WO2015093043A1 - 高強度溶融亜鉛めっき鋼板及びその製造方法 - Google Patents
高強度溶融亜鉛めっき鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2015093043A1 WO2015093043A1 PCT/JP2014/006259 JP2014006259W WO2015093043A1 WO 2015093043 A1 WO2015093043 A1 WO 2015093043A1 JP 2014006259 W JP2014006259 W JP 2014006259W WO 2015093043 A1 WO2015093043 A1 WO 2015093043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- hot
- temperature
- rolling
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 37
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 78
- 239000010959 steel Substances 0.000 claims abstract description 78
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 52
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 35
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 33
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 47
- 238000005096 rolling process Methods 0.000 claims description 45
- 238000000137 annealing Methods 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 27
- 238000005246 galvanizing Methods 0.000 claims description 20
- 238000005098 hot rolling Methods 0.000 claims description 18
- 230000009467 reduction Effects 0.000 claims description 18
- 238000005275 alloying Methods 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000000717 retained effect Effects 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 238000002050 diffraction method Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 9
- 238000003466 welding Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 238000007747 plating Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength hot-dip galvanized steel sheet excellent in spot weldability, impact resistance and bending workability suitable for use as a steel sheet for automobiles and a method for producing the same.
- Patent Document 1 discloses a technique related to a 1180 MPa class steel plate having excellent formability and impact resistance. According to the technique described in Patent Document 1, formability such as elongation and stretch flangeability can be improved. However, bending workability and spot weldability important as a steel sheet for automobiles have not been studied. Moreover, since the technique described in Patent Document 1 requires tempering equipment, there is also a problem in equipment cost.
- Patent Document 2 discloses a technique related to a high-strength steel sheet having good bending workability, spot weldability, and the like. However, Patent Document 2 does not evaluate impact resistance and cannot be said to have sufficient impact resistance. Further, Patent Document 2 hardly discloses a point related to TS exceeding 1180 MPa.
- the present invention advantageously solves the above-described problems of the prior art and has a tensile strength (TS) of 1180 MPa or more, excellent spot weldability, impact resistance, and bending workability, which is suitable as a material for automobile parts.
- An object is to provide a high-strength hot-dip galvanized steel sheet and a method for producing the same.
- the present inventors have conducted intensive research from the viewpoints of the component composition, structure and manufacturing method of the steel sheet.
- the amount of C was 0.15% or less
- the area ratio of ferrite was 10% or less
- the area ratio of bainitic ferrite was 2 to 30%
- the area ratio of martensite was 60 to 98%
- the area of residual austenite The ratio is less than 2%
- the average grain size of martensite adjacent to bainite is 15 ⁇ m or less
- the proportion of the bulk martensite adjacent to only bainite is 10% or less
- the Vickers hardness is 100 ⁇ m from the steel sheet surface.
- K ⁇ 0.4 ⁇ [Si] + 1.0 ⁇ [Mn] + 1.3 ⁇ [Cr] + 200 ⁇ [B]
- Formula (I) (In the above formula (I), [Si] is the Si content [mass%], [Mn] is the Mn content [mass%], [Cr] is the Cr content [mass%], [B] Is the B content [% by mass].) (2) Further, in terms of mass%, Mo: 0.005 to 2.000%, V: 0.005 to 2.000%, Ni: 0.005 to 2.000%, and Cu: 0.005 to 2.
- composition according to (1) or (2) further comprising at least one element selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% by mass%.
- the finish is performed under conditions where the rolling reduction of the final finishing pass is 10% or more and the temperature is 850 to 950 ° C. Rolling, and then cooling so that the total residence time at 600 to 700 ° C. is 10 seconds or less, and winding up at a temperature of less than 450 to 600 ° C., and after the hot rolling step, A cold rolling step of cold rolling at a rolling reduction exceeding 20%, and a cold rolled sheet after the cold rolling step has a dew point of ⁇ 45 to + 20 ° C. and an air ratio of 0.80 or more in a temperature range of 300 ° C.
- An annealing process of heating to an annealing temperature which is an arbitrary temperature in the range of Ac3-20 ° C to 950 ° C, and holding at the annealing temperature for 10 to 1000 seconds under the conditions of the above and an average heating rate of 0.5 ° C / s or more
- the cold-rolled sheet after the annealing step is an average of 5 ° C./s or more
- a cooling step of cooling to a cooling stop temperature which is an arbitrary temperature in the range of 450 to 550 ° C.
- High-strength hot-dip galvanizing excellent in spot weldability, impact resistance and bending workability which has an alloying process for alloying the high-strength hot-dip galvanized steel sheet produced by the method described in (5) A method of manufacturing a steel sheet.
- the high-strength hot-dip galvanized steel sheet of the present invention has a TS of 1180 MPa or more suitable as a material for automobile parts, excellent spot weldability, impact resistance, and bending workability. Therefore, the high-strength hot-dip galvanized steel sheet of the present invention can be preferably used as a material for automobile parts.
- a hot-dip galvanized layer is formed on the base steel sheet. Moreover, when the said plating is alloying hot dip galvanization, the alloying hot dip galvanization layer is formed on the base steel plate. First, the base steel sheet, the galvanized layer, and the alloyed galvanized layer will be described.
- the base steel sheet of the high-strength hot-dip galvanized steel sheet of the present invention is C: 0.05 to 0.15%, Si: 0.01 to 1.00%, Mn: 1.5 to 4.% by mass. 0%, P: 0.100% or less, S: 0.02% or less, Al: 0.01 to 0.50%, Cr: 0.010 to 2.000%, Nb: 0.005 to 0.100 %, Ti: 0.005 to 0.100%, B: 0.0005 to 0.0050%, the balance is Fe and inevitable impurities, and K represented by the specific formula (I) is 3.
- the component composition is 0 or more.
- % means the mass%.
- C 0.05 to 0.15% C is an element necessary for generating martensite and increasing TS. If the amount of C is less than 0.05%, the strength of martensite is low and TS does not exceed 1180 MPa. On the other hand, when the amount of C exceeds 0.15%, bending workability and spot weldability deteriorate. Therefore, the C content is 0.05 to 0.15%, preferably 0.06 to 0.12%.
- Si 0.01 to 1.00% Si is an element effective for increasing TS by solid solution strengthening of steel. In order to obtain such effects, the Si amount needs to be 0.01% or more. On the other hand, when the amount of Si exceeds 1.00%, the plating property and spot weldability are deteriorated. Therefore, the Si content is 0.01 to 1.00%, preferably 0.01 to 0.80%, more preferably 0.01 to 0.60%.
- Mn 1.5 to 4.0%
- Mn is an element that raises TS by solid-solution strengthening steel, suppresses ferrite transformation and bainite transformation, generates martensite, and raises YS and TS. In order to acquire such an effect, it is necessary to make Mn amount 1.5% or more. On the other hand, when the amount of Mn exceeds 4.0%, the increase of inclusions becomes remarkable, which causes a reduction in steel cleanliness and impact resistance. Therefore, the amount of Mn is 1.5 to 4.0%, preferably 1.8 to 3.5%, more preferably 2.0 to 3.0%.
- P 0.100% or less P lowers impact resistance by grain boundary segregation and degrades spot weldability. For this reason, it is desirable to reduce the amount of P as much as possible.
- the amount of P should just be 0.100% or less from the surface of manufacturing cost.
- the lower limit is not particularly defined, but if the P amount is made less than 0.001%, the production efficiency is lowered, so the P amount is preferably 0.001% or more.
- S 0.02% or less S is present as inclusions such as MnS and degrades spot weldability. For this reason, it is preferable to reduce the amount of S as much as possible.
- the amount of S should just be 0.02% or less from the surface of manufacturing cost.
- the lower limit is not particularly defined, but if the S amount is made less than 0.0005%, the production efficiency is lowered, so the S amount is preferably 0.0005% or more.
- Al acts as a deoxidizer and is preferably added in the deoxidation step. In order to obtain such effects, the Al amount needs to be 0.01% or more. On the other hand, if the Al content exceeds 0.50%, the risk of slab cracking during continuous casting increases. Therefore, the Al content is set to 0.01 to 0.50%.
- Cr 0.010 to 2.000% Cr is an element that suppresses ferrite transformation and bainite transformation to generate martensite and raise TS. In order to obtain such an effect, the Cr amount needs to be 0.010% or more. On the other hand, if the Cr content exceeds 2.000%, the effect is saturated without further increase, and the manufacturing cost increases. Therefore, the Cr content is 0.010 to 2.000%, preferably 0.010 to 1.500%, more preferably 0.010 to 1.000%.
- Nb 0.005 to 0.100%
- Nb is an element effective in suppressing recrystallization of ferrite during annealing and refining crystal grains.
- the Nb amount needs to be 0.005% or more.
- the Nb content is 0.005 to 0.100%, preferably 0.010 to 0.080%, more preferably 0.010 to 0.060%.
- Ti 0.005 to 0.100%
- Ti is an element effective in suppressing recrystallization of ferrite during annealing and refining crystal grains. In order to obtain such an effect, the Ti amount needs to be 0.005% or more. On the other hand, if the amount of Ti exceeds 0.100%, the effect is saturated without further increase, and the manufacturing cost is increased. Therefore, the Ti content is 0.005 to 0.100%, preferably 0.010 to 0.080%, more preferably 0.010 to 0.060%.
- B 0.0005 to 0.0050%
- B is an element effective in suppressing marine nucleation of ferrite and bainite from grain boundaries and obtaining martensite.
- the B amount needs to be 0.0005% or more.
- the B content is 0.0005 to 0.0050%, preferably 0.0015 to 0.0050%, more preferably 0.0020 to 0.0050%.
- K is an equation obtained empirically as an index for maintaining the martensite connection in the structure and making the ratio of the massive martensite adjacent to the bainite to the entire structure 10% or less. If K is less than 3.0, massive martensite adjacent only to bainite increases and bending workability deteriorates. Therefore, K is 3.0 or more, preferably 3.2 or more.
- [Si] is the Si content [mass%]
- [Mn] is the Mn content [mass%]
- [Cr] is the Cr content [mass%]
- [B ] Is a B content [% by mass].
- the base steel sheet may contain the following optional components.
- Mo at least one selected from 0.005 to 2.000%, V: 0.005 to 2.000%, Ni: 0.005 to 2.000%, Cu: 0.005 to 2.000%
- Mo , V, Ni, and Cu are elements that generate a low-temperature transformation phase such as martensite and contribute to high strength.
- the content of at least one element selected from Mo, V, Ni, and Cu needs to be 0.005% or more.
- the contents of Mo, V, Ni, and Cu are each 0.005 to 2.000%.
- Ca and REM are both effective elements for improving workability by controlling the form of sulfide. It is. In order to obtain such an effect, the content of at least one element selected from Ca and REM needs to be 0.001% or more. On the other hand, if the content of either Ca or REM exceeds 0.005%, the cleanliness of the steel may be adversely affected and the properties may be reduced. Therefore, the Ca and REM contents are set to 0.001% to 0.005%.
- the structure of the base steel sheet (sometimes referred to as “microstructure”) is ferrite in an area ratio of 10% or less, Bain Including tick ferrite: 2-30%, martensite: 60-98%, the proportion of retained austenite determined by X-ray diffraction method is less than 2%, and the average grain size of martensite adjacent to bainite is 15 ⁇ m
- the ratio of the bulk martensite adjacent to only bainite in the entire structure is 10% or less, and the value obtained by subtracting the Vickers hardness at a position of 20 ⁇ m from the Vickers hardness at a position of 100 ⁇ m from the steel sheet surface ( ⁇ Hv ) Is 30 or more.
- the reasons for limitation are as follows.
- the area ratio of ferrite is 10% or less, preferably 5% or less, more preferably 2% or less.
- Area ratio of bainitic ferrite 2-30% Bainitic ferrite is effective in improving the bending workability of steel without greatly reducing strength and impact resistance. If the area ratio of bainitic ferrite is less than 2%, such an effect cannot be sufficiently obtained. On the other hand, when the area ratio of bainitic ferrite exceeds 30%, it becomes difficult to make TS 1180 MPa or more. Therefore, the area ratio of bainitic ferrite is 2 to 30%, preferably 5 to 30%, more preferably 10 to 25%.
- Martensite area ratio 60-98%
- the area ratio of martensite is 60 to 98%, preferably 70 to 95%, more preferably 70 to 90%.
- Area ratio of retained austenite less than 2% Residual austenite undergoes martensitic transformation after processing and is significantly harder than other phases. For this reason, the retained austenite tends to become a crack starting point or a crack extension path in the dynamic deformation of the steel sheet generated at the time of automobile collision or the like, and the amount thereof is preferably small.
- the area ratio of retained austenite is 2% or more, the impact resistance deteriorates. Therefore, the area ratio of retained austenite is less than 2%, preferably less than 1%.
- Average grain size of massive martensite adjacent to bainite 15 ⁇ m or less
- this mechanism is not clear, it is presumed as follows. Since bainite has a lower strength than martensite, it is considered that bainite is likely to become a starting point and propagation path of cracks in the dynamic deformation of a steel sheet that occurs during an automobile collision. Decreasing the crystal grain size of massive martensite adjacent to bainite increases the propagation path of cracks leading to bainite or leading to bainite, so that the collision energy is dispersed and larger collision energy can be absorbed. Presumed to be.
- the average crystal grain size of the massive martensite adjacent to bainite exceeds 15 ⁇ m, the above impact resistance cannot be sufficiently obtained. Therefore, the average crystal grain size of massive martensite adjacent to bainite is 15 ⁇ m or less, preferably 10 ⁇ m or less.
- the lower limit of the average crystal grain size is not particularly defined, but the average crystal grain size is about 1 ⁇ m or more.
- the ratio of massive martensite adjacent to only bainite in the total structure 10% or less
- the isolated massive martensite whose only adjacent phase is composed only of bainite is deteriorated in bending workability. Much. Although this mechanism is not clear, it is presumed as a mechanism that microcracks are likely to occur at the interface between bainite and martensite due to non-uniform stress distribution. If the ratio of the massive martensite whose adjacent phase consists only of bainite (the ratio calculated from the area ratio) exceeds 10%, sufficient bending workability cannot be obtained.
- the ratio of the massive martensite composed of only bainite in the adjacent phase to the entire structure is 10% or less, preferably 5% or less, more preferably 3% or less.
- the massive martensite is martensite including prior austenite grain boundaries, and does not include island martensite isolated in one bainitic ferrite.
- the bainite in the present invention is a structure composed of bainitic ferrite and island martensite or carbide having uniform orientation.
- pearlite may be included as a phase other than ferrite, bainitic ferrite, martensite, and retained austenite.
- the object of the present invention can be achieved if the above-mentioned microstructure conditions are satisfied.
- the area ratio is the ratio of the area of each phase to the observation area.
- the area ratio of each phase is obtained by polishing a cross section perpendicular to the surface of the steel sheet, corroding with 3% nital, and photographing the position of the plate thickness 1 ⁇ 4 with SEM (scanning electron microscope) at a magnification of 1500 times, From the obtained image data, the area ratio of each phase was determined using Image-Pro manufactured by Media Cybernetics, and the average area ratio of the three fields of view was defined as the area ratio of each phase.
- ferrite can be distinguished as black, bainitic ferrite as black including island martensite, gray including carbide, and martensite as white.
- the method for measuring the area ratio of retained austenite is as follows. After polishing the steel plate to a thickness of 1/4 position and further polishing 0.1 mm by chemical polishing, using the K ⁇ ray of Mo with an X-ray diffractometer, (200), (220), (311) of fcc iron ) Surface and bcc iron's (200), (211), (220) surface integral intensities are measured, and the intensity ratio of the integrated reflection intensity from each surface of fcc iron to the integrated reflection intensity from each surface of bcc iron is obtained. This was defined as the area ratio of retained austenite.
- the average crystal grain size of martensite adjacent to bainite is the sum of the areas of the martensite in the field of view for the image data obtained for the area ratio of each phase. By dividing by the number of sites, the average area of the martensite was obtained, and the 1/2 power was taken as the average crystal grain size (equivalent to one side of a square (square approximation)).
- the martensite grains are crystal grain boundaries with prior austenite grain boundaries or other structures, and the packet and block boundaries are not grain boundaries.
- the zinc plating layer is a layer containing Zn as a main component.
- the alloyed galvanized layer is a layer mainly containing an Fe—Zn alloy formed by diffusing Fe in steel during galvanization by an alloying reaction.
- the galvanized layer and the alloyed galvanized layer include Fe, Al, Sb, Pb, Bi, Mg, Ca, Be, Ti, Cu, Ni, Co, Cr, Mn, P, B, Sn, Zr. , Hf, Sr, V, Se, and REM may be included as long as the effects of the present invention are not impaired.
- the preferable manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention includes a hot rolling process, a cold rolling process, an annealing process, a cooling process, and a galvanizing process.
- a hot rolling process a hot rolling process, a cold rolling process, an annealing process, a cooling process, and a galvanizing process.
- Hot-rolling process is the finish rolling of the slab under the condition that the rolling reduction of the final finishing pass is 10% or more and the temperature is 850 to 950 ° C, and the total residence time at 600 to 700 ° C is 10 seconds. This is a step of cooling to below and winding at a temperature of 450 to 600 ° C.
- a slab having the component composition of the base steel sheet is manufactured.
- the slab is preferably produced by a continuous casting method in order to prevent macro segregation.
- the slab can be manufactured by a method other than the continuous casting method, and other methods such as an ingot-making method and a thin slab casting method may be employed.
- steel may be melted and cast, and then slabs may be manufactured by performing ingot rolling.
- the slab is hot rolled.
- the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
- heating the slab it is preferable to heat to 1100 ° C. or higher in order to dissolve carbides and prevent an increase in rolling load. In order to prevent an increase in scale loss, the heating temperature of the slab is preferably 1300 ° C. or lower.
- the rough bar after rough rolling may be heated from the viewpoint of preventing troubles during rolling while lowering the heating temperature of the slab. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied.
- the finish rolling conditions are such that the final finishing pass rolling reduction is 10% or more and the temperature (finish rolling temperature) is 850 to 950 ° C. Further, the steel sheet is cooled so that the total residence time at 600 to 700 ° C. after finish rolling is 10 seconds or less, and wound at a temperature of 450 to 600 ° C. or less.
- the rolling reduction of the final finishing pass is 10% or more. Further, from the viewpoint of suppressing stretched grains, the rolling reduction is preferably 50% or less.
- the finish rolling temperature in the final finishing pass is set to 850 to 950 ° C.
- the total residence time at 600 to 700 ° C. is 10 seconds or less, preferably 8 seconds or less.
- the coiling temperature is 600 ° C. or higher, a compound containing B such as B carbide is generated, the amount of dissolved B in the steel is reduced, the effect of B during annealing is reduced, and the structure of the present invention cannot be obtained.
- the coiling temperature is less than 450 ° C., the supply of oxygen to the steel sheet surface is suppressed, carbon dilution near the surface is suppressed, and the hardness difference ⁇ Hv near the surface after annealing is less than 30 to bend. Workability deteriorates. Accordingly, the coiling temperature is 450 to less than 600 ° C., preferably 500 to less than 600 ° C.
- the hot-rolled sheet after winding is used in the following cold rolling process after the scale is removed by pickling or the like.
- the cold rolling step is a step of cold rolling the hot rolled sheet after the hot rolling step at a rolling reduction exceeding 20%.
- the rolling reduction of cold rolling exceeds 20%, preferably 30% or more.
- the upper limit is not particularly specified, but is preferably about 90% or less from the viewpoint of the stability of the shape.
- An annealing step is a condition where the dew point is ⁇ 45 to + 20 ° C. in the temperature range of 300 ° C. to the annealing temperature, the air ratio is 0.80 or more, and the average heating rate is 0.5 ° C./s or more.
- the cold-rolled sheet is heated to an annealing temperature that is an arbitrary temperature in the range of ⁇ 20 ° C. to 950 ° C. and held at the annealing temperature for 10 to 1000 seconds.
- the dew point at 300 ° C. to annealing temperature is less than ⁇ 45 ° C., oxygen is not sufficiently supplied to the steel sheet surface, carbon dilution near the surface is suppressed, and the hardness difference ⁇ Hv near the surface after annealing becomes less than 30. Bending workability deteriorates. On the other hand, when the dew point exceeds + 20 ° C., the plating property deteriorates. Therefore, the dew point at 300 ° C. to annealing temperature is ⁇ 45 to + 20 ° C., preferably ⁇ 40 to 0 ° C., more preferably ⁇ 40 to ⁇ 10 ° C.
- the air ratio from 300 ° C. to the annealing temperature is 0.80 or more. Preferably it is 0.90 or more, More preferably, it is 1.00 or more.
- An upper limit is not particularly defined, but if the air ratio exceeds 1.50, productivity is hindered, and therefore the air ratio is preferably 1.50 or less.
- the air ratio means the ratio of fuel to air, such as coke oven gas (COG), which is a by-product gas of a steel mill.
- COG coke oven gas
- the type of oxidation furnace for performing this oxidation treatment is not particularly limited, but it is preferable to use a direct-fired heating furnace equipped with a direct-fire burner.
- a direct fire burner heats a steel sheet by directly applying a burner flame, which is burned by mixing fuel such as coke oven gas (COG), which is a by-product gas of an ironworks, and air, to the surface of the steel sheet.
- COG coke oven gas
- LNG liquefied natural gas
- the average heating rate from 300 ° C. to the annealing temperature is less than 0.5 ° C./s, austenite becomes coarse and the microstructure of the present invention cannot be obtained. Therefore, the average heating rate from 300 ° C. to the annealing temperature is 0.5 ° C./s or more. Moreover, from the viewpoint of uniform particle size, the average heating rate is preferably 50 ° C./s or less.
- any temperature range of the annealing temperature is Ac3-20 °C ⁇ 950 °C, and preferably Ac 3 any temperature in the range of -10 ° C. ⁇ 900 ° C., any temperature and more preferably in the range of Ac3 ⁇ 880 ° C. To do.
- Ac 3 temperature was determined from the following equation.
- Ac 3 (° C.) 910 ⁇ 203 ⁇ [C] ⁇ 0.5 + 44.7 ⁇ [Si] ⁇ 30 ⁇ [Mn] ⁇ 11 ⁇ [Cr]
- [C], [Si], [Mn] and [Cr] are mass% of each element in the steel.
- the holding time at the annealing temperature is less than 10 seconds, austenite is not sufficiently generated, and excessive ferrite is generated, so that the microstructure of the present invention cannot be obtained.
- the holding time exceeds 1000 seconds, the austenite grains become coarse and the microstructure of the present invention cannot be obtained. Therefore, the holding time is 10 to 1000 seconds, preferably 30 to 600 seconds.
- Cooling step is to cool the cold-rolled sheet after the annealing step to a cooling stop temperature that is an arbitrary temperature in the range of 450 to 550 ° C. at an average cooling rate of 5 ° C./s or more, and 30 to 30 ° C. at that temperature. This is a step of holding for 1000 seconds.
- the average cooling rate is 5 ° C./s or more. From the viewpoint of uniform particle size, the average cooling rate is preferably 50 ° C./s or less.
- the cooling stop temperature is set to 450 to 550 ° C.
- the holding time is less than 30 seconds, bainite is not generated, and the microstructure of the present invention cannot be obtained. On the other hand, if it exceeds 1000 seconds, bainite is excessively generated and the microstructure of the present invention cannot be obtained. Therefore, the holding time is 30 to 1000 seconds, preferably 30 to 500 seconds.
- a galvanization process is a process of giving a galvanization process to the cold-rolled sheet after a cooling process.
- the galvanizing treatment is preferably performed by immersing the steel plate obtained as described above in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower, and then adjusting the plating adhesion amount by gas wiping or the like.
- a galvanizing bath having an Al content of 0.08 to 0.18%.
- the high-strength hot-dip galvanized steel sheet of the present invention may be plated by alloying hot-dip galvanizing.
- the high-strength hot-dip galvanizing of the present invention is manufactured by a method having a hot rolling process, a cold rolling process, an annealing process, a cooling process, a galvanizing process, and an alloying process.
- the hot rolling process, the cold rolling process, the annealing process, the cooling process, and the galvanizing process are as described above, and a description thereof is omitted.
- the high-strength hot-dip galvanized steel sheet is held in a temperature range of 460 ° C. or higher and 580 ° C. or lower for 1 second to 40 seconds and alloyed.
- the steel sheet after being subjected to galvanization treatment or further alloying treatment can be subjected to temper rolling for the purpose of shape correction, adjustment of surface roughness, and the like.
- temper rolling if the rolling reduction exceeds 0.5%, bending workability may be deteriorated due to hardening in the vicinity of the surface.
- the pressure regulation rate (the reduction rate in temper rolling) be 0.5% or less. More preferably, it is 0.3% or less.
- various coating treatments such as resin and oil coating can be performed.
- Annealing was performed in a laboratory under the conditions shown in Tables 2 and 3 simulating the equivalent of a continuous hot dip galvanizing line, and hot dip galvanized steel sheets and galvannealed steel sheets 1 to 42 were produced.
- the hot dip galvanized steel sheet was immersed in a plating bath at 460 ° C. to form a plating with an adhesion amount of 35 to 45 g / m 2 on the surface and then cooled at a cooling rate of 10 ° C./second.
- the alloyed hot-dip galvanized steel sheet was prepared by performing an alloying treatment at 530 ° C. after plating formation and cooling at a cooling rate of 10 ° C./second.
- the obtained steel sheet was subjected to skin pass rolling with a rolling reduction of 0.3%.
- Test specimens having a width of 10 mm and a length of 15 mm in a vertical cross section parallel to the rolling direction were sampled, and Vickers hardness tests were conducted at 20 ⁇ m and 100 ⁇ m positions from the surface layer.
- the load was 50 g, 5 points were measured at each plate thickness position, and the average value of 3 points of Vickers hardness Hv excluding the maximum value and the minimum value was taken as Vickers hardness Hv at that position.
- ⁇ Tensile test> A JIS No. 5 tensile test piece (JIS Z2201) was taken in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241 with a strain rate of 10 ⁇ 3 / s to obtain YS and TS. . YS was 0.2% proof stress.
- ⁇ Bending test> A strip-shaped test piece having a width of 35 mm and a length of 100 mm with the direction parallel to the rolling direction as the bending test axis direction was collected and subjected to a bending test.
- a 90 ° V bending test is performed under the conditions of a stroke speed of 10 mm / s, an indentation load of 10 ton, a pressing holding time of 5 seconds, and a bending radius R of 1.5 mm, and the ridge line part of the bending apex is observed with a 10 ⁇ magnifier.
- a case where a crack of 1 mm or more was observed was judged as inferior, and a crack of less than 1 mm was judged as excellent.
- ⁇ Spot welding test> The test conditions were as follows: electrode: DR 6 mm-40R, pressure: 4802N (490 kgf), initial pressurization time: 30 cycles / 60 Hz, energization time: 17 cycles / 60 Hz, holding time: 1 cycle / 60 Hz.
- the test current was changed from 4.6 to 10.0 kA at a 0.2 kA pitch for the same number of steel plates, and was changed at a 0.5 kA pitch from 10.0 kA to welding.
- Each test piece was subjected to a cross tensile test and a measurement of the nugget diameter of the weld.
- the cross tension test of the resistance spot welded joint was performed in accordance with JIS Z3137.
- the nugget diameter was implemented as follows based on the description of JIS Z 3139. With respect to the cross section perpendicular to the plate surface, the cross section passing through the approximate center of the welding point of the symmetrical circular plug after resistance spot welding was semi-cut by an appropriate method. After the cut surface was polished and corroded, the nugget diameter was measured by cross-sectional structure observation by optical microscope observation. Here, the maximum diameter of the melting region excluding the corona bond was defined as the nugget diameter.
- ⁇ Impact tensile test> A test piece having a parallel part width of 5 mm and a length of 7 mm with the direction perpendicular to the rolling direction as the tensile test direction was collected, and the strain rate was 2000 using an impact tensile tester applying the Hopkinson bar method. / S was conducted, the absorbed energy (AE) with a strain amount of up to 5% was obtained, and the impact energy absorption capacity (impact resistance) was evaluated (Japan Iron and Steel Institute “Iron and Steel” vol. 83 (1997) No. 11, pp. 748-753). The absorbed energy (AE) was obtained by integrating a stress true strain curve in the range of 0 to 5% strain. The above results are shown in Tables 4 and 5.
- the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet have excellent impact resistance such as TS of 1180 MPa or more, AE / TS of 0.050 or more, and excellent bending workability and spot weldability. Can be confirmed.
- a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that are excellent in spot weldability, impact resistance, bending workability, and the like are obtained, contributing to weight reduction of the automobile, It has an excellent effect of greatly contributing to performance.
- a high-strength hot-dip galvanized steel sheet having a TS of 1180 MPa or more and excellent in spot weldability, impact resistance and bending workability can be obtained.
- the high-strength hot-dip galvanized steel sheet of the present invention when used for automotive parts, it contributes to reducing the weight of an automobile and greatly contributes to improving the performance of an automobile body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
(上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。)
(2)さらに、質量%で、Mo:0.005~2.000%、V:0.005~2.000%、Ni:0.005~2.000%及びCu:0.005~2.000%から選ばれる少なくとも一種の元素を含有する(1)に記載のスポット溶接性、耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板。
本発明の高強度溶融亜鉛めっき鋼板の下地鋼板は、質量%で、C:0.05~0.15%、Si:0.01~1.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~0.50%、Cr:0.010~2.000%、Nb:0.005~0.100%、Ti:0.005~0.100%、B:0.0005~0.0050%を含み、残部がFeおよび不可避的不純物からなり、特定の式(I)で表されるKが3.0以上である成分組成を有する。以下、成分組成について説明する。なお、%は質量%を意味する。
Cは、マルテンサイトを生成させてTSを上昇させるために必要な元素である。C量が0.05%未満では、マルテンサイトの強度が低く、TSが1180MPa以上にならない。一方、C量が0.15%を超えると曲げ加工性やスポット溶接性が劣化する。したがって、C量は0.05~0.15%、好ましくは0.06~0.12%とする。
Siは、鋼を固溶強化してTSを上昇させるのに有効な元素である。こうした効果を得るにはSi量を0.01%以上とする必要がある。一方、Si量が1.00%を超えると、めっき性やスポット溶接性の劣化を招く。したがって、Si量は0.01~1.00%、好ましくは0.01~0.80%、より好ましくは0.01~0.60%とする。
Mnは、鋼を固溶強化してTSを上昇させたり、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させてYSやTSを上昇させたりする元素である。こうした効果を得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が4.0%を超えると、介在物の増加が顕著になり、鋼の清浄度や耐衝撃性低下の原因となる。したがって、Mn量は1.5~4.0%、好ましくは1.8~3.5%、より好ましくは2.0~3.0%とする。
Pは、粒界偏析により耐衝撃性を低下させ、スポット溶接性を劣化させる。このため、P量は極力低減することが望ましい。製造コストの面などからP量は0.100%以下であればよい。下限は特に規定しないが、P量を0.001%未満にしようとすると生産能率の低下を招くため、P量は0.001%以上が好ましい。
Sは、MnSなどの介在物として存在して、スポット溶接性を劣化させる。このため、S量は極力低減することが好ましい。製造コストの面からS量は0.02%以下であればよい。下限は特に規定しないが、S量を0.0005%未満にしようとすると生産能率の低下を招くため、S量は0.0005%以上が好ましい。
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が0.50%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.01~0.50%とする。
Crは、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させ、TSを上昇させる元素である。こうした効果を得るには、Cr量を0.010%以上にする必要がある。一方、Cr量が2.000%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストが上昇する。したがって、Cr量は0.010~2.000%、好ましくは0.010~1.500%、より好ましくは0.010~1.000%とする。
Nbは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化するのに有効な元素である。こうした効果を得るには、Nb量を0.005%以上にする必要がある。一方、Nb量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Nb量は0.005~0.100%、好ましくは0.010~0.080%、より好ましくは0.010~0.060%とする。
Tiは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化させるのに有効な元素である。こうした効果を得るには、Ti量を0.005%以上にする必要がある。一方、Ti量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Ti量は0.005~0.100%、好ましくは0.010~0.080%、より好ましくは0.010~0.060%とする。
Bは、粒界からのフェライトおよびベイナイトの核生成を抑制し、マルテンサイトを得るのに有効な元素である。こうした効果を十分に得るには、B量を0.0005%以上にする必要がある。一方、B量が0.0050%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、B量は0.0005~0.0050%、好ましくは0.0015~0.0050%、より好ましくは0.0020~0.0050%とする。
Kは、K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B]の式(I)で表される。Kは、組織がマルテンサイトの連結を保ち、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合を10%以下とするための指標として経験的に得た式である。Kが3.0未満では、ベイナイトのみに隣接する塊状マルテンサイトが増大して曲げ加工性が劣化する。したがって、Kは3.0以上、好ましくは3.2以上とする。なお、上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。
残部はFeおよび不可避的不純物である。以上が高強度溶融亜鉛めっき鋼板の下地鋼板の必須成分である。本発明においては、下地鋼板が以下の任意成分を含んでもよい。
Mo、V、Ni、Cuはマルテンサイト等の低温変態相を生成させ高強度化に寄与する元素である。こうした効果を得るには、Mo、V、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%以上にする必要がある。一方、Mo、V、Ni、Cuのいずれかの含有量が2.000%を超えると、その効果が高まることなく飽和するとともに、製造コストを上昇させる。したがって、Mo、V、Ni、Cuの含有量はそれぞれ0.005~2.000%とする。
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。こうした効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上とする必要がある。一方、Ca、REMのいずれかの含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼし特性が低下するおそれがある。したがって、Ca、REMの含有量は0.001%~0.005%とする。
フェライトの面積率が10%を超えると、TSが1180MPa以上と耐衝撃性の両立が困難になる。したがって、フェライトの面積率は10%以下、好ましくは5%以下、より好ましくは2%以下とする。
ベイニティックフェライトは、強度や耐衝撃性を大きく低下させずに鋼の曲げ加工性を向上させるのに有効である。ベイニティックフェライトの面積率が2%未満ではこうした効果が十分に得られない。一方、ベイニティックフェライトの面積率が30%を超えるとTSを1180MPa以上にすることが困難となる。したがって、ベイニティックフェライトの面積率は2~30%、好ましくは5~30%、より好ましくは10~25%とする。
マルテンサイトの面積率が60%未満では、TSが1180MPa以上と耐衝撃性の両立が困難になる。一方、マルテンサイトの面積率が98%を超えると、曲げ加工性が劣化する。したがって、マルテンサイトの面積率は60~98%、好ましくは70~95%、より好ましくは70~90%とする。
残留オーステナイトは、加工後にマルテンサイト変態し、他相に比べて著しく硬い。このため、残留オーステナイトは、自動車の衝突時等に生じる鋼板の動的変形において、亀裂の起点や亀裂伸展のパスになりやすく、その量は小さいことが好ましい。残留オーステナイトの面積率が2%以上では、耐衝撃性が劣化する。したがって、残留オーステナイトの面積率は2%未満、好ましくは1%未満とする。
本発明ではベイナイトに隣接する塊状マルテンサイトを微細化することが、耐衝撃性を確保する上で重要である。このメカニズムは明らかではないが次のように推測される。ベイナイトはマルテンサイトに比べて強度が低いため、自動車の衝突時等に生じる鋼板の動的変形において亀裂の起点や伝播経路になりやすいと考えられる。ベイナイトに隣接する塊状マルテンサイトの結晶粒径を小さくすると、ベイナイト起点で生じる、或いはベイナイトにいたる亀裂の伝播経路が増大することで、衝突エネルギーが分散されて、より大きな衝突エネルギーが吸収可能になるものと推測される。ベイナイトに隣接する塊状マルテンサイトの平均結晶粒径が15μmを超えると、上記の耐衝撃性が十分に得られない。したがって、ベイナイトに隣接する塊状マルテンサイトの平均結晶粒径は15μm以下、好ましくは10μm以下とする。平均結晶粒径の下限は特に規定しないが、上記平均結晶粒径はおよそ1μm以上である。
本発明のようにマルテンサイトを主体とする組織において隣接相がベイナイトのみからなる孤立した塊状マルテンサイトは曲げ加工性の劣化をまねく。このメカニズムは明らかではないが、応力分配の不均一によりベイナイトとマルテンサイトの界面でマイクロクラックが発生しやすくなることなどがメカニズムとして推測される。隣接相がベイナイトのみからなる塊状マルテンサイトの割合(面積率から算出した割合)が10%を超えると十分な曲げ加工性が得られない。したがって、隣接相がベイナイトのみからなる塊状マルテンサイトの全組織に占める割合は10%以下、好ましくは5%以下、より好ましくは3%以下とする。なお、上記塊状マルテンサイトとは、旧オーステナイト粒界を含むマルテンサイトであり、一つのベイニティックフェライト中に孤立する島状マルテンサイトは含まない。また、本発明におけるベイナイトとはベイニティックフェライトと島状マルテンサイトまたは方位のそろった炭化物からなる組織である。
鋼板表面から100μm位置のビッカース硬度(Hv100)と、鋼板表面から20μm位置のビッカース硬度(Hv20)との差(Hv100-Hv20)である△Hvが30未満では曲げ加工性が劣化する。このメカニズムは明らかではないが、次のように推測される。曲げ加工の際、亀裂が確認され始めるのは鋼板表面から100μm程度の深さまで亀裂が伸展した時である。したがって、微小亀裂の抑制にあたっては鋼板の平均の特性に加えて、鋼板表面から100μm以内の特性の制御が重要であると考えられる。曲げ加工の際は鋼板の表面から内部にかけてひずみ勾配が生じる。あらかじめ鋼板表面近傍に逆の強度勾配(ひずみの大きい表層ほど低強度)を与えることで、亀裂の発生および伝播が抑制されるものと考えられる。この強度勾配を、上記△Hvで表し、△Hvを30以上とすることで曲げ加工性が向上する。上限は特に規定しないが、本発明では上記△Hvはおよそ100以下である。
亜鉛めっき層は、Znを主体として含む層である。合金化亜鉛めっき層とは、合金化反応によって亜鉛めっき中に鋼中のFeが拡散してできたFe-Zn合金を主体として含む層である。
以下、本発明の高強度溶融亜鉛めっき鋼板の製造方法について、好ましい製造方法、好ましい製造条件を説明する。本発明の高強度溶融亜鉛めっき鋼板の好ましい製造方法は、熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程を有する。以下、これらの各工程について説明する。
熱延工程とは、スラブを、最終仕上げパスの圧下率が10%以上、温度が850~950℃の条件で仕上げ圧延し、次いで600~700℃での滞留時間の総計が10秒以下となるように冷却し、450~600℃未満の温度で巻き取る工程である。
冷延工程とは、熱延工程後の熱延板を、20%超えの圧下率で冷間圧延する工程である。圧下率が20%以下では、粗大粒が生成して耐衝撃性を劣化させる。したがって、冷間圧延の圧下率は20%超え、好ましくは30%以上とする。なお、上限は特に規定しないが、形状の安定性等の観点から90%以下程度が好ましい。
焼鈍工程とは、300℃~焼鈍温度の温度域において露点が-45~+20℃、空気比が0.80以上の雰囲気、平均加熱速度が0.5℃/s以上の条件で、Ac3-20℃~950℃の範囲の任意の温度である焼鈍温度まで冷延板を加熱し、焼鈍温度で10~1000秒保持する工程である。
Ac3(℃)=910-203×[C]^0.5+44.7×[Si]-30×[Mn]-11×[Cr]
ここで、[C]、[Si]、[Mn]および[Cr]は鋼中の各元素の質量%である。
冷却工程とは、焼鈍工程後の冷延板を、5℃/s以上の平均冷却速度で450~550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で30~1000秒保持する工程である。
亜鉛めっき工程とは、冷却工程後の冷延板に亜鉛めっき処理を施す工程である。亜鉛めっき処理は、上記により得られた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、その後、ガスワイピングなどによってめっき付着量を調整して行うことが好ましい。なお、亜鉛めっき処理においては、Al量が0.08~0.18%である亜鉛めっき浴を用いることが好ましい。
本発明の高強度溶融亜鉛めっき鋼板におけるめっきは、合金化溶融亜鉛めっきでもよい。この場合、本発明の高強度溶融亜鉛めっきは、熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程、合金化工程を有する方法で製造される。熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程については上記の通りであり、説明を省略する。
亜鉛めっき処理、あるいはさらに、合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。ただし、調質圧延は圧下率が0.5%を超えると表面近傍の硬化により曲げ加工性が劣化することがある。このため、調圧率(調質圧延での圧下率)は0.5%以下にすることが好ましい。より好ましくは0.3%以下である。また、亜鉛めっき工程、あるいはさらに、合金化工程の後に、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
圧延方向に対して平行な垂直断面において幅が10mm、長さが15mmの試験片を採取し、表層から20μmおよび100μm位置について、ビッカース硬度試験を行った。荷重は50gとし、各板厚位置で5点測定し、最大値と最小値を除いた3点のビッカース硬度Hvの平均値を、その位置におけるビッカース硬度Hvとした。
圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、YSおよびTSを求めた。YSは0.2%耐力とした。
圧延方向に対して平行方向を曲げ試験軸方向とする、幅が35mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が10mm/s、押込み荷重が10ton、押付け保持時間5秒、曲げ半径Rが1.5mmの条件で90°V曲げ試験を行い、曲げ頂点の稜線部を10倍の拡大鏡で観察し、1mm以上の亀裂が認められたものを劣、亀裂が1mm未満のものを優として判定した。
試験条件は、電極:DR6mm-40R、加圧力:4802N(490kgf)、初期加圧時間:30cycles/60Hz、通電時間:17cycles/60Hz、保持時間:1cycle/60Hzとした。試験電流は同一番号の鋼板に対し、4.6~10.0kAまで0.2kAピッチで変化させ、また10.0kAから溶着までは0.5kAピッチで変化させた。各試験片は、十字引張り試験、溶接部のナゲット径の測定に供した。抵抗スポット溶接継手の十字引張り試験はJIS Z3137の規定に準拠して行った。ナゲット径はJIS Z 3139の記載に準拠して以下のように実施した。抵抗スポット溶接後の対称円状のプラグを、板表面に垂直な断面について、溶接点のほぼ中心を通る断面を適当な方法で半切断した。切断面を研磨、腐食した後、光学顕微鏡観察による断面組織観察によりナゲット径を測定した。ここで、コロナボンドを除いた溶融領域の最大直径をナゲット径とした。ナゲット径が4t1/2(mm)(t:鋼板の板厚)以上の溶接材において十字引張り試験を行った際、母材で破断した場合を優、ナゲット破断した場合を劣として判定した。
圧延方向に対して直角方向を引張試験方向とする、平行部の幅が5mm、長さが7mmの試験片を採取し、ホプキンソン棒法を応用した衝撃引張試験機を用いて、ひずみ速度が2000/sで引張試験を行い、ひずみ量が5%までの吸収エネルギー(AE)を求めて、衝突エネルギー吸収能(耐衝撃性)を評価した(一般社団法人日本鉄鋼協会「鉄と鋼」vol.83(1997)No.11,p.748-753、参照)。なお、上記吸収エネルギー(AE)は、応力真ひずみ曲線を、ひずみ量が0~5%の範囲を積分することにより求めた。以上の結果を表4、5に示す。
Claims (6)
- 質量%で、C:0.05~0.15%、Si:0.01~1.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~0.50%、Cr:0.010~2.000%、Nb:0.005~0.100%、Ti:0.005~0.100%、B:0.0005~0.0050%を含み、残部がFeおよび不可避的不純物からなり、下記式(I)で表されるKが3.0以上となる成分組成を有し、
鋼板表面に垂直な断面の板厚4分の1位置の組織観察において、面積率でフェライト:10%以下、ベイニティックフェライト:2~30%、マルテンサイト:60~98%を含み、X線回折法により求めた残留オーステナイトの割合が2%未満であり、かつベイナイトに隣接するマルテンサイトの平均結晶粒径が15μm以下であり、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合が10%以下であり、鋼板表面から100μmの位置でのビッカース硬度から20μmの位置でのビッカース硬度を差し引いた値(△Hv)が30以上である組織を有する高強度溶融亜鉛めっき鋼板。
K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
(上記式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。) - さらに、質量%で、Mo:0.005~2.000%、V:0.005~2.000%、Ni:0.005~2.000%及びCu:0.005~2.000%から選ばれる少なくとも一種の元素を含有する請求項1に記載の高強度溶融亜鉛めっき鋼板。
- さらに、質量%で、Ca:0.001~0.005%及びREM:0.001~0.005%から選ばれる少なくとも一種の元素を含有する請求項1又は2に記載の高強度溶融亜鉛めっき鋼板。
- 前記溶融亜鉛めっきは合金化溶融亜鉛めっきである請求項1から3のいずれかに記載の高強度溶融亜鉛めっき鋼板。
- 請求項1から3のいずれかに記載の成分組成を有するスラブを熱間圧延する際に、最終仕上げパスの圧下率が10%以上、温度が850~950℃の条件で仕上げ圧延し、次いで600~700℃での滞留時間の総計が10秒以下となるように冷却し、450~600℃未満の温度で巻き取る熱延工程と、
前記熱延工程後に熱延板を、20%超えの圧下率で冷間圧延する冷延工程と、
前記冷延工程後に冷延板を、300℃~焼鈍温度の温度域において露点が-45~+20℃、空気比が0.80以上の雰囲気、平均加熱速度が0.5℃/s以上の条件で、Ac3-20℃~950℃の範囲の任意の温度である焼鈍温度まで加熱し、焼鈍温度で10~1000秒保持する焼鈍工程と、
前記焼鈍工程後の冷延板を、5℃/s以上の平均冷却速度で450~550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で30~1000秒保持する冷却工程と、
前記冷却工程後の冷延板に亜鉛めっき処理を施す亜鉛めっき工程と、を有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。 - 請求項5に記載の方法で製造された高強度溶融亜鉛めっき鋼板に合金化処理を施す合金化工程を有する高強度溶融亜鉛めっき鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2016007954A MX2016007954A (es) | 2013-12-18 | 2014-12-16 | Lamina de acero galvanizada de alta resistencia y metodo para la fabricacion de la misma. |
JP2015512944A JP5858199B2 (ja) | 2013-12-18 | 2014-12-16 | 高強度溶融亜鉛めっき鋼板及びその製造方法 |
US15/104,718 US10590503B2 (en) | 2013-12-18 | 2014-12-16 | High-strength galvanized steel sheet and method for manufacturing the same |
KR1020167019385A KR101813974B1 (ko) | 2013-12-18 | 2014-12-16 | 고강도 용융 아연 도금 강판 및 그의 제조 방법 |
CN201480068119.0A CN105814227B (zh) | 2013-12-18 | 2014-12-16 | 高强度热浸镀锌钢板及其制造方法 |
EP14871692.1A EP3054025B1 (en) | 2013-12-18 | 2014-12-16 | High-strength galvanized steel sheet and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-260988 | 2013-12-18 | ||
JP2013260988 | 2013-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093043A1 true WO2015093043A1 (ja) | 2015-06-25 |
Family
ID=53402411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/006259 WO2015093043A1 (ja) | 2013-12-18 | 2014-12-16 | 高強度溶融亜鉛めっき鋼板及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10590503B2 (ja) |
EP (1) | EP3054025B1 (ja) |
JP (1) | JP5858199B2 (ja) |
KR (1) | KR101813974B1 (ja) |
CN (1) | CN105814227B (ja) |
MX (1) | MX2016007954A (ja) |
WO (1) | WO2015093043A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017108251A1 (en) | 2015-12-21 | 2017-06-29 | Voestalpine Stahl Gmbh | High strength galvannealed steel sheet and method of producing such steel sheet |
JP6323618B1 (ja) * | 2017-01-06 | 2018-05-16 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
WO2018127984A1 (ja) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
KR20180095698A (ko) * | 2016-01-27 | 2018-08-27 | 제이에프이 스틸 가부시키가이샤 | 고항복비형 고강도 아연 도금 강판 및 그의 제조 방법 |
KR20180119638A (ko) * | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
KR20180119618A (ko) * | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
EP3409808A4 (en) * | 2016-01-27 | 2019-01-02 | JFE Steel Corporation | High-yield ratio high-strength galvanized steel sheet, and method for producing same |
JP2019502819A (ja) * | 2015-12-15 | 2019-01-31 | ポスコPosco | 化成処理性及び穴拡げ性に優れた超高強度鋼板及びその製造方法 |
JP2019167559A (ja) * | 2018-03-22 | 2019-10-03 | 日本製鉄株式会社 | 高強度鋼板用スラブの冷却方法、高強度熱延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2019533083A (ja) * | 2016-09-26 | 2019-11-14 | ポスコPosco | 耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板、熱間成形部材及びその製造方法 |
JP2020509183A (ja) * | 2016-12-19 | 2020-03-26 | ポスコPosco | 曲げ加工性に優れた超高強度鋼板及びその製造方法 |
WO2020090302A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法 |
WO2024128312A1 (ja) * | 2022-12-15 | 2024-06-20 | 日本製鉄株式会社 | 鋼板および鋼板の製造方法 |
JP7528267B2 (ja) | 2020-05-27 | 2024-08-05 | 宝山鋼鉄股▲分▼有限公司 | 超高張力二相鋼およびその製造方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102206448B1 (ko) | 2016-08-10 | 2021-01-21 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 그의 제조 방법 |
US10711323B2 (en) | 2016-08-10 | 2020-07-14 | Jfe Steel Corporation | Steel sheet, and production method therefor |
EP3467134B1 (en) * | 2016-08-10 | 2020-11-18 | JFE Steel Corporation | High-strength thin steel sheet and method for manufacturing same |
EP3473741B1 (en) | 2016-08-30 | 2020-05-13 | JFE Steel Corporation | Thin steel sheet and process for producing same |
CN109689910B (zh) * | 2016-09-13 | 2021-08-27 | 日本制铁株式会社 | 钢板 |
CN108396220A (zh) * | 2017-02-05 | 2018-08-14 | 鞍钢股份有限公司 | 一种高强高韧性镀锌钢板及其制造方法 |
WO2018146828A1 (ja) | 2017-02-10 | 2018-08-16 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
CN110268084B (zh) * | 2017-02-13 | 2021-05-25 | 杰富意钢铁株式会社 | 冷轧钢板及其制造方法 |
KR102336669B1 (ko) * | 2017-04-21 | 2021-12-07 | 닛폰세이테츠 가부시키가이샤 | 고강도 용융 아연 도금 강판 및 그 제조 방법 |
JP6443594B1 (ja) * | 2017-10-20 | 2018-12-26 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
CN112513311B (zh) * | 2018-07-31 | 2022-06-03 | 杰富意钢铁株式会社 | 薄钢板及其制造方法 |
MX2021001956A (es) * | 2018-08-22 | 2021-04-28 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para la fabricacion de la misma. |
EP3825432B1 (en) | 2018-08-22 | 2023-02-15 | JFE Steel Corporation | High-strength steel sheet and method for manufacturing same |
WO2020104437A1 (en) * | 2018-11-19 | 2020-05-28 | Ssab Technology Ab | High strength steel product and method of manufacturing the same |
CN113227429B (zh) * | 2018-12-26 | 2023-02-07 | 杰富意钢铁株式会社 | 高强度热浸镀锌钢板及其制造方法 |
WO2020136988A1 (ja) | 2018-12-26 | 2020-07-02 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
MX2021007806A (es) | 2018-12-26 | 2021-08-11 | Jfe Steel Corp | Lamina de acero galvanizada por inmersion en caliente de alta resistencia y metodo de fabricacion de la misma. |
EP3943624A4 (en) * | 2019-03-22 | 2023-08-02 | Nippon Steel Corporation | HIGH STRENGTH STEEL PLATE AND METHOD OF PRODUCTION THEREOF |
CN113614256B (zh) * | 2019-04-11 | 2023-03-21 | 日本制铁株式会社 | 钢板及其制造方法 |
US20230002846A1 (en) * | 2019-12-19 | 2023-01-05 | Nippon Steel Corporation | Steel sheet and manufacturing method thereof |
KR20210080670A (ko) * | 2019-12-20 | 2021-07-01 | 주식회사 포스코 | 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법 |
CN114945695B (zh) * | 2020-01-16 | 2023-08-18 | 日本制铁株式会社 | 热冲压成形体 |
EP4074847B1 (en) * | 2020-02-13 | 2024-06-12 | JFE Steel Corporation | High-strength steel sheet and method for producing same |
WO2021176249A1 (en) * | 2020-03-02 | 2021-09-10 | Arcelormittal | High strength cold rolled and galvannealed steel sheet and manufacturing process thereof |
US20230313332A1 (en) * | 2020-08-31 | 2023-10-05 | Baoshan Iron & Steel Co., Ltd. | High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor |
JP7417169B2 (ja) * | 2020-09-11 | 2024-01-18 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
CN117136250A (zh) * | 2021-04-02 | 2023-11-28 | 日本制铁株式会社 | 钢板及其制造方法 |
DE102022132188A1 (de) | 2022-12-05 | 2024-06-06 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines hochfesten Stahlflachproduktes mit einem Mehrphasengefüge und entsprechendes hochfestes Stahlflachprodukt |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007009317A (ja) * | 2005-05-31 | 2007-01-18 | Jfe Steel Kk | 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法 |
JP2010070843A (ja) * | 2008-08-19 | 2010-04-02 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010275628A (ja) * | 2009-04-28 | 2010-12-09 | Jfe Steel Corp | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010275600A (ja) * | 2009-05-29 | 2010-12-09 | Jfe Steel Corp | 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013108154A (ja) * | 2011-11-24 | 2013-06-06 | Nippon Steel & Sumitomo Metal Corp | 溶融亜鉛めっき鋼板およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4258215B2 (ja) | 2002-12-27 | 2009-04-30 | Jfeスチール株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
JP5194878B2 (ja) * | 2007-04-13 | 2013-05-08 | Jfeスチール株式会社 | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
US20100218857A1 (en) | 2007-10-25 | 2010-09-02 | Jfe Steel Corporation | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
EP2123786A1 (fr) * | 2008-05-21 | 2009-11-25 | ArcelorMittal France | Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites |
JP5438302B2 (ja) * | 2008-10-30 | 2014-03-12 | 株式会社神戸製鋼所 | 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法 |
JP5516057B2 (ja) | 2010-05-17 | 2014-06-11 | 新日鐵住金株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5434960B2 (ja) * | 2010-05-31 | 2014-03-05 | Jfeスチール株式会社 | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5821260B2 (ja) | 2011-04-26 | 2015-11-24 | Jfeスチール株式会社 | 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法 |
-
2014
- 2014-12-16 MX MX2016007954A patent/MX2016007954A/es unknown
- 2014-12-16 CN CN201480068119.0A patent/CN105814227B/zh active Active
- 2014-12-16 JP JP2015512944A patent/JP5858199B2/ja active Active
- 2014-12-16 EP EP14871692.1A patent/EP3054025B1/en active Active
- 2014-12-16 US US15/104,718 patent/US10590503B2/en active Active
- 2014-12-16 KR KR1020167019385A patent/KR101813974B1/ko active IP Right Grant
- 2014-12-16 WO PCT/JP2014/006259 patent/WO2015093043A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007009317A (ja) * | 2005-05-31 | 2007-01-18 | Jfe Steel Kk | 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法 |
JP2010070843A (ja) * | 2008-08-19 | 2010-04-02 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010275628A (ja) * | 2009-04-28 | 2010-12-09 | Jfe Steel Corp | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010275600A (ja) * | 2009-05-29 | 2010-12-09 | Jfe Steel Corp | 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013108154A (ja) * | 2011-11-24 | 2013-06-06 | Nippon Steel & Sumitomo Metal Corp | 溶融亜鉛めっき鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
TETSU-TO-HAGANE, vol. 83, no. 11, 1997, pages 748 - 753 |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019502819A (ja) * | 2015-12-15 | 2019-01-31 | ポスコPosco | 化成処理性及び穴拡げ性に優れた超高強度鋼板及びその製造方法 |
US11236414B2 (en) | 2015-12-21 | 2022-02-01 | Voestalpine Stahl Gmbh | High strength galvannealed steel sheet and method of producing such steel sheet |
WO2017108251A1 (en) | 2015-12-21 | 2017-06-29 | Voestalpine Stahl Gmbh | High strength galvannealed steel sheet and method of producing such steel sheet |
KR102171029B1 (ko) | 2016-01-27 | 2020-10-28 | 제이에프이 스틸 가부시키가이샤 | 고항복비형 고강도 아연 도금 강판 및 그의 제조 방법 |
US11473180B2 (en) | 2016-01-27 | 2022-10-18 | Jfe Steel Corporation | High-yield-ratio high-strength galvanized steel sheet and method for manufacturing the same |
CN108603263A (zh) * | 2016-01-27 | 2018-09-28 | 杰富意钢铁株式会社 | 高屈服比型高强度镀锌钢板及其制造方法 |
CN108603263B (zh) * | 2016-01-27 | 2020-03-20 | 杰富意钢铁株式会社 | 高屈服比型高强度镀锌钢板及其制造方法 |
EP3409808A4 (en) * | 2016-01-27 | 2019-01-02 | JFE Steel Corporation | High-yield ratio high-strength galvanized steel sheet, and method for producing same |
EP3409807A4 (en) * | 2016-01-27 | 2019-01-16 | JFE Steel Corporation | HIGH-RESISTANCE GALVANIZED STEEL SHEET WITH HIGH ELASTICITY RATIO AND METHOD FOR PRODUCING SAME |
KR20180095698A (ko) * | 2016-01-27 | 2018-08-27 | 제이에프이 스틸 가부시키가이샤 | 고항복비형 고강도 아연 도금 강판 및 그의 제조 방법 |
US11453926B2 (en) | 2016-03-31 | 2022-09-27 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
US10920294B2 (en) | 2016-03-31 | 2021-02-16 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet |
KR102130232B1 (ko) | 2016-03-31 | 2020-07-03 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
KR102130233B1 (ko) | 2016-03-31 | 2020-07-03 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
EP3418419A4 (en) * | 2016-03-31 | 2019-01-23 | JFE Steel Corporation | THIN STEEL SHEET, PLATED STEEL SHEET, METHOD FOR PRODUCING HOT ROLLED STEEL SHEET, METHOD FOR PRODUCING COMPLETELY HARD LAMINATED STEEL SHEET, METHOD FOR PRODUCING THIN STEEL SHEET, AND PROCESS FOR PRODUCING THE SAME PRODUCTION OF PLATED STEEL SHEET |
KR20180119618A (ko) * | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
EP3412789A4 (en) * | 2016-03-31 | 2019-03-20 | JFE Steel Corporation | THIN STEEL SHEET AND PLATED STEEL SHEET, METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET, METHOD FOR MANUFACTURING COLD LAMINATED STEEL SHEET, METHOD FOR MANUFACTURING THERMALLY TREATED STEEL SHEET, PROCESS METHOD FOR MANUFACTURING THIN STEEL SHEET AND METHOD FOR MANUFACTURING PLATED STEEL SHEET |
KR20180119638A (ko) * | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
US11441205B2 (en) | 2016-09-26 | 2022-09-13 | Posco | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
US11788166B2 (en) | 2016-09-26 | 2023-10-17 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
US11624100B2 (en) | 2016-09-26 | 2023-04-11 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
JP2019533083A (ja) * | 2016-09-26 | 2019-11-14 | ポスコPosco | 耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板、熱間成形部材及びその製造方法 |
US12049679B2 (en) | 2016-09-26 | 2024-07-30 | Posco Co., Ltd | Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same |
JP2020509183A (ja) * | 2016-12-19 | 2020-03-26 | ポスコPosco | 曲げ加工性に優れた超高強度鋼板及びその製造方法 |
US11193189B2 (en) | 2016-12-19 | 2021-12-07 | Posco | Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor |
US11208704B2 (en) | 2017-01-06 | 2021-12-28 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method of producing the same |
WO2018127984A1 (ja) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
CN110177892B (zh) * | 2017-01-06 | 2021-05-28 | 杰富意钢铁株式会社 | 高强度冷轧钢板及其制造方法 |
JP6323618B1 (ja) * | 2017-01-06 | 2018-05-16 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
CN110177892A (zh) * | 2017-01-06 | 2019-08-27 | 杰富意钢铁株式会社 | 高强度冷轧钢板及其制造方法 |
JP7047516B2 (ja) | 2018-03-22 | 2022-04-05 | 日本製鉄株式会社 | 高張力鋼板用スラブの冷却方法、高張力熱延鋼板の製造方法、高張力溶融亜鉛めっき鋼板の製造方法及び高張力合金化溶融亜鉛めっき鋼板の製造方法 |
JP2019167559A (ja) * | 2018-03-22 | 2019-10-03 | 日本製鉄株式会社 | 高強度鋼板用スラブの冷却方法、高強度熱延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2022028885A (ja) * | 2018-10-31 | 2022-02-16 | Jfeスチール株式会社 | 高強度部材および高強度部材の製造方法 |
KR20210065163A (ko) * | 2018-10-31 | 2021-06-03 | 제이에프이 스틸 가부시키가이샤 | 고강도 부재, 고강도 부재의 제조 방법 및 고강도 부재용 강판의 제조 방법 |
JP2021004414A (ja) * | 2018-10-31 | 2021-01-14 | Jfeスチール株式会社 | 高強度部材および高強度部材の製造方法 |
JP6773251B1 (ja) * | 2018-10-31 | 2020-10-21 | Jfeスチール株式会社 | 高強度部材及び高強度部材の製造方法 |
KR102525728B1 (ko) | 2018-10-31 | 2023-04-26 | 제이에프이 스틸 가부시키가이샤 | 고강도 부재, 고강도 부재의 제조 방법 및 고강도 부재용 강판의 제조 방법 |
WO2020090302A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法 |
JP7528267B2 (ja) | 2020-05-27 | 2024-08-05 | 宝山鋼鉄股▲分▼有限公司 | 超高張力二相鋼およびその製造方法 |
WO2024128312A1 (ja) * | 2022-12-15 | 2024-06-20 | 日本製鉄株式会社 | 鋼板および鋼板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160319385A1 (en) | 2016-11-03 |
JPWO2015093043A1 (ja) | 2017-03-16 |
EP3054025A1 (en) | 2016-08-10 |
US10590503B2 (en) | 2020-03-17 |
EP3054025A4 (en) | 2016-11-30 |
CN105814227B (zh) | 2018-02-27 |
KR101813974B1 (ko) | 2018-01-02 |
EP3054025B1 (en) | 2018-02-21 |
CN105814227A (zh) | 2016-07-27 |
KR20160101095A (ko) | 2016-08-24 |
MX2016007954A (es) | 2016-09-09 |
JP5858199B2 (ja) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858199B2 (ja) | 高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP6525114B1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
JP6544494B1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
JP6631760B1 (ja) | 高強度亜鉛めっき鋼板および高強度部材 | |
JP5858032B2 (ja) | 高強度鋼板およびその製造方法 | |
CN107075627B (zh) | 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法 | |
JP5194878B2 (ja) | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5434960B2 (ja) | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6179461B2 (ja) | 高強度鋼板の製造方法 | |
WO2013099235A1 (ja) | 高強度薄鋼板およびその製造方法 | |
CN103764864B (zh) | 冷轧钢板用热轧钢板、热镀锌钢板用热轧钢板及其制造方法 | |
WO2010146796A1 (ja) | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP5167865B2 (ja) | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2013160928A1 (ja) | 高強度鋼板およびその製造方法 | |
JP2011032549A (ja) | 鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法 | |
JP2013241636A (ja) | 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
WO2017131052A1 (ja) | 温間加工用高強度鋼板およびその製造方法 | |
WO2023063288A1 (ja) | 冷延鋼板及びその製造方法、並びに溶接継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015512944 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871692 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014871692 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014871692 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15104718 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007954 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201604118 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 20167019385 Country of ref document: KR Kind code of ref document: A |