WO2013022008A1 - 溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013022008A1
WO2013022008A1 PCT/JP2012/070128 JP2012070128W WO2013022008A1 WO 2013022008 A1 WO2013022008 A1 WO 2013022008A1 JP 2012070128 W JP2012070128 W JP 2012070128W WO 2013022008 A1 WO2013022008 A1 WO 2013022008A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel sheet
dip galvanized
galvanized steel
less
Prior art date
Application number
PCT/JP2012/070128
Other languages
English (en)
French (fr)
Inventor
房亮 假屋
金子 真次郎
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2013022008A1 publication Critical patent/WO2013022008A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more suitable for applications such as automobile parts, and a method for producing the same.
  • Patent Document 1 As a method for producing a high-strength hot-dip galvanized steel sheet having a low yield ratio and a balance between strength and ductility and stretch flangeability, in a continuous hot-dip galvanizing line, By cooling at a predetermined rate in the rapid cooling zone after soaking, and maintaining in a predetermined temperature range, a bainite transformation is generated, and a martensitic transformation is caused by rapid cooling after hot dip galvanizing and alloying treatment, A method is disclosed in which the steel sheet structure is a ferrite + bainite + martensite three-phase composite structure.
  • Patent Document 2 as a method for producing a high-strength steel sheet having excellent workability, an average cooling rate from 650 ° C. until entering a hot dip zinc bath or 450 ° C. is specified after annealing and hot dip galvanizing is performed.
  • Patent Document 3 adjusts the component composition to an appropriate range, provides a reheating step after the galvanizing step, and further after the recrystallization annealing step and the reheating step.
  • a method has been disclosed in which a steel sheet structure is tempered martensite by cooling at a predetermined cooling rate.
  • Patent Document 1 a method of manufacturing a high-strength hot-dip galvanized steel sheet having a low yield ratio and excellent balance between strength and ductility and stretch flangeability by making the steel sheet structure a ferrite + bainite + martensite three-phase composite structure.
  • Patent Document 2 discloses a method for producing retained austenite in a steel sheet structure and producing a high-strength steel sheet having an excellent balance between strength and ductility. TRIP steel utilizing transformation-induced plasticity of retained austenite is disclosed.
  • Patent Document 3 discloses a method for achieving both hole expansion characteristics and high strength by making the steel sheet structure tempered martensite.
  • the tensile strength is 600 MPa or more, and about the 440 MPa class hole expansion characteristics. No consideration is given.
  • the present invention has been made in view of such circumstances, and has a high strength of a tensile strength of 440 MPa class (440 to 490 MPa level), a hot dip galvanized steel sheet excellent in workability, particularly ductility and stretch flangeability, and its An object is to provide a manufacturing method.
  • the present inventors have intensively studied from the viewpoints of steel plate composition and metal structure. As a result, it was found that it is extremely important to adjust the component composition to an appropriate range and to appropriately control the metal structure. Then, a ferrite phase having an area ratio of 50% or more and an average particle diameter of 15 ⁇ m or less, a pearlite phase having an area ratio of 10 to 30% and an average particle diameter of 10 ⁇ m or less, and an average grain having an area ratio of 3 to 10%.
  • a two-phase composite structure of a ferrite phase and a martensite phase is preferable.
  • this two-phase composite structure has a large hardness difference between the ferrite phase and the martensite phase, high stretch flangeability (hole expandability) cannot be obtained.
  • the present inventors define the steel plate composition and the metal structure as described above, and in the composite structure having the ferrite phase, the pearlite phase, and the bainite phase, the tensile strength is 440 MPa or more and the ductility It is possible to achieve both stretch flangeability. That is, the strength and ductility are ensured by prescribing the area ratio of ferrite phase and average grain size as the metal structure, and the strength is secured by appropriately controlling the area ratio of bainite phase as the second phase, In order to relieve the hardness difference between the ferrite phase and the bainite phase and ensure a desired strength, a pearlite phase was introduced to form a composite structure of the ferrite phase, the pearlite phase, and the bainite phase.
  • high ductility can be obtained while ensuring high stretch flangeability by appropriately controlling the average particle size of the pearlite phase and the bainite phase, the area ratio of the pearlite phase, and the area ratio of the cementite phase in the ferrite phase grains. Made possible.
  • the present invention is based on the above findings, and the features thereof are as follows.
  • the component composition of the steel sheet is mass%, C: 0.100 to 0.200%, Si: 0.50% or less, Mn: 0.60% or less, P: 0.100% or less, S: 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less,
  • the balance contains Fe and inevitable impurities,
  • the structure of the steel sheet A ferrite phase having an area ratio of 50 to 87% and an average particle diameter of 15 ⁇ m or less;
  • a pearlite phase having an area ratio of 10 to 30% and an average particle size of 10 ⁇ m or less; Having a bainite phase with an area ratio of 3-10% and an average particle size of 5 ⁇ m or less,
  • the component composition of the steel sheet is further mass%, Cr: 0.05 to 0.80%, V: 0.005 to 0.100%, Mo: 0.005 to 0.500%, Cu: 0.01 to 0.10%, Ni: 0.01 to 0.10%, B: The hot-dip galvanized steel sheet according to (1), which contains at least one element selected from the group consisting of 0.0003 to 0.2000%.
  • the component composition of the steel sheet is further mass%, Ca: 0.001 to 0.005%, REM: The hot-dip galvanized steel sheet according to (1), which contains at least one element selected from the group consisting of 0.001 to 0.005%.
  • the component composition of the steel sheet is further mass%, Cr: 0.05 to 0.80%, V: 0.005 to 0.100%, Mo: 0.005 to 0.500%, Cu: 0.01 to 0.10%, Ni: 0.01 to 0.10%, B: at least one element selected from the group consisting of 0.0003 to 0.2000%; Ca: 0.001 to 0.005%, REM: The hot-dip galvanized steel sheet according to (1), containing at least one element selected from the group consisting of 0.001 to 0.005%. (5) The hot-dip galvanized steel sheet according to (1), wherein the hot-dip galvanized steel sheet is an alloyed hot-dip galvanized steel sheet.
  • the component composition is mass%, C: 0.100 to 0.200%, Si: 0.50% or less, Mn: 0.60% or less, P: 0.100% or less, S: 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less, Prepare a steel material with the balance containing Fe and inevitable impurities, Heating the steel material; Ar. Hot rolling at a finish rolling finish temperature of 3 points or more, Winding the hot-rolled sheet at a temperature of 600 ° C or lower, Pickling the hot-rolled sheet, Heat to a temperature range of 650 ° C. or higher at an average heating rate of 10 ° C./s or higher, (Ac 3 +5) Hold at a temperature of 10 ° C.
  • a method for producing a hot dip galvanized steel sheet comprising hot dip galvanizing.
  • the method for producing a hot-dip galvanized steel sheet according to (18), wherein the alloying process is an alloying process by heating the steel sheet to 450 to 600 ° C.
  • high strength means that the tensile strength TS is 440 MPa or more.
  • a hot-dip galvanized steel sheet having a tensile strength of 440 to 490 MPa and excellent workability can be provided.
  • the high-strength hot-dip galvanized steel sheet of the present invention includes both cold-rolled steel sheets and hot-rolled steel sheets as galvanized base steel sheets. GI) and plated steel sheet (hereinafter also referred to as GA) to be alloyed.
  • a high-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more can be obtained.
  • a high-strength hot-dip galvanized steel sheet with reduced alloy components such as Mn, reduced alloy costs, and improved ductility and stretch flangeability is obtained. Since the high-strength hot-dip galvanized steel sheet of the present invention is excellent in ductility and stretch flangeability, for example, it can be used for automobile structural members to improve fuel consumption by reducing the weight of the vehicle body, and the industrial utility value is remarkably high. large.
  • the component composition and structure of steel or steel sheet mean the component composition and structure of only the steel or steel sheet excluding the plated layer of the hot dip galvanized steel sheet.
  • the unit of the content of each element of the steel component composition is “mass%”, and hereinafter, it is simply indicated by “%” unless otherwise specified.
  • C 0.100 to 0.200%
  • C is an essential element for securing a desired strength and improving the strength and ductility by complexing the structure, and for that purpose, it is preferably 0.100% or more.
  • C is preferably in the range of 0.100 to 0.200%.
  • Si 0.50% or less
  • Si is a ferrite phase forming element and is an effective element for strengthening steel.
  • Si is desirably 0.50% or less.
  • 0.01% or more is effective for strengthening steel, it is more desirable to be 0.01% or more.
  • Mn 0.60% or less
  • Mn is an essential element for securing a desired strength in the same manner as C, stabilizes the austenite phase, and promotes the generation of a second phase such as a bainite phase.
  • Mn is desirably 0.60% or less.
  • it becomes effective in strengthening steel when it is 0.10% or more it is more desirable that it is 0.10% or more.
  • P 0.100% or less
  • P is an element effective for strengthening steel, but if the added amount exceeds 0.100%, embrittlement occurs due to segregation at the grain boundaries, and impact resistance is deteriorated. Therefore, P is preferably 0.100% or less. Moreover, since 0.003% or more is effective for strengthening steel, it is more preferably 0.003% or more.
  • S 0.0100% or less S becomes a non-metallic inclusion such as MnS, and the hole end face is easily cracked at the time of punching hole processing in the hole expansion test, and the hole expandability is lowered.
  • S is preferably as low as possible, and S is preferably 0.0100% or less. Further, from the viewpoint of manufacturing cost, S is set to 0.0100% or less. Preferably, S is more desirably 0.0070% or less.
  • Al 0.010 to 0.100% Al is added in an amount of 0.010% or more for deoxidation of steel. On the other hand, if it exceeds 0.100%, the surface appearance after plating is remarkably deteriorated, so that Al is preferably in the range of 0.010 to 0.100%.
  • N 0.0100% or less N does not impair the effects of the present invention as long as it is 0.0100% or less in the amount of ordinary steel. Therefore, N is preferably 0.0100% or less.
  • the balance contains Fe and inevitable impurities.
  • the above-described components have a basic composition.
  • at least one selected from the group consisting of Cr, V, Mo, Cu, Ni, and B is used. It can contain seed elements.
  • Cr and V are added for the purpose of improving the hardenability of the steel and increasing the strength. be able to.
  • Mo is an element effective for strengthening the hardenability of steel and can be added for the purpose of increasing the strength.
  • Cu and Ni are elements that contribute to strength, and can be added for the purpose of strengthening steel.
  • B has the effect of suppressing the formation of ferrite from the austenite grain boundaries, and therefore can be added as necessary.
  • the lower limit of each element is the minimum amount at which a desired effect is obtained, and the upper limit is an amount at which the effect is saturated. From the above, when added, Cr is 0.05 to 0.80%, V is 0.005 to 0.100%, Mo is 0.005 to 0.500%, and Cu is 0.01 to 0.10. %, Ni is preferably 0.01 to 0.10%, and B is preferably 0.0003 to 0.2000%.
  • Ca contains at least one element selected from the group consisting of 0.001 to 0.005%, REM: 0.001 to 0.005% Ca, REM spheroidizes the sulfide shape, stretch flangeability It can be added for the purpose of improving.
  • the lower limit of each element is the minimum amount at which a desired effect is obtained, and the upper limit is an amount at which the effect is saturated. From the above, when added, Ca is preferably 0.001 to 0.005%, and REM is preferably 0.001 to 0.005%.
  • the ferrite phase is desirably 50% or more in terms of area ratio. More preferably, it is 55% or more. In order to ensure the minimum amount of the following pearlite phase, bainite phase, and cementite phase, the area ratio of the ferrite phase is desirably 87% or less.
  • Average particle diameter of ferrite phase 15 ⁇ m or less
  • the average particle diameter is desirably 15 ⁇ m or less.
  • it is more preferably 5 ⁇ m or more.
  • Perlite phase area ratio 10-30%
  • the area ratio of the pearlite phase is preferably 10% or more.
  • the area ratio of the pearlite phase is desirably 30% or less.
  • Average particle size of pearlite phase 10 ⁇ m or less
  • the average particle size is preferably 10 ⁇ m or less. If it exceeds 10 ⁇ m, the ductility decreases. In order to obtain better ductility, it is more desirable to be 8 ⁇ m or less. On the other hand, if it is 3 ⁇ m or more, the effect of relieving the hardness difference between the ferrite phase and the bainite phase is exhibited, and therefore, 3 ⁇ m or more is more preferable.
  • the area ratio of the bainite phase is desirably 3% or more.
  • the area ratio of the bainite phase is desirably 10% or less.
  • Average particle size of bainite phase 5 ⁇ m or less
  • the average particle size is desirably 5 ⁇ m or less. More preferably, it is 3 ⁇ m or less.
  • it is more preferably 1 ⁇ m or more.
  • the area ratio of the cementite phase present in the ferrite phase grains is preferably 10% or less.
  • the structure other than the cementite phase present in the grains of the ferrite phase, the pearlite phase, the bainite phase, and the ferrite phase can include a retained austenite phase. In this case, from the viewpoint of ensuring good stretch flangeability, the area ratio of the retained austenite phase is desirably 1% or less.
  • the metallographic structure was corroded with 3% nital after polishing a 1/4 thickness position parallel to the rolling direction of the steel sheet, and observed with a scanning electron microscope (SEM) over 10 fields of view at a magnification of 2000 times.
  • SEM scanning electron microscope
  • the area ratio of each phase can be obtained by performing analysis by image analysis processing using “Image Pro Plus ver. 4.0” image analysis software manufactured by Media Cybernetics.
  • the cementite phase present in the grains of the ferrite phase, pearlite phase, bainite phase, and ferrite phase is separated on the digital image by image analysis, image processing is performed, and the area ratio of each phase is obtained for each measurement visual field. .
  • These values may be averaged (for example, 10 fields of view) to obtain the area ratio of each phase.
  • the calculation method of the area ratio is not limited to this method, and a method including conventional visual observation may be used.
  • the average particle size of the ferrite phase, pearlite phase, and bainite phase can be determined, for example, as follows. In the same manner as above, after polishing the 1/4 thickness position parallel to the rolling direction of the steel sheet, it was corroded with 3% nital, and the ferrite phase and the pearlite phase were observed with SEM over 10 fields at a magnification of 1000 times, and the bainite phase Is observed with SEM over 10 fields of view at a magnification of 5000 times, and the image is subjected to image analysis processing using the above image analysis software.
  • the area of ferrite phase, pearlite phase, bainite phase, ferrite grains, pearlite grains The number of bainite grains is obtained, the area per ferrite grain, pearlite grain, and bainite grain is calculated, and the equivalent circle diameter corresponding to the area per ferrite grain, pearlite grain, and bainite grain is calculated. These values are calculated in all 10 fields of view, and the values are averaged to obtain the average of the ferrite phase, pearlite phase, and bainite phase. It may be used as the particle size. Of course, the method of calculating the average particle diameter is not limited to this method, and a method including conventional visual observation may be used.
  • the molten steel having the component composition described above can be melted by a melting method using a converter or the like and used as a steel material (slab) by a casting method such as a continuous casting method.
  • hot rolling is performed by heating and rolling to obtain a hot-rolled sheet.
  • the finishing temperature of the finish rolling is set to Ar 3 point or higher and coiled at a temperature of 600 ° C. or lower.
  • Finishing rolling finish temperature Ar 3 points or more
  • the finish rolling finish temperature is less than Ar 3 points, a ferrite phase is generated in the surface layer of the steel sheet, and the structure in the thickness direction is caused by the coarsening of the ferrite phase due to the processing strain. Becomes uneven, and the average grain size of the ferrite phase cannot be controlled to 15 ⁇ m or less in the structure after cold rolling or continuous hot dip galvanizing. Therefore, it is desirable that the finishing temperature of finish rolling be 3 points or more at Ar.
  • Ar 3 point can be calculated from the following equation (1) may be used actually measured temperature.
  • Ar 3 910-310 ⁇ [C] ⁇ 80 ⁇ [Mn] + 0.35 ⁇ (t ⁇ 0.8) (1)
  • [M] represents the content (% by mass) of the element M
  • t represents the plate thickness (mm).
  • a correction term may be introduced depending on the contained element. For example, when Cu, Cr, Ni, or Mo is contained, ⁇ 20 ⁇ [Cu], ⁇ 15 ⁇ [Cr], ⁇ 55 Correction terms such as ⁇ [Ni] and ⁇ 80 ⁇ [Mo] may be added to the right side of Equation (1).
  • Winding temperature 600 ° C. or less
  • the area ratio of the pearlite phase increases.
  • the area ratio of the pearlite phase becomes a structure exceeding 30%, which is excessive. causes an increase in strength.
  • the ferrite grains easily grow, and the average ferrite grain size cannot be controlled to 15 ⁇ m or less in the structure after cold rolling or continuous hot dip galvanizing treatment. Therefore, the winding temperature is desirably 600 ° C. or lower.
  • winding temperature shall be 200 degreeC or more.
  • the steel sheet may be pickled and further cold-rolled as necessary.
  • the pickling conditions are not particularly limited.
  • Cold rolling reduction 40% or more (preferred condition)
  • the steel plate after pickling may be cold-rolled as necessary.
  • the rolling reduction of the cold rolling is 40% or more, the recrystallization of the ferrite phase is promoted, the remaining of the non-recrystallized ferrite phase is prevented in the structure after the continuous hot dip galvanizing treatment, and the ductility and stretch flangeability are improved. Since there is an effect of further improvement, the rolling reduction of cold rolling is more preferably 40% or more.
  • the rolling reduction of the cold rolling is 85% or less, the steel sheet after the continuous hot dip galvanization has a desired metal structure, and therefore it is more preferably 85% or less.
  • a continuous hot dip galvanizing process is performed.
  • the steel sheet is heated to a temperature range of 650 to 700 ° C. at an average heating rate of 10 to 30 ° C./s, held at a temperature of (Ac 3 +5) ° C. or higher for 10 to 600 seconds, and then 10 to 200 ° C. It is preferable to cool to a temperature range of 300 ° C. or lower at an average cooling rate of / s, hold it in the temperature range of 300 ° C. or lower for 30 to 300 seconds, and then perform hot dip galvanizing treatment.
  • Heating to a temperature range of 650 to 700 ° C. at an average heating rate of 10 to 30 ° C./s If the temperature range to be heated is 650 ° C. or more, recrystallization of ferrite is promoted, and the ferrite in the steel sheet after continuous hot dip galvanizing treatment A phase area ratio of 50% or more is preferable in improving ductility while ensuring strength.
  • the average heating rate is 10 to 30 ° C./s, a long furnace and a large amount of energy consumption are not required, and production efficiency can be improved at low cost.
  • the cementite is sufficiently dissolved during annealing.
  • the austenite phase can be sufficiently generated, and a sufficient amount of the second phase (pearlite phase, bainite phase) can be secured during annealing and cooling, and sufficient strength can be obtained.
  • the area ratio of the cementite phase present in the ferrite phase grains can be suppressed to 10% or less, and good ductility can be obtained.
  • the upper limit of the annealing (holding) temperature and annealing (holding) time is not particularly specified, a sufficient effect can be obtained by holding at 1000 ° C. or lower and 600 seconds or shorter, and annealing ( The holding) temperature is preferably 1000 ° C. or less, and the annealing (holding) time is preferably 600 seconds or less.
  • Ac 3 points can be calculated from the following equation (2), but actually measured temperatures may be used.
  • Cooling to a temperature range of 300 ° C. or less at an average cooling rate of 10 to 200 ° C./s The average cooling rate condition is one of the important requirements in the present invention.
  • the area ratio of the cementite phase present in the grains of the ferrite phase can be controlled, and the area ratio of the pearlite phase and the bainite phase can be controlled.
  • the average cooling rate is 10 ° C./s or more, the area ratio of the cementite phase present in the grains of the ferrite phase can be suppressed to 10% or less, the ferrite average particle diameter is 15 ⁇ m or less, the pearlite average Since the particle size can be 10 ⁇ m or less, good ductility can be obtained while ensuring sufficient strength.
  • the average cooling rate is 200 ° C./s or less, the ferrite phase is sufficiently precipitated and the pearlite phase or the bainite phase is not excessively precipitated, and good ductility can be obtained with an appropriate strength.
  • it is desirable that an average cooling rate is 200 degrees C / s or less.
  • the cooling end temperature is 100 ° C. or higher, it is more preferable that the temperature is 100 ° C. or higher because deterioration of the steel plate shape due to uneven cooling can be suppressed.
  • Holding for 30 to 300 seconds in a temperature range of 300 ° C. or lower Holding in this temperature range is one of the important requirements in the present invention.
  • the holding temperature at 300 ° C. or less, it becomes possible to cause bainite transformation at a sufficient rate.
  • the bainite phase of the steel sheet after continuous hot dip galvanizing treatment Since a structure having an area ratio of 3% or more is obtained, sufficient strength is ensured, and the area ratio of the cementite phase present in the ferrite phase grains can be suppressed to 10% or less. Since the pearlite average particle size can be 10 ⁇ m or less, good ductility can be obtained.
  • the holding time is less than 30 seconds, the bainite transformation does not proceed, the structure in which the area ratio of the bainite phase of the steel sheet after the continuous hot dip galvanizing treatment is 3% or more cannot be obtained, and it is difficult to ensure the strength. It becomes.
  • the holding time exceeds 300 seconds, the area ratio of the bainite phase becomes excessive, and at the same time, the average grain size of bainite exceeds 5 ⁇ m, so that the difference in hardness between the ferrite phase and the bainite phase increases, and the stretch flangeability decreases. In this case, the area ratio of the cementite phase present in the ferrite phase grains exceeds 10%, and the ductility is lowered.
  • it is kept in the above temperature range for 30 to 300 seconds sufficient strength can be obtained and at the same time, good ductility and stretch flangeability can be obtained.
  • the galvanized layer is further alloyed and then cooled to room temperature.
  • the alloying treatment is performed subsequent to the hot dip galvanizing treatment, after the hot dip galvanizing treatment, for example, the steel sheet is heated to 450 ° C. or higher and 600 ° C. or lower to be alloyed. It is preferable to carry out so that it may become 15%. In the range of 7% or more, alloying unevenness can be prevented and at the same time the flaking property can be improved. In the range of 15% or less, the anti-plating resistance improves, so the Fe content of the plating layer is 7 It is more desirable to be ⁇ 15%.
  • the holding temperature does not need to be constant as long as it is within the above-mentioned temperature range, and even when the cooling rate changes during cooling, it is within the specified cooling rate range. If there is no problem. Moreover, as long as a desired heat history is satisfied in the heat treatment, no matter what equipment is used for the heat treatment, the gist of the present invention is not impaired.
  • the temper rolling for shape correction is also included in the scope of the present invention. In the present invention, it is assumed that the steel material is manufactured through normal steelmaking, casting, and hot rolling processes.
  • the hot rolling process is omitted by thin slab casting or the like. Such cases are also included in the scope of the present invention. Furthermore, in the present invention, even if the obtained high-strength hot-dip galvanized steel sheet is subjected to various surface treatments such as chemical conversion treatment, the effects of the present invention are not impaired.
  • a steel material (slab) having the component composition shown in Table 1 was used as a starting material. After heating these steel materials to the heating temperatures shown in Tables 2 and 3, they were hot-rolled and pickled under the conditions shown in Tables 2 and 3, and then cold-rolled and continuously hot-dip galvanized. Treated.
  • the plate thickness before cold rolling is steel plate No. Different for each. Some steel plates (steel plate No. 5) were not cold-rolled. Subsequently, except for a part, the alloying treatment was performed after the continuous hot dip galvanizing treatment.
  • hot dip galvanizing is performed in an Al-containing Zn bath at 460 ° C.
  • GA is a 0.14 mass% Al-containing Zn bath
  • GI is 0.18 mass% Al-containing Zn bath.
  • the adhesion amount was adjusted by gas wiping, and GA was alloyed.
  • the average particle diameters of the ferrite phase, pearlite phase, and bainite phase were determined as follows. In the same manner as above, after polishing a 1/4 thickness position parallel to the rolling direction of the steel sheet, it was corroded with 3% nital, and the ferrite phase and the pearlite phase were observed with SEM over 10 fields at a magnification of 1000 times, and the bainite phase Is observed with SEM over 10 fields of view at a magnification of 5000 times, and the image is subjected to image analysis processing using the above image analysis software.
  • the area of ferrite phase, pearlite phase, bainite phase, ferrite grains, pearlite grains The number of bainite grains is obtained, the area per ferrite grain, pearlite grain, and bainite grain is calculated, and the equivalent circle diameter corresponding to the area per ferrite grain, pearlite grain, and bainite grain is calculated. These values are calculated in all 10 fields of view, and the values are averaged to obtain the average of the ferrite phase, pearlite phase, and bainite phase. And the particle size.
  • the steel sheet has an area ratio of 50% or more and a ferrite phase with an average particle diameter of 15 ⁇ m or less, a pearlite phase with an area ratio of 10 to 30% and an average particle diameter of 10 ⁇ m or less, and an area ratio of 3
  • a bainite phase having an average particle diameter of 5 ⁇ m or less at ⁇ 10% and an area ratio of the cementite phase present in the ferrite phase grains being 10% or less
  • the ductility and stretch flangeability are high.
  • one or more of ductility and stretch flangeability is low.
  • the area ratio and average particle diameter of the ferrite phase, the area ratio and average particle diameter of the pearlite phase, the area ratio and average particle diameter of the bainite phase, and the cementite present in the ferrite phase grains It can be seen that ductility and stretch flangeability are not improved even when the phase area ratio is optimized.
  • a steel sheet having a predetermined composition has a ferrite phase with an area ratio of 50% or more and an average particle diameter of 15 ⁇ m or less, a pearlite phase with an area ratio of 10 to 30% and an average particle diameter of 10 ⁇ m or less, and an area ratio of 3 to 3 10% having a bainite phase with an average particle diameter of 5 ⁇ m, and when the area ratio of the cementite phase present in the ferrite phase grains is 10% or less, it has a high strength of 440 to 490 MPa in tensile strength, It was also confirmed that a hot-dip galvanized steel sheet having good ductility and stretch flangeability can be obtained.
  • the hot-dip galvanized steel sheet according to the present invention is a surface-treated steel sheet that is excellent in strength and workability and is advantageous in reducing the weight and strength of a vehicle body when used around an automobile floor that is molded into a complicated shape. Can be used as

Abstract

加工性に優れた引張強度440MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。鋼板の組織は、面積率が50%以上で平均粒径が15μm以下のフェライト相と、面積率が10~30%で平均粒径が10μm以下のパーライト相と、面積率が3~10%で平均粒径が5μm以下のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である。製造するにあたっては、熱延板または冷延板を10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、(Ac3+5)℃以上の温度で10秒以上保持し、次いで、10~200℃/sの平均冷却速度で300℃以下の温度域まで冷却し、前記300℃以下の温度域で30~300秒保持したのち、溶融亜鉛めっきする。

Description

溶融亜鉛めっき鋼板およびその製造方法
 本発明は、自動車部品等の用途に好適な引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。
 近年、地球環境保全の観点からCOなどの排気ガスを低減化する試みが進められている。自動車産業では車体を軽量化して燃費を向上させることにより、排気ガス量を低下させる対策が図られている。
 車体軽量化の手法のひとつとして、自動車に使用されている鋼板を高強度化することで板厚を薄肉化する手法が挙げられる。また、フロア周りに使用される鋼板には高強度化による薄肉化とともに防錆性が求められており、高強度溶融亜鉛めっき鋼板の適用が検討されている。鋼板の高強度化とともに延性が低下するため、高強度と延性を両立する鋼板が必要となる。また、フロア周りの部品は複雑な形状に成形加工されることが多く、延性とともに伸びフランジ性が必要である。
 このような要求に対して、例えば、特許文献1には、低降伏比で強度と延性のバランスおよび伸びフランジ性の優れた高強度溶融亜鉛めっき鋼板の製造方法として、連続溶融亜鉛めっきラインにおいて、均熱加熱後の急冷帯において所定の速度で冷却し、所定の温度域で保持することによって、ベイナイト変態を生ぜしめ、溶融亜鉛めっき、合金化処理後に急冷することによりマルテンサイト変態を生じせしめ、鋼板組織をフェライト+ベイナイト+マルテンサイト3相複合組織とする方法が開示されている。
 特許文献2には、加工性に優れた高強度鋼板の製造方法として、焼鈍均熱後、650℃から溶融亜鉛浴に入るまであるいは450℃までの平均冷却速度を規定し、溶融亜鉛めっきをする前もしくは溶融亜鉛めっきをした後に300~450℃の間の温度域で所定の時間保持することで鋼板組織に残留オーステナイトを生成せしめ、強度と延性のバランスに優れた高強度鋼板を製造する方法が開示されている。
 さらに、引張強度が440~1500MPa級で先端60°の円錐ポンチにて穴周囲に割れが生じるまでこの穴を拡げる穴広げ試験により評価した曲げ加工性(λ値(λ:穴拡げ率))に優れる高強度溶融亜鉛めっき鋼板の製造方法として、特許文献3では成分組成を適正範囲に調整し、亜鉛めっき工程の後に再加熱工程を設け、更に、再結晶焼鈍工程の後で且つ再加熱工程の前に、所定の冷却速度で冷却することで鋼板組織を焼戻しマルテンサイトとする方法が開示されている。
特公平5−43779号公報 特開平4−26744号公報 特開平6−108152号公報
 前述のように、鋼板の高強度化とともに延性が低下するため、高強度と延性が両立する鋼板が必要となる。また、フロア周りの部品は複雑な形状に成形加工されることが多く、延性とともに伸びフランジ性が必要である。自動車用高強度鋼板の強度レベルは、引張強さで590MPa級以上の開発が進められているが、フロア周りの構造用鋼板として用いられている鋼板の強度レベルは440MPa級(440~490MPaレベル)でよく、この強度レベルを有すると同時に、フロア周りの部材に求められる形状に加工するため、延性および伸びフランジ性の優れた鋼板が必要である。
 しかし、特許文献1では、鋼板組織をフェライト+ベイナイト+マルテンサイト3相複合組織とすることにより、低降伏比で強度と延性のバランスおよび伸びフランジ性の優れた高強度溶融亜鉛めっき鋼板の製造方法が開示されているが、鋼板組織にマルテンサイトを導入しているため、強度レベルは490MPa級を超えており、440MPa級の強度と延性のバランスおよび伸びフランジ性については何ら考慮されていない。
 また、特許文献2には、鋼板組織に残留オーステナイトを生成せしめ、強度と延性のバランスに優れた高強度鋼板を製造する方法が開示されているが、残留オーステナイトの変態誘起塑性を活用したTRIP鋼であるため延性には優れるものの、伸びフランジ性が劣るという問題がある。
 さらに特許文献3でも、鋼板組織を焼戻しマルテンサイトとすることにより、穴拡げ特性と高強度を両立させる方法が開示されているが、引張強度は600MPa以上であり、440MPa級の穴拡げ特性については何ら考慮されていない。
 本発明は、かかる事情に鑑みてなされたものであって、引張強度440MPa級(440~490MPaレベル)の高強度を有し、加工性特に延性および伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、鋼板組成および金属組織の観点から鋭意検討を進めた。その結果、成分組成を適正範囲に調整し、金属組織を適切に制御することが極めて重要であることを見出した。そして、面積率が50%以上で、平均粒径が15μm以下のフェライト相と、面積率が10~30%で平均粒径が10μm以下のパーライト相と、面積率が3~10%で平均粒径が5μm以下のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である金属組織とすることで引張強度が440MPa以上で加工性(延性および伸びフランジ性)を両立できることを見出した。
 また、高延性を得るための金属組織としては、フェライト相とマルテンサイト相の2相複合組織が好ましい。しかし、この2相複合組織は、フェライト相とマルテンサイト相の硬度差が大きいために高い伸びフランジ性(穴拡げ性)が得られない。
 これに対して、本発明者らは、上述したように鋼板組成および金属組織を規定することで、フェライト相、パーライト相、ベイナイト相を有する複合組織において、引張強度が440MPa以上で、かつ延性と伸びフランジ性の両立を可能とした。すなわち、金属組織としてフェライト相の面積率、平均粒径を規定することで強度、延性を確保し、第2相として、ベイナイト相の面積率を適切に制御することで強度を確保し、また、フェライト相とベイナイト相の硬度差を緩和し所望の強度を確保するためにパーライト相を導入し、フェライト相、パーライト相、ベイナイト相の複合組織とした。さらに、パーライト相およびベイナイト相の平均粒径、パーライト相の面積率、フェライト相の粒内のセメンタイト相の面積率を適切に制御することで高い伸びフランジ性を確保しつつ、高い延性を得ることを可能とした。
 本発明は上記知見に基づくものであり、その特徴は以下の通りである。
(1)鋼板の成分組成が、質量%で、
 C:0.100~0.200%、
 Si:0.50%以下、
 Mn:0.60%以下、
 P:0.100%以下、
 S:0.0100%以下、
 Al:0.010~0.100%、
 N:0.0100%以下を含有し、
 残部がFeおよび不可避的不純物を含有し、
鋼板の組織が、
 面積率が50~87%で平均粒径が15μm以下のフェライト相と、
 面積率が10~30%で平均粒径が10μm以下のパーライト相と、
 面積率が3~10%で平均粒径が5μm以下のベイナイト相を有し、
 前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である溶融亜鉛めっき鋼板。
(2)前記鋼板の成分組成が、さらに、質量%で、
 Cr:0.05~0.80%、
 V:0.005~0.100%、
 Mo:0.005~0.500%、
 Cu:0.01~0.10%、
 Ni:0.01~0.10%、
 B:0.0003~0.2000%からなるグループから選択された少なくとも1種の元素を含有する(1)に記載の溶融亜鉛めっき鋼板。
(3)前記鋼板の成分組成が、さらに、質量%で、
 Ca:0.001~0.005%、
 REM:0.001~0.005%からなるグループから選択された少なくとも1種の元素を含有する(1)に記載の溶融亜鉛めっき鋼板。
(4)前記鋼板の成分組成が、さらに、質量%で、
 Cr:0.05~0.80%、
 V:0.005~0.100%、
 Mo:0.005~0.500%、
 Cu:0.01~0.10%、
 Ni:0.01~0.10%、
 B:0.0003~0.2000%からなるグループから選択された少なくとも1種の元素と、
 Ca:0.001~0.005%、
 REM:0.001~0.005%からなるグループから選択された少なくとも1種の元素と、を含有する(1)に記載の溶融亜鉛めっき鋼板。
(5)前記溶融亜鉛めっき鋼板が合金化溶融亜鉛めっき鋼板である(1)に記載の溶融亜鉛めっき鋼板。
(6)前記溶融亜鉛めっき鋼板は亜鉛めっき層を有し、該亜鉛めっき層が合金化溶融亜鉛めっき層である(1)に記載の溶融亜鉛めっき鋼板。
(7)前記合金化亜鉛めっき層は7~15%のFe含有量を有する(6)に記載の溶融亜鉛めっき鋼板。
(8)前記溶融亜鉛めっき鋼板は、引張強度が440MPa以上の溶融亜鉛めっき鋼板である(1)に記載の溶融亜鉛めっき鋼板。
(9)前記引張強度が440~490MPaである(8)に記載の溶融亜鉛めっき鋼板。
(10)前記溶融亜鉛めっき鋼板は、37%以上の伸びを有する(1)に記載の溶融亜鉛めっき鋼板。
(11)前記溶融亜鉛めっき鋼板は、70%以上の伸びフランジ性を有する(1)に記載の溶融亜鉛めっき鋼板。
(12)前記Si含有量が0.01~0.50%である(1)に記載の溶融亜鉛めっき鋼板。
(13)前記Mn含有量が0.10~0.60%である(1)に記載の溶融亜鉛めっき鋼板。
(14)前記P含有量が0.003~0.100%である(1)に記載の溶融亜鉛めっき鋼板。
(15)成分組成が、質量%で、
 C:0.100~0.200%、
 Si:0.50%以下、
 Mn:0.60%以下、
 P:0.100%以下、
 S:0.0100%以下、
 Al:0.010~0.100%、
 N:0.0100%以下を含有し、
 残部がFeおよび不可避的不純物を含有する鋼素材を準備し、
 該鋼素材を加熱し、
 Ar点以上の仕上圧延終了温度で熱間圧延し、
 600℃以下の温度で熱延板を巻取り、
 該熱延板を酸洗し、
 10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、
 (Ac+5)℃以上の温度で10秒以上保持し、
 10~200℃/sの平均冷却速度で100~300℃の温度域まで冷却し、
 前記100~300℃の温度域で30~300秒保持し、
 溶融亜鉛めっきすることを含む溶融亜鉛めっき鋼板の製造方法。
(16)酸洗した熱延板を、さらに冷間圧延する(15)に記載の溶融亜鉛めっき鋼板の製造方法。
(17)前記冷間圧延の圧下率が、40~85%である(16)に記載の溶融亜鉛めっき鋼板の製造方法。
(18)前記溶融亜鉛めっきした後に、さらに合金化処理する(15)に記載の溶融亜鉛めっき鋼板の製造方法。
(19)前記合金化処理が、鋼板を450~600℃に加熱することによる合金化処理である(18)に記載の溶融亜鉛めっき鋼板の製造方法。
 なお、本発明において、高強度とは、引張強度TSが440MPa以上である。本発明では、特に、引張強度が440~490MPaで加工性に優れた溶融亜鉛めっき鋼板を提供することができる。また、本発明の高強度溶融亜鉛めっき鋼板は、亜鉛めっきの下地鋼板として冷延鋼板、熱延鋼板のいずれも含むものであり、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。
 本発明によれば、引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板が得られる。また、本発明では、Mn等の合金成分を削減し、合金コストを低減した廉価で、かつ延性、伸びフランジ性を改善した高強度溶融亜鉛めっき鋼板が得られている。
 本発明の高強度溶融亜鉛めっき鋼板は延性および伸びフランジ性に優れているため、例えば、自動車構造部材に用いることで車体軽量化による燃費改善を図ることができ、産業上の利用価値は格段に大きい。
 以下、本発明について具体的に説明する。なお、以下の説明において、鋼または鋼板の成分組成および組織とは、溶融亜鉛めっき鋼板のめっき層を除く鋼または鋼板のみの部分の成分組成および組織を意味する。また、以下の説明において、鋼成分組成の各元素の含有量の単位は「質量%」であり、以下、特に断らない限り単に「%」で示す。
 先ず、本発明で最も重要な要件である、鋼板の成分組成について説明する。
 C:0.100~0.200%
 Cは、所望の強度を確保し、組織を複合化して強度と延性を向上させるために必須の元素であり、そのためには0.100%以上であることが望ましい。一方、0.200%を超えて添加すると強度上昇が著しく、所望の加工性が得られない。したがって、Cは0.100~0.200%の範囲内であることが望ましい。
 Si:0.50%以下
 Siは、フェライト相生成元素であり、鋼を強化するため有効な元素である。しかし、添加量が0.50%超えとなると著しく強度が上昇し、所望の加工性が得られない。従って、Siは0.50%以下であることが望ましい。また、0.01%以上の場合、鋼の強化に有効となるため、0.01%以上であることがより望ましい。
 Mn:0.60%以下
 Mnは、Cと同様に所望の強度を確保するために必須の元素であり、オーステナイト相を安定化させ、ベイナイト相等の第2相の生成を促進する。しかし、0.60%を超えて過剰に添加すると、第2相組織の面積率が過大となり、延性が低下するので、Mnは0.60%以下であることが望ましい。また、0.10%以上の場合、鋼の強化に有効となるため、0.10%以上であることがより望ましい。
 P:0.100%以下
 Pは、鋼の強化に有効な元素であるが、添加量が0.100%を超えると粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。従って、Pは0.100%以下であることが望ましい。また、0.003%以上の場合、鋼の強化に有効となるため、0.003%以上であることがより望ましい。
 S:0.0100%以下
 Sは、MnSなどの非金属介在物となり、穴拡げ試験での打抜き穴加工時に穴端面が割れやすくなり、穴拡げ性が低下する。Sは極力低いほうがよく、Sは0.0100%以下であることが望ましい。また、製造コストの面からもSは0.0100%以下とする。好ましくは、Sは0.0070%以下であることがさらに望ましい。
 Al:0.010~0.100%
 Alは、鋼の脱酸のため、0.010%以上添加する。一方、0.100%を超えるとめっき後の表面外観が著しく劣化するため、Alは0.010~0.100%の範囲内であることが望ましい。
 N:0.0100%以下
 Nは、通常の鋼に含有される量0.0100%以下であれば本発明の効果を損なわない。従って、Nは0.0100%以下であることが望ましい。
 残部がFeおよび不可避的不純物を含有
 上記した成分が基本組成であるが、本発明では上記した基本組成に加えて、Cr、V、Mo、Cu、Ni、Bからなるグループから選択された少なくとも1種の元素を含有することができる。
 Cr:0.05~0.80%、V:0.005~0.100%、Mo:0.005~0.500%、Cu:0.01~0.10%、Ni:0.01~0.10%、B:0.0003~0.2000%からなるグループから選択された少なくとも1種の元素を含有
 Cr、Vは、鋼の焼入れ性を向上させ、高強度化する目的で添加することができる。Moは鋼の焼入れ性強化に有効な元素であり高強度化する目的で添加することができる。Cu、Niは強度に寄与する元素であり、鋼の強化の目的で添加することができる。Bはオーステナイト粒界からのフェライトの生成を抑制する作用を有するので必要に応じて添加することができる。それぞれの元素の下限は、所望の効果が得られる最低限の量であり、また、上限は効果が飽和する量である。以上より、添加する場合は、Crは0.05~0.80%、Vは0.005~0.100%、Moは0.005~0.500%、Cuは0.01~0.10%、Niは0.01~0.10%、Bは0.0003~0.2000%であることが望ましい。
 Ca:0.001~0.005%、REM:0.001~0.005%からなるグループから選択された少なくとも1種の元素を含有
 Ca、REMは、硫化物形状を球状化し、伸びフランジ性を改善する目的で添加することができる。それぞれの元素の下限は、所望の効果が得られる最低限の量であり、また、上限は効果が飽和する量である。以上より、添加する場合は、Caは0.001~0.005%、REMは0.001~0.005%であることが望ましい。
 次に、本発明の引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板の組織の限定理由について説明する。
 フェライト相の面積率:50~87%
 高い延性を確保するためには、フェライト相は面積率で50%以上であることが望ましい。より好ましくは、55%以上である。下記パーライト相、ベイナイト相、セメンタイト相の最低限量を確保するためには、フェライト相の面積率は87%以下であることが望ましい。
 フェライト相の平均粒径:15μm以下
 引張強度および高い延性を確保するためには、平均粒径は15μm以下であることが望ましい。一方、5μm以上では所定の引張強度を確保しつつ、高い延性が得られる効果もあるため、5μm以上であることがより好ましい。
 パーライト相の面積率:10~30%
 強度確保およびフェライト相とベイナイト相の硬度差を緩和して高い伸びフランジ性を得るため、パーライト相の面積率は10%以上であることが望ましい。一方、過度に強度を上昇させることなく、所望の加工性を得るためには、パーライト相の面積率は30%以下であることが望ましい。
 パーライト相の平均粒径:10μm以下
 平均粒径が10μm以下である場合には、良好な延性を得ることができるため、平均粒径が10μm以下であることが望ましい。10μmを超えると延性が低下する。さらに良好な延性を得るためには、8μm以下であることがより望ましい。一方、3μm以上ではフェライト相とベイナイト相の硬度差を緩和する効果が発現されるため、3μm以上であることがより好ましい。
 ベイナイト相の面積率:3~10%
 所望の強度を確保するためにベイナイト相の面積率は3%以上であることが望ましい。一方、過度に強度を上昇させることなく、所望の加工性を得るためには、ベイナイト相の面積率は10%以下であることが望ましい。
 ベイナイト相の平均粒径:5μm以下
 伸びフランジ性を確保するためには、平均粒径は5μm以下であることが望ましい。より好ましくは、3μm以下である。一方、1μm以上では所定の強度を確保しつつ、高い伸びフランジ性が得られる効果もあるため、1μm以上であることがより好ましい。
 フェライト相の粒内に存在するセメンタイト相の面積率:10%以下
 良好な伸びフランジ性を得るためには、フェライト相の粒内に存在するセメンタイト相の面積率は10%以下であることが望ましい。
 なお、フェライト相、パーライト相、ベイナイト相、フェライト相の粒内に存在するセメンタイト相以外の組織としては、残留オーステナイト相を含むことができる。この場合は、良好な伸びフランジ性を確保する観点から、残留オーステナイト相の面積率は1%以下であることが望ましい。
 金属組織は、鋼板圧延方向に平行な板厚断面1/4位置を研磨後、3%ナイタールで腐食し、2000倍の倍率で10視野にわたり走査型電子顕微鏡(SEM)で観察し、その画像をたとえばMedia Cybernetics社製の画像解析ソフト”Image Pro Plus ver.4.0”を使用した画像解析処理により解析し、各相の面積率を求めることができる。この場合、画像解析により、フェライト相、パーライト相、ベイナイト相、フェライト相の粒内に存在するセメンタイト相をデジタル画像上で分別し、画像処理し、測定視野毎に各々の相の面積率を求める。これらの値を平均(たとえば10視野)して各々の相の面積率とすればよい。もちろん面積率の算出方法はこの方法に限らず、旧来の目視を含む方法によってもよい。
 フェライト相、パーライト相、ベイナイト相の平均粒径は、たとえば次のようにして求めることができる。上記と同様に、鋼板圧延方向に平行な板厚断面1/4位置を研磨後、3%ナイタールで腐食し、フェライト相とパーライト相は1000倍の倍率で10視野にわたりSEMで観察し、ベイナイト相は5000倍の倍率で10視野にわたりSEMで観察し、その画像を上記の画像解析ソフトを用いて画像解析処理し、各々の視野においてフェライト相、パーライト相、ベイナイト相の面積、フェライト粒、パーライト粒、ベイナイト粒の個数を求め、フェライト粒、パーライト粒、ベイナイト粒1個のあたりの面積を算出し、フェライト粒、パーライト粒、ベイナイト粒1個当たりの面積に相当する、円相当直径を算出して、それらの値を10視野すべてにおいて計算し、その値を平均化して、フェライト相、パーライト相、ベイナイト相の平均粒径とすればよい。もちろん平均粒径の算出方法はこの方法に限らず、旧来の目視を含む方法によってもよい。
 次に、本発明にかかる溶融亜鉛めっき鋼板の製造方法について説明する。
 上記した成分組成を有する溶鋼を、転炉等による溶製方法で溶製し、連続鋳造法等の鋳造方法で鋼素材(スラブ)として用いることができる。
 次いで、得られた鋼素材を用いて、加熱し圧延して熱延板とする熱間圧延を施す。この時、熱間圧延は、仕上圧延の終了温度をAr点以上とし、600℃以下の温度で巻取ることが望ましい。
 仕上圧延の終了温度:Ar点以上
 仕上圧延の終了温度がAr点未満となると、鋼板表層部にフェライト相が生成し、その加工ひずみによるフェライト相の粗大化等により、板厚方向の組織が不均一となり、冷間圧延もしくは連続溶融亜鉛めっき処理後の組織においてフェライト相の平均粒径を15μm以下に制御できない。従って、仕上圧延の終了温度はAr点以上とすることが望ましい。なお、Ar点は次式(1)から計算できるが、実際に測定した温度を用いてもよい。
 Ar=910−310×[C]−80×[Mn]+0.35×(t−0.8) ・・・(1)
ここで[M]は元素Mの含有量(質量%)を、tは板厚(mm)を表す。なお、含有元素に応じて、補正項を導入してもよく、例えば、Cu、Cr、Ni、Moが含有される場合には、−20×[Cu]、−15×[Cr]、−55×[Ni]、−80×[Mo]といった補正項を式(1)の右辺に加えてもよい。
 巻取温度:600℃以下
 巻取温度が600℃を超えるとパーライト相の面積率が増加し、連続溶融亜鉛めっき処理後の鋼板において、パーライト相の面積率が30%超の組織となり、過剰な強度上昇を引き起こす。また、フェライト粒が成長しやすくなり、冷間圧延もしくは連続溶融亜鉛めっき処理後の組織においてフェライト平均粒径を15μm以下に制御できない。したがって、巻取温度は600℃以下であることが望ましい。なお、熱延板の形状が劣化するため巻取温度は200℃以上とすることがより好ましい。
 次いで、鋼板を酸洗し、必要に応じてさらに冷間圧延してもよい。
 酸洗工程では、表面に生成した黒皮スケールを除去する。なお、酸洗条件は特に限定しない。
 冷間圧延の圧下率:40%以上(好適条件)
 鋼板の板厚を適正な厚みとするために、必要に応じて酸洗後の鋼板に対し冷間圧延してもよい。冷間圧延の圧下率を40%以上とした場合、フェライト相の再結晶を促進し、連続溶融亜鉛めっき処理後の組織において未再結晶フェライト相の残存を防止して、延性および伸びフランジ性をさらに改善する効果があるので、冷間圧延の圧下率は40%以上であることがより好ましい。一方、冷間圧延の圧下率が85%以下であれば連続溶融亜鉛めっき処理後の鋼板において所望の金属組織となるため、85%以下であることがより好ましい。
 次いで、連続溶融亜鉛めっき処理を行う。この時、10~30℃/sの平均加熱速度で650~700℃の温度域まで鋼板を加熱し、(Ac+5)℃以上の温度で10~600秒保持し、次いで、10~200℃/sの平均冷却速度で300℃以下の温度域まで冷却し、該300℃以下の温度域で30~300秒保持したのち、溶融亜鉛めっき処理することが好ましい。
 10~30℃/sの平均加熱速度で650~700℃の温度域まで加熱
 加熱する温度域が650℃以上であれば、フェライトの再結晶を促進し、連続溶融亜鉛めっき処理後の鋼板においてフェライト相の面積率50%以上として、強度を確保しつつ延性を向上させる上で好ましい。平均加熱速度が10~30℃/sの場合、長い炉や多大な消費エネルギーを必要とせず、低コストで生産効率を向上させることができる。
 (Ac+5)℃以上の温度で10秒以上保持
 焼鈍(保持)温度を(Ac+5)℃以上、焼鈍(保持)時間を10秒以上とすることにより、焼鈍時にセメンタイトを十分に溶解させ、オーステナイト相を十分に生成させることができ、焼鈍冷却時に十分な量の第2相(パーライト相、ベイナイト相)が確保され、十分な強度を得ることができる。また、フェライト相の粒内に存在するセメンタイト相の面積率を10%以下に抑制し、良好な延性を得ることができる。焼鈍(保持)温度および焼鈍(保持)時間の上限は特に規定しないが、1000℃以下および600秒以下の保持で十分な効果を得ることができるうえ、コスト増を招かないためにも、焼鈍(保持)温度は1000℃以下、焼鈍(保持)時間は600秒以下とすることがそれぞれ好ましい。
 なお、Ac点は次式(2)から計算できるが、実際に測定した温度を用いてもよい。
Ac=910−203×√[C]−15.2×[Ni]+44.7×[Si]+104×[V]
 +31.5×[Mo]+13.1×[W]−30×[Mn]−11×[Cr]−20×[Cu]
 +700×[P]+400×[Al]+120×[As]+400×[Ti] ・・・(2)
ここで[M]は元素Mの含有量(質量%)、√[C]はC含有量(質量%)の平方根を表す。
 10~200℃/sの平均冷却速度で300℃以下の温度域まで冷却
 平均冷却速度条件は、本発明において重要な要件の一つである。300℃以下の温度域まで所定の平均冷却速度で急冷することで、フェライト相の粒内に存在するセメンタイト相の面積率を制御し、かつパーライト相とベイナイト相の面積率を制御できる。平均冷却速度が10℃/s以上の場合には、フェライト相の粒内に存在するセメンタイト相の面積率を10%以下に抑制することができ、また、フェライト平均粒径を15μm以下、パーライト平均粒径を10μm以下とすることができるため、十分な強度を確保しつつ良好な延性を得ることができる。平均冷却速度が200℃/s以下の場合には、フェライト相が十分に析出し、パーライト相またはベイナイト相が過度に析出することなく、適正な強度で、良好な延性を得ることができる。また良好な鋼板形状を得る上で、平均冷却速度は200℃/s以下であることが望ましい。なお、前記冷却終了温度が100℃以上である場合には、冷却ムラによる鋼板形状の劣化を抑制することができるため、100℃以上であることがより好ましい。
 300℃以下の温度域で30~300秒保持
 この温度域での保持は、本発明において重要な要件の一つである。保持温度を300℃以下とすることにより、ベイナイト変態を十分な速度で生じさせることが可能となり、この温度範囲で30~300秒保持した場合には、連続溶融亜鉛めっき処理後の鋼板のベイナイト相の面積率が3%以上存在する組織が得られるため、十分な強度が確保され、また、フェライト相の粒内に存在するセメンタイト相の面積率を10%以下に抑制することが可能となり、さらにパーライト平均粒径を10μm以下とすることができるため、良好な延性を得ることができる。一方、保持時間が30秒未満の場合には、ベイナイト変態が進行せず、連続溶融亜鉛めっき処理後の鋼板のベイナイト相の面積率が3%以上存在する組織が得られず、強度確保が困難となる。保持時間が300秒を超える場合は、ベイナイト相の面積率が過度となり、同時にベイナイト平均粒径が5μmを超えるため、フェライト相とベイナイト相の硬度差が大きくなり、伸びフランジ性が低下する。また、この場合、フェライト相の粒内に存在するセメンタイト相の面積率が10%を超え、延性が低下する。一方、上記の温度域で30~300秒保持した場合には、十分な強度が得られると同時に、良好な延性と伸びフランジ性を得ることができる。
 次いで、溶融亜鉛めっき処理する。あるいは、必要に応じ、さらに亜鉛めっき層を合金化処理した後、室温まで冷却する。
 溶融亜鉛めっき処理に引き続き合金化処理を行うときは、溶融亜鉛めっき処理をしたのち、例えば、450℃以上600℃以下に鋼板を加熱して合金化処理し、めっき層のFe含有量が7~15%になるよう行うのが好ましい。7%以上の範囲では合金化ムラの発生を防止できると同時に、フレーキング性を改善することができ、15%以下の範囲では耐めっき剥離性が向上するため、めっき層のFe含有量は7~15%であることがより望ましい。
 以上により、本発明の引張強度440MPa以上の高強度を有し加工性に優れた溶融亜鉛めっき鋼板が得られる。
 なお、本発明の製造方法における熱処理では、上述した温度範囲内であれば保持温度は一定である必要はなく、また冷却速度が冷却中に変化した場合においても、規定の冷却速度の範囲内であれば問題ない。また、熱処理では所望の熱履歴を満足されれば、いかなる設備を用いて熱処理を施されても、本発明の趣旨を損なうものではない。加えて、形状矯正のために調質圧延を施すことも本発明範囲に含まれる。本発明では、鋼素材を通常の製鋼、鋳造、熱延の各工程を経て製造する場合を想定しているが、例えば、薄スラブ鋳造などにより熱延工程の一部もしくは全部を省略して製造する場合も本発明の範囲に含まれる。さらに、本発明において、得られた高強度溶融亜鉛めっき鋼板に化成処理などの各種表面処理を施しても本発明の効果を損なうものではない。
 以下、本発明を、実施例に基いて具体的に説明する。
表1に示す成分組成を有する鋼素材(スラブ)を出発素材とした。これらの鋼素材を、表2、表3に示す加熱温度に加熱した後、表2、表3に示す条件にて、熱間圧延し、酸洗した後、次いで冷間圧延、連続溶融亜鉛めっき処理を施した。冷間圧延前の板厚は鋼板No.ごとに異なる。一部の鋼板(鋼板No.5)については、冷間圧延を施さなかった。次いで、一部を除いて、連続溶融亜鉛めっき処理後に合金化処理を施した。
 なお、連続溶融亜鉛めっき処理設備では、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施し、GAは0.14質量%Al含有Zn浴を、GIは0.18質量%Al含有Zn浴を用いた。付着量はガスワイピングにより調節し、GAは合金化処理した。
 以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、組織観察、引張特性、伸びフランジ性(穴拡げ試験)について、評価した。測定方法を下記に示す。
 (1)組織観察
 鋼板圧延方向に平行な板厚断面1/4位置を研磨後、3%ナイタールで腐食し、2000倍の倍率で10視野にわたり走査型電子顕微鏡(SEM)で観察し、その画像をMedia Cybernetics社製の画像解析ソフト”Image Pro Plus ver.4.0”を使用した画像解析処理により解析し各相の面積率を求めた。すなわち、画像解析により、フェライト相、パーライト相、ベイナイト相、フェライト相の粒内に存在するセメンタイト相をデジタル画像上で分別し、画像処理し、測定視野毎に各々の相の面積率を求めた。これらの値を平均(10視野)して各々の相の面積率とした。フェライト相、パーライト相、ベイナイト相の平均粒径は、次のようにして求めた。上記と同様に、鋼板圧延方向に平行な板厚断面1/4位置を研磨後、3%ナイタールで腐食し、フェライト相とパーライト相は1000倍の倍率で10視野にわたりSEMで観察し、ベイナイト相は5000倍の倍率で10視野にわたりSEMで観察し、その画像を上記の画像解析ソフトを用いて画像解析処理し、各々の視野においてフェライト相、パーライト相、ベイナイト相の面積、フェライト粒、パーライト粒、ベイナイト粒の個数を求め、フェライト粒、パーライト粒、ベイナイト粒1個のあたりの面積を算出し、フェライト粒、パーライト粒、ベイナイト粒1個当たりの面積に相当する、円相当直径を算出して、それらの値を10視野すべてにおいて計算し、その値を平均化して、フェライト相、パーライト相、ベイナイト相の平均粒径とした。
 (2)引張特性
 得られた鋼板の圧延方向からJIS5号引張試験片を採取し、引張試験(JISZ2241(2011))を実施した。引張試験は破断まで実施して、引張強度、破断伸び(延性)を求めた。延性の評価基準は、破断伸びが37.0%以上である場合に延性が特に良好と判断した。
 (3)伸びフランジ性
 伸びフランジ性は、日本鉄鋼連盟規格(JFS)T1001(1996)に準拠して実施した。得られた鋼板を100mm×100mmに切断し、クリアランス12%で直径10mm(d)の穴を打抜き加工で打抜いた後、内径75mmダイスを用いてしわ押さえ力9tonで押えた状態で60°円錐ポンチを穴に押し込み、穴縁に板厚貫通クラックが発生した時点での穴径dを測定して、次式で定義される限界穴拡げ率:λ(%)を求め、この限界穴拡げ率の値から伸びフランジ性を評価した。伸びフランジ性が70%以上である場合に伸びフランジ性に優れる鋼板とした。
 λ=100×(d−d)/d ・・・(3)
 以上により得られた結果を条件と併せて表2、表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3より、鋼板が、面積率が50%以上で平均粒径15μm以下のフェライト相と、面積率が10~30%で平均粒径が10μm以下のパーライト相と、面積率が3~10%で平均粒径が5μm以下のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である本発明例では、延性および伸びフランジ性が高い。
 一方、比較例では、延性、伸びフランジ性のいずれか一つ以上が低い。特に、成分組成が適切でない比較例では、フェライト相の面積率および平均粒径、パーライト相の面積率および平均粒径、ベイナイト相の面積率および平均粒径、フェライト相の粒内に存在するセメンタイト相の面積率を適正化しても、延性および伸びフランジ性は改善されないことがわかる。
 以上の結果から、所定の成分組成の鋼板が、面積率50%以上で平均粒径15μm以下のフェライト相と、面積率10~30%で平均粒径10μm以下のパーライト相と、面積率3~10%で平均粒径5μmのベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である場合には、引張強度440~490MPaの高強度を有し、かつ延性および伸びフランジ性が良好な溶融亜鉛めっき鋼板を得ることができることが確認された。
本発明の溶融亜鉛めっき鋼板は、強度と加工性に優れ、複雑な形状に成型加工される自動車のフロア周りに使用された場合に車体を軽量化かつ高強度化する上で有利な表面処理鋼板として利用することができる。

Claims (19)

  1.  鋼板の成分組成が、質量%で、
     C:0.100~0.200%、
     Si:0.50%以下、
     Mn:0.60%以下、
     P:0.100%以下、
     S:0.0100%以下、
     Al:0.010~0.100%、
     N:0.0100%以下を含有し、
     残部がFeおよび不可避的不純物を含有し、
    鋼板の組織が、
     面積率が50~87%で平均粒径が15μm以下のフェライト相と、
     面積率が10~30%で平均粒径が10μm以下のパーライト相と、
     面積率が3~10%で平均粒径が5μm以下のベイナイト相を有し、
     前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である溶融亜鉛めっき鋼板。
  2.  前記鋼板の成分組成が、さらに、質量%で、
     Cr:0.05~0.80%、
     V:0.005~0.100%、
     Mo:0.005~0.500%、
     Cu:0.01~0.10%、
     Ni:0.01~0.10%、
     B:0.0003~0.2000%からなるグループから選択された少なくとも1種の元素を含有する請求項1に記載の溶融亜鉛めっき鋼板。
  3.  前記鋼板の成分組成が、さらに、質量%で、
     Ca:0.001~0.005%、
     REM:0.001~0.005%からなるグループから選択された少なくとも1種の元素を含有する請求項1に記載の溶融亜鉛めっき鋼板。
  4.  前記鋼板の成分組成が、さらに、質量%で、
     Cr:0.05~0.80%、
     V:0.005~0.100%、
     Mo:0.005~0.500%、
     Cu:0.01~0.10%、
     Ni:0.01~0.10%、
     B:0.0003~0.2000%からなるグループから選択された少なくとも1種の元素と、
     Ca:0.001~0.005%、
     REM:0.001~0.005%グループから選択された少なくとも1種の元素を含有する請求項1に記載の溶融亜鉛めっき鋼板。
  5.  前記溶融亜鉛めっき鋼板が合金化溶融亜鉛めっき鋼板である請求項1に記載の溶融亜鉛めっき鋼板。
  6.  前記溶融亜鉛めっき鋼板は亜鉛めっき層を有し、該亜鉛めっき層が合金化溶融亜鉛めっき層である請求項1に記載の溶融亜鉛めっき鋼板。
  7.  前記合金化亜鉛めっき層は7~15%のFe含有量を有する請求項6に記載の溶融亜鉛めっき鋼板。
  8.  前記溶融亜鉛めっき鋼板は、引張強度が440MPa以上の溶融亜鉛めっき鋼板である請求項1に記載の溶融亜鉛めっき鋼板。
  9.  前記引張強度が440~490MPaである請求項8に記載の溶融亜鉛めっき鋼板。
  10.  前記溶融亜鉛めっき鋼板は、37%以上の伸びを有する請求項1に記載の溶融亜鉛めっき鋼板。
  11.  前記溶融亜鉛めっき鋼板は、70%以上の伸びフランジ性を有する請求項1に記載の溶融亜鉛めっき鋼板。
  12.  前記Si含有量が0.01~0.50%である請求項1に記載の溶融亜鉛めっき鋼板。
  13.  前記Mn含有量が0.10~0.60%である請求項1に記載の溶融亜鉛めっき鋼板。
  14.  前記P含有量が0.003~0.100%である請求項1に記載の溶融亜鉛めっき鋼板。
  15.  成分組成が、質量%で、
     C:0.100~0.200%、
     Si:0.50%以下、
     Mn:0.60%以下、
     P:0.100%以下、
     S:0.0100%以下、
     Al:0.010~0.100%、
     N:0.0100%以下を含有し、
     残部がFeおよび不可避的不純物を含有する鋼素材を準備し、
     該鋼素材を加熱し、
     Ar点以上の仕上圧延終了温度で熱間圧延し、
     600℃以下の温度で熱延板を巻取り、
     該熱延板を酸洗し、
     10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、
     (Ac+5)℃以上の温度で10秒以上保持し、
     10~200℃/sの平均冷却速度で100~300℃の温度域まで冷却し、
     前記100~300℃の温度域で30~300秒保持し、
     溶融亜鉛めっきすることを含む溶融亜鉛めっき鋼板の製造方法。
  16.  酸洗した熱延板を、さらに冷間圧延する請求項15に記載の溶融亜鉛めっき鋼板の製造方法。
  17.  前記冷間圧延の圧下率が、40~85%である請求項16に記載の溶融亜鉛めっき鋼板の製造方法。
  18.  前記溶融亜鉛めっきした後に、さらに合金化処理する請求項15に記載の溶融亜鉛めっき鋼板の製造方法。
  19.  前記合金化処理が、鋼板を450~600℃に加熱することによる合金化処理である請求項18に記載の溶融亜鉛めっき鋼板の製造方法。
PCT/JP2012/070128 2011-08-05 2012-08-01 溶融亜鉛めっき鋼板およびその製造方法 WO2013022008A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-171608 2011-08-05
JP2011171608A JP5434984B2 (ja) 2011-08-05 2011-08-05 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013022008A1 true WO2013022008A1 (ja) 2013-02-14

Family

ID=47668515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070128 WO2013022008A1 (ja) 2011-08-05 2012-08-01 溶融亜鉛めっき鋼板およびその製造方法

Country Status (3)

Country Link
JP (1) JP5434984B2 (ja)
TW (1) TWI470093B (ja)
WO (1) WO2013022008A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655888A (zh) * 2018-01-26 2020-09-11 杰富意钢铁株式会社 高延展性高强度钢板及其制造方法
CN116137870A (zh) * 2020-10-12 2023-05-19 日本制铁株式会社 热浸镀锌钢板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379717B2 (ja) * 2014-06-23 2018-08-29 新日鐵住金株式会社 ホットスタンプ用合金化溶融亜鉛めっき鋼材の製造方法
JP6576689B2 (ja) * 2015-05-27 2019-09-18 Ntn株式会社 等速自在継手用ブーツの締結バンド
CN110273111B (zh) * 2019-07-30 2020-11-24 马鞍山钢铁股份有限公司 一种宽热成形加热工艺窗口的锌基镀层热成形钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193188A (ja) * 2001-12-25 2003-07-09 Jfe Steel Kk 伸びフランジ性に優れた高張力合金化溶融亜鉛めっき冷延鋼板およびその製造方法
JP2007107099A (ja) * 2006-11-24 2007-04-26 Kobe Steel Ltd 加工性に優れた冷延鋼板及びその製造方法並びにその鋼板を母材とする溶融亜鉛めっき鋼板
JP2007138261A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 高強度鋼板及びその製造方法
JP2008202115A (ja) * 2007-02-21 2008-09-04 Nippon Steel Corp 延性に優れた高強度鋼板およびその製造方法
JP2009035815A (ja) * 2007-07-11 2009-02-19 Jfe Steel Kk 降伏強度が低く、材質変動の小さい高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193188A (ja) * 2001-12-25 2003-07-09 Jfe Steel Kk 伸びフランジ性に優れた高張力合金化溶融亜鉛めっき冷延鋼板およびその製造方法
JP2007138261A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 高強度鋼板及びその製造方法
JP2007107099A (ja) * 2006-11-24 2007-04-26 Kobe Steel Ltd 加工性に優れた冷延鋼板及びその製造方法並びにその鋼板を母材とする溶融亜鉛めっき鋼板
JP2008202115A (ja) * 2007-02-21 2008-09-04 Nippon Steel Corp 延性に優れた高強度鋼板およびその製造方法
JP2009035815A (ja) * 2007-07-11 2009-02-19 Jfe Steel Kk 降伏強度が低く、材質変動の小さい高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655888A (zh) * 2018-01-26 2020-09-11 杰富意钢铁株式会社 高延展性高强度钢板及其制造方法
EP3744869A4 (en) * 2018-01-26 2020-12-02 JFE Steel Corporation HIGH STRENGTH, HIGH STRENGTH STEEL SHEET AND METHOD FOR MANUFACTURING ITEM
CN111655888B (zh) * 2018-01-26 2021-09-10 杰富意钢铁株式会社 高延展性高强度钢板及其制造方法
CN116137870A (zh) * 2020-10-12 2023-05-19 日本制铁株式会社 热浸镀锌钢板

Also Published As

Publication number Publication date
TWI470093B (zh) 2015-01-21
JP5434984B2 (ja) 2014-03-05
TW201313916A (zh) 2013-04-01
JP2013036071A (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
EP3214196B1 (en) High-strength steel sheet and method for manufacturing same
EP3214193B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
EP3214197B1 (en) High-strength steel sheet and method for manufacturing same
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
JP6179674B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP5447741B1 (ja) 鋼板、めっき鋼板、及びそれらの製造方法
TWI409344B (zh) 加工性優良的高強度熔融鍍鋅鋼板及其製造方法
WO2011013845A1 (ja) 高強度鋼板およびその製造方法
EP3216892B1 (en) Hot-dip galvanized steel sheet
JPWO2014024831A1 (ja) 冷延鋼板、及びその製造方法、並びにホットスタンプ成形体
WO2011090182A1 (ja) 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP2012077317A (ja) 疲労特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN114585766A (zh) 高强度钢板及其制造方法
JP5434984B2 (ja) 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5338873B2 (ja) 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2018030502A1 (ja) 高強度鋼板およびその製造方法
JP5958668B1 (ja) 高強度鋼板およびその製造方法
CN109937265B (zh) 高强度钢板及其制造方法
CN114585758A (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
JPWO2016157257A1 (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822373

Country of ref document: EP

Kind code of ref document: A1