CN113737087B - 一种超高强双相钢及其制造方法 - Google Patents

一种超高强双相钢及其制造方法 Download PDF

Info

Publication number
CN113737087B
CN113737087B CN202010459510.0A CN202010459510A CN113737087B CN 113737087 B CN113737087 B CN 113737087B CN 202010459510 A CN202010459510 A CN 202010459510A CN 113737087 B CN113737087 B CN 113737087B
Authority
CN
China
Prior art keywords
phase steel
equal
ultra
strength dual
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010459510.0A
Other languages
English (en)
Other versions
CN113737087A (zh
Inventor
李伟
朱晓东
薛鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202010459510.0A priority Critical patent/CN113737087B/zh
Priority to EP21813825.3A priority patent/EP4159886A4/en
Priority to JP2022572701A priority patent/JP2023527389A/ja
Priority to PCT/CN2021/095807 priority patent/WO2021238916A1/zh
Priority to CA3180467A priority patent/CA3180467A1/en
Priority to US17/927,781 priority patent/US20230227930A1/en
Publication of CN113737087A publication Critical patent/CN113737087A/zh
Application granted granted Critical
Publication of CN113737087B publication Critical patent/CN113737087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种超高强双相钢,其基体组织为铁素体+马氏体,其中铁素体和马氏体呈岛状均匀分布,超高强双相钢含有质量百分比如下的下述化学元素:C:0.12‑0.2%,Si:0.5‑1.0%,Mn:2.5‑3.0%,Al:0.02‑0.05%,Nb:0.02‑0.05%,Ti:0.02‑0.05%,B:0.001%‑0.003%。本发明还公开了上述超高强双相钢的制造方法,包括步骤:(1)冶炼和连铸(2)热轧(3)冷轧(4)退火:以3‑10℃/s的加热速度升温到退火均热温度800~850℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为670~730℃(5)回火:回火温度为260~320℃,回火时间为100~400s(6)平整。本发明超高强双相钢不仅有较好的力学性能,还具有优异的耐延迟开裂性和较低初始氢含量,可以适用于汽车安全结构件的制造。

Description

一种超高强双相钢及其制造方法
技术领域
本发明涉及一种金属材料及其制造方法,尤其涉及一种双相钢及其制造方法。
背景技术
随着汽车工业轻量化减重和安全性的需要,市场对强度更高的钢板需求量越来越多。其中,双相钢由于生产成本低、可制造性强同时具有低屈服强度、高抗拉强度以及高的初始加工硬化速率等优良的性能在汽车零部件中得到了广泛地使用。
目前市场上强度等级需求主要以80公斤、100公斤级的为主,目前最高强度级别为1180DP牌号,其抗拉强度大于等于1200MPa,屈服强度约为850MPa,总延伸率约为10%。冷轧双相钢的生产采用临界区连续退火工艺,其抗拉强度由退火组织中的马氏体分数所决定,马氏体分数越高则抗拉强度越高,这就要求在生产时需要采用较高的退火温度以形成更多的马氏体分数,目前所能商业化生产的双相钢最高强度等级为1180MPa,即DP 1180钢。
公开号为CN109504930A,公开日为2019年3月22日,名称为“抗拉强度大于1300MPa的热镀锌钢板及其生产方法”的中国专利文献,公开了一种抗拉强度大于1300MPa的热镀锌钢板及其生产方法,所述热镀锌钢板基板化学成分组成及其质量百分含量为:C:0.1~0.2%,Mn:1.3~2.0%,S≤0.005%,P≤0.02%,Si:0.2~0.3%,Als:0.4~1.0%,Nb:0.01~0.03%,Ti:0.04~0.08%,B:0.001~0.004%,Mo:0.2~0.3%,Cr:0.05~0.10%,V:0.01~0.02%,余量为Fe以及不可避免的杂质。所述板坯加热工序,加热温度1200~1320℃,加热时间120~200min;所述热轧工序,粗轧轧制3~7道次;精轧进口温度1020~1080℃,终轧温度820~880℃;卷取温度550~650℃;所述生产方法包括板坯加热、热轧、酸轧、连续热镀锌、光整和钝化工序;所述连续热镀锌工序,均热温度为760~840℃、保温时间100~200s,缓冷温度680~740℃、缓冷冷却速率10~20℃/s,快冷温度420~450℃、快冷冷却速率35~65℃/s,镀锌温度458~462℃、镀锌时间5~15s。
公开号为CN108486494A,公开日为2018年9月4日,名称为“钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法”的中国专利文献,公开了一种钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法,其化学成分为:0.10-0.30wt%C,1.50-4.50wt%Mn,0.00-0.120wt%Al,0.00-0.90wt%Si,0.05-0.50%V,P≤0.020wt%,S≤0.02wt%,Fe:余量。该高强钢通将纳米碳化钒粒子析出强化与马氏体相变强化相结合,显著提高了现有双相钢的强度,同时还保证了较高的生产效率。
公开号为CN109628846A,公开日为2019年4月16日,名称为“1300MPa级汽车用超高强度冷轧钢板及其生产方法”的中国专利文献,公开了一种热成型钢板及制造方法,其化学成分为:C:0.1~0.2%,Mn:1.3~2.0%,S≤0.005%,P≤0.02%,Si:0.2~0.3%,Als:0.4~1.0%,Nb:0.01~0.03%,Ti:0.04~0.08%,B:0.001~0.004%,Mo:0.2~0.3%,Cr:0.05~0.10%,V:0.01~0.02%,Fe:余量。所述生产方法包括炼钢、连铸、热轧、酸轧、连续退火、平整拉矫工序;所述热轧工序,板坯加热温度≥1200℃,粗轧轧制3~7道次、粗轧后中间坯厚度28~40mm,精轧进口温度1020~1100℃,终轧温度820~900℃,卷取温度550~650℃;所述酸轧工序,酸洗后进行冷轧,冷轧压下率≥45%,所述连续退火工序,均热段保温温度为760~840℃,保温时间为60~225s;过时效段保温温度为250~320℃,过时效段保温时间为300~1225s。
由此可见,现有专利文献涉及到产品抗拉强度等级大于或等于1300MPa的主要产品以镀锌为主,且部分专利含有高Si、高Al,不利于表面质量以及生产制造。在部分专利技术中含有较多Cr、Mo等贵合金元素,生产成本较高。
发明内容
本发明的目的之一在于提供一种超高强双相钢,该超高强双相钢通过合理的化学元素成分设计,采用中Si低Al的设计,减少Si、Al等合金元素的使用,避免因高Si带来的表面质量及高Al带来的板坯缺陷等问题。
此外本发明超高强双相钢中不采用Cr、Mo等贵合金元素,有效控制了合金成本,同时降低杂质元素P含量、S含量,有利于性能提升、延迟开裂的改善。该超高强双相钢的屈服强度≥900MPa,抗拉强度≥1300MPa,断后伸长率≥5%,起始氢含量≤10ppm;在预置应力大于等于一倍抗拉强度的情况下,以1mol/L的盐酸内浸泡300小时以上不发生延迟开裂,可以有效适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
为了实现上述目的,本发明提供了一种超高强双相钢,其基体组织为铁素体+马氏体,其中铁素体和马氏体呈岛状均匀分布,所述超高强双相钢除了Fe以外还含有质量百分比如下的下述化学元素:
C:0.12-0.2%,Si:0.5-1.0%,Mn:2.5-3.0%,Al:0.02-0.05%,Nb:0.02-0.05%,Ti:0.02-0.05%,B:0.001%-0.003%。
进一步地,在本发明所述的超高强双相钢中,其各化学元素质量百分比为:
C:0.12-0.2%,Si:0.5-1.0%,Mn:2.5-3.0%,Al:0.02-0.05%,Nb:0.02-0.05%,Ti:0.02-0.05%,B:0.001%-0.003%,余量为Fe和其他不可避免的杂质。
在本发明所述的超高强双相钢中,各化学元素的设计原理如下所述:
C:在本发明所述的超高强双相钢中,C是固溶强化元素,是材料获得高强度的保证。但是,需要注意的是,钢中含C量越高,马氏体越硬,发生延迟开裂的倾向越大。因此产品设计时,尽量选择低碳的设计,在本发明所述的超高强双相钢中控制C的质量百分比在0.12-0.2%之间。
在一些优选的实施方式中,C的质量百分比可以控制在0.14-0.18%之间。
Si:在本发明所述的超高强双相钢中,Si在钢中起到提高延伸率的作用。Si对钢的组织影响也很大,促进铁素体的纯净化和残余奥氏体的形成。同时能提高马氏体的抗回火性能,可以抑制Fe3C的析出和长大,从而使回火时,形成的析出物以ε碳化物为主。但需要注意的是,当钢中Si的质量百分比低于0.5%,会影响钢的延伸率及抗回火性能,而若Si的质量百分比高于1.0%,则会带来其它的冶金质量缺陷。因此,在本发明所述的超高强双相钢中控制Si的质量百分比在0.5-1.0%之间。
Mn:在本发明所述的超高强双相钢中,Mn是强烈提高奥氏体淬透性的元素,其可以通过形成更多的马氏体从而有效提高钢的强度。因此,在本发明所述的超高强双相钢中控制Mn的质量百分比在2.5-3.0%之间。
在一些优选的实施方式中,Mn的质量百分比可以控制在2.4-2.8%之间。
Al:在本发明所述的超高强双相钢中,Al是脱氧元素,其可以在钢中脱氧作用和细化晶粒的作用。因此,在本发明所述的超高强双相钢中控制Al的质量百分比在0.02-0.05%之间。
Nb和Ti:在本发明所述的超高强双相钢中,Nb和Ti作为碳氮化物析出元素,可以细化晶粒和析出碳氮化物,提高材料的强度,可以单独添加或复合添加。但是,需要注意的是,若钢中Nb或Ti的质量百分含量高于0.05%,强化作用不显著。因此,在本发明所述的超高强双相钢中控制Nb的质量百分比在0.02-0.05%之间,控制Ti的质量百分比在0.02-0.05%之间。
B:在本发明所述的超高强双相钢中,B作为强淬透性元素,适量的B可以提高钢的淬透性,促进马氏体的形成。因此在本发明所述的超高强双相钢中控制B的质量百分比在0.001%-0.003%之间。
进一步地,在本发明所述的超高强双相钢中,其中不可避免的杂质包括P、S和N元素,其含量控制为下述各项的至少其中之一:P≤0.01%,S≤0.002%,N≤0.004%。
上述技术方案中,在本发明所述的超高强双相钢中,P、S和N元素均是钢中不可避免的杂质元素,在钢中P、S和N元素含量越低越好。S易形成MnS夹杂物,严重影响扩孔率;P元素会降低钢的韧性,对延迟开裂不利;钢中N元素含量过高,容易导致板坯表面裂纹,大大影响钢的性能。因此,在本发明所述的超高强双相钢中,控制P的质量百分比为P≤0.01%,控制S的质量百分比为S≤0.002%,控制N的质量百分比为N≤0.004%。
进一步地,在本发明所述的超高强双相钢中,其各化学元素质量百分含量满足下述各项的至少其中之一:
C:0.14-0.18%,
Mn:2.4-2.8%。
进一步地,在本发明所述的超高强双相钢中,所述马氏体的相比例>90%。
进一步地,在本发明所述的超高强双相钢中,所述马氏体中含有共格分布的ε碳化物。
进一步地,在本发明所述的超高强双相钢中,其性能满足下述各项的至少其中之一:屈服强度≥900MPa,抗拉强度≥1300MPa,断后伸长率≥5%,起始氢含量≤10ppm;在预置应力大于等于一倍抗拉强度的情况下,以1mol/L的盐酸内浸泡300小时以上不发生延迟开裂。
相应地,本发明的另一目的在于提供一种超高强双相钢的制造方法,采用该制造方法制得的超高强双相钢的屈服强度≥900MPa,抗拉强度≥1300MPa,断后伸长率≥5%,起始氢含量≤10ppm;在预置应力大于等于一倍抗拉强度的情况下,以1mol/L的盐酸内浸泡300小时以上不发生延迟开裂,其可以有效适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
为了实现上述目的,本发明提出了上述的超高强双相钢的制造方法,包括步骤:
(1)冶炼和连铸;
(2)热轧;
(3)冷轧;
(4)退火:以3-10℃/s的加热速度升温到退火均热温度800~850℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为670~730℃;
(5)回火:回火温度为260~320℃,回火时间为100~400s;
(6)平整。
在本发明所述的超高强双相钢的制造方法中,在连续退火后,通过采用中低温回火处理,对相关工艺参数进行控制,一方面可以使马氏体在回火时,易于析出均匀、细小、弥散的共格型ε碳化物,另一方面中低温长时回火的方式,可以最大程度的去除钢板中过剩的氢,使之扩散到钢板外,从而使钢板的原始状态的氢含量降低。不仅有利于降低马氏体的硬度及钢板内部氢的扩散,还对钢的力学性能及延迟开裂性能十分有利。
进一步地,在本发明所述的制造方法中,在步骤(1)中,连铸过程中控制连铸拉速为0.9-1.5m/min。
在上述技术方案中,在本发明所述的制造方法中,在步骤(1)中连铸可以采用大水量二冷模式进行快速冷却,尽量减小偏析。
进一步地,在本发明所述的制造方法中,在步骤(2)中,控制铸坯以1220~1260℃的温度均热;然后轧制,控制终轧温度为880~920℃,轧后以20~70℃/s的速度冷却;然后进行卷取,卷取温度为600~650℃,卷取后进行保温处理。
在本发明所述的超高强双相钢的制造方法中,在所述步骤(2)中,为保证轧制负荷的稳定,控制加热温度在1220℃以上,同时为防止氧化烧损的增大,控制加热温度的上限为1260℃,因此,最终控制铸坯以1220~1260℃的温度均热。
进一步地,在本发明所述的制造方法中,在步骤(3)中,控制冷轧压下率为45~65%。
上述方案中,在所述步骤(3)中,在控制冷轧压下率为45~65%冷轧前,可以通过酸洗,以去除钢板表面氧化铁皮。
进一步地,在本发明所述的制造方法中,在步骤(6)中,控制平整压下率≤0.3%。
在本发明上述方案中,在所述步骤(6)中,为保证钢板的平整度,需要进行一定的平整量,然而过大的平整量会使得钢的屈服强度上升较多。因此,在本发明所述的制造方法中,控制平整压下率≤0.3%。
本发明所述的超高强双相钢及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的超高强双相钢采用合理的成分设计,采用中Si低Al的设计,减少Si、Al等合金元素的使用,避免因高Si带来的表面质量及高Al带来的板坯缺陷等问题。此外,钢中不含Cr、Mo等贵合金元素,合金含量少,可制造性好,具有良好的经济性,有效控制了合金成本。该超高强双相钢的屈服强度≥900MPa,抗拉强度≥1300MPa,断后伸长率≥5%,起始氢含量≤10ppm;在预置应力大于等于一倍抗拉强度的情况下,以1mol/L的盐酸内浸泡300小时以上不发生延迟开裂,可以适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
此外,在本发明所述的制造方法中,在连续退火后,通过采用中低温回火处理,对相关工艺参数进行控制,一方面可以使马氏体在回火时,易于析出均匀、细小、弥散的共格型ε碳化物,另一方面中低温长时回火的方式,可以最大程度的去除钢板中过剩的氢,使之扩散到钢板外,从而使钢板的原始状态的氢含量降低。不仅有利于降低马氏体的硬度及钢板内部氢的扩散,还对钢的力学性能及延迟开裂性能十分有利,有效保证了制得的超高强双相钢具有优异的力学性能、优异的耐延迟开裂性和较低的初始氢含量的特性。
具体实施方式
下面将结合具体的实施例对本发明所述的超高强双相钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-7和对比例1-14
表1列出了实施例1-7的超高强双相钢和对比例1-14钢对应的钢种中各化学元素质量百分比。
表1.(wt%,余量为Fe和其他除了P、S以及N以外的不可避免的杂质)
Figure BDA0002510448530000071
本发明所述实施例1-7的超高强双相钢和对比例1-14的钢均采用以下步骤制得:
(1)冶炼和连铸:其中在连铸过程中,控制连铸拉速为0.9-1.5m/min,并采用大水量二冷模式进行快速冷却;
(2)热轧:控制铸坯以1220~1260℃的温度均热;然后轧制,控制终轧温度为880~920℃,轧后以20~70℃/s的速度冷却;然后进行卷取,卷取温度为600~650℃,卷取后采用保温罩进行保温处理;
(3)冷轧:控制冷轧压下率为45~65%;
(4)退火:以3-10℃/s的加热速度升温到退火均热温度800~850℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为670~730℃;
(5)回火:回火温度为260~320℃,回火时间为100~400s;
(6)平整:控制平整压下率≤0.3%。
需要说明的是,实施例1-7的超高强双相钢的化学成分和相关工艺参数均满足本发明设计规范控制要求。对比例1-6的钢化学成分均存在未能满足本发明设计的要求的参数;对比例7-14对应的N钢种的化学成分虽然满足本发明设计要求,但是相关工艺参数均存在未能满足本发明设计规范的参数。
表2-1和表2-2列出了实施例1-7的超高强双相钢和对比例1-14钢的具体工艺参数。
表2-1.
Figure BDA0002510448530000081
Figure BDA0002510448530000091
表2-2.
Figure BDA0002510448530000092
将实施例1-7的超高强双相钢和对比例1-14钢进行各项性能测试,所得的测试结果列于表3中。
表3列出了实施例1-7的超高强双相钢和对比例1-14钢的性能测试结果。
表3.
Figure BDA0002510448530000093
Figure BDA0002510448530000101
注:钢板在一定内应力水平下浸泡在1mol/L的盐酸中300小时的结果:Ο表示未开裂,X表示开裂。
由表3可看出,按照本发明可以制造出强度1300Mpa以上的高强度钢,本发明各实施例的屈服强度均≥900MPa,抗拉强度均≥1300MPa,断后伸长率均≥5%,起始氢含量均≤10ppm。各实施例的超强双相钢均具有超高的强度和明显优于同等级别的对比钢种的延迟开裂性能,其在预置应力大于等于一倍抗拉强度的情况下,以1mol/L的盐酸内浸泡300小时以上不发生延迟开裂。各实施例的超高强双相钢的性能十分优异,可以适用于汽车安全结构件的制造,具有良好的推广应用价值和前景。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (10)

1.一种超高强双相钢,其特征在于,其基体组织为铁素体+马氏体,其中铁素体和马氏体呈岛状均匀分布,所述马氏体的相比例>90%,所述马氏体中含有共格分布的ε碳化物,所述超高强双相钢除了Fe以外还含有质量百分比如下的下述化学元素:
C:0.12-0.2%,Si:0.5-1.0%,Mn:2.52-3.0%,Al:0.02-0.05%,Nb:0.02-0.05%,Ti:0.02-0.05%,B:0.001%-0.003%;
所述超高强双相钢屈服强度≥900MPa,抗拉强度≥1300MPa,并且在预置应力大于等于一倍抗拉强度的情况下,在1mol/L的盐酸内浸泡300小时以上不发生延迟开裂。
2.如权利要求1所述的超高强双相钢,其特征在于,其各化学元素质量百分比为:
C:0.12-0.2%,Si:0.5-1.0%,Mn:2.52-3.0%,Al:0.02-0.05%,Nb:0.02-0.05%,Ti:0.02-0.05%,B:0.001%-0.003%,余量为Fe和其他不可避免的杂质。
3.如权利要求2所述的超高强双相钢,其特征在于,其中不可避免的杂质包括P、S和N元素,其含量控制为下述各项的至少其中之一:P≤0.01%,S≤0.002%,N≤0.004%。
4.如权利要求1或2所述的超高强双相钢,其特征在于,其各化学元素满足下述各项的至少其中之一:
C:0.14-0.18%,
Mn:2.4-2.8%。
5.如权利要求1或2所述的超高强双相钢,其特征在于,其性能满足下述各项的至少其中之一:断后伸长率≥5%,起始氢含量≤10ppm。
6.一种如权利要求1-5中任意一项所述的超高强双相钢的制造方法,其特征在于,包括步骤:
(1)冶炼和连铸;
(2)热轧;
(3)冷轧;
(4)退火:以3-10℃/s的加热速度升温到退火均热温度800~850℃,退火时间为40~200s,然后以30~80℃/s的速度快速冷却,快速冷却的开始温度为670~730℃;
(5)回火:回火温度为260~320℃,回火时间为100~400s;
(6)平整。
7.如权利要求6所述的制造方法,其特征在于,在步骤(1)中,连铸过程中控制连铸拉速为0.9-1.5m/min。
8.如权利要求6所述的制造方法,其特征在于,在步骤(2)中,控制铸坯以1220~1260℃的温度均热;然后轧制,控制终轧温度为880~920℃,轧后以20~70℃/s的速度冷却;然后进行卷取,卷取温度为600~650℃,卷取后进行保温处理。
9.如权利要求6所述的制造方法,其特征在于,在步骤(3)中,控制冷轧压下率为45~65%。
10.如权利要求6所述的制造方法,其特征在于,在步骤(6)中,控制平整压下率≤0.3%。
CN202010459510.0A 2020-05-27 2020-05-27 一种超高强双相钢及其制造方法 Active CN113737087B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010459510.0A CN113737087B (zh) 2020-05-27 2020-05-27 一种超高强双相钢及其制造方法
EP21813825.3A EP4159886A4 (en) 2020-05-27 2021-05-25 ULTRA HIGH STRENGTH TWO-PHASE STEEL AND ITS MANUFACTURING METHOD
JP2022572701A JP2023527389A (ja) 2020-05-27 2021-05-25 超高張力二相鋼およびその製造方法
PCT/CN2021/095807 WO2021238916A1 (zh) 2020-05-27 2021-05-25 一种超高强双相钢及其制造方法
CA3180467A CA3180467A1 (en) 2020-05-27 2021-05-25 Ultrahigh-strength dual-phase steel and manufacturing method therefor
US17/927,781 US20230227930A1 (en) 2020-05-27 2021-05-25 Ultrahigh-strength dual-phase steel and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010459510.0A CN113737087B (zh) 2020-05-27 2020-05-27 一种超高强双相钢及其制造方法

Publications (2)

Publication Number Publication Date
CN113737087A CN113737087A (zh) 2021-12-03
CN113737087B true CN113737087B (zh) 2022-07-19

Family

ID=78722981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010459510.0A Active CN113737087B (zh) 2020-05-27 2020-05-27 一种超高强双相钢及其制造方法

Country Status (6)

Country Link
US (1) US20230227930A1 (zh)
EP (1) EP4159886A4 (zh)
JP (1) JP2023527389A (zh)
CN (1) CN113737087B (zh)
CA (1) CA3180467A1 (zh)
WO (1) WO2021238916A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216708B (zh) * 2022-06-17 2023-08-22 攀钢集团攀枝花钢铁研究院有限公司 一种低成本高屈强比1200MPa级冷轧双相钢及其制备方法
CN117305683A (zh) * 2022-06-22 2023-12-29 宝山钢铁股份有限公司 一种1300MPa以上级冷轧钢板及其制造方法
CN117660846A (zh) * 2022-08-23 2024-03-08 宝山钢铁股份有限公司 一种120公斤级冷轧低合金退火双相钢及其制造方法
CN117660831A (zh) * 2022-08-23 2024-03-08 宝山钢铁股份有限公司 一种双相钢及其制造方法
CN117660830A (zh) * 2022-08-23 2024-03-08 宝山钢铁股份有限公司 一种100公斤级冷轧低合金退火双相钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888117A (zh) * 2005-06-30 2007-01-03 宝山钢铁股份有限公司 超高强带钢及其生产方法
CN1940108A (zh) * 2005-09-29 2007-04-04 宝山钢铁股份有限公司 抗拉强度在880Mpa以上的超高强度冷轧带钢及其制造方法
CN107208222A (zh) * 2015-01-28 2017-09-26 杰富意钢铁株式会社 高强度冷轧钢板、高强度镀覆钢板及其制造方法
WO2018220412A1 (fr) * 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN109207867A (zh) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 一种冷轧退火双相钢、钢板及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270531A (ja) * 1998-03-19 1999-10-05 Nippon Steel Corp 遅れ破壊特性の優れた高強度ボルトおよびその製造方法
EP1951519A4 (en) * 2005-10-24 2008-12-31 Exxonmobil Upstream Res Co HIGH-RESISTANCE TWO-PHASE STEEL WITH LOW LIMITING RATIO, HIGH HARDNESS AND EXCEPTIONAL WELDABILITY
JP5668337B2 (ja) * 2010-06-30 2015-02-12 Jfeスチール株式会社 延性及び耐遅れ破壊特性に優れる超高強度冷延鋼板およびその製造方法
MX2014008428A (es) * 2012-01-13 2014-10-06 Nippon Steel & Sumitomo Metal Corp Lamina de acero laminada en frio y metodo para producir lamina de acero laminada en frio.
JP6048382B2 (ja) * 2013-12-09 2016-12-21 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
CN109207841B (zh) * 2017-06-30 2021-06-15 宝山钢铁股份有限公司 一种低成本高成型性1180MPa级冷轧退火双相钢板及其制造方法
WO2019077777A1 (ja) * 2017-10-20 2019-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN108486494B (zh) 2018-06-05 2019-06-21 西北工业大学 钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法
US20210340641A1 (en) * 2018-08-31 2021-11-04 Jfe Steel Corporation High-strength steel sheet and method for producing same
CN109280857B (zh) * 2018-09-25 2021-03-05 邯郸钢铁集团有限责任公司 一种1200MPa级超快冷冷轧双相钢板及其制备方法
CN109504930B (zh) 2018-12-20 2020-10-02 唐山钢铁集团有限责任公司 抗拉强度大于1300MPa的热镀锌钢板及其生产方法
CN109628846B (zh) 2018-12-20 2020-08-04 唐山钢铁集团有限责任公司 1300MPa级汽车用超高强度冷轧钢板及其生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888117A (zh) * 2005-06-30 2007-01-03 宝山钢铁股份有限公司 超高强带钢及其生产方法
CN1940108A (zh) * 2005-09-29 2007-04-04 宝山钢铁股份有限公司 抗拉强度在880Mpa以上的超高强度冷轧带钢及其制造方法
CN107208222A (zh) * 2015-01-28 2017-09-26 杰富意钢铁株式会社 高强度冷轧钢板、高强度镀覆钢板及其制造方法
WO2018220412A1 (fr) * 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN109207867A (zh) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 一种冷轧退火双相钢、钢板及其制造方法

Also Published As

Publication number Publication date
EP4159886A4 (en) 2024-04-17
WO2021238916A1 (zh) 2021-12-02
US20230227930A1 (en) 2023-07-20
CN113737087A (zh) 2021-12-03
CA3180467A1 (en) 2021-12-02
JP2023527389A (ja) 2023-06-28
EP4159886A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
CN109280847B (zh) 一种高碳合金链具钢及其制造方法
CN113737087B (zh) 一种超高强双相钢及其制造方法
CN102586688B (zh) 一种双相钢板及其制造方法
US20090272468A1 (en) Method for Manufacturing Bake-Hardenable High-Strength Cold-Rolled Steel Sheet
CN109930068B (zh) 一种800MPa级超薄规格冷轧双相钢及其制备方法
US10351924B2 (en) Hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having improved hole expansion ratio, and manufacturing methods thereof
CN109207849B (zh) 高强高塑性1000MPa级热轧钢板及制备方法
CN112342462B (zh) 一种大功率发动机曲轴用Nb-Ti微合金化高强韧性贝氏体非调质钢及其制备方法
JP2022513964A (ja) 加工性に優れた冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
CN112095046A (zh) 一种超高强度冷轧dh1180钢及其制备方法
CN111218620B (zh) 一种高屈强比冷轧双相钢及其制造方法
CN109385570B (zh) 一种高强钢板及其制造方法
CN113737086A (zh) 一种经济型780MPa级的冷轧退火双相钢及其制造方法
CN111748735A (zh) 一种在低温二次加工性能优良的抗拉强度为390MPa级带钢及生产方法
CN113528944A (zh) 一种1000MPa易成形耐磨钢板及其制备方法
CN108977726B (zh) 一种抗延迟开裂的马氏体超高强度冷轧钢带及其制造方法
CN110714165B (zh) 一种320MPa级家电面板用冷轧薄板及其生产方法
CN114525452B (zh) 屈服强度700Mpa级热镀锌低合金高强钢及制备方法
CN114686762A (zh) 布氏硬度500hbw高强度、高韧性热连轧薄钢板的生产方法
CN112195412B (zh) 一种大功率发动机曲轴用Nb-V微合金化高强韧性贝氏体非调质钢及其制备方法
CN113737108A (zh) 一种耐延迟开裂的电镀锌超强双相钢及其制造方法
CN115572901A (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN112342463B (zh) 一种大功率发动机曲轴用高Ti高强韧性贝氏体非调质钢及其制备方法
CN115181889A (zh) 1180MPa级别低碳低合金热镀锌双相钢及快速热处理热镀锌制造方法
CN115261717A (zh) 一种1800MPa级高强度自强韧防护用钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant