WO2018220412A1 - Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede - Google Patents

Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede Download PDF

Info

Publication number
WO2018220412A1
WO2018220412A1 PCT/IB2017/000677 IB2017000677W WO2018220412A1 WO 2018220412 A1 WO2018220412 A1 WO 2018220412A1 IB 2017000677 W IB2017000677 W IB 2017000677W WO 2018220412 A1 WO2018220412 A1 WO 2018220412A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
steel
rolled
aluminum
press
Prior art date
Application number
PCT/IB2017/000677
Other languages
English (en)
Inventor
Sebastian Cobo
Christian Allely
Martin Beauvais
Anis AOUAFI
Emmanuel Lucas
Original Assignee
Arcelormittal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelormittal filed Critical Arcelormittal
Priority to PCT/IB2017/000677 priority Critical patent/WO2018220412A1/fr
Priority to CA3182750A priority patent/CA3182750A1/fr
Priority to CN202210343415.3A priority patent/CN114959446B/zh
Priority to KR1020247001602A priority patent/KR20240012608A/ko
Priority to JP2019566188A priority patent/JP7139361B2/ja
Priority to CN202210343429.5A priority patent/CN114959514B/zh
Priority to US16/617,903 priority patent/US11473166B2/en
Priority to CN202210345788.4A priority patent/CN115109996B/zh
Priority to CN202210343401.1A priority patent/CN114875305B/zh
Priority to BR112019025123-5A priority patent/BR112019025123B1/pt
Priority to CN202210343407.9A priority patent/CN114875306B/zh
Priority to EP18731526.2A priority patent/EP3631033A1/fr
Priority to PCT/IB2018/053832 priority patent/WO2018220540A1/fr
Priority to UAA201912309A priority patent/UA124561C2/uk
Priority to KR1020227032686A priority patent/KR102629666B1/ko
Priority to MX2019014433A priority patent/MX2019014433A/es
Priority to KR1020197038267A priority patent/KR102447050B1/ko
Priority to MA048958A priority patent/MA48958A/fr
Priority to KR1020227032685A priority patent/KR102630305B1/ko
Priority to CN201880035785.2A priority patent/CN110799659B/zh
Priority to CA3065036A priority patent/CA3065036C/fr
Priority to RU2019143595A priority patent/RU2732711C1/ru
Publication of WO2018220412A1 publication Critical patent/WO2018220412A1/fr
Priority to ZA2019/07777A priority patent/ZA201907777B/en
Priority to JP2022141192A priority patent/JP2022174173A/ja
Priority to US17/943,561 priority patent/US20230019292A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Definitions

  • the invention is in the field of steel sheets intended to obtain very high mechanical strength parts after curing in press.
  • Pressurized hardening is known to heat steel flasks at a temperature sufficient to achieve austenitic transformation, and then to hot stamp the blanks by holding them within the tooling. of the press so as to obtain quenching microstructures.
  • a cold pre-cold-drawing can be carried out beforehand on the blanks before heating and curing in press.
  • These blanks may be pre-coated, for example aluminum alloy or zinc.
  • the pre-coating diffuses with the steel substrate to form a compound providing protection of the surface of the workpiece against decarburization and scale formation. This compound is suitable for hot forming.
  • the parts thus obtained are used in particular as structural elements in motor vehicles to provide anti-intrusion or energy absorption functions.
  • the application of the bumper rails, door reinforcements or foot support or the longitudinal members can also be used for example for the manufacture of tools or parts of agricultural machines.
  • Publication WO2016016707 discloses a method of manufacturing parts and a rolled steel sheet for press hardening which simultaneously makes it possible to obtain a very high mechanical strength Rm greater than or equal to 1800 MPa, a high resistance to delayed cracking after curing under press, and to have a wide range of thickness in cold-rolled sheet.
  • the nickel content of the chemical composition of the sheet is between 0.25% and 2% and is concentrated on the surface of the sheet or the workpiece in a specific form. Such enrichment of nickel forms a barrier effect to the penetration of hydrogen and thus slows the diffusion of hydrogen.
  • the steel sheet of the publication WO2016016707 has a chemical composition which comprises, the contents being expressed by weight: 0.24% ⁇ C ⁇ 0.38%, 0.40% ⁇ Mn ⁇ 3%, 0, 10% ⁇ If ⁇ 0.70%, 0.015% ⁇ AI ⁇ 0.070%, 0% ⁇ Cr ⁇ 2%, 0.25% ⁇ Ni ⁇ 2%, 0.015% ⁇ Ti ⁇ 0.10%, 0% ⁇ Nb ⁇ 0.060%, 0.0005% ⁇ B ⁇ 0.0040%, 0.003% ⁇ N ⁇ 0.010%, 0.0001% ⁇ S ⁇ 0.005%, 0.0001% ⁇ P ⁇ 0.025%, it being understood that the levels of titanium and nitrogen satisfy: Ti / N> 3.42, and that carbon contents,
  • the chemical composition optionally comprising one or more of the following: 0.05% ⁇ Mo ⁇ 0.65%, 0.001 % ⁇ W ⁇ 0.30%, 0.0005% ⁇ Ca ⁇ 0.005%, the remainder being iron and unavoidable impurities from processing, the sheet containing a nickel content Ni SU rf in every respect of steel in the vicinity of the surface of said sheet to a depth ⁇ , such that: Ni SU rf> Ni n0 m, Ni n0 m designating the nominal nickel content of the steel, and such that, Ni max designating the maximum nickel content within ⁇ ⁇ ( ⁇ max + M mm ) x ⁇ ⁇ QQ ⁇ te
  • the publication WO206016707 discloses a method of manufacturing a hot-rolled steel sheet which notably provides a step of reheating the slabs at a temperature of between 1250 and
  • This specific range of temperature and slab reheating time ensures the diffusion of nickel to the interface between the formed oxide layer and the steel substrate, causing the nickel-enriched layer to appear.
  • the steel parts obtained with the chemical composition and process disclosed in the publication WO2016016707 are particularly adapted, by their very high strength, for the manufacture of anti-intrusion parts of motor vehicles.
  • Certain parts or parts of parts of the structural elements of motor vehicles must have a preferential functionality relating to their ability to absorb energy, especially during an impact.
  • Publication WO2017006159 discloses a steel sheet and an associated manufacturing method which ensure that the steel sheet has a very good ductility characterized by a bending angle greater than 80 °.
  • the resulting parts are suitable for forming structural members, or part of a motor vehicle body member, which are particularly resistant to impact.
  • the strength of the steel sheet of the publication WO2017006159 is significantly less than 1800 MPa, which does not meet the highest requirements in terms of anti-intrusion properties.
  • the main objective of the invention is the production of a steel sheet having both a high mechanical strength characterized by a tensile strength Rm greater than 1800 MPa, and an improved ductility. These two characteristics are a priori difficult to reconcile since it is well known that an increase in mechanical strength generally leads to a decrease in ductility.
  • Another property sought for safety parts and structural elements of motor vehicles is the decrease of the sensitivity to different forms of damage by hydrogen, including stress corrosion in aqueous medium as in saline.
  • the invention also aims at producing a steel sheet having improved resistance to stress corrosion.
  • the rolled steel sheet of the invention intended to be hardened in press is essentially characterized in that its chemical composition comprises, the contents being expressed by weight:
  • the chemical composition optionally comprising one or more of the following:
  • said sheet containing a nickel content Ni surf at any point of the steel in the vicinity of the surface of said sheet to a depth ⁇ , such that:
  • Ni ma x and Ni nom being expressed in percentages by weight, and such that the surface density of all the particles D, and the surface density of particles larger than 2 micrometers D (> 2 m) satisfy, at the less to a depth of 100 micrometers in the vicinity of the surface of said sheet, to:
  • Dj and D (> 2 M m) being expressed in number of particles per square millimeter.
  • composition comprises, by weight:
  • composition comprises, by weight:
  • composition comprises, by weight:
  • composition comprises by weight:
  • the microstructure of the steel sheet is ferrito-pearlitic.
  • the steel sheet is a hot rolled sheet.
  • the steel sheet is a cold rolled sheet and annealed.
  • the steel sheet is pre-coated with a metal layer of aluminum or aluminum alloy or aluminum-based.
  • the steel sheet is pre-coated with a metal layer of zinc or zinc alloy or zinc-based.
  • the steel sheet is pre-coated with one or more layers of intermetallic alloys containing aluminum and iron, and optionally silicon, the pre-coating not containing free aluminum, of phase r 5 of the Fe 3 Si 2 Al 2 type , and ⁇ of the Fe 2 Si 2 Al 9 type .
  • the invention also relates to a part obtained by press hardening of a steel sheet of composition according to any one of the above modes of martensitic or martensite-bainitic structure, and for which the surface density of the all particles D, and the surface density of particles larger than 2 micrometers D ( > 2 ⁇ m) satisfy, at least to a depth of 100 microns in the vicinity of the surface of said part, to:
  • the part of the invention may also include the following optional features considered in isolation or in any possible technical combination:
  • the piece has at least in the rolling direction a bending angle greater than 50 °.
  • the part contains a nominal nickel content Ni n0 m, characterized in that the nickel content Ni surf in the steel in the vicinity of the surface is greater than Ni n0 m over a depth ⁇ , and in that Ni ', max denoting the maximum nickel content within ⁇ :
  • the contents Ni ma xet Ni n0 m being expressed in percentages by weight.
  • the mechanical resistance Rm of the part is greater than or equal to
  • the part is coated with an aluminum alloy or an aluminum alloy, or a zinc alloy or a zinc alloy resulting from the diffusion between the steel substrate and the pre-coating, during the treatment thermal curing in press
  • the invention also relates to a method of manufacturing a hot-rolled steel sheet comprising the successive steps according to which:
  • a liquid steel is produced in which manganese, silicon, niobium and chromium are added, the additions being carried out in a vacuum chamber, then
  • said half-product is heated to a temperature of between 1250 and 1300 ° C. for a holding period at this temperature of between 20 and 45 minutes, and then
  • said half-product is hot-rolled to an end-of-rolling temperature TFL of between 825 and 950 ° C., to obtain a hot-rolled sheet, and then said hot-rolled sheet is reeled at a temperature of between 500 and 750 ° C., to obtain a hot-rolled and wound roll, and then
  • the invention also relates to a method for manufacturing a hot-rolled steel sheet, then a cold-rolled and annealed sheet, comprising the successive stages in which:
  • said cold rolled and pickled sheet is rolled cold to obtain a cold-rolled sheet, and then
  • said cold-rolled sheet is annealed at a temperature of between 740 and 820 ° C. in order to obtain a cold-rolled and annealed sheet.
  • the invention also relates to a method of manufacturing a pre-coated sheet, according to which a laminated sheet produced according to one of the two previously defined processes is supplied, then a continuous pre-coating is carried out by dipping, said pre-coating being aluminum or an aluminum alloy or aluminum-based, or zinc or a zinc alloy or zinc-based.
  • the invention also relates to a method of manufacturing a pre-coated and pre-alloyed sheet, according to which:
  • a laminated sheet is supplied according to one of the two processes previously defined, then a pre-coating is carried out continuously by dipping with an aluminum alloy or aluminum-based, and then
  • a pre-heat treatment of said pre-coated sheet is carried out in such a way that the pre-coating no longer contains free aluminum, of phase ⁇ 5 of the Fe 3 Si 2 Ali 2 type , and ⁇ 6 of the type Fe 2 Si 2 Al9
  • the invention furthermore relates to a method for manufacturing a press-hardened part as defined above, comprising the successive steps according to which:
  • said sheet is cut to obtain a blank, and then an optional deformation step is carried out by cold stamping said blank, and
  • said blank is heated to a temperature of between 810 and 950 ° C. in order to obtain a totally austenitic structure in steel and then
  • said part is held in the press in order to obtain a hardening by martensitic transformation of said austenitic structure.
  • the invention relates to the use of a press-hardened part as previously stated, or manufactured according to the method of manufacturing a cured part as defined above, for the manufacture of structural parts or reinforcement for vehicles. automobiles.
  • FIG. 1 shows the surface density of all the particles as a function of the surface density of particles of average size greater than 2 micrometers of hot stamped parts, with a breaking strength greater than 1800 MPa for five test conditions,
  • FIG. 2 shows the bending angle of hot stamped parts, breaking strength greater than 1800MPa, as a function of a parameter quantifying the density of the particles present in the hot stamped parts. This parameter depends on the surface density of all the particles, as well as the density of the particles of average size greater than 2 micrometers; these were evaluated for the same five test conditions, and
  • FIG. 3 shows the surface density of the particles as a function of the size of these particles for the five test conditions.
  • the thickness of the steel sheet used in the process according to the invention is preferably between 0.5 and 4 mm, thickness range used in particular in the manufacture of structural parts or reinforcement for the automotive industry. This can be obtained by hot rolling or subsequent cold rolling and annealing. This thickness range is suitable for industrial press hardening tools, especially hot stamping presses.
  • the steel contains the following elements, the composition being expressed by weight:
  • a carbon content of between 0.32% and 0.36% by weight makes it possible to obtain the properties in question in a stable manner, maintaining weldability at a satisfactory level and limiting the production costs. Spot welding ability is particularly good when the carbon content is between 0.24 and 0.38%.
  • the carbon content is between 0.39% and 0.43% for a manganese content of between 0.09% and 0.11%. The lowering of the manganese content is thus compensated by the increase in the carbon content while giving the steel part resistance to stress corrosion.
  • the carbon content must also be defined in conjunction with the manganese, chromium and silicon contents.
  • manganese plays a role in quenchability. it is thus expected, when the carbon content is between 0.24 and 0.38%, that the manganese content must be greater than 0.40% by weight to obtain a start-of-transformation temperature (austenite ⁇ martensite). when cooling in press, low enough, which increases the resistance Rm.
  • the limitation of the manganese content to 3% provides increased resistance to delayed cracking. Indeed, manganese segregates at austenitic grain boundaries and increases the risk of intergranular rupture in the presence of hydrogen.
  • the resistance to delayed cracking comes in particular from the presence of a surface layer enriched in nickel.
  • a surface layer enriched in nickel it is thought that when the manganese content is excessive, a thick layer of oxides can be formed during reheating of the slabs, so that the nickel does not have time to diffuse sufficiently for lie beneath this layer of oxides of iron and manganese.
  • An alternatively lowered manganese content of between 0.05% and 0.4% is provided in conjunction with an increased carbon content of 0.38% to 0.43%.
  • the lowering of the manganese content makes it possible to obtain a sheet and a piece of resistance to pitting corrosion and thus improved resistance to corrosion under stress. Maintaining high mechanical strength is achieved by substantially increasing the carbon content.
  • the manganese content is preferably defined together with the carbon content, optionally in chromium:
  • a Mn content of between 0.40% and 0.80% and a chromium content of between 0.05% and 1, 20% make it possible simultaneously to obtain an excellent resistance to delayed cracking thanks to the presence of a particularly effective nickel-enriched surface layer, and a very good aptitude for mechanical cutting of the sheets.
  • the Mn content is ideally between 0.50% and 0.70% to reconcile the achievement of high mechanical strength and resistance to delayed cracking.
  • the carbon content is between 0.24% and 0.38%, in combination with a manganese content of between 1.5% and 3%, the spot welding ability is particularly good.
  • the silicon content of the steel must be between 0.10 and 1.70% by weight: a silicon content greater than 0.10% makes it possible to obtain additional hardening and contributes to the deoxidation of the steel liquid.
  • the silicon content can be increased to 1.70% while avoiding the presence of excessive surface oxides which could adversely affect the deposition of the coating. This increase in the silicon content, however, necessitates stripping operations of the hot-rolled coil and subjecting the sheet to an annealing treatment atmosphere in a manner adapted to limit the formation of oxides.
  • the silicon content is preferably greater than 0.50% in order to avoid a softening of the fresh martensite, which can occur when the part is held in place. tools of the press after martensitic transformation.
  • the silicon content is preferably between 0.10% and 1.70%. to reduce the rate of pitting by corrosion, which makes it possible to increase the resistance to corrosion under stress.
  • the silicon content can be increased to 1.70% provided that the other alloying elements present in the steel make it possible to reach a transformation temperature at heating Ac3 (ferrite + perlite ⁇ austenite) of less than 880 ° C., so as to be compatible with usual industrial practices of austenitization prior to the hot stamping step
  • aluminum is an element promoting deoxidation in the liquid metal during the preparation, and the precipitation of nitrogen.
  • its content is greater than 0.070%, coarse aluminates may be formed during processing which tend to reduce ductility.
  • its content is between 0.020 and 0.060%.
  • the chromium increases the quenchability and contributes to obtaining the tensile strength Rm at the desired level after curing in press. Beyond a content equal to 2% by weight, the effect of chromium on the homogeneity of the mechanical properties in the press-hardened part is saturated. In an amount preferably between 0.05 and 1, 20%, this element contributes to increasing the resistance.
  • a chromium addition of between 0.30 and 0.50% is preferred, which makes it possible to obtain the desired effects on mechanical strength and delayed cracking. by limiting the costs of addition.
  • the manganese content is sufficient, that is to say between 1, 50% and 3% Mn, it is considered that the addition of chromium is optional, the quenchability obtained with manganese being considered sufficient.
  • an increased chromium content of greater than 0.5% and more preferably of between 0.950% and 1.050% is preferred in order to increase the resistance. to pitting corrosion as well as, consequently, resistance to stress corrosion.
  • Titanium has a high affinity for nitrogen. Given the nitrogen content of the steels of the invention, the titanium content must be greater than or equal to 0.015% so as to obtain effective precipitation. In an amount greater than 0.020% by weight, the titanium protects the boron so that this element is in free form to play its full effect on the quenchability. Its content must be greater than 3.42N, this quantity being defined by the stoichiometry of the TiN precipitation, so as to avoid the presence of free nitrogen. Above 0, 10%, however, there is a risk of forming in the liquid steel, coarse titanium nitrides which play a detrimental role on toughness.
  • the titanium content is preferably between 0.020 and 0.040%, so as to form fine nitrides which limit the growth of the austenitic grains during the heating of the blanks before hot stamping.
  • the niobium forms niobium carbonitrides which are also likely to limit the growth of the austenitic grains during the heating of the blanks. Its content must, however, be limited to 0.060% because of its ability to limit recrystallization during hot rolling, which increases the rolling forces and the difficulty of manufacture. The optimal effects are obtained when the niobium content is between 0.030 and 0.050%.
  • boron greatly increases the quenchability. By diffusing at the austenitic grain boundaries, it exerts a favorable influence in preventing the intergranular segregation of phosphorus. Above 0.0040%, this effect is saturated.
  • the sheet may contain molybdenum in an amount between 0.05 and 0.65% by weight: this element forms a co-precipitation with niobium and titanium.
  • the steel may also comprise tungsten in an amount between 0.001 and 0.30% by weight. In the amounts indicated, this element increases the quenchability and curing ability through carbide formation.
  • the steel can also contain calcium in a quantity between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium makes it possible to avoid the formation of large inclusions which are harmful to the ductility of the sheets or parts thus manufactured.
  • the phosphorus content is between 0.001 and 0.025% by weight. In excessive content, this element segregates at the austenitic grain boundaries and increases the risk of delayed cracking by intergranular rupture.
  • nickel is an important element of the invention: in fact, the inventors have demonstrated that this element, in an amount of between 0.25% and 2% by weight, very significantly reduces the sensitivity to delayed fracture when it is concentrated on the surface of the sheet or part in a specific form.
  • a first parameter P2 is defined according to:
  • Ni n0 m being the nominal nickel content of the steel.
  • This first parameter characterizes the overall nickel content in the enriched layer ⁇
  • the second parameter P 3 is defined by:
  • This second parameter characterizes the average gradient of concentration in nickel, that is to say the intensity of enrichment within the ⁇ layer.
  • the steel piece has a very significant resistance to delayed cracking.
  • a semi-finished product is cast in the form of liquid steel
  • composition of the above mentioned composition Unlike a conventional method where the addition of elements is carried out during the ladle casting from the converter, the inventors have demonstrated that it was necessary to perform this addition without the presence of air which leads to an increase in the nitrogen content of the liquid metal.
  • additions of elements such as manganese, silicon, niobium and chromium are carried out in an enclosure where a vacuum atmosphere prevails. After this vacuum treatment, the liquid metal is desulphurized by stirring between the metal and the slag which is carried out under conditions that do not increase the nitrogen content.
  • titanium for example, in the form of ferro-titanium, is added. Titanium is thus added at the end of the secondary metallurgy step.
  • the amount of nitrogen introduced is reduced and the formation of particles that may adversely affect the ductility of the steel part is limited.
  • the introduction of the additive elements reduces the amount of particles precipitated at the end of the solidification and thus the sheet and the resulting steel piece have improved ductility as will be detailed later.
  • the half-product obtained after casting may be in the form of a slab of thickness typically between 200 and 250 mm, or thin slab whose typical thickness is of the order of a few tens of millimeters, or in any other suitable form. This is brought to a temperature between 1250 and 1300 ° C and maintained in this temperature range for a period of between 20 and 45 minutes.
  • an oxide layer substantially rich in iron and manganese is formed for the composition of the steel of the invention, in which the solubility of the nickel is very high. low, the nickel remains in metallic form.
  • nickel is diffused towards the interface between the oxide and the steel substrate thus causing the appearance of a layer enriched in nickel in the steel.
  • the thickness of this layer depends in particular on the nominal nickel content of the steel, and the temperature and maintenance conditions defined above.
  • this enriched initial layer simultaneously undergoes:
  • a production cycle of a hot-rolled sheet typically comprises:
  • a winding step in a temperature range of 500 to 750 ° C.
  • the inventors have demonstrated that a variation of the parameters of hot rolling and winding, in the ranges defined by the invention, did not significantly change the mechanical characteristics, so that the process was tolerant to some variation within these ranges, with no noticeable effect on the resulting products.
  • the hot-rolled sheet is etched by a method known per se, which only removes the oxide layer, so that the The nickel-enriched layer is located near the surface of the sheet.
  • a cold rolling is carried out with a suitable reduction ratio, for example between 30 and 70%, and then annealing at a temperature typically between 740 and 820 ° C. so as to obtain a recrystallization of the hardened metal.
  • the sheet may be cooled so as to obtain an uncoated sheet, or continuously coated by passing through a dip bath, according to methods known per se, and finally cooled.
  • the step which has a predominant influence on the characteristics of the nickel-enriched layer on the final sheet is the step of reheating the slabs, in a specific range of temperature and holding time.
  • the annealing cycle of the cold rolled sheet, with or without a coating step has only a secondary influence on the characteristics of the nickel-enriched surface layer.
  • the characteristics of the nickel enrichment of this layer are practically identical on a hot rolled sheet and a sheet which has also undergone cold rolling and annealing, whether or not it includes a pre-coating step dipping.
  • This pre-coating may be aluminum, an aluminum alloy (comprising more than 50% aluminum) or an aluminum-based alloy (of which aluminum is the majority constituent).
  • This pre-coating is advantageously an aluminum-silicon alloy comprising by weight 7-15% of silicon, 2 to 4% of iron, optionally between 15 and 30 ppm of calcium, the the remainder being of aluminum and unavoidable impurities resulting from the elaboration.
  • the pre-coating may also be an aluminum alloy containing 40-45% Zn, 3-10% Fe, 1-3% Si, with the balance being aluminum and unavoidable impurities resulting from processing.
  • the pre-coating may be an aluminum alloy coating, which is in the form of intermetallic compounds comprising iron.
  • This type of pre-coating is obtained by performing a heat pre-treatment of the sheet pre-coated with aluminum or aluminum alloy. This thermal pre-treatment is carried out at a temperature ⁇ during a holding period ti, so that the pre-coating does not contain any more free aluminum of phase ⁇ 5 of the Fe 3 Si 2 Ali 2 type , and ⁇ 6 of the type Fe 2 Si 2 AI 9 .
  • This type of pre-coating then makes it possible to heat the blanks, before the hot stamping step, with a much faster speed, which
  • the pre-coating may be galvanized, or galvanized-alloy, that is to say having an amount of iron of between 7-12% after 0 heat treatment of alliation achieved parade immediately after the galvanizing bath.
  • the pre-coating may also be composed of a superposition of deposited layers in successive steps, at least one of the layers may be aluminum or an aluminum alloy.
  • the sheets are cut or punched by methods known per se, so as to obtain blanks whose geometry is related to the final geometry of the stamped part and cured in press.
  • the cutting of sheets comprising in particular between 0.32 and 0.36% C, between 0.40 0 and 0.80% Mn, between 0.05 and 1, 20% Cr, is particularly easy because of the low mechanical resistance at this stage, associated with a ferrito-pearlitic microstructure.
  • These blanks are heated to a temperature between 810 and 950 ° C so as to completely austenitize the steel substrate, hot-stamped, and then held in the press tool so as to obtain a martensitic transformation.
  • the degree of deformation applied during the hot stamping step may be greater or lesser depending on whether a cold deformation step (stamping) was carried out before or after the austenitization treatment.
  • the inventors have demonstrated that the thermal heating cycles for press curing, which consist of heating the blanks in the vicinity of the transformation temperature Ac3, and then keeping them at this temperature for a few minutes, did not cause any problems. substantial modification of the nickel-enriched layer.
  • the characteristics of the nickel-enriched surface layer are similar on the sheet before curing in press, and on the part after curing in press, obtained from this sheet.
  • compositions of the invention which have a lower Ac3 transformation temperature than conventional steel compositions, it is possible to austenitize the blanks with reduced holding-time temperatures, which makes it possible to reduce the possible adsorption. hydrogen in the heating furnaces.
  • the density of the particles present in the vicinity of the surface of the sheet should satisfy on special conditions.
  • these particles denote all the oxides, sulphides, nitrides, pure or mixed, such as oxysulfides and carbonitrides, present in the matrix of steel. Indeed, some particles have been found to be sites of early damage that reduced folding ability.
  • the vicinity of the surface designates the area between the surface of the sheets and 100 micrometers below this surface.
  • the density of the particles and in particular that of the particles of average size greater than 2 micrometers, had to respond to certain criteria.
  • Tables 1 and 2 below and Figures 1 and 2 are used to describe the tests and measurements leading to the establishment of a parameter for particle densities.
  • slabs of these different steels were heated to a temperature of 1275 ° C. and held at this temperature for 45 minutes. They were then rolled with a rolling end temperature of 950 ° C, and wound at a temperature of 650 ° C. After stripping, the sheets were cold-rolled to a thickness of 1.5 mm. The sheets were then annealed at a temperature of 760 ° C, then continuously aluminized by dipping in a bath containing 9% by weight of silicon 3% by weight of iron, the balance being aluminum and aluminum. unavoidable impurities.
  • the cut sheets were hot stamped, after reheating to a temperature of 900 ° C and a total holding time in the oven of 6'30.
  • a first type of measurement consists in evaluating the density D 1 of all the particles, namely oxides, sulphides, nitrides, pure or mixed, such as oxysulphides and carbonitrides, present in the matrix of the steel.
  • a second type of measurement consists in evaluating the density D (> 2M m) of these same particles whose size is greater than 2 micrometers.
  • the test references D1, D2, E1 and E2 respectively correspond to steel sheets of composition D and E as presented in Table 1 below and which result from two coils of different steel.
  • the bending angle was determined on the 60x60mm 2 hardened parts supported by two rollers, according to the VDA-238 bending standard.
  • the bending force is exerted by a 0.4 mm radius punch.
  • the spacing between the rolls and the punch is equal to the thickness of the pieces tested, a set of 0.5 mm being added.
  • the appearance of the crack is detected since it coincides with a decrease of the load in the displacement curve of load.
  • the tests are interrupted when the load decreases more than 30 N of its maximum value.
  • the bending angle of each test reference is measured at maximum load.
  • Table 2 correspond to the seven samples taken in the rolling direction. An average value of the bending angle is then obtained.
  • Figure 3 illustrates the distribution of particles according to their average size as a function of their density for the seven test references of Table 2. It can be seen that the test reference A has a distribution of the density of the particles according to their size. substantially different from that of the other test references. Mainly, the density of particles of average size less than 2 micrometers of reference A is significantly lower than that of the other test references.
  • the production conditions according to the invention make it possible to obtain a significant decrease in all the particles, and in particular particles larger than 2 micrometers. This favorable distribution is found on the sheet as well as the hot stamped part from this sheet.
  • FIG. 1 and for each test reference of Table 2 show the density D (> 2M m) relative to the particles of average size greater than 2 microns, and the density Di relative to all the particles. Considering that only the reference A does not satisfy the desired criterion of a folding angle greater than 50 °, a relation between the density Di and the density D (> 2Mm) is obtained which is obtained on the basis of the straight line D. of equation:
  • D, and D (> 2 M m) are both expressed in number of particles per mm 2 .
  • This criterion highlights the important influence of particles of average size greater than 2 micrometers on the ductility of hot stamped parts.
  • cyclic method provides alternating saline phase, wet phase and dry phase.
  • the salt phase is applied for 2% of the test period for a weight percent NaCl in the atmosphere of 1% at pH4.
  • the next wet phase is applied for 28% of the test period at a relative humidity percentage of 90% at a temperature of 35 ° C.
  • the last dry phase is applied for 70% of the test period, at a relative humidity percentage of 55% and at a temperature of 35 ° C.
  • This cyclic test is applied for 42 days.
  • VDA Veryband der Automobillndustrie
  • the salt phase is applied for 5% of the test period (instead of 2% for the cyclic method) for a weight percentage of NaCl in the atmosphere of 1% at pH7.
  • the next wet phase is applied for 25% of the test period, at a relative humidity percentage of 95% (instead of 90% for the cyclic method) at a temperature of 35 ° C.
  • the last dry phase is applied for 65% of the test period, at a relative humidity percentage of 70% (instead of 55% for the cyclic method) and at a temperature of 35 ° C.
  • the VDA method is applied for 6 cycles, 6 weeks or 42 days.
  • a piece of steel meets the stress corrosion criterion if no rupture of the material occurs for at least 42 days.
  • test conditions H, I and J were considered, the chemical compositions of which are given in Table 4 below.
  • the compositions are expressed in percent by weight, the remainder of the composition consisting of iron and impurities resulting from the preparation.
  • the sheet manufactured in condition H has an Ac3 temperature of 829 ° C. This temperature is evaluated by the formula of Andrews, known in itself.
  • the sheet made in condition I has a temperature Ac3 calculated by the Andrews formula of 820 ° C, and the sheet made in test condition J has a temperature Ac3 calculated by the Andrews formula of 807 ° C.
  • the test reference J thus has a temperature of austenization particularly favorable to its industrial development.
  • the temperatures Ms (martensitic transformation start temperature at cooling) calculated from the Andrews formula, are 362 ° C., 345 ° C., 353 ° C., for the plates manufactured respectively under the conditions H, I, and J.
  • test H the sheet is coated by dipping AISi alloy as mentioned above, the sheets manufactured under conditions I and J are not coated.
  • a steel sheet having a thickness of 1.5 millimeters is obtained for conditions H and I and 1.3 millimeters for condition J.
  • the sheet After cutting the sheet to obtain a blank, it is heated in an oven at 900 ° C for 6 minutes and 30 seconds (total oven hold time), so that a total austenitic transformation is achieved. o Intervenes in the steel, then the blank is transferred quickly into a device simulating hot stamping. The transfer is carried out in less than 10 seconds, so that no transformation of the austenite occurs during this step.
  • the pressure exerted by the tools of the press is 5000 MPa. We keep the piece in the press for
  • a heat treatment of 170 ° C. is then applied to the sheet for 20 minutes, corresponding to a firing cycle of a paint applied to the hot-stamped part.
  • Test Condition H two pieces are broken during the 2nd cycle, and the third piece has broken during the 3 rd cycle.
  • test reference J no piece is broken at the end of the 6th cycle.
  • the low manganese test number J thus exhibits excellent resistance to stress corrosion.
  • the inventors have defined the expression of a criterion making it possible to ensure, for a hot-stamped part having a yield strength of between 1300 and 1600 MPa, a resistance to corrosion under sufficient stress. to satisfy the VDA test.
  • This criterion depends on three parameters: a parameter P1 depending on the composition of the part, a parameter P2 depending on the stress applied and a parameter P3 depending on the possible presence of a coating on the hot-stamped part.
  • Parameter P1 is expressed as follows depending on the contents of manganese, phosphorus, chromium, molybdenum and silicon:
  • Parameter P2 is expressed as follows:
  • y denotes the elastic limit, expressed in MPa, and is between 1300 and 1600 MPa.
  • the parameter P3 is quantized by a parameter Cscc whose value is equal to 1 if the part is not coated and is naked, and equal to 0.7 if the part is coated.
  • the inventors have demonstrated that if Xo is greater than or equal to 750, the corresponding sheet or part satisfies the VDA test for resistance to stress corrosion.
  • the invention allows the manufacture of press hardened parts, simultaneously offering high mechanical tensile properties, good toughness and high resistance to stress corrosion. These parts will be used profitably as structural parts or reinforcements in the field of automotive construction.

Abstract

L'invention concerne une tôle d'acier laminée, pour durcissement sous presse, dont la composition chimique comprend, les teneurs étant exprimées en poids : 0,24% ≤ C ≤ 0,38%, 0,40% ≤ Mn ≤ 3%, 0,10% ≤ Si ≤ 0,70%, 0,015% ≤ Al ≤ 0,070%, 0% ≤ Cr ≤ 2%, 0,25% ≤ Ni ≤ 2%, 0,015% ≤ Ti ≤ 0,10%, 0 % ≤ Nb ≤ 0,060%, 0,0005% ≤ B ≤ 0,0040%, 0,003% ≤ N ≤ 0,010%, 0,0001 % ≤ S < 0,005%, 0,0001 % ≤ P ≤ 0,025%, étant entendu que les teneurs en titane et en azote satisfont à :Ti/N >3,42, et que les teneurs en carbone, manganèse, chrome et silicium satisfont à : formule (I), la composition chimique comprenant optionnellement un ou plusieurs des éléments suivants: 0,05% ≤ Mo ≤ 0,65%, 0,001% ≤ W ≤ 0,30%%, 0,0005 % ≤ Ca ≤ 0,005%, le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration, la tôle contenant une teneur en nickel Nisurf en tout point de l'acier au voisinage de la surface de ladite tôle sur une profondeur Δ, telle que :Nisurf > Ninom, Ninom désignant la teneur nominale en nickel de l'acier, et telle que, Nimax désignant la teneur maximale en nickel au sein de la formule (II), et telle que : formule (III), et et la densité surfacique de toutes les particules Di et la densité surfacique des particules de taille supérieure à 2 micromètres D(>2µm) satisfont, au moins sur une profondeur de 100 micromètres au voisinage de la surface de ladite tôle, à : Di + 6,75 D(>2µm) < 270 Di et D(>2µm) étant exprimées en nombre de particules par millimètres carrés.

Description

PROCEDE DE FABRICATION DE PIECES D'ACIER A HAUTE RESISTANCE MECANIQUE ET DUCTILITE AMELIOREE, ET PIECES OBTENUES PAR CE PROCEDE
L'invention s'inscrit dans le domaine des tôles d'acier destinées à obtenir des pièces à très haute résistance mécanique après durcissement sous presse. On sait que le durcissement par trempe sous presse (ou « press hardening ») consiste à chauffer des flans d'acier à une température suffisante pour obtenir une transformation austénitique, puis à emboutir à chaud les flans en les maintenant au sein de l'outillage de la presse de façon à obtenir des microstructures de trempe. Selon une variante du procédé, un pré-emboutissage à froid peut être effectué préalablement sur les flans avant chauffage et durcissement sous presse. Ces flans peuvent être pré-revêtus, par exemple d'alliage d'aluminium ou de zinc. Dans ce cas, lors du chauffage en four, le pré-revêtement s'allie par diffusion avec le substrat d'acier pour former un composé assurant une protection de la surface de la pièce contre la décarburation et la formation de calamine. Ce composé est apte à la mise en forme à chaud.
Les pièces ainsi obtenues sont notamment utilisées comme éléments de structure dans les véhicules automobiles pour assurer des fonctions d'anti- intrusion ou d'absorption d'énergie. On citera ainsi par exemple à titre d'application les traverses de pare-choc, renforts de portière ou de pied milieu ou les longerons. De telles pièces durcies sous presse peuvent être aussi utilisées par exemple pour la fabrication d'outils ou de pièces de machines agricoles.
Les exigences de réduction de la consommation d'énergie des véhicules automobiles poussent à rechercher un allégement des véhicules encore accru grâce à l'utilisation de pièces dont le niveau de résistance mécanique serait encore plus élevé, c'est-à-dire dont la résistance Rm serait supérieure à 1800 MPa. Or un tel niveau de résistance est généralement associé à une microstructure totalement ou très majoritairement martensitique. Il est connu que ce type de microstructure présente une moindre résistance à la fissuration différée : après durcissement à la presse, les pièces fabriquées peuvent être en effet susceptibles de fissurer ou de rompre après un certain délai.
La publication WO2016016707 divulgue un procédé de fabrication de pièces et une tôle d'acier laminée pour durcissement sous presse qui permet d'obtenir simultanément une très haute résistance mécanique Rm supérieure ou égale à 1800 MPa, une résistance élevée à la fissuration différée après durcissement sous presse, et de disposer d'une large gamme d'épaisseur en tôle laminée à froid. Pour ce faire, la teneur de nickel de la composition chimique de la tôle est comprise entre 0,25% et 2% et se trouve concentrée en surface de la tôle ou de la pièce sous une forme spécifique. Un tel enrichissement en nickel forme un effet barrière à la pénétration de l'hydrogène et freine ainsi la diffusion de l'hydrogène.
Plus précisément, la tôle d'acier de la publication WO2016016707 présente une composition chimique qui comprend, les teneurs étant exprimées en poids : 0,24%<C<0,38%, 0,40%<Mn< 3% , 0,10% <Si<0,70%, 0,015%<AI<0,070%, 0%<Cr< 2%, 0,25%<Ni< 2%, 0,015% <Ti< 0,10%, 0%<Nb<0,060%, 0,0005%<B<0,0040%, 0,003%<N<0,010%, 0,0001 %<S<0,005%, 0,0001 %<P<0,025%, étant entendu que les teneurs en titane et en azote satisfont à :Ti/N >3,42, et que les teneurs en carbone,
_ . _ Mn Cr Si ^ manganèse, chrome et silicium satisfont à : 2.6C +— +— > 1,1% , la composition chimique comprenant optionnellement un ou plusieurs des éléments suivants: 0,05% < Mo < 0,65%, 0,001 % < W < 0,30%%, 0,0005 % < Ca < 0,005%, le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration, la tôle contenant une teneur en nickel NiSUrf en tout point de l'acier au voisinage de la surface de ladite tôle sur une profondeur Δ, telle que :NiSUrf > Nin0m, Nin0m désignant la teneur nominale en nickel de l'acier, et telle que, Nimax désignant la teneur maximale en nickel au sein de Δ ■ (^max + Mmm ) x ^≥ Q Q ^ te| |e q |Je . ( max ~ Nlnom )≥ 0 Q 1 |g profondeur Δ étant exprimée en micromètres, les teneurs Nimax et Nin0m étant exprimées en pourcentages en poids.
En outre, la publication WO20 6016707 divulgue un procédé de fabrication d'une tôle d'acier laminée à chaud qui prévoit notamment une étape de réchauffage des brames à une température comprise entre 1250 et
1300°C pendant une durée de maintien comprise entre 20 et 45 minutes.
Cette gamme spécifique de température et de durée de maintien de réchauffage des brames assure la diffusion du nickel vers l'interface entre la couche d'oxyde formée et le substrat d'acier, causant l'apparition de la couche enrichie en nickel.
Les pièces d'acier obtenues avec la composition chimique et le procédé divulgués dans la publication WO2016016707 sont particulièrement adaptées, de par leur résistance très élevée, pour la fabrication de pièces anti-intrusion de véhicules automobiles.
Certaines pièces ou parties de pièces des éléments de structure des véhicules automobiles doivent présenter une fonctionnalité préférentielle relative à leur capacité d'absorber de l'énergie, notamment lors d'un choc.
C'est notamment le cas des longerons et des parties basses des renforts de pied milieu.
La publication WO2017006159 divulgue une tôle d'acier et un procédé de fabrication associé qui assurent à la tôle d'acier une très bonne ductilité caractérisée par un angle de pliage supérieur à 80°.
Les pièces résultantes sont appropriées pour former des éléments de structure, ou partie d'élément de structure de véhicule automobile, particulièrement résistants aux chocs. Mais la résistance mécanique de la tôle d'acier de la publication WO2017006159 est nettement inférieure à 1800 MPa, ce qui ne permet pas de répondre aux exigences les plus élevées en termes de propriétés anti-intrusion.
C'est pourquoi, certains éléments de structures de véhicule automobiles qui présentent à la fois une partie dont la fonctionnalité préférentielle est la résistance mécanique et une autre partie dont la fonctionnalité préférentielle est l'absorption d'énergie, peuvent être réalisés par exemple par soudage d'une pièce obtenues selon la publication WO2016016707 et d'une pièce obtenue selon la publication WO2017006159.
Or le soudage nécessite la réalisation d'une opération supplémentaire de fabrication des pièces, ce qui augmente les coûts et la durée de fabrication. En outre, il faut s'assurer que ce soudage ne diminue pas la résistance de la pièce finale aux abords de la soudure, ce qui nécessite un contrôle précis des paramètres de soudage. Il existe donc un besoin de réaliser en une seule pièce les éléments de structures qui combinent les fonctionnalités de résistance mécanique élevée et de haute capacité d'absorption d'énergie.
Il existe également le besoin de disposer de pièces embouties à chaud avec une ductilité satisfaisante, c'est-à-dire présentant un angle de pliage supérieur ou égal à 50°.
C'est pourquoi, l'invention a pour principal objectif la réalisation d'une tôle d'acier présentant à la fois une résistance mécanique élevée caractérisée par une résistance à la traction Rm supérieure à 1800 MPa, et une ductibilité améliorée. Ces deux caractéristiques sont à priori difficiles à concilier puisqu'il est bien connu qu'une augmentation de la résistance mécanique entraîne généralement une diminution de la ductilité.
Une autre propriété recherchée pour les pièces de sécurité et les éléments de structures de véhicules automobiles est la diminution de la sensibilité à différentes formes d'endommagement par l'hydrogène, notamment à la corrosion sous contrainte, en milieu aqueux comme en milieu salin.
C'est pourquoi l'invention a également pour objectif la réalisation d'une tôle d'acier présentant une résistance améliorée à la corrosion sous contrainte.
À cet effet, la tôle d'acier laminée de l'invention destinée à être durcie sous presse, est essentiellement caractérisée en ce que sa composition chimique comprend, les teneurs étant exprimées en poids :
soit 0,24% < C < 0,38% et 0,40% < Mn < 3% ,
soit 0,38% < C < 0,43% et 0,05% < Mn < 0,4% 0,10% < Si < 1 ,70%
0,015% < Al < 0,070%
0% < Cr < 2%
0,25% < Ni < 2%
0,015% < Ti < 0,10%
0 % < Nb < 0,060%
0,0005% < B < 0,0040%
0,003% < N < 0,010%
0,0001 % < S < 0,005%
0,0001 % < P < 0,025%
étant entendu que les teneurs en titane et en azote satisfont à :
Ti/N >3,42,
et que les teneurs en carbone, manganèse, chrome et silicium
satisfont à :
^ Mn Cr Si
2.6C + +— +—≥1,1%
5.3 13 15
la composition chimique comprenant optionnellement un ou plusieurs des éléments suivants:
0,05% < Mo < 0,65%
0,001 % < W < 0,30%%
0,0005 % < Ca < 0,005%
le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration,
ladite tôle contenant une teneur en nickel Nisurf en tout point de l'acier au voisinage de la surface de ladite tôle sur une profondeur Δ, telle que :
isurf > N inom,
N inom désignant la teneur nominale en nickel de l'acier,
et telle que, Nimax désignant la teneur maximale en nickel au sein de Δ
t telle que : max > Q
Δ
la profondeur Δ étant exprimée en micromètres,
les teneurs Nimax et Ninom étant exprimées en pourcentages en poids, et telle que la densité surfacique de l'ensemble des particules D, et la densité surfacique des particules de taille supérieure à 2 micromètres D(>2 m) satisfont, au moins sur une profondeur de 100 micromètres au voisinage de la surface de ladite tôle, à :
Figure imgf000008_0001
Dj et D(>2Mm) étant exprimées en nombre de particules par millimètres carrés.
La tôle d'acier laminée de l'invention peut également comporter les caractéristiques optionnelles suivantes considérées isolément ou selon toutes les combinaisons techniques possibles :
- la composition comprend, en poids :
0,39% < C < 0,43%
0,09% < Mn < 0,11 %
- la composition comprend, en poids :
0,95% < Cr < 1 ,05%
- la composition comprend, en poids :
0,48 % < Ni < 0,52%.
- la composition comprend en poids :
1 ,4% < Si≤ 1 ,70%
- la microstructure de la tôle d'acier est ferrito-perlitique.
- la tôle d'acier est une tôle laminée à chaud.
- la tôle d'acier est une tôle laminée à froid et recuite.
- la tôle d'acier est pré-revêtue d'une couche métallique d'aluminium ou d'alliage d'aluminium ou à base d'aluminium. - la tôle d'acier est pré-revêtue d'une couche métallique de zinc ou d'alliage de zinc ou à base de zinc.
- la tôle d'acier est pré-revêtue d'une couche ou de plusieurs couches d'alliages intermétalliques contenant de l'aluminium et du fer, et éventuellement du silicium, le pré-revêtement ne contenant pas d'aluminium libre, de phase r 5 du type Fe3Si2AI 2, et τ du type Fe2Si2AI9.
L'invention a également pour objet une pièce obtenue par durcissement sous presse d'une tôle d'acier de composition selon l'un quelconque des modes ci-dessus de structure martensitique ou martensito-bainitique, et pour laquelle la densité surfacique de l'ensemble des particules D, et la densité surfacique des particules de taille supérieure à 2 micromètres D(>2Mm) satisfont, au moins sur une profondeur de 100 micromètres au voisinage de la surface de ladite pièce, à :
Figure imgf000009_0001
Dj et D(>2pm) étant exprimées en nombre de particules par mm2
La pièce de l'invention peut également comporter les caractéristiques optionnelles suivantes considérées isolément ou selon toutes les combinaisons techniques possibles :
- la pièce présente au moins dans le sens de laminage un angle de pliage supérieur à 50°.
- les teneurs en manganèse, phosphore, chrome, molybdène et silicium de la pièce satisfont à :
[ 455Exp(-0.5[Mn + 25P]) + [390O + 50Mo] +
Figure imgf000009_0002
]≥ 750 σγ étant la limite d'élasticité qui est comprise entre 1300 et 1600 MPa, et Cscc étant égal à 1 pour une tôle non revêtue, et égal à 0,7 pour une tôle revêtue.
- la pièce contient une teneur nominale en nickel Nin0m, caractérisée en ce que la teneur en nickel Nisurf dans l'acier au voisinage de la surface est supérieure à Nin0m sur une profondeur Δ, et en ce que, Ni ',max désignant la teneur maximale en nickel au sein de Δ :
Figure imgf000010_0001
et en ce que :
Figure imgf000010_0002
la profondeur Δ étant exprimée en micromètres,
les teneurs Nimaxet Nin0m étant exprimées en pourcentages en poids. la résistance mécanique Rm de la pièce est supérieure ou égale à
1800 MPa.
- la pièce est revêtue d'un alliage d'aluminium ou à base d'aluminium, ou d'un alliage de zinc ou à base de zinc résultant de la diffusion entre le substrat d'acier et le pré-revêtement, lors du traitement thermique de durcissement sous presse
L'invention porte également sur un procédé de fabrication d'une tôle d'acier laminée à chaud comportant les étapes successives selon lesquelles :
- on élabore un acier liquide dans lequel on ajoute du manganèse, du silicium, du niobium et du chrome, les additions étant effectuées dans une enceinte sous vide, puis
- on réalise une désulfuration du métal liquide sans augmenter sa teneur en azote, puis
- on ajoute du titane, les dites additions étant réalisées de façon à obtenir un métal liquide de composition chimique telle que précédemment définie, puis
- on coule un demi-produit, puis
- on réchauffe ledit demi-produit à une température comprise entre 1250 et 1300°C pendant une durée de maintien à cette température comprise entre 20 et 45 minutes, puis
- on lamine à chaud ledit-demi produit jusqu'à une température de fin de laminage TFL comprise entre 825 et 950 °C, pour obtenir une tôle laminée à chaud, puis - on bobine ladite tôle laminée à chaud, à une température comprise entre 500 et 750°C, pour obtenir une laminée à chaud et bobinée, puis
- on décape la couche d'oxyde formée lors des étapes précédentes. L'invention porte également sur un procédé de fabrication d'une tôle d'acier laminée à chaud, puis laminée à froid et recuite, comportant comporte les étapes successives selon lesquelles :
- on approvisionne une tôle laminée à chaud, bobinée et décapée, fabriquée par le procédé précédemment énoncé puis,
- on lamine à froid ladite tôle laminée à chaud, bobinée et décapée, pour obtenir une tôle laminée à froid, puis
- on recuit ladite tôle laminée à froid à une température comprise entre 740 et 820 °C pour obtenir une tôle laminée à froid et recuite.
L'invention porte également une un procédé de de fabrication d'une tôle pré-revêtue, selon lequel on approvisionne une tôle laminée fabriquée selon l'un quelconque des deux procédés précédemment définis, puis on effectue un pré-revêtement en continu au trempé, ledit pré-revêtement étant de l'aluminium ou un alliage d'aluminium ou à base d'aluminium, ou du zinc ou un alliage de zinc ou à base de zinc.
L'invention porte également sur un procédé de fabrication d'une tôle pré- revêtue et pré-alliée, selon lequel :
- on approvisionne une tôle laminée selon l'un quelconque des deux procédés précédemment définis, puis on effectue un pré-revêtement en continu au trempé d'un alliage d'aluminium ou à base d'aluminium, puis
- on effectue un pré-traitement thermique de ladite tôle pré-revêtue à-de façon à ce que le pré-revêtement ne contienne plus d'aluminium libre, de phase τ 5 du type Fe3Si2Ali2, et τ 6 du type Fe2Si2Al9
L'invention porte en outre sur un procédé de fabrication d'une pièce durcie sous presse telle que précédemment définie, comportant les étapes successives selon lesquelles :
- on approvisionne une tôle fabriquée par un procédé tels que ceux précédemment définis, puis
- on découpe ladite tôle pour obtenir un flan, puis - on effectue optionnellement une étape de déformation par emboutissage à froid dudit flan, puis
- on chauffe ledit flan à une température comprise entre 810 et 950°C pour obtenir une structure totalement austénitique dans l'acier puis
- on transfère le flan au sein d'une presse, puis
- on emboutit à chaud ledit flan pour obtenir une pièce, puis
- on maintient ladite pièce au sein de la presse pour obtenir un durcissement par transformation martensitique de ladite structure austénitique.
L'invention porte enfin sur l'utilisation d'une pièce durcie sous presse telle que précédemment énoncée, ou fabriquée selon le procédé de fabrication d'une pièce durcie tel que précédemment défini, pour la fabrication de pièces de structure ou de renfort pour véhicules automobiles.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous donnée à titre d'exemple et faite en référence aux figures jointes suivantes :
- la figure 1 présente la densité surfacique de toutes les particules en fonction de la densité surfacique des particules de taille moyenne supérieure à 2 micromètres de pièces embouties à chaud, de résistance à la rupture supérieure à 1800MPa pour cinq conditions d'essai,
- la figure 2 présente l'angle de pliage de pièces embouties à chaud, de résistance à la rupture supérieure à 1800MPa, en fonction d'un paramètre quantifiant la densité des particules présentes dans les pièces embouties à chaud. Ce paramètre dépend de la densité surfacique de l'ensemble des particules, ainsi que de de la densité des particules de taille moyenne supérieure à 2 micromètres ; celles-ci ont été évaluées pour les mêmes cinq conditions d'essai, et
- la figure 3 présente la densité surfacique des particules en fonction de la taille de ces particules pour les cinq conditions d'essai.
L'épaisseur de la tôle d'acier mise en œuvre dans le procédé selon l'invention est comprise préférentiellement entre 0,5 et 4 mm, gamme d'épaisseur utilisée notamment dans la fabrication de pièces structurales ou de renfort pour l'industrie automobile. Celle-ci peut être obtenue par laminage à chaud ou faire l'objet d'un laminage à froid ultérieur et d'un recuit. Cette gamme d'épaisseur est adaptée aux outils industriels de durcissement sous presse, en particulier aux presses d'emboutissage à chaud.
Avantageusement, l'acier contient les éléments suivants, la composition étant exprimée en poids :
- une teneur en carbone comprise entre 0,24 et 0,38% lorsque la teneur en manganèse est comprise entre 0,4% et 3%. Le carbone joue un grand rôle sur la trempabilité et sur la résistance mécanique obtenue après le refroidissement qui suit le traitement d'austénitisation. Au-dessous d'une teneur de 0,24% en poids, le niveau de résistance mécanique de 1800 MPa ne peut pas être atteint après durcissement par trempe sous presse, sans addition supplémentaire d'éléments coûteux. Au-delà d'une teneur de 0,38% en poids pour une teneur en manganèse comprise entre 0,4 % et 3%, le risque de fissuration différée est accru, et la température de transition ductile/fragile, mesurée à partir d'essais de flexion entaillée de type Charpy, peut devenir supérieure à -40°C, ce qui traduit d'une diminution trop importante de la ténacité. Une teneur en carbone comprise entre 0,32 et 0,36% en poids, permet d'obtenir les propriétés visées de façon stable, maintenant la soudabilité à un niveau satisfaisant et limitant les coûts de production. L'aptitude au soudage par points est particulièrement bonne lorsque la teneur en carbone est comprise entre 0,24 et 0,38%.
- une teneur en carbone augmentée comprise entre 0,38% et 0,43% lorsque la teneur en manganèse est abaissée en étant comprise entre 0,05% et 0,4% pour l'obtention d'une pièce d'acier présentant une résistance accrue à la corrosion sous contrainte. Préférentiellement, la teneur en carbone est comprise entre 0,39% et 0,43% pour une teneur en manganèse comprise entre 0,09% et 0,11%. L'abaissement de la teneur en manganèse est ainsi compensé par l'augmentation de la teneur en carbone tout en conférant à la pièce d'acier une résistance importance à la corrosion sous contrainte.
Comme on le verra plus loin, la teneur en carbone doit être également définie en conjonction avec les teneurs en manganèse, chrome et silicium. Outre son rôle de désoxydant, le manganèse joue un rôle sur la trempabilité. on prévoit ainsi, lorsque la teneur en carbone est comprise entre 0,24 et 0,38%, que la teneur en manganèse doit être supérieure à 0,40% en poids pour obtenir une température Ms de début de transformation (austénite→ martensite) lors du refroidissement sous presse, suffisamment basse, ce qui permet d'accroître la résistance Rm. La limitation de la teneur en manganèse à 3% permet d'obtenir une résistance accrue à la fissuration différée. En effet, le manganèse ségrège aux joints de grains austénitiques et accroît le risque de rupture intergranulaire en présence d'hydrogène. D'autre part, comme on l'expliquera plus loin, la résistance à la fissuration différée provient notamment de la présence d'une couche superficielle enrichie en nickel. Sans vouloir être lié par une théorie, on pense que lorsque la teneur en manganèse est excessive, il peut se former une couche d'oxydes épaisse lors du réchauffage des brames, si bien que le nickel n'a pas le temps de diffuser suffisamment pour se situer sous cette couche d'oxydes de fer et de manganèse.
On prévoit alternativement une teneur abaissée en manganèse qui est comprise entre 0,05% et 0,4% conjointement avec une teneur en carbone augmentée qui est comprise entre 0,38% et 0,43%. L'abaissement de la teneur en manganèse permet d'obtenir une tôle et une pièce de résistance à la corrosion par piqûre et ainsi de résistance à la corrosion sous contrainte améliorées. Le maintien d'une résistance mécanique élevée est réalisé en augmentant sensiblement la teneur en carbone.
La teneur en manganèse est définie préférentiellement conjointement avec la teneur en carbone, éventuellement en chrome :
- lorsque la teneur en carbone est comprise entre 0,32% et 0,36% en poids, une teneur en Mn comprise entre 0,40% et 0,80% et une teneur en chrome comprise entre 0,05% et 1 ,20%, permettent d'obtenir simultanément une excellente résistance à la fissuration différée grâce à la présence d'une couche superficielle enrichie en nickel particulièrement efficace, et une très bonne aptitude au découpage mécanique des tôles. La teneur en Mn est idéalement comprise entre 0,50% et 0,70% pour concilier l'obtention d'une résistance mécanique élevée et d'une résistance à la fissuration différée. - lorsque la teneur en carbone est comprise entre 0,24% et 0,38%, en association avec une teneur en manganèse comprise entre 1 ,50% et 3%, l'aptitude au soudage par points est particulièrement bonne.
- lorsque la teneur en carbone est comprise entre 0,38% et 0,43% en association avec une teneur en manganèse comprise entre 0,05% et
0,4% et plus préférentiellement comprise entre 0,09% et 0,11%, la résistance à la corrosion sous contrainte est fortement augmentée, comme il sera vu plus loin.
Ces gammes de composition permettent d'obtenir une température Ms de début de transformation au refroidissement (austénite→martensite) comprise entre 320 et 370°C environ, ce qui permet de garantir que les pièces durcies à chaud présentent une résistance suffisamment élevée.
- la teneur en silicium de l'acier doit être comprise entre 0,10 et 1 ,70 % en poids : une teneur en silicium supérieure à 0,10% permet d'obtenir un durcissement supplémentaire et contribue à la désoxydation de l'acier liquide. La teneur en silicium peut être augmentée jusqu'à 1 ,70% tout en évitant la présence d'oxydes de surface excessifs qui pourraient nuire au dépôt du revêtement. Cette augmentation de la teneur en silicium nécessite cependant d'effectuer des opérations de décapage de la bobine laminée à chaud et de soumettre la tôle à une atmosphère de traitement de recuit de façon adaptée pour limiter la formation d'oxydes.
Pour une teneur en carbone comprise entre 0,24% et 0,38%, la teneur en silicium est préférentiellement supérieure à 0,50% afin d'éviter un adoucissement de la martensite fraîche, qui peut intervenir lorsque la pièce est maintenue dans l'outillage de la presse après la transformation martensitique.
Pour une teneur en carbone comprise entre 0,38% et 0,43% et une teneur en manganèse comprise entre 0,05% et 0,4%, la teneur en silicium est préférentiellement comprise entre 0,10% et 1 ,70% pour diminuer le taux de piqûres par corrosion, ce qui permet d'augmenter la résistance à la corrosion sous contrainte.
La teneur en silicium peut être augmentée jusqu'à 1 ,70% à condition que les autres éléments d'alliage présents dans l'acier permettent d'atteindre une température de transformation au chauffage Ac3 (ferrite+perlite → austénite) inférieure à 880 ° C, de façon à être compatible avec les pratiques usuelles industrielles d'austénitisation précédant l'étape d'emboutissage à chaudr
- en quantité supérieure ou égale à 0,015%, l'aluminium est un élément favorisant la désoxydation dans le métal liquide lors de l'élaboration, et la précipitation de l'azote. Lorsque sa teneur est supérieure à 0,070% il peut se former des aluminates grossiers lors de l'élaboration qui tendent à diminuer la ductilité. De façon optimale, sa teneur est comprise entre 0,020 et 0,060%. - le chrome augmente la trempabilité et contribue à l'obtention de la résistance mécanique en traction Rm au niveau souhaité après le durcissement sous presse. Au delà d'une teneur égale à 2% en poids, l'effet du chrome sur l'homogénéité des propriétés mécaniques dans la pièce durcie sous presse est saturé. En quantité préférentiellement comprise entre 0,05 et 1 ,20%, cet élément contribue à l'augmentation de la résistance. Pour une teneur en carbone comprise entre 0,24% et 0,38%, on préfère une addition de chrome comprise entre 0,30 et 0,50% qui permet d'obtenir les effets recherchés sur la résistance mécanique et la fissuration différée, en limitant les coûts d'addition. Lorsque la teneur en manganèse est suffisante, c'est-à- dire comprise entre 1 ,50% et 3%Mn, on considère que l'addition de chrome est optionnelle, la trempabilité obtenue grâce au manganèse, étant considéré comme suffisante.
Alternativement, pour une teneur en carbone comprise entre 0,38% et 0,43%, on préfère une teneur en chrome augmentée supérieure à 0,5% et plus préférentiellement comprise entre 0,950% et 1 ,050% afin d'augmenter la résistance à la corrosion par piqûre ainsi que par voie de conséquence, la résistance à la corrosion sous contrainte.
Outre les conditions sur chacun des éléments C, Mn, Cr, Si définies ci- dessus, ces éléments sont spécifiés de façon conjointe en fonction du
^ Mn Cr Si
paramètre Ρτ= 2.6C + +— - +—
5.3 13 15
Comme expliqué dans la publication WO2016016707, dans ces conditions, la fraction de martensite autorevenue, sous l'effet du maintien dans l'outillage de presse, est extrêmement limitée, de telle sorte que la quantité très élevée de martensite non revenue permet d'obtenir une valeur élevée de résistance mécanique. Lorsqu'une valeur de résistance Rm en traction supérieure ou égale à 1800MPa est recherchée, on met en évidence que le paramètre Pi doit être tel que : Pi > 1 .1
- Le titane a une forte affinité pour l'azote. Compte tenu de la teneur en azote des aciers de l'invention, la teneur en titane doit être supérieure ou égale à 0,015% de façon à obtenir une précipitation effective. En quantité supérieure à 0,020% en poids, le titane protège le bore de façon à ce que cet élément se trouve sous forme libre pour jouer son plein effet sur la trempabilité. Sa teneur doit être supérieure à 3,42N, cette quantité étant définie par la stœchiométrie de la précipitation TiN, de façon à éviter la présence d'azote libre. Au-delà de 0, 10%, il existe cependant un risque de former dans l'acier liquide, des nitrures de titane grossiers qui jouent un rôle néfaste sur la ténacité. La teneur en titane est comprise préférentiellement entre 0,020 et 0,040%, de façon à former des nitrures fins qui limitent la croissance des grains austénitiques lors du réchauffage des flans avant emboutissage à chaud.
- en quantité supérieure à 0,010% en poids, le niobium forme des carbonitrures de niobium également susceptibles de limiter la croissance des grains austénitiques lors du réchauffage des flans. Sa teneur doit cependant être limitée à 0,060% en raison de son aptitude à limiter la recristallisation lors du laminage à chaud, ce qui accroît les efforts de laminage et la difficulté de fabrication. Les effets optimaux sont obtenus lorsque la teneur en niobium est comprise entre 0,030 et 0,050%.
- en quantité supérieure à 0,0005% en poids, le bore accroît très fortement la trempabilité. En diffusant aux joints de grains austénitiques, il exerce une influence favorable en empêchant la ségrégation intergranulaire du phosphore. Au-delà de 0,0040%, cet effet est saturé.
- une teneur en azote supérieure à 0,003% permet d'obtenir une précipitation de TiN, de Nb(CN), ou de (Ti,Nb)(CN) mentionnée ci-dessus afin de limiter la croissance du grain austénitique. La teneur doit être cependant limitée à 0,010% de façon à éviter la formation de précipités grossiers. - à titre optionnel, la tôle peut contenir du molybdène en quantité comprise entre 0,05 et 0,65% en poids: cet élément forme une co-précipitation avec le niobium et le titane. Ces précipités sont très stables thermiquement, renforçant la limitation de la croissance du grain austénitique au chauffage. Un effet optimal est obtenu pour une teneur en molybdène comprise entre 0,15 et 0,25%.
- A titre optionnel, l'acier peut également comprendre du tungstène en quantité comprise entre 0,001 et 0,30%% en poids. Dans les quantités indiquées, cet élément augmente la trempabilité et l'aptitude au durcissement grâce à la formation de carbures.
- A titre optionnel, l'acier peut également contenir du calcium en quantité comprise entre 0,0005 et 0,005% : en se combinant avec l'oxygène et le soufre, le calcium permet d'éviter la formation d'inclusions de grande taille qui sont néfastes pour la ductilité des tôles ou des pièces ainsi fabriquées.
- en quantités excessives, le soufre et le phosphore conduisent à une fragilité augmentée. C'est pourquoi la teneur pondérale en soufre est limitée à 0,005% de façon à éviter une formation excessive de sulfures. Une teneur en soufre extrêmement basse, c'est-à-dire inférieure à 0,001% est cependant inutilement coûteuse à réaliser dans la mesure où elle n'apporte pas de bénéfice supplémentaire.
Pour des raisons similaires, la teneur en phosphore est comprise entre 0,001 et 0,025% en poids. En teneur excessive, cet élément ségrège aux joints de grains austénitique et augmente le risque de fissuration différée par rupture intergranulaire.
- le nickel est un élément important de l'invention : en effet, les inventeurs ont mis en évidence que cet élément, en quantité comprise entre 0,25% et 2% en poids, réduit très sensiblement la sensibilité à la rupture différée lorsqu'il se trouve concentré en surface de la tôle ou de la pièce sous une forme spécifique.
En outre et comme divulgué dans la publication WO2016016707, la pièce d'acier est enrichie en nickel au voisinage de sa surface jusqu'à un maximum Nimax selon deux paramètres pour obtenir une résistance efficace à la fissuration différée, Un premier paramètre P2 est défini selon :
(^'max "^" nom )
Δ étant la profondeur enrichie en nickel de la pièce d'acier et Nin0m étant la teneur nominale en nickel de l'acier.
5 Ce premier paramètre caractérise la teneur globale en nickel dans la couche enrichie Δ
Le second paramètre P3 est défini par :
P3= Δ
Ce second paramètre caractérise le gradient moyen de concentration en î o nickel, c'est-à-dire l'intensité de l'enrichissement au sein de la couche Δ.
En satisfaisant à ces deux paramètres, la pièce d'acier présente une résistance à la fissuration différée très importante.
Le procédé permettant de réaliser une tôle d'acier de l'invention va maintenant être décrit : On coule un demi-produit, sous forme d'acier liquide,
15 de composition mentionnée ci-dessus. Contrairement à un procédé conventionnel où l'addition d'éléments est réalisée lors de la coulée en poche depuis le convertisseur, les inventeurs ont mis en évidence qu'il était nécessaire de réaliser cette addition sans présence d'air qui conduit à une augmentation de la teneur en azote du métal liquide. Dans le procédé selon 0 l'invention, les additions d'éléments tels que le manganèse, le silicium, le niobium, le chrome sont réalisées dans une enceinte où règne une atmosphère sous vide. Après ce traitement sous vide, on réalise une désulfuration du métal liquide par brassage entre le métal et le laitier qui est effectué dans des conditions à ne pas augmenter la teneur en azote. Après 5 contrôle de la teneur en azote dans le métal liquide, on ajoute le titane, par exemple sous-forme de ferro-titane. Le titane est ainsi ajouté à la fin de l'étape de métallurgie secondaire. Ainsi, lors de l'opération d'addition, on diminue la teneur en azote introduite et on limite la formation de particules susceptibles de nuire à la ductilité de la pièce d'acier. En réalisant ainsi
30 l'introduction des éléments d'addition, on réduit la quantité de particules précipitées à la fin de la solidification et ainsi la tôle et la pièce d'acier résultante présentent une ductilité améliorée comme il sera détaillé plus loin.
Le demi-produit obtenu après coulée peut être sous forme de brame d'épaisseur comprise typiquement entre 200 et 250mm, ou de brame mince dont l'épaisseur typique est de l'ordre de quelques dizaines de millimètres, ou sous toute autre forme appropriée. Celui-ci est porté à une température comprise entre 1250 et 1300°C et maintenu dans cet intervalle de température pendant une durée comprise entre 20 et 45 minutes. Par réaction avec l'oxygène de l'atmosphère du four, il se forme, pour la composition de l'acier de l'invention, une couche d'oxyde essentiellement riche en fer et en manganèse, dans laquelle la solubilité du nickel est très faible, le nickel reste sous forme métallique. En parallèle à la croissance de cette couche d'oxyde, on assiste à une diffusion du nickel vers l'interface entre l'oxyde et le substrat d'acier causant ainsi l'apparition d'une couche enrichie en nickel dans l'acier. A ce stade, l'épaisseur de cette couche dépend en particulier de la teneur en nickel nominale de l'acier, et des conditions de température et de maintien définies précédemment.
Lors du cycle de fabrication ultérieur, cette couche initiale enrichie subit simultanément :
- une diminution d'épaisseur, due aux taux de réduction conférés par les étapes successives de laminage,
- une augmentation d'épaisseur en raison du séjour de la tôle à haute température lors des étapes successives de fabrication. Cette augmentation intervient cependant dans des proportions moindres que lors de l'étape de réchauffage des brames.
Un cycle de fabrication d'une tôle laminée à chaud comprend typiquement :
- des étapes de laminage à chaud (dégrossissage, finissage) dans une gamme de température allant de 1250 à 825°C,
- une étape de bobinage dans une gamme de température allant de 500 à 750°C.
Les inventeurs ont mis en évidence qu'une variation des paramètres de laminage à chaud et de bobinage, dans les gammes définies par l'invention, ne modifiaient pas les caractéristiques mécaniques de façon sensible, si bien que le procédé était tolérant à une certaine variation au sein de ces gammes, sans incidence notable sur les produits résultants.
A ce stade, la tôle laminée à chaud, dont l'épaisseur peut être typiquement de 1 ,5-4, 5mm, est décapée par un procédé connu en lui-même, qui élimine uniquement la couche d'oxydes, si bien que la couche enrichie en nickel se trouve située au voisinage de la surface de la tôle.
Lorsque l'on désire obtenir une tôle d'épaisseur plus fine, on effectue un laminage à froid avec un taux de réduction adapté, par exemple compris entre 30 et 70%, puis un recuit à une température comprise typiquement entre 740 et 820°C de façon à obtenir une recristallisation du métal écroui. Après ce traitement thermique, la tôle peut être refroidie de façon à obtenir une tôle non revêtue, ou revêtue en continu par passage dans un bain au trempé, selon des procédés connus en eux-mêmes, et enfin refroidie.
Comme explicité dans la publication WO2016016707, l'étape qui présente une influence prépondérante sur les caractéristiques de la couche enrichie en nickel sur la tôle finale, est l'étape de réchauffage des brames, dans une gamme spécifique de température et de durée de maintien. À l'inverse, le cycle de recuit de la tôle laminée à froid, comportant ou non une étape de revêtement, n'a qu'une influence secondaire sur les caractéristiques de la couche superficielle enrichie en nickel. En d'autres termes, à l'exception du taux de réduction en laminage à froid qui diminue l'épaisseur de la couche enrichie en nickel d'une quantité homothétique, les caractéristiques de l'enrichissement en nickel de cette couche sont pratiquement identiques sur une tôle laminée à chaud et sur une tôle qui a subi en outre un laminage à froid et un recuit, que celui-ci comporte ou non une étape de pré-revêtement au trempé.
Ce pré-revêtement peut être de l'aluminium, un alliage d'aluminium (comportant plus de 50% d'aluminium) ou un alliage à base d'aluminium (dont l'aluminium est le constituent majoritaire) Ce pré-revêtement est avantageusement un alliage aluminium-silicium comprenant en poids 7-15% de silicium, 2 à 4% de fer, optionnellement entre 15 et 30 ppm de calcium, le reste étant de raluminium et des impuretés inévitables résultant de l'élaboration.
Le pré-revêtement peut être également un alliage d'aluminium contenant 40-45%Zn, 3-10%Fe, 1-3%Si, le solde étant de l'aluminium et des impuretés 5 inévitables résultant de l'élaboration.
Selon une variante, le pré-revêtement peut être un revêtement d'alliage d'aluminium, celui-ci se trouvant sous forme d'intermétalliques comprenant du fer. Ce type de pré-revêtement est obtenu en effectuant un pré-traitement thermique de la tôle pré-revêtue d'aluminium ou d'alliage d'aluminium. Ce î o pré-traitement thermique est réalisé à une température θι pendant une durée de maintien ti, de façon à ce que le pré-revêtement ne contienne plus d'aluminium libre, de phase τ 5 du type Fe3Si2Ali2, et τ 6 du type Fe2Si2AI9. Ce type de pré-revêtement permet alors de chauffer les flans, avant l'étape d'emboutissage à chaud, avec une vitesse nettement plus rapide, ce qui
15 permet de minimiser la durée de maintien à haute température durant le réchauffage des flans, c'est-à-dire de diminuer la quantité d'hydrogène adsorbée au cours de cette étape de chauffage des flans.
Alternativement, le pré-revêtement peut être galvanisé, ou galvanisé-allié, c'est-à-dire présentant une quantité de fer comprise entre 7-12% après 0 traitement thermique d'alliation réalisé au défilé immédiatement après le bain de galvanisation.
Le pré-revêtement peut être également composé d'une superposition de couches déposées par étapes successives, dont au moins une des couches peut être de l'aluminium ou un alliage d'aluminium.
5 Après la fabrication décrite ci-dessus, les tôles sont découpées ou poinçonnées par des procédés connus en eux-mêmes, de façon à obtenir des flans dont la géométrie est en rapport avec la géométrie finale de la pièce emboutie et durcie sous presse. Comme on l'a expliqué plus haut, le découpage de tôles comportant notamment entre 0,32 et 0,36%C, entre 0,40 0 et 0,80%Mn, entre 0,05 et 1 ,20%Cr, est particulièrement aisé en raison de la résistance mécanique peu élevée à ce stade, associée à une microstructure ferrito-perlitique. Ces flans sont chauffés jusqu'à une température comprise entre 810 et 950°C de manière à austénitiser complètement le substrat en acier, emboutis à chaud, puis maintenus dans l'outillage de presse de façon à obtenir une transformation martensitique. Le taux de déformation appliqué lors de l'étape de l'emboutissage à chaud peut être plus ou moins important selon qu'une étape de déformation à froid (emboutissage) a été réalisée préalablement ou non au traitement d'austénitisation. Les inventeurs ont mis en évidence que les cycles thermiques de chauffage permettant le durcissement sous presse, qui consistent à chauffer les flans au voisinage de la température de transformation Ac3, puis à les maintenir à cette température pendant quelques minutes, ne provoquaient pas non plus de modification sensible de la couche enrichie en nickel.
En d'autres termes, les caractéristiques de la couche superficielle enrichie en nickel sont similaires sur la tôle avant durcissement sous presse, et sur la pièce après durcissement sous presse, obtenue à partir de cette tôle.
Grâce aux compositions de l'invention qui possèdent une température de transformation Ac3 plus basse que les compositions d'acier conventionnels, il est possible d'austénitiser les flans avec des températures-temps de maintien réduits, ce qui permet de diminuer l'adsorption éventuelle de l'hydrogène dans les fours de chauffage.
Les inventeurs ont découvert que pour obtenir une pièce d'acier présentant une ductilité améliorée, en plus des propriétés avantageuses de résistance mécanique et de résistance à la fissuration différée précédemment expliqués, la densité des particules présentes au voisinage de la surface de la tôle devait satisfaire à des conditions particulières. Dans le cadre de l'invention, ces particules désignent l'ensemble des oxydes, sulfures, nitrures, purs ou mixtes tels que les oxysulfures et carbonitrures, présents dans la matrice de l'acier. On a en effet mis en évidence que certaines particules étaient des sites d'un endommagent précoce qui diminuait l'aptitude au pliage. Dans le cadre de l'invention, le voisinage de la surface désigne la zone située entre la surface des tôles et 100 micromètres sous cette surface.
En particulier la densité des particules et notamment celle des particules de taille moyenne supérieure à 2 micromètres devaient répondre à certains critères.
On se réfère aux Tableaux 1 et 2 ci-dessous ainsi qu'aux Figures 1 et 2 pour décrire les essais et mesures conduisant à l'établissement d'un paramètre tenant aux densités des particules.
Cinq tôles d'acier A, B, C, D, E dont les compositions chimiques respectives sont données dans le Tableau 1 , ont été réalisées. Les compositions sont exprimées en pourcentage en poids, le reste de la composition étant constitué de fer et d'impuretés résultant de l'élaboration. Ces tôles ont été obtenues à partir d'acier élaboré à l'état liquide selon différents procédés : pour l'essai A (essai de référence), les éléments d'addition (manganèse, silicium, chrome, niobium) ont été ajoutés sous air, lors de la coulée en poche depuis le convertisseur.
Pour les essais B, C, D, E, réalisés dans les conditions de l'invention, ces éléments d'addition ont été ajoutés lors d'un traitement RH (Ruhrstahl Heraeus) dans la cuve RH maintenue sous vide. Le traitement de désulfuration ultérieur a été effectué sans reprise d'azote dans l'acier liquide. L'addition de titane a été réalisée sous forme de ferro-titane à la fin du procédé de métallurgie secondaire.
Après coulée sous forme de demi-produits, des brames de ces différents aciers ont été réchauffées à une température de 1275°C et maintenues à cette température pendant 45 minutes. Elles ont été ensuite laminées avec une température de fin de laminage de 950°C, et bobinées à une température de 650°C. Après décapage, les tôles ont été laminées à froid jusqu'à une épaisseur de 1 ,5mm. Les tôles ont ensuite subi un recuit d'aluminage à une température de 760°C, puis aluminées en continu au trempé dans un bain contenant 9% en poids de silicium 3% en poids de fer, le solde étant de l'aluminium et des impuretés inévitables.
Les tôles découpées ont été embouties à chaud, après un réchauffage à une température de 900°C et une durée de maintien totale dans le four de 6'30. Référence
C Mn Si Ni Cr Mo Al d'essai
A 0.34 0.61 0.54 0.42 0.35 0.20 0.032
B 0.345 0.61 0.53 0.39 0.35 0.19 0.043
C 0.33 0.60 0.53 0.38 0.33 0.17 0.028
D 0.33 0.66 0.55 0.40 0.35 0.19 0.036
E 0.33 0.65 0.55 0.44 0.35 0.20 0.038
Référence
Nb Ti P S N B d'essai
A 0.038 0.034 0.008 0.0004 0.0055 0.0039
B 0.039 0.033 0.004 0.0015 0.0051 0.0029
C 0.045 0.017 0.012 0.0003 0.0044 0.0032
D 0.048 0.017 0.011 0.0004 0.0051 0.0024
E 0.052 0.015 0.010 0.0005 0.0035 0.0029
Tableau 1 : Composition d'acier pour les essais
A, B, C, D et E
Après durcissement sous presse, des mesures ont été réalisées sur trois échantillons par microscopie électronique à balayage en considérant les particules de taille supérieure à 0.5 micromètres sur une surface de 6 mm2 et sur une profondeur de 100 micromètres au voisinage de la surface de la pièce.
Un premier type de mesure consiste à évaluer la densité Di de l'ensemble des particules à savoir les oxydes, sulfures, nitrures, purs ou mixtes tels que les oxysulfures et carbonitrures, présents dans la matrice de l'acier. Un second type de mesure consiste à évaluer la densité D(>2Mm) de ces mêmes particules dont la taille est supérieure à 2 micromètres. Sur le Tableau 2 ci- dessous, les références d'essai D1 , D2, E1 et E2 correspondent respectivement à des tôles d'acier de composition D et E telles que présentées dans le Tableau 1 ci-dessous et qui résultent de deux bobines d'acier différentes.
L'angle de pliage a été déterminé sur les pièces durcies de 60x60mm2 supportées par deux rouleaux, selon le standard de flexion VDA-238. L'effort de pliage est exercé par un poinçon de rayon de 0,4 mm. L'espacement entre les rouleaux et le poinçon est égal à l'épaisseur des pièces testées, un jeu de 0,5 mm étant ajouté. L'apparition de la fissure est détectée puisqu'elle coïncide avec une diminution de la charge dans la courbe de déplacement de la charge. Les tests sont interrompus lorsque la charge diminue plus de 30 N de sa valeur maximale. L'angle de pliage de chaque référence d'essai est mesuré à charge maximale. Les résultats présentés dans le Tableau 2 ci- dessous correspondent aux sept échantillons pris dans le sens de laminage. On obtient alors une valeur moyenne de l'angle de pliage.
Figure imgf000026_0001
Tableau 2 : Densité des particules (Dj) et densité des particules de taille moyenne supérieure à 2 micromètres (D(>2Mm)) sur une profondeur de 100 micromètres au voisinage de la surface de la tôle, et angle de pliage correspondant. Valeurs soulignées : non conformes à l'invention
Pour satisfaire aux exigences industrielles en termes de ductilité en cas de choc, les pièces satisfaisantes en matière de contrainte à la rupture sont celles qui présentent un angle de pliage supérieur à 50°. La pièce emboutie à chaud dans les conditions de l'essai A, où les additions d'éléments ont été réalisées selon un procédé conventionnel, présente un angle de pliage inférieur à 50°.
La figure 3 illustre la répartition des particules selon leur taille moyenne en fonction de leur densité pour les sept références d'essai du Tableau 2. On constate que la référence d'essai A présente une répartition de la densité des particules selon leur taille qui est substantiellement différente de celle des autres références d'essai. Principalement, la densité des particules de taille moyenne inférieure à 2 micromètres de la référence A est nettement inférieure à celle des autres références d'essai. Les conditions d'élaboration selon l'invention permettent d'obtenir une diminution significative de l'ensemble des particules, et notamment des particules de taille supérieure à 2 micromètres. Cette répartition favorable se constate sur la tôle ainsi que sur la pièce emboutie à chaud à partir de cette tôle.
On a reporté sur la figure 1 et pour chaque référence d'essai du Tableau 2 la densité D(>2Mm) relative aux particules de taille moyenne supérieure à 2 micromètres, et la densité Di relative à l'ensemble des particules. Considérant que seule la référence A ne satisfait pas au critère recherché d'un angle de pliage supérieur à 50°, il se dégage une relation entre la densité Di et la densité D(>2Mm) qui est obtenue sur la base de la droite D d'équation :
Y = - 6,75 (X-40)
Considérant que les pièces susceptibles de présenter un angle de pliage supérieur à 50° sont situés sous la droite D dans la zone hachurée F, il s'ensuit que le critère permettant de satisfaire à une bonne ductilité au pliage est le suivant :
Figure imgf000027_0001
D, et D(>2Mm) étant toutes deux exprimées en nombre de particules par mm2.
Ce critère met en évidence l'influence importante des particules de taille moyenne supérieure à 2 micromètres sur la ductilité des pièces embouties à chaud.
Dans le Tableau 3 ci-dessous et sur la figure 2, on a reporté le critère défini D, + 6,75 D(>2 m) et l'angle de pliage obtenu pour les sept conditions d'essais A, B, C, D1 , D2, E1 et E2. La zone hachurée G sur la figure 2 définit la zone, selon l'invention, pour laquelle la pièce présente un angle de pliage supérieur à 50° et dans laquelle le critère est inférieur à 270. Dans cette zone G, la pièce présente une ductilité améliorée et une résistance mécanique Rm supérieure à 1800 MPa. Référence Critère Angle de pliage (°) d'essai Di + 6,75 D(>
A 577 44
B 181 50,85
C 143 52
Dl 220 51
D2 180 51
El 144 55
E2 246 55
Tableau 3 : Critère D, + 6,75 D(>2Mm) et angle de pliage correspondant
Valeurs soulignées : non conformes à l'invention Les inventeurs ont également découvert que la diminution de la teneur en manganèse ajustée par une augmentation sensible de la teneur en carbone permettait d'augmenter substantiellement la résistance de la pièce d'acier à la corrosion sous contrainte tout en préservant une résistance mécanique élevée supérieure à 1800 MPa.
II est connu de mesurer la sensibilité à la corrosion sous contrainte par des méthodes mettant en œuvre un test de flexion à quatre points à charge constante et :
- soit immersion de la pièce d'acier ainsi contrainte dans une solution saline à température ambiante pendant 30 jours,
- soit pulvérisation à 35°C pendant 4h d'une solution saline sur la pièce d'acier sous contrainte, cette opération étant renouvelée pendant 20 jours.
Mais ces méthodes ne reproduisent pas suffisamment les conditions environnementales dans lesquels les pièces d'acier sont susceptibles de se trouver.
C'est pourquoi une autre méthode dite cyclique prévoit une alternance de phase saline, de phase humide et de phase sèche. La phase saline est appliquée pendant 2% de la période de test pour un pourcentage en poids de NaCI dans l'atmosphère de 1 % à pH4. La phase suivante humide est appliquée pendant 28% de la période de test, à un pourcentage en humidité relative de 90% à une température de 35°C. La dernière phase sèche est appliquée pendant 70% de la période de test, à un pourcentage d'humidité relative de 55% et à une température de 35°C. Ce test cyclique est appliqué pendant 42 jours.
Cependant, cette méthode cyclique n'est pas suffisamment sévère pour assurer à la pièce d'acier une résistance à la corrosion sous contrainte satisfaisante pour les applications visées. On a donc appliqué une nouvelle méthode cyclique dite VDA (Verband der Automobillndustrie) dans laquelle la pièce d'acier sous contrainte est soumise à des conditions de corrosion plus sévères. Une période de test, ou cycle, correspond à une semaine.
Dans cette méthode VDA, la phase saline est appliquée pendant 5% de la période de test (au lieu de 2% pour la méthode cyclique) pour un pourcentage en poids de NaCI dans l'atmosphère de 1 % à pH7. La phase suivante humide est appliquée pendant 25% de la période de test, à un pourcentage en humidité relative de 95% (au lieu de 90% pour la méthode cyclique) à une température de 35°C. La dernière phase sèche est appliquée pendant 65% de la période de test, à un pourcentage d'humidité relative de 70% (au lieu de 55% pour la méthode cyclique) et à une température de 35°C. La méthode VDA est appliquée pendant 6 cycles, soit 6 semaines ou 42 jours.
II est considéré selon l'invention qu'une pièce d'acier satisfait au critère de corrosion sous contrainte si aucune rupture du matériau ne se produit pendant au moins 42 jours.
On a considéré trois conditions d'essai H, I et J dont les compositions chimiques sont données dans le Tableau 4 ci-dessous. Les compositions sont exprimées en pourcentage en poids, le reste de la composition étant constitué de fer et d'impuretés résultant de l'élaboration.
Les trois conditions d'essai H, I et J satisfont aux critères définis précédemment relatifs à la densité des particules et à l'enrichissement superficiel en nickel. Référence
C Mn S P Si Cr Nb d'essai
H 0,35 0,60 0,0003 0,012 0,53 0,33 0,045
1 0,35 0,62 0,0003 0,013 0,57 0,51 0,039
J 0,40 0,10 0,0001 0,012 0,21 1,00 0,041
Référence
Al Ti Ni Mo B(ppm) N
d'essai
H 0,045 0,017 0,38 0,17 32 0,004
1 0,030 0,020 0,40 0,20 24 0,005
J 0,023 0,015 0,50 0,24 19 0,003 Tableau 4 : Composition de l'acier pour trois conditions d'essai H, I et J
La tôle fabriquée dans la condition H présente une température Ac3 de 829°C. Cette température est évaluée par la formule d'Andrews, connue en elle-même. La tôle fabriquée dans la condition I présente une température Ac3 calculée par la formule d'Andrews de 820°C, et la tôle fabriquée dans la condition d'essai J présente une température Ac3 calculée par la formule d'Andrews de 807°C.
La référence d'essai J présente ainsi une température d'austénisation particulièrement favorable à son élaboration industrielle.
Les températures Ms (température de début de transformation martensitique au refroidissement) calculées à partir de la formule d'Andrews, sont de 362°C, 345°C, 353°C, pour les tôles fabriquées respectivement dans les conditions H, I, et J.
Les tôles d'acier des références H, I et J ont été réalisées dans les conditions suivantes :
- réchauffage à une température de 1275°C pendant 30 minutes
- laminage à chaud jusqu'à une température de fin de laminage TFL de 900°C.
- bobinage à 540°C pour la référence H et 550°C pour les références I et J, - laminage à froid avec un taux de réduction de 58%,
- recuit à une température de 760°C de façon à obtenir une recristallisation du métal écroui, et - refroidissement.
Dans l'essai H, la tôle est revêtue au trempé d'un alliage AISi tel que mentionné ci-dessus, les tôles fabriquées dans les conditions I et J ne sont pas revêtues.
5 On obtient une tôle d'acier d'épaisseur de 1 ,5 millimètres pour les conditions H et I, et de 1 ,3 millimètres pour la condition J.
Après avoir découpé la tôle pour obtenir un flan, on chauffe celui-ci dans un four à 900°C pendant 6 minutes et 30 secondes (temps total de maintien dans le four)., de façon à ce qu'une transformation austénitique totale î o intervienne dans l'acier, puis on transfère le flan rapidement au sein d'un dispositif simulant l'emboutissage à chaud. Le transfert est effectué en moins de 10 secondes, de telle sorte qu'aucune transformation de l'austénite n'intervienne pendant cette étape. La pression exercée par les outils de la presse est de 5000 MPa. On maintient la pièce au sein de la presse pour
15 obtenir un durcissement par transformation martensitique de la structure austénitique. On applique ensuite sur la tôle un traitement thermique de 170°C pendant 20 minutes, correspondant à un cycle de cuisson d'une peinture appliquée sur la pièce emboutie à chaud.
Les caractéristiques mécaniques de traction (limite d'élasticité σγ et 0 résistance Rm) mesurées sur les pièces embouties H, I et J, sont présentées au tableau 5 ci-dessous.
Figure imgf000031_0001
Tableau 5. Caractéristiques mécaniques de traction mesurées dans les trois conditions d'essai H, I et J
25
Trois éprouvettes prélevées dans des pièces embouties à chaud pour chacune des références d'essai H, I et J ont été soumises au test VDA de corrosion sous contrainte précédemment décrit. La contrainte de flexion appliquée à l'éprouvette en surface extérieure entre les deux rouleaux est de 750 MPa.
Les résultats sont présentés dans le Tableau 6 ci-dessous.
Figure imgf000032_0001
Tableau 6 : Résultats des tests de corrosion sous contrainte par la méthode
VDA des conditions d'essai H-J
On constate que pour la condition d'essai H, deux pièces se sont rompues au cours du 2eme cycle, et la troisième pièce s'est rompue au cours du 3ème cycle.
Pour la référence d'essai I, une première pièce s'est rompue au cours du 3ème cycle, et les deux autres pièces se sont rompues au cours du 4eme cycle.
Pour la référence d'essai J, aucune pièce n'est rompue à l'issue du 6ème cycle. La référence d'essai J à basse teneur en manganèse présente ainsi une excellente résistance à la corrosion sous contrainte.
Sans être lié par une théorie, les inventeurs ont défini l'expression d'un critère permettant d'assurer, pour une pièce emboutie à chaud présentant une limite d'élasticité comprise entre 1300 et 1600 MPa, une résistance à la corrosion sous contrainte suffisante pour satisfaire au test VDA.
Ce critère dépend de trois paramètres : un paramètre P1 dépendant de la composition de la pièce, un paramètre P2 dépendant de la contrainte appliquée et un paramètre P3 dépendant de la présence éventuelle d'un revêtement sur la pièce emboutie à chaud.
Le paramètre P1 s'exprime de la façon suivante en fonction des teneurs en manganèse, phosphore, chrome, molybdène et silicium:
P\ = 455Exp(-0.5[Mn + 25P]) + [390Cr + 50Mo] + 7Exp(13Si) l les teneurs étant exprimées en pourcentages en poids.
Le paramètre P2 s'exprime de la façon suivante :
2 = [ό - 1.22x1 (T9qy 3 ]
où ay désigne la limite d'élasticité, exprimée en MPa, et est comprise entre 1300 et 1600 MPa.
Le paramètre P3 est quantifié par un paramètre Cscc dont la valeur est égale à 1 si la pièce n'est pas revêtue est nue, et égale à 0,7 si la pièce est revêtue
On définit alors le seuil de rupture à la corrosion sous contrainte Xo comme étant : Xo = P1 x P2 x P3
Les inventeurs ont mis en évidence que si Xo est supérieur ou égal à 750, la tôle ou pièce correspondante satisfait au test VDA de résistance à la corrosion sous contrainte.
On définit alors le critère suivant qui, s'il est satisfait, assure une excellente résistance à la corrosion sous contrainte de la tôle et pièce d'acier:
[ 455Exp(-0.5[Mn + 25P]) + [390Cr + 50Mo]+ 7Exp(l .3Si) ][ό - 1.22x10_9 ^ ] 5α: ] > 750
Outre la mise en évidence que la diminution de la teneur en Mn permet d'augmenter la résistance à la corrosion sous contrainte, on constate que l'augmentation de la teneur en chrome (0,33 pour la référence d'essai H, 0,51 pour la référence I et 1 pour la référence J) améliore aussi la résistance à la corrosion sous contrainte de la pièce.
Ainsi, l'invention permet la fabrication de pièces durcies sous presse, offrant simultanément de hautes caractéristiques mécaniques en traction, une bonne ténacité et une résistance élevée à la corrosion sous contrainte. Ces pièces seront utilisées avec profit comme pièces de structure ou de renfort dans le domaine de la construction automobile.

Claims

REVENDICATIONS
Tôle d'acier laminée, pour durcissement sous presse, dont la composition chimique comprend, les teneurs étant exprimées en poids :
soit 0,24% < C < 0,38% et 0,40% < Mn < 3% , soit 0,38% < C < 0,43% et 0,05% < Mn < 0,4%
0,10% < Si < 1 ,70%
0,015%≤ Al < 0,070%
0%≤ Cr < 2%
0,25% < Ni < 2%
0,015% < Ti < 0,10%
0 % < Nb < 0,060%
0,0005% < B < 0,0040%
0,003% < N < 0,010%
0,0001 % < S < 0,005%
0,0001 % < P < 0,025%
étant entendu que les teneurs en titane et en azote satisfont à :
Ti/N >3,42,
et que les teneurs en carbone, manganèse, chrome et silicium satisfont à :
^ Mn Cr Si
2.6C + +— +— > U%
5.3 13 15
la composition chimique comprenant optionnellement un ou plusieurs des éléments suivants:
0,05% < Mo≤ 0,65%
0,001 % < W < 0,30%%
0,0005 % < Ca < 0,005%
le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration, ladite tôle contenant une teneur en nickel NiSUrf en tout point de l'acier au voisinage de la surface de ladite tôle sur une profondeur Δ, telle que :
Nïsurf > Nïnom,
Ninom désignant la teneur nominale en nickel de l'àcier,
et telle que, Nima désignant la teneur maximale en nickel au sein de Δ
et telle que :
( M _ M
V max > Q Q -|
Δ
la profondeur Δ étant exprimée en micromètres,
les teneurs Nimaxet Nin0m étant exprimées en pourcentages en poids, et telle que la densité surfacique de l'ensemble des particules D, et la densité surfacique des particules de taille supérieure à 2 micromètres D(>2Mm) satisfont, au moins sur une profondeur de 100 micromètres au voisinage de la surface de ladite tôle, à :
Di + 6,75 D(>2Mm) < 270
D, et D(>2Mm) étant exprimées en nombre de particules par millimètres carrés. Tôle d'acier selon la revendication 1 , caractérisée en ce que sa composition comprend, en poids :
0,39% < C < 0,43%
0,09% < Mn≤ 0,11 % Tôle d'acier selon l'une quelconque des revendications 1 et 2, caractérisée en ce que sa composition comprend, en poids :
0,95% < Cr < 1 ,05% Tôle d'acier selon l'une quelconque des 2 et 3, caractérisée en ce que sa composition comprend, en poids :
0,48 % < Ni < 0,52%. Tôle d'acier selon l'une quelconque des revendications 2 à 4, caractérisée en ce que sa composition comprend en poids :
1 ,4% < Si < 1 ,70% Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce que sa microstructure est ferrito-perlitique. Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite tôle est une tôle laminée à chaud. Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite tôle est une tôle laminée à froid et recuite. Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est pré-revêtue d'une couche métallique d'aluminium ou d'alliage d'aluminium ou à base d'aluminium. Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est pré-revêtue d'une couche métallique de zinc ou d'alliage de zinc ou à base de zinc. Tôle d'acier selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est pré-revêtue d'une couche ou de plusieurs couches d'alliages intèrmétalliques contenant de l'aluminium et du fer, et éventuellement du silicium, le pré-revêtement ne contenant pas d'aluminium libre, de phase τ s du type Fe3Si2Ali2, et τ 6 du type Fe2Si2AI9. Pièce obtenue par durcissement sous presse d'une tôle d'acier de composition selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle présente une structure martensitique ou martensito-bainitique, et en ce que et la densité surfacique de l'ensemble des particules D, et la densité surfacique des particules de taille supérieure à 2 micromètres D(>2Mm) satisfont, au moins sur une profondeur de 100 micromètres au voisinage de la surface de ladite pièce, à :
Di + 6,75 D(>2Mm) < 270
Dj et D(>2Mm) étant exprimées en nombre de particules par mm2 Pièce durcie sous presse selon la revendication 12, caractérisée en ce qu'elle présente au moins dans le sens de laminage un angle de pliage supérieur à 50°. Pièce durcie sous presse selon l'une quelconque des revendications 12 et 13, caractérisée en ce que les teneurs en manganèse, phosphore, chrome, molybdène et silicium satisfont à :
[ 455 xp(-0.5[A/« + 25P + [390O + 50Mo] + TExp(l .3Si) jô - 1.22 1 (Γ9
Figure imgf000037_0001
] > 750 σγ étant la limite d'élasticité qui est comprise entre 1300 et 1600 MPa, et Cscc étant égal à 1 pour une tôle non revêtue, et égal à 0,7 pour une tôle revêtue.
Pièce durcie sous presse selon l'une quelconque des revendications 12 à 14, contenant une teneur nominale en nickel Nin0m, caractérisée en ce que la teneur en nickel Nisurf dans l'acier au voisinage de la surface est supérieure à inom sur une profondeur Δ, et en ce que, Nimax désignant la teneur maximale en nickel au sein de Δ : et en ce que :
max ^^nom ) > Q
Δ " '
la profondeur Δ étant exprimée en micromètres,
les teneurs Nimax et Nin0m étant exprimées en pourcentages en poids.
Pièce durcie sous presse selon l'une quelconque des revendications 12 à 15, caractérisée en ce que sa résistance mécanique Rm est supérieure ou égale à 1800 MPa.
Pièce durcie sous presse selon l'une quelconque des revendications 12 à 16, caractérisée en ce qu'elle est revêtue d'un alliage d'aluminium ou à base d'aluminium, ou d'un alliage de zinc ou à base de zinc résultant de la diffusion entre le substrat d'acier et le pré-revêtement, lors du traitement thermique de durcissement sous presse.
Procédé de fabrication d'une tôle d'acier laminée à chaud, comportant les étapes successives selon lesquelles :
on élabore un acier liquide dans lequel on ajoute du manganèse, du silicium, du niobium et du chrome, les additions étant effectuées dans une enceinte sous vide, puis
on réalise une désulfuration du métal liquide sans augmenter sa teneur en azote, puis
on ajoute du titane, les dites additions étant réalisées de façon à obtenir un métal liquide de composition chimique selon l'une quelconque des revendications 1 à 5, puis
on coule un demi-produit, puis
on réchauffe ledit demi-produit à une température comprise entre 1250 et 1300°C pendant une durée de maintien à cette température comprise entre 20 et 45 minutes, puis
on lamine à chaud ledit-demi produit jusqu'à une température de fin de laminage TFL comprise entre 825 et 950 °C, pour obtenir une tôle laminée à chaud, puis on bobine ladite tôle laminée à chaud, à une température comprise entre 500 et 750°C, pour obtenir une laminée à chaud et bobinée, puis on décape la couche d'oxyde formée lors des étapes précédentes.
Procédé de fabrication d'une tôle laminée à froid et recuite, caractérisée en ce qu'elle comporte les étapes successives selon lesquelles :
on approvisionne une tôle laminée à chaud, bobinée et décapée, fabriquée par le procédé selon la revendication 18 puis,
on lamine à froid ladite tôle laminée à chaud, bobinée et décapée, pour obtenir une tôle laminée à froid, puis
on recuit ladite tôle laminée à froid à une température comprise entre 740 et 820 °C pour obtenir une tôle laminée à froid et recuite.
Procédé de fabrication d'une tôle pré-revêtue, selon lequel on approvisionne une tôle laminée fabriquée selon le procédé 18 ou 19, puis on effectue un pré-revêtement en continu au trempé, ledit prérevêtement étant de l'aluminium ou un alliage d'aluminium ou à base d'aluminium, ou du zinc ou un alliage de zinc ou à base de zinc.
Procédé de fabrication d'une tôle pré-revêtue et pré-alliée, selon lequel :
on approvisionne une tôle laminée selon le procédé 19 ou 20, puis on effectue un pré-revêtement en continu au trempé d'un alliage d'aluminium ou à base d'aluminium, puis
on effectue un pré-traitement thermique de ladite tôle pré-revêtue à-de façon à ce que le pré-revêtement ne contienne plus d'aluminium libre, de phase τ 5 du type Fe3Si2Ali2, et r 6 du type Fe2Si2Al9
Procédé de fabrication, d'une pièce durcie sous presse selon l'une quelconque des revendications 12 à 17, comportant les étapes successives selon lesquelles : on approvisionne une tôle fabriquée par un procédé selon l'une quelconque des revendications 18 à 21 , puis
on découpe ladite tôle pour obtenir un flan, puis
on effectue optionnellement une étape de déformation par emboutissage à froid dudit flan, puis
on chauffe ledit flan à une température comprise entre 810 et 950°C pour obtenir une structure totalement austénitique dans l'acier puis on transfère le flan au sein d'une presse, puis
on emboutit à chaud ledit flan pour obtenir une pièce, puis
on maintient ladite pièce au sein de la presse pour obtenir un durcissement par transformation martensitique de ladite structure austénitique.
Utilisation d'une pièce durcie sous presse selon la revendication 13 à 18, ou fabriquée selon le procédé de la revendication 23, pour la fabrication de pièces de structure ou de renfort pour véhicules automobiles.
PCT/IB2017/000677 2017-06-01 2017-06-01 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede WO2018220412A1 (fr)

Priority Applications (25)

Application Number Priority Date Filing Date Title
PCT/IB2017/000677 WO2018220412A1 (fr) 2017-06-01 2017-06-01 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
EP18731526.2A EP3631033A1 (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
KR1020227032686A KR102629666B1 (ko) 2017-06-01 2018-05-30 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
UAA201912309A UA124561C2 (uk) 2017-06-01 2018-05-30 Спосіб виготовлення деталей зі сталі з високою механічною міцністю та підвищеною в'язкістю і одержані за цим способом деталі
JP2019566188A JP7139361B2 (ja) 2017-06-01 2018-05-30 改善された延性を備えた高強度鋼製部品の製造方法、及び前記方法により得られた部品
CN202210343415.3A CN114959446B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
US16/617,903 US11473166B2 (en) 2017-06-01 2018-05-30 Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
CN202210345788.4A CN115109996B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
MX2019014433A MX2019014433A (es) 2017-06-01 2018-05-30 Metodo para producir partes de acero de alta resistencia con ductilidad mejorada y partes obtenidas por este metodo.
BR112019025123-5A BR112019025123B1 (pt) 2017-06-01 2018-05-30 Chapa de aço, peça e métodos para a fabricação de uma chapa e para a fabricação de uma peça
CN202210343407.9A CN114875306B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
CA3182750A CA3182750A1 (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
PCT/IB2018/053832 WO2018220540A1 (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
KR1020247001602A KR20240012608A (ko) 2017-06-01 2018-05-30 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
CN202210343429.5A CN114959514B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
CN202210343401.1A CN114875305B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
KR1020197038267A KR102447050B1 (ko) 2017-06-01 2018-05-30 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
MA048958A MA48958A (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
KR1020227032685A KR102630305B1 (ko) 2017-06-01 2018-05-30 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
CN201880035785.2A CN110799659B (zh) 2017-06-01 2018-05-30 用于生产具有改善的延性的高强度钢部件的方法以及通过所述方法获得的部件
CA3065036A CA3065036C (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
RU2019143595A RU2732711C1 (ru) 2017-06-01 2018-05-30 Способ изготовления деталей из стали с высокой механической прочностью и повышенной вязкостью и полученные этим способом детали
ZA2019/07777A ZA201907777B (en) 2017-06-01 2019-11-25 Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
JP2022141192A JP2022174173A (ja) 2017-06-01 2022-09-06 改善された延性を備えた高強度鋼製部品の製造方法、及び前記方法により得られた部品
US17/943,561 US20230019292A1 (en) 2017-06-01 2022-09-13 Method for producing high-strength steel parts with improved ductility, and parts obtained by said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/000677 WO2018220412A1 (fr) 2017-06-01 2017-06-01 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede

Publications (1)

Publication Number Publication Date
WO2018220412A1 true WO2018220412A1 (fr) 2018-12-06

Family

ID=60293982

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2017/000677 WO2018220412A1 (fr) 2017-06-01 2017-06-01 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
PCT/IB2018/053832 WO2018220540A1 (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/053832 WO2018220540A1 (fr) 2017-06-01 2018-05-30 Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede

Country Status (12)

Country Link
US (2) US11473166B2 (fr)
EP (1) EP3631033A1 (fr)
JP (2) JP7139361B2 (fr)
KR (4) KR102630305B1 (fr)
CN (6) CN114875306B (fr)
CA (2) CA3065036C (fr)
MA (1) MA48958A (fr)
MX (1) MX2019014433A (fr)
RU (1) RU2732711C1 (fr)
UA (1) UA124561C2 (fr)
WO (2) WO2018220412A1 (fr)
ZA (1) ZA201907777B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737087A (zh) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 一种超高强双相钢及其制造方法
CN115029630A (zh) * 2022-05-23 2022-09-09 武汉钢铁有限公司 一种提高1800MPa级抗延迟开裂热成形钢及生产方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3899066B1 (fr) * 2018-12-18 2023-10-04 ArcelorMittal Pièce durcie à la presse ayant une résistance élevée à la rupture différée et procédé de fabrication associé
EP4101554B1 (fr) * 2020-02-06 2024-03-13 Nippon Steel Corporation Tôle d'acier laminée à chaud
WO2022129995A1 (fr) * 2020-12-16 2022-06-23 Arcelormittal Tôle d'acier revêtue et pièce en acier trempé à la presse à haute résistance et leur procédé de fabrication
WO2022129994A1 (fr) * 2020-12-16 2022-06-23 Arcelormittal Tôle d'acier revêtue et pièce en acier trempé à la presse à haute résistance et son procédé de fabrication
CN115354207B (zh) * 2022-09-20 2023-06-27 中天钢铁集团有限公司 一种高洁净度滚珠丝杠用中碳合金结构钢的冶炼方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016707A1 (fr) 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé
CN106222556A (zh) * 2016-08-24 2016-12-14 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1300MPa热成形钢及生产方法
WO2017006159A1 (fr) 2015-07-09 2017-01-12 Arcelormittal Acier pour une trempe à la presse et pièce trempée à la presse fabriquée à partir d'un tel acier

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316729A (ja) * 1993-04-28 1994-11-15 Kobe Steel Ltd 高延性高強度薄鋼板の製造方法
FR2745587B1 (fr) * 1996-03-01 1998-04-30 Creusot Loire Acier utilisable notamment pour la fabrication de moules pour injection de matiere plastique
UA28779A (uk) 1998-01-22 2000-10-16 Відкрите Акціонерне Товариство "Металургійний Комбінат "Азовсталь" Високоміцна сталь
JP4000943B2 (ja) * 2002-08-02 2007-10-31 住友金属工業株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP4306202B2 (ja) * 2002-08-02 2009-07-29 住友金属工業株式会社 高張力冷延鋼板及びその製造方法
FR2857980B1 (fr) * 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
FR2878257B1 (fr) * 2004-11-24 2007-01-12 Usinor Sa Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
EP1767659A1 (fr) * 2005-09-21 2007-03-28 ARCELOR France Procédé de fabrication d'une pièce en acier de microstructure multi-phasée
JP4781836B2 (ja) 2006-02-08 2011-09-28 新日本製鐵株式会社 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法
DE102008051992B4 (de) * 2008-10-16 2011-03-24 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Werkstücks, Werkstück und Verwendung eines Werkstückes
CN102341521B (zh) 2009-05-27 2013-08-28 新日铁住金株式会社 疲劳特性、延伸率以及碰撞特性优良的高强度钢板、热浸镀钢板、合金化热浸镀钢板以及它们的制造方法
DE102010003997A1 (de) * 2010-01-04 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Verwendung einer Stahllegierung
KR101447791B1 (ko) * 2010-01-26 2014-10-06 신닛테츠스미킨 카부시키카이샤 고강도 냉연 강판 및 그 제조 방법
WO2011104443A1 (fr) * 2010-02-24 2011-09-01 Arcelormittal Investigación Y Desarrollo Sl Procédé de fabrication d'une pièce a partir d'une tôle revêtue d'aluminium ou d'alliage d'aluminium
KR101253885B1 (ko) * 2010-12-27 2013-04-16 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법
WO2012120692A1 (fr) * 2011-03-09 2012-09-13 新日本製鐵株式会社 Feuilles d'acier destinées à l'estampage à chaud, procédé pour leur fabrication et procédé pour la fabrication de parties hautement résistantes
JP5856002B2 (ja) * 2011-05-12 2016-02-09 Jfeスチール株式会社 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
JP5365673B2 (ja) * 2011-09-29 2013-12-11 Jfeスチール株式会社 材質均一性に優れた熱延鋼板およびその製造方法
JP5699889B2 (ja) * 2011-09-30 2015-04-15 新日鐵住金株式会社 引張強度980MPa以上の成形性に優れた溶融亜鉛めっき鋼板とその製造方法
KR101444986B1 (ko) * 2011-12-28 2014-09-30 주식회사 포스코 내리징성이 우수한 페라이트계 스테인리스강 및 그 제조방법
RU2581333C2 (ru) * 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячештампованная сталь и способ ее изготовления
TWI468534B (zh) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
CN104160050B (zh) 2012-03-07 2016-05-18 新日铁住金株式会社 热冲压用钢板及其制造方法和热冲压钢材
WO2014037627A1 (fr) * 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
WO2015011511A1 (fr) * 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier à très hautes caractéristiques mécaniques de résistance et de ductilité, procédé de fabrication et utilisation de telles tôles
EP2789699B1 (fr) * 2013-08-30 2016-12-28 Rautaruukki Oy Produit d'acier laminé à chaud de grande dureté et procédé de fabrication de celui-ci
KR101665805B1 (ko) * 2014-12-23 2016-10-13 주식회사 포스코 미소크랙이 억제된 열간 프레스 성형품 및 그 제조방법
WO2018033960A1 (fr) * 2016-08-16 2018-02-22 新日鐵住金株式会社 Élément formé par pressage à chaud

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016707A1 (fr) 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé
WO2017006159A1 (fr) 2015-07-09 2017-01-12 Arcelormittal Acier pour une trempe à la presse et pièce trempée à la presse fabriquée à partir d'un tel acier
CN106222556A (zh) * 2016-08-24 2016-12-14 武汉钢铁股份有限公司 用中薄板坯直接轧制的抗拉强度≥1300MPa热成形钢及生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737087A (zh) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 一种超高强双相钢及其制造方法
CN113737087B (zh) * 2020-05-27 2022-07-19 宝山钢铁股份有限公司 一种超高强双相钢及其制造方法
CN115029630A (zh) * 2022-05-23 2022-09-09 武汉钢铁有限公司 一种提高1800MPa级抗延迟开裂热成形钢及生产方法

Also Published As

Publication number Publication date
US11473166B2 (en) 2022-10-18
BR112019025123A2 (pt) 2020-07-21
CN114875306B (zh) 2023-04-25
CN114875305A (zh) 2022-08-09
UA124561C2 (uk) 2021-10-05
MX2019014433A (es) 2020-01-27
CA3065036A1 (fr) 2018-12-06
KR20220131560A (ko) 2022-09-28
CA3182750A1 (fr) 2018-12-06
CN115109996B (zh) 2023-04-25
KR102447050B1 (ko) 2022-09-26
CN110799659A (zh) 2020-02-14
MA48958A (fr) 2020-04-08
ZA201907777B (en) 2020-09-30
JP7139361B2 (ja) 2022-09-20
CN110799659B (zh) 2022-04-22
CN115109996A (zh) 2022-09-27
KR102630305B1 (ko) 2024-01-30
RU2732711C1 (ru) 2020-09-22
EP3631033A1 (fr) 2020-04-08
US20200190621A1 (en) 2020-06-18
CN114959446A (zh) 2022-08-30
CN114875306A (zh) 2022-08-09
CA3065036C (fr) 2023-01-24
KR102629666B1 (ko) 2024-01-26
CN114959514A (zh) 2022-08-30
JP2020522614A (ja) 2020-07-30
KR20200013244A (ko) 2020-02-06
US20230019292A1 (en) 2023-01-19
WO2018220540A1 (fr) 2018-12-06
KR20220131559A (ko) 2022-09-28
CN114959446B (zh) 2023-04-25
JP2022174173A (ja) 2022-11-22
KR20240012608A (ko) 2024-01-29
CN114959514B (zh) 2023-09-05
CN114875305B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
EP3725904B1 (fr) Tôle d&#39;acier, tôle d&#39;acier revêtue de zinc par immersion à chaud et tôle d&#39;acier revêtue de zinc par immersion à chaud alliée
US10131964B2 (en) Iron-carbon-manganese austenitic steel sheet
EP3175006B1 (fr) Procédé de fabrication de tôles d&#39;acier pour durcissement sous presse, et pièces obtenues par ce procédé
CA3065036C (fr) Procede de fabrication de pieces d&#39;acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
EP3783116B1 (fr) Tôles prerevêtues permettant la fabrication de pieces d&#39;acier revêtues et durcies a la presse
CA2680623C (fr) Acier pour formage a chaud ou trempe sous outil, a ductilite amelioree
EP2718469B1 (fr) Tôle d&#39;acier laminée à froid et revêtue de zinc ou d&#39;alliage de zinc, procede de fabrication et utilisation d&#39;une telle tôle
WO2016072477A1 (fr) Tôle d&#39;acier galvanisée par immersion à chaud
MX2013011061A (es) Componente de alta resistencia estampado en caliente que tiene excelente resistencia a la corrosion despues del revestimiento, y metodo para fabricar el mismo.
KR20190138835A (ko) 벨형 노에서 어닐링 처리된 냉간 압연한 평강 제품 및 그 제조 방법
WO2017090236A1 (fr) Procédé pour la fabrication de tôle d&#39;acier galvanisée par immersion à chaud à haute résistance, procédé pour la fabrication de plaque d&#39;acier laminée à chaud pour tôle d&#39;acier galvanisée par immersion à chaud à haute résistance, procédé pour la fabrication de plaque d&#39;acier laminée à froid pour tôle d&#39;acier galvanisée par immersion à chaud à haute résistance et tôle d&#39;acier galvanisée par immersion à chaud à haute résistance
WO2020170667A1 (fr) Élément pressé à chaud, tôle d&#39;acier laminée à froid destinée à être utilisée lors d&#39;un pressage à chaud, et procédés de fabrication respective de ces produits
WO2011104443A1 (fr) Procédé de fabrication d&#39;une pièce a partir d&#39;une tôle revêtue d&#39;aluminium ou d&#39;alliage d&#39;aluminium
KR101650665B1 (ko) 화성 처리성과 연성이 우수한 고강도 합금화 용융 아연도금 강판과 그의 제조방법
JP6136672B2 (ja) 高強度合金化溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17797176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17797176

Country of ref document: EP

Kind code of ref document: A1