JP5858199B2 - 高強度溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
JP5858199B2
JP5858199B2 JP2015512944A JP2015512944A JP5858199B2 JP 5858199 B2 JP5858199 B2 JP 5858199B2 JP 2015512944 A JP2015512944 A JP 2015512944A JP 2015512944 A JP2015512944 A JP 2015512944A JP 5858199 B2 JP5858199 B2 JP 5858199B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015512944A
Other languages
English (en)
Other versions
JPWO2015093043A1 (ja
Inventor
長谷川 寛
寛 長谷川
金子 真次郎
真次郎 金子
洋一 牧水
洋一 牧水
善継 鈴木
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015512944A priority Critical patent/JP5858199B2/ja
Application granted granted Critical
Publication of JP5858199B2 publication Critical patent/JP5858199B2/ja
Publication of JPWO2015093043A1 publication Critical patent/JPWO2015093043A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、自動車用鋼板としての用途に好適なスポット溶接性、耐衝撃性及び曲げ加工性に優れる高強度溶融亜鉛めっき鋼板及びその製造方法に関する。
地球環境保全の観点からCO排出量を削減すべく、自動車車体の強度を維持しつつ、その軽量化を図り、自動車の燃費を改善することが自動車業界においては常に重要な課題となっている。
自動車車体の強度を維持しつつその軽量化を図る上では、自動車部品用素材となる鋼板の高強度化により鋼板を薄肉化することが有効である。ところで、自動車部品の多くはプレス加工やバーリング加工等によって成形される。このため、自動車部品用素材として用いられる高強度鋼板には所望の強度を有することに加えて、優れた成形性が要求される。
近年、自動車車体の骨格用素材として1180MPa超級の高強度鋼板の適用が拡大しつつある。1180MPa超級の高強度鋼板は成形難度が高く、従来のプレス成形をそのまま適用し難いため、この鋼板を成形する際には、ロールフォーミング等の曲げ主体の加工が利用される。このように、1180MPa超級鋼の適用に当っては曲げ加工性が重要な特性の一つとなる。
また、自動車部品用素材において、重視すべき特性の一つとして、耐衝撃性が挙げられる。自動車の衝突時、鋼板からなる各部品が受けるひずみ速度は10/s程度にまで達する。そのため、例えばピラー、メンバー、バンパー等の自動車部品には、自動車走行中、万一衝突した場合に乗員の安全を確保する十分な耐衝撃性が求められる。すなわち、衝突時に上記の如く高いひずみ速度を受けた場合であっても、優れた衝突エネルギー吸収能を発揮するような耐衝撃性を有する高強度鋼板を用いて上記のような自動車部品を製造し、自動車の衝突安全性を確保する必要がある。
このような要求に対して、例えば特許文献1では成形性および耐衝撃性に優れた1180MPa級鋼板に関する技術が開示されている。特許文献1に記載の技術によれば、伸びや伸びフランジ性などの成形性を改善できるが、曲げ加工性や自動車用鋼板として重要なスポット溶接性については検討されていない。また、特許文献1に記載の技術では、焼戻し設備を必要とするため、設備コストにおいても課題がある。
特許文献2には、曲げ加工性やスポット溶接性等が良好な高強度鋼板に関する技術が開示されている。しかしながら、特許文献2では、耐衝撃性については評価しておらず、十分な耐衝撃性を有しているとは言えない。また、特許文献2ではTSが1180MPa超級に関する点もほとんど開示されていない。
特開2012−031462号公報 特開2011−132602号公報
本発明は、上記した従来技術が抱える問題を有利に解決し、自動車部品用素材として好適な、1180MPa以上の引張強さ(TS)、優れたスポット溶接性、耐衝撃性および曲げ加工性を有する高強度溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
本発明者らは、上記した課題を達成し、溶接性および耐衝撃性等に優れる高強度鋼板を製造するため、鋼板の成分組成、組織および製造方法の観点から鋭意研究を重ねた。その結果、C量を0.15%以下とし、フェライトの面積率を10%以下、ベイニティックフェライトの面積率を2〜30%、マルテンサイトの面積率を60〜98%、残留オーステナイトの面積率を2%未満、ベイナイトに隣接するマルテンサイトの平均結晶粒径を15μm以下、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合を10%以下、鋼板表面から100μmの位置のビッカース硬度から20μmの位置のビッカース硬度を差し引いた値(△Hv)を30以上とすることによって、1180MPa以上のTS、優れたスポット溶接性、耐衝撃性および曲げ加工性を有する高強度鋼板が得られることを見出した。本発明は、このような知見に基づきなされたもので、以下の発明を提供する。
(1)質量%で、C:0.05〜0.15%、Si:0.01〜1.00%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.01〜0.50%、Cr:0.010〜2.000%、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0005〜0.0050%を含み、残部がFeおよび不可避的不純物からなり、下記式(I)で表されるKが3.0以上となる成分組成を有し、鋼板表面に垂直な断面の板厚4分の1位置の組織観察において、面積率でフェライト:10%以下、ベイニティックフェライト:2〜30%、マルテンサイト:60〜98%を含み、X線回折法により求めた残留オーステナイトの割合が2%未満であり、かつベイナイトに隣接するマルテンサイトの平均結晶粒径が15μm以下であり、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合が10%以下であり、鋼板表面から100μmの位置でのビッカース硬度から20μmの位置でのビッカース硬度を差し引いた値(△Hv)が30以上である組織を有するスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板。
K=−0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
(上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。)
(2)さらに、質量%で、Mo:0.005〜2.000%、V:0.005〜2.000%、Ni:0.005〜2.000%及びCu:0.005〜2.000%から選ばれる少なくとも一種の元素を含有する(1)に記載のスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板。
(3)さらに、質量%で、Ca:0.001〜0.005%及びREM:0.001〜0.005%から選ばれる少なくとも一種の元素を含有する(1)又は(2)に記載のスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板。
(4)前記溶融亜鉛めっきは合金化溶融亜鉛めっきである(1)から(3)のいずれかに記載のスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板。
(5)(1)から(3)のいずれかに記載の成分組成を有するスラブを熱間圧延する際に、最終仕上げパスの圧下率が10%以上、温度が850〜950℃の条件で仕上げ圧延し、次いで600〜700℃での滞留時間の総計が10秒以下となるように冷却し、450〜600℃未満の温度で巻き取る熱延工程と、前記熱延工程後に熱延板を、20%超えの圧下率で冷間圧延する冷延工程と、前記冷延工程後に冷延板を、300℃〜焼鈍温度の温度域において露点が−45〜+20℃、空気比が0.80以上の雰囲気、平均加熱速度が0.5℃/s以上の条件で、Ac3−20℃〜950℃の範囲の任意の温度である焼鈍温度まで加熱し、焼鈍温度で10〜1000秒保持する焼鈍工程と、前記焼鈍工程後の冷延板を、5℃/s以上の平均冷却速度で450〜550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で30〜1000秒保持する冷却工程と、前記冷却工程後の冷延板に亜鉛めっき処理を施す亜鉛めっき工程と、を有することを特徴とするスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
(6)(5)に記載の方法で製造された高強度溶融亜鉛めっき鋼板に合金化処理を施す合金化工程を有するスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
本発明の高強度溶融亜鉛めっき鋼板は、自動車部品用素材として好適な、1180MPa以上のTS、優れたスポット溶接性、耐衝撃性および曲げ加工性を有する。したがって、本発明の高強度溶融亜鉛めっき鋼板は、自動車部品用素材として好ましく利用することができる。
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
本発明の高強度溶融亜鉛めっき鋼板では、下地鋼板上に溶融亜鉛めっき層が形成されている。また、上記めっきが合金化溶融亜鉛めっきの場合、下地鋼板上に合金化溶融亜鉛めっき層が形成されている。先ず、下地鋼板、亜鉛めっき層及び合金化亜鉛めっき層について説明する。
下地鋼板
本発明の高強度溶融亜鉛めっき鋼板の下地鋼板は、質量%で、C:0.05〜0.15%、Si:0.01〜1.00%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.01〜0.50%、Cr:0.010〜2.000%、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0005〜0.0050%を含み、残部がFeおよび不可避的不純物からなり、特定の式(I)で表されるKが3.0以上である成分組成を有する。以下、成分組成について説明する。なお、%は質量%を意味する。
C:0.05〜0.15%
Cは、マルテンサイトを生成させてTSを上昇させるために必要な元素である。C量が0.05%未満では、マルテンサイトの強度が低く、TSが1180MPa以上にならない。一方、C量が0.15%を超えると曲げ加工性やスポット溶接性が劣化する。したがって、C量は0.05〜0.15%、好ましくは0.06〜0.12%とする。
Si:0.01〜1.00%
Siは、鋼を固溶強化してTSを上昇させるのに有効な元素である。こうした効果を得るにはSi量を0.01%以上とする必要がある。一方、Si量が1.00%を超えると、めっき性やスポット溶接性の劣化を招く。したがって、Si量は0.01〜1.00%、好ましくは0.01〜0.80%、より好ましくは0.01〜0.60%とする。
Mn:1.5〜4.0%
Mnは、鋼を固溶強化してTSを上昇させたり、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させてYSやTSを上昇させたりする元素である。こうした効果を得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が4.0%を超えると、介在物の増加が顕著になり、鋼の清浄度や耐衝撃性低下の原因となる。したがって、Mn量は1.5〜4.0%、好ましくは1.8〜3.5%、より好ましくは2.0〜3.0%とする。
P:0.100%以下
Pは、粒界偏析により耐衝撃性を低下させ、スポット溶接性を劣化させる。このため、P量は極力低減することが望ましい。製造コストの面などからP量は0.100%以下であればよい。下限は特に規定しないが、P量を0.001%未満にしようとすると生産能率の低下を招くため、P量は0.001%以上が好ましい。
S:0.02%以下
Sは、MnSなどの介在物として存在して、スポット溶接性を劣化させる。このため、S量は極力低減することが好ましい。製造コストの面からS量は0.02%以下であればよい。下限は特に規定しないが、S量を0.0005%未満にしようとすると生産能率の低下を招くため、S量は0.0005%以上が好ましい。
Al:0.01〜0.50%
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が0.50%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.01〜0.50%とする。
Cr:0.010〜2.000%
Crは、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させ、TSを上昇させる元素である。こうした効果を得るには、Cr量を0.010%以上にする必要がある。一方、Cr量が2.000%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストが上昇する。したがって、Cr量は0.010〜2.000%、好ましくは0.010〜1.500%、より好ましくは0.010〜1.000%とする。
Nb:0.005〜0.100%
Nbは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化するのに有効な元素である。こうした効果を得るには、Nb量を0.005%以上にする必要がある。一方、Nb量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Nb量は0.005〜0.100%、好ましくは0.010〜0.080%、より好ましくは0.010〜0.060%とする。
Ti:0.005〜0.100%
Tiは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化させるのに有効な元素である。こうした効果を得るには、Ti量を0.005%以上にする必要がある。一方、Ti量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Ti量は0.005〜0.100%、好ましくは0.010〜0.080%、より好ましくは0.010〜0.060%とする。
B:0.0005〜0.0050%
Bは、粒界からのフェライトおよびベイナイトの核生成を抑制し、マルテンサイトを得るのに有効な元素である。こうした効果を十分に得るには、B量を0.0005%以上にする必要がある。一方、B量が0.0050%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、B量は0.0005〜0.0050%、好ましくは0.0015〜0.0050%、より好ましくは0.0020〜0.0050%とする。
K≧3.0
Kは、K=−0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B]の式(I)で表される。Kは、組織がマルテンサイトの連結を保ち、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合を10%以下とするための指標として経験的に得た式である。Kが3.0未満では、ベイナイトのみに隣接する塊状マルテンサイトが増大して曲げ加工性が劣化する。したがって、Kは3.0以上、好ましくは3.2以上とする。なお、上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。
Fe及び不可避的不純物
残部はFeおよび不可避的不純物である。以上が高強度溶融亜鉛めっき鋼板の下地鋼板の必須成分である。本発明においては、下地鋼板が以下の任意成分を含んでもよい。
Mo:0.005〜2.000%、V:0.005〜2.000%、Ni:0.005〜2.000%、Cu:0.005〜2.000%から選ばれる少なくとも1種
Mo、V、Ni、Cuはマルテンサイト等の低温変態相を生成させ高強度化に寄与する元素である。こうした効果を得るには、Mo、V、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%以上にする必要がある。一方、Mo、V、Ni、Cuのいずれかの含有量が2.000%を超えると、その効果が高まることなく飽和するとともに、製造コストを上昇させる。したがって、Mo、V、Ni、Cuの含有量はそれぞれ0.005〜2.000%とする。
Ca:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも1種
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。こうした効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上とする必要がある。一方、Ca、REMのいずれかの含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼし特性が低下するおそれがある。したがって、Ca、REMの含有量は0.001%〜0.005%とする。
続いて、下地鋼板の組織について説明する。本発明において下地鋼板の組織(「ミクロ組織」という場合がある。)は、鋼板表面に垂直な断面の板厚4分の1位置の組織観察において、面積率でフェライト:10%以下、ベイニティックフェライト:2〜30%、マルテンサイト:60〜98%を含み、X線回折法により求めた残留オーステナイトの割合が2%未満であり、かつベイナイトに隣接するマルテンサイトの平均結晶粒径が15μm以下であり、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合が10%以下であり、鋼板表面から100μmの位置でのビッカース硬度から20μmの位置でのビッカース硬度を差し引いた値(△Hv)が30以上である。それぞれの限定理由は以下の通りである。
フェライトの面積率:10%以下
フェライトの面積率が10%を超えると、TSが1180MPa以上と耐衝撃性の両立が困難になる。したがって、フェライトの面積率は10%以下、好ましくは5%以下、より好ましくは2%以下とする。
ベイニティックフェライトの面積率:2〜30%
ベイニティックフェライトは、強度や耐衝撃性を大きく低下させずに鋼の曲げ加工性を向上させるのに有効である。ベイニティックフェライトの面積率が2%未満ではこうした効果が十分に得られない。一方、ベイニティックフェライトの面積率が30%を超えるとTSを1180MPa以上にすることが困難となる。したがって、ベイニティックフェライトの面積率は2〜30%、好ましくは5〜30%、より好ましくは10〜25%とする。
マルテンサイトの面積率:60〜98%
マルテンサイトの面積率が60%未満では、TSが1180MPa以上と耐衝撃性の両立が困難になる。一方、マルテンサイトの面積率が98%を超えると、曲げ加工性が劣化する。したがって、マルテンサイトの面積率は60〜98%、好ましくは70〜95%、より好ましくは70〜90%とする。
残留オーステナイトの面積率:2%未満
残留オーステナイトは、加工後にマルテンサイト変態し、他相に比べて著しく硬い。このため、残留オーステナイトは、自動車の衝突時等に生じる鋼板の動的変形において、亀裂の起点や亀裂伸展のパスになりやすく、その量は小さいことが好ましい。残留オーステナイトの面積率が2%以上では、耐衝撃性が劣化する。したがって、残留オーステナイトの面積率は2%未満、好ましくは1%未満とする。
ベイナイトに隣接する塊状マルテンサイトの平均結晶粒径:15μm以下
本発明ではベイナイトに隣接する塊状マルテンサイトを微細化することが、耐衝撃性を確保する上で重要である。このメカニズムは明らかではないが次のように推測される。ベイナイトはマルテンサイトに比べて強度が低いため、自動車の衝突時等に生じる鋼板の動的変形において亀裂の起点や伝播経路になりやすいと考えられる。ベイナイトに隣接する塊状マルテンサイトの結晶粒径を小さくすると、ベイナイト起点で生じる、或いはベイナイトにいたる亀裂の伝播経路が増大することで、衝突エネルギーが分散されて、より大きな衝突エネルギーが吸収可能になるものと推測される。ベイナイトに隣接する塊状マルテンサイトの平均結晶粒径が15μmを超えると、上記の耐衝撃性が十分に得られない。したがって、ベイナイトに隣接する塊状マルテンサイトの平均結晶粒径は15μm以下、好ましくは10μm以下とする。平均結晶粒径の下限は特に規定しないが、上記平均結晶粒径はおよそ1μm以上である。
ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合:10%以下
本発明のようにマルテンサイトを主体とする組織において隣接相がベイナイトのみからなる孤立した塊状マルテンサイトは曲げ加工性の劣化をまねく。このメカニズムは明らかではないが、応力分配の不均一によりベイナイトとマルテンサイトの界面でマイクロクラックが発生しやすくなることなどがメカニズムとして推測される。隣接相がベイナイトのみからなる塊状マルテンサイトの割合(面積率から算出した割合)が10%を超えると十分な曲げ加工性が得られない。したがって、隣接相がベイナイトのみからなる塊状マルテンサイトの全組織に占める割合は10%以下、好ましくは5%以下、より好ましくは3%以下とする。なお、上記塊状マルテンサイトとは、旧オーステナイト粒界を含むマルテンサイトであり、一つのベイニティックフェライト中に孤立する島状マルテンサイトは含まない。また、本発明におけるベイナイトとはベイニティックフェライトと島状マルテンサイトまたは方位のそろった炭化物からなる組織である。
鋼板表面から100μmの位置でのビッカース硬度から20μmの位置でのビッカース硬度を差し引いた値(△Hv):30以上
鋼板表面から100μm位置のビッカース硬度(Hv100)と、鋼板表面から20μm位置のビッカース硬度(Hv20)との差(Hv100−Hv20)である△Hvが30未満では曲げ加工性が劣化する。このメカニズムは明らかではないが、次のように推測される。曲げ加工の際、亀裂が確認され始めるのは鋼板表面から100μm程度の深さまで亀裂が伸展した時である。したがって、微小亀裂の抑制にあたっては鋼板の平均の特性に加えて、鋼板表面から100μm以内の特性の制御が重要であると考えられる。曲げ加工の際は鋼板の表面から内部にかけてひずみ勾配が生じる。あらかじめ鋼板表面近傍に逆の強度勾配(ひずみの大きい表層ほど低強度)を与えることで、亀裂の発生および伝播が抑制されるものと考えられる。この強度勾配を、上記△Hvで表し、△Hvを30以上とすることで曲げ加工性が向上する。上限は特に規定しないが、本発明では上記△Hvはおよそ100以下である。
なお、フェライト、ベイニティックフェライト、マルテンサイト、残留オーステナイト以外の相としてパーライトを含む場合もある。上記のミクロ組織の条件を満たしていれば、本発明の目的は達成される。
上記面積率とは、観察面積に占める各相の面積の割合のことである。各相の面積率は、鋼板表面に垂直な断面を研磨後、3%ナイタールで腐食させ、板厚1/4の位置をSEM(走査型電子顕微鏡)で1500倍の倍率で3視野撮影し、得られた画像データからMedia Cybernetics社製のImage−Proを用いて各相の面積率を求め、3視野の平均面積率を各相の面積率とした。上記画像データにおいて、フェライトは黒色、ベイニティックフェライトは島状のマルテンサイトを含む黒色あるいは炭化物を含む灰色、マルテンサイトは白色として区別できる。
また、残留オーステナイトの面積率の測定方法は以下の通りである。鋼板を板厚1/4位置まで研磨後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)、(220)面の積分強度を測定し、bcc鉄各面からの積分反射強度に占めるfcc鉄各面からの積分反射強度の強度比を求め、これを残留オーステナイトの面積率とした。
また、ベイナイトに隣接するマルテンサイトの平均結晶粒径は、上記の各相の面積率を求めた画像データについて、視野内に占める当該マルテンサイトの面積の合計を、該視野内に存在する当該マルテンサイトの個数で除することにより、当該マルテンサイトの平均面積を求め、その1/2乗を平均結晶粒径とした(正方形の1辺相当(正方形近似))。なお、当該マルテンサイト粒とは旧オーステナイト粒界または他組織との結晶粒界であり、パケットやブロック境界は粒界としない。
亜鉛めっき層及び合金化亜鉛めっき層
亜鉛めっき層は、Znを主体として含む層である。合金化亜鉛めっき層とは、合金化反応によって亜鉛めっき中に鋼中のFeが拡散してできたFe−Zn合金を主体として含む層である。
亜鉛めっき層及び合金化亜鉛めっき層には、Zn以外にFe、Al、Sb、Pb、Bi、Mg,Ca、Be、Ti、Cu、Ni、Co、Cr、Mn、P、B、Sn、Zr、Hf、Sr、V、Se、REMを本発明の効果を害さない範囲で含んでもよい。
高強度溶融亜鉛めっき鋼板の製造方法
以下、本発明の高強度溶融亜鉛めっき鋼板の製造方法について、好ましい製造方法、好ましい製造条件を説明する。本発明の高強度溶融亜鉛めっき鋼板の好ましい製造方法は、熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程を有する。以下、これらの各工程について説明する。
熱延工程
熱延工程とは、スラブを、最終仕上げパスの圧下率が10%以上、温度が850〜950℃の条件で仕上げ圧延し、次いで600〜700℃での滞留時間の総計が10秒以下となるように冷却し、450〜600℃未満の温度で巻き取る工程である。
先ず、熱延工程で用いるスラブの製造について説明する。上記下地鋼板の成分組成を有するスラブを製造する。スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましい。なお、連続鋳造法以外の方法でもスラブを製造可能であり、造塊法、薄スラブ鋳造法等の他の方法を採用してもよい。例えば、造塊法の場合、鋼を溶製し、鋳造したのち、分塊圧延してスラブを製造してもよい。
次いで、上記スラブを熱間圧延する。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止したりするため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。
スラブを熱間圧延する時は、スラブの加熱温度を低くしつつ、圧延時のトラブル発生を防止する観点から、粗圧延後の粗バーを加熱してもよい。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。
本発明においては、熱間圧延工程における仕上げ圧延の条件、仕上げ圧延後の条件を調整することが重要である。具体的には、仕上げ圧延の条件を、最終仕上げパスの圧下率が10%以上、温度(仕上げ圧延温度)が850〜950℃とする。また、仕上げ圧延後の600〜700℃での滞留時間の総計が10秒以下となるように冷却し、450〜600℃未満の温度で巻き取る。
熱間圧延の仕上げ圧延工程において、最終仕上げパスの圧下率が10%未満では、焼鈍後の鋼板表面近傍の硬度差△Hvが30未満となって曲げ加工性が劣化する。このメカニズムは明らかではないが、仕上げ圧延の圧下率が低下すると熱延板の表面近傍の組織が粗大になり、酸素の拡散経路が減少して表面付近の炭素の希薄化が抑制されるためと推測される。したがって、仕上げ圧延の最終仕上げパスの圧下率は10%以上とする。また、伸展粒抑制という観点から、上記圧下率は50%以下であることが好ましい。
最終仕上げパスの仕上げ圧延温度が850℃未満では曲げ加工性が劣化する。これは仕上げ圧延温度が低下すると鋼板表面近傍に伸展組織が残存して、曲げ加工の際この部分にひずみが集中するためと推測される。一方、上記仕上げ圧延温度が950℃を超えると結晶粒が粗大化し、本発明のミクロ組織が得られない。したがって、最終仕上げパスの仕上げ圧延温度は850〜950℃とする。
仕上げ圧延後、600〜700℃における滞留時間が10秒を超えるとB炭化物等のBを含む化合物が生成して、鋼中の固溶B量が低下し、焼鈍時のBの効果が減退して本発明の組織が得られなくなる。したがって、600〜700℃での滞留時間の総計は10秒以下、好ましくは8秒以下とする。
巻取り温度が600℃以上ではB炭化物等のBを含む化合物が生成して、鋼中の固溶B量が低下し、焼鈍時のBの効果が減退して本発明の組織が得られなくなる。一方、巻取り温度が450℃未満では鋼板表面への酸素の供給が抑制され、表面付近の炭素の希薄化が抑制されて、焼鈍後の表面近傍の硬度差△Hvが30未満となって曲げ加工性が劣化する。したがって、巻取り温度は450〜600℃未満、好ましくは500〜600℃未満とする。
また、巻取り後の熱延板は、スケールを酸洗などにより除去された後、下記冷延工程に用いられることが好ましい。
冷延工程
冷延工程とは、熱延工程後の熱延板を、20%超えの圧下率で冷間圧延する工程である。圧下率が20%以下では、粗大粒が生成して耐衝撃性を劣化させる。したがって、冷間圧延の圧下率は20%超え、好ましくは30%以上とする。なお、上限は特に規定しないが、形状の安定性等の観点から90%以下程度が好ましい。
焼鈍工程
焼鈍工程とは、300℃〜焼鈍温度の温度域において露点が−45〜+20℃、空気比が0.80以上の雰囲気、平均加熱速度が0.5℃/s以上の条件で、Ac3−20℃〜950℃の範囲の任意の温度である焼鈍温度まで冷延板を加熱し、焼鈍温度で10〜1000秒保持する工程である。
300℃〜焼鈍温度における露点が−45℃未満では鋼板表面に酸素が十分供給されず、表面付近の炭素の希薄化が抑制されて、焼鈍後の表面近傍の硬度差△Hvが30未満となって曲げ加工性が劣化する。一方、上記露点が+20℃を超えるとめっき性が劣化する。したがって、300℃〜焼鈍温度における露点は−45〜+20℃、好ましくは−40〜0℃、より好ましくは−40〜−10℃である。
300℃〜焼鈍温度における空気比が0.80未満では鋼板表面に酸素が十分供給されず表面付近の炭素の希薄化が抑制されて、焼鈍後の表面近傍の硬度差ΔHvが30未満となって曲げ加工性が劣化する。したがって、300℃〜焼鈍温度における空気比は0.80以上とする。好ましくは0.90以上、より好ましくは1.00以上である。上限は特に規定しないが、上記空気比が1.50を超えると生産性を阻害するため、上記空気比は1.50以下が好ましい。なお、ここで空気比とは、製鉄所の副生ガスであるコークス炉ガス(COG)等の燃料と空気の比の意味である。また、この酸化処理を行う酸化炉の種類は特に限定するものではないが、直火バーナを備えた直火式の加熱炉を使用することが好適である。直火バーナとは、製鉄所の副生ガスであるコークス炉ガス(COG)等の燃料と空気を混ぜて燃焼させたバーナ火炎を直接鋼板表面に当てて鋼板を加熱するものである。直火バーナの燃料としては、COG、液化天然ガス(LNG)等を使用できる。
300℃〜焼鈍温度における平均加熱速度が0.5℃/s未満ではオーステナイトが粗大になり、本発明のミクロ組織が得られない。したがって、300℃〜焼鈍温度における平均加熱速度は0.5℃/s以上とする。また、粒径均一化のという観点から、上記平均加熱速度は50℃/s以下であることが好ましい。
焼鈍温度がAc3−20℃未満ではオーステナイトの生成が不十分となり、過剰なフェライトが生成して本発明のミクロ組織が得られない。一方、焼鈍温度が950℃を超えるとオーステナイト粒が粗大になり、本発明のミクロ組織が得られない。したがって、焼鈍温度はAc3−20℃〜950℃の範囲の任意の温度、好ましくはAc−10℃〜900℃の範囲の任意の温度、より好ましくはAc3〜880℃の範囲の任意の温度とする。
なお、Ac温度は以下の式から求めた。
Ac(℃)=910−203×[C]^0.5+44.7×[Si]−30×[Mn]−11×[Cr]
ここで、[C]、[Si]、[Mn]および[Cr]は鋼中の各元素の質量%である。
焼鈍温度での保持時間が10秒未満ではオーステナイトの生成が不十分なり、過剰なフェライトが生成して本発明のミクロ組織が得られない。一方、上記保持時間が1000秒を超えるとオーステナイト粒が粗大になり、本発明のミクロ組織が得られない。したがって、保持時間は10〜1000秒、好ましくは30〜600秒とする。
冷却工程
冷却工程とは、焼鈍工程後の冷延板を、5℃/s以上の平均冷却速度で450〜550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で30〜1000秒保持する工程である。
平均冷却速度が5℃/s未満では冷却中にフェライトやベイナイトが過度に生成して本発明のミクロ組織が得られない。したがって、平均冷却速度は5℃/s以上とする。また、粒径均一化という観点から、上記平均冷却速度は50℃/s以下であることが好ましい。
冷却停止温度が450℃未満ではベイナイトが過度に生成して本発明のミクロ組織が得られない。一方、冷却停止温度が550℃を超えるとフェライトが過剰に生成して本発明のミクロ組織が得られない。したがって、冷却停止温度は450〜550℃とする。
保持時間が30秒未満ではベイナイトが生成せず、本発明のミクロ組織が得られない。一方、1000秒を超えるとベイナイトが過度に生成して本発明のミクロ組織が得られない。したがって、保持時間は30〜1000秒、好ましくは30〜500秒とする。
亜鉛めっき工程
亜鉛めっき工程とは、冷却工程後の冷延板に亜鉛めっき処理を施す工程である。亜鉛めっき処理は、上記により得られた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、その後、ガスワイピングなどによってめっき付着量を調整して行うことが好ましい。なお、亜鉛めっき処理においては、Al量が0.08〜0.18%である亜鉛めっき浴を用いることが好ましい。
合金化処理
本発明の高強度溶融亜鉛めっき鋼板におけるめっきは、合金化溶融亜鉛めっきでもよい。この場合、本発明の高強度溶融亜鉛めっきは、熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程、合金化工程を有する方法で製造される。熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程については上記の通りであり、説明を省略する。
合金化処理における合金化工程では、460℃以上580℃以下の温度域に、高強度溶融亜鉛めっき鋼板を、1秒以上40秒以下保持して合金化することが好ましい。
その他の処理
亜鉛めっき処理、あるいはさらに、合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。ただし、調質圧延は圧下率が0.5%を超えると表面近傍の硬化により曲げ加工性が劣化することがある。このため、調圧率(調質圧延での圧下率)は0.5%以下にすることが好ましい。より好ましくは0.3%以下である。また、亜鉛めっき工程、あるいはさらに、合金化工程の後に、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
表1に示す成分組成の鋼を真空溶解炉により溶製し、鋳造したのち分塊圧延して鋼スラブとした(表1中、Nは不可避的不純物である)。これらの鋼スラブを1200℃に加熱後粗圧延、仕上げ圧延して巻取り、熱延板とした(熱延条件は表2、3に記載)。次いで、厚み1.4mmまで冷間圧延して冷延鋼板を製造した(圧下率は表2、3に記載)。続いて、冷延板を焼鈍に供した。焼鈍は連続溶融亜鉛めっきライン相当を模擬して、表2、3に示す条件で、ラボにて行い溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板1〜42を作製した。溶融亜鉛めっき鋼板は460℃のめっき浴中に浸漬し、付着量35〜45g/mのめっきを表面に形成させた後、冷却速度10℃/秒で冷却することで作製した。また、合金化溶融亜鉛めっき鋼板は、めっき形成後530℃で合金化処理を行い、冷却速度10℃/秒で冷却して作製した。そして、得られた鋼板に圧下率0.3%のスキンパス圧延を施した。
その後、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の下地鋼板のミクロ組織を上述の方法で確認した。結果を表4、5に示した。
また、以下の試験方法にしたがい、表層硬度、引張特性、曲げ加工性、スポット溶接性および衝突エネルギー吸収能を求めた。
<硬度試験>
圧延方向に対して平行な垂直断面において幅が10mm、長さが15mmの試験片を採取し、表層から20μmおよび100μm位置について、ビッカース硬度試験を行った。荷重は50gとし、各板厚位置で5点測定し、最大値と最小値を除いた3点のビッカース硬度Hvの平均値を、その位置におけるビッカース硬度Hvとした。
<引張試験>
圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10−3/sとするJIS Z 2241の規定に準拠した引張試験を行い、YSおよびTSを求めた。YSは0.2%耐力とした。
<曲げ試験>
圧延方向に対して平行方向を曲げ試験軸方向とする、幅が35mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が10mm/s、押込み荷重が10ton、押付け保持時間5秒、曲げ半径Rが1.5mmの条件で90°V曲げ試験を行い、曲げ頂点の稜線部を10倍の拡大鏡で観察し、1mm以上の亀裂が認められたものを劣、亀裂が1mm未満のものを優として判定した。
<スポット溶接試験>
試験条件は、電極:DR6mm−40R、加圧力:4802N(490kgf)、初期加圧時間:30cycles/60Hz、通電時間:17cycles/60Hz、保持時間:1cycle/60Hzとした。試験電流は同一番号の鋼板に対し、4.6〜10.0kAまで0.2kAピッチで変化させ、また10.0kAから溶着までは0.5kAピッチで変化させた。各試験片は、十字引張り試験、溶接部のナゲット径の測定に供した。抵抗スポット溶接継手の十字引張り試験はJIS Z3137の規定に準拠して行った。ナゲット径はJIS Z 3139の記載に準拠して以下のように実施した。抵抗スポット溶接後の対称円状のプラグを、板表面に垂直な断面について、溶接点のほぼ中心を通る断面を適当な方法で半切断した。切断面を研磨、腐食した後、光学顕微鏡観察による断面組織観察によりナゲット径を測定した。ここで、コロナボンドを除いた溶融領域の最大直径をナゲット径とした。ナゲット径が4t1/2(mm)(t:鋼板の板厚)以上の溶接材において十字引張り試験を行った際、母材で破断した場合を優、ナゲット破断した場合を劣として判定した。
<衝撃引張試験>
圧延方向に対して直角方向を引張試験方向とする、平行部の幅が5mm、長さが7mmの試験片を採取し、ホプキンソン棒法を応用した衝撃引張試験機を用いて、ひずみ速度が2000/sで引張試験を行い、ひずみ量が5%までの吸収エネルギー(AE)を求めて、衝突エネルギー吸収能(耐衝撃性)を評価した(一般社団法人日本鉄鋼協会「鉄と鋼」vol.83(1997)No.11,p.748−753、参照)。なお、上記吸収エネルギー(AE)は、応力真ひずみ曲線を、ひずみ量が0〜5%の範囲を積分することにより求めた。以上の結果を表4、5に示す。
Figure 0005858199
Figure 0005858199
Figure 0005858199
Figure 0005858199
Figure 0005858199
本発明では、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板は、1180MPa以上のTS、AE/TSが0.050以上の優れた耐衝撃性、かつ優れた曲げ加工性およびスポット溶接性を有することが確認できる。
したがって、本発明によれば、スポット溶接性、耐衝撃性および曲げ加工性等に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板が得られ、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与するという優れた効果を奏する。
産業上利用の可能性
本発明によれば、TSが1180MPa以上でスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。本発明の高強度溶融亜鉛めっき鋼板を自動車用部品用途に使用すると、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与することができる。

Claims (6)

  1. 質量%で、C:0.05〜0.15%、Si:0.01〜1.00%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.01〜0.50%、Cr:0.010〜2.000%、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0005〜0.0050%を含み、残部がFeおよび不可避的不純物からなり、下記式(I)で表されるKが3.0以上となる成分組成を有し、
    鋼板表面に垂直な断面の板厚4分の1位置の組織観察において、面積率でフェライト:10%以下、ベイニティックフェライト:2〜30%、マルテンサイト:60〜98%を含み、X線回折法により求めた残留オーステナイトの割合が2%未満であり、かつベイナイトに隣接するマルテンサイトの平均結晶粒径が15μm以下であり、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合が10%以下であり、鋼板表面から100μmの位置でのビッカース硬度から鋼板表面から20μmの位置でのビッカース硬度を差し引いた値(△Hv)が30以上である組織を有する高強度溶融亜鉛めっき鋼板。
    K=−0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
    (上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。)
  2. さらに、質量%で、Mo:0.005〜2.000%、V:0.005〜2.000%、Ni:0.005〜2.000%及びCu:0.005〜2.000%から選ばれる少なくとも一種の元素を含有する請求項1に記載の高強度溶融亜鉛めっき鋼板。
  3. さらに、質量%で、Ca:0.001〜0.005%及びREM:0.001〜0.005%から選ばれる少なくとも一種の元素を含有する請求項1又は2に記載の高強度溶融亜鉛めっき鋼板。
  4. 前記溶融亜鉛めっきは合金化溶融亜鉛めっきである請求項1から3のいずれかに記載の高強度溶融亜鉛めっき鋼板。
  5. 請求項1から3のいずれかに記載の成分組成を有するスラブを熱間圧延する際に、最終仕上げパスの圧下率が10%以上、温度が850〜950℃の条件で仕上げ圧延し、次いで600〜700℃での滞留時間の総計が10秒以下となるように冷却し、450〜600℃未満の温度で巻き取る熱延工程と、
    前記熱延工程後に熱延板を、20%超えの圧下率で冷間圧延する冷延工程と、
    前記冷延工程後に冷延板を、300℃〜焼鈍温度の温度域において露点が−45〜+20℃、空気比が0.80以上の雰囲気、平均加熱速度が0.5℃/s以上の条件で、Ac3−20℃〜950℃の範囲の任意の温度である焼鈍温度まで加熱し、焼鈍温度で10〜1000秒保持する焼鈍工程と、
    前記焼鈍工程後の冷延板を、5℃/s以上の平均冷却速度で450〜550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で30〜1000秒保持する冷却工程と、
    前記冷却工程後の冷延板に亜鉛めっき処理を施す亜鉛めっき工程と、を有することを特徴とする、請求項1から3のいずれかに記載の高強度溶融亜鉛めっき鋼板の製造方法。
  6. 請求項5に記載の方法で製造された高強度溶融亜鉛めっき鋼板に合金化処理を施す合金化工程を有する、請求項4に記載の高強度溶融亜鉛めっき鋼板の製造方法。
JP2015512944A 2013-12-18 2014-12-16 高強度溶融亜鉛めっき鋼板及びその製造方法 Active JP5858199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512944A JP5858199B2 (ja) 2013-12-18 2014-12-16 高強度溶融亜鉛めっき鋼板及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013260988 2013-12-18
JP2013260988 2013-12-18
JP2015512944A JP5858199B2 (ja) 2013-12-18 2014-12-16 高強度溶融亜鉛めっき鋼板及びその製造方法
PCT/JP2014/006259 WO2015093043A1 (ja) 2013-12-18 2014-12-16 高強度溶融亜鉛めっき鋼板及びその製造方法

Publications (2)

Publication Number Publication Date
JP5858199B2 true JP5858199B2 (ja) 2016-02-10
JPWO2015093043A1 JPWO2015093043A1 (ja) 2017-03-16

Family

ID=53402411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015512944A Active JP5858199B2 (ja) 2013-12-18 2014-12-16 高強度溶融亜鉛めっき鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US10590503B2 (ja)
EP (1) EP3054025B1 (ja)
JP (1) JP5858199B2 (ja)
KR (1) KR101813974B1 (ja)
CN (1) CN105814227B (ja)
MX (1) MX2016007954A (ja)
WO (1) WO2015093043A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711323B2 (en) 2016-08-10 2020-07-14 Jfe Steel Corporation Steel sheet, and production method therefor
US11066716B2 (en) 2016-08-10 2021-07-20 Jfe Steel Corporation Steel sheet and method for producing the same
US11220722B2 (en) 2016-08-30 2022-01-11 Jfe Steel Corporation Steel sheet and method for manufacturing the same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736620B1 (ko) * 2015-12-15 2017-05-17 주식회사 포스코 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
SE539519C2 (en) 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
JP6249113B2 (ja) * 2016-01-27 2017-12-20 Jfeスチール株式会社 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
EP3409808B1 (en) * 2016-01-27 2020-03-04 JFE Steel Corporation High-yield ratio high-strength galvanized steel sheet, and method for producing same
CN113122772A (zh) * 2016-03-31 2021-07-16 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及薄钢板和镀覆钢板的制造方法
WO2017169870A1 (ja) 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
EP3467134B1 (en) * 2016-08-10 2020-11-18 JFE Steel Corporation High-strength thin steel sheet and method for manufacturing same
CN109689910B (zh) * 2016-09-13 2021-08-27 日本制铁株式会社 钢板
KR101830527B1 (ko) 2016-09-26 2018-02-21 주식회사 포스코 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
KR101967959B1 (ko) 2016-12-19 2019-04-10 주식회사 포스코 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018127984A1 (ja) * 2017-01-06 2018-07-12 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP6323618B1 (ja) * 2017-01-06 2018-05-16 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
CN108396220A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高强高韧性镀锌钢板及其制造方法
WO2018146828A1 (ja) 2017-02-10 2018-08-16 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
CN110268084B (zh) * 2017-02-13 2021-05-25 杰富意钢铁株式会社 冷轧钢板及其制造方法
KR102336669B1 (ko) * 2017-04-21 2021-12-07 닛폰세이테츠 가부시키가이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
JP6443594B1 (ja) * 2017-10-20 2018-12-26 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7047516B2 (ja) * 2018-03-22 2022-04-05 日本製鉄株式会社 高張力鋼板用スラブの冷却方法、高張力熱延鋼板の製造方法、高張力溶融亜鉛めっき鋼板の製造方法及び高張力合金化溶融亜鉛めっき鋼板の製造方法
CN112513311B (zh) * 2018-07-31 2022-06-03 杰富意钢铁株式会社 薄钢板及其制造方法
MX2021001956A (es) * 2018-08-22 2021-04-28 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la fabricacion de la misma.
EP3825432B1 (en) 2018-08-22 2023-02-15 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
MX2021004941A (es) * 2018-10-31 2021-06-08 Jfe Steel Corp Miembro de alta resistencia, metodo para la fabricacion de miembro de alta resistencia, y metodo para la fabricacion de lamina de acero para miembro de alta resistencia.
WO2020104437A1 (en) * 2018-11-19 2020-05-28 Ssab Technology Ab High strength steel product and method of manufacturing the same
CN113227429B (zh) * 2018-12-26 2023-02-07 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
WO2020136988A1 (ja) 2018-12-26 2020-07-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
MX2021007806A (es) 2018-12-26 2021-08-11 Jfe Steel Corp Lamina de acero galvanizada por inmersion en caliente de alta resistencia y metodo de fabricacion de la misma.
EP3943624A4 (en) * 2019-03-22 2023-08-02 Nippon Steel Corporation HIGH STRENGTH STEEL PLATE AND METHOD OF PRODUCTION THEREOF
CN113614256B (zh) * 2019-04-11 2023-03-21 日本制铁株式会社 钢板及其制造方法
US20230002846A1 (en) * 2019-12-19 2023-01-05 Nippon Steel Corporation Steel sheet and manufacturing method thereof
KR20210080670A (ko) * 2019-12-20 2021-07-01 주식회사 포스코 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
CN114945695B (zh) * 2020-01-16 2023-08-18 日本制铁株式会社 热冲压成形体
EP4074847B1 (en) * 2020-02-13 2024-06-12 JFE Steel Corporation High-strength steel sheet and method for producing same
WO2021176249A1 (en) * 2020-03-02 2021-09-10 Arcelormittal High strength cold rolled and galvannealed steel sheet and manufacturing process thereof
CN113737087B (zh) 2020-05-27 2022-07-19 宝山钢铁股份有限公司 一种超高强双相钢及其制造方法
US20230313332A1 (en) * 2020-08-31 2023-10-05 Baoshan Iron & Steel Co., Ltd. High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor
JP7417169B2 (ja) * 2020-09-11 2024-01-18 日本製鉄株式会社 鋼板およびその製造方法
CN117136250A (zh) * 2021-04-02 2023-11-28 日本制铁株式会社 钢板及其制造方法
DE102022132188A1 (de) 2022-12-05 2024-06-06 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines hochfesten Stahlflachproduktes mit einem Mehrphasengefüge und entsprechendes hochfestes Stahlflachprodukt
WO2024128312A1 (ja) * 2022-12-15 2024-06-20 日本製鉄株式会社 鋼板および鋼板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009317A (ja) * 2005-05-31 2007-01-18 Jfe Steel Kk 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法
JP2010070843A (ja) * 2008-08-19 2010-04-02 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010275628A (ja) * 2009-04-28 2010-12-09 Jfe Steel Corp 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010275600A (ja) * 2009-05-29 2010-12-09 Jfe Steel Corp 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法
JP2013108154A (ja) * 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp 溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258215B2 (ja) 2002-12-27 2009-04-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
US20100218857A1 (en) 2007-10-25 2010-09-02 Jfe Steel Corporation High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same
EP2123786A1 (fr) * 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5720208B2 (ja) 2009-11-30 2015-05-20 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板
JP5516057B2 (ja) 2010-05-17 2014-06-11 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5136609B2 (ja) 2010-07-29 2013-02-06 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5821260B2 (ja) 2011-04-26 2015-11-24 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009317A (ja) * 2005-05-31 2007-01-18 Jfe Steel Kk 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法
JP2010070843A (ja) * 2008-08-19 2010-04-02 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010275628A (ja) * 2009-04-28 2010-12-09 Jfe Steel Corp 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010275600A (ja) * 2009-05-29 2010-12-09 Jfe Steel Corp 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法
JP2013108154A (ja) * 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp 溶融亜鉛めっき鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711323B2 (en) 2016-08-10 2020-07-14 Jfe Steel Corporation Steel sheet, and production method therefor
US11066716B2 (en) 2016-08-10 2021-07-20 Jfe Steel Corporation Steel sheet and method for producing the same
US11220722B2 (en) 2016-08-30 2022-01-11 Jfe Steel Corporation Steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
US20160319385A1 (en) 2016-11-03
WO2015093043A1 (ja) 2015-06-25
JPWO2015093043A1 (ja) 2017-03-16
EP3054025A1 (en) 2016-08-10
US10590503B2 (en) 2020-03-17
EP3054025A4 (en) 2016-11-30
CN105814227B (zh) 2018-02-27
KR101813974B1 (ko) 2018-01-02
EP3054025B1 (en) 2018-02-21
CN105814227A (zh) 2016-07-27
KR20160101095A (ko) 2016-08-24
MX2016007954A (es) 2016-09-09

Similar Documents

Publication Publication Date Title
JP5858199B2 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
JP6525114B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
JP5858032B2 (ja) 高強度鋼板およびその製造方法
JP6544494B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
JP6631760B1 (ja) 高強度亜鉛めっき鋼板および高強度部材
JP6179461B2 (ja) 高強度鋼板の製造方法
JP5434960B2 (ja) 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5194878B2 (ja) 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013099235A1 (ja) 高強度薄鋼板およびその製造方法
WO2015092987A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JPWO2016021194A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN103764864B (zh) 冷轧钢板用热轧钢板、热镀锌钢板用热轧钢板及其制造方法
WO2010146796A1 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5167865B2 (ja) 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP2011032549A (ja) 鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法
JP2013241636A (ja) 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
WO2023063288A1 (ja) 冷延鋼板及びその製造方法、並びに溶接継手

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5858199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250