated steel wire for bridges comprising: Zn-Al plating, wherein the composition of the parent phase of the steel wire is mass% and C is 0.70% or more and 1.2% or less, Si is 0.01% or more and 2.5% or less, Mn is 0.01% or more and 0.9% or less, P is 0.02% or less, S is 0.02% or less, and N is 0.01 %, And the balance contains Fe and unavoidable impurities; in the metallographic composition of the parent phase of the steel wire, it is the type of the structure containing the most drawn wire pearlite structure; the Zn-Al plating
  • the average component composition is 3.0% by mass, contains Al in the range of 3.0 to 15.0%, and contains Fe in 3.0%
  • the primary crystal diameter in the plating main body layer is 10 ⁇ m or less; the fraction of the drawn pearlite structure in the metal structure composition of the parent phase of the steel wire May be 90% or more.
  • the metal structure composition of Fe-Al alloy produced layer, the columnar crystals of Al 3.2 Fe layer and Al 5 Fe 2 columnar crystals of It may be the type of tissue that contains the most layers.
  • the average composition of the Zn—Al plating may further include 0.01% to 2.0% of Si by mass%.
  • an Al 3.2 Fe layer in the metallographic composition of the Fe—Al-based alloy generation layer, an Al 3.2 Fe layer, an Al 5 Fe 2 columnar crystal layer, and an Fe—Al It may be a type of structure containing the largest amount of -Si granular crystal layers.
  • the composition of the parent phase of the steel wire is further mass%, Cr is 0% or more and 0.5% or less, Ni Is 0% to 1.0%, Cu is 0% to 0.5%, Mo is 0% to 0.5%, V is 0% to 0.5%, and B is 0% to 0.5%. You may contain 1 type (s) or 2 or more types among 0070% or less.
  • the component composition of the parent phase of the steel wire is further mass%, Al is 0% or more and 0.1% or less, Ti 0% or more and 0.1% or less, Nb 0% or more and 0.05% or less, and Zr 0% or more and 0.1% or less.
  • the minimum value of the number of twists until breakage by a torsion test may be 18 times or more.
  • the ratio of the partial flake tensile fatigue limit to the tensile strength may be 0.22 or more.
  • a production method is a method for producing a plated steel wire according to any one of (1) to (10) above, wherein the steel wire is drawn at a temperature of 250 ° C. or lower.
  • the steel material after the wire drawing is mass%, and Al is 3.0% or more and 15.0% or less.
  • the method for producing a plated steel wire according to the above (11) includes a step of hot rolling a steel material; and a patenting treatment in which the steel material is immersed in a salt bath of 500 ° C. or more and 600 ° C. or less following the hot rolling. And may also be included.
  • the molten Zn—Al bath further contains, by mass%, Si: 2.0% or less. ), (5), and (7) to (10) may be produced.
  • the amount of Al in the molten Zn-Al bath is 6.0% to 15.0% by mass%
  • the plated steel wire of any of (6) to (10) above may be manufactured.
  • a roller straightening process and a heat treatment of holding at 400 to 500 ° C. for 1 to 60 s One or both may be applied.
  • % of the composition means “mass%”.
  • a plated steel wire having a tensile strength of 1500 MPa to 1800 MPa is “1500 MPa class”
  • a plated steel wire having a tensile strength of 1800 MPa to 2000 MPa is “1800 MPa class”
  • a plated steel wire having a tensile strength of over 2000 MPa are classified as “2000 MPa class”.
  • C is an element effective for increasing the tensile strength after the patenting treatment and increasing the work hardening rate during wire drawing.
  • the addition of C makes it possible to increase the strength of the steel wire with less wire drawing distortion and contribute to the improvement of fatigue characteristics.
  • the C content is limited to a range of 0.70 to 1.2%.
  • the C content may be further limited to a range of 0.70 to 0.95%.
  • the C content may be further limited to a range of 0.8 to 1.0%.
  • the C content may be further limited to a range of 0.9 to 1.2%.
  • the amount of C of the plated steel wire is equal to or more than the lower limit of the above range, the tensile strength of the wire after the patenting treatment is sufficiently secured when other alloy elements are added, and the wire drawing work hardening rate is also sufficiently large. Value, and the desired high strength steel wire for bridges can be obtained.
  • the amount of C is less than or equal to the upper limit of the above range, the processing cost for reducing the center segregation is in an acceptable range.
  • the Si amount is limited to 0.01 to 2.5%.
  • the Si content may be further limited to a range of 0.01 to 0.5%.
  • the Si content may be further limited to a range of 0.5 to 1.5%, more preferably 0.7 to 1.5%.
  • the Si content may be further limited to a range of more than 0.8 to 2.5%. Since Si is a deoxidizer and is an element effective for strengthening ferrite in pearlite, the amount of Si is set to be not less than the lower limit of the above range. On the other hand, even if Si exceeding the upper limit of the above range is added, the effect is saturated. Since Si is also effective in suppressing the strength reduction of the steel wire when heated in the plating bath, it is more preferable to add 0.1% or more.
  • the amount of Mn is limited to 0.01 to 0.9%.
  • the Mn content may be further limited to a range of 0.01 to 1.5%.
  • the Mn content may be further limited to a range of 0.1 to 1.2%.
  • the Mn content may be further limited to a range of 0.1 to 0.9%. Since Mn is an element effective for deoxidation and desulfurization, it is added at least the lower limit of the above range.
  • Mn is added to 0.3% or more in the 1500 MPa class and 1800 MPa class, and Mn is added to 0.2% or more in the 2000 MPa class. preferable.
  • P is an impurity and is limited to 0.02% or less in order to suppress a decrease in ductility.
  • the upper limit of the P amount is preferably 0.01% or less.
  • S is an impurity, and is limited to 0.02% or less in order to suppress a decrease in hot workability.
  • the upper limit of the amount of S is preferably 0.01% or less.
  • N is an impurity, and if contained excessively, the ductility is lowered, so it is limited to 0.01% or less. In addition, the upper limit of preferable N amount is 0.007% or less. In order to make the crystal grain size finer by using nitrides such as Al, Ti, Nb, and Zr, the N content is preferably 0.001% or more.
  • one or more of Cr, Ni, Cu, Mo, V, and B can be further contained in order to increase the strength after the patenting treatment.
  • Cr is an effective element that refines the lamella spacing of pearlite, increases the tensile strength after the patenting treatment, and improves the wire drawing work hardening rate. However, if more than 0.5% of Cr is added, the ductility may be lowered due to the improvement in strength, so the upper limit is preferably made 0.5% or less. In addition, it is preferable to add 0.01% or more of Cr in order to improve fatigue characteristics and prevent strength reduction during hot-dip plating.
  • Ni is an element that improves hardenability, and is an element that is effective in reducing the lamella spacing during the patenting process and improving the strength after the patenting process. However, even if Ni over 1.0% is added, the effect is saturated, so the upper limit is preferably made 1.0% or less. Ni is also effective in improving the drawing processability of pearlite, and it is preferable to add 0.01% or more.
  • Cu like Ni, is an element effective for refining the lamella spacing during the patenting process and for improving the strength after the patenting process. In order to obtain pearlite having good wire drawing workability, it is preferable to add Cu by 0.01% or more. However, even if Cu over 0.5% is added, the effect is saturated, so the upper limit is preferably made 0.5% or less.
  • Mo is also an element that improves hardenability.
  • the addition of Mo is effective for improving the tensile strength after the patenting treatment, and it is preferable to add 0.01% or more. On the other hand, even if Mo over 0.5% is added, the effect is saturated, so the upper limit is preferably made 0.5% or less.
  • V is an element that increases the tensile strength after patenting by precipitation strengthening. Further, the addition of V is also effective for suppressing a decrease in strength at the time of hot dipping, and it is preferable that the amount of V is 0.01% or more. On the other hand, if adding more than 0.5% V, the ductility may be lowered, so the upper limit is preferably made 0.5% or less.
  • B is an element that increases the tensile strength after the patenting treatment due to the effect of improving hardenability. In order to improve hardenability, 0.0001% or more of addition is preferable. On the other hand, even if B is added in excess of 0.0070%, an effect commensurate with the added amount is not exhibited. Therefore, the upper limit of the B amount is preferably 0.0070% or less.
  • one kind of Al, Ti, Nb and Zr is used. Or 2 or more types can be contained.
  • Al is an element effective for deoxidation, and contributes to prevention of coarsening of crystal grains through the formation of nitrides. However, since the effect is saturated even if Al over 0.1% is added, the upper limit is preferably made 0.1% or less. In order to refine the prior austenite grain size and improve the wire drawing workability of the steel wire after the pearlite transformation, the amount of Al added is preferably 0.001% or more.
  • Ti is an element effective for deoxidation, and contributes to the improvement of strength and the prevention of coarsening of crystal grains by the formation of carbides and nitrides.
  • the carbonitride of Ti becomes coarse and may deteriorate the wire drawing workability and fatigue characteristics, so the upper limit is preferably made 0.1% or less. .
  • Nb is an element that forms carbides and nitrides like Ti. It is an effective element for refining austenite grains by Nb carbide and nitride.
  • Nb carbide and nitride an effective element for refining austenite grains by Nb carbide and nitride.
  • addition of 0.001% or more of Nb is preferable.
  • the upper limit of the Nb content is preferably 0.05% or less.
  • Zr is an element that forms carbides and nitrides as well as Ti and Nb, and is 0.001% to improve the wire drawing workability of the steel wire after pearlite transformation and improve the ductility of the steel wire. It is preferable to add the above. On the other hand, even if adding more than 0.1% of Zr, the effect is saturated, so the upper limit is preferably made 0.1% or less.
  • the wire-drawn pearlite structure is contained most as compared with other structures such as ferrite and bainite. More preferably, in this plated steel wire, the metal structure is substantially composed of drawn pearlite.
  • the “drawn pearlite structure” means a pearlite structure after wire drawing workability that does not contain coarse pearlite, and preferably does not contain coarse pearlite.
  • the metal structure that is substantially drawn pearlite refers to a metal structure in which a structure other than pearlite is not observed by observation with an optical microscope.
  • a structure other than pearlite can be confirmed by a scanning electron microscope (SEM) or the like.
  • the fraction of the drawn pearlite structure is preferably 90% or more (this fraction may be 100% or less).
  • the fraction of the drawn pearlite structure is preferably 92% or more.
  • a more preferable fraction of the drawn pearlite structure is 95% or more.
  • the fraction of the drawn pearlite structure greatly depends on the salt bath temperature in the patenting process. In the 1500 MPa class, when the salt bath temperature is 500 ° C.
  • the occurrence frequency of the bainite structure can be suitably suppressed.
  • the salt bath temperature is preferably 520 ° C. or higher.
  • the cooling rate is preferably 10 ° C./s or more.
  • the structure fraction of the wire-drawn pearlite is observed with a SEM at a magnification of 5000 times, about 10 fields of view are photographed, the area fraction of the wire-drawn pearlite structure is measured by image processing, The average value is obtained.
  • the measurement of the structural fraction of the drawn pearlite is performed at a position d / 4 from the surface layer of the steel wire with respect to the diameter d of the steel wire.
  • the Zn—Al plating (Zn—Al plating layer) according to one embodiment of the present invention includes a plating layer (plating body layer; Zn—Al alloy layer) mainly composed of a Zn—Al alloy and an Fe—Al metal. It consists of an alloy layer (Fe—Al-based alloy generation layer) mainly composed of a compound. This Fe—Al-based alloy generation layer is generated at the interface between the parent phase (steel wire) of the Zn—Al-plated steel wire and the plating body layer in the course of processing.
  • the Fe—Al-based alloy generation layer is formed in direct contact with both the steel wire and the plating body layer.
  • the layer interposed between the steel wire and the plating main body layer is only the Fe—Al-based alloy generation layer, and other than this, the plated steel wire Layers with a size and thickness that affect the corrosion resistance and fatigue properties of the material are not included.
  • the Zn—Al-plated steel wire according to one aspect of the present invention includes a steel wire, a plating body layer, and an Fe—Al-based alloy formed between the steel wire and the plating body layer. And consists of layers.
  • the components of Zn—Al plating specified below include components of a plating layer (plating body layer) and an alloy layer (Fe—Al based alloy generation layer).
  • Al is an element that enhances corrosion resistance by forming a dense oxide film on the surface of the plating, not the effect of sacrificial corrosion protection like Zn.
  • the Al-rich phase is precipitated before the Zn-rich phase during solidification (that is, an Al-rich primary crystal is formed), and the surface has a dense oxide film. Corrosion protection and corrosion resistance are significantly improved.
  • it is preferable to set the Al content of the Zn—Al plating to 8% or more.
  • the present inventors have found that the Zn—Al based alloy layer of the Zn—Al plated iron wire has an influence on workability and fatigue characteristics.
  • the Zn—Al-based alloy layer in the plating layer surrounds the primary crystal Al-rich phase 1 having a face-centered cubic structure (fcc) mainly composed of Al and Zn, and the primary crystal.
  • the eutectic portion 2 containing a relatively large amount of Zn is included.
  • the eutectic portion 2 includes a eutectic structure of a hexagonal close-packed structure (hcp) of Zn and a face-centered cubic lattice (fcc) of Al.
  • the primary crystal Al-rich phase 1 is an ⁇ Al phase (including an ⁇ 1Al phase) in which Zn is dissolved.
  • a primary Zn-rich phase described later is a Zn phase in which Al is dissolved.
  • the primary crystal Al-rich phase or the primary crystal Zn-rich phase which is the primary crystal of the Zn—Al-based alloy layer, becomes coarse, when the plated iron wire is bent, It was found that cracks occurred in the Zn—Al-based alloy layer along the boundary with the Zn-rich phase. Therefore, the Al rich phase preferably has a fine structure (crystal grain size).
  • the upper limit of the Al content of the Zn—Al plating is limited to 15%.
  • the amount of Al in the Zn—Al plating layer can be controlled by the Al concentration in the plating bath.
  • Fe contained in the Zn—Al plating diffuses from the surface of the steel wire and forms an alloy layer (Fe—Al based alloy generation layer) mainly containing Fe and Al at the interface between the plating and the steel wire. ing. Therefore, the Fe of Zn—Al plating varies with the thickness of the alloy layer (Fe—Al based alloy generation layer).
  • the Fe content of the Zn—Al plating exceeds 3.0%, the alloy layer is too thick and the fatigue characteristics are likely to deteriorate. Therefore, in order to achieve both adhesion and fatigue characteristics between the plating and the steel wire, the Fe content of the Zn—Al plating is limited to 3.0% or less. In order to improve the fatigue characteristics, it is preferable to reduce the thickness of the alloy layer.
  • the amount of Fe in the Zn—Al plating it is more preferable to limit the amount of Fe in the Zn—Al plating to a certain amount or less.
  • the Fe amount In the 1500 MPa class, it is preferable to limit the Fe amount to 3.0% or less.
  • the Fe amount In the 1800 MPa class and the 2000 MPa class, it is preferable to limit the Fe amount to 2.0% or less.
  • the Zn—Al plating preferably contains 0.01% or more of Fe.
  • Si content of the Zn—Al plating is controlled by the Si content of the Zn—Al plating bath.
  • Si is an element that suppresses the growth of an alloy layer (Fe—Al-based alloy generation layer) generated at the interface between the steel wire and the plating.
  • the amount of Si contained in the Zn—Al plating is preferably 0.05% or more.
  • the amount of Si in the Zn—Al plating exceeds 2.0%, the effect of suppressing the increase in the thickness of the alloy layer is saturated, the plating itself becomes hard, and the fatigue strength may decrease. Therefore, it is preferable to limit the upper limit of the amount of Si in the Zn—Al plating to 2.0% or less. In order to further increase the fatigue strength, it is preferable to limit the upper limit of the Si content of the Zn—Al plating to 1.5% or less.
  • Si when Si is contained, the effects of the temperature of the plating bath and the cooling rate on the growth of the alloy layer are alleviated. Therefore, when the temperature of the plating bath is high or the cooling rate is slow, it is preferable to contain Si in order to suppress the growth of the alloy layer.
  • the chemical components of Zn—Al plating are dissolved by immersing in an acid to which a pickling corrosion inhibitor is added for several minutes at room temperature, and then the solution is inductively coupled plasma (ICP) emission spectroscopic analysis, atomic absorption method. Can be done by.
  • ICP inductively coupled plasma
  • JIS H0401 JIS H0401 is possible.
  • hexamethylenetetramine is dissolved in hydrochloric acid
  • plating is dissolved in a test solution diluted with water
  • the solution is chemically analyzed by ICP.
  • the plating layer and the alloy layer Fe—Al alloy generation layer
  • the measurement may be performed by subjecting the plated steel wire to a process such as bending, mechanically peeling the plated layer and the alloy layer from the steel wire, and performing chemical analysis of the peeled Zn—Al plating.
  • the balance excluding Al, Si, and Fe is Zn and inevitable impurities.
  • the inevitable impurities mean elements inevitably mixed in the process of plating, such as Mg, Cr, Pb, Sb, Sn, Cd, Ni, Mn, Cu, and Ti.
  • the content of these inevitable impurities is preferably 1% or less in total.
  • the structure of the plating layer is a solidified structure.
  • the Zn-rich layer primary Zn-rich phase
  • the primary crystal Al-rich phase that is the primary crystal is precipitated, and then a Zn-rich phase (eutectic) is formed so as to fill it.
  • the diameter of the primary crystal of the plating layer is limited to 10 ⁇ m or less so as not to adversely affect the fatigue strength. Furthermore, in order to increase the fatigue strength, the primary crystal diameter is preferably 5 ⁇ m or less.
  • the refinement of the primary crystal is performed by lowering the temperature of the plating bath, increasing the cooling rate after plating, and balancing the two.
  • the temperature of the plating bath should be lowered, and the cooling rate after plating, that is, the cooling rate when the steel wire is pulled up from the plating bath and cooled is increased. It is necessary to carry out while combining these.
  • the lower limit of the primary crystal diameter is preferably 1 ⁇ m or more due to operational restrictions such as the temperature of the plating bath and the cooling rate after plating.
  • Primary crystals may be circular, but are usually oval.
  • the diameter of the primary crystal is obtained as an average value of the major axis and the minor axis.
  • the diameter of the primary crystal may be obtained by subjecting a SEM structural photograph to image processing and obtaining an equivalent circle diameter.
  • the morphology of the primary crystal may be dendritic.
  • the diameter of the primary crystal is measured as the width of the dendrite.
  • the primary crystal diameter can be measured using an SEM. In the present invention, 10 fields of view or more are photographed at 2000 times, the diameter of the primary crystal is measured, and the average value is obtained.
  • the thickness of the alloy layer (Fe—Al based alloy generation layer) present at the interface between the Zn—Al plated plating layer and the steel wire matrix exceeds 5 ⁇ m, the fatigue characteristics of the Zn—Al plated steel wire are reduced.
  • the upper limit is limited to 5 ⁇ m.
  • the thickness of the alloy layer is preferably 3 ⁇ m or less.
  • the practical lower limit of the thickness of this alloy layer is 10 nm.
  • the lower limit of the thickness of the alloy layer is preferably 0.05 ⁇ m or more.
  • the Si content in the plating layer is increased, the temperature of the plating bath is lowered, the steel wire to be plated It can be performed by shortening the dipping time, increasing the cooling rate after plating, and balancing these. For example, even when the temperature of the plating bath is high or the cooling rate is slowed, the thickness of the alloy layer can be reduced to 5 ⁇ m or less by increasing the Si content.
  • the thickness of the alloy layer (Fe—Al-based alloy generation layer) is measured using a transmission electron microscope (TEM).
  • TEM observation is performed at a magnification of 5000 to 20000 depending on the thickness of the alloy layer, and a structure photograph of 10 fields of view or more is taken according to the magnification to obtain an average value of the thickness of the alloy layer.
  • the presence of the alloy layer at the interface between the plating layer and the parent phase of the steel wire can be confirmed by TEM observation and energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the alloy layer can also be confirmed by a high-resolution field emission scanning electron microscope (FE-SEM) and EDS.
  • the alloy portion of the alloy layer (Fe—Al-based alloy generation layer) according to one embodiment of the present invention has a Zn-free alloy or a low-Zn alloy (substantially free of Zn) as described in detail below.
  • This Fe—Al-based alloy generation layer has excellent fatigue characteristics and is less susceptible to fatigue failure than the Fe—Zn—Al alloy layer A described above.
  • the alloy portion of the alloy layer includes an Al 3.2 Fe columnar crystal layer and an Al 5 Fe 2 columnar crystal layer when the Zn—Al plating does not contain Si. That is, in the metallographic composition of the alloy layer, this is the type of structure containing the most two types of columnar crystals. That is, the alloy layer has a multi-layer structure, the steel wire side layer (lower layer) has a high Fe ratio and alloyed Al 5 Fe 2 , and the plating side layer (upper layer) has a low degree of alloying . 2 Fe. When such a multi-layer structure is formed, it is presumed that the internal stress of the layer itself and the stress difference at the interface between the lower layer and the upper layer are reduced, and the adhesion of the plating is further improved.
  • the Zn—Al plating contains Si
  • an alloy layer (referred to as a columnar crystal layer) composed of the Al 3.2 Fe columnar crystal layer and the Al 5 Fe 2 columnar crystal layer described above, and a plating layer In between, a layer composed of Al—Fe—Si granular crystals (referred to as a granular crystal layer) is formed. Therefore, in Zn—Al plating to which Si is added, it is considered that the granular crystal layer suppresses the diffusion of Fe from the steel wire to the Zn—Al plating and suppresses the growth of the columnar crystal layer. Moreover, it is estimated that a granular crystal layer relieves
  • the influence of the temperature of the plating bath and the cooling rate on the formation of the granular crystal layer due to the inclusion of Si is small.
  • the cause of this is not clear, but the generation of granular crystals due to the inclusion of Si is effective in suppressing the growth of the alloy layer even when the temperature of the plating bath and the cooling rate vary.
  • the columnar crystals of Al 5 Fe 2 , columnar crystals of Al 3.2 Fe, and granular crystals of Al—Fe—Si can be identified and identified by TEM observation and electron diffraction.
  • the alloy layer may have a phase composed of fine granular Zn or Zn—Al.
  • Phase composed of the Zn or Zn-Al is, Al 3.2 Fe columnar crystal grain boundary, Al 5 Fe 2 columnar crystal grain boundaries, the interface between the upper layer and the lower layer of the columnar crystal layer, the columnar crystal layer and the particulate Present at the interface with the crystal layer.
  • the number of twists is the number of twists to break in the torsion test, and is an index of ductility of the steel wire.
  • the present inventors have revealed for the first time that when the number of twists is 18 or more, the ductility of the Zn—Al-plated steel wire is high and the fatigue characteristics, particularly the corrosion fatigue characteristics, are significantly improved. Therefore, it is preferable that the torsion test is performed using 50 test pieces, preferably 100 test pieces, the number of twists of all the test pieces is 18 times or more, and the minimum value of the number of twists is 18 times or more.
  • the torsion test is performed using a test piece that can obtain a grip interval 100 times the wire diameter. Grasp both ends of a test piece taken from a Zn—Al plated steel wire at an interval of 100 times the wire diameter, and rotate one of the grips in the same direction while tightening to the extent that it does not bend. A torsion test is performed at a torsion speed of 10 rpm, and the number of twists at the time of fracture is evaluated. Further, 50 torsional test pieces, preferably 100 torsional test pieces are continuously collected from the manufactured Zn—Al-plated steel wire and subjected to the torsion test.
  • the ratio between the fatigue limit and the tensile strength is preferably 0.22 or more. This is because the design stress increases as the tensile strength of the plated steel wire increases. When the ratio between the fatigue limit and the tensile strength is 0.22 or more, the merit of increasing the fatigue strength is increased and the life of the bridge is increased. In order to further enhance the durability of the bridge, the ratio between the fatigue limit and the tensile strength is more preferably 0.25 or more.
  • the fatigue characteristics of the Zn—Al plated steel wire are evaluated by a partial swing tensile fatigue test.
  • the minimum stress is fixed according to the tensile strength of the plated steel wire, the maximum stress is changed, and the fatigue limit (the value obtained by subtracting the minimum stress from the maximum stress) is obtained at 2 million cycles.
  • the minimum stress is based on 490 MPa of a 1500 MPa steel wire, and the minimum stress is changed according to the tensile strength. For example, in the case of a 1600 MPa steel wire, the minimum stress is calculated as 490 ⁇ 1600/1500 and is set to 523 MPa.
  • the minimum stress is calculated as 490 ⁇ 1800/1500 and is set to 588 MPa.
  • the minimum stress is calculated as 490 ⁇ 2100/1500 and is set to 686 MPa.
  • the wire is a material before cold drawing, and is manufactured by subjecting the rolled wire to a patenting treatment after hot rolling.
  • the metal wire composition of the parent phase of the steel wire is a type of structure containing the most wire drawing pearlite structure. More preferably, the entire structure of the wire material is substantially pearlite. Further, the pearlite structure fraction of the wire before drawing is almost the same as the fraction of the drawn pearlite structure of the Zn—Al plated steel wire. Therefore, when the fraction of the non-pearlite structure such as ferrite and bainite of the wire before wire drawing increases, the fatigue characteristics and ductility of the Zn—Al plated steel wire may decrease, and the pearlite structure fraction of the wire is 92 % Or more is preferable. A more preferable pearlite structure fraction is 95% or more.
  • the pearlite tissue fraction is a value obtained by taking an image of 10 or more fields of view with an SEM magnification of 2000, measuring the area fraction of the pearlite tissue by image processing, and obtaining the average value.
  • the place to observe is a position of d / 4 from the surface layer of a wire (d: Diameter of a steel wire).
  • the pearlite of the wire before drawing can be estimated from the pearlite fraction of the Zn—Al plated steel wire.
  • the block size of the pearlite structure is a factor that affects the wire drawing workability of the wire, the number of twists and the fatigue characteristics of the Zn-Al plated steel wire after the wire drawing.
  • the block size of the pearlite structure is 25 ⁇ m or less, it is possible to suppress a decrease in wire drawing workability, the number of twists, and fatigue characteristics. Therefore, the preferable upper limit of the block size of the pearlite structure is 25 ⁇ m or less.
  • the block size of the pearlite structure can be generally measured by an etch pit method or an electron backscatter diffraction image method (EBSD: Electron Back Scatter Diffraction Pattern Method).
  • EBSD Electron Back Scatter Diffraction Pattern Method
  • the EBSD method is employed in order to accurately measure the block size of the pearlite structure.
  • the block size of the pearlite structure is measured at a position d / 4 (d: diameter of the steel wire) from the surface layer of the wire, and the average value of the three fields of view is obtained.
  • the block size is affected by hot rolling finishing temperature, cooling rate after hot rolling, and alloying elements such as Mo, V, B, Al, Ti, Nb, and Zr. Therefore, the block size of the pearlite structure is controlled by adjusting the production conditions, the type and addition amount of the alloy element according to the capability of the hot rolling mill.
  • the cementite thickness in the pearlite structure of the wire affects the ductility of the steel wire after wire drawing and also affects the fatigue properties of the Zn-Al plated steel wire.
  • the cementite thickness of the Zn-Al plated steel wire increases, the workability of the cementite during wire drawing decreases. As a result, the frequency with which the number of twists of the Zn—Al plated steel wire deteriorates increases, and the fatigue characteristics slightly decrease. Therefore, the cementite thickness of the wire is preferably 0.03 ⁇ m or less.
  • the cementite thickness increases as the C content increases even at the same lamellar spacing. Further, the cementite thickness and C content of the pearlite structure of the Zn-Al plated steel wire after wire drawing are affected by the cementite thickness and C content of the wire. Therefore, the relationship between the cementite thickness and C content of the wire, the number of twists and the fatigue characteristics of the Zn—Al plated steel wire was investigated. As a result, in the 1800 MPa class, if the cementite thickness is 0.03 ⁇ m or less and the C content is 0.027 ⁇ C% or less, even with a high-strength Zn—Al-plated steel wire, the number of twists and fatigue characteristics are good.
  • the amount of C is set to 0.026 ⁇ C% or less.
  • the cementite thickness of the wire is 0.03 ⁇ m or less and 0.027 ⁇ C% or less (1800 MPa class) or 0.026 ⁇ C% or less (2000 MPa class).
  • the measurement of the cementite thickness of the wire of the present invention is performed using TEM.
  • a sample used for TEM observation is taken from the overlapping portion of the rolled wire wound in a coil shape after hot rolling, and the region of d / 4 (d is the diameter of the wire) is used as an observation field.
  • d is the diameter of the wire
  • a field of view perpendicular to the cementite plate is selected, a photograph is taken at 10,000 to 20000 times, and the cementite thickness is obtained with an average value of 10 fields of view or more.
  • the strength of the steel wire after wire drawing also increases.
  • the tensile strength of the wire is 1250 MPa or more, a drop in ductility can be suppressed when the tensile strength of the Zn—Al-plated steel wire is increased to over 1800 MPa by wire drawing.
  • the tensile strength of the wire is 1350 MPa or more, a drop in ductility can be suppressed when the tensile strength of the Zn—Al plated steel wire is more than 2000 MPa by wire drawing.
  • the tensile test of the wire rod according to the present invention is carried out by dividing one turn of the wire wound in a coil shape into 12 equal parts and collecting a tensile test piece.
  • a test piece is taken from three coils and subjected to a total of 36 tensile tests to obtain the maximum value and the minimum value of the tensile strength.
  • the Zn—Al plated steel wire of the present invention is manufactured by a hot-rolling patenting treatment, wire drawing, flux treatment by a one-bath method, and a hot-dip Zn—Al plating step.
  • the wire rod of the present invention is a rolled patten in which a steel slab is hot-rolled and the hot-rolled wire rod is cooled as it is in a salt bath of 500 to 600 ° C. in the 1500 MPa class, 520 to 600 ° C. in the 1800 MPa class and 2000 MPa class. It is manufactured by applying a ting process.
  • a reheat patenting process in which a hot-rolled wire is reheated and immersed in a Pb bath is often employed.
  • the strength of the wire material (rolled patenting material) manufactured by the rolling patenting process is higher than that of the wire material (reheated patenting material) manufactured by the reheating patenting process. Therefore, the wire rod of the present invention can increase the strength of the steel wire with a small wire drawing strain, and the number of twists and fatigue characteristics of the Zn—Al plated steel wire are remarkably improved.
  • Cooling rate after hot rolling If the cooling rate after hot rolling until the wire is immersed in a salt bath is too slow, a coarse pearlite structure is likely to occur during cooling. Therefore, in order to improve the wire drawing workability, the cooling rate is preferably 10 ° C./s or more.
  • Salt bath temperature For a steel wire of 1600 MPa class, the salt bath temperature is preferably 500 to 600 ° C. In the case of a steel wire of 1800 MPa class or 2000 Mpa class, the temperature of the salt bath is preferably 520 to 600 ° C.
  • the salt bath temperature is set to the above lower limit temperature or more, the occurrence frequency of a bainite structure that deteriorates the wire drawing workability and fatigue characteristics can be suppressed.
  • the salt bath temperature is set to the upper limit temperature or less, suitable fineness of the pearlite structure can be ensured. Therefore, in order to improve the strength, ductility and fatigue characteristics of the Zn—Al plated steel wire, it is preferable to limit the temperature of the salt bath to the above range.
  • cold wire drawing is performed using the wire material that has been subjected to the rolling patenting process as a raw material.
  • Wire drawing strain When the wire of the present invention is used as a raw material, in order to control the strength of the Zn-Al plated steel wire, in the 1500 MPa class, the wire drawing strain is 1.3 to 2.0 as a true strain. The range is preferable, and in the 1800 MPa class and 2000 MPa class, the true strain is preferably in the range of 1.5 to 2.0.
  • the wire drawing strain for controlling the strength of the Zn-Al plated steel wire includes the strength of the wire after the patenting treatment, the composition of the steel that changes the work hardening rate during the wire drawing, and the reduction of each die. It varies depending on the drawing conditions such as surface area and drawing speed.
  • the Zn—Al plated steel wire of the present invention is drawn by adjusting the drawing strain appropriately within the above range.
  • the true strain of the wire drawing is a value represented by 2 ⁇ ln (wire diameter before wire drawing / wire diameter after wire drawing) (ln indicates a natural logarithm).
  • the temperature of the steel wire during wire drawing is preferably controlled to 250 ° C. or lower in order to suppress decomposition of cementite and C diffusion.
  • the temperature of the steel wire at the time of wire drawing is 250 ° C. or less, an increase in the C concentration in the ferrite is suppressed, and excellent ductility can be ensured.
  • the temperature of the steel wire can be measured by a contact thermometer, a radiation thermometer, or the like.
  • the method of controlling the temperature of the steel wire during the wire drawing process is to apply cooling wire drawing technology, decrease the wire drawing speed, use a wire drawing lubricant with a low friction coefficient, an appropriate die shape, and an appropriate 1 die.
  • cooling wire drawing technology decreases wire drawing speed
  • wire drawing lubricant with a low friction coefficient
  • an appropriate die shape decreases wire drawing speed
  • wire drawing lubricant with a low friction coefficient
  • an appropriate die shape a low friction coefficient
  • an appropriate 1 die an appropriate 1 die.
  • the steel wire is held at 400 to 500 ° C. for 1 to 60 s.
  • the steel wire is held at 450 to 550 ° C. for 1 to 60 s.
  • Roller straightening has the effect of reducing the residual distortion of the steel wire and increasing the number of twists that deteriorate with increasing strength. As a result, the fatigue characteristics of the Zn—Al plated steel wire can be finally improved.
  • Heat treatment also exhibits the effect of reducing the residual strain of the steel wire and improving the number of twists and fatigue characteristics.
  • the temperature of the heat treatment be equal to or higher than the lower limit temperature of the above temperature range.
  • it is preferable to set the heating temperature to not more than the upper limit temperature of the above temperature range.
  • the holding time is preferably 60 s or less.
  • a heating method for example, a normal heat treatment method such as a heating furnace or immersion in a temperature-controlled bath can be employed.
  • the above steel wire is subjected to roller straightening and the above heat treatment, and then Zn—Al plating is performed.
  • Zn—Al plating it is possible to use means such as immersing a steel wire as a base material in a molten metal bath containing Zn—Al and, if necessary, Si at the same mixing ratio as the composition of a predetermined plating layer. it can.
  • alkaline degreasing treatment and pickling treatment for the purpose of improving the plating wettability and plating adhesion of the steel wire to be plated. is there.
  • Flux treatment is performed before the steel wire to be plated is immersed in the plating bath.
  • a flux containing ammonium chloride as a main component has been used.
  • the plating does not adhere sufficiently. This is because the ammonium chloride flux decomposes in a Zn—Al plating bath containing Al.
  • the pre-plating process using Zn plating is not performed. Instead, fluxes containing components other than ammonium chloride were developed. By using the flux described below, Zn—Al plating can be efficiently attached.
  • Flux treatment Zinc chloride, ammonium chloride, alkali metal chloride, fluoride, tin chloride, etc. are used for flux treatment.
  • the flux is preferably composed mainly of zinc chloride and containing potassium chloride and tin fluoride, and may further contain one or more of ammonium chloride, alkali metal chloride, and tin chloride. After performing the flux treatment, the steel wire to be plated is dried and immersed in a plating bath.
  • the composition of the flux is not particularly limited.
  • the flux total concentration is 10 to 40% aqueous solution, Zn 2+ ions 30 to 40%, K + ions 8 to 12%, Sn 2+ ions 2 to 3%, It is sufficient to use a material in which Cl ⁇ ions and F ⁇ ions are 45 to 60% in total and the pH is in the range of 0.5 to 2.0.
  • the immersion time of the flux is preferably 0.5 s or longer.
  • a treatment method other than the flux a method is used in which a steel wire to be plated is subjected to heat reduction annealing using a combined heat treatment of a non-oxidation furnace and a reduction furnace or a total reduction furnace, and then immersed in a plating bath and pulled up. May be.
  • a method in which a predetermined plating adhesion amount control is performed by a gas wiping method or the like and then a cooling process is continuously applied can be used.
  • the Al concentration of the Zn—Al plating bath is adjusted within a range of 3.0 to 15.0% depending on the desired amount of Al in the Zn—Al plating.
  • the Al content is preferably 6.0% or more, and more preferably 8.0% or more.
  • Si is contained in the Zn—Al plating, 2.0% or less is added depending on the amount of Si in the desired Zn—Al plating.
  • the actual lower limit of the amount of Si added is 0.01% or more.
  • the Si amount is preferably 1.5% or less.
  • the composition of the molten Zn—Al plating bath can be determined by taking a sample from the plating bath, dissolving it in a hydrochloric acid stock solution, and conducting chemical analysis.
  • the alloy layer thickness at the interface can be controlled by adjusting the plating bath temperature, the steel wire immersion time, the cooling rate after plating, and the like.
  • the conditions for forming a plating layer having an appropriate interfacial alloy layer are not particularly limited because the optimum conditions are somewhat different depending on the type of the steel wire, the plating bath components, and the temperature thereof.
  • the solidification temperature is about 420 ° C. Therefore, after immersing the steel wire in a molten metal bath at 440 to 520 ° C. for 1 to 60 s. It is preferable to cool at a cooling rate of 10 to 20 ° C./s.
  • the plating bath of the present invention has a solidification temperature that varies depending on the bath composition, and the solidification temperature range is about 390 to 450 ° C.
  • the immersion time is 1 to 60 s, and the cooling rate after solidification is 5 to 50 ° C./s.
  • the immersion time in the plating bath it is preferable to set the immersion time in the plating bath to 15 s or less and the cooling rate to 10 ° C./s or more.
  • the steel material which consists of was hot-rolled and used as the wire.
  • the wire was cooled as it was in a salt bath at 525 ° C. and subjected to a patenting treatment. Further, this wire was cold drawn to produce a steel wire having a wire diameter of 4.9 mm.
  • the steel wire was degreased and pickled, immersed in a 60 ° C. flux aqueous solution for 10 seconds, dried, and then plated under the conditions shown in Tables 1 to 3. The plating thickness was adjusted to 50 ⁇ m by wiping.
  • a 7% NH 4 Cl aqueous solution was used as a flux for hot-dip Zn plating.
  • Test No. Nos. 76 to 79 are samples subjected to hot dip galvanizing instead of Zn—Al plating.
  • Test No. Samples 85 to 90 are samples to which a two-bath method in which Zn-Al alloy plating is performed immediately after Zn plating and without flux treatment.
  • the plating compositions in Tables 1 and 2 are: 1 mL of commercially available pickling corrosion inhibitor, 140 mL of HCl, and immersion in HCl prepared by dissolving them in 1 L of pure water for several minutes at room temperature, so that the plating layer and alloy The layer (Fe—Al-based alloy production layer) was dissolved and determined by ICP analysis.
  • the plated steel wire was observed with an SEM, and the wire drawing perlite structure fraction of the base material and the primary crystal diameter of the plating layer were measured. Further, the alloy layer (Fe—Al-based alloy generation layer) was observed by TEM, the thickness of the alloy layer was measured, and the state of the interface alloy layer was evaluated.
  • the evaluation of the state of the interface alloy layer is as follows. A: The interface alloy layer is composed of three layers of Al 5 Fe 2 columnar crystals, Al 3.2 Fe columnar crystals, and Fe—Al—Si granular crystals. B: The interface alloy layer is Al 5 Fe 2 , Al. 3.2 Two layers of Fe columnar crystals and Al columnar crystals C: One layer of interface alloy layer of Fe—Al column D: Interface alloy layer of Zn—Fe or Zn—Fe—Al 1 layer consisting of
  • the corrosion resistance of the plated steel wire was evaluated by performing a salt spray test (JIS Z 2371) for 360 hours using the plated steel wire cut to a length of 100 mm, and performing the time until the occurrence of red rust.
  • the meanings of the symbols are as follows. A: Time to red rust occurrence is 360 hours or more B: Time to red rust occurrence is 300 hours to less than 360 hours C: Time to red rust occurrence is 240 hours to less than 300 hours D: Time to red rust occurrence is less than 240 hours Tables 1 to 3 show the plating composition, corrosion test results, and interface alloy layer observation results.
  • Plating No. Reference numerals 77 to 80 denote hot dip galvanizing.
  • Plating No. 86-91 is a two-bath method.
  • Table 4 shows the chemical components of the test materials. Hot rolling was performed using these test materials, and after hot rolling, the sample was cooled as it was in a salt bath and subjected to a patenting treatment.
  • the steel A of Table 4 is the same component as the steel used in 1st Example.
  • the obtained wire was cold drawn to obtain a high carbon steel wire having a wire diameter of 4.5 to 7.3 mm and was subjected to hot-dip Zn—Al plating by a single bath method. For comparison, two baths of molten Zn—Al plating (after molten Zn plating and then molten Zn—Al plating) and molten Zn plating were performed.
  • the hot dipping was performed by degreasing and pickling the steel wire, dipping in a 60 ° C. flux aqueous solution for 10 seconds, drying, and dipping in a hot dipping bath having a predetermined chemical composition for 5 to 15 seconds.
  • the temperature of the hot dip bath was 450 to 500 ° C., and the cooling rate after hot dip plating varied depending on the wire diameter, but any hot dip plating was adjusted to 10 to 20 ° C./s.
  • the thickness of the hot-dip plating was adjusted by wiping so that all platings were about 50 ⁇ m.
  • the two-bath Zn—Al plating was produced by performing a hot dip Zn plating at 450 ° C. and then immediately immersing in a hot dip Zn—Al plating bath without flux treatment. Note that the same flux as in the first example was used for one bath of molten Zn—Al plating and molten Zn plating.
  • the fatigue limit of the plated steel wire was evaluated by a partial single swing tensile fatigue test. Based on 490 MPa, the minimum stress is fixed according to the tensile strength of the plated steel wire, the maximum stress is changed, and the fatigue limit (the value obtained by subtracting the minimum stress from the maximum stress) is obtained at 2 million cycles. It was.
  • the torsional characteristics were evaluated by collecting 100 torsional test pieces continuously from the manufactured Zn-Al plated steel wire and conducting a torsion test. In the torsion test, both ends of the test piece are gripped at an interval of 100 times the wire diameter, and one side of the gripping part is rotated in the same direction at a twisting speed of 10 rpm while being strained so as not to bend. The number of twists was evaluated. 100 torsion tests were conducted and the minimum number of twists was investigated.
  • test no. 1 to 32 are examples of the present invention, and others are comparative examples.
  • 90% or more of the pearlite structure was drawn.
  • the comparative example it had a pearlite structure that was all drawn.
  • 40 and 42 it was less than 90%.
  • the Zn—Al plated steel wires of the examples of the present invention all have excellent corrosion resistance, a good number of twists, a high fatigue limit / tensile strength ratio, and excellent fatigue properties.
  • a Zn—Al alloy plated steel wire has been realized.
  • Test No. which is a comparative example.
  • 33 to 38 are conventional hot-dip Zn-plated steel wires. This is an example in which the number of twists and fatigue properties are good, but the corrosion resistance is poor.
  • Test No. 39 and 40 are examples in which the chemical composition of the steel wire is inappropriate.
  • Test No. No. 39 is an example in which the ultimate tensile strength of 1500 MPa or more was not obtained because the C content was too small.
  • Test No. No. 40 is an example in which the fraction of the bainite structure is too high because the Mn content is too high, and as a result, the number of twists is reduced and the fatigue characteristics are deteriorated.
  • Test No. Nos. 41 and 42 are examples in which the patenting temperature using a salt bath after hot rolling is inappropriate.
  • Test No. No. 41 is an example in which the intended tensile strength of 1500 MPa or more was not obtained because the patenting temperature was too high.
  • test no. No. 42 is an example in which the patenting temperature was too low, the bainite structure fraction increased, resulting in a decrease in the number of twists and deterioration in fatigue characteristics.
  • Test No. Nos. 43 to 46 are examples of conventional Zn-Al alloy plated steel wires using two baths. In both cases, the corrosion resistance is good, but because the alloy layer (Fe—Al-based alloy formation layer) is thick, the fatigue characteristics are deteriorated, and the ratio of fatigue limit / tensile strength is 0. This is an example of not reaching 22 or more.
  • Test No. 33 to 38 are hot dip galvanizing.
  • Test No. 43 to 46 are two bath methods.
  • Table 9 shows chemical components of the specimens according to the third example. Hot rolling was performed using these test materials, and after hot rolling, the sample was cooled as it was in a salt bath and subjected to a patenting treatment. The structure of the obtained wire was subjected to SEM observation and TEM observation, and the pearlite fraction and cementite thickness were measured. The tensile strength was measured according to JIS Z 2241. Also, the difference in tensile strength is the difference between the maximum value and the minimum value of the tensile strength obtained by collecting a total of 36 tensile tests by collecting test pieces from three coils. Table 10 shows the temperature of the patenting treatment, the pearlite fraction of the wire, the cementite thickness, the tensile strength, and the difference in tensile strength. Table 10 also shows a calculated value of 0.027 ⁇ C.
  • the wire was cold drawn to obtain a high carbon steel wire having a wire diameter of 4.5 to 7.3 mm and was subjected to hot-dip Zn—Al plating by a one-bath method.
  • hot-dip Zn—Al plating by a one-bath method.
  • two baths of molten Zn—Al plating (after molten Zn plating and then molten Zn—Al plating) and molten Zn plating were performed.
  • the temperature during wire drawing was measured with a radiation thermometer.
  • the roller straightening process and the heat processing were performed as needed.
  • the hot dipping was performed by degreasing and pickling the steel wire, dipping in a 60 ° C. flux aqueous solution for 10 seconds, drying, and dipping in a hot dipping bath having a predetermined chemical composition for 5 to 15 seconds.
  • the temperature of the hot dipping bath is 450 to 500 ° C., and the cooling rate after hot dipping varies depending on the wire diameter. Except for 64 ', all the hot dippings were adjusted to 10 to 20 ° C / s.
  • the thickness of the hot-dip plating was adjusted by wiping so that all platings were about 50 ⁇ m.
  • the two-bath Zn—Al plating was produced by performing a hot dip Zn plating at 450 ° C. and then immediately immersing in a hot dip Zn—Al plating bath without flux treatment.
  • An aqueous solution having a pH of 1.0 adjusted to 45 to 50% in total was used. Further, a 7% NH 4 Cl aqueous solution was used as a flux for hot-dip Zn plating.
  • Tables 11 to 13 show the production conditions and the plating composition of the plated steel wire.
  • the plating composition consists of 1 mL of commercially available pickling corrosion inhibitor, 140 mL of HCl, and immersion in HCl prepared by dissolving them in 1 L of pure water for several minutes at room temperature, so that the plating layer and the alloy layer (Fe—Al It was determined by dissolving the alloy-based alloy generation layer) and performing ICP analysis.
  • the plated steel wire was observed with an SEM, and the drawn pearlite structure fraction of the base material and the diameter of the primary crystal of the plating were measured.
  • the alloy layer was observed by TEM, the thickness of the alloy layer was measured, and the state of the interface alloy layer was evaluated. The evaluation of the state of the interface alloy layer is as follows.
  • the interface alloy layer is composed of Al 5 Fe 2 and Al 3.2 Fe columnar crystals and Fe—Al—Si granular crystals
  • B: The interface alloy layer is Al 5 Fe 2 and Al 3.2 Fe columnar Two layers consisting of columnar crystals of crystal Al
  • D One layer where the interface alloy layer consists of Zn-Fe or Zn-Fe-Al Fatigue of plated steel wire
  • the limit was evaluated by a partial swing tensile fatigue test. Based on 490 MPa, the minimum stress is fixed according to the tensile strength of the plated steel wire, the maximum stress is changed, and the fatigue limit (the value obtained by subtracting the minimum stress from the maximum stress) is obtained at 2 million cycles. It was.
  • the torsional characteristics were evaluated by collecting 100 torsional test pieces continuously from the manufactured Zn-Al plated steel wire and conducting a torsion test. In the torsion test, both ends of the test piece are gripped at an interval of 100 times the wire diameter, and one side of the gripping part is rotated in the same direction at a twisting speed of 10 rpm while being strained so as not to bend. The number of twists was evaluated. 100 torsion tests were conducted and the minimum number of twists was investigated.
  • the corrosion resistance of the plated steel wire was evaluated by performing a salt spray test (JIS Z 2371) for 360 hours using a plated steel wire cut to a length of 100 mm, and the time until red rust occurred.
  • JIS Z 2371 a salt spray test
  • Time to red rust occurrence is 360 hours or more
  • B Time to red rust occurrence is 300 hours to less than 360 hours
  • C Time to red rust occurrence is 240 hours to less than 300 hours
  • D Time to red rust occurrence is less than 240 hours
  • the results are shown in Tables 14-16.
  • the symbols in the width column of the primary crystal (dendrid) are as follows. A: Primary crystal (dendrid) width is 5 ⁇ m or less B: Primary crystal (dendrid) width is 10 ⁇ m or less
  • D Primary crystal (dendrid) width exceeds 10 ⁇ m
  • Reference numerals 1 'to 47' are examples of the present invention.
  • 48 'to 72' are comparative examples.
  • Tables 14 and 15 by using the plating composition of the present invention and adjusting the bath temperature, the immersion time, and the cooling rate, the thickness and initial thickness of the alloy layer satisfying the range required by the present invention.
  • Zn-Al plating composition and structure with crystal diameters are obtained, both of which have excellent corrosion resistance and good number of twists, high fatigue limit / tensile strength ratio, high strength with excellent fatigue properties Zn-Al plated steel wire can be realized.
  • No. which is a comparative example.
  • 48 'to 50' are all examples in which the chemical composition of the steel wire is inappropriate.
  • No. 48 ' has a low C content, and the tensile strength of the Zn-Al plated steel wire is reduced.
  • No. No. 49 ' is an example in which the Si content was too low, the strength decreased during hot dipping, and the intended tensile strength was not reached.
  • No. 50 ' is too high in Mn content, so bainite is generated in the patented wire, and the pearlite fraction does not reach the specified value, resulting in an increase in the difference between the maximum and minimum tensile strength. This is an example in which the torsional characteristics and fatigue characteristics deteriorated (see wire No. R1 ′ in Table 10).
  • Reference numerals 51 ′, 52 ′, and 55 ′ are examples in which the wire rod is subjected to a patenting process by air cooling after hot rolling (see wire rod Nos. A2 ′, B2 ′, and M ⁇ b> 2 ′ in Table 10).
  • Table 10 the difference between the maximum value and the minimum value of the cementite thickness and tensile strength of the wire is increased.
  • Table 16 torsional characteristics and fatigue characteristics are deteriorated.
  • No. which is a comparative example. 56 ′ to 58 ′ are examples in which the steel wire temperature at the time of wire drawing is inappropriate (refer to wire Nos. H1 ′, O2 ′, K2 ′ in Table 10), and the steel wire temperature exceeds 250 ° C. Therefore, torsional characteristics and fatigue characteristics are degraded.
  • No. which is a comparative example. 59 'and 60' are examples in which the heat treatment after wire drawing is inappropriate. No. No. 59 'has a heating temperature too high. 60 'is an example in which the strength of the plated steel wire did not reach its purpose because the heating time was too long. Furthermore, no. 59 'is an example in which the heating temperature was too high, so that a part of the structure became a spheroidized cementite structure and the torsional characteristics were deteriorated.
  • 61 'to 65' are examples in which the chemical component of Zn-Al plating is inappropriate.
  • 62 ' since the Al content is too low, the corrosion resistance is lowered.
  • No. 63 ' is an example in which the fatigue characteristics deteriorated because the Si content in the plating was too high.
  • No. 64 ' is an example in which the alloy layer is grown by slowing the cooling rate after hot dipping, and the fatigue characteristics are deteriorated because the Fe content in the plating is too high.
  • no. 65 ' is an example in which both the corrosion resistance and the fatigue characteristics are deteriorated because the Al content is low and the Si content is too high.
  • Reference numerals 66 'to 68' are examples of steel wires subjected to conventional hot dip galvanizing. This is an example in which the intended plated steel wire having high corrosion resistance could not be realized because of Zn plating.
  • Reference numerals 69 'to 72' are examples of Zn-Al plated steel wires by the conventional two-bath method. In all cases, the corrosion resistance is good, but the fatigue characteristics are degraded due to the thick alloy layer, and the ratio of fatigue limit / tensile strength did not reach the desired 0.22 or higher. is there. (Fourth embodiment)
  • Table 17 shows the chemical components of the test materials. Using these test materials, hot rolling at a finishing temperature of 950 ° C. was performed, and after hot rolling, the sample was cooled as it was in a salt bath and subjected to a patenting treatment. For comparison, when the finishing temperature of hot rolling was 1090 ° C., a patenting process was further performed by air cooling after hot rolling to produce a wire rod.
  • the SEM observation and the TEM observation were performed on the structure of the obtained wire, and the pearlite fraction and the cementite thickness were measured.
  • the block size of the pearlite structure was measured by EBSD.
  • the tensile strength was measured in accordance with JIS Z 2241.
  • the difference in tensile strength is the difference between the maximum value and the minimum value of the tensile strength obtained by collecting a total of 36 tensile tests by collecting test pieces from three coils.
  • Table 18 shows the temperature of the patenting treatment, the pearlite fraction of the wire, the cementite thickness, the tensile strength, and the difference in tensile strength. Table 18 also shows a calculated value of 0.026 ⁇ C.
  • the wire was cold drawn to obtain a high carbon steel wire having a wire diameter of 4.3 to 7.3 mm, and was subjected to hot-dip Zn-Al plating by a single bath method.
  • two baths of molten Zn—Al plating (after molten Zn plating and then molten Zn—Al plating) and molten Zn plating were performed.
  • the temperature during wire drawing was measured with a radiation thermometer.
  • the roller straightening process and the heat processing were performed as needed.
  • the hot dip plating was performed by degreasing and pickling the steel wire, dipping in a 60 ° C. flux aqueous solution for 10 seconds, drying, and dipping in a hot dip plating bath having a predetermined chemical composition for 5 to 15 seconds.
  • the temperature of the hot dipping bath is 450 to 500 ° C., and the cooling rate after hot dipping varies depending on the wire diameter. Except for 84 ′′, all the hot dippings were adjusted to 10 to 20 ° C./s.
  • the hot dipping was performed by degreasing and pickling the steel wire, dipping in a 60 ° C. flux aqueous solution for 10 seconds, drying, and dipping in a hot dipping bath having a predetermined chemical composition for 30 seconds.
  • Hot dip plating was performed at a bath temperature of 450 to 470 ° C., and the cooling rate after hot dip plating varied with the wire diameter, but all hot dip plating was adjusted to be around 15 ° C./second. Furthermore, the thickness of the hot-dip plating was adjusted by wiping so that all platings were about 50 ⁇ m. Further, the two-bath Zn—Al plating was produced by performing a hot dip Zn plating at 450 ° C. and then immediately immersing in a hot dip Zn—Al plating bath without flux treatment.
  • An aqueous solution having a pH of 1.0 adjusted to 45 to 50% in total was used. Further, a 7% NH 4 Cl aqueous solution was used as a flux for hot-dip Zn plating.
  • Tables 19 to 21 show the production conditions and the plating composition of the plated steel wire.
  • the plating composition is 1 mL of commercially available pickling corrosion inhibitor, 140 mL of HCl, and dissolved in 1 L of pure water to immerse the plating layer and alloy layer for several minutes at room temperature, It was determined by ICP analysis.
  • the plated steel wire was observed with an SEM, and the wire drawing perlite structure fraction of the base material and the primary crystal diameter of the plating layer were measured.
  • the alloy layer was observed by TEM, the thickness of the alloy layer was measured, and the state of the interface alloy layer was evaluated. The evaluation of the state of the interface alloy layer is as follows.
  • the interface alloy layer (Fe—Al-based alloy generation layer) is composed of three layers composed of columnar crystals of Al 5 Fe 2 and Al 3.2 Fe and granular crystals of Fe—Al—Si
  • the interface alloy layer is Al 5 Fe 2 , Al 3.2 Fe columnar crystals
  • Two layers composed of Al columnar crystals C: Interfacial alloy layer composed of Fe—Al columnar crystals
  • the fatigue limit of the plated steel wire was evaluated by a partial single swing tensile fatigue test. Based on 490 MPa, the minimum stress is fixed according to the tensile strength of the plated steel wire, the maximum stress is changed, and the fatigue limit (the value obtained by subtracting the minimum stress from the maximum stress) is obtained at 2 million cycles. It was.
  • the torsional characteristics were evaluated by collecting 100 torsional test pieces continuously from the manufactured Zn-Al plated steel wire and conducting a torsion test. In the torsion test, both ends of the test piece are gripped at an interval of 100 times the wire diameter, and one side of the gripping part is rotated in the same direction at a twisting speed of 10 rpm while being strained so as not to bend. The number of twists was evaluated. 100 torsion tests were conducted and the minimum number of twists was investigated.
  • the corrosion resistance of the plated steel wire was evaluated by performing a salt spray test (JIS Z 2371) for 360 hours using a plated steel wire cut to a length of 100 mm, and the time until red rust occurred.
  • JIS Z 2371 a salt spray test
  • Time to red rust occurrence is 360 hours or more
  • B Time to red rust occurrence is 300 hours to less than 360 hours
  • C Time to red rust occurrence is 240 hours to less than 300 hours
  • D Time to red rust occurrence is less than 240 hours
  • the results are shown in Tables 22-24.
  • the symbols in the width column of the primary crystal (dendrid) are as follows.
  • B: Primary crystal (dendrid) width is 10 ⁇ m or less
  • D Primary crystal (dendrid) width exceeds 10 ⁇ m
  • No. which is a comparative example.
  • 56 ′′ to 61 ′′ are examples in which the chemical composition of the steel wire is inappropriate.
  • No. 56 ′′ has a low C content, and the tensile strength of the Zn—Al plated steel wire is lowered.
  • No. No. 58 ′′ is an example in which the tensile strength of the plated steel wire is reduced because the Si content is too low, resulting in a large decrease in strength when immersed in a hot dipping bath.
  • 59 ′′ is an example in which pro-eutectoid cementite is generated at the grain boundary during the patenting process because the C content is too high, and as a result, the torsional characteristics and fatigue characteristics deteriorate.
  • no. 61 ′′ is an example in which the tensile strength of the plated steel wire is reduced because the content of each component is appropriate, but the value of 105 ⁇ C + 9 ⁇ Si-2 ⁇ Mn + 17 ⁇ Cr is low.
  • 62 ′′ to 64 ′′ are examples in which the wire rod is subjected to a patenting process by air cooling after hot rolling (see wire rod Nos. B2 ′′, F2 ′′, J2 ′′ in Table 18).
  • no. 62 '' has a low tensile strength of patenting treatment, the difference between the maximum and minimum values of tensile strength increases, and further, the tensile strength of the plated steel wire does not reach its purpose, and the torsional characteristics and fatigue characteristics Has also deteriorated.
  • No. 63 ′′ is an example in which the cementite thickness is extremely large, the wire drawing workability is deteriorated, and the wire breakage occurs during the wire drawing.
  • No. No. 64 ′′ is an example in which the cementite thickness is increased, the difference between the maximum value and the minimum value of the tensile strength is increased, and the torsional characteristics and fatigue characteristics of the plated steel wire are deteriorated.
  • 72 ′′ and 73 ′′ are examples in which the heat treatment after wire drawing is inappropriate.
  • No. No. 72 ′′ has a heating temperature that is too high.
  • 73 ′′ is an example in which the strength of the plated steel wire did not reach the purpose because the heating time was too long.
  • no. No. 71 ′′ is an example in which a part of the structure becomes a spheroidized cementite structure because the heating temperature is too high, and the torsional characteristics and fatigue characteristics deteriorate.
  • Nos. 77 ′′ to 80 ′′ are examples of Zn—Al plated steel wires by the conventional two-bath method. These have good corrosion resistance, but the fatigue properties are deteriorated due to the thick alloy layer (Fe-Al alloy formation layer) and the poor state of the alloy layer at the interface. This is an example in which the strength ratio did not reach the desired 0.22 or more.
  • 81 ′′ to 85 ′′ are examples in which the chemical component of Zn—Al plating is inappropriate.
  • No. 81 '' and No. No. 82 ′′ is an example in which corrosion resistance could not be ensured because the Al content was too low.
  • No. 83 ′′ is an example in which the fatigue characteristics are deteriorated because the Si content in the plating is too high.
  • No. 84 ′′ is an example in which the cooling rate after plating is slow and the alloy layer has grown, and the fatigue characteristics are deteriorated because the Fe content in the plating is too high.
  • no. 85 ′′ is an example in which both the corrosion resistance and the fatigue characteristics are deteriorated because the Al content is low and the Si content is too high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 この橋梁用高強度Zn-Alめっき鋼線は、鋼線と;めっき本体層、及び、前記鋼線の表層と前記めっき本体層との界面に生成したFe-Al系合金生成層を有するZn-Alめっきと;を含み、前記鋼線の母相の成分組成が、質量%で、Cを0.70%以上1.2%以下、Siを0.01%以上2.5%以下、Mnを0.01%以上0.9%以下、含有し、Pを0.02%以下、Sを0.02%以下、Nを0.01%以下、に制限し、残部がFe及び不可避的不純物を含み;前記鋼線の母相の金属組織組成において、伸線加工パーライト組織が最も多く含まれる種類の組織であり;前記Zn-Alめっきの平均成分組成が、質量%で、Alを3.0以上15.0%以下含有し、Feを3.0%以下に制限し;前記Fe-Al系合金生成層の厚さが5μm以下である。

Description

耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法
 本発明は、吊橋、斜張橋等のメインケーブルに好適な橋梁用高強度Zn-Alめっき鋼線及びその製造方法、並びに橋梁用高強度Zn-Alめっき鋼線用線材に関する。
 本願は、2009年6月25日に日本に出願された特願2009-151303号、2009年6月25日に日本に出願された特願2009-151304号、および2009年6月25日に日本に出願された特願2009-151438号に基づき優先権を主張し、その内容をここに援用する。
 吊橋、斜張橋等に使われている橋梁用鋼線は、熱間圧延後の線材にパテンティング処理を施し、伸線加工、更に、溶融Znめっき等の表面処理を施して、製造されている。なお、パテンティング処理は、鋼線の強度を確保し、かつ、伸線加工の冷間加工性を高めるための熱処理である。このパテンティング処理には、熱間圧延後の線材を、そのまま、空気(ステルモア方式)や溶融塩、沸騰水等の雰囲気中に保持する方法、又は、線材を再加熱した後、Pb浴等に浸漬する方法などが採用されている。パテンティング処理後、鋼線は冷間での伸線加工によって強度が調整され、更に、耐食性を向上させるために表面処理が施される。
 一般に、鋼線の耐食性を向上させる表面処理は、溶融Znめっきである。しかし、吊橋、斜張橋は100年以上という長期間の使用が想定されており、橋梁用鋼線の耐食性を向上させることが重要な課題になっている。そのため、溶融Znめっきに代えて、更に耐食性の高い溶融Zn-Alめっきを施した鋼線が提案されている(例えば、特許文献1~3を参照)。
 しかし、溶融Zn-Alめっきを従来の溶融Znめっきと同じ工程で製造するのは困難である。これは、溶融Znめっき鋼線の製造に用いられる塩化アンモニウムフラックスが、Alを含むZn-Alめっき浴中で分解するためである。例えば、溶融Zn-Alめっき鋼線を、塩化アンモニウムを用いて、フラックス法によって製造すると、不めっきなどの欠陥が発生することがある。
 このような問題に対して、鋼線に溶融Znめっきを施した後に、更に溶融Zn-Alめっきを施す、いわゆる二浴法による製造方法が提案されている(例えば、特許文献4、5、参照)。しかし、二浴法では、2種類のめっき浴を用意する必要があること、工程が増えることから、製造コストの点で不利である。
 また、二浴法では、溶融Znめっき鋼線のめっきと鋼線との界面に形成されたFe-Zn合金層が、更に、450℃前後の溶融Zn-Alめっき浴に浸漬される際に成長し、合金層が厚くなって、疲労特性、加工性が劣化するという問題がある。これに対して、電気Znめっきを施した後、溶融Zn-Alめっきを施し、Fe-Zn合金層の成長を抑制する方法が提案されている(例えば、特許文献6、参照)。しかし、この方法も、工程が増えることから、製造コストの点で不利である。
 また、二浴法では、450℃前後のめっき浴に2回も浸漬されるため、めっき鋼線の強度の低下が懸念される。これに対して、溶融Znめっき後、伸線加工を施し、更に溶融Zn-Alめっきを施す方法が提案されている(例えば、特許文献7、参照)。しかし、この方法では、工程が増え、また、めっきと鋼線の界面に形成される合金層の成長を抑制することができない。
特開平5-156418号公報 特開平7-18590号公報 特開平6-235054号公報 特開2002-371343号公報 特開2003-129205号公報 特開2003-155549号公報 特開平8-53779号公報
 本発明者らの調査結果によれば、既存の吊橋において、腐食疲労破壊による橋梁用鋼線の破断が散見されている。したがって、橋梁用鋼線の安全性の向上を図るためには、耐食性を向上させるとともに腐食疲労破壊を防止する技術の開発も急務である。
 本発明の一態様は、耐食性に優れるZn-Alめっき鋼線を、一浴法によって製造する際の問題点を解決し、めっき層のAlリッチ相(Alリッチ初晶)を微細化し、めっき層と鋼線との界面における合金層の生成を抑制して、従来のZn-Alめっき鋼線を大幅に上回る高耐食性及び疲労特性を有する橋梁用の溶融Zn-Al系めっき鋼線を提供する。より具体的な例として、本発明の一態様は、吊橋、斜張橋に使用される、線径が4~8mmで、引張強度が1500MPa~1800MPa、1800MPa超~2000MPa、または2000MPa超であり、鋼線表面にZn-Alめっきを施した耐食性および疲労特性に優れた橋梁用の高強度Zn-Alめっき鋼線を提供できる。また、本発明の別の態様は、上記めっき鋼線の製造方法、並びに上記めっき鋼線の素材である線材を提供できる。
 本発明は、高強度鋼線に、フラックスを用いた一段階のZn-Alめっき、即ち、一浴法によって耐食性に優れるZn-Alめっきを施し、疲労強度をも向上させた高強度Zn-Alめっき鋼線である。発明者らは、このめっき鋼線では、Zn-Alめっきのめっき層の組織及びめっき層と鋼線との界面に生じる合金層の状態が、耐食性と疲労特性との両立のために重要であることを見出した。発明者らは、更に、橋梁用めっき鋼線の高強度化による延性低下を防止するために、素材である線材の組織を最適に制御することが重要であること、などを見出した。本発明は、これらの知見に基づいてなされたものである。
 本発明の要旨は以下のとおりである。
(1) 本発明の一態様にかかるめっき鋼線は、鋼線と;めっき本体層、及び、前記鋼線の表層と前記めっき本体層との界面に生成したFe-Al系合金生成層を有するZn-Alめっきと;を含む橋梁用高強度Zn-Alめっき鋼線であって、前記鋼線の母相の成分組成が、質量%で、Cを0.70%以上1.2%以下、Siを0.01%以上2.5%以下、Mnを0.01%以上0.9%以下、含有し、Pを0.02%以下、Sを0.02%以下、Nを0.01%以下、に制限し、残部がFe及び不可避的不純物を含み;前記鋼線の母相の金属組織組成において、伸線加工パーライト組織が最も多く含まれる種類の組織であり;前記Zn-Alめっきの平均成分組成が、質量%で、Alを3.0以上15.0%以下含有し、Feを3.0%以下に制限し;前記Fe-Al系合金生成層の厚さが5μm以下である。
(2) 上記(1)のめっき鋼線で、前記めっき本体層中の初晶の径が10μm以下であり;前記鋼線の母相の前記金属組織組成における前記伸線加工パーライト組織の分率が90%以上であってもよい。
(3) 上記(1)又は(2)のめっき鋼線で、前記Fe-Al系合金生成層の金属組織組成において、Al3.2Feの柱状晶の層とAlFeの柱状晶の層が最も多く含まれる種類の組織であってもよい。
(4) 上記(1)又は(2)のめっき鋼線で、前記Zn-Alめっきの平均組成が、更に、質量%で、Siを0.01%以上2.0%以下含んでもよい。
(5) 上記(4)のめっき鋼線で、前記Fe-Al系合金生成層の金属組織組成において、Al3.2Feの層と、AlFeの柱状晶の層と、Fe-Al-Siの粒状晶の層とが最も多く含まれる種類の組織であってもよい。
(6) 上記(1)~(5)の何れかのめっき鋼線で、前記Zn-Alめっきの平均組成のAl量が、質量%で、6.0以上15.0%以下であってもよい。
(7) 上記(1)~(6)の何れかのめっき鋼線で、前記鋼線の前記母相の成分組成が、更に、質量%で、Crを0%以上0.5%以下、Niを0%以上1.0%以下、Cuを0%以上0.5%以下、Moを0%以上0.5%以下、Vを0%以上0.5%以下、Bを0%以上0.0070%以下、のうち1種又は2種以上を含有してもよい。
(8) 上記(1)~(7)の何れかのめっき鋼線で、前記鋼線の前記母相の成分組成が、更に、質量%で、Alを0%以上0.1%以下、Tiを0%以上0.1%以下、Nbを0%以上0.05%以下、Zrを0%以上0.1%以下、のうちの1種又は2種以上を含有してもよい。
(9) 上記(1)~(8)の何れかのめっき鋼線で、ねじり試験による破断までのねじり回数の最小値が18回以上であってもよい。
(10)上記(1)~(9)の何れかのめっき鋼線で、部分片振り引張り疲れ限度と引張強さとの比が、0.22以上であってもよい。
(11)本発明の一態様にかかる製造方法は、上記(1)~(10)の何れかのめっき鋼線を製造する方法であって、前記鋼線の伸線加工を250℃以下の温度で行う伸線処理と;前記鋼線の酸洗処理と;前記鋼線のフラックス処理と;前記フラックス処理後の前記鋼線に対するZn-Alめっき処理と;を含み、前記Zn-Alめっき処理が、前記めっき鋼線を製造する方法に含まれる唯一の前記鋼線のめっき処理である。
(12) 上記(11)のめっき鋼線の製造方法で、前記Zn-Alめっき処理では、前記伸線加工後の前記鋼材を、質量%で、Alを3.0%以上15.0%以下、含有する溶融Zn-Al浴に浸漬してもよい。
(13) 上記(11)のめっき鋼線の製造方法は、鋼材を熱間圧延する工程と;熱間圧延に続いて500℃以上600℃以下のソルト浴中に前記鋼材を浸漬するパテンティング処理と;をさらに有してもよい。
(14) 上記(11)~(13)のいずれかのめっき鋼線の製造方法で、溶融Zn-Al浴が、更に、質量%で、Si:2.0%以下を含有し、上記(4)、(5)、(7)~(10)のいずれかのめっき鋼線が製造されてもよい。
(15) 上記(11)~(13)のいずれかのめっき鋼線の製造方法で、溶融Zn-Al浴のAl量が、質量%で、6.0%以上15.0%以下であり、上記(6)~(10)のいずれかのめっき鋼線が製造されてもよい。
(16) 上記(11)~(15)のいずれかのめっき鋼線の製造方法で、前記伸線加工の後に、更に、ローラー矯直加工、400~500℃で1~60s保持する加熱処理の一方または双方を施してもよい。
 本発明によれば、耐食性及び疲労特性に優れた橋梁用の高強度Zn-Alめっき鋼線を効率よく提供することが可能になるとともに、橋梁用鋼線を長寿命化することができるなど、産業上の貢献が極めて顕著である。
従来技術にかかる、二浴式の合金めっき方法で製造されためっき鋼線のめっき組織である。 図1Aのめっき組織に発生した亀裂である。 図1Aのめっき組織に発生した亀裂である。 本発明の一実施形態にかかる、一浴式の合金めっき方法で製造されためっき鋼線のめっき組織である。
 以下、本発明について詳細に説明する。なお、特に断りの無い限り本明細書中では組成の%表示は質量%を意味する。
 なお、本明細書において、引張強度が1500MPa以上1800MPa以下のめっき鋼線を「1500MPaクラス」、引張強度が1800MPa以上2000MPa以下のめっき鋼線を「1800MPaクラス」、引張強度が2000MPa超のめっき鋼線を「2000MPaクラス」、と分類する。
 C:Cは、パテンティング処理後の引張強さの増加および伸線加工時の加工硬化率を高めるために有効な元素である。Cの添加によって、より少ない伸線加工歪みで鋼線を高強度化することが可能になり、疲労特性の改善にも寄与する。
 本発明の一態様にかかる鋼線では、C量を0.70~1.2%の範囲に限定する。なお、1500MPaクラスのめっき鋼線ではC量を0.70~0.95%の範囲に更に限定してもよい。1800MPaクラスのめっき鋼線ではC量を0.8~1.0%の範囲に更に限定してもよい。2000MPaクラスのめっき鋼線ではC量を0.9~1.2%の範囲に更に限定してもよい。
 めっき鋼線のC量が上記範囲の下限値以上であれば、その他の合金元素を添加した時パテンティング処理後の線材の引張強さが十分に確保され、また伸線加工硬化率も十分大きい値となり、目的とする高強度の橋梁用鋼線を得ることできる。一方、C量が、上記範囲の上限値以下であれば、中心偏析を軽減するための処理コストが許容できる範囲となる。
 Si:本願の一態様にかかる鋼線では、Si量を0.01~2.5%に限定する。なお、1500MPaクラスのめっき鋼線ではSi量を0.01~0.5%の範囲に更に限定してもよい。1800MPaクラスのめっき鋼線ではSi量を0.5~1.5%の範囲、更に好ましくは、0.7~1.5%の範囲に更に限定してもよい。2000MPaクラスのめっき鋼線ではSi量を0.8超~2.5%の範囲に更に限定してもよい。Siは、脱酸剤であり、また、パーライト中のフェライトの強化に有効な元素であるため、Si量を上記範囲の下限値以上とする。一方、上記範囲の上限値超のSiを添加しても、効果が飽和する。
 Siは、めっき浴で加熱された際の、鋼線の強度低下の抑制にも有効であるため、0.1%以上を添加することが更に、好ましい。
 Mn:本願の一態様にかかる鋼線では、Mn量を0.01~0.9%に限定する。なお、1500MPaクラスのめっき鋼線ではMn量を0.01~1.5%の範囲に更に限定してもよい。1800MPaクラスのめっき鋼線ではMn量を0.1~1.2%の範囲に更に限定してもよい。2000MPaクラスのめっき鋼線ではMn量を0.1~0.9%の範囲に更に限定してもよい。
 Mnは、脱酸及び脱硫に有効な元素であるため、上記範囲の下限値以上を添加する。鋼の焼入性を向上させ、パテンティング処理後の引張強度を高めるためには、0.1%以上を添加することが更に好ましい。一方、Mn量が上記範囲の上限値以下であれば、偏析度が増加せず、パテンティング処理時にねじり回数を低下させるベイナイトの発生が抑制される。なお、焼入れ性を高め、他の合金成分の添加量を低減するためには、1500MPaクラスおよび1800MPaクラスではMnを0.3%以上、2000MPaクラスではMnを0.2%以上添加することが更に好ましい。
 P:Pは、不純物であり、延性の低下を抑制するため、0.02%以下に制限する。なお、P量の上限は、0.01%以下が好ましい。
 S:Sは、不純物であり、熱間加工性の低下を抑制するため、0.02%以下に制限する。なお、S量の上限は、0.01%以下が好ましい。
 N:Nは、不純物であり、過剰に含有すると延性が低下するため、0.01%以下に制限する。なお、好ましいN量の上限は、0.007%以下である。また、Al、Ti、Nb、Zrなどの窒化物を利用して、結晶粒径を微細化するためには、N量を0.001%以上にすることが好ましい。
 以上が基本成分であるが、本発明では、更に、パテンティング処理後の強度を高めるためにCr、Ni、Cu、Mo、V、Bの1種または2種以上を含有することができる。
 Cr:Crは、パーライトのラメラ間隔を微細化し、パテンティング処理後の引張強度を高め、伸線加工硬化率を向上させる有効な元素である。しかし、0.5%超のCrを添加すると、強度の向上により、延性が低下することがあるため、上限を0.5%以下にすることが好ましい。なお、疲労特性の向上、溶融めっき時の強度低下の防止には、0.01%以上のCrを添加することが好ましい。
 Ni:Niは、焼入性を向上させる元素であり、パテンティング処理時のラメラ間隔の微細化や、パテンティング処理後の強度の向上に有効な元素である。しかし、1.0%超のNiを添加しても、効果が飽和するため、上限を1.0%以下とすることが好ましい。なお、Niは、パーライトの伸線加工性の向上にも有効であり、0.01%以上を添加することが好ましい。
 Cu:Cuは、Niと同様に、パテンティング処理時のラメラ間隔の微細化や、パテンティング処理後の強度の向上に有効な元素である。伸線加工性の良好なパーライトを得るためには、Cuを0.01%以上添加することが好ましい。しかし、0.5%超のCuを添加しても、効果が飽和するため、上限を0.5%以下とすることが好ましい。
 Mo:Moも、焼入性を向上させる元素である。Moの添加は、パテンティング処理後の引張強度の向上に有効であり、0.01%以上を添加することが好ましい。一方、0.5%超のMoを添加しても、効果が飽和するため、上限を0.5%以下とすることが好ましい。
 V:Vは、析出強化によってパテンティング処理後の引張強度を高める元素である。また、Vの添加は、溶融めっき時の強度低下の抑制に対しても効果があり、V量を0.01%以上にすることが好ましい。一方、0.5%超のVを添加すると、延性が低下することがあるため、上限を0.5%以下にすることが好ましい。
 B:Bは焼入性向上効果によって、パテンティング処理後の引張強度を高める元素である。焼入れ性を高めるためには、0.0001%以上の添加が好ましい。一方、0.0070%を超えてBを添加しても、添加量に見合う効果が発現されないため、B量の上限を0.0070%以下にすることが好ましい。
 本発明では、更に、強度の向上や結晶粒径の細粒化、特に、旧オーステナイト粒径を微細化し、冷間での伸線加工性を高めるためにAl、Ti、Nb、Zrの1種または2種以上を含有することができる。
 Al:Alは、脱酸に有効な元素であり、窒化物の形成によって、結晶粒の粗大化の防止にも寄与する。しかし、0.1%超のAlを添加しても効果が飽和するため、上限を0.1%以下にすることが好ましい。なお、旧オーステナイト粒径を微細化し、パーライト変態後の鋼線の伸線加工性を高めるためには、Alの添加量を、0.001%以上にすることが好ましい。
 Ti:Tiは、脱酸に有効な元素であり、また炭化物、窒化物の形成によって強度の向上及び結晶粒の粗大化の防止に寄与する。旧オーステナイト粒径を微細化し、パーライト変態後の鋼線の伸線加工性を高め、鋼線の延性を向上させるためには、0.001%以上のTiを添加することが好ましい。一方、0.1%超のTiを添加すると、Tiの炭窒化物が粗大になり、伸線加工性や疲労特性を劣化させることがあるため、上限を0.1%以下とすることが好ましい。
 Nb:Nbは、Tiと同様、炭化物、窒化物を形成する元素である。Nbの炭化物、窒化物によってオーステナイト粒を微細化させるために有効な元素である。特に、旧オーステナイト粒径を微細化し、パーライト変態後の鋼線の伸線加工性を高め、鋼線の延性を向上させるためには、0.001%以上のNbの添加が好ましい。一方、0.05%超のNbを添加しても、効果が飽和するため、Nb量の上限を0.05%以下とすることが好ましい。
 Zr:Zrも、Ti、Nbと同様、炭化物、窒化物を形成する元素であり、パーライト変態後の鋼線の伸線加工性を高め、鋼線の延性を向上させるために、0.001%以上を添加すること好ましい。一方、0.1%超のZrを添加しても、効果が飽和するため、上限を0.1%以下とすることが好ましい。
 本発明の一態様にかかる耐食性と疲労特性に優れたZn-Alめっき鋼線の金属組織組成において、伸線加工パーライト組織がフェライト、ベイナイト等の他の組織と比較して最も多く含まれる。更に好ましくは、このめっき鋼線では、金属組織が、実質的に伸線加工パーライトからなる。本発明において、「伸線加工パーライト組織」とは、粗大パーライトを含まない伸線加工性後のパーライト組織を意味し、粗大パーライトを含まないことが好ましい。なお、実質的に伸線加工パーライトである金属組織とは、光学顕微鏡による観察では、パーライト以外の組織が認められない金属組織をいう。なお、実質的に伸線加工パーライトである金属組織では、パーライト以外の組織を走査型電子顕微鏡(SEM)などによって確認することができる。
 フェライト、ベイナイト等の非パーライト組織の分率が増加すると、疲労特性及び延性が低下することがあるため、伸線加工パーライト組織の分率を十分に確保することが好ましい。1500MPaクラスでは、伸線加工パーライト組織の分率を90%以上とすることが好ましい(この分率が100%以下であってもよい)。1800MPaクラス、および2000MPaクラスでは、伸線加工パーライト組織の分率を92%以上とすることが好ましい。いずれのクラスでも、さらに好ましい伸線加工パーライト組織の分率は、95%以上である。伸線加工パーライト組織の分率は、パテンティング処理におけるソルト浴温度に大きく依存する。1500MPaクラスでは、ソルト浴温度が500℃以上であると、ベイナイト組織の発生頻度を好適に抑制できる。1800MPaクラス、および2000MPaクラスでは、ソルト浴温度を520℃以上とすることが好ましい。いずれのクラスでも、ソルト浴温度を600℃とすることで、微細なパーライト組織が生成できる。また、熱間圧延後の冷却速度を遅くしすぎると粗大パーライト組織が増えるため、冷却速度は10℃/s以上とすることが好ましい。
 本発明では、伸線加工パーライトの組織分率は、SEMで、倍率を5000倍として観察を行い、10視野程度を写真撮影し、画像処理によって伸線加工パーライト組織の面積分率を測定し、その平均値を求めた値とする。伸線加工パーライトの組織分率の測定は、鋼線の直径dに対し、鋼線の表層からd/4の位置で行う。
 次に、Zn-Alめっきの合金元素の役割と含有量について説明する。本発明の一態様にかかるZn-Alめっき(Zn-Alめっき層)は、Zn-Al系合金を主体とするめっき層(めっき本体層;Zn-Al合金層)と、Fe-Al系金属間化合物を主体とする合金層(Fe-Al系合金生成層)からなる。このFe-Al系合金生成層は、加工の過程で、Zn-Alめっき鋼線の母相(鋼線)と、めっき本体層との界面に生成する。つまり、Fe-Al系合金生成層は、鋼線と、めっき本体層との双方に直接接して形成される。換言すると、本発明の一態様にかかるめっき鋼線において、鋼線と、めっき本体層との間に介在する層は、Fe-Al系合金生成層のみであり、これ以外には、めっき鋼線の耐食性や疲労特性に影響を及ぼすような大きさ・厚さを持つ層は実質含まれない。上記の意味において、本発明の一態様にかかるZn-Alめっき鋼線は、鋼線と、めっき本体層と、上記鋼線と上記めっき本体層との間に形成されるFe-Al系合金生成層と、からなる。なお、以下に規定するZn-Alめっきの成分には、めっき層(めっき本体層)及び合金層(Fe-Al系合金生成層)の成分が含まれる。
 Alは、Znのような犠牲防食の効果ではなく、めっきの表面に緻密な酸化皮膜を形成することによって、耐食性を高める元素である。Zn-Alめっきの耐食性を向上させるには、3%以上のAlを添加することが必要である。更に、Zn-Alめっきに、Zn-Alの共晶点に相当する6%以上のAlを添加することが好ましい。Alを6%以上含有するZn-Alめっきでは、凝固時に、Znリッチ相よりも先にAlリッチ相が析出するようになり(つまりAlリッチ初晶が生成する)、表面が緻密な酸化皮膜によって防食され、耐食性が顕著に向上する。なお、Alリッチ相を増加させ、耐食性を高めるには、Zn-AlめっきのAl量を8%以上にすることが好ましい。
 更に、本発明者らは、Zn-Alめっき鉄線のめっき層のZn-Al系合金層が、加工性及び疲労特性に影響を及ぼすことを見出した。図2に例示するように、めっき層中のZn-Al系合金層は、Al及びZnを主成分とする面心立方構造(fcc)の初晶Alリッチ相1と、この初晶を取り囲み、比較的Znを多く含む共晶部分2を含む。この共晶部分2はZnの六方最密構造(hcp)と、Alの面心立方格子(fcc)との共晶組織を含む。ここで、初晶Alリッチ相1は、Znを固溶したαAl相(α1Al相を含む)である。後述する初晶Znリッチ相は、Alを固溶したZn相である。本発明者らの検討によれば、Zn-Al系合金層の初晶である初晶Alリッチ相もしくは初晶Znリッチ相が粗大化すると、めっき鉄線を曲げ加工した際に、Alリッチ相とZnリッチ相との境界に沿ってZn-Al系合金層に亀裂が発生することがわかった。そのため、Alリッチ相は、微細な組織(結晶粒径)を有することが好ましい。
 Al量を増やすと耐食性の向上効果が大きくなるが、Al量が15%を超えると効果が飽和し、また、めっきの融点が高くなり、操業の点で不利になる。したがって、Zn-AlめっきのAl量の上限を15%に制限する。なお、Zn-Alめっき層のAl量は、めっき浴中のAl濃度によって制御することができる。
 Zn-Alめっきに含まれるFeは、鋼線の表面から拡散し、めっきと鋼線との界面に、主に、FeとAlとを含む合金層(Fe-Al系合金生成層)を形成している。したがって、Zn-AlめっきのFeは、合金層(Fe-Al系合金生成層)の厚さとともに変化する。Zn-AlめっきのFeが3.0%を超えると、合金層が厚すぎるため、疲労特性が劣化しやすくなる。したがって、めっきと鋼線との密着性及び疲労特性を両立させるためには、Zn-AlめっきのFe量を3.0%以下に制限する。また、疲労特性を高めるには、合金層の厚みを薄くすることが好ましい。したがって、Zn-AlめっきのFe量を一定量以下に制限することが更に好ましい。1500MPaクラスでは、Fe量を3.0%以下に制限することが好ましい。1800MPaクラスおよび2000MPaクラスでは、Fe量を2.0%以下に制限することが好ましい。一方、めっきと鋼線との界面に合金層(Fe-Al系合金生成層)が形成されると、めっきと鋼線とが確実に密着する。したがって、Zn-Alめっきには、0.01%以上のFeが含まれることが好ましい。
 Zn-Alめっきには、更に、Siを添加することが好ましい。なお、Zn-AlめっきのSi量は、Zn-Alめっき浴のSi含有量によって制御する。
 Siは、鋼線とめっきとの界面に生じる合金層(Fe-Al系合金生成層)の成長を抑制する元素である。めっきと鋼線との界面で、合金層の局部的な成長を抑制するためには、Zn-Alめっきに含まれるSi量を0.05%以上にすることが好ましい。一方、Zn-AlめっきのSi量が2.0%を超えると、合金層の厚みの増加を抑制する効果が飽和し、めっき自体が硬くなって、疲労強度が低下することがある。したがって、Zn-AlめっきのSi量の上限を2.0%以下に制限することが好ましい。更に疲労強度を高めるには、Zn-AlめっきのSi量の上限を1.5%以下に制限することが好ましい。
 また、Siを含有すると、合金層の成長に及ぼすめっき浴の温度や、冷却速度の影響が緩和される。したがって、めっき浴の温度が高い場合や、冷却速度が遅い場合に、合金層の成長を抑制するには、Siを含有させることが好ましい。
 なお、Zn-Alめっきの化学成分は、酸洗腐食抑制剤を添加した酸に常温で数分間浸漬することにより、溶解させた後、溶液を誘導結合プラズマ(ICP)発光分光分析、原子吸光法によって行うことができる。他にJIS H0401に示す方法で可能である。例えば、ヘキサメチレンテトラミンを塩酸に溶かし、溶液を水で希釈した試験液にめっきを溶解し、溶液をICPで化学分析する方法である。この方法では、めっき層及び合金層(Fe-Al系合金生成層)が溶解する。また、めっき鋼線に曲げなどの加工を施し、めっき層及び合金層を機械的に鋼線から剥離させ、剥離したZn-Alめっきの化学分析を行うことによって測定してもよい。
 Zn-Alめっきの化学成分のうち、Al、Si、Feを除く残部は、Zn及び不可避的不純物である。ここで、不可避的不純物とは、Mg、Cr、Pb、Sb、Sn、Cd、Ni、Mn、Cu、Ti等のめっきの過程で不可避的に混入する元素を意味する。なお、これら不可避的不純物の含有量は、合計で1%以下とすることが好ましい。
 次に、Zn-Alめっきのめっき層の組織について説明する。
 めっき層の組織は、凝固組織である。溶融Zn-Alを冷却すると、Al濃度が共晶点(6%)未満の場合、まず初晶であるZnリッチ層(初晶Znリッチ相)が析出し、その後、それを埋めるZn-AlのAlリッチ相(共晶)が生成する。一方、Al濃度が、共晶点以上の場合、まず初晶である初晶Alリッチ相が析出し、その後、それを埋めるようにZnリッチ相(共晶)が生成する。
 先に析出する初晶(初晶Alリッチ相または初晶Znリッチ相)が粗大になると、めっきの割れ及び剥離の起点となり、疲労強度が低下する。したがって、めっき層の初晶の径を、疲労強度に悪影響を及ぼさないように、10μm以下に限定する。更に、疲労強度を高めるには、初晶の径を、5μm以下にすることが好ましい。初晶の微細化は、めっき浴の温度を低下させること、めっき後の冷却速度を速くすること、及び両者の兼ね合いによって行われる。したがって、初晶を10μm以下にするためには、めっき浴の温度を低くすること、及びめっき後の冷却速度、即ち、鋼線をめっき浴から引き上げ、冷却する際の、冷却速度を速くすることなどを兼ね合わせながら行う必要がある。また、初晶の径の下限は、めっき浴の温度、めっき後の冷却速度など、操業上の制約によって、1μm以上とすることが好ましい。
 初晶は、円形の場合もあるが、通常は、楕円形の場合が多い。初晶が楕円形である場合は、初晶の径を、長径と短径の平均値として求める。なお、初晶の径は、SEM組織写真を画像処理して、円相当径を求めてもよい。また、めっき後の冷却速度が速い場合、初晶の形態がデンドライト状になることがある。このような場合は、初晶の径を、デンドライトの幅として測定する。初晶の径の測定は、SEMを用いて測定することができる。本発明では、2000倍で10視野又はそれ以上を写真撮影して初晶の径を測定し、その平均値を求める。
 更に、Zn-Alめっきのめっき層と鋼線の母相との界面に生成する合金層(Fe-Al系合金生成層)について説明する。
 Zn-Alめっきのめっき層と鋼線の母相との界面に存在する合金層(Fe-Al系合金生成層)の厚さは、5μmを超えると、Zn-Alめっき鋼線の疲労特性が劣化するため、上限を5μmに制限する。更に、好ましくは合金層の厚さを3μm以下とする。この合金層の厚さの実際上の下限値は10nmである。一方、Zn-Alめっきと鋼線との密着性を高めるためには、合金層の厚さの下限を0.05μm以上とすることが好ましい。合金層の厚さを5μm以下にするには、後述する実施例において具体的に示されるように、めっき層中のSi含有量を増やすこと、めっき浴の温度を低くすること、被めっき鋼線浸漬時間の短縮、及びめっき後の冷却速度を速めること、及びこれらの兼ね合いによって行うことができる。例えば、めっき浴の温度が高い場合、又は冷却速度を遅くしても、Si含有量を増やすことによって、合金層の厚さを5μm以下にすることが可能である。
 本発明では、合金層(Fe-Al系合金生成層)の厚さの測定は、透過型電子顕微鏡(TEM)を用いて行う。TEM観察は、合金層の厚さに応じて、5000~20000倍で行い、倍率に応じて、10視野又はそれ以上の組織写真を撮影し、合金層の厚さの平均値を求める。また、TEMによる観察と、エネルギー分散型X線分光法(EDS)により、めっき層と鋼線の母相との界面の合金層の存在を確認することができる。合金層は、高分解能の電解放射型走査電子顕微鏡(FE-SEM)及びEDSによっても確認することができる。
 従来技術である二浴式のZn-Al合金めっき方法では、一浴目にZn浴を行い、二浴目に10%Al-Zn浴を行う。この結果、めっき部分Gと地鉄Sとの界面にFe-Zn-Al合金層Aが形成される(図1A)。このFe-Zn-Al合金層Aは比較的硬度が高いため、疲労破壊の亀裂発生箇所となる場合がある(図1B)。Fe-Zn-Al合金層Aのこの亀裂に応力が集中する結果、鋼線の地鉄層Sまでさらに亀裂が進行する場合もある(図1C)。
 一方、本発明の一態様にかかる合金層(Fe-Al系合金生成層)の合金部分は、下に詳述するように、実質的にZnを含まない、無Zn合金ないし低Znの合金(Al-Fe柱状晶)である。この合金層近辺に少量の残留Znが含まれる場合であっても、Znは、AlおよびFeの合金の柱状晶の間隙に単独で存在する。従って、合金層の合金部分は、実質的にAlおよびFeの合金からなる。このFe-Al系合金生成層は、上記のFe-Zn-Al合金層Aと比較して、疲労特性に優れ、疲労破壊が発生しにくい。
 合金層の合金部分は、Zn-AlめっきがSiを含有しない場合は、Al3.2Feの柱状晶の層と、AlFeの柱状晶の層とからなる。つまり、合金層の金属組織組成において、上記の2種の柱状晶が最も多く含まれる種類の組織である。即ち、合金層は複層構造であり、鋼線側の層(下層)はFe比率が高く合金化が進んだAlFe、めっき側の層(上層)は合金化度の低いAl3.2Feとなる。このような複層構造を形成すると、層自体の内部応力の低下及び下層と上層との界面の応力差が低減され、めっきの密着性が更に向上すると推定される。
 一方、Zn-AlめっきがSiを含有する場合、上述のAl3.2Feの柱状晶の層とAlFeの柱状晶の層とからなる合金層(柱状晶層という)と、めっき層との間に、Al-Fe-Siの粒状晶からなる層(粒状晶層という。)が生成する。したがって、Siを添加したZn-Alめっきでは、粒状晶層が、鋼線からZn-AlめっきへのFeの拡散を抑制し、柱状晶層の成長を抑制すると考えられる。また、粒状晶層は、柱状晶層とめっき層との界面の応力差を緩和し、その結果、更に、良好な密着性が発現すると推定される。
 特に、Siの含有による粒状晶層の生成に及ぼす、めっき浴の温度や、冷却速度による影響は小さい。この原因は、明確ではないものの、Siの含有による粒状晶の生成は、めっき浴の温度や、冷却速度が変動する場合でも、合金層の成長の抑制に有効である。また、粒状晶層は、柱状晶層とめっき層との界面の応力差を緩和し、その結果、更に、良好な密着性が発現すると推定される。
 なお、AlFeの柱状晶、Al3.2Feの柱状晶、Al-Fe-Siの粒状晶は、TEMによる組織観察及び電子線回折により、結晶構造を特定し、同定することができる。また、合金層には微細な粒状のZn又はZn-Alからなる相が存在することがある。このZn又はZn-Alからなる相は、Al3.2Feの柱状晶の粒界、AlFeの柱状晶の粒界、柱状晶層の上層と下層との界面、柱状晶層と粒状晶層との界面に存在する。
 次に、本発明のZn-Alめっき鋼線の特性について説明する。
 ねじり回数:ねじり回数は、ねじり試験による破断までのねじり回数であり、鋼線の延性の指標である。本発明者らは、ねじり回数が18回以上になると、Zn-Alめっき鋼線の延性が高く、疲労特性、特に腐食疲労特性が顕著に向上することを初めて明らにした。したがって、50本、好ましくは100本の試験片を用いてねじり試験を行い、全ての試験片のねじり回数が18回以上であり、ねじり回数の最小値が18回以上であることが好ましい。
 ねじり試験は、線径の100倍のつかみ間隔が得られる試験片を用いて行う。Zn-Alめっき鋼線から採取した試験片の両端を、線径の100倍の間隔でつかみ、たわまない程度に緊張しながら、つかみ部の一方を同一方向に回転させる。ねじり速度を10rpmとして、ねじり試験を行い、破断した際のねじり回数を評価する。また、製造されたZn-Alめっき鋼線から連続的に50本,好ましくは100本のねじり試験片を採取してねじり試験を行う。
 疲れ限度:疲れ限度と引張強さとの比は、0.22以上であることが好ましい。この理由は、めっき鋼線の引張強さの増加に応じて設計応力が高まるためである。疲れ限度と引張強さとの比が0.22以上になると、高疲労強度化のメリットが大きくなり、橋梁の長寿命化が達成される。橋梁の耐久性を更に高めるには、疲れ限度と引張強さとの比は、0.25以上であることが更に好ましい。
 本発明では、Zn-Alめっき鋼線の疲労特性を部分片振り引張り疲労試験で評価する。めっき鋼線の引張強度に応じて最小応力を固定し、最大応力を変化させて、繰返し数が200万サイクルでの疲れ限度(最大応力から最小応力を引いた値)を求める。最小応力は、1500MPaの鋼線の490MPaを基準にし、引張強度に応じて最小応力を変化させる。例えば、1600MPaの鋼線では、最小応力を490×1600/1500で計算し、523MPaとする。また、例えば、1800MPaの鋼線では、最小応力を490×1800/1500で計算し、588MPaとする。また、例えば、2100MPaの鋼線では、最小応力を490×2100/1500で計算し、686MPaとする。
 次に、疲労特性に優れた高強度Zn-Alめっき鋼線の製造に用いる線材について説明する。なお、線材とは、冷間での伸線加工前の素材であり、熱間圧延後、圧延線材にパテンティング処理を施して製造される。
 伸線加工性と強度の観点から、鋼線の母相の金属組織組成において、伸線加工パーライト組織が最も多く含まれる種類の組織であることが好ましい。更に好ましくは線材の組織全体が、実質的にパーライトであることが好ましい。また、伸線加工前の線材のパーライト組織分率は、Zn-Alめっき鋼線の伸線加工パーライト組織の分率と、ほぼ同じである。そのため、伸線加工前の線材のフェライト、ベイナイト等の非パーライト組織の分率が増加すると、Zn-Alめっき鋼線の疲労特性及び延性が低下することがあり、線材のパーライト組織分率は92%以上であることが好ましい。より好ましいパーライト組織の分率は95%以上である。パーライトの組織分率は、SEMで倍率が2000で10視野以上を写真撮影し、画像処理によってパーライト組織の面積分率を測定し、その平均値を求めた値である。なお、観察する場所は、線材の表層からd/4の位置である(d:鋼線の直径)。また、伸線加工前の線材のパーライトは、Zn-Alめっき鋼線のパーライト分率から推定することができる。
 パーライト組織のブロックサイズは、線材の伸線加工性、及び、伸線加工後のZn-Alめっき鋼線のねじり回数と疲労特性に影響を与える因子である。パーライト組織のブロックサイズが25μm以下にすると、伸線加工性の低下やねじり回数、疲労特性の劣化を抑制することができる。したがって、パーライト組織のブロックサイズの好ましい上限は、25μm以下である。
 パーライト組織のブロックサイズの測定方法は、一般には、エッチピット法や、電子後方散乱回折像法(EBSD:Electron Back Scatter Diffraction Pattern法)によって測定することができる。本発明では、精度良くパーライト組織のブロックサイズを測定するために、EBSD法を採用する。パーライト組織のブロックサイズの測定は、線材の表層からd/4(d:鋼線の直径)の位置で行い、3視野の平均値を求める。
 なお、ブロックサイズは、熱間圧延の仕上げ温度、熱間圧延後の冷却速度、Mo、V、B、Al、Ti、Nb、Zr等の合金元素に影響される。したがって、熱間圧延機の能力に応じて、製造条件、合金元素の種類と添加量を調整し、パーライト組織のブロックサイズを制御する。
 線材のパーライト組織中のセメンタイト厚みは、伸線加工後の鋼線の延性に影響し、Zn-Alめっき鋼線の疲労特性にも影響を与える。Zn-Alめっき鋼線のセメンタイト厚みが増加すると、伸線加工時のセメンタイトの加工性が低下する。その結果、Zn-Alめっき鋼線のねじり回数が劣化する頻度が増加し、疲労特性が若干低下する。したがって、線材のセメンタイト厚みを0.03μm以下にすることが好ましい。
 パーライト組織において、同一のラメラ間隔であっても、セメンタイト厚みはC量が増加するほど厚くなる。また、伸線加工後のZn-Alめっき鋼線のパーライト組織のセメンタイト厚み及びC量は、線材のセメンタイト厚み及びC量に影響される。そこで、線材のセメンタイト厚み及びC量と、Zn-Alめっき鋼線のねじり回数及び疲労特性との関係について調査した。その結果、1800MPaクラスでは、セメンタイト厚みが0.03μm以下で且つC量が0.027×C%以下であれば、高強度のZn-Alめっき鋼線であっても良好なねじり回数と疲労特性が得られることが明らかとなった。2000MPaクラスでは、上記のC量を0.026×C%以下とする。このため、線材のセメンタイト厚みを0.03μm以下とし、且つ、0.027×C%以下(1800MPaクラス)または0.026×C%以下(2000MPaクラス)にすることが好ましい。
 本発明の線材のセメンタイト厚みの測定は、TEMを用いて行う。TEM観察に用いる試料は、熱間圧延後にコイル状に巻かれた圧延線材の線材重なり部から採取し、d/4(dは線材の直径)の部位を観察視野とする。TEM観察は、セメンタイト板に垂直な視野を選択して、10000~20000倍の写真撮影を行い、10視野以上の平均値でセメンタイト厚さを求める。
 また、線材の引張強さが大きくなると、伸線加工後の鋼線の強度も大きくなる。線材の引張強さが1250MPa以上であると、伸線加工によってZn-Alめっき鋼線の引張強さを1800MPa超とする際に、延性の低下を抑制することができる。また、線材の引張強さが1350MPa以上であると、伸線加工によってZn-Alめっき鋼線の引張強さを2000MPa超とする際に、延性の低下を抑制することができる。また、線材の長手方向の強度ばらつきを50MPa以下にすると、めっき鋼線のねじり回数の低下、疲労特性の低下を抑制することができる。本発明の線材の引張試験は、コイル状に巻かれた線材の1巻を12等分して引張試験片を採取して行う。また、線材の引張強さのばらつきを求める場合は、3巻のコイルから試験片を採取し、合計36本の引張試験を行い、その引張強さの最大値と最小値を求める。
 次に、本発明のZn-Alめっき鋼線の製造方法について説明する。本発明のZn-Alめっき鋼線は、熱間圧延後のパテンティング処理、伸線加工、一浴法で、フラックス処理し、溶融Zn-Alめっきの工程で製造される。
 本発明の線材は、鋼片を熱間圧延し、そのまま熱間圧延線材を、1500MPaクラスでは500~600℃、1800MPaクラス及び2000MPaクラスでは、520~600℃のソルト浴中に冷却する、圧延パテンティング処理を施して製造する。一方、汎用の材料の製造には、熱間圧延線材を再加熱し、Pb浴中に浸漬する再加熱パテンティング処理が採用されることが多い。
 圧延パテンティング処理によって製造された線材(圧延パテンティング材)の強度は、再加熱パテンティング処理によって製造された線材(再加熱パテンティング材)よりも高くなる。そのため、本発明の線材は、少ない伸線加工歪みで鋼線の強度を高めることが可能であり、Zn-Alめっき鋼線のねじり回数及び疲労特性が顕著に向上する。
 熱間圧延後の冷却速度:熱間圧延後、線材をソルト浴に浸漬するまでの冷却速度は、遅すぎると冷却中に粗大なパーライト組織が発生し易くなる。したがって、伸線加工性を向上させるためは、冷却速度を10℃/s以上にすることが好ましい。
 ソルト浴温度:1600MPaクラスの鋼線では、ソルト浴の温度を500~600℃とすることが好ましい。また、1800MPaクラスまたは2000Mpaクラスの鋼線ではソルト浴の温度を520~600℃とすることが好ましい。
 ソルト浴温度を上記の下限温度以上にすれば、伸線加工性や疲労特性を劣化させるベイナイト組織の発生頻度を抑制できる。一方、ソルト浴温度を上記上限温度以下にすれば、パーライト組織の好適な微細性が確保できる。したがって、Zn-Alめっき鋼線の強度、延性及び疲労特性を向上させるために、ソルト浴の温度を上記範囲に制限することが好ましい。
 次に、本発明では、圧延パテンティング処理を行った線材を素材として、冷間での伸線加工を行う。
 伸線加工歪み:本発明の線材を素材とする場合、Zn-Alめっき鋼線の強度を制御するために、1500MPaクラスでは、伸線加工歪みが、真歪みで1.3~2.0の範囲であることが好ましく、1800MPaクラスおよび2000MPaクラスでは、真歪みで1.5~2.0の範囲であることが好ましい。なお、Zn-Alめっき鋼線の強度を制御するための伸線加工歪みは、パテンティング処理後の線材の強度、伸線加工時の加工硬化率を変化させる鋼の成分組成、各ダイスの減面率や伸線加工速度等の伸線加工条件で変化する。したがって、所望の強度を得るために、上記の範囲内で適宜伸線加工歪みを調整して、本発明のZn-Alめっき鋼線を伸線加工する。ここで、伸線加工の真歪みとは、2×ln(伸線前の線径/伸線後の線径)で表す値である(lnは、自然対数を示す)。
 伸線加工時の鋼線の温度:伸線加工時の鋼線の温度は、セメンタイトの分解を抑制し、Cの拡散を抑制するため、250℃以下に制御することが好ましい。伸線加工時の鋼線の温度を250℃以下にすると、フェライト中のC濃度の増加が抑制され、優れた延性を確保することができる。Zn-Alめっき鋼線のねじり特性を向上させるために、伸線加工時の鋼線の温度を200℃以下に制御することが更に好ましい。鋼線の温度は、接触式温度計、放射温度計等によって測定することができる。また、伸線加工時の鋼線の温度を制御する方法は、冷却伸線技術の適用、伸線速度の低下、摩擦係数の低い伸線潤滑剤の採用、適切なダイス形状、適切な1ダイス当たりの減面率、等の種々の方法があり、これらの技術を単独で、または、組合せて採用することができる。
 更に、本発明では、伸線加工後に鋼線に対してローラー矯直加工、加熱処理の一方または双方を行うことが好ましい。加熱処理では、例えば1800MPaクラスでは、400~500℃で1~60sの間鋼線を保持する。2000MPaクラスでは、450~550℃で1~60sの間鋼線を保持する。
 ローラー矯直加工:ローラー矯直加工は、鋼線の残留歪みを低減させ、高強度化に伴って劣化するねじり回数を向上させる効果がある。その結果、最終的にZn-Alめっき鋼線の疲労特性を向上させることができる。
 加熱処理:加熱処理も、鋼線の残留歪みを低減させ、ねじり回数及び疲労特性を向上させる効果を発現する。効果を得るためには、加熱処理の温度を、上記の温度範囲の下限温度以上とすることが好ましい。一方、鋼線の強度を確保するためには、加熱温度を上記の温度範囲の上限温度以下とすることが好ましい。また、加熱処理の効果を得るには、保持時間を1s以上にすることが好ましい。一方、鋼線の強度を確保するためには、保持時間を60s以下にすることが好ましい。加熱方法は、例えば、加熱炉、温度を制御した浴への浸漬など、通常の熱処理方法を採用することができる。
 伸線加工後、または更に上記の鋼線に、ローラー矯直加工、上記の加熱処理を施した後、Zn-Alめっきを行う。Zn-Alめっきは、所定のめっき層の組成と同一の配合割合でZn-Al、必要に応じてSiを含む溶融金属浴に、基材となる鋼線を浸漬させる等の手段を用いることができる。なお、被めっき鋼線をめっき浴に浸漬する前には、被めっき鋼線のめっき濡れ性、めっき密着性を改善する等の目的で、アルカリ脱脂処理、酸洗処理を施すのが一般的である。
 被めっき鋼線をめっき浴に浸漬する前に、フラックス処理を行う。
 従来の技術である、二浴式のZn-Al合金めっき方法では、塩化アンモニウムを主成分とするフラックスが用いられていた。しかし、従来の塩化アンモニウムフラックス処理後に、Zn-Al合金めっき浴を行っても、めっきが十分に付着しない。これは、塩化アンモニウムフラックスが、Alを含むZn-Alめっき浴中で分解するためである。従来技術では、この問題を回避するために、Znめっきによる前めっき処理を行う必要が生じる。このため、全体として2度のめっき工程を含む、二浴式のZn-Al合金めっき方法が行われていた。
 本発明の一態様にかかる方法では、Znめっきによる前めっき処理を行わない。これに替わって、塩化アンモニウム以外の成分を含むフラックスが開発された。以下に記載するフラックスを用いることで、Zn-Alめっきを効率的に付着させることができる。
 フラックス処理:フラックス処理には、塩化亜鉛、塩化アンモニウム、アルカリ金属の塩化物、ふっ化物、塩化すず等を用いる。フラックスは、塩化亜鉛を主成分とし、塩化カリウム、ふっ化すずを含むものが好ましく、塩化アンモニウム、アルカリ金属の塩化物、塩化すずの1種又は2種以上を更に含有してもよい。フラックス処理を施した後、被めっき鋼線を乾燥させ、めっき浴に浸漬する。フラックスの組成は、特に限定しないが、例えば、フラックス全濃度が10~40%水溶液で、Zn2+イオンが30~40%、Kイオンが8~12%、Sn2+イオンが2~3%、ClイオンとFイオンが合計で45~60%になり、かつpHが0.5~2.0の範囲に収まるものを使用すればよい。フラックスの浸漬時間は0.5s以上とすることが好ましい。
 本発明では、フラックス以外の処理方法として、無酸化炉と還元炉の複合熱処理もしくは全還元炉を用いて被めっき鋼線を加熱還元焼鈍した後、めっき浴に浸漬し、引き上げを行う方法を用いても良い。Zn-Alめっき後は、ガスワイピング方式等で所定のめっき付着量制御を行い、その後冷却する工程を連続的に適用する方法を用いることができる。
 Zn-Alめっき浴のAl濃度は、所望のZn-Alめっき中のAl量に応じて、3.0~15.0%の範囲内で調整する。めっきの耐食性を高める場合には、Al量を6.0%以上にすることが好ましく、8.0%以上にすることが更に好ましい。また、Zn-AlめっきにSiを含有させる場合は、所望のZn-Alめっき中のSi量に応じて、2.0%以下を添加する。実際上のSi添加量の下限値は0.01%以上である。合金層の成長を抑制するために、好ましくは、Siを0.05%以上添加する。また、めっきの硬化を抑制するには、Si量を1.5%以下にすることが好ましい。なお、溶融Zn-Alめっき浴の組成は、めっき浴中からサンプルを採取し、塩酸原液に溶解し、化学分析を行って求めることができる。
 また、被めっき鋼線を溶融めっき浴に浸漬すると、めっきと鋼線母層との界面では、合金層の形成が開始する。更に、めっき浴から引き上げた後、めっき鋼線の温度が約300℃以下に低下するまで合金層が成長する。したがって、界面の合金層厚さの制御は、めっき浴温度、被めっき鋼線浸漬時間、めっき後の冷却速度等を調整することで可能である。
 適正な界面合金層さを有するめっき層の形成条件は、対象となる鋼線の種類、めっき浴成分やその温度等により最適条件が多少、異なるため、特に限定するものではない。本発明では、例えば、Zn-10%Al-0.5Siめっきの場合、凝固温度は420℃程度となることから、440~520℃の溶融金属浴に、鋼線を1~60s間浸漬した後、10~20℃/sの冷却速度で冷却することが好ましい。本発明対象のめっき浴は、その浴組成により凝固温度が変化し、その凝固温度範囲は約390~450℃となる。従って、凝固温度より20~100℃高い温度のめっき浴温(410~550℃)のめっき浴に、浸漬時間が1~60s、凝固後の冷却速度が5~50℃/s、の条件から、それぞれ最適な条件を選択することで、適正な合金層を有するZn-Alめっき鋼線を得ることができる。なお、合金層の成長を抑制し、初晶の径を微細にするには、めっき浴への浸漬時間を15s以下、冷却速度を10℃/s以上にすることが好ましい。
 以下、実施例により本発明の一態様の効果を更に具体的に説明する。
(第1実施例)
 C:0.77%、Si:0.22%、Mn:0.78%、P:0.006%、S:0.008%、Al0.031%を含有し、残部がFe及び不可避的不純物からなる鋼材を、熱間圧延して線材とした。この線材をそのまま525℃のソルト浴で冷却してパテンティング処理を施した。更に、この線材を冷間で伸線加工し、線径4.9mmの鋼線を製造した。鋼線を脱脂、酸洗後、60℃のフラックス水溶液に10秒浸漬、乾燥後、表1~3に示す条件で、めっきを施した。なお、めっき厚みはワイピングによって50μmになるように調整した。
 また、Zn-Alめっき用のフラックスは、フラックス全濃度が15%、pHが1.0の水溶液であり、Zn2+イオン=30~40%、Kイオン=8~12%、Sn2+イオン=2~3%、ClイオンとFイオンを合計で45~50%に調整した。また、溶融Znめっき用のフラックスには、7%NHCl水溶液を用いた。
 なお、試験No.76~79は、Zn-Alめっきでなく、溶融亜鉛めっきを行ったサンプルである。また、試験No.85~90は、Znめっきを施した後、フラックス処理を行わず、直ちにZn-Al系合金めっきを施す二浴法を適用したサンプルである。
 表1及び2のめっき組成は、市販の酸洗腐食抑制剤を1mL、HClを140mL、それらを1Lの純水に溶解して作成したHClに常温で数分間浸漬することにより、めっき層と合金層(Fe-Al系合金生成層)を溶解し、ICP分析することにより求めた。
 めっき鋼線のSEM観察を行い、母材の伸線加工パーライト組織分率、めっき層の初晶の径を測定した。また、合金層(Fe-Al系合金生成層)をTEMによって観察し、合金層の厚さを測定し、界面合金層の状態を評価した。なお、界面合金層の状態の評価は、以下のとおりである。
 A:界面合金層がAlFeの柱状晶と、Al3.2Feの柱状晶と、Fe-Al-Siの粒状晶とからなる3層
 B:界面合金層がAlFe、Al3.2Feの柱状晶と、Alの柱状晶とからなる2層
 C:界面合金層がFe-Alの柱状晶からなる1層
 D:界面合金層がZn-Fe、もしくはZn-Fe-Alからなる1層
 めっき鋼線の耐食性の評価は、100mm長さに切断しためっき鋼線を用いて、塩水噴霧試験(JIS Z 2371)を360時間行い、赤錆発生までの時間で行った。記号の意味は下記のとおりである。
 A:赤錆発生までの時間が360時間以上
 B:赤錆発生までの時間が300時間以上360時間未満
 C:赤錆発生までの時間が240時間以上300時間未満
 D:赤錆発生までの時間が240時間未満
 表1~3にめっき組成と腐食試験結果、界面合金層観察結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、Al含有量、Si含有量の空欄はその元素を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3中、Al含有量、Si含有量の空欄は意図的には添加しないことを意味する。めっきNo.77~80は、溶融亜鉛めっきである。めっきNo.86~91は、二浴法である。
 以上の結果から、本発明のめっき組成を使用して、浴温、浸漬時間、冷却速度を調整することにより、本発明で要求される範囲を満たす合金層の厚さ及び初晶の径を有するZn-Alめっき組成及び組織が得られ、これらは耐食性に優れることがわかる。
 以下、別の実施例により本発明の別の一態様の効果を更に具体的に説明する。
 本発明の要求される範囲を満たす合金層の厚さ及び初晶の径を有するものが耐疲労性に優れることは、以下の実施例により示される。
(第2実施例)
 表4に供試材の化学成分を示す。これらの供試材を用いて熱間圧延を行い、熱間圧延後にそのままソルト浴に冷却してパテンティング処理を施した。なお、表4の鋼Aは、第1実施例で使用した鋼と同一の成分である。得られた線材を冷間で伸線加工し、線径4.5~7.3mmの高炭素鋼線とし、一浴法で溶融Zn-Alめっきを施した。比較のため、二浴の溶融Zn-Alめっき(溶融Znめっき後、溶融Zn-Alめっき)及び溶融Znめっきを施した。
Figure JPOXMLDOC01-appb-T000004
 表4中、「-」は意図的には添加しないことを意味する。数値の下線は、その数値が本発明の範囲外であることを意味する。
 溶融めっきは、鋼線を脱脂、酸洗後、60℃のフラックス水溶液に10秒浸漬し、乾燥後、所定の化学組成の溶融めっき浴に5~15s浸漬する工程で行った。溶融めっき浴の温度は450~500℃とし、溶融めっき後の冷却速度は線径によって異なるが、いずれの溶融めっきも10~20℃/sになるように調整した。更に、溶融めっき厚みは、ワイピングにより、いずれのめっきも約50μmになるように調整した。また、二浴のZn-Alめっきは、450℃の溶融Znめっきを施した後、フラックス処理なしで直ちに溶融Zn-Alめっき浴に浸漬する工程で製造した。なお、一浴の溶融Zn-Alめっき及び溶融Znめっきには、第1実施例と同様のフラックスを使用した。
 めっき鋼線のSEM観察による、母材の伸線加工パーライト組織分率、初晶の径の測定、TEM観察による合金層(Fe-Al系合金生成層)の厚さの測定、合金層の状態の評価、めっき鋼線の耐食性の評価は、第1実施例と同様にして行った。
 めっき鋼線の疲れ限度は、部分片振り引張り疲労試験で評価した。490MPaを基準とし、めっき鋼線の引張強度に応じて最小応力を固定し、最大応力を変化させて、繰返し数が200万サイクルでの疲れ限度(最大応力から最小応力を引いた値)を求めた。
 ねじり特性は、製造されたZn-Alめっき鋼線から連続的に100本のねじり試験片を採取し、ねじり試験を行って評価した。ねじり試験は、試験片の両端を線径の100倍の間隔でつかみ、たわまない程度に緊張しながら、つかみ部の一方を同一方向に、ねじり速度を10rpmとして回転させ、破断した際のねじり回数を評価した。100本のねじり試験を行い、ねじり回数の最小値を調査した。
 結果を表5~8に示す。表5~8において、試験No.1~32が本発明例であり、その他は比較例である。本発明例では、全て伸線加工されたパーライト組織を90%以上有していた。また、比較例では、全て伸線加工されたパーライト組織を有していたが、試験No.40及び42では、90%未満であった。同表に見られるように、本発明例のZn-Alめっき鋼線は、はいずれも耐食性に優れるとともにねじり回数が良好であり、疲れ限度/引張強さの比が高く、疲労特性に優れたZn-Al合金めっき鋼線が実現できている。
 これに対して、比較例である試験No.33~38は、いずれも従来の溶融Znめっき鋼線である。ねじり回数、疲労特性は良好であるものの耐食性が劣っている例である。
 試験No.39、40は鋼線の化学成分が不適切な例である。試験No.39はC含有量が少なすぎるために、最終的に目標とする1500MPa以上の引張強さが得られなかった例である。試験No.40はMn含有量が高すぎるために、ベイナイト組織の分率が高すぎ、この結果、ねじり回数が低下するとともに疲労特性も劣化した例である。
 試験No.41、42は、いずれも熱間圧延後のソルト浴を用いたパテンティング温度が不適切な例である。試験No.41はパテンティング温度が高すぎるために目的とする1500MPa以上の引張強さが得られなかった例である。一方、試験No.42はパテンティング温度が低すぎたために、ベイナイト組織分率が増加し、ねじり回数の低下と疲労特性の劣化をもたらした例である。
 試験No.43~46は、いずれも従来の二浴によるZn-Al合金めっき鋼線の例である。いずれも耐食性は良好であるが、合金層(Fe-Al系合金生成層)の厚さが厚いために、疲労特性が劣化しており、疲れ限度/引張強さの比が目的とする0.22以上に到達しなかった例である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6中、Al含有量、Si含有量の空欄は意図的に添加しないことを意味する。試験No.33~38は、溶融亜鉛めっきである。試験No.43~46は、二浴法である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 以下、本発明の更に別の態様にかかるめっき鋼線の効果を実施例により更に具体的に説明する。
(第3実施例)
 表9に第3実施例に係る供試材の化学成分を示す。これらの供試材を用いて熱間圧延を行い、熱間圧延後にそのままソルト浴に冷却してパテンティング処理を施した。得られた線材の組織をSEM観察及びTEM観察を行い、パーライト分率及びセメンタイトの厚みを測定した。引張強さは、JIS Z 2241に準拠して測定した。また、引張強さの差は、3巻のコイルから試験片を採取して、合計36本の引張試験を行い、その引張強さの最大値と最小値の差である。表10に、パテンティング処理の温度、線材のパーライト分率及びセメンタイトの厚み、引張強さ、引張強さの差を示す。また、表10には、0.027×Cの計算値も示した。
Figure JPOXMLDOC01-appb-T000009
 表9中、下線はその数値が本発明の範囲外であることを意味する。「-」はその元素を意図的には添加していないことを意味する。
Figure JPOXMLDOC01-appb-T000010
 表10中、下線はその数値が本発明の範囲外であることを意味する。
 次に、線材を冷間で伸線加工し、線径4.5~7.3mmの高炭素鋼線とし、一浴法で溶融Zn-Alめっきを施した。比較のため、二浴の溶融Zn-Alめっき(溶融Znめっき後、溶融Zn-Alめっき)及び溶融Znめっきを施した。なお、伸線加工の際の温度は、放射温度計で測定した。また、必要に応じて、ローラー矯直加工、加熱処理を行った。
 溶融めっきは、鋼線を脱脂、酸洗後、60℃のフラックス水溶液に10秒浸漬し、乾燥後、所定の化学組成の溶融めっき浴に5~15s浸漬する工程で行った。溶融めっき浴の温度は450~500℃とし、溶融めっき後の冷却速度は線径によって異なるが、試験No.64’を除いて、いずれの溶融めっきも10~20℃/sになるように調整した。更に、溶融めっき厚みは、ワイピングにより、いずれのめっきも約50μmになるように調整した。また、二浴のZn-Alめっきは、450℃の溶融Znめっきを施した後、フラックス処理なしで直ちに溶融Zn-Alめっき浴に浸漬する工程で製造した。
 ここで、一浴の溶融Zn-Alめっきのフラックスは、Zn2+イオン=30~40%、Kイオン=8~12%、Sn2+イオン=2~3%、ClイオンとFイオンが合計で45~50%に調整したpHが1.0の水溶液を用いた。また、溶融Znめっきのフラックスは、7%NHCl水溶液を用いた。表11~13に、めっき鋼線の製造条件およびめっき組成を示す。
Figure JPOXMLDOC01-appb-T000011
 表11中、「-」は未実施を意味する。めっき組成の空欄はその元素を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000012
 表12中、「-」は未実施を意味する。めっき組成の空欄はその元素を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000013
 表13中、「-」は未実施を意味する。めっき組成の空欄はその元素を意図的には添加しないことを意味する。
 めっき組成は、市販の酸洗腐食抑制剤を1mL、HClを140mL、それらを1Lの純水に溶解して作成したHClに常温で数分間浸漬することにより、めっき層と合金層(Fe-Al系合金生成層)を溶解し、ICP分析することにより求めた。めっき鋼線のSEM観察を行い、母材の伸線加工パーライト組織分率、めっきの初晶の径を測定した。また、合金層をTEMによって観察し、合金層の厚さを測定し、界面合金層の状態を評価した。なお、界面合金層の状態の評価は、以下のとおりである。
 A:界面合金層がAlFe、Al3.2Fe の柱状晶とFe-Al-Siの粒状晶からなる3層
 B:界面合金層がAlFe、Al3.2Fe の柱状晶Alの柱状晶からなる2層
 C:界面合金層がFe-Alの柱状晶からなる1層
 D:界面合金層がZn-Fe、もしくはZn-Fe-Alからなる1層
 めっき鋼線の疲れ限度は、部分片振り引張り疲労試験で評価した。490MPaを基準とし、めっき鋼線の引張強度に応じて最小応力を固定し、最大応力を変化させて、繰返し数が200万サイクルでの疲れ限度(最大応力から最小応力を引いた値)を求めた。
 ねじり特性は、製造されたZn-Alめっき鋼線から連続的に100本のねじり試験片を採取し、ねじり試験を行って評価した。ねじり試験は、試験片の両端を線径の100倍の間隔でつかみ、たわまない程度に緊張しながら、つかみ部の一方を同一方向に、ねじり速度を10rpmとして回転させ、破断した際のねじり回数を評価した。100本のねじり試験を行い、ねじり回数の最小値を調査した。
 めっき鋼線の耐食性の評価は、100mm長さに切断しためっき鋼線を用いて、塩水噴霧試験(JIS Z 2371)を360時間行い、赤錆発生までの時間で行った。記号の意味は下記のとおりである。
 A:赤錆発生までの時間が360時間以上
 B:赤錆発生までの時間が300時間以上360時間未満
 C:赤錆発生までの時間が240時間以上300時間未満
 D:赤錆発生までの時間が240時間未満
 結果を表14~16に示す。なお、初晶(デンドライド)の幅の欄の記号は、下記のとおりである。
 A:初晶(デンドライド)幅が5μm以下
 B:初晶(デンドライド)幅が10μm以下
 D:初晶(デンドライド)幅が10μm超
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表14及び15に示した試験No.1’~47’は本発明例であり、表16に示した試験No.48’~72’は比較例である。表14及び15に示したように、本発明のめっき組成を使用して、浴温、浸漬時間、冷却速度を調整することにより、本発明で要求される範囲を満たす合金層の厚さ及び初晶の径を有するZn-Alめっき組成及び組織が得られ、これらは、いずれも耐食性に優れるとともにねじり回数が良好であり、疲れ限度/引張強さの比が高く、疲労特性に優れた高強度のZn-Alめっき鋼線が実現できている。
 これに対して、比較例であるNo.48’~50’は、いずれも鋼線の化学成分が不適切な例である。No.48’はC含有量が低く、Zn-Alめっき鋼線の引張強さが低下している。また、No.49’はSi含有量が低すぎるために、溶融めっき時に強度が低下し、目的とする引張強さに到達しなかった例である。No.50’はMn含有量が高すぎるために、パテンティング処理した線材にベイナイトが発生し、パーライト分率が所定の値に達せず、この結果、引張強さの最大値と最小値の差が増加するとともにねじり特性、疲労特性が劣化した例である(表10の線材No.R1’、参照)。
 比較例であるNo.51’、52’、55’は、熱間圧延後に線材を空冷でパテンティング処理を施した例である(表10の線材No.A2’、B2’、M2’、参照)。これらは、表10に示したように、線材のセメンタイト厚み及び引張強さの最大値と最小値の差が増加している。その結果、表16に示したように、ねじり特性及び疲労特性が劣化している。
 比較例であるNo.53’、54’は、熱間圧延後のパテンティング処理が不適切な例である(表10の線材No.B3’、E2’、参照)。No.53’は、表10の線材B3’を素材としており、パテンティング温度が低すぎるため、パーライト組織分率が低下し、表16に示したようにめっき鋼線のねじり回数が低下し、疲労特性が劣化している。一方、No.54は、表10の線材No.E2’を素材としており、パテンティング処理の温度が高すぎたために、セメンタイト厚みの増加とパテンティング処理後の引張強さの低下が生じ、この結果、表16に示したように、めっき鋼線の引張強さが低下し、ねじり特性と疲労特性も劣化している。
 比較例であるNo.56’~58’は、伸線加工時の鋼線温度が不適切な例であり(表10の線材No.H1’、O2’、K2’、参照)、鋼線温度が250℃を超えているため、ねじり特性と疲労特性が劣化している。比較例であるNo.59’、60’は、伸線加工後の加熱処理が不適切な例である。No.59’は加熱温度が高すぎるために、No.60’は加熱時間が長すぎるために、いずれもめっき鋼線の強度が目的に到達しなかった例である。更に、No.59’は加熱温度が高すぎたために、組織の一部が球状化セメンタイト組織となり、ねじり特性も劣化した例である。
 比較例であるNo.61’~65’は、Zn-Alめっきの化学成分が不適切な例である。No.61’及びNo.62’は、Alの含有量が低すぎるため、耐食性が低下している。No.63’はめっき中のSi含有量が高すぎるために、疲労特性が劣化した例である。また、No.64’は、溶融めっき後の冷却速度を遅くして合金層を成長させた例であり、めっき中のFe含有量が高すぎるために、疲労特性が劣化している。更に、No.65’はAl含有量が低く、Si含有量が高すぎるために、耐食性と疲労特性の両者が劣化した例である。
 比較例であるNo.66’~68’は、いずれも従来の溶融亜鉛めっきを行った鋼線の例である。Znめっきのため、いずれも目的とする高耐食性を有するめっき鋼線が実現できなかった例である。
 比較例であるNo.69’~72’は、いずれも従来の二浴法によるZn-Alめっき鋼線の例である。いずれも耐食性は良好であるが、合金層の厚さが厚いために、疲労特性が劣化しており、疲れ限度/引張強さの比が目的とする0.22以上に到達しなかった例である。
(第4実施例)
 以下、本発明の更に別の態様にかかるめっき鋼線の効果を実施例により更に具体的に説明する。
 表17に供試材の化学成分を示す。これらの供試材を用いて仕上げ温度が950℃の熱間圧延を行い、熱間圧延後にそのままソルト浴に冷却してパテンティング処理を施した。また、比較のために熱間圧延の仕上げ温度が1090℃の場合、更に熱間圧延後に空冷によるパテンティング処理を行い、線材を製造した。
 得られた線材の組織をSEM観察及びTEM観察を行い、パーライト分率及びセメンタイトの厚みを測定した。また、パーライト組織のブロックサイズは、EBSDによって測定した。引張強さは、JIS Z 2241に準拠して測定した。また、引張強さの差は、3巻のコイルから試験片を採取して、合計36本の引張試験を行い、その引張強さの最大値と最小値の差である。表18に、パテンティング処理の温度、線材のパーライト分率及びセメンタイトの厚み、引張強さ、引張強さの差を示す。また、表18には、0.026×Cの計算値も示した。
Figure JPOXMLDOC01-appb-T000017
 表17中、「-」はその元素を意図的には添加しないことを意味する。数値の下線は、その数値が本発明の範囲外であることを意味する。「*1」列は、105×C%+9×Si%-2×Mn%+17×Cr%の計算値である。
Figure JPOXMLDOC01-appb-T000018
 次に、線材を冷間で伸線加工し、線径4.3~7.3mmの高炭素鋼線とし、一浴法で溶融Zn-Alめっきを施した。比較のため、二浴の溶融Zn-Alめっき(溶融Znめっき後、溶融Zn-Alめっき)及び溶融Znめっきを施した。なお、伸線加工の際の温度は、放射温度計で測定した。また、必要に応じて、ローラー矯直加工、加熱処理を行った。
 溶融めっきは、鋼線を脱脂、酸洗後、60℃のフラックス水溶液に10秒浸漬し、乾燥後、所定の化学組成の溶融めっき浴に5~15s浸漬する工程で行った。溶融めっき浴の温度は450~500℃とし、溶融めっき後の冷却速度は線径によって異なるが、試験No.84’’を除いて、いずれの溶融めっきも10~20℃/sになるように調整した。
 溶融めっきは、鋼線を脱脂、酸洗後、60℃のフラックス水溶液に10秒浸漬し、乾燥後、所定の化学組成の溶融めっき浴に30秒浸漬する工程で行った。溶融めっきは浴温度が450~470℃で行い、溶融めっき後の冷却速度は線径によって異なるが、いずれの溶融めっきも15℃/秒前後になるように調整した。
 更に、溶融めっき厚みは、ワイピングにより、いずれのめっきも約50μmになるように調整した。また、二浴のZn-Alめっきは、450℃の溶融Znめっきを施した後、フラックス処理なしで直ちに溶融Zn-Alめっき浴に浸漬する工程で製造した。
 ここで、一浴の溶融Zn-Alめっきのフラックスは、Zn2+イオン=30~40%、Kイオン=8~12%、Sn2+イオン=2~3%、ClイオンとFイオンが合計で45~50%に調整したpHが1.0の水溶液を用いた。また、溶融Znめっきのフラックスは、7%NHCl水溶液を用いた。表19~21に、めっき鋼線の製造条件およびめっき組成を示す。
Figure JPOXMLDOC01-appb-T000019
 表19中、「-」は未実施を意味する。めっき組成の空欄は、その成分を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000020
 表20中、「-」は未実施を意味する。めっき組成の空欄は、その成分を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000021
 表21中、「-」は未実施を意味する。めっき組成の空欄は、その成分を意図的には添加しないことを意味する。
 めっき組成は、市販の酸洗腐食抑制剤を1mL、HClを140mL、それらを1Lの純水に溶解して作成したHClに常温で数分間浸漬することにより、めっき層と合金層を溶解し、ICP分析することにより求めた。めっき鋼線のSEM観察を行い、母材の伸線加工パーライト組織分率、めっき層の初晶の径を測定した。また、合金層をTEMによって観察し、合金層の厚さを測定し、界面合金層の状態を評価した。なお、界面合金層の状態の評価は、以下のとおりである。
 A:界面合金層(Fe-Al系合金生成層)がAlFe、Al3.2Fe の柱状晶とFe-Al-Siの粒状晶からなる3層
 B:界面合金層がAlFe、Al3.2Fe の柱状晶Alの柱状晶からなる2層
 C:界面合金層がFe-Alの柱状晶からなる1層
 D:界面合金層がZn-Fe、もしくはZn-Fe-Alからなる1層
 めっき鋼線の疲れ限度は、部分片振り引張り疲労試験で評価した。490MPaを基準とし、めっき鋼線の引張強度に応じて最小応力を固定し、最大応力を変化させて、繰返し数が200万サイクルでの疲れ限度(最大応力から最小応力を引いた値)を求めた。
 ねじり特性は、製造されたZn-Alめっき鋼線から連続的に100本のねじり試験片を採取し、ねじり試験を行って評価した。ねじり試験は、試験片の両端を線径の100倍の間隔でつかみ、たわまない程度に緊張しながら、つかみ部の一方を同一方向に、ねじり速度を10rpmとして回転させ、破断した際のねじり回数を評価した。100本のねじり試験を行い,ねじり回数の最小値を調査した。
 めっき鋼線の耐食性の評価は、100mm長さに切断しためっき鋼線を用いて、塩水噴霧試験(JIS Z 2371)を360時間行い、赤錆発生までの時間で行った。記号の意味は下記のとおりである。
 A:赤錆発生までの時間が360時間以上
 B:赤錆発生までの時間が300時間以上360時間未満
 C:赤錆発生までの時間が240時間以上300時間未満
 D:赤錆発生までの時間が240時間未満
 結果を表22~24に示す。なお、初晶(デンドライド)の幅の欄の記号は、下記のとおりである。
 A:初晶(デンドライド)幅が5μm以下
 B:初晶(デンドライド)幅が10μm以下
 D:初晶(デンドライド)幅が10μm超
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表22及び23に示した試験No.1’’~55’’は本発明例であり、表24に示した試験No.56’’~85’’は比較例である。表22及び23に示したように、本発明のめっき組成を使用して、浴温、浸漬時間、冷却速度を調整することにより、本発明で要求される範囲を満たす合金層の厚さ及び初晶の径を有するZn-Alめっき組成及び組織が得られ、これらは、いずれも耐食性に優れるとともにねじり回数が良好であり、疲れ限度/引張強さの比が高く、疲労特性に優れた高強度のZn-Alめっき鋼線が実現できている。
 これに対して、比較例であるNo.56’’~61’’は、いずれも鋼線の化学成分が不適切な例である。No.56’’はC含有量が低く、Zn-Alめっき鋼線の引張強さが低下している。また、No.57’’はCrを含有していないため、表18に示したように、パテンティング処理後の線材の引張強さが低く、めっき鋼線の引張強さが低下している。No.58’’は、Si含有量が低すぎるために、溶融めっき浴に浸漬した際の強度低下量が大きく、めっき鋼線の引張強さが低下した例である。No.59’’は、C含有量が高すぎるためにパテンティング処理時に初析セメンタイトが粒界に発生し、この結果、ねじり特性と疲労特性が劣化した例である。No.60’’はCr含有量が高すぎるために、パテンティング処理時にベイナイトが発生し、表18に示したように、線材のパーライト分率が低くなり、この結果、めっき鋼線のねじり特性と疲労特性が劣化した例である。更に、No.61’’は、各成分の含有量は適正であるものの、105×C+9×Si-2×Mn+17×Crの値が低いため、めっき鋼線の引張強さが低下した例である。
 比較例であるNo.62’’~64’’は、いずれも熱間圧延後に線材を空冷によってパテンティング処理を施した例である(表18の線材No.B2’’、F2’’、J2’’、参照)。この結果、No.62’’はパテンティング処理の引張強さが低く、引張強さの最大値と最小値の差が増加し、更に、めっき鋼線の引張強さが目的に到達せず、ねじり特性と疲労特性も劣化している。No.63’’はセメンタイト厚みが極めて大きくなり、伸線加工性が劣化し、伸線加工中に断線が発生した例である。No.64’’は、セメンタイト厚みが大きくなり、引張強さの最大値と最小値の差が増加し、めっき鋼線のねじり特性及び疲労特性が劣化した例である。
 比較例であるNo.65’’、66’’はいずれも熱間圧延後のソルト浴を用いたパテンティング温度が不適切な例である(表18の線材No.B3’’、G2’’、参照)。No.65’’はパテンティング温度が低すぎたために、ベイナイト組織分率が増加し、ねじり回数の低下と疲労特性の劣化をもたらした例である。一方、No.66’’はパテンティング処理温度が高すぎたために、セメンタイト厚みの増加とパテンティング処理後の引張強さの低下が生じ、この結果、めっき鋼線の引張強さが目的に到達せず、更にねじり特性と疲労特性も劣化した例である。
 比較例であるNo.67’’、68’’は、熱間圧延の仕上げ温度が高すぎる例であり、パーライトブロックサイズが25μmを超えた例である(表18の線材No.E2’’、G3’’、参照)。そのため、これらは、めっき鋼線のねじり特性が劣化し、疲労特性も低下している。
 比較例であるNo.69’’~71’’は、いずれも伸線加工時の鋼線温度が不適切な例である。いずれの例でも、鋼線温度が200℃を越えているため、ねじり特性と疲労特性が劣化した例である。
 比較例であるNo.72’’、73’’は、伸線加工後の加熱処理が不適切な例である。No.72’’は加熱温度が高すぎるために、No.73’’は加熱時間が長すぎるために、いずれもめっき鋼線の強度が目的に到達しなかった例である。更に、No.71’’は加熱温度が高すぎたために、組織の一部が球状化セメンタイト組織となり、ねじり特性と疲労特性も劣化した例である。
 比較例であるNo.74’’~76’’は、いずれも従来の溶融亜鉛めっきを行った鋼線の例である。これらは、Znめっきであるため耐食性が低く、いずれも目的とする高耐食性を有するめっき鋼線が実現できなかった例である。
 比較例であるNo.77’’~80’’は、いずれも従来の二浴法によるZn-Alめっき鋼線の例である。これらは、耐食性は良好であるが、合金層(Fe-Al系合金生成層)の厚さが厚く、界面の合金層の状態が悪いために、疲労特性が劣化しており、疲れ限度/引張強さの比が目的とする0.22以上に到達しなかった例である。
 比較例であるNo.81’’~85’’は、いずれもZn-Alめっきの化学成分が不適切な例である。No.81’’及びNo.82’’は、いずれもAlの含有量が低すぎたために、耐食性を確保できなかった例である。No.83’’はめっき中のSi含有量が高すぎるために、疲労特性が劣化した例である。また、No.84’’はめっき後の冷却速度が遅く、合金層が成長した例であり、めっき中のFe含有量が高すぎるために、疲労特性が劣化している。更に、No.85’’はAl含有量が低く、Si含有量が高すぎるために、耐食性と疲労特性の両者が劣化した例である。
 以上の結果から、本発明によれば、耐食性及び疲労特性に優れる高強度めっき鋼線を製造できることがわかる。
 本発明によれば、耐食性及び疲労特性に優れた橋梁用の高強度Zn-Alめっき鋼線を効率よく提供することが可能になるとともに、橋梁用鋼線を長寿命化することができるなど、産業上の利用可能性が極めて高い。

Claims (16)

  1.  鋼線と;
     めっき本体層、及び、前記鋼線の表層と前記めっき本体層との界面に生成したFe-Al系合金生成層を有するZn-Alめっきと;
     を含む橋梁用高強度Zn-Alめっき鋼線であって、
     前記鋼線の母相の成分組成が、質量%で、
      Cを0.70%以上1.2%以下、
      Siを0.01%以上2.5%以下、
      Mnを0.01%以上0.9%以下、含有し、
      Pを0.02%以下、
      Sを0.02%以下、
      Nを0.01%以下、に制限し、
      残部がFe及び不可避的不純物を含み;
     前記鋼線の母相の金属組織組成において、伸線加工パーライト組織が最も多く含まれる種類の組織であり;
     前記Zn-Alめっきの平均成分組成が、質量%で、
      Alを3.0以上15.0%以下含有し、
      Feを3.0%以下に制限し;
     前記Fe-Al系合金生成層の厚さが5μm以下である;
     ことを特徴とする耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  2.  前記めっき本体層中の初晶の径が10μm以下であり;
     前記鋼線の母相の前記金属組織組成における前記伸線加工パーライト組織の分率が90%以上である;ことを特徴とする請求項1に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  3.  前記Fe-Al系合金生成層の金属組織組成において、Al3.2Feの柱状晶の層とAlFeの柱状晶の層が最も多く含まれる種類の組織であることを特徴とする請求項1又は2に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  4.  前記Zn-Alめっきの平均組成が、更に、質量%で、Siを0.01%以上2.0%以下含むことを特徴とする請求項1又は2に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  5.  前記Fe-Al系合金生成層の金属組織組成において、Al3.2Feの層と、AlFeの柱状晶の層と、Fe-Al-Siの粒状晶の層とが最も多く含まれる種類の組織であることを特徴とする請求項4に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  6.  前記Zn-Alめっきの平均組成のAl量が、質量%で、6.0以上15.0%以下であることを特徴とする請求項1~5の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  7.  前記鋼線の前記母相の成分組成が、更に、質量%で、
      Crを0%以上0.5%以下、
      Niを0%以上1.0%以下、
      Cuを0%以上0.5%以下、
      Moを0%以上0.5%以下、
      Vを0%以上0.5%以下、
      Bを0%以上0.0070%以下、のうち1種又は2種以上を含有することを特徴とする請求項1~6の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  8.  前記鋼線の前記母相の成分組成が、更に、質量%で、
      Alを0%以上0.1%以下、
      Tiを0%以上0.1%以下、
      Nbを0%以上0.05%以下、
      Zrを0%以上0.1%以下、のうちの1種又は2種以上を含有することを特徴とする請求項1~7の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  9.  ねじり試験による破断までのねじり回数の最小値が18回以上であることを特徴とする請求項1~8の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  10.  部分片振り引張り疲れ限度と引張強さとの比が、0.22以上であることを特徴とする請求項1~9の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線。
  11.  請求項1~10の何れか1項に記載のZn-Alめっき鋼線を製造する方法であって、
     前記鋼線の伸線加工を250℃以下の温度で行う伸線処理と;
     前記鋼線の酸洗処理と;
     前記鋼線のフラックス処理と;
     前記フラックス処理後の前記鋼線に対するZn-Alめっき処理と;
     を含み、
     前記Zn-Alめっき処理が、前記めっき鋼線を製造する方法に含まれる唯一の前記鋼線のめっき処理であることを特徴とする耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
  12.  請求項11に記載のZn-Alめっき鋼線の製造方法であって、
     前記Zn-Alめっき処理では、前記伸線加工後の前記鋼材を、質量%で、Alを3.0%以上15.0%以下、含有する溶融Zn-Al浴に浸漬する;
     ことを特徴とする耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
  13.  請求項11に記載のZn-Alめっき鋼線の製造方法であって、
     鋼材を熱間圧延する工程と;
     熱間圧延に続いて500℃以上600℃以下のソルト浴中に前記鋼材を浸漬するパテンティング処理と;をさらに有することを特徴とする耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
  14.  溶融Zn-Al浴が、更に、質量%で、Si:2.0%以下を含有し、
     請求項4、5、7~10の何れか1項に記載のZn-Alめっき鋼線を製造する、
     ことを特徴とする請求項11~13のいずれか一項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
  15.  溶融Zn-Al浴のAl量が、質量%で、6.0%以上15.0%以下であり、
     請求項6~10の何れか1項に記載のZn-Alめっき鋼線を製造する、
     ことを特徴とする請求項11~13のいずれか一項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
  16.  前記伸線加工の後に、更に、ローラー矯直加工、400~500℃で1~60s保持する加熱処理の一方または双方を施すことを特徴とする請求項11~15の何れか1項に記載の耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線の製造方法。
PCT/JP2010/004176 2009-06-25 2010-06-23 耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法 WO2010150537A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010540981A JP4782246B2 (ja) 2009-06-25 2010-06-23 耐食性と疲労特性に優れた橋梁用高強度Zn−Alめっき鋼線及びその製造方法
US13/261,050 US9243315B2 (en) 2009-06-25 2010-06-23 High-strength Zn—Al coated steel wire for bridges with excellent corrosion resistance and fatigue properties and method for manufacturing the same
KR1020117004678A KR101302291B1 (ko) 2009-06-25 2010-06-23 내식성과 피로 특성이 우수한 교량용 고강도 Zn―Al 도금 강선 및 그 제조 방법
EP10791859.1A EP2447389A4 (en) 2009-06-25 2010-06-23 HIGH-STRENGTH ZN-AL PLATED STEEL WIRE FOR BRIDGES WITH EXCELLENT CORROSION RESISTANCE AND TEMPERATURE PROPERTIES, AND METHOD OF MANUFACTURING THEREOF
CN2010800024561A CN102137949B (zh) 2009-06-25 2010-06-23 耐蚀性和疲劳特性优良的桥梁用高强度Zn-Al镀层钢丝及其制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009151303 2009-06-25
JP2009-151303 2009-06-25
JP2009-151304 2009-06-25
JP2009151438 2009-06-25
JP2009-151438 2009-06-25
JP2009151304 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150537A1 true WO2010150537A1 (ja) 2010-12-29

Family

ID=43386323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004176 WO2010150537A1 (ja) 2009-06-25 2010-06-23 耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法

Country Status (6)

Country Link
US (1) US9243315B2 (ja)
EP (1) EP2447389A4 (ja)
JP (1) JP4782246B2 (ja)
KR (1) KR101302291B1 (ja)
CN (1) CN102137949B (ja)
WO (1) WO2010150537A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073579A1 (ja) * 2015-10-26 2017-05-04 新日鐵住金株式会社 めっき鋼板
CN107587071A (zh) * 2017-08-30 2018-01-16 武汉钢铁有限公司 一种抗拉强度≥2100MPa桥梁缆索用钢及生产方法
WO2018012625A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 鋼線
JP2020059888A (ja) * 2018-10-10 2020-04-16 日本製鉄株式会社 溶融めっき線およびその製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284495B1 (ko) * 2011-04-29 2013-07-16 성기철 방전가공용 전극선 및 그 제조방법
TWI467027B (zh) * 2011-09-30 2015-01-01 Nippon Steel & Sumitomo Metal Corp High strength galvanized steel sheet
JP5802162B2 (ja) * 2012-03-29 2015-10-28 株式会社神戸製鋼所 線材及びこれを用いた鋼線
KR101420281B1 (ko) * 2012-10-09 2014-08-14 고려제강 주식회사 도금 강연선 및 그 제조 방법
KR101482358B1 (ko) * 2012-12-27 2015-01-13 주식회사 포스코 고강도 고탄소 선재 및 그 제조방법
UA117592C2 (uk) 2013-08-01 2018-08-27 Арселорміттал Пофарбований оцинкований сталевий лист та спосіб його виготовлення
CN103911551B (zh) * 2014-04-16 2016-03-16 攀钢集团攀枝花钢铁研究院有限公司 一种热镀铝锌合金钢板及其制备方法
JP2016014169A (ja) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 鋼線用線材および鋼線
CN104451434B (zh) * 2014-11-07 2017-09-01 罗拉斯光电科技有限公司 一种强耐腐蚀性镀锌钢绞线及其制造方法
KR101632900B1 (ko) * 2015-04-02 2016-06-23 고려제강 주식회사 내부식성이 우수한 아연-알루미늄 합금 도금 이형 강선 및 그 제조방법
CN105112807B (zh) * 2015-10-08 2017-02-01 武汉钢铁(集团)公司 一种珠光体片层间距小于150nm的高强桥索钢及生产方法
CN106065452B (zh) * 2016-07-08 2017-12-05 武汉钢铁有限公司 一种能降低桥索钢网状碳化物级别的方法
CN110678567A (zh) * 2017-05-24 2020-01-10 东华隆株式会社 熔融金属镀浴用部件
EP3647446A4 (en) * 2017-06-30 2021-02-17 Nippon Steel Corporation HIGH STRENGTH STEEL WIRE
CN107354380B (zh) * 2017-08-30 2019-04-09 武汉钢铁有限公司 一种抗拉强度≥2300MPa桥梁缆索用钢及生产方法
CN111566252B (zh) * 2017-12-20 2022-06-07 日本制铁株式会社 熔融镀敷钢丝和其制造方法
CN108239735A (zh) * 2018-01-16 2018-07-03 江苏法尔胜缆索有限公司 高强韧、耐久型桥梁缆索用大直径1960MPa级锌铝合金镀层钢丝
KR102425278B1 (ko) * 2018-05-16 2022-07-27 닛폰세이테츠 가부시키가이샤 도금 강재
CN110760771B (zh) * 2018-07-27 2022-07-22 宝山钢铁股份有限公司 一种具有优良Fe-Al合金层特征的热镀锌高强钢及其制造方法
SI3702638T1 (sl) * 2019-02-26 2021-09-30 Nv Bekaert Sa Pogon za odpiranje in zapiranje vrat ali prtljažnih vrat avtomobila
CN110066963B (zh) * 2019-03-28 2021-02-05 江苏省沙钢钢铁研究院有限公司 一种2000MPa级桥梁缆索镀锌钢丝及其制造方法
CN110172657A (zh) * 2019-05-06 2019-08-27 攀钢集团攀枝花钢铁研究院有限公司 耐蚀性优良的热浸镀锌铝硅合金镀层钢板/带及制备方法
KR102312331B1 (ko) * 2019-12-20 2021-10-14 주식회사 포스코 고강도 도금 강선 및 이들의 제조방법
CN112427483B (zh) * 2020-09-29 2023-01-17 天津市新天钢中兴盛达有限公司 14AC-1825MPa级高强度铝包钢丝及其制造方法
CN112267069B (zh) * 2020-09-30 2022-03-29 江苏省沙钢钢铁研究院有限公司 2100MPa级镀锌钢丝用盘条及其制造方法
CN112410515A (zh) * 2020-11-02 2021-02-26 桃江富硕精密机械有限公司 一种高强度耐磨导轨钢的加工工艺
CN115386840B (zh) * 2022-08-31 2023-11-17 国网福建省电力有限公司电力科学研究院 一种耐蚀耐磨ZnNiAl涂层及其喷涂方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106002A (ja) * 1991-08-22 1993-04-27 Mitsui Mining & Smelting Co Ltd 溶融亜鉛合金めつき被覆物
JPH05156418A (ja) 1991-12-06 1993-06-22 Tokyo Seiko Co Ltd 疲労性の良好な亜鉛−アルミニウム合金めっき鉄鋼線状材及びその製造法
JPH06235054A (ja) 1993-02-09 1994-08-23 Nippon Steel Corp 吊構造用高強度鋼線の製造方法
JPH0718590A (ja) 1993-06-30 1995-01-20 Tokyo Seiko Co Ltd ワイヤロープ
JPH0853737A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線およびその製造方法
JPH0853743A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線の製造方法
JPH0853779A (ja) 1994-08-11 1996-02-27 Kobe Steel Ltd 溶融Zn−Alめっき鋼線の製造方法
JP2002235159A (ja) * 2001-02-07 2002-08-23 Kokoku Kousensaku Kk Al−Zn合金めっき線およびその製造方法
JP2002371343A (ja) 2001-04-09 2002-12-26 Nippon Steel Corp 高耐食性を有し加工性に優れた溶融めっき鋼線
JP2003129205A (ja) 2001-10-16 2003-05-08 Nippon Steel Corp 高耐食性を有し加工性に優れためっき鋼材およびその製造方法
JP2003155549A (ja) 2001-11-19 2003-05-30 Nippon Steel Corp 高耐食性を有し加工性に優れた亜鉛合金めっき鋼材とその製造方法
JP2008169478A (ja) * 2006-12-11 2008-07-24 Nippon Steel Corp 溶融めっき鋼材とその製造方法
WO2008093466A1 (ja) * 2007-01-31 2008-08-07 Nippon Steel Corporation 捻回特性に優れるpws用めっき鋼線及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389463A (en) * 1981-07-23 1983-06-21 United Technologies Corporation Zinc-aluminum hot dip coated ferrous article
JPS59173257A (ja) * 1983-03-18 1984-10-01 Sumitomo Electric Ind Ltd 溶融亜鉛めつき特別強力鋼線の製造法
JPH079056B2 (ja) * 1990-11-30 1995-02-01 田中亜鉛鍍金株式会社 乾式フラックス法による溶融金属めっき用フラックス及びこのフラックスを用いた溶融金属めっき鋼材の製造方法
JP2500947B2 (ja) * 1991-01-28 1996-05-29 新日本製鐵株式会社 吊構造用高強度鋼線の製造方法
EP0602265A1 (en) 1991-08-22 1994-06-22 Mitsui Mining & Smelting Co., Ltd. Hot dip zinc-aluminum alloy coating process
JPH0641709A (ja) * 1992-07-28 1994-02-15 Tokyo Seiko Co Ltd 耐食性高張力鋼線条体
JP2963091B1 (ja) * 1998-08-20 1999-10-12 東鋼業株式会社 溶融亜鉛−アルミニウム合金めっき方法
JP2000265255A (ja) * 1999-03-16 2000-09-26 Nisshin Steel Co Ltd 耐熱性を改善した溶融Zn−Al系合金めっき鋼板およびその製造法
JP4374356B2 (ja) 2005-06-29 2009-12-02 新日本製鐵株式会社 伸線特性に優れた高強度線材及びその製造方法、並びに伸線特性に優れた高強度鋼線

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106002A (ja) * 1991-08-22 1993-04-27 Mitsui Mining & Smelting Co Ltd 溶融亜鉛合金めつき被覆物
JPH05156418A (ja) 1991-12-06 1993-06-22 Tokyo Seiko Co Ltd 疲労性の良好な亜鉛−アルミニウム合金めっき鉄鋼線状材及びその製造法
JPH06235054A (ja) 1993-02-09 1994-08-23 Nippon Steel Corp 吊構造用高強度鋼線の製造方法
JPH0718590A (ja) 1993-06-30 1995-01-20 Tokyo Seiko Co Ltd ワイヤロープ
JPH0853737A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線およびその製造方法
JPH0853743A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線の製造方法
JPH0853779A (ja) 1994-08-11 1996-02-27 Kobe Steel Ltd 溶融Zn−Alめっき鋼線の製造方法
JP2002235159A (ja) * 2001-02-07 2002-08-23 Kokoku Kousensaku Kk Al−Zn合金めっき線およびその製造方法
JP2002371343A (ja) 2001-04-09 2002-12-26 Nippon Steel Corp 高耐食性を有し加工性に優れた溶融めっき鋼線
JP2003129205A (ja) 2001-10-16 2003-05-08 Nippon Steel Corp 高耐食性を有し加工性に優れためっき鋼材およびその製造方法
JP2003155549A (ja) 2001-11-19 2003-05-30 Nippon Steel Corp 高耐食性を有し加工性に優れた亜鉛合金めっき鋼材とその製造方法
JP2008169478A (ja) * 2006-12-11 2008-07-24 Nippon Steel Corp 溶融めっき鋼材とその製造方法
WO2008093466A1 (ja) * 2007-01-31 2008-08-07 Nippon Steel Corporation 捻回特性に優れるpws用めっき鋼線及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073579A1 (ja) * 2015-10-26 2017-05-04 新日鐵住金株式会社 めっき鋼板
JP6160793B1 (ja) * 2015-10-26 2017-07-12 新日鐵住金株式会社 めっき鋼板
TWI601853B (zh) * 2015-10-26 2017-10-11 Nippon Steel & Sumitomo Metal Corp 鍍敷鋼板
US10655203B2 (en) 2015-10-26 2020-05-19 Nippon Steel Corporation Plated steel sheet
WO2018012625A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 鋼線
CN107587071A (zh) * 2017-08-30 2018-01-16 武汉钢铁有限公司 一种抗拉强度≥2100MPa桥梁缆索用钢及生产方法
JP2020059888A (ja) * 2018-10-10 2020-04-16 日本製鉄株式会社 溶融めっき線およびその製造方法
JP7059885B2 (ja) 2018-10-10 2022-04-26 日本製鉄株式会社 溶融めっき線およびその製造方法

Also Published As

Publication number Publication date
EP2447389A1 (en) 2012-05-02
KR20110036855A (ko) 2011-04-11
CN102137949A (zh) 2011-07-27
EP2447389A4 (en) 2016-08-17
US9243315B2 (en) 2016-01-26
JP4782246B2 (ja) 2011-09-28
JPWO2010150537A1 (ja) 2012-12-06
KR101302291B1 (ko) 2013-09-03
US20120070687A1 (en) 2012-03-22
CN102137949B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4782246B2 (ja) 耐食性と疲労特性に優れた橋梁用高強度Zn−Alめっき鋼線及びその製造方法
JP6264507B2 (ja) 高強度亜鉛めっき鋼板及びその製造方法
JP6409917B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
WO2018124157A1 (ja) 高強度亜鉛めっき鋼板及びその製造方法
WO2011089782A1 (ja) 線材、鋼線、及び線材の製造方法
JP5510057B2 (ja) 溶融めっき鋼板およびその製造方法
WO2013022043A1 (ja) 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法
JP4949497B2 (ja) 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材
JP6562180B1 (ja) 高強度鋼板およびその製造方法
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
US11970752B2 (en) Steel sheet
JP6687112B2 (ja) 鋼線
JP2008261027A (ja) 耐水素脆化特性に優れた高強度亜鉛めっきボルト及びその製造方法
JP7276618B2 (ja) 高強度冷延鋼板およびその製造方法
WO2020136988A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6409916B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
WO2017009938A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2014156573A1 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
WO2014178358A1 (ja) 亜鉛めっき鋼板及びその製造方法
JP4331915B2 (ja) 疲労耐久性および耐食性に優れた高強度高延性溶融Znめっき鋼板及びその製造方法
WO2017009936A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2013022008A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP4150277B2 (ja) プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP3921101B2 (ja) 形状凍結性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法
JP3875958B2 (ja) 加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002456.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010540981

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004678

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13261050

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010791859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE