WO2013022043A1 - 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法 - Google Patents

低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013022043A1
WO2013022043A1 PCT/JP2012/070259 JP2012070259W WO2013022043A1 WO 2013022043 A1 WO2013022043 A1 WO 2013022043A1 JP 2012070259 W JP2012070259 W JP 2012070259W WO 2013022043 A1 WO2013022043 A1 WO 2013022043A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
energy absorption
steel sheet
impact energy
absorption characteristics
Prior art date
Application number
PCT/JP2012/070259
Other languages
English (en)
French (fr)
Inventor
丸山 直紀
吉永 直樹
東 昌史
康治 佐久間
淳 伊丹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2014001501A priority Critical patent/MX349893B/es
Priority to RU2014108831/02A priority patent/RU2562582C1/ru
Priority to JP2013502930A priority patent/JP5354130B2/ja
Priority to CN201280038678.8A priority patent/CN103732776B/zh
Priority to BR112014002875-3A priority patent/BR112014002875B1/pt
Priority to EP12822363.3A priority patent/EP2743364B1/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US14/236,371 priority patent/US20140178712A1/en
Priority to ES12822363.3T priority patent/ES2589640T3/es
Priority to KR1020137034781A priority patent/KR101575832B1/ko
Priority to CA2843588A priority patent/CA2843588C/en
Publication of WO2013022043A1 publication Critical patent/WO2013022043A1/ja
Priority to ZA2014/00954A priority patent/ZA201400954B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0484Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a high-yield specific hot-rolled steel sheet having a maximum tensile strength of 600 MPa or more, which is excellent in impact energy absorption characteristics at low temperatures and anti-HAZ (Heat-Affected Zone) softening characteristics, and a method for producing the same.
  • This steel plate is suitable as a material for construction equipment booms and frames, as a material for trucks, automobile frames and members formed mainly by bending, and as a material for line pipes.
  • Construction machinery and truck frames are assembled by forming hot-rolled steel sheets mainly by bending and arc welding the formed parts. Therefore, the material used for these parts is required to have excellent bending workability and arc weldability. In addition, since construction machinery and trucks may be used in low-temperature environments, they do not break brittlely even at low temperatures and absorb sufficient impact energy, particularly when applied to truck frames. A possible characteristic is required.
  • Non-patent Document 1 and Patent Documents 1 and 2 disclose the technology of a steel plate excellent in impact energy absorption characteristics.
  • these steel sheets have a structure containing retained austenite or martensite, and have achieved excellent impact characteristics by optimizing the metal structure of the steel sheet.
  • the steel sheet having such a structure has a problem that the yield stress is low and there is a problem in bending formability.
  • Patent Document 3 discloses a method of stably producing a thin steel plate having a high impact energy absorption capacity at a high yield by performing cold rolling.
  • this method is disadvantageous in terms of manufacturing cost in addition to the fact that the heat affected zone (HAZ) of the arc weld zone is greatly softened and a sufficient weld joint strength cannot be obtained.
  • HAZ heat affected zone
  • Patent Document 8 As a technique for suppressing the softening of the weld heat affected zone, it is possible to strengthen precipitation by containing Ti by adding Mo and Nb or Ti to Patent Document 7 and optimizing the components in Patent Document 8. A method for suppressing the HAZ softening of steel is disclosed. However, these methods have a problem in that the material may be brittle fractured at a low temperature or the impact energy absorption amount may be reduced.
  • Patent Document 9 manufactures hot-rolled steel sheets for high-strength ERW steel pipes with excellent low-temperature toughness and weldability by optimizing rolling conditions from rough rolling to finish rolling of steel slabs and subsequent cooling treatment.
  • a method is disclosed. This method has a fine-grained metal structure by controlling recrystallization in rough rolling and finish rolling of steel slabs to obtain a steel sheet with excellent low-temperature toughness, but it controls the size and distribution of alloy carbonitrides. It is not intended. As a result, since these have not been optimized, there has been a problem that the impact energy absorption characteristics are lowered.
  • Patent Document 10 discloses a method for producing a hot-rolled high-tensile steel sheet having excellent toughness and hydrogen-induced cracking resistance by optimizing the rolling reduction and holding time and finish rolling conditions in the rough rolling process of the steel slab. It is disclosed.
  • the purpose of optimization of the rough rolling process in this method is to promote recrystallization of steel, but it is not intended to control the size and distribution of alloy precipitates. As a result, since these have not been optimized, there has been a problem that the impact energy absorption characteristics are lowered.
  • the method described in Patent Document 10 has a problem that the size and distribution of alloy precipitates cannot be controlled, and good impact absorption energy cannot be obtained.
  • Patent Document 11 discloses a technique for obtaining a high-strength hot-rolled steel sheet having excellent HAZ softening resistance characteristics by appropriately dispersing precipitated particles in a weld heat-affected zone.
  • this technique disperses fine precipitates in the HAZ part of the steel plate during arc welding, but the size of the precipitate particles in the steel has not been optimized, resulting in impact energy absorption characteristics of the steel plate. There was a problem that was not good.
  • the present invention has been made in view of the above problems, and its purpose is to provide a high yield specific hot rolled steel sheet having a maximum tensile strength of 600 MPa or more, which is excellent in both impact energy absorption characteristics at low temperature and HAZ softening resistance, and its production. It is to provide a method.
  • the present inventors investigated in detail the influencing factors of the HAZ softening and low-temperature impact energy absorption characteristics of steel sheets containing alloy carbonitrides such as Ti that can stably obtain a high yield ratio. As a result, it was found that the HAZ softening amount can be suppressed by making the Ti amount, the Nb amount, and the Mn amount appropriate.
  • the inventors then intensively studied a method for improving impact energy absorption characteristics at low temperatures, reducing the area fraction of pearlite as a metal structure of the steel sheet, and conventionally considered to be advantageous for improving impact energy absorption capacity.
  • the precipitates are controlled so that they exist in a lattice-matched state having a specific crystal orientation relationship with the parent phase Fe.
  • the alloy carbonitride in a precipitated state having good lattice matching with the parent phase Fe is unlikely to be an obstacle to crack initiation and propagation, while the parent phase Fe and It has been found that alloy carbonitrides that are in an inconsistent state reduce impact energy absorption at low temperatures even if their size is relatively small.
  • the inventors have achieved both HAZ softening resistance and low-temperature energy absorption characteristics, a high yield ratio, and good bendability. Hot rolled steel sheets and plated steel sheets having a maximum tensile strength of 600 MPa or more were completed. That is, the gist of the present invention is as follows.
  • the balance has a component composition consisting of Fe and inevitable impurities, The area fraction of pearlite is 5% or less, the total area fraction of martensite and retained austenite is 0.5% or less, and the balance consists of a metal structure that is one or two of ferrite and bainite, The average crystal grain size of ferrite and bainite is 10 ⁇ m or less, The average particle size of the alloy carbonitride that has been misaligned and contains Ti and Nb is 20 nm or less, Yield ratio is 0.85 or more, A high-yield specific hot-rolled steel sheet excellent in low-temperature impact
  • the composition further contains one or more of Ca, Mg, La, and Ce in a mass% of 0.0003 to 0.01% in total.
  • a steel slab comprising the composition according to any one of (1) to (5) above is heated to 1150 ° C. or higher, the heated steel slab is roughly rolled, and the temperature is between 1000 and 1080 ° C.
  • the maximum rolling interval in the rough rolling performed at 1150 ° C. or less is 45 seconds or less, and after the rough rolling is finished, the holding time t1 (second) satisfying the following formula (1) is taken.
  • finish rolling is started, finish rolling at the final rolling temperature Tf satisfying the following formula (2) is performed, and water cooling of the steel slab is started within 3 seconds after the finish rolling, and subsequently at a minimum cooling rate of 8 ° C / second or more.
  • a method for producing a high-yield specific hot-rolled steel sheet excellent in low-temperature impact energy absorption characteristics and HAZ softening characteristics characterized by cooling a steel slab to 700 ° C. or lower and winding it in a range of 530 to 650 ° C. 1000 ⁇ ([% Ti] + [% Nb])> t1 Formula (1) Tf> 830 + 400 ([% Ti] + [% Nb]) Equation (2)
  • the hot-rolled steel sheet of the present invention a high yield ratio hot-rolled steel sheet having a maximum tensile strength of 600 MPa or more and excellent in HAZ softening characteristics, low-temperature energy absorption characteristics, and excellent bending workability can be obtained with the above configuration.
  • the hot rolled steel plate of the present invention can be used in a cold region. At the same time, it is possible to reduce the thickness of the parts by increasing the strength, and it can be expected to reduce the weight of construction equipment, automobiles or trucks.
  • the maximum tensile strength is 600 MPa or more, the HAZ softening characteristics and impact energy absorption characteristics at low temperatures, Makes it possible to produce a high yield ratio hot rolled steel sheet excellent in bending workability.
  • excellent absorption of impact energy at low temperature means that the impact energy absorption at ⁇ 40 ° C. is 70 J / cm 2 or more in the Charpy impact test.
  • excellent bendability means that in a 90 ° V bending test, r lim / t is 1.0 or less, where t is the thickness of the specimen and r lim is the limit bending radius at which no cracks occur.
  • C 0.04-0.09% If the C content is less than 0.04%, it is difficult to ensure a maximum tensile strength of 600 MPa or more. On the other hand, if it exceeds 0.09%, the alloy carbonitride containing Ti and Nb which is coarse and incoherently precipitated increases, and the impact energy absorption characteristics at low temperature are lowered, so that 0.04% to 0.09 % Restricted.
  • Si: 0.4% or less If the Si content exceeds 0.4%, martensite or retained austenite may remain in the steel sheet structure, and the low temperature toughness and impact energy absorption characteristics will deteriorate. For this reason, the appropriate range was made 0.4% or less. From the viewpoint of securing the bending formability, it is more desirable to be 0.2% or less.
  • the lower limit of the amount of Si is not particularly limited, but if it is less than 0.001%, the manufacturing cost increases, so 0.001% is the practical lower limit.
  • Mn is an element that is used to secure the strength of the base metal through the control of the metal structure of the steel, and further contributes to the suppression of HAZ softening of the weld. If it is less than 1.2%, the area fraction of pearlite will increase, impact energy absorption characteristics at low temperatures will decrease, and the HAZ softening will increase, so the weld joint strength will greatly decrease with respect to the base metal strength. To do. If the content exceeds 2.0%, hard martensite may be formed, and the impact energy absorption characteristics at low temperatures are lowered. Therefore, the appropriate range is 2.0% or less. From the viewpoint of ensuring bend formability, it is more desirable to be 1.8% or less.
  • P 0.1% or less P is used for securing the strength of the steel. However, if the content exceeds 0.1%, the low temperature toughness is lowered and the impact energy absorption characteristics at low temperatures cannot be obtained, so the appropriate range is made 0.1% or less.
  • the lower limit is not particularly limited, but if it is less than 0.001%, the production cost increases, so 0.001% is the substantial lower limit.
  • S 0.02% or less
  • S is an element that affects impact energy absorption characteristics. If the content exceeds 0.02%, even if the area fraction of the metal structure and the average particle diameter of the alloy carbonitride are controlled, the impact energy absorption characteristics at low temperatures cannot be obtained. 02% or less.
  • the lower limit is not particularly limited, but if it is less than 0.0003%, the production cost increases, so 0.0003% is a substantial lower limit.
  • Al: 1.0% or less Al is used for deoxidation and control of the metal structure of the steel sheet. If it exceeds 1.0%, the heat-affected zone of arc welding becomes soft and sufficient weld joint strength cannot be obtained, so the appropriate range is made 1.0% or less.
  • the lower limit is not particularly limited, but if it is less than 0.001%, the production cost increases, so 0.001% is the substantial lower limit.
  • Nb 0.02 to 0.09%
  • Nb is used as a precipitation strengthening element for adjusting the strength of steel and is used for suppressing softening of the welded HAZ. If it is less than 0.02%, the effect of suppressing the softening of the weld HAZ is not observed, and if it exceeds 0.09%, the alloy carbonitride containing Ti and Nb that is coarse and inconsistently precipitated increases. Since the impact energy absorption characteristics at low temperatures are lowered, the content is limited to the range of 0.02% to 0.09%.
  • Ti 0.02 to 0.07%
  • Ti is used as a precipitation strengthening element for adjusting the strength of the steel and is used for suppressing softening of the welded HAZ. If it is less than 0.02%, it is difficult to obtain a maximum tensile strength of 600 MPa or more. On the other hand, if it exceeds 0.07%, the alloy carbonitride containing Ti and Nb, which is coarse and inconsistently precipitated, increases and the impact energy absorption characteristics at low temperatures are lowered, so that 0.02% to 0.07%. % Restricted. In order to stably obtain a yield ratio of 0.85 or more, it is preferable to set 0.03% as the lower limit.
  • N 0.005% or less
  • N contributes to the crystal grain size of the metal structure of the steel sheet through the formation of nitrides. However, if it exceeds 0.005%, the alloy carbonitrides containing Ti and Nb which are coarse and inconsistently precipitated increase, and the impact energy absorption characteristics at low temperatures are lowered. Restricted to.
  • the lower limit is not particularly limited, but if it is less than 0.0003%, the production cost increases, so 0.0003% is a substantial lower limit.
  • Mn + 8 [% Ti] +12 [% Nb] is the sum of the contribution ratios of each element related to the impact energy absorption characteristics at low temperatures and the HAZ softening characteristics by welding. As shown in FIG. 1, when plotting the relationship between vE- 40 , which is an index of impact energy absorption characteristics, and ⁇ HV, which is an index of HAZ softening, for 11 steel types having different Ti and Nb, the value of this parameter is 2.
  • HAZ softening resistance cannot be obtained (that is, ⁇ HV> 40), and it is difficult to obtain a maximum tensile strength of 600 MPa or more, and if it exceeds 2.6, coarse and inconsistent precipitation occurs.
  • the alloy carbonitride containing Ti and Nb is increased, and the impact energy absorption characteristics at low temperature are lowered (ie, vE -40 ⁇ 70 J / cm 2 ). For this reason, the appropriate range is limited to the range of 2.0 to 2.6.
  • the following elements may be selectively contained as steel components.
  • V 0.01-0.12%
  • V may be used for adjusting the strength of the steel. However, if the V content is less than 0.01%, the effect is not obtained, and if it exceeds 0.12%, embrittlement proceeds and the impact energy absorption characteristics at low temperatures are deteriorated. Therefore, the appropriate range is limited to 0.01 to 0.12%.
  • B 0.0003 to 0.005%
  • B may be used for the structure control of the steel sheet. However, if the amount of B is less than 0.0003%, the effect is not exhibited, and if it exceeds 0.005%, martensite may be formed, and impact energy absorption characteristics at low temperatures are deteriorated. . Therefore, the appropriate range is limited to 0.0003 to 0.005%.
  • the steel components in this embodiment are not particularly limited with respect to other elements, and may appropriately contain various elements for adjusting the strength.
  • the hot-rolled steel sheet of the present invention contains ferrite and bainite as the main phase, and the balance may include one or more of pearlite, martensite, and retained austenite.
  • Perlite area fraction In the precipitation strengthened steel containing Nb and Ti, when the area fraction of pearlite exceeds 5%, brittle fracture is likely to occur at low temperature and the impact energy absorption characteristics are further reduced. Therefore, the upper limit is limited to 5%. From the viewpoint of securing bendability, 3% or less is a preferable range. The lower limit is not particularly defined, but the area fraction of pearlite is preferably closer to zero in terms of impact energy absorption characteristics.
  • Total area fraction of martensite and retained austenite In the precipitation strengthened steel containing Nb and Ti, when the total area fraction of martensite and retained austenite exceeds 0.5%, brittle fracture is likely to occur at low temperatures, and impact energy absorption characteristics further deteriorate. For this reason, the upper limit of the total area fraction was limited to 0.5%. The lower limit is not particularly defined, but the total area fraction of martensite and retained austenite is more preferably close to zero in terms of impact energy absorption characteristics.
  • the remaining metallographic structure is one or two ferrites and bainite. Although there is no restriction
  • Average grain size of ferrite and bainite The average grain size of ferrite and bainite is a factor that correlates with embrittlement. If the average particle size exceeds 10 ⁇ m, even if the average particle size of the alloy carbonitride containing Nb and Ti is controlled, impact energy absorption characteristics at low temperatures may not be secured, so the upper limit is limited to 10 ⁇ m. did. 8 ⁇ m or less is a preferable condition that can secure the impact energy absorption characteristics more stably. Although a minimum is not specifically limited, Since manufacturing cost will increase significantly that it is less than 2 micrometers, 2 micrometers is a substantial minimum.
  • the metal structure of the steel sheet can be observed with an optical microscope in accordance with JIS G 0551.
  • the observation surface is etched with a nital etchant after the steel plate is polished.
  • the area fraction of ferrite, bainite, pearlite, and martensite can be measured by a point count method or image analysis using a structure photograph taken with an optical microscope or a scanning electron microscope (SEM).
  • the area fraction of retained austenite is measured by the X-ray diffraction method.
  • bainite includes any of upper bainite, lower bainite, and granular bainite.
  • the perlite includes perlite and pseudo perlite.
  • crystal grain size can be measured by observation with an optical microscope or crystal orientation analysis by the EBSD method.
  • crystal grain size is the average crystal grain size d described in JIS G 0551.
  • Alage particle size of incoherently precipitated alloy carbonitride containing Ti and Nb The particle size of the alloy carbonitride containing Ti and Nb and the lattice matching between the matrix structure ferrite or bainite are important factors related to impact energy absorption characteristics at low temperatures. Generally, in precipitation-strengthened steels, it is known to precipitate fine alloy carbonitrides with good lattice matching with the matrix structure as fine particles, but in order to improve low temperature toughness and impact energy absorption characteristics Therefore, it is important to control alloy carbonitride particles having poor lattice matching with the matrix structure.
  • the appropriate range is limited to 20 nm or less. From the viewpoint of obtaining more excellent impact energy absorption characteristics, 10 nm or less is a more preferable range. Although a minimum is not specifically limited, 2 nm is a substantial minimum as a size which can analyze the crystal orientation of a precipitate.
  • the “non-aligned precipitated alloy carbonitride” is a state in which the matrix structure ferrite or bainite is not consistently precipitated, and the following crystal orientation relationship between adjacent ferrite or bainite This means one having no (Baker-Nutting orientation relationship).
  • MX // (100) Fe (010) MX // (011) Fe (001) MX // (0-11) Fe (Note: -1 is shown as a substitute for a symbol with a bar on 1) where M represents Ti and Nb, and the occupation ratio of Ti and Nb Does not matter. X represents C and N, and the occupation ratio of C and N is not limited.
  • V or Mo may be included in M.
  • the crystal orientation analysis and average particle diameter measurement of the alloy carbonitride which has been inconsistently precipitated are performed using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the steel slab sample is thinned to such an extent that the electron beam is transmitted, and the crystal orientation analysis between the precipitate and the surrounding parent phase Fe is performed by TEM, and then, among the precipitates determined to be inconsistent precipitates Twenty average particle diameters are measured in order from the larger diameter.
  • the particle diameter of the precipitate is measured as an equivalent circular diameter assuming a circle equivalent to the particle cross-sectional area.
  • yield ratio is 0.85 or more If the yield ratio is less than 0.85, impact energy absorption characteristics at low temperatures may be deteriorated, and bending workability is also deteriorated. For this reason, the lower limit of the yield ratio was limited to 0.85.
  • r lim / t is used as an evaluation standard for bending workability.
  • t is the plate thickness of the test piece
  • r lim is the limit bending radius at which cracking does not occur in the 90 ° V bending test
  • r lim / t is 1.0 or less, which is excellent in bending workability.
  • 0.5 or less is a more preferable range.
  • the upper limit is not particularly limited, but if it exceeds 1.1, bending workability may be lowered, so 1.1 or less is a more preferable range.
  • Maximum tensile strength 600 MPa or more If the maximum tensile strength is less than 600 MPa, there is no contribution to reducing the weight of members of automobiles, trucks, construction machines, etc., so in the present invention, a steel sheet having a maximum tensile strength of 600 MPa or more is assumed.
  • the heating temperature of the steel slab was limited to 1150 ° C. or higher.
  • the upper limit is not particularly defined, but if the temperature exceeds 1300 ° C., the effect is saturated, so this is a substantial upper limit.
  • the heated steel slab is roughly rolled into a rough bar. This rough rolling needs to be completed between 1000 ° C. and 1080 ° C.
  • finish temperature is less than 1000 ° C.
  • coarse alloy carbonitride precipitates in austenite, and impact energy absorption characteristics at low temperatures are deteriorated.
  • 1080 ° C. or more austenite crystal grains become coarse, finish rolling, cooling
  • an average crystal grain size of 10 ⁇ m or less of ferrite and bainite cannot be obtained, and low-temperature toughness deteriorates and impact energy absorption characteristics deteriorate.
  • the holding time between each reduction pass is an important parameter that affects the average particle diameter of inconsistent alloy carbonitrides.
  • rough rolling is usually performed about 3 to 10 times, more preferably 5 to 10 times, but the maximum holding time t0 between each rolling performed at 1150 ° C. or less is 45 seconds or more.
  • the alloy carbonitride becomes coarse enough to affect the impact energy absorption characteristics. For this reason, the holding time between each reduction pass was limited to 45 seconds or less. More preferably, it is within 30 seconds.
  • the rough bar is finish-rolled to obtain a rolled material.
  • the time (t1) from the end of rough rolling to the start of finish rolling is an important parameter that affects the average particle diameter of alloy carbonitride and the crystal grain sizes of ferrite and bainite after transformation.
  • the retention time t1 (arrow in the figure) at which the impact energy absorption characteristic (vE- 40 ) changes from good (OK) to bad (NG) increases.
  • the holding time t1 (seconds) for transitioning from good (OK) to bad (NG) substantially corresponds to 1000 ⁇ ([% Ti] + [% Nb]).
  • the holding time t1 (second) from the end of rough rolling to the start of finish rolling is 1000 ⁇ ([% Ti] + [% Nb]) seconds or more, a coarse alloy carbonitride in austenite is formed. Precipitation, austenite crystal grains become coarse, average grain size of ferrite and bainite below 10 ⁇ m cannot be obtained in the post-transformation structure after finish rolling, cooling and winding, low temperature toughness deteriorates and impact energy Absorption characteristics decrease. 700 ⁇ ([% Ti] + [% Nb])> t1 seconds is a more preferable range. Therefore, the holding time t1 (second) is defined by the following formula (1). 1000 ⁇ ([% Ti] + [% Nb])> t1 Formula (1)
  • the final rolling temperature Tf affects the average particle diameter of the alloy carbonitride and the crystal grain diameter of the ferrite and bainite after the transformation, and is therefore an important condition in the present invention.
  • Ti and Nb It varies depending on the content.
  • the final rolling temperature Tf is 830 + 400 ⁇ ([% Ti] + [% Nb]) or less, a coarse alloy carbonitride having no lattice matching to the parent phase is precipitated, and impact energy absorption characteristics at low temperatures are reduced.
  • the final rolling temperature Tf is set so as to satisfy the following formula (2).
  • Formula (2) This relational expression (2) is obtained from the relationship between the steel types shown in Table 2 and the final rolling temperature Tf shown later.
  • FIG. 3 shows the relationship between Tf (° C.) and the mass% of Ti + Nb of the inventive examples and the comparative example 2 types (A-7, B-6) among the steel types shown in Table 2.
  • the upper limit of the final rolling temperature Tf is not particularly limited, but the crystal grain size of ferrite and bainite tends to be coarse, and is preferably 970 ° C. or lower.
  • Water cooling of the rolled material is performed immediately after the final rolling.
  • the time from the end of the final rolling to the start of air cooling affects the base material toughness and impact energy absorption characteristics at low temperatures through the particle size of ⁇ and the average particle size of the alloy carbonitride. If the air cooling time immediately after the final rolling exceeds 3 seconds, the impact energy absorption characteristics tend to be reduced, so that water cooling is started within 3 seconds.
  • the lower limit is not particularly defined, it is substantially 0.2 seconds or more in general equipment.
  • the rolled material is cooled to a hot-rolled steel sheet.
  • This cooling is an important process for controlling the metallographic structure. Cooling to 700 ° C. or lower at a minimum cooling rate of 8 ° C./second or higher.
  • alloy carbonitrides When the cooling stop temperature exceeds 700 ° C., alloy carbonitrides are likely to precipitate coarsely on the grain boundaries, pearlite is easily formed, the ferrite crystal grain size is increased, and impact energy at low temperatures is increased. Absorption characteristics decrease. On the other hand, even when the minimum cooling rate to 700 ° C. is less than 8 ° C./second, alloy carbonitrides are likely to coarsely precipitate on the grain boundaries, pearlite is easily formed, and the ferrite grain size is further increased. Becomes larger, and impact energy absorption characteristics at low temperatures are deteriorated.
  • the minimum cooling rate of 8 ° C./second or more means that the cooling rate between the temperature from the air cooling end temperature to 700 ° C. is not always lower than 8 ° C./second. For this reason, for example, it means that air cooling is not performed within this temperature section. Thus, in the present invention, air cooling is not performed in the middle of the cooling process by water cooling as in the prior art.
  • the cooling stop temperature is more preferably 680 ° C. or less, and the minimum cooling rate is more preferably 15 ° C./second or more.
  • the upper limit of the minimum cooling rate is not particularly defined, when it exceeds 80 ° C./second, it becomes difficult to cool uniformly in the hot-rolled coil, and the strength fluctuation in the coil becomes large. For this reason, it is preferable that it is 80 degrees C / sec or less.
  • the winding temperature is 530 to 650 ° C.
  • the coiling temperature is less than 530 ° C.
  • martensite or retained austenite may be formed, and the toughness at low temperatures and the impact energy absorption characteristics are significantly reduced.
  • the temperature exceeds 650 ° C. the area fraction of pearlite increases, and the toughness drop at low temperatures and the impact energy absorption characteristic drop become remarkable.
  • the hot-rolled steel sheet thus obtained may be reheated (annealed).
  • the reheating temperature exceeds the Ac3 temperature, coarse alloy carbonitrides are precipitated, and impact energy absorption characteristics at low temperatures are deteriorated.
  • the suitable range of reheating temperature is restrict
  • the heating method is not particularly specified, and may be performed by methods such as furnace heating, induction heating, current heating, and high frequency heating.
  • the heating time is not particularly defined, but when the heating and holding time of 550 ° C. or higher exceeds 30 minutes, the maximum heating temperature is desirably 700 ° C. or lower in order to obtain a tensile strength of 590 MPa or higher.
  • reheating may be performed after the hot-rolled steel sheet is wound and before the temperature reaches room temperature.
  • skin pass rolling or leveler rolling is effective in improving shape correction, aging, and fatigue properties, it may be performed after pickling or before pickling.
  • the upper limit of the rolling reduction be 3%. This is because if it exceeds 3%, the formability of the steel sheet is impaired. Moreover, you may perform pickling according to the objective.
  • the hot dip galvanized steel sheet of the present invention is a steel sheet in which a plated layer or an alloyed plated layer is provided on the surface of the above-described hot rolled steel sheet of the present invention.
  • the steel sheet After pickling the hot-rolled steel sheet obtained by the above-described method, the steel sheet is heated using a continuous galvanizing facility or a continuous annealing galvanizing facility, hot-plated, and a plated layer is formed on the surface of the hot-rolled steel plate. .
  • the heating temperature of the steel plate exceeds the Ac3 temperature, the tensile strength of the steel plate is lowered and the impact energy absorption characteristics are lowered at a low temperature. Therefore, the appropriate range of the heating temperature is limited to the Ac3 temperature or lower. As the heating temperature is closer to Ac3, the tensile strength is drastically decreased and the material variation increases. Therefore, Ac3-30 ° C. or lower is a more preferable heating temperature range.
  • galvanizing alloying treatment may be performed to form an alloyed galvanized layer.
  • plating type is not limited to zinc plating, and other plating types may be used as long as the upper limit of the heating temperature is the Ac3 temperature.
  • the production method preceding hot rolling is not particularly limited. That is, following the smelting by a blast furnace, a converter, an electric furnace, etc., component adjustment is performed so that the desired component content is obtained by various secondary scouring. Then, it may be cast by a method such as thin continuous slab casting in addition to normal continuous casting and casting by ingot method. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be sent directly to a hot rolling mill as it is at a high temperature slab, or may be hot rolled after being cooled to room temperature and then reheated in a heating furnace.
  • Steels A to AC having chemical components shown in Table 1 were produced by the following method. First, a steel slab was produced by casting, and then the steel slab was reheated and roughly rolled under the hot rolling conditions and annealing plating conditions shown in Table 2-1 and Table 2-2 to form a rough bar. Next, the rough bar was finish-rolled to form a rolled material having a thickness of 4 mm, and then cooled and wound up as a hot-rolled steel plate.
  • the chemical composition of the steel in Table 1 is the steel no. Steel No. in Table 2 with the same alphabet. It corresponds to the chemical composition of steel.
  • SRT in Table 2 indicates the slab heating temperature (° C.).
  • RFT indicates the rough rolling end temperature (° C.).
  • T0 indicates the maximum holding time (seconds) between each rough rolling performed at 1150 ° C. or less.
  • T1 indicates the time (seconds) from the end of rough rolling to the start of finish rolling.
  • Tf indicates the final finish rolling temperature (° C.).
  • T2 indicates the air cooling time (seconds) immediately after the final finish rolling.
  • CRmin indicates the minimum cooling rate (° C./second) between SCT after air cooling.
  • SCT indicates a water cooling stop temperature (° C.).
  • CT indicates a coiling temperature (° C.).
  • Steels A-12 to 14 and C-2 are hot-dip galvanized steel sheets, which are pickled hot-rolled steel sheets, then annealed at the annealing temperatures shown in Table 2 in a continuous annealing galvanizing line, and then galvanized. Made to go.
  • the galvanization immersion temperature was set to 450 ° C.
  • the galvanized alloying treatment was performed at an alloying temperature of 500 ° C.
  • the observation of the metal structure of the steel sheet was performed with an optical microscope for the L cross section in accordance with JIS G 0551.
  • the area fraction of each structure is calculated using the point count method or image analysis in the region of 1 / 4t thickness of L section (position of 1 / 4t from the steel plate surface when the plate thickness is t) using the structure photograph. Measured by.
  • the value of the nominal grain size was calculated based on JISG0552.
  • the crystal orientation analysis and average particle diameter measurement of alloy carbonitrides with inconsistent precipitation containing Ti and Nb were made by thinning the steel slab sample to the extent that the electron beam was transmitted, and using a transmission electron microscope (TEM). And by observing 20 or more alloy carbonitrides.
  • TEM transmission electron microscope
  • a lap joint was produced by arc welding.
  • the welding atmosphere was CO 2 : 100%, and the heat input was in the range of about 5000 to 8000 J / cm.
  • the cross section is polished, the Vickers hardness test of the base material and the weld heat affected zone (HAZ) is performed, and it indicates that it is 0 or less.
  • Table 3 “F” is ferrite, “B” is bainite, “A” is retained austenite, “M” is martensite, “P” is pearlite, and “d (F, B) ” is ferrite.
  • HAZ And bainite average grain size ( ⁇ m)
  • d MCN is the average grain size (nm) of alloy carbonitride that has been misaligned
  • ⁇ HV the Vickers hardness of the softest part of the weld heat affected zone. HAZ , where the Vickers hardness of the material is HV BM , it represents the difference between HV BM and HV HAZ .
  • the strength characteristics of the steel sheet were evaluated by the following method. First, the specimen was processed into a No. 5 test piece described in JIS Z 2201. And the tensile test was done with respect to this No. 5 test piece according to the method of JISZ2241, and the maximum tensile strength (TS), yield strength (YS), and elongation (EI) were calculated
  • TS maximum tensile strength
  • YS yield strength
  • EI elongation
  • the impact energy absorption characteristics at low temperatures were evaluated by the Charpy impact test. Based on JIS2202, a 2 mm V notch test piece having a plate thickness of 3 mm was prepared, and after the test piece was cooled to ⁇ 40 ° C., a Charpy impact test was performed, and the impact energy absorption value (J / cm 2 ) was measured.
  • the bending test was performed by the JISZ224 V-block method (bending angle: 90 °), and the thickness of the test piece was measured as t, and the limit bending radius r lim at which no crack was generated was measured.
  • Steel A-2 is a comparative example in which the tensile strength was less than 600 MPa and the impact energy absorption characteristics at low temperatures were low because the slab heating temperature was outside the proper range.
  • Steels A-3 to 4 and Steels B-3 to 4 are comparative examples in which the impact energy absorption characteristics at low temperatures were low because the rough rolling end temperature was outside the proper range.
  • Steel A-6 and Steel B-3 are comparative examples having low impact energy absorption characteristics at low temperatures because the time from the end of rough rolling to the start of finish rolling was outside the proper range.
  • Steel A-11 and Steel B-10 are comparative examples having low impact energy absorption characteristics at low temperatures because the water cooling stop temperature after finish rolling and the coiling temperature of the hot-rolled steel sheet are outside the proper ranges.
  • Steel A-12 and Steel B-11 are comparative examples in which the tensile strength is less than 600 MPa and the impact energy absorption characteristics at low temperatures are low because the coiling temperature of the hot rolled steel sheet is outside the proper range.
  • Steel A-15 is a comparative example having low impact energy absorption characteristics at low temperatures because the annealing temperature was higher than the Ac3 temperature.
  • Steels F-1, Q-1, S-1, AB-1, and AC-1 are comparative examples in which the HAZ softening amount was large because the values of Mn amount, Ti amount, and Nb amount were outside the proper ranges. .
  • Steels F-1, Q-1, and AC-1 have a tensile strength of less than 600 MPa.
  • Steel G-1 is a comparative example in which the strength is less than 600 MPa and the HAZ softening amount is large because the C amount is outside the proper range.
  • Steels H-1, I-1, K-1, and AB-1 have martensite or retained austenite because the C, Si, and Mn contents are outside the proper ranges, and impact energy absorption characteristics at low temperatures This is a comparative example having a low bend and poor bendability.
  • Steel J-1 is a comparative example in which pearlite was present and the impact energy absorption characteristics at low temperatures were low because the amount of Mn was outside the proper range.
  • Steels M-1 and O-1 are comparative examples having low impact energy absorption characteristics at low temperatures because of excessive amounts of S and P.
  • Steel P-1 is a comparative example in which HAZ was softened because the amount of Al was excessive.
  • all of the examples of the present invention had a yield ratio of 0.85 or more, a maximum tensile strength of 600 MPa or more, and excellent characteristics in impact energy absorption characteristics and HAZ softening resistance at low temperatures. .

Abstract

 最大引張強度600MPa以上で、低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板とその製造方法を提供する。 質量%で、C:0.04~0.09%、Si:0.4%以下、Mn:1.2~2.0%、P:0.1%以下、S:0.02%以下、Al:1.0%以下、Nb:0.02~0.09%、Ti:0.02~0.07%、N:0.005%以下を含有し、2.0≦Mn+8[%Ti]+12[%Nb]≦2.6で、残部がFe及び不可避的不純物からなり、パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下、残部がフェライト及び/又はベイナイトの金属組織からなり、フェライトおよびベイナイトの平均結晶粒径が10μm以下で、TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、降伏比が0.85以上とする。

Description

低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板およびその製造方法
 本発明は、低温での衝撃エネルギー吸収特性と耐HAZ(Heat-Affected Zone)軟化特性に優れた最大引張強度600MPa以上の高降伏比熱延鋼板並びその製造方法に関するものである。本鋼板は、建機のブーム、フレームの素材として、また曲げ成形を主体として成形されるトラックや自動車のフレーム、メンバーなどの素材として、さらにはラインパイプの素材として好適である。
 建機、トラックのフレーム類は、熱延鋼板を主に曲げ加工により成形し、その成形した部品をアーク溶接することにより組み立てられる。従って、これら部品に用いる素材には、優れた曲げ加工性とアーク溶接性が求められる。さらに、建機、トラックは低温環境化で使用される場合が有ることから、特にトラック用のフレームなどでは衝撃が印加された際に、低温でも脆性的に破壊せず、充分に衝撃エネルギーを吸収しうる特性が求められている。
 衝撃エネルギー吸収特性に優れた鋼板としては、非特許文献1及び特許文献1~2にその技術が開示されている。しかし、これらの鋼板は残留オーステナイトあるいはマルテンサイトを含む組織を有し、さらに鋼板の金属組織を最適化することで優れた衝突特性を達成している。しかしながら、このような組織の鋼板は降伏応力が低く、また曲げ成形性に課題が有るという問題点が有った。
 また特許文献3には、冷延を行うことにより、高い衝撃エネルギー吸収能を有する薄鋼板を高歩留まりで安定的に製造する方法が開示されている。しかしながらこの方法はアーク溶接部の熱影響部(HAZ)の軟化が大きく、十分な溶接継ぎ手強度が得られないことに加え、製造コスト的に不利で有った。
 曲げ性に優れた高降伏比の熱延鋼板を得る方法としては、例えば、特許文献4~6に示すような、鋼中にTi、Nb等の合金炭化物を分散させる方法が開示されている。しかしながら、これら析出強化を活用した鋼板はアーク溶接熱影響部の軟化が大きく継ぎ手強度が低下する場合が有り、さらに、低温において脆性破壊する場合や、衝撃エネルギー吸収量が小さくなる場合があるという問題点が有った。
 一方、溶接熱影響部の軟化を抑制する技術として、特許文献7にMoとNbまたはTiを複合添加することで、また特許文献8には成分を最適化することによりTiを含有する析出強化させた鋼でもHAZ軟化を抑制する方法が開示されている。しかしながら、これらの方法では、低温において素材で脆性破壊する場合や、衝撃エネルギー吸収量が小さくなる場合があるという問題点が有った。
 特許文献9には、鋼片の粗圧延から仕上げ圧延にかけての圧延条件とその後の冷却処理とを適正化することで、低温靭性および溶接性に優れた高強度電縫鋼管用熱延鋼板を製造する方法が開示されている。この方法は、鋼片の粗圧延および仕上げ圧延での再結晶を制御することで細粒な金属組織にし、低温靭性優れた鋼板を得ているが、合金炭窒化物のサイズや分布を制御することは意図していない。結果としてこれらが最適化できていないために、衝撃エネルギー吸収特性が低下するという問題点があった。
 特許文献10には、鋼片の粗圧延工程での圧下率と保持時間ならびに仕上げ圧延条件を適正化することで、靭性および耐水素誘起割れ性に優れた熱延高張力鋼板を製造する方法が開示されている。この方法における粗圧延工程の最適化の目的は鋼の再結晶の促進であるが、合金析出物のサイズや分布を制御することは意図していない。結果としてこれらが最適化できていないため、衝撃エネルギー吸収特性が低下するという問題点があった。仕上げ圧延条件についても、特許文献10に記載の方法では、合金析出物のサイズや分布を制御することができず、良好な衝撃吸収エネルギーが得られないという問題点があった。
 特許文献11には、溶接熱影響部に析出粒子を適正に分散させることにより、優れた耐HAZ軟化特性を有する高強度熱延鋼板を得る技術が開示されている。しかしながら、この技術はアーク溶接中に鋼板のHAZ部に微細な析出物を分散させるものであるが、鋼中の析出粒子サイズの最適化がなされていないために、結果として鋼板の衝撃エネルギー吸収特性は良好ではないという問題点があった。
特開2007-284776号公報 特開2005-290396号公報 特開平10-58004号公報 特開2009-185361号公報 特開2007-9322号公報 特開2005-264239号公報 特開2003-231941号公報 特開2001-89816号公報 特開2001-207220号公報 特開平10-298645号公報 特開2008-280552号公報
新日鉄技報 378巻(2003)p.2
 本発明は上記問題に鑑みてなされたのであって、その目的は、低温での衝撃エネルギー吸収特性と耐HAZ軟化特性の両方に優れた、最大引張強度600MPa以上の高降伏比熱延鋼板並びにその製造方法を提供することにある。
 本発明者らは、高降伏比を安定的に得られるTi等の合金炭窒化物を含む鋼板のHAZ軟化と低温での衝撃エネルギー吸収特性の影響因子について詳細に調査を行った。その結果、HAZ軟化量については、Ti量、Nb量およびMn量を適正にすることにより抑制できることを知見した。
 また発明者らは次いで、低温での衝撃エネルギー吸収特性を向上させる方法を鋭意検討し、鋼板の金属組織としてパーライトの面積分率を減らすと共に、従来、衝撃エネルギー吸収能の向上に有利と考えられていた残留オーステナイト、マルテンサイトをむしろ極力排除し、更に鋼中に分散するTi、Nbを含有する合金炭窒化物の、母相Feとの格子整合性とサイズを最適化すること、特に、合金炭窒化物の非整合析出した粒子の粒径を制御することにより、析出強化鋼で課題であった低温での衝撃エネルギー吸収特性を改善することを初めて知見した。
 一般的に、Nb、Tiを含有した析出強化鋼においては、母相Feと特定の結晶方位関係を有する格子整合性の良い状態で存在するように析出物制御するが、今回、低温での衝撃エネルギー吸収特性との関係を調査した結果、母相Feに対して格子整合性が良い析出状態の合金炭窒化物はき裂発生の起点と伝播の障害とはなりにくい一方で、母相Feと非整合状態にある合金炭窒化物はそのサイズが比較的小さくても低温での衝撃エネルギー吸収量を下げることを見出した。低温での衝撃エネルギー吸収量に合金炭窒化物の母相に対する格子整合性が影響するメカニズムは定かではないが、合金炭窒化物と母相Feとの格子整合性が悪いと界面剥離あるいはボイド発生の起点となり延性破壊と脆性破壊のいずれをも促進させている可能性がある。
 発明者らは、上記組織形態を実現するための製造プロセス、成分範囲を鋭意検討した結果、耐HAZ軟化特性と低温でのエネルギー吸収特性を両立させ、さらに高降伏比であり曲げ性も良好な最大引張強度600MPa以上の熱延鋼板およびめっき鋼板を完成させた。
即ち、本発明の要旨は以下の通りである。
 (1) 質量%で、
C:0.04~0.09%、
Si:0.4%以下、
Mn:1.2~2.0%、
P:0.1%以下、
S:0.02%以下、
Al:1.0%以下、
Nb:0.02~0.09%、
Ti:0.02~0.07%
N:0.005%以下
を含有し、
 2.0≦Mn+8[%Ti]+12[%Nb]≦2.6であり、
 残部がFeおよび不可避的不純物からなる成分組成を有し、
 パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下、残部がフェライトおよびベイナイトの1種または2種である金属組織からなり、
 フェライトおよびベイナイトの平均結晶粒径が10μm以下であり、
 TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、
 降伏比が0.85以上、
最大引張強度が600MPa以上である
ことを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
 (2) さらに、質量%で、V:0.01~0.12%を含有することを特徴とする上記(1)に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
 (3) さらに、質量%で、Cr、Cu、Ni、Moの1種又は2種以上を合計で0.02~2.0%含有することを特徴とする請求項1または2に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
 (4) さらに、質量%で、Bを0.0003~0.005%含有することを特徴とする上記(1)~(3)の何れか1項に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
 (5) さらに、質量%で、Ca、Mg、La、Ceの1種又は2種以上を合計で0.0003~0.01%含有することを特徴とする上記(1)~(4)の何れか1項に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
 (6) 上記(1)~(5)の何れか1項に記載の高降伏比熱延鋼板の表面にめっきあるいは合金化めっきが施されていることを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板。
 (7) 上記(1)~(5)の何れか1項に記載の成分組成からなる鋼片を、1150℃以上に加熱し、加熱された鋼片を粗圧延し、1000~1080℃間で粗圧延を終了し、この際、1150℃以下で行う粗圧延における最大の圧延間隔が45秒以下であり、粗圧延終了後、下記式(1)を満たす保持時間t1(秒)をとった後、仕上げ圧延を開始し、下記式(2)を満たす最終圧延温度Tfである仕上げ圧延を行い、仕上げ圧延後3秒以内に鋼片の水冷を開始し、引き続き最低冷却速度8℃/秒以上で700℃以下まで鋼片を冷却して、530~650℃の範囲内で巻き取ることを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板の製造方法。
 1000×([%Ti]+[%Nb])>t1 ・・・・・ 式(1)
 Tf>830+400([%Ti]+[%Nb]) ・・ 式(2)
 (8) 最終圧延温度Tfが、下記式(3)を満たすことを特徴とする(7)記載の高降伏比熱延鋼板の製造方法。
 Tf>830+800([%Ti]+[%Nb]) ・・ 式(3)
 (9) 上記(7)又は(8)に記載の製造方法で得られた熱延鋼板を酸洗の後、Ac3温度以下で加熱を行い、次いでめっき浴中に浸漬させて、該鋼板表面をめっきすることを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板の製造方法。
 (10) 前記めっき後に、さらにめっき合金化処理を行うことを特徴とする(9)に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板の製造方法。
 本発明の熱延鋼板によると、上記構成により、最大引張強度600MPa以上で、耐HAZ軟化特性と低温でのエネルギー吸収特性、さらには曲げ加工性に優れた高降伏比熱延鋼板を得ることができる。従来鋼板によると、低温での使用及び走行に制約があったり、十分な継ぎ手強度が得られない問題が有ったが、本発明の熱延鋼板によると、寒冷地での使用が可能となると共に、高強度化により部品の板厚を薄くすることが可能であり、建機、自動車あるいはトラックの軽量化効果が期待できる。
 また、本発明の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた熱延鋼板の製造方法によると、最大引張強度600MPa以上で、耐HAZ軟化特性と低温での衝撃エネルギー吸収特性、さらには曲げ加工性に優れた高降伏比熱延鋼板を製造することが可能となる。
 なお、本発明において、低温での衝撃エネルギー吸収に優れるとは、シャルピー衝撃試験において-40℃における衝撃エネルギー吸収が70J/cm2以上であることをいう。また、耐HAZ軟化性に優れるとは、良好なビード形状が得られる溶接電流、電圧、溶接速度を選択し、かつ溶接入熱が10000J/cm以下であるアーク溶接を行った際に、溶接熱影響部(HAZ)の最軟化部のビッカース硬さ(HVHAZ)と素材のビッカース硬さ(HVBM)との差ΔHV(=HVBM-HVHAZ)が40以下であることをいう。また、曲げ性に優れるとは、90°V曲げ試験において、試験片の板厚をt、割れが生じない限界曲げ半径をrlimとした時に、rlim/tが1.0以下であることをいう。
Mn+8Ti+12NbとvE-40およびΔHVとの関係を表すグラフ。 最終粗圧延~仕上げ圧延開始までの保持時間t1とvE-40との関係に及ぼすTi+Nb量の影響を表すグラフ。 表2に示す鋼種のうち本発明例及び比較例2種(A-7、B-6)のTi+Nbの質量%とTf(℃)との関係を表すグラフ。
 以下、本発明について詳細に説明する。
 まず、本発明の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板の鋼成分を限定した理由について説明する。ここで、成分についての「%」は質量%を意味する。
 「C:0.04~0.09%」
 C量が0.04%未満であると、最大引張強度600MPa以上を確保することが困難である。一方、0.09%を超えると粗大でかつ非整合析出したTiおよびNbを含有する合金炭窒化物が増加し、低温での衝撃エネルギー吸収特性が低くなるので、0.04%~0.09%の範囲内に制限した。
 「Si:0.4%以下」
 Si量が0.4%を超えると、マルテンサイトあるいは残留オーステナイトが鋼板組織内に残存する場合があり、低温での靭性および衝撃エネルギー吸収特性が低下する。このため、その適正範囲を0.4%以下とした。曲げ成形性確保の観点から、0.2%以下であることがより望ましい。Si量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
 「Mn:1.2~2.0%」
 Mnは鋼の金属組織制御を通じて母材の強度確保のために用いられ、さらに溶接部のHAZ軟化抑制に寄与する元素である。1.2%未満であると、パーライトの面積分率が増加して低温での衝撃エネルギー吸収特性が低下し、さらにHAZ軟化量が大きくなるため、溶接継ぎ手強度が母材強度に対して大きく低下する。2.0%を超えて含有すると、硬質なマルテンサイトが形成される場合が有り、低温での衝撃エネルギー吸収特性が低下することから、その適正範囲は2.0%以下とする。曲げ成形性を確保する観点からは1.8%以下であることがより望ましい。
 「P:0.1%以下」
 Pは鋼の強度確保のために用いられる。しかしながら、0.1%を超えて含有すると、低温靭性が低下し、さらに低温での衝撃エネルギー吸収特性を得られないため、その適正範囲を0.1%以下とする。下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
 「S:0.02%以下」
 Sは衝撃エネルギー吸収特性に影響する元素である。0.02%を超えて含有すると、金属組織の面積分率と合金炭窒化物の平均粒子径を制御しても、低温での衝撃エネルギー吸収特性を得られないため、その適正範囲を0.02%以下とする。下限は特に限定しないが、0.0003%未満であると製造コストが増大するため、0.0003%が実質的な下限である。
 「Al:1.0%以下」
 Alは脱酸および鋼板の金属組織制御のために用いられる。1.0%を超えるとアーク溶接の熱影響部が軟質化し、十分な溶接継ぎ手強度が得られないので、その適正範囲を1.0%以下とする。下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
 「Nb:0.02~0.09%」
 Nbは析出強化元素として鋼の強度調整に用いられると共に、溶接HAZの軟化を抑制するために用いられる。0.02%未満であると、溶接HAZの軟化抑制効果が観られず、また0.09%を超えると、粗大でかつ非整合析出したTiおよびNbを含有する合金炭窒化物が増加し、低温での衝撃エネルギー吸収特性が低くなるので、0.02%~0.09%の範囲内に制限した。
 「Ti:0.02~0.07%」
 Tiは析出強化元素として鋼の強度調整に用いられると共に、溶接HAZの軟化を抑制するために用いられる。0.02%未満であると、最大引張強度:600MPa以上を得ることが困難である。また0.07%を超えると、粗大でかつ非整合析出したTiおよびNbを含有する合金炭窒化物が増加し、低温での衝撃エネルギー吸収特性が低くなるので、0.02%~0.07%の範囲内に制限した。降伏比で0.85以上を安定的に得るために、0.03%を下限とすることが好ましい。
 「N:0.005%以下」
 Nは窒化物の形成を通じて鋼板の金属組織の結晶粒径に寄与する。しかしながら、0.005%を超えると粗大でかつ非整合析出したTiおよびNbを含有する合金炭窒化物が増加し、低温での衝撃エネルギー吸収特性が低くなるので、0.005%以下の範囲内に制限した。
下限は特に限定しないが、0.0003%未満であると製造コストが増大するため、0.0003%が実質的な下限である。
 「2.0≦Mn+8[%Ti]+12[%Nb]≦2.6」
 「Mn+8[%Ti]+12[%Nb]」は、低温での衝撃エネルギー吸収特性と溶接によるHAZ軟化特性に関連する各元素の寄与割合の合計である。図1に示すように、Ti、Nbが異なる11鋼種について衝撃エネルギー吸収特性の指標であるvE-40と、HAZ軟化量の指標であるΔHVとの関係をプロットすると、本パラメータの値が2.0未満であると、十分な耐HAZ軟化特性が得られない(即ち、ΔHV>40)と共に、最大引張強度600MPa以上を得ることが難しくなり、2.6を超えると粗大でかつ非整合析出したTiおよびNbを含有する合金炭窒化物が増加し、低温での衝撃エネルギー吸収特性が低くなる(即ち、vE-40<70J/cm)。このため、その適正範囲を2.0~2.6の範囲に制限した。
 本発明においては、鋼成分として、上記各必須元素に加え、さらに、以下に示すような元素を選択的に含有しても良い。
 「V:0.01~0.12%」
 Vは鋼の強度調整のために用いてもよい。しかしながら、Vの含有量が0.01%未満であると、その効果がなく、また、0.12%を超えると脆化が進み、低温での衝撃エネルギー吸収特性が低下する。このため、その適正範囲を0.01~0.12%に限定した。
 「Cr、Cu、Ni、Moの1種又は2種以上を合計で0.02~2.0%」
 Cr、Cu、Ni、Moは、鋼の組織制御のために用いてもよい。しかしながら、これらの元素の1種又は2種以上の合計含有量が0.02%未満であると、添加に伴う上記効果が無く、また、2.0%を超えるとオーステナイトが残留し、低温での衝撃エネルギー吸収特性が低下する。このため、これら元素の合計量の適正範囲を0.02~2.0%に限定した。
 「B:0.0003~0.005%」
 Bは鋼板の組織制御に用いてもよい。しかしながら、B量が0.0003%未満であると、その効果は発現せず、また、0.005%を超えると、マルテンサイトが形成することがあり、低温での衝撃エネルギー吸収特性が低下する。このため、その適正範囲を0.0003~0.005%に制限した。
 「Ca、Mg、La、Ceの1種又は2種以上を合計で0.0003~0.01%」
 Ca、Mg、La、Ceは、鋼の脱酸のために用いてもよい。しかしながら、これらの元素の1種又は2種以上の合計量が0.0003%未満であると、その効果は無く、また、0.01%を超えると低温で脆性破壊し、衝撃エネルギー吸収特性が低下する。このため、その適正範囲を0.0003~0.01%に制限した。
 なお、上記成分の残部はFeおよび不可避不純物であるが、本実施形態における鋼成分は、その他の元素については特に限定はなく、強度調整のために各種元素を適宜含有しても良い。
 次に、本発明の熱延鋼板の金属組織について説明する。
 本発明の熱延鋼板は、フェライトおよびベイナイトを主相とし、残部は、パーライトとマルテンサイトと残留オーステナイトのうちいずれか一種又は二種以上を含んでも良い。
 「パーライトの面積分率」
 Nb及びTiを含有する析出強化鋼において、パーライトの面積分率が5%を超えると、低温で脆性破壊しやすくなり、更に衝撃エネルギー吸収特性が低下するため、その上限を5%に制限した。曲げ性確保の観点から、3%以下が好ましい範囲である。なお、下限は特に定めないが、パーライトの面積分率はゼロに近い方が衝撃エネルギー吸収特性に関してより好ましい。
 「マルテンサイトと残留オーステナイトの合計面積分率」
 Nb及びTiを含有する析出強化鋼において、マルテンサイトと残留オーステナイトの合計面積分率が0.5%を超えると、低温で脆性破壊しやすくなり、更に衝撃エネルギー吸収特性が低下する。このため、合計面積分率の上限を0.5%に制限した。なお、下限は特に定めないが、マルテンサイトと残留オーステナイトの合計面積分率はゼロに近い方が衝撃エネルギー吸収特性に関してより好ましい。
 「残部の金属組織はフェライトおよびベイナイト1種または2種」
 それぞれの面積分率は特に制限は無いが、曲げ加工性を確保する観点から、ベイナイト面積分率を10%以上含むことが好ましい。
 「フェライトとベイナイトの平均結晶粒径」
 フェライトとベイナイトの平均結晶粒径は脆化と相関関係のある因子である。平均粒径が10μmを超えると、NbとTiを含有する合金炭窒化物の平均粒子径を制御しても、低温での衝撃エネルギー吸収特性を確保できない場合があるため、その上限を10μmに制限した。8μm以下がより安定的に衝撃エネルギー吸収特性を確保できる好ましい条件である。下限は特に限定しないが、2μm未満であると製造コストが大幅に増加するので、2μmが実質的な下限である。
 本発明において、鋼板の金属組織の観察は、JIS G 0551に準拠して、光学顕微鏡によって行うことができる。観察面は、鋼板の研磨の後、ナイタール腐食液でエッチングする。
 フェライト、ベイナイト、パーライト、マルテンサイトの面積分率は、光学顕微鏡または走査電子顕微鏡(SEM)によって撮影した組織写真を用いて、ポイントカウント法又は画像解析によって測定できる。残留オーステナイトの面積分率は、X線回折法により測定する。
 本発明においてベイナイトとは、上部ベイナイト、下部ベイナイト、粒状ベイナイトのいずれも含む。また、パーライトとは、パーライトおよび疑似パーライトを含む。
 結晶粒径は、光学顕微鏡による観察またはEBSD法による結晶方位解析により測定できる。ここで、「結晶粒径」とは、JIS G 0551に記載の平均結晶粒径dである。
 「TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径」
 TiおよびNbを含有する合金炭窒化物の粒径と母相組織であるフェライトまたはベイナイトとの格子整合性は、低温での衝撃エネルギー吸収特性と関係する重要な因子である。一般的に、析出強化鋼においては、母相組織と格子整合性の良い微細合金炭窒化物を微細粒子として析出させることが知られているが、低温靭性改善と衝撃エネルギー吸収特性改善のためには、母相組織と格子整合性の悪い合金炭窒化物粒子の制御が重要である。格子整合性を悪くする非整合析出した合金炭窒化物の平均粒子径が20nmを超えると、低温での衝撃エネルギー吸収特性が低下するため、その適正範囲を20nm以下に限定した。より優れた衝撃エネルギー吸収特性を得る観点から、10nm以下がより好ましい範囲である。下限は特に限定しないが、析出物の結晶方位の解析が可能なサイズとして、2nmが実質的な下限である。
 ここで、「非整合析出した合金炭窒化物」とは、母相組織であるフェライトまたはベイナイト中に整合析出していない状態であり、さらに隣接するフェライトまたはベイナイトとの間に下記の結晶方位関係(Baker-Nuttingの方位関係)を有さないものをいう。
 (100)MX // (100)Fe
 (010)MX // (011)Fe
 (001)MX // (0-11)Fe (注:-1は1の上にバーが付いた記号の代わりとして表す)ここで、MはTi、Nbを示し、Ti、Nbの占有分率は問わない。またXはC、Nを示し、C、Nの占有分率は問わない。VやMoを添加した場合には、Mの中にVやMoが含まれる場合がある。
 なお、非整合析出した合金炭窒化物の結晶方位解析および平均粒子径の測定は透過型電子顕微鏡(TEM)を用いて行う。はじめに、電子線が透過する程度に鋼片試料を薄膜化し、TEMにて析出物およびその周囲の母相Fe間の結晶方位解析を行い、次いで、非整合析出物と判定された析出物のうち大きい径の物から順に20個の平均粒子径を測定する。ここで、析出物の粒子径とは、粒子断面積と等価の円と仮定した、等価円直径として測定する。
 「降伏比が0.85以上」
 降伏比が0.85未満であると、低温での衝撃エネルギー吸収特性が低下する場合が有り、また曲げ加工性も低下する。このため、降伏比の下限を0.85に制限した。
 なお、本発明では曲げ加工性の評価基準としてrlim/tを用いた。ここで、tは試験片の板厚、rlimは90°V曲げ試験において、割れが生じない限界曲げ半径であり、rlim/tで1.0以下を曲げ加工性に優れるとした。0.5以下がより好ましい範囲である。上限は特に限定しないが、1.1を超えると曲げ加工性が低下する可能性が有るため、1.1以下がより好ましい範囲である。
 「最大引張強度:600MPa以上」
 最大引張強度が600MPa未満であると、自動車、トラック、建設機械等の部材軽量化に寄与がないことから、本発明においては最大引張強度:600MPa以上の鋼板を前提とした。
 次に、製造方法について詳細に説明する。
 熱間圧延に先立って、本発明で規定する成分の鋼片を1150℃以上に加熱し、鋼片に存在した合金炭窒化物を固溶状態にする必要がある。加熱温度が1150℃未満では、最大引張強度600MPa以上の強度を得ることが困難となり、また粗大な合金炭窒化物が十分に溶解せず、結果として粗大な合金炭窒化物が残留するため、低温での衝撃エネルギー吸収特性が低下する。このため、鋼片の加熱温度を1150℃以上に限定した。上限は特に定めないが、1300℃を超えると効果が飽和するので、これが実質的な上限である。
 前記加熱された鋼片を粗圧延して粗バーとする。この粗圧延は、1000℃~1080℃の間で完了する必要がある。終了温度が1000℃未満では、オーステナイト中で粗大な合金炭窒化物が析出し、低温での衝撃エネルギー吸収特性が低下し、一方、1080℃以上では、オーステナイト結晶粒が粗大化し、仕上げ圧延、冷却、巻取り後の変態後組織においてフェライト及びベイナイトの10μm以下の平均結晶粒径を得ることができず、低温靭性が劣化するとともに、衝撃エネルギー吸収特性が低下する。また、1150℃以下で行う粗圧延において、各圧下パス間の保持時間は非整合な合金炭窒化物の平均粒子径に影響を及ぼす重要なパラメータである。本発明の方法では、粗圧延は通常3~10回程度の圧下、より好ましくは5~10回の圧下を行うが、1150℃以下で行う各圧延間の最大保持時間t0が45秒以上であると、衝撃エネルギー吸収特性に影響を与えるほどに合金炭窒化物は粗大化する。このため、各圧下パス間の保持時間を45秒以内に制限した。30秒以内であることがより好ましい。
 次いで、粗バーを仕上げ圧延して圧延材とする。
 粗圧延終了後から仕上げ圧延開始までの時間(t1)は、合金炭窒化物の平均粒子径と変態後のフェライトおよびベイナイトの結晶粒径に影響を及ぼす重要なパラメータである。図2に示すように、TiとNbの合計量が多いほど、衝撃エネルギー吸収特性(vE-40)が良好(OK)から不良(NG)に遷移する保持時間t1(図中矢印)は増加する。良好(OK)から不良(NG)に遷移する保持時間t1(秒)は、1000×([%Ti]+[%Nb])にほぼ対応している。このように、粗圧延終了後から仕上げ圧延開始までの保持時間t1(秒)が1000×([%Ti]+[%Nb])秒以上であると、オーステナイト中で粗大な合金炭窒化物が析出し、オーステナイト結晶粒が粗大化し、仕上げ圧延、冷却、巻取り後の変態後組織においてフェライト及びベイナイトの10μm以下の平均結晶粒径を得ることができず、低温靭性が劣化するとともに、衝撃エネルギー吸収特性が低下する。700×([%Ti]+[%Nb])>t1秒がより好ましい範囲である。よって、保持時間t1(秒)を下記式(1)に規定した。
 1000×([%Ti]+[%Nb])>t1 ・・・・・ 式(1)
 また、熱間仕上げ圧延において、最終圧延温度Tfは合金炭窒化物の平均粒子径と変態後のフェライトおよびベイナイトの結晶粒径に影響を及ぼすため、本発明において重要な条件であり、TiおよびNb含有量に応じて変化する。
 最終圧延温度Tfが830+400×([%Ti]+[%Nb])以下であると、母相に対する格子整合性の無い粗大な合金炭窒化物が析出し、低温での衝撃エネルギー吸収特性が低下することがわかった。従って、最終圧延温度Tfを以下の式(2)を満たすように設定する。
 Tf>830+400([%Ti]+[%Nb]) ・・・ 式(2)
 この関係式(2)は、後に示す表2の鋼種と最終圧延温度Tfとの関係から求められる。図3は、表2に示す鋼種のうち本発明例及び比較例2種(A-7、B-6)のTi+Nbの質量%とTf(℃)との関係を表している。ここで、「a([%Ti]+[%Nb])」部分の係数aを400とした場合、即ち、式(2)が、-40℃での衝撃吸収エネルギーvE-40が70J/cm2以上となる境界であることが分かる。
 係数aが800の場合、即ち、
 Tf>830+800([%Ti]+[%Nb]) ・・・ 式(3)
の場合は、係数aが400の場合よりも、-40℃での衝撃吸収エネルギーvE-40が70J/cm2以上となる境界から少し離れる。しかし、係数aが、400~800の領域では、仕上げ圧延開始までの待ち時間が長くなり、合金炭窒化物が析出し始める可能性が高くなるので、係数aが800の式(3)に基づいて、Tfをコントロールすることが好ましい。
 最終圧延温度Tfの上限については、特に限定しないが、フェライトおよびベイナイトの結晶粒径が粗大になる傾向が有り、970℃以下であることがより好ましい。
 最終圧延の直後に圧延材の水冷を行う。最終圧延終了から空冷開始までの時間は、γの粒径と合金炭窒化物の平均粒子径を通して、低温での母材靭性および衝撃エネルギー吸収特性に影響を及ぼす。最終圧延の直後の空冷時間が3秒を超えると衝撃エネルギー吸収特性が低下する傾向が有ることから、3秒以内に水冷を開始することとする。下限は特に定めないが、一般的な設備では実質0.2秒以上である。
 最終圧延の直後の空冷に引き続き、圧延材を冷却して熱延鋼板とする。この冷却は、金属組織を制御する重要な工程である。700℃以下まで最低冷却速度8℃/秒以上で冷却を行う。
 冷却の停止温度が700℃を超える場合、粒界上で合金炭窒化物が粗大に析出しやすくなり、またパーライトが形成しやすくなり、さらにフェライトの結晶粒径が大きくなり、低温での衝撃エネルギー吸収特性が低下する。一方、700℃までの最低冷却速度が8℃/秒未満である場合も、粒界上で合金炭窒化物が粗大に析出しやすくなり、またパーライトが形成しやすくなり、さらにフェライトの結晶粒径が大きくなり、低温での衝撃エネルギー吸収特性が低下する。
 ここで、最低冷却速度8℃/秒以上とは、空冷終了温度から700℃までの温度間の冷却速度が、8℃/秒を常に下回らないことを意味する。このため、例えば、この温度区間内で空冷は行わないことを意味する。このように本発明では、従来のように水冷による冷却過程の途中で空冷は行わない。
 冷却停止温度は、680℃以下がより好ましく、また最低冷却速度は15℃/秒以上がより好ましい。最低冷却速度の上限は特に定めないが、80℃/秒を超えると、熱延コイル内で均一に冷却することが難しくなり、コイル内での強度変動が大きくなる。このため、80℃/秒以下であることが好ましい。
 次いで冷却された熱延鋼板を巻き取る。巻取り温度は、530~650℃とする。巻取り温度が530℃未満の場合、マルテンサイトあるいは残留オーステナイトが形成する場合が有り、低温での靭性低下と、衝撃エネルギー吸収特性低下が顕著になる。また、650℃超の場合では、パーライトの面積分率が多くなり、低温での靭性低下と、衝撃エネルギー吸収特性低下が顕著になる。
 このようにして得られた熱延鋼板を再加熱(焼鈍)しても構わない。この場合、再加熱の温度がAc3温度を超えると、粗大な合金炭窒化物が析出し、低温での衝撃エネルギー吸収特性が低下する。このため、再加熱温度の適正範囲をAc3温度以下に制限する。加熱方法は、特に指定するものではなく、炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。
 加熱時間は、特に定めないが、550℃以上の加熱保持時間が30分を越える場合には、590MPa以上の引張強度を得るために、最高加熱温度を700℃以下とすることが望ましい。
 なお、再加熱(焼鈍)は、熱延鋼板を巻き取り後、温度が室温になる前に行ってもよい。
 スキンパス圧延あるいはレベラー圧延は、形状矯正、時効性、さらには疲労特性の改善に奏効するので、酸洗後または酸洗前に行ってもよい。スキンパス圧延を行う場合には、圧下率の上限を3%とすることが望ましい。3%を超えると、鋼板の成形性が損なわれるからである。また、酸洗は目的に応じて行ってもよい。
 次に、本発明の溶融亜鉛めっき鋼板およびその製造方法について説明する。
 本発明の溶融亜鉛めっき鋼板は、前述した本発明の熱延鋼板の表面にめっき層又は合金化めっき層が設けられた鋼板である。
 前述した方法によって得られた熱延鋼板を酸洗後、連続亜鉛めっき設備あるいは連続焼鈍亜鉛めっき設備を用いて、鋼板を加熱し、溶融めっきを施し、熱延鋼板の表面にめっき層を形成する。
 鋼板の加熱温度がAc3温度を超えると、鋼板の引張強度低下と低温での衝撃エネルギー吸収特性低下が起こるので、加熱温度の適正範囲をAc3温度以下に制限する。加熱温度がAc3に近いほど引張強度が急激に低下し、材質ばらつきが大きくなるのでは、Ac3-30℃以下がより好ましい加熱温度範囲である。
 さらに溶融めっきを施した後に、亜鉛めっき合金化処理を行い、合金化溶融亜鉛めっき層としてもよい。
 なお、めっき種は亜鉛めっきに限定するものではなく、加熱温度の上限がAc3温度であれば、他のめっき種であっても構わない。
 また、本発明において熱間圧延に先行する製造方法は、特に限定するものではない。すなわち、高炉、転炉、電炉等による溶製に引き続き、各種の2次精練で目的の成分含有量になるように成分調整を行う。次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料には、スクラップを使用しても構わない。連続鋳造によって得たスラブの場合には、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。
 以下に、実施例により本発明をさらに説明する。
 表1に示す化学成分を有するA~ACの鋼を以下の方法により製造した。まず鋳造により鋼片を作製後、表2-1および表2-2に示す熱延条件および焼鈍めっき条件で鋼片を再加熱、粗圧延して粗バーとした。次いで、粗バーを仕上げ圧延して4mmの板厚の圧延材にした後に冷却して熱延鋼板として巻き取った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1中の化学組成についての表示は、質量%である。また、表1中、Ac3(℃)は、以下の式により算出された値である。
Ac3=910-210√[%C]+45[%Si]-30[%Mn]+700[%P]+40[%Al]+400[%Ti]+32[%Mo]-11[%Cr]-20[%Cu]-15[%Ni]
 式中、%C、%Si、%Mn、%P、%Al、%Ti、%Mo、%Cr、%Cu、%Niは、それぞれC、Si、Mn、P、Al、Ti、Mo、Cr、Cu及びNiの鋼中の含有量を示す。
 表1中の鋼の化学組成は、その鋼No.のアルファベットが同じ表2中の鋼No.の鋼の化学組成と対応している。
 表2中の「SRT」は、スラブ加熱温度(℃)を示す。「RFT」は、粗圧延終了温度(℃)を示す。「t0」は、1150℃以下で行う各粗圧延間の最大保持時間(秒)を示す。「t1」は、粗圧延終了から仕上げ圧延開始までの時間(秒)を示す。「Tf」は、最終仕上げ圧延温度(℃)を示す。「t2」は、最終仕上げ圧延の直後の空冷時間(秒)を示す。「CRmin」は、空冷後からSCT間の最低冷却速度(℃/秒)を示す。「SCT」は、水冷停止温度(℃)を示す。「CT」は、巻取温度(℃)を示す。
 鋼A-12~14、C-2は、溶融亜鉛めっき鋼板であり、熱延鋼板を酸洗した後、連続焼鈍亜鉛めっきラインにて、表2に示す焼鈍温度で焼鈍し、次いで亜鉛めっきを行って製造した。
 なお、亜鉛めっき浸漬温度を450℃とし、また亜鉛めっき合金化処理を行ったものは合金化温度を500℃として行った。
 まず、作製した鋼板の金属組織、合金炭窒化物の観察を行った。
 鋼板の金属組織の観察は、前述したように、JIS G 0551に準拠して、L断面について光学顕微鏡によって行った。また、各組織の面積分率は、組織写真を用いて、L断面の1/4t厚さ(板厚をtとした時に鋼板表面から1/4tの位置)の領域においてポイントカウント法又は画像解析によって測定した。フェライトおよびベイナイトの結晶粒径の測定は、JISG0552に基づき、公称粒径の値を算出した。
 TiおよびNbを含有する、非整合析出した合金炭窒化物の結晶方位解析および平均粒子径の測定は、電子線が透過する程度に鋼片試料を薄膜化し、透過型電子顕微鏡(TEM)を用いて行い、20個以上の合金炭窒化物を観察することによって行った。
 次いで、溶接熱影響部(HAZ)の軟化量を測定するために、アーク溶接にて重ね継ぎ手を作製した。溶接の雰囲気はCO2:100%で行い、入熱量はおよそ5000~8000J/cmの範囲で行った。溶接後に断面の研磨を行い、母材、および溶接熱影響部(HAZ)のビッカース硬さ試験を行い、0以下であることを指す。以上の測定結果を表3に示す。なお、表3中の「F」はフェライト、「B」はベイナイト、「A」は残留オーステナイト、「M」はマルテンサイト、「P」はパーライトであり、「d(F、B)」はフェライトおよびベイナイトの平均結晶粒径(μm)、「dMCN」は非整合析出した合金炭窒化物の平均粒子径(nm)、「ΔHV」は溶接熱影響部の最軟化部のビッカース硬さをHVHAZ、素材のビッカース硬さをHVBMとした時に、HVBMとHVHAZの差を表す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に、鋼板の強度特性、低温での衝撃エネルギー吸収特性と曲げ性を評価した。
 鋼板の強度特性は、以下の方法により評価した。まず供試材をJIS Z 2201記載の5号試験片に加工した。そして、この5号試験片に対してJIS Z 2241記載の方法に従って引張試験を行い、引張最高強度(TS)、降伏強度(YS)、及び伸び(EI)を求めた。
 低温での衝撃エネルギー吸収特性は、シャルピー衝撃試験により評価した。JIS2202に基づき、板厚3mmの2mmVノッチ試験片を作製し、試験片を-40℃に冷却した後、シャルピー衝撃試験を行い、その衝撃エネルギー吸収値(J/cm2)を計測した。
 曲げ試験はJISZ224のVブロック法(曲げ角度:90°)により行い、試験片の板厚をt、割れが生じない限界曲げ半径rlimを計測した。
 以上の測定結果を表3に示す。なお、前記したように表3中の「vE-40」は、シャルピー衝撃吸収値(J/cm2)であり、「rlim/t」は、限界曲げ半径rlimを板厚で除した値である。rlim/tが0.5以下のものを◎、0.5超1.0以下の範囲内のものを○、1.0超のものを×とした。
 鋼A-2は、スラブ加熱温度が適正範囲外であるために、引張強度が600MPa未満であり、また低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-3~4、鋼B-3~4は粗圧延終了温度が適正範囲外で有ったために、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-6、鋼B-3は粗圧延終了から仕上げ圧延開始までの時間が適正範囲外で有ったために、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-7~8、鋼A-10、鋼B-6~8は仕上げ圧延の条件および仕上げ圧延後の冷却条件が適正範囲外であるために、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-11、鋼B-10は、仕上げ圧延後の水冷停止温度および熱延鋼板の巻き取り温度が適正範囲外のために、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-12、鋼B-11は、熱延鋼板の巻き取り温度が適正範囲外のために、引張強度が600MPa未満であり、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼A-15は、焼鈍温度がAc3温度以上であったため、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼F-1、Q-1、S-1、AB-1、AC-1は、Mn量、Ti量、Nb量の値が適正範囲外であったため、HAZ軟化量が大きかった比較例である。このうち、鋼F-1、Q-1、AC-1は、引張強度が600MPa未満である。
 鋼G-1はC量が適正範囲外のために、強度が600MPa未満であり、さらにHAZ軟化量が大きかった比較例である。
 鋼H-1、I-1、K-1、AB-1は、C量、Si量、Mn量が適正範囲外のために、マルテンサイトあるいは残留オーステナイトが存在し、低温での衝撃エネルギー吸収特性が低く、さらに曲げ性も悪かった比較例である。
鋼J-1は、Mn量が適正範囲外のため、パーライトが存在し、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼M-1、O-1は、S量およびP量が過大であったため、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼E-1、R-1、T-1、U-1は、Ti量、Nb量、N量が適正範囲外であったため、粗大な合金炭窒化物が存在し、低温での衝撃エネルギー吸収特性が低かった比較例である。
 鋼P-1は、Al量が過大であったため、HAZが軟質化した比較例である。
 これに対して、本発明例はいずれも降伏比が0.85以上、最大引張強度が600MPa以上であり、かつ、低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた特性を示していた。

Claims (10)

  1.  質量%で、
    C:0.04~0.09%、
    Si:0.4%以下、
    Mn:1.2~2.0%、
    P:0.1%以下、
    S:0.02%以下、
    Al:1.0%以下、
    Nb:0.02~0.09%、
    Ti:0.02~0.07%、
    N:0.005%以下
    を含有し、
     2.0≦Mn+8[%Ti]+12[%Nb]≦2.6であり、
     残部がFeおよび不可避的不純物からなる成分組成を有し、
     パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下、残部がフェライトおよびベイナイトの1種または2種である金属組織からなり、
     フェライトおよびベイナイトの平均結晶粒径が10μm以下であり、
     TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、
     降伏比が0.85以上、
     最大引張強度が600MPa以上である
    ことを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
  2.  さらに、質量%で、V:0.01~0.12%を含有することを特徴とする請求項1に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
  3.  さらに、質量%で、Cr、Cu、Ni、Moの1種又は2種以上を合計で0.02~2.0%含有することを特徴とする請求項1または2に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
  4.  さらに、質量%で、Bを0.0003~0.005%含有することを特徴とする請求項1~3の何れか1項に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
  5.  さらに、質量%で、Ca、Mg、La、Ceの1種又は2種以上を合計で0.0003~0.01%含有することを特徴とする請求項1~4の何れか1項に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板。
  6.  請求項1~5の何れか1項に記載の高降伏比熱延鋼板の表面にめっきあるいは合金化めっきが施されていることを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板。
  7.  請求項1~5の何れか1項に記載の成分組成からなる鋼片を、
    1150℃以上に加熱し、
    加熱された鋼片を粗圧延し、1000~1080℃間で粗圧延を終了し、この際、1150℃以下で行う粗圧延における最大の圧延間隔が45秒以下であり、
    粗圧延終了後、下記式(1)を満たす保持時間t1(秒)をとった後、仕上げ圧延を開始し、
    下記式(2)を満たす最終圧延温度Tfである仕上げ圧延を行い、
    仕上げ圧延後3秒以内に鋼片の水冷を開始し、引き続き最低冷却速度8℃/秒以上で700℃以下まで鋼片を冷却して、530~650℃の範囲内で巻き取る
    ことを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板の製造方法。
     1000×([%Ti]+[%Nb])>t1 ・・・・・ 式(1)
     Tf>830+400([%Ti]+[%Nb]) ・・ 式(2)
  8.  最終圧延温度Tfが、下記式(3)を満たすことを特徴とする請求項7記載の高降伏比熱延鋼板の製造方法。
     Tf>830+800([%Ti]+[%Nb]) ・・ 式(3)
  9.  請求項7又は8に記載の製造方法で得られた熱延鋼板を酸洗の後、Ac3温度以下で加熱を行い、次いでめっき浴中に浸漬させて、該鋼板表面をめっきすることを特徴とする低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板の製造方法。
  10.  前記めっき後に、さらにめっき合金化処理を行うことを特徴とする請求項9に記載の低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延めっき鋼板の製造方法。
PCT/JP2012/070259 2011-08-09 2012-08-08 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法 WO2013022043A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2014108831/02A RU2562582C1 (ru) 2011-08-09 2012-08-08 Горячекатаный стальной лист с высоким отношением предела текучести к пределу прочности, который имеет превосходные характеристики поглощения энергии удара при низкой температуре и устойчивость к размягчению зоны термического влияния (haz), и способ его получения
JP2013502930A JP5354130B2 (ja) 2011-08-09 2012-08-08 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法
CN201280038678.8A CN103732776B (zh) 2011-08-09 2012-08-08 在低温下的冲击能吸收特性和耐haz软化特性优异的高屈服比热轧钢板及其制造方法
BR112014002875-3A BR112014002875B1 (pt) 2011-08-09 2012-08-08 chapas de aço laminadas a quente, e métodos para produção das mesmas
EP12822363.3A EP2743364B1 (en) 2011-08-09 2012-08-08 Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
MX2014001501A MX349893B (es) 2011-08-09 2012-08-08 Lamina de acero laminada en caliente de alta proporcion de rendimiento, que tiene excelente absorcion de energia de impacto a baja temperatura y resistencia al reblandecimiento de la haz y metodo de produccion de la misma.
US14/236,371 US20140178712A1 (en) 2011-08-09 2012-08-08 High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same
ES12822363.3T ES2589640T3 (es) 2011-08-09 2012-08-08 Lámina de acero laminada en caliente con alto límite de elasticidad y excelente absorción de energía del impacto a baja temperatura y resistencia al ablandamiento de la ZAC y método para producir la misma
KR1020137034781A KR101575832B1 (ko) 2011-08-09 2012-08-08 저온에서의 충격 에너지 흡수 특성과 haz 내연화 특성이 우수한 고항복비 열연 강판 및 그 제조 방법
CA2843588A CA2843588C (en) 2011-08-09 2012-08-08 High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same
ZA2014/00954A ZA201400954B (en) 2011-08-09 2014-02-07 High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011173760 2011-08-09
JP2011-173760 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013022043A1 true WO2013022043A1 (ja) 2013-02-14

Family

ID=47668548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070259 WO2013022043A1 (ja) 2011-08-09 2012-08-08 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法

Country Status (14)

Country Link
US (1) US20140178712A1 (ja)
EP (1) EP2743364B1 (ja)
JP (1) JP5354130B2 (ja)
KR (1) KR101575832B1 (ja)
CN (2) CN103732776B (ja)
BR (1) BR112014002875B1 (ja)
CA (1) CA2843588C (ja)
ES (1) ES2589640T3 (ja)
MX (1) MX349893B (ja)
PL (1) PL2743364T3 (ja)
RU (1) RU2562582C1 (ja)
TW (1) TWI453287B (ja)
WO (1) WO2013022043A1 (ja)
ZA (1) ZA201400954B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898407A (zh) * 2014-04-09 2014-07-02 武汉钢铁(集团)公司 600MPa热轧带肋钢筋及其制备方法
KR101499939B1 (ko) * 2013-04-10 2015-03-06 동국제강주식회사 고강도 고인성 후강판 및 그의 제조 방법
KR101518551B1 (ko) 2013-05-06 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
KR101543836B1 (ko) 2013-07-11 2015-08-11 주식회사 포스코 내충격 특성 및 성형성이 우수한 고강도 열연강판 및 그 제조방법
KR101543837B1 (ko) 2013-07-11 2015-08-11 주식회사 포스코 내충격 특성이 우수한 고항복비 고강도 열연강판 및 그 제조방법
JP2017002366A (ja) * 2015-06-11 2017-01-05 新日鐵住金株式会社 冷間加工性に優れた熱延鋼板及びその製造方法
JP2017512905A (ja) * 2014-03-25 2017-05-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 高強度の平鋼製品を製造するための方法
KR20180014092A (ko) 2015-07-06 2018-02-07 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그 제조 방법
US10378073B2 (en) 2014-09-26 2019-08-13 Baoshan Iron & Steel Co., Ltd. High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
JP2020509189A (ja) * 2016-12-22 2020-03-26 ポスコPosco 極低温衝撃靭性に優れた厚鋼板及びその製造方法
JP7439265B2 (ja) 2019-12-31 2024-02-27 宝山鋼鉄股▲分▼有限公司 低ケイ素低炭素当量ギガパスカル級多相鋼板/鋼帯及びその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686257B1 (ko) 2009-01-30 2016-12-13 제이에프이 스틸 가부시키가이샤 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
US9908566B2 (en) 2012-05-08 2018-03-06 Tata Steel Ijmuiden B.V. Automotive chassis part made from high strength formable hot rolled steel sheet
CN105849295B (zh) * 2013-12-26 2019-02-19 Posco公司 焊接性和去毛刺性优异的热轧钢板及其制备方法
CN104818436B (zh) * 2015-04-21 2016-09-28 舞阳钢铁有限责任公司 屈服620MPa级水电工程用热轧钢板及其生产方法
WO2017125773A1 (en) * 2016-01-18 2017-07-27 Arcelormittal High strength steel sheet having excellent formability and a method of manufacturing the same
KR101767839B1 (ko) * 2016-06-23 2017-08-14 주식회사 포스코 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법
KR101889174B1 (ko) * 2016-12-13 2018-08-16 주식회사 포스코 저온역 버링성이 우수한 고항복비형 고강도강 및 그 제조방법
KR101899681B1 (ko) * 2016-12-22 2018-09-17 주식회사 포스코 고항복비형 초고강도 냉연강판 및 그 제조방법
BR112019006995A2 (pt) * 2017-01-30 2019-06-25 Nippon Steel & Sumitomo Metal Corp chapa de aço
TWI629363B (zh) * 2017-02-02 2018-07-11 新日鐵住金股份有限公司 Steel plate
CN109161793B (zh) * 2018-08-29 2020-08-04 河钢股份有限公司 一种低屈强比高强耐候钢及其生产方法
CN109594012A (zh) * 2018-11-05 2019-04-09 包头钢铁(集团)有限责任公司 一种700MPa级稀土耐腐蚀车用钢带及其制备方法
KR102119975B1 (ko) * 2018-11-29 2020-06-08 주식회사 포스코 저온인성과 연신율이 우수하며, 항복비가 작은 후물 고강도 라인파이프용 강재 및 그 제조방법
SG11202108195WA (en) * 2019-01-31 2021-08-30 Jfe Steel Corp H-beam having protrusions, and manufacturing method for same
CN110669914B (zh) * 2019-09-30 2021-07-06 鞍钢股份有限公司 一种冷冲压用高强汽车桥壳用钢及其生产方法
KR102236851B1 (ko) * 2019-11-04 2021-04-06 주식회사 포스코 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
CN111041378B (zh) * 2019-11-18 2021-06-15 武汉钢铁有限公司 一种易成型商用车横梁用钢及生产方法
KR102580265B1 (ko) * 2021-12-22 2023-09-20 현대제철 주식회사 강재의 저온 충격흡수에너지 예측방법
CN115011873A (zh) * 2022-05-26 2022-09-06 包头钢铁(集团)有限责任公司 一种屈服强度550MPa级热镀锌高强结构钢及其生产方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058004A (ja) 1996-01-11 1998-03-03 Nkk Corp 衝撃エネルギー吸収能の高い薄鋼板の製造方法
JPH10298645A (ja) 1997-04-24 1998-11-10 Sumitomo Metal Ind Ltd 熱延高張力鋼板の製造方法
JP2001089816A (ja) 1999-07-19 2001-04-03 Nkk Corp 高強度熱延鋼板の製造方法
JP2001207220A (ja) 2000-01-26 2001-07-31 Kawasaki Steel Corp 低温靱性および溶接性に優れた高強度電縫鋼管用熱延鋼板の製造方法
JP2003231941A (ja) 2002-02-08 2003-08-19 Nippon Steel Corp 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
JP2004218077A (ja) * 2002-12-24 2004-08-05 Nippon Steel Corp 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法
JP2005002406A (ja) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd 高強度熱延鋼板とその製造方法
JP2005264239A (ja) 2004-03-18 2005-09-29 Jfe Steel Kk 加工性に優れた厚物高強度熱延鋼板およびその製造方法
JP2005290396A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板およびその製造方法
JP2007009322A (ja) 2005-05-30 2007-01-18 Jfe Steel Kk 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2007284776A (ja) 2006-04-20 2007-11-01 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
JP2008280552A (ja) 2007-05-08 2008-11-20 Nippon Steel Corp 高強度鋼板および溶接構造物
JP2009185361A (ja) 2008-02-08 2009-08-20 Jfe Steel Corp 高強度熱延鋼板およびその製造方法
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925111A (en) * 1972-12-31 1975-12-09 Nippon Steel Corp High tensile strength and steel and method for manufacturing same
CA2004548C (en) * 1988-12-05 1996-12-31 Kenji Aihara Metallic material having ultra-fine grain structure and method for its manufacture
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
US5545270A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method of producing high strength dual phase steel plate with superior toughness and weldability
EP0924312B1 (en) * 1997-06-26 2005-12-07 JFE Steel Corporation Method for manufacturing super fine granular steel pipe
CN1085258C (zh) * 1997-07-28 2002-05-22 埃克森美孚上游研究公司 超低温韧性优异的可焊接的超高强度钢
BR9806204A (pt) * 1997-09-11 2000-02-15 Kawasaki Heavy Ind Ltd Chapa de aço laminada a quente que apresenta grãos finos com formabilidade aperfeiçoada, produção de chapa de aço laminada a quente ou laminada a frio.
US5900077A (en) * 1997-12-15 1999-05-04 Caterpillar Inc. Hardness, strength, and fracture toughness steel
US6254698B1 (en) * 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
JP2003096534A (ja) * 2001-07-19 2003-04-03 Mitsubishi Heavy Ind Ltd 高強度耐熱鋼、高強度耐熱鋼の製造方法、及び高強度耐熱管部材の製造方法
JP4661002B2 (ja) * 2001-08-07 2011-03-30 Jfeスチール株式会社 焼付硬化性および延性に優れた高張力熱延鋼板およびその製造方法
JP4205922B2 (ja) * 2002-10-10 2009-01-07 新日本製鐵株式会社 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP4304421B2 (ja) * 2002-10-23 2009-07-29 住友金属工業株式会社 熱延鋼板
KR101019791B1 (ko) * 2002-12-24 2011-03-04 신닛뽄세이테쯔 카부시키카이샤 용접 열영향부의 내연화성과 버링성이 우수한 고강도 강판
JP4214840B2 (ja) * 2003-06-06 2009-01-28 住友金属工業株式会社 高強度鋼板およびその製造方法
CN102251087B (zh) * 2005-08-03 2013-03-27 住友金属工业株式会社 热轧钢板及冷轧钢板及它们的制造方法
CA2652821C (en) * 2006-05-16 2015-11-24 Jfe Steel Corporation Hot-rollled high strength steel sheet having excellent ductility, stretch-flangeability, and tensile fatigue properties and method for producing the same
JP4466619B2 (ja) * 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
JP2007016319A (ja) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
WO2008110670A1 (fr) * 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
CA2681748C (en) * 2007-03-27 2013-01-08 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same
JP4972451B2 (ja) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板並びにその製造方法
WO2010134220A1 (ja) * 2009-05-22 2010-11-25 Jfeスチール株式会社 大入熱溶接用鋼材
JP5533024B2 (ja) * 2010-02-26 2014-06-25 Jfeスチール株式会社 低温靭性に優れた厚肉高張力熱延鋼板の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058004A (ja) 1996-01-11 1998-03-03 Nkk Corp 衝撃エネルギー吸収能の高い薄鋼板の製造方法
JPH10298645A (ja) 1997-04-24 1998-11-10 Sumitomo Metal Ind Ltd 熱延高張力鋼板の製造方法
JP2001089816A (ja) 1999-07-19 2001-04-03 Nkk Corp 高強度熱延鋼板の製造方法
JP2001207220A (ja) 2000-01-26 2001-07-31 Kawasaki Steel Corp 低温靱性および溶接性に優れた高強度電縫鋼管用熱延鋼板の製造方法
JP2003231941A (ja) 2002-02-08 2003-08-19 Nippon Steel Corp 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
JP2004218077A (ja) * 2002-12-24 2004-08-05 Nippon Steel Corp 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法
JP2005002406A (ja) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd 高強度熱延鋼板とその製造方法
JP2005264239A (ja) 2004-03-18 2005-09-29 Jfe Steel Kk 加工性に優れた厚物高強度熱延鋼板およびその製造方法
JP2005290396A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板およびその製造方法
JP2007009322A (ja) 2005-05-30 2007-01-18 Jfe Steel Kk 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2007284776A (ja) 2006-04-20 2007-11-01 Nippon Steel Corp プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
JP2008280552A (ja) 2007-05-08 2008-11-20 Nippon Steel Corp 高強度鋼板および溶接構造物
JP2009185361A (ja) 2008-02-08 2009-08-20 Jfe Steel Corp 高強度熱延鋼板およびその製造方法
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIPPON STEEL TECHNICAL REPORTS, vol. 378, 2003, pages 2

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499939B1 (ko) * 2013-04-10 2015-03-06 동국제강주식회사 고강도 고인성 후강판 및 그의 제조 방법
KR101518551B1 (ko) 2013-05-06 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
KR101543837B1 (ko) 2013-07-11 2015-08-11 주식회사 포스코 내충격 특성이 우수한 고항복비 고강도 열연강판 및 그 제조방법
KR101543836B1 (ko) 2013-07-11 2015-08-11 주식회사 포스코 내충격 특성 및 성형성이 우수한 고강도 열연강판 및 그 제조방법
JP2017512905A (ja) * 2014-03-25 2017-05-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 高強度の平鋼製品を製造するための方法
CN103898407A (zh) * 2014-04-09 2014-07-02 武汉钢铁(集团)公司 600MPa热轧带肋钢筋及其制备方法
US10378073B2 (en) 2014-09-26 2019-08-13 Baoshan Iron & Steel Co., Ltd. High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
JP2017002366A (ja) * 2015-06-11 2017-01-05 新日鐵住金株式会社 冷間加工性に優れた熱延鋼板及びその製造方法
KR20180014092A (ko) 2015-07-06 2018-02-07 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그 제조 방법
US10526678B2 (en) 2015-07-06 2020-01-07 Jfe Steel Corporation High-strength thin steel sheet and method for manufacturing the same
JP2020509189A (ja) * 2016-12-22 2020-03-26 ポスコPosco 極低温衝撃靭性に優れた厚鋼板及びその製造方法
US11649515B2 (en) 2016-12-22 2023-05-16 Posco Co., Ltd Thick steel plate having excellent cryogenic impact toughness and manufacturing method therefor
JP7439265B2 (ja) 2019-12-31 2024-02-27 宝山鋼鉄股▲分▼有限公司 低ケイ素低炭素当量ギガパスカル級多相鋼板/鋼帯及びその製造方法

Also Published As

Publication number Publication date
CN103732776A (zh) 2014-04-16
BR112014002875A2 (pt) 2017-02-21
MX349893B (es) 2017-08-18
EP2743364A1 (en) 2014-06-18
CN105648311A (zh) 2016-06-08
KR20140026574A (ko) 2014-03-05
CA2843588A1 (en) 2013-02-14
TW201313920A (zh) 2013-04-01
JPWO2013022043A1 (ja) 2015-03-05
ES2589640T3 (es) 2016-11-15
MX2014001501A (es) 2014-05-12
BR112014002875B1 (pt) 2018-10-23
US20140178712A1 (en) 2014-06-26
RU2562582C1 (ru) 2015-09-10
ZA201400954B (en) 2016-07-27
PL2743364T3 (pl) 2017-01-31
EP2743364B1 (en) 2016-07-27
TWI453287B (zh) 2014-09-21
EP2743364A4 (en) 2015-11-04
CN103732776B (zh) 2016-06-08
JP5354130B2 (ja) 2013-11-27
CA2843588C (en) 2018-02-20
KR101575832B1 (ko) 2015-12-08
CN105648311B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
JP5354130B2 (ja) 低温での衝撃エネルギー吸収特性と耐haz軟化特性に優れた高降伏比熱延鋼板およびその製造方法
JP4772927B2 (ja) 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6599902B2 (ja) 高強度多相鋼、製造方法および使用
JP5858199B2 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
RU2418090C2 (ru) Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства
RU2566121C1 (ru) Высокопрочный гальванизированный погружением стальной лист с превосходной характеристикой сопротивления удару и способ его изготовления и высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист и способ его изготовления
JP4924730B2 (ja) 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016199922A1 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
WO2016113788A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012002565A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6079726B2 (ja) 高強度鋼板の製造方法
WO2013073136A1 (ja) 薄鋼板およびその製造方法
WO2017169940A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP4676923B2 (ja) 耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
WO2021251275A1 (ja) 鋼板及びその製造方法
JP5978838B2 (ja) 深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法
WO2021079754A1 (ja) 高強度鋼板およびその製造方法
JP7044195B2 (ja) 鋼板の製造方法及び部材の製造方法
WO2021020439A1 (ja) 高強度鋼板、高強度部材及びそれらの製造方法
JPWO2021079755A1 (ja) 高強度鋼板およびその製造方法
JP2007169739A (ja) 深絞り用高強度冷延鋼板、深絞り用高強度溶融めっき鋼板及びその製造方法
WO2022202023A1 (ja) 鋼板
US20220170127A1 (en) Steel sheet
WO2021125283A1 (ja) 鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013502930

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034781

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2843588

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14236371

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012822363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012822363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/001501

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014108831

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002875

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002875

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140206