WO2017169940A1 - 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 - Google Patents

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2017169940A1
WO2017169940A1 PCT/JP2017/011077 JP2017011077W WO2017169940A1 WO 2017169940 A1 WO2017169940 A1 WO 2017169940A1 JP 2017011077 W JP2017011077 W JP 2017011077W WO 2017169940 A1 WO2017169940 A1 WO 2017169940A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
producing
temperature
hot
Prior art date
Application number
PCT/JP2017/011077
Other languages
English (en)
French (fr)
Inventor
克利 ▲高▼島
央海 澤西
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017537328A priority Critical patent/JP6308333B2/ja
Priority to US16/087,931 priority patent/US10900096B2/en
Priority to MX2018011687A priority patent/MX2018011687A/es
Publication of WO2017169940A1 publication Critical patent/WO2017169940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a thin steel plate and a plated steel plate, a hot rolled steel plate manufacturing method, a cold rolled full hard steel plate manufacturing method, a heat treated plate manufacturing method, a thin steel plate manufacturing method, and a plated steel plate manufacturing method.
  • Patent Document 1 discloses a method for producing a hot-dip galvanized steel sheet of 590 MPa or higher, which is precipitation strengthened by adding Nb.
  • high-strength hot-dip galvanized steel sheets used for automobile structural members and reinforcing members are assembled mainly by spot welding after pressing.
  • a nugget diameter by adding a high heat input to the vicinity of the occurrence of dust
  • Cu and Zn melt at the interface between the electrode and the steel plate, and cracks occur in the steel plate (for example, Non-patent document 1). If such surface cracks exist, there is a high possibility of stress concentration at the time of a vehicle collision, and even if the collision absorption energy characteristic is obtained with a high yield ratio, the absorbed collision energy is reduced.
  • an object of the present invention is to provide a plated steel sheet having high strength, high yield ratio, high strength, and a method for producing the same, which solves the above-mentioned problems of the prior art and has excellent elongation, hole expansibility and spot weldability. And providing a thin steel sheet necessary for obtaining the plated steel sheet, a method for producing a hot-rolled steel sheet necessary for obtaining the plated steel sheet, a method for producing a cold-rolled full hard steel sheet, and a heat treatment plate Another object is to provide a manufacturing method and a manufacturing method of a thin steel plate.
  • the present inventors have controlled the volume ratio of each phase in the steel structure in order to improve elongation, hole expansibility and spot weldability while ensuring a high yield ratio.
  • the present inventors have found that it is necessary to finely disperse ferrite and martensite and to finely disperse precipitates.
  • the present invention is based on the above findings.
  • Nb is added, and the cooling conditions during hot rolling are controlled to form Nb-based precipitates having an average particle size of 0.10 ⁇ m or less after annealing.
  • the inventors have found that the crystal grain size of ferrite and martensite becomes finer.
  • the present invention provides the following.
  • the composition is composed of unavoidable impurities, and contains, by volume, 75 to 95% ferrite, 3 to 15% martensite, 0.5 to 10% pearlite, 10% or less non-recrystallized ferrite, It consists of a low temperature generation phase, the average crystal grain size of the ferrite is 6 ⁇ m or less, the average crystal grain size of the martensite is 3 ⁇ m or less, the average aspect ratio is 4.0 or less, and the average grain size is 0.10 ⁇ m or less.
  • the component composition further includes, in mass%, Cr: 0.50% or less, Mo: 0.50% or less, Cu: 0.50% or less, Ni: 0.50% or less, B: 0.00.
  • a plated steel sheet comprising a plated layer on the surface of the thin steel sheet according to any one of [1] to [3].
  • the steel material having the composition according to any one of [1] to [3] has a reduction rate of 12% or more in the final pass of finish rolling, and a reduction rate of 15% in the pass before the final pass.
  • the hot rolling is performed under the condition that the finish rolling finish temperature is 850 to 950 ° C.
  • the first average cooling rate to the cooling stop temperature is 75 ° C./s or more
  • the cooling stop temperature is 700 ° C. or less.
  • the secondary cooling is performed under the condition that the second average cooling rate up to the coiling temperature is 5 ° C./s or more and less than 75 ° C./s, and the coiling temperature is 450 to 650 ° C.
  • a method for producing a hot-rolled steel sheet wherein the method is wound up by a roll.
  • [7] A method for producing a cold-rolled full hard steel plate, characterized by pickling and cold rolling the hot-rolled steel plate obtained by the production method according to [6].
  • the cold-rolled full hard steel sheet obtained by the production method according to [7] is heated under conditions where the dew point in the temperature range of 600 ° C or higher is -40 ° C or lower and the maximum temperature is 730 to 900 ° C. And holding at the maximum temperature for 15 to 600 s, and after the holding, cooling is performed under the condition that the average cooling rate to the cooling stop temperature is 3 to 30 ° C./s and the cooling stop temperature is 600 ° C. or less.
  • a method for producing a heat-treated plate characterized in that the cold-rolled full hard steel plate obtained by the production method according to [7] is heated and cooled under conditions of a heating temperature of 700 to 900 ° C.
  • the heat-treated plate obtained by the production method according to [9] is heated under conditions where the dew point in the temperature range of 600 ° C. or higher is ⁇ 40 ° C. or lower and the maximum temperature is 730 to 900 ° C.
  • Production of a thin steel sheet characterized by holding at an ultimate temperature for 15 to 600 s, and after that holding, cooling at an average cooling rate of 3 to 30 ° C./s until the cooling stop temperature and a cooling stop temperature of 600 ° C. or less Method.
  • a method for producing a plated steel sheet comprising a plating step of plating the surface of the thin steel sheet obtained by the production method according to [8] or [10].
  • the plated steel sheet obtained by the present invention has a high yield ratio, high tensile strength, high elongation, excellent hole expandability, and excellent spot weldability.
  • a high yield ratio means that the yield ratio is 70% or more
  • a high tensile strength means that the tensile strength is 590 MPa or more
  • a high elongation means that the elongation is 28% or more.
  • Excellent hole expansibility means that the hole expansion ratio is 60% or more, and excellent spot weldability is obtained when spot welding is performed at a current value reduced by 0.1 kA from the current value of dust generation. This means that surface cracks do not occur.
  • the tensile strength is preferably less than 780 MPa, more preferably 700 MPa or less.
  • the thin steel plate of this invention the manufacturing method of a hot-rolled steel plate, the manufacturing method of a cold-rolled full hard steel plate, the manufacturing method of a heat processing board, and the manufacturing method of a thin steel plate are intermediate
  • a manufacturing method of a product or an intermediate product it contributes to the above-described improvement in properties of the plated steel sheet.
  • the present invention is a thin steel plate and a plated steel plate, a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, a method for producing a heat-treated plate, a method for producing a thin steel plate, and a method for producing a plated steel plate.
  • the thin steel plate of the present invention is an intermediate product for obtaining the plated steel plate of the present invention.
  • a plated steel sheet is obtained through a manufacturing process of forming a hot-rolled steel sheet, a cold-rolled full hard steel sheet, and a thin steel sheet.
  • a plated steel sheet is obtained through a manufacturing process of forming a hot-rolled steel sheet, a cold-rolled full hard steel sheet, a heat-treated sheet, and a thin steel sheet.
  • the thin steel plate of the present invention is a thin steel plate in the above process.
  • the manufacturing method of the hot-rolled steel sheet of the present invention is a manufacturing method until obtaining the hot-rolled steel sheet in the above process.
  • the method for producing a cold-rolled full hard steel plate according to the present invention is a method for obtaining a cold-rolled full hard steel plate from a hot-rolled steel plate in the above process.
  • the method for producing a heat-treated plate according to the present invention is a method for obtaining a heat-treated plate from a cold-rolled full hard steel plate in the above process in the case of the two-time method.
  • the manufacturing method of the thin steel plate of the present invention is a manufacturing method until obtaining a thin steel plate from a cold-rolled full hard steel plate in the case of the one-time process, and until obtaining a thin steel plate from a heat-treated plate in the case of the two-time method. It is a manufacturing method.
  • the method for producing a plated steel sheet according to the present invention is a process for obtaining a plated steel sheet from a thin steel sheet in the above process.
  • the component compositions of hot-rolled steel sheet, cold-rolled full hard steel sheet, heat-treated sheet, thin steel sheet and plated steel sheet are common, and the steel structures of thin steel sheet and plated steel sheet are common.
  • a thin steel plate, a plated steel plate, and a manufacturing method are common.
  • the plated steel sheet or the like of the present invention is, in mass%, C: 0.05 to 0.11%, Si: 0.60% or less, Mn: 1.50 to 2.10%, P: 0.05% or less, S: 0.005% or less, Al: 0.01 to 0.10%, N: 0.010% or less, Ti: 0.005 to 0.07%, Nb: 0.01 to 0.10% And the remainder has a component composition consisting of Fe and inevitable impurities.
  • the above component composition may further contain V: 0.10% or less in terms of mass%.
  • the above component composition is further mass%, Cr: 0.50% or less, Mo: 0.50% or less, Cu: 0.50% or less, Ni: 0.50% or less, B: 0.01% or less And a total of Ca and / or REM: one or more selected from 0.005% or less may be contained.
  • % representing the content of a component means “mass%”.
  • C 0.05 to 0.11%
  • C is an element effective for increasing the strength of the steel sheet and contributes to the formation of martensite and pearlite in the present invention. If the C content is less than 0.05%, it is difficult to ensure the required volume ratio of martensite. A preferable C content is 0.06% or more. On the other hand, when C is added excessively to more than 0.11%, the hardness difference between ferrite and martensite becomes large, so that the hole expandability is deteriorated and the toughness of the HAZ part at the time of spot welding is also deteriorated. Cracking occurs.
  • a preferable C content is 0.10% or less.
  • Si 0.60% or less Si solidifies and strengthens ferrite. For this reason, there exists a tendency for a hole expansion rate to increase in order to reduce the hardness difference with a hard phase by Si containing.
  • Si is concentrated on the steel sheet surface as an oxide during annealing, so that the plating property is deteriorated.
  • the toughness at the time of high temperature will also deteriorate, Therefore It becomes easy to produce
  • the preferred Si content is 0.50% or less, more preferably less than 0.50, even more preferably 0.45% or less, and most preferably 0.30% or less. Although there is no particular lower limit, the Si content is preferably 0.005% or more from the viewpoint of the above hole expansion rate. In addition, even if Si content is less than 0.005%, since a hole expansion rate can be improved, a minimum is not specifically limited.
  • Mn 1.50-2.10% Since Mn is useful for forming a second phase (phase other than ferrite) such as solid solution strengthening and martensite, it contributes to an increase in strength. Therefore, the Mn content needs to be 1.50% or more. On the other hand, when Mn is contained excessively, the martensitic transformation point (Ms point) of the HAZ part at the time of spot welding is lowered, so that the hardness of the HAZ part becomes high and surface cracks at the time of spot welding are likely to be generated. Therefore, the content is made 2.10% or less. Preferably it is 2.00% or less.
  • P 0.05% or less P contributes to high strength by solid solution strengthening. Moreover, since the alloying speed can be controlled by alloying the hot-dip galvanized steel sheet with P, the plating property can be improved by adjusting the P content. In order to obtain the effect, the P content is preferably 0.001% or more. However, when P is contained excessively, it segregates at the grain boundary during spot welding, which promotes surface cracking during spot welding. Therefore, the P content is set to 0.05% or less. A preferable P content is 0.04% or less.
  • S 0.005% or less
  • a large amount of sulfide such as MnS is generated, and MnS is the starting point at the time of punching, and voids are generated. Therefore, the upper limit of the content is made 0.005%.
  • a preferable S content is 0.004% or less. Although there is no lower limit in particular, extremely low S increases the steelmaking cost, so the S content is preferably 0.0003% or more.
  • Al 0.01 to 0.10%
  • Al is an element necessary for deoxidation, and in order to obtain this effect, it is necessary to contain 0.01% or more of Al. On the other hand, even if the Al content exceeds 0.10%, the effect is saturated, so the content is made 0.10% or less.
  • a preferable Al content is 0.05% or less.
  • N 0.010% or less Since N forms coarse Ti nitride or coarse Nb nitride and deteriorates the hole expanding property, it is necessary to suppress the content. If the N content exceeds 0.010%, this tendency becomes significant, so the N content is set to 0.010% or less. A preferable N content is 0.008% or less. In addition, about the preferable minimum of N content, it is 0.0005% or more from the surface of the cost on melting.
  • Ti 0.005 to 0.07%
  • Ti forms fine Ti-based precipitates (meaning Ti carbide, nitride, carbonitride. At least one of carbide, nitride, and carbonitride precipitates), and thus nucleates during annealing. Therefore, it contributes to refinement of the steel structure and further increases in strength.
  • the Ti content is set to 0.005% or more.
  • a preferable Ti content is 0.010% or more.
  • the Ti content is set to 0.07% or less.
  • it is 0.04% or less.
  • the average particle size of the Ti-based precipitate is usually 0.01 to 0.10 ⁇ m under the component composition and steel structure of the present invention.
  • Nb 0.01 to 0.10% Nb also forms fine precipitates (meaning Nb carbides, nitrides, carbonitrides. At least one of carbides, nitrides, and carbonitrides precipitates) in the same manner as Ti. Contributes to the refinement of the organization. In order to obtain the effect, the Nb content is 0.01% or more. A preferable Nb content is 0.015% or more. On the other hand, when a large amount of Nb is added, the elongation is remarkably lowered, so the content is made 0.10% or less. A preferable Nb content is 0.06% or less.
  • the following components may contain one kind or two or more kinds.
  • V 0.10% or less V, like Ti, contributes to the refinement of the steel structure by forming fine precipitates, and can be added as necessary. From the viewpoint of obtaining this effect, the V content is preferably 0.01% or more. However, when a large amount of V is contained, the elongation is remarkably lowered. Therefore, the V content is preferably 0.10% or less.
  • Cr 0.50% or less Cr is an element that contributes to increasing the strength by generating martensite, and can be added as necessary. From the viewpoint of obtaining this effect, the Cr content is preferably 0.01% or more. However, if the Cr content exceeds 0.50%, not only excessive martensite is generated, but also Cr oxide is generated on the surface of the steel sheet during annealing, so the plating property is lowered and plating unevenness is likely to be generated. . Therefore, the Cr content is preferably 0.50% or less.
  • Mo 0.50% or less Mo, like Cr, is an element that generates martensite and further generates some carbides to contribute to high strength. From the viewpoint of obtaining this effect, the Mo content is preferably 0.005% or more. However, when the Mo content exceeds 0.50%, the martensite is excessively generated, so that the hole expandability is deteriorated. Therefore, the content is preferably 0.50% or less.
  • Cu 0.50% or less
  • Cu is an element that contributes to increasing the strength by contributing to the promotion of formation of the second phase such as solid solution strengthening and martensite phase, and can be added as necessary.
  • the Cu content is preferably 0.01% or more.
  • the Cu content is preferably 0.50% or less.
  • Ni 0.50% or less
  • Ni is an element that contributes to increasing the strength by contributing to the promotion of formation of second phase such as solid solution strengthening and martensite phase, and may be added as necessary. it can.
  • the Ni content is preferably 0.01% or more.
  • the content is preferably 0.50% or less.
  • B 0.01% or less B is an element that improves the hardenability and promotes the formation of the second phase and contributes to an increase in strength, and can be added as necessary.
  • the B content is preferably 0.0002% or more.
  • the content is preferably 0.01% or less.
  • Total of Ca and / or REM are elements that contribute to the improvement of the negative effect of sulfide on spheroidizing and expanding the hole shape, if necessary. Can do. In order to exhibit these effects, it is preferable that the total content (the content of one when only one is included) is 0.0005% or more. On the other hand, since the effect is saturated even if the total content exceeds 0.005%, the total content is preferably 0.005% or less.
  • Inevitable impurities include, for example, Sb, Sn, Zn, Co and the like.
  • the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.10% or less, Zn: 0.0. 10% or less, Co: 0.10% or less.
  • Sb 0.01% or less
  • Sn 0.10% or less
  • Zn 0.0. 10% or less
  • Co 0.10% or less.
  • this invention even if it contains Ta, Mg, and Zr within the range of a normal steel composition, the effect will not be lost.
  • the steel structure of the plated steel sheet of the present invention has a volume ratio of 75 to 95% for ferrite, 3 to 15% for martensite, 0.5 to 10% for pearlite, and 10% or less for non-recrystallized ferrite (0%).
  • the balance is composed of a low-temperature generation phase, the average crystal grain size of ferrite is 6 ⁇ m or less, the average crystal grain size of martensite is 3 ⁇ m or less, the average aspect ratio is 4.0 or less, and the average grain size is Contains Nb-based precipitates of 0.10 ⁇ m or less.
  • the volume ratio described here is the volume ratio with respect to the entire steel sheet, and the same applies hereinafter.
  • a volume ratio, an average particle diameter, etc. mean the value obtained by the method as described in an Example.
  • the volume fraction of ferrite 75-95%
  • the volume fraction of ferrite is less than 75%, it is a hard second phase (phase other than ferrite phase, specifically martensite, pearlite, non-recrystallized ferrite, bainite, retained austenite, spherical cementite, and the like. )
  • the volume ratio of the ferrite phase is 75% or more.
  • the volume fraction of ferrite exceeds 95%, it is difficult to ensure the tensile strength because there are few hard second phases. Therefore, the upper limit of the volume fraction of ferrite is 95%.
  • the volume fraction of the ferrite phase is preferably 92% or less, more preferably less than 90%.
  • Average crystal grain size of ferrite 6 ⁇ m or less
  • the average grain size of ferrite exceeds 6 ⁇ m, voids are easy to connect when expanding holes, and good hole expansion properties cannot be obtained.
  • the crystal grain size of the HAZ part on the surface of the steel sheet becomes coarse, and it becomes difficult to suppress the important surface cracks of the present invention.
  • the average crystal grain size of ferrite is set to 6 ⁇ m or less. Preferably it is 5 micrometers or less.
  • the preferable minimum of the average crystal grain diameter of a ferrite is 0.3 micrometer or more from the cost surface on manufacture.
  • the volume ratio of martensite is 3% or more.
  • a preferred martensite volume fraction is 5% or more.
  • the volume ratio may be less than 15%.
  • the volume ratio is preferably 13% or less, more preferably 11% or less, more preferably less than 10%, and most preferably 9% or less.
  • the present invention may contain a small amount of bainite, the sum of martensite and bainite is often less than 15%, more generally 13% or less.
  • Average grain size of martensite 3 ⁇ m or less and average aspect ratio: 4.0 or less
  • the average aspect ratio of martensite exceeds 4.0, the HAZ part of the steel sheet surface during spot welding becomes high temperature by resistance welding.
  • the hardness distribution in the steel structure of the HAZ part is biased, and surface cracks are likely to be generated during spot welding. Therefore, in order to suppress surface cracks during spot welding, martensite is preferably close to a sphere. Therefore, the average aspect ratio of martensite is 4.0 or less. Preferably it is 3.5 or less.
  • the average aspect ratio is preferably 0.25 or more from the viewpoint that a spherical shape is preferable.
  • the aspect ratio is a value (long side / short side) obtained by dividing the long side by the short side when converted to an ellipse equivalent.
  • the upper limit is 3 ⁇ m.
  • a preferable average crystal grain size is 2 ⁇ m or less.
  • the preferable minimum of the average crystal grain diameter of a martensite is 0.3 micrometer or more from a manufacturing cost side.
  • Perlite 0.5-10%
  • Non-recrystallized ferrite 10% or less (including 0%)
  • the volume ratio of non-recrystallized ferrite is set to 10% or less.
  • the preferred volume ratio is 8% or less, more preferably less than 5%.
  • the other phase steel structures may include structures other than the above-described ferrite, martensite, pearlite, and non-recrystallized ferrite.
  • the remaining structure may be one of low-temperature generation phases selected from bainite, retained austenite, spherical cementite, or the like, or a mixed structure in which two or more are combined. It is preferable from the viewpoint of formability (elongation) that the balance other than the ferrite, martensite, pearlite, and non-recrystallized ferrite is less than 5.0% in total in volume ratio. Therefore, the remaining structure may be 0% in volume ratio.
  • the retained austenite is less than 4% or 3% or less, and the content thereof is not large.
  • Nb-based precipitates having an average particle size of 0.10 ⁇ m or less
  • the steel structure needs to contain Nb-based precipitates having an average particle size of 0.10 ⁇ m or less. If the average grain size of Nb-based precipitates exceeds 0.10 ⁇ m, the yield strength due to precipitation strengthening of the steel sheet cannot be increased, and in addition to the decrease in yield ratio, it becomes difficult to refine ferrite and martensite. The hole expandability and spot weldability are reduced. This preferable average particle diameter is 0.08 ⁇ m or less.
  • the Nb-based precipitate means Nb carbide, nitride, or carbonitride, and it is sufficient that at least one of them is included.
  • ⁇ Thin steel plate> The component composition and steel structure of the thin steel sheet are as described above. Moreover, although the thickness of a thin steel plate is not specifically limited, Usually, it is 0.4 mm or more and 3.2 mm or less.
  • the plated steel sheet of the present invention is a plated steel sheet provided with a plating layer on the thin steel sheet of the present invention.
  • the kind of plating layer is not specifically limited, For example, either a hot dipping layer and an electroplating layer may be sufficient.
  • the plating layer may be an alloyed plating layer.
  • the plated layer is preferably a galvanized layer.
  • the galvanized layer may contain Al or Mg. Further, hot dip zinc-aluminum-magnesium alloy plating (Zn—Al—Mg plating layer) is also preferable.
  • the Al content is 1% by mass or more and 22% by mass or less
  • the Mg content is 0.1% by mass or more and 10% by mass or less
  • the balance is Zn.
  • the Zn—Al—Mg plating layer in addition to Zn, Al, and Mg, one or more selected from Si, Ni, Ce, and La may be contained in a total amount of 1% by mass or less.
  • a plating metal is not specifically limited, Al plating etc. may be sufficient besides the above Zn plating.
  • Al plating etc. may be sufficient besides Zn plating.
  • the composition of the plating layer is not particularly limited and may be a general one.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer generally, Fe: 20% by mass or less, Al: 0.001% by mass to 1.0% by mass, and further, Pb, One or more selected from Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in total 0 to 3.5% by mass It is contained below, and the balance is composed of Zn and inevitable impurities.
  • a hot dip galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one side, and an alloyed hot dip galvanized layer obtained by alloying it. This is because if it is less than 20 g / m 2 , it may be difficult to ensure corrosion resistance. On the other hand, if it exceeds 120 g / m 2 , the plating peel resistance may deteriorate.
  • the plated layer is a hot dip galvanized layer, the Fe content in the plated layer is less than 7% by mass.
  • the plated layer is an alloyed hot dip galvanized layer, the Fe content in the plated layer is 7%. ⁇ 20% by weight.
  • the method for producing a hot-rolled steel sheet comprises a steel material having the above-described composition, wherein the rolling reduction of the final pass of finish rolling is 12% or more, the rolling reduction of the pass before the final pass is 15% or more, and the finish rolling end temperature is Hot rolling under conditions of 850 to 950 ° C., and after the hot rolling, the first average cooling rate to the cooling stop temperature is 75 ° C./s or more, and the primary cooling is performed at a cooling stop temperature of 700 ° C. or less.
  • the secondary cooling is performed under the condition that the second average cooling rate up to the coiling temperature is 5 ° C./s or more and less than 75 ° C./s after the primary cooling, and the coil is wound at the coiling temperature of 450 to 650 ° C.
  • the temperature is the steel sheet surface temperature unless otherwise specified.
  • the steel sheet surface temperature can be measured using a radiation thermometer or the like.
  • the steel slab (steel material) to be used is preferably manufactured by a continuous casting method in order to prevent macro segregation of components.
  • the steel material can also be produced by an ingot-making method or a thin slab casting method.
  • hot rolling after steel slab is cast, hot rolling can be started at 1150 to 1270 ° C. without reheating, or hot rolling can be started after reheating to 1150 to 1270 ° C. preferable.
  • the preferred conditions for hot rolling are first to hot-roll a steel slab at a hot rolling start temperature of 1150 to 1270 ° C.
  • after manufacturing the steel slab in addition to the conventional method of once cooling to room temperature and then reheating, it was charged into a heating furnace as it was without cooling, or heat was retained. Energy saving processes such as direct feed rolling and direct rolling in which rolling is performed immediately after casting or rolling after casting can be applied without any problem.
  • the rolling reduction of the final pass of finish rolling is 12% or more.
  • the rolling reduction of the pass before the final pass is 15% or more.
  • Setting the rolling reduction of the final pass of finish rolling to 12% or more introduces many shear bands in the austenite grains. However, this is necessary from the viewpoint of increasing the number of nucleation sites of the ferrite transformation after hot rolling and miniaturizing the hot-rolled sheet. Preferably it is 13% or more.
  • an upper limit is not specifically limited, 30% or less is preferable for the reason that the plate
  • the reduction ratio of the pass before the final pass increases the strain accumulation effect, introduces many shear bands in the austenite grains, further increases the nucleation sites of ferrite transformation, and This is necessary from the viewpoint of making the structure finer. Preferably it is 15% or more.
  • an upper limit is not specifically limited, 30% or less is preferable for the reason that the plate
  • Finishing rolling finish temperature 850-950 ° C
  • the finish rolling end temperature is set to 850 ° C. or higher.
  • the finish rolling end temperature exceeds 950 ° C., the hot rolled structure becomes coarse and the properties after annealing deteriorate, so the finish rolling end temperature is set to 850 to 950 ° C.
  • Primary cooling As primary cooling, cooling is performed such that the first average cooling rate up to the cooling stop temperature is 75 ° C./s or more and the cooling stop temperature is 700 ° C. or less.
  • the cooling conditions are adjusted in order to control the precipitation state of Nb fine precipitates after annealing (heating after cold rolling, cooling treatment) described later.
  • This control also has the effect of refining ferrite and martensite in the final steel structure. If the average cooling rate to the cooling stop temperature of the primary cooling is less than 75 ° C./s, the formation of a large amount of Nb precipitates is accelerated and the precipitates are coarsened, so that it is difficult to contribute to the refinement of the steel sheet. Become. As a result, the hole expandability and spot weldability after annealing deteriorate.
  • the cooling stop temperature of primary cooling exceeds 700 ° C., excessive pearlite is generated in the hot-rolled steel sheet, the steel structure of the hot-rolled steel sheet becomes inhomogeneous, and the hole expandability and spot weldability after annealing deteriorate.
  • the cooling stop temperature may be set to an arbitrary temperature of 700 ° C. or lower, but 600 ° C. or higher is preferable. However, the cooling stop temperature is set to a temperature exceeding the coiling temperature.
  • Secondary cooling As the secondary cooling, cooling is performed under the condition that the second average cooling rate up to the coiling temperature is 5 ° C./s or more and less than 75 ° C./s after the primary cooling.
  • the average cooling rate is less than 5 ° C./s, Nb-based precipitates are coarsened, so that it is difficult to refine the steel structure after annealing.
  • the Ti and Nb-based precipitates are coarsened, so that it is difficult to refine the steel sheet structure after annealing.
  • the average cooling rate is 75 ° C./s or more, Ti and Nb-based precipitates that are solid-dissolved after winding remain, so that it is difficult to refine the steel sheet structure after annealing. Therefore, the average cooling rate up to the coiling temperature of 650 ° C. or less is controlled.
  • the cooling stop temperature (corresponding to the coiling temperature) is less than 450 ° C.
  • the amount of Nb-based precipitation is small, the amount of solid solution in the steel sheet increases, and it becomes difficult to refine the steel sheet structure after final annealing. Therefore, the cooling stop temperature is set to 450 ° C. or higher.
  • Winding temperature 450-650 ° C
  • the upper limit is 650 ° C.
  • the coiling temperature is less than 450 ° C., the amount of Ti and Nb in the steel sheet increases, and it becomes difficult to refine the steel structure. Therefore, the lower limit of the coiling temperature is 450 ° C.
  • the steel sheet After the winding, the steel sheet is cooled by air cooling or the like, and used for manufacturing the following cold-rolled full hard steel sheet.
  • a hot-rolled steel plate becomes a transaction object as an intermediate product, it is normally a transaction object in a cooled state after winding.
  • the manufacturing method of the cold-rolled full hard steel plate (the steel plate as cold-rolled) of this invention is a manufacturing method of the cold-rolled full hard steel plate which cold-rolls the hot-rolled steel plate obtained by the said manufacturing method.
  • Cold rolling conditions are appropriately set from the viewpoint of, for example, a desired thickness.
  • the rolling reduction of cold rolling is 95% or less.
  • ⁇ Manufacturing method of thin steel plate> There are two methods for producing a thin steel plate: a method of heating and cooling a cold-rolled full hard steel plate to produce a thin steel plate (one-time method), and heating and cooling the cold-rolled full hard steel plate to form a heat treated plate. There is a method (twice method) of manufacturing a thin steel sheet by heating and cooling. First, the one-time method will be described.
  • Maximum temperature reached 730-900 ° C When the maximum temperature reached is less than 730 ° C., the recrystallization of ferrite does not proceed sufficiently, and excessive unrecrystallized ferrite exists in the steel structure, and the formability deteriorates. In addition, it is difficult to form the second phase necessary for the present invention. On the other hand, when the maximum reached temperature exceeds 900 ° C., the precipitates become coarse, making it difficult to refine the steel structure, and a desired average crystal grain size cannot be obtained for ferrite and martensite.
  • the heating conditions for heating up to the maximum temperature are not particularly limited, but the average heating rate is preferably in the range of 2 to 50 ° C./s. This is because when the average heating rate is less than 2 ° C./s, the Nb-based precipitates are coarsened during heating, and it may be difficult to refine the steel structure. In addition, when the average heating rate exceeds 50 ° C./s, there may be a temperature range for ⁇ formation without sufficiently proceeding with recrystallization, so that unrecrystallized ferrite may remain excessively.
  • Retention (holding) time of maximum temperature reached 15 to 600s
  • the residence time is less than 15 s, the recrystallization of ferrite does not proceed sufficiently, and excess unrecrystallized ferrite exists in the steel structure, thereby degrading the formability.
  • the residence time exceeds 600 s, the ferrite becomes coarse and the hole expansion property deteriorates, so the residence time is set to 600 s or less.
  • the average cooling rate up to the cooling stop temperature is 3-30 ° C / s Cooling stop temperature is 600 ° C. or less After the above heating, it is necessary to cool at an average cooling rate to the cooling stop temperature of 3 to 30 ° C./s. If the average cooling rate is less than 3 ° C./s, ferrite transformation proceeds during cooling, and the volume fraction of martensite decreases, so that it is difficult to ensure strength. On the other hand, when the average cooling rate exceeds 30 ° C./s, martensite is excessively generated, and it is difficult to ensure the hole expandability.
  • the control temperature range of the cooling rate exceeds 600 ° C., pearlite is excessively generated, so that a predetermined volume ratio cannot be obtained for each phase in the steel structure, and ductility (formability) and hole expandability are obtained. descend. Further, the cooling stop temperature needs to be 600 ° C. or lower as described above.
  • the dew point in the temperature range of 600 ° C or higher is set to -40 ° C or lower.
  • the decarburization from the steel plate surface during annealing can be suppressed, and the tensile strength of 590 MPa defined in the present invention can be stably realized.
  • the dew point in the temperature range exceeds ⁇ 40 ° C., the steel sheet may have a tensile strength of less than 590 MPa due to the decarburization. Therefore, the dew point in the above temperature range was set to ⁇ 40 ° C. or lower.
  • the lower limit of the dew point of the atmosphere is not particularly specified, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
  • the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
  • a thin steel plate when a thin steel plate becomes a transaction object, it is cooled to room temperature after the above cooling or temper rolling described later, and becomes a transaction object.
  • the manufacturing method for obtaining the heat treated plate is the method for producing the heat treated plate of the present invention.
  • the heating for obtaining the heat treatment plate is heating under the condition that the heating temperature is 700 to 900 ° C.
  • the heating temperature is set to 700 to 900 ° C. If it is less than 700 degreeC, said effect will not fully be acquired. If the temperature exceeds 900 ° C., the precipitates become coarse, and it is difficult to refine the steel structure by heating the heat treatment plate to be performed next.
  • the cooling conditions are not particularly limited. Usually, the average cooling rate is 1 to 30 ° C./s.
  • the heating method of the said heating is not specifically limited, It is preferable to carry out by a continuous annealing line (CAL) or batch annealing (BAF).
  • CAL continuous annealing line
  • BAF batch annealing
  • the heat-treated plate is further heated and cooled.
  • the heating and cooling conditions maximum reached temperature, dew point, holding time, average cooling rate, cooling stop temperature
  • maximum reached temperature, dew point, holding time, average cooling rate, cooling stop temperature are the same as those applied to the cold-rolled full hard steel plate by a one-time method, and thus the description thereof is omitted.
  • the thin steel plate obtained by the above method may be subjected to temper rolling, and the temper rolled thin steel plate may be regarded as the thin steel plate of the present invention.
  • a preferable range of the elongation rate is 0.05 to 2.0%.
  • the method for producing a plated steel sheet according to the present invention is a method for producing a plated steel sheet, in which the thin steel sheet obtained above is plated.
  • examples of the plating process include a hot dip galvanizing process and a process of alloying after hot dip galvanizing. Moreover, you may perform annealing and galvanization continuously by 1 line.
  • a plating layer may be formed by electroplating such as Zn—Ni electroalloy plating, or hot dip zinc-aluminum-magnesium alloy plating may be performed.
  • the kind of metal plating such as Zn plating and Al plating, is not specifically limited.
  • the plating process includes a plating process in the case where annealing and plating are continuously performed in a plating line.
  • the steel plate temperature at which the thin steel plate is immersed in the plating bath is preferably (hot dip galvanizing bath temperature ⁇ 40) ° C. to (hot dip galvanizing bath temperature +50) ° C. If the temperature of the steel sheet immersed in the plating bath is below (hot dip galvanizing bath temperature ⁇ 40) ° C., when the steel plate is immersed in the plating bath, a part of the molten zinc solidifies and deteriorates the plating appearance. Therefore, the preferable lower limit is set to (hot dip galvanizing bath temperature ⁇ 40) ° C.
  • the preferable upper limit is (hot dip galvanizing bath temperature +50) ° C.
  • alloying treatment may be performed in a temperature range of 450 to 600 ° C.
  • the Fe concentration during plating becomes 7 to 15%, and adhesion of plating and corrosion resistance after coating are improved.
  • the alloying temperature is less than 450 ° C., alloying does not proceed sufficiently, leading to a decrease in sacrificial anticorrosive action and a decrease in slidability.
  • the alloying temperature is higher than 600 ° C., the progress of alloying becomes remarkable and the powdering property is lowered.
  • a series of processes such as annealing (heating and cooling for cold-rolled full hard steel sheet and the like), hot dipping treatment, and alloying treatment are performed in a continuous hot dip galvanizing line (CGL).
  • CGL hot dip galvanizing line
  • Zn plating is preferable, but plating treatment using other metals such as Al plating may be used.
  • the obtained hot-rolled sheet was pickled and then cold-rolled to produce a cold-rolled sheet (sheet thickness: 1.4 mm) (this cold-rolled sheet corresponds to a cold-rolled full hard steel sheet).
  • the obtained cold-rolled sheet is subjected to heating and cooling treatment (annealing) according to the production conditions shown in Table 2 in a continuous hot-dip galvanizing line, and after hot-dip galvanizing treatment, further alloying treatment at the temperature shown in Table 2 And an alloyed hot-dip galvanized steel sheet was obtained.
  • annealing heating and cooling treatment according to the production conditions shown in Table 2 in a continuous hot-dip galvanizing line
  • further alloying treatment at the temperature shown in Table 2
  • an alloyed hot-dip galvanized steel sheet was obtained.
  • Table 2 about some steel plates, after cold rolling, 1st heat processing was implemented at the temperature shown in Table 2 with a continuous annealing line, and it plated with the continuous hot-dip galvanizing line.
  • the plating treatment is performed by galvanizing bath temperature: 460 ° C.
  • galvanizing bath Al concentration 0.14 mass% (when alloying treatment is performed), 0.18 mass% (when alloying treatment is not performed), one side
  • the per-plating adhesion amount was 45 g / m 2 (double-sided plating).
  • JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction to the longitudinal direction (tensile direction), and by tensile test (JIS Z2241 (1998)), tensile strength (TS), total elongation (EL ), Yield strength (YS) was measured. Moreover, the yield ratio (YR) was calculated.
  • the pair of electrode tips used was an alumina-dispersed copper DR type electrode having a radius of curvature R40 at the tip and a tip diameter of 6 mm.
  • the welding conditions were as follows: first, the applied pressure was 3500 N, the energization time was 18 cycles, and the hold time was 1 cycle. In each hot-dip galvanized steel sheet, the current value at which dust was generated was obtained, and then 0.1 kA from the current value.
  • a retest was conducted with the reduced current value, and it was confirmed with a microscope whether cracks had occurred on the surface.
  • Surface cracking is defined as surface cracking when a crack is generated within a diameter of 7 mm with the center of the nugget at the center of the circle. Here, a crack is defined as 100 ⁇ m or more in length.
  • the hot-dip galvanized steel sheet in which the galvanized steel sheet was present was designated as “x”, and the hot-dip galvanized steel sheet that did not exist was designated as “ ⁇ ”.
  • the volume ratio of ferrite, martensite, pearlite, and non-recrystallized ferrite in the steel sheet was 2000% using a SEM (scanning electron microscope) after corroding the plate thickness section parallel to the rolling direction of the steel sheet and then corroding with 3% nital. A 1/4 thickness position was observed from the surface at a magnification of 5,000 times, and the area ratio was measured by a point count method (based on ASTM E562-83 (1988)), and the area ratio was taken as the volume ratio.
  • the average crystal grain size of ferrite and martensite is calculated by taking the image of each ferrite and martensite crystal grain that has been identified in advance from a steel structure photograph using Image-Pro of Media Cybernetics. The circle equivalent diameter was calculated and the values were averaged.
  • the aspect ratio of martensite was obtained by obtaining the aspect ratio of each grain based on the above photograph and averaging them.
  • the average particle diameter of the Nb-based precipitates was measured by observing 10 thin-films prepared from a position of 1 ⁇ 4 thickness from the surface of the obtained steel sheet with a transmission electron microscope (TEM) (photo enlargement and magnification) : 500000 times), and the average particle size of the precipitate was determined.
  • the particle diameter of each precipitate is the diameter when the precipitate is spherical, and when the precipitate is elliptical, the major axis a of the precipitate and the direction perpendicular to the major axis
  • the minor axis was measured, and the square root of the product a ⁇ b of the major axis a and the minor axis b was defined as the particle size.
  • the particle size of each precipitate observed in 10 fields of view was added, and the value divided by the number of precipitates was taken as the average particle size of the carbide.
  • Table 3 shows the measured tensile properties, hole expansion ratio, spot weldability, and steel structure measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

伸び、穴広げ性、スポット溶接性に優れ、高降伏比であり、高強度であるめっき鋼板およびその製造方法等を提供する。 特定の成分組成と、体積率で、フェライトを75~95%、マルテンサイトを3~15%、パーライトを0.5~10%、未再結晶フェライトを10%以下含み、残部が体積率で21.5%以下の低温生成相からなり、フェライトの平均結晶粒径が6μm以下であり、マルテンサイトの平均結晶粒径が3μm以下かつ平均アスペクト比が4.0以下であり、平均粒径が0.10μm以下のNb系析出物を含有する鋼組織と、を有し、引張強さが590MPa以上である薄鋼板とする。

Description

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法に関するものである。
 近年、環境問題の高まりからCO排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、引張強さ(TS)が590MPa以上の鋼板の適用が進められている。自動車の構造用部材や補強用部材に使用される高強度鋼板は、防錆のために亜鉛めっきが施されるが、薄鋼板の機械的性質としては伸びフランジ性(穴広げ性)や延性(伸び)に優れることが要求される。特に、複雑形状を有する部品の成形には、伸びや穴広げ性といった個別の特性が優れているだけなく、その両方が優れていることが求められている。さらに、衝突吸収エネルギー特性が大きいことも求められている。衝突吸収エネルギー特性を向上させるためには、降伏比を高めることが有効であり、降伏比を高めれば低い変形量であっても効率よく衝突エネルギーを吸収させることが可能である。ここで、降伏比(YR)とは、TSに対する降伏応力(YS)の比を示す値であり、YR(%)=YS/TS×100(%)で表される。
 例えば、特許文献1には、Nb添加によって析出強化した590MPa以上の溶融亜鉛めっき鋼板の製造方法が開示されている。
 また、自動車の構造用部材や補強用部材に使用される高強度溶融亜鉛めっき鋼板は、プレス加工後には主にスポット溶接で組みつけられる。この際に、チリ(splash)発生付近まで高い入熱量を加えてナゲット径を確保しようとすると、電極と鋼板の界面にCuおよびZnが溶融することで、鋼板内に割れが発生する(例えば、非特許文献1)。このような表面の割れが存在すると車体衝突時に応力集中する可能性が高く、高い降伏比で衝突吸収エネルギー特性を得ても、吸収する衝突エネルギーが低下してしまう。
特許3873638号公報
M.Militisky,E.Pakalnins,C.Jiang and A. K. Thompson:Proc.on SAE 2003 World Congress,(2003)p.244
 しかしながら、特許文献1に記載の技術では、上記した構造用部材や補強用部材などの使途において要求される、加工性を保証するには延性が不十分である。
 また、高い降伏比を確保しつつ、スポット溶接時の表面割れを抑制可能なめっき鋼板に関する技術は未だ開示されていない。
 したがって、本発明の課題は、上記従来技術の問題点を解消し、伸び、穴広げ性、スポット溶接性に優れ、高降伏比であり、高強度であるめっき鋼板およびその製造方法を提供することを目的とするとともに、上記めっき鋼板を得るために必要な薄鋼板を提供すること、上記めっき鋼板を得るために必要な熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法を提供することも目的とする。
 本発明者らは鋭意検討を重ねた結果、高降伏比を確保しつつ、伸び、穴広げ性およびスポット溶接性を向上させるためには、鋼組織における、各相の体積率を制御し、さらに、フェライトとマルテンサイトを微細に分散させ、析出物を微細分散させる必要があることを見出した。この発明は、上記の知見に立脚するものである。
 スポット溶接時の表面割れ(スポット溶接性)は、チリ発生付近の高い電流値でナゲット径を大きく確保しようとすると、電極でホールドしている際、めっき鋼板表面の熱影響部(HAZ部)に引張応力がかかる。ここで、通電時間が長くなると電極のCuが溶解して液化する。さらに、めっき鋼板の場合、鋼板の表面Znが溶解し、液化したCuとZnが引張応力の集中している鋼板内に拡散して、液体金属による脆化が発生して割れが生じる。そこで、発明者らは鋭意検討を重ねた結果、鋼組織を微細化させることで鋼板表面のHAZ部も微細化させて靭性を向上させることで、割れ生成が抑制可能であることを見出した。また、鋼組織内にマルテンサイトが存在するとYRが低下するが、マルテンサイトの体積率、アスペクト比および平均結晶粒径を制御し、かつ、Nb系析出物(Nbの炭化物、窒化物、炭窒化物)の平均粒径を制御することで、フェライトの結晶粒微細化およびマルテンサイトの球状化を進めることが可能となり、上記の通りスポット溶接性が改善されるとともに、YRを低下させることなく、高強度を維持しつつ、伸びと穴広げ性が向上することを見出した。そのためにはNbを添加し、さらに熱間圧延時の冷却条件を制御して、焼鈍後に平均粒径が0.10μm以下のNb系析出物を形成させる。その析出物が焼鈍時の再結晶過程で核成長を抑制して核生成を優先させるため、フェライトやマルテンサイトの結晶粒径が微細化する知見を得た。
 すなわち、本発明は、以下のものを提供する。
 [1]質量%で、C:0.05~0.11%、Si:0.60%以下、Mn:1.50~2.10%、P:0.05%以下、S:0.005%以下、Al:0.01~0.10%、N:0.010%以下、Ti:0.005~0.07%、Nb:0.01~0.10%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、体積率で、フェライトを75~95%、マルテンサイトを3~15%、パーライトを0.5~10%、未再結晶フェライトを10%以下含み、残部が低温生成相からなり、前記フェライトの平均結晶粒径が6μm以下であり、前記マルテンサイトの平均結晶粒径が3μm以下かつ平均アスペクト比が4.0以下であり、平均粒径が0.10μm以下のNb系析出物を含有する鋼組織と、を有し、引張強さが590MPa以上であることを特徴とする薄鋼板。
 [2]前記成分組成は、さらに、質量%で、V:0.10%以下を含有することを特徴とする[1]に記載の薄鋼板。
 [3]前記成分組成は、さらに、質量%で、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.01%以下、並びにCa及び/又はREMの合計:0.005%以下から選択される一種以上を含有することを特徴とする[1]または[2]に記載の薄鋼板。
 [4][1]~[3]のいずれかに記載の薄鋼板の表面にめっき層を有することを特徴とするめっき鋼板。
 [5]前記めっき層が溶融亜鉛めっき層又は合金化溶融亜鉛めっき層であることを特徴とする[4]に記載のめっき鋼板。
 [6][1]~[3]のいずれかに記載の成分組成を有する鋼素材を、仕上げ圧延の最終パスの圧下率が12%以上、該最終パスの前のパスの圧下率が15%以上、仕上げ圧延終了温度が850~950℃の条件で熱間圧延し、該熱間圧延後、冷却停止温度までの第1平均冷却速度が75℃/s以上、冷却停止温度が700℃以下の1次冷却をし、該1次冷却後、巻取温度までの第2平均冷却速度が5℃/s以上75℃/s未満の条件で2次冷却をし、450~650℃の巻取温度で巻き取ることを特徴とする熱延鋼板の製造方法。
 [7][6]に記載の製造方法で得られた熱延鋼板を酸洗し、冷間圧延することを特徴とする冷延フルハード鋼板の製造方法。
 [8][7]に記載の製造方法で得られた冷延フルハード鋼板を、600℃以上の温度域の露点を-40℃以下とし、最高到達温度が730~900℃の条件で加熱し、該最高到達温度で15~600s保持し、該保持後、冷却停止温度までの平均冷却速度が3~30℃/s、冷却停止温度が600℃以下の条件で冷却することを特徴とする薄鋼板の製造方法。
 [9][7]に記載の製造方法で得られた冷延フルハード鋼板を、加熱温度が700~900℃の条件で加熱し、冷却することを特徴とする熱処理板の製造方法。
 [10][9]に記載の製造方法で得られた熱処理板を、600℃以上の温度域の露点を-40℃以下とし、最高到達温度が730~900℃の条件で加熱し、該最高到達温度で15~600s保持し、該保持後、冷却停止温度までの平均冷却速度が3~30℃/s、冷却停止温度が600℃以下の条件で冷却することを特徴とする薄鋼板の製造方法。
 [11][8]又は[10]に記載の製造方法で得られた薄鋼板の表面にめっき処理を施すめっき工程を備えることを特徴とするめっき鋼板の製造方法。
 [12]前記めっき処理は、溶融亜鉛めっきし、450~600℃で合金化する処理であることを特徴とする[11]に記載のめっき鋼板の製造方法。
 本発明により得られるめっき鋼板は、高い降伏比、高い引張強度、高い伸び、優れた穴広げ性、優れたスポット溶接性を有する。具体的には、高い降伏比とは降伏比が70%以上であることを意味し、高い引張強度は引張強度が590MPa以上であることを意味し、高い伸びは伸びが28%以上であることを意味し、優れた穴広げ性は穴広げ率が60%以上であることを意味し、優れたスポット溶接性はチリ発生の電流値から0.1kA低下させた電流値でスポット溶接した際に表面割れが発生しないことを意味する。なお、加工性等の観点から引張強度は780MPa未満が好ましくより好ましくは700MPa以下である。
 また、本発明の薄鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法は、上記の優れためっき鋼板を得るための中間製品または中間製品の製造方法として、めっき鋼板の上記の特性改善に寄与する。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法である。先ず、これらの関係について説明する。
 本発明の薄鋼板は、本発明のめっき鋼板を得るための中間製品である。1回法の場合には、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、薄鋼板となる製造過程を経てめっき鋼板になる。2回法の場合には、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板となる製造過程を経てめっき鋼板になる。本発明の薄鋼板は上記過程の薄鋼板である。
 また、本発明の熱延鋼板の製造方法は、上記過程の熱延鋼板を得るまでの製造方法である。
 本発明の冷延フルハード鋼板の製造方法は、上記過程において熱延鋼板から冷延フルハード鋼板を得るまでの製造方法である。
 本発明の熱処理板の製造方法は、上記過程において、2回法の場合に、冷延フルハード鋼板から熱処理板を得るまでの製造方法である。
 本発明の薄鋼板の製造方法は、上記過程において、1回法の場合は冷延フルハード鋼板から薄鋼板を得るまでの製造方法、2回法の場合は熱処理板から薄鋼板を得るまでの製造方法である。
 本発明のめっき鋼板の製造方法は、上記過程において、薄鋼板からめっき鋼板を得るまでの製造方法である。
 上記関係があることから、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板、めっき鋼板の成分組成は共通し、薄鋼板、めっき鋼板の鋼組織が共通する。以下、共通事項、薄鋼板、めっき鋼板、製造方法の順で説明する。
 <成分組成>
 本発明のめっき鋼板等は、質量%で、C:0.05~0.11%、Si:0.60%以下、Mn:1.50~2.10%、P:0.05%以下、S:0.005%以下、Al:0.01~0.10%、N:0.010%以下、Ti:0.005~0.07%、Nb:0.01~0.10%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。
 上記成分組成は、さらに、質量%で、V:0.10%以下を含有してもよい。
 上記成分組成は、さらに、質量%で、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.01%以下、並びにCa及び/又はREMの合計:0.005%以下から選択される一種以上を含有してもよい。
 以下、各成分について説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。
 C:0.05~0.11%
 Cは鋼板の高強度化に有効な元素であり、本発明におけるマルテンサイト、パーライトの形成に寄与する。C含有量が0.05%未満では、必要なマルテンサイトの体積率の確保が困難である。好ましいC含有量は0.06%以上である。一方、Cを0.11%超まで過剰に添加するとフェライトとマルテンサイトの硬度差が大きくなるため穴広げ性が低下する上に、スポット溶接時のHAZ部の靭性も劣化するためスポット溶接時に表面割れが起こる。好ましいC含有量は0.10%以下である。
 Si:0.60%以下
 Siはフェライトを固溶強化する。このため、Si含有により、硬質相との硬度差を低下させるため穴広げ率が増加する傾向がある。しかし、Siの多量な含有により、焼鈍時に酸化物としてSiが鋼板表面に濃縮するため、めっき性が劣化する。さらに、Si含有量が多過ぎると、高温時の靭性も劣化することから、スポット溶接時の表面割れを生成しやすくなる。そこで、Si含有量を0.60%以下とする。Si含有量は0.60%未満であってもよい。好ましいSi含有量は0.50%以下であり、より好ましくは0.50未満であり、さらに好ましくは0.45%以下であり、最も好ましくは0.30%以下である。特に下限は無いが、上記の穴広げ率の観点からSi含有量は0.005%以上が好ましい。なお、Si含有量が0.005%未満であっても穴広げ率を改善可能であることから下限は特に限定しない。
 Mn:1.50~2.10%
 Mnは固溶強化やマルテンサイト等の第二相(フェライト以外の相)の形成に役立つため、高強度化に寄与する。そこで、Mn含有量は1.50%以上にすることが必要である。一方、Mnを過剰に含有した場合、スポット溶接時のHAZ部のマルテンサイト変態点(Ms点)を低下させるため、HAZ部の硬度が高くなり、スポット溶接時の表面割れが生成しやすくなる。そのため、その含有量は2.10%以下とする。好ましくは2.00%以下である。
 P:0.05%以下
 Pは固溶強化により高強度化に寄与する。また、Pにより、溶融亜鉛めっき鋼板を合金化する際に合金化速度を制御可能なため、P含有量の調整によりめっき性を向上させることができる。その効果を得るためには、P含有量は0.001%以上が好ましい。しかし、Pを過剰に含有すると、スポット溶接時に粒界に偏析するためスポット溶接時の表面割れを助長する。そこで、P含有量を0.05%以下とする。好ましいP含有量は0.04%以下である。
 S:0.005%以下
 Sの含有量が多い場合には、MnSなどの硫化物が多く生成して、打ち抜き加工時にMnSが起点となりボイドが生成するため、穴広げ性が劣化する。そのため、含有量の上限を0.005%とする。好ましいS含有量は、0.004%以下である。特に下限は無いが、極低S化は製鋼コストが上昇するため、S含有量は0.0003%以上が好ましい。
 Al:0.01~0.10%
 Alは脱酸に必要な元素であり、この効果を得るためにはAlを0.01%以上含有することが必要である。一方、Al含有量が0.10%を超えても効果が飽和するため、0.10%以下とする。好ましいAl含有量は0.05%以下である。
 N:0.010%以下
 Nは粗大なTi窒化物や粗大なNb窒化物を形成して穴広げ性を劣化させることから、含有量を抑える必要がある。N含有量が0.010%超では、この傾向が顕著となることからNの含有量は0.010%以下とする。好ましいN含有量は0.008%以下である。なお、N含有量の好ましい下限については、溶製上のコスト面より、0.0005%以上である。
 Ti:0.005~0.07%
 Tiは微細なTi系析出物(Tiの炭化物、窒化物、炭窒化物を意味する。炭化物、窒化物および炭窒化物の少なくとも1種が析出する。)を形成することで、焼鈍時に核成長を抑制する効果があるため、鋼組織の微細化を担い、さらに強度上昇に寄与する。このような効果を発揮させるためには、Ti含有量は0.005%以上とする。好ましいTi含有量は0.010%以上である。一方、多量にTiを含有すると、未再結晶フェライトが過剰に生成して伸びが著しく低下する。そこで、Ti含有量は0.07%以下とする。好ましく0.04%以下である。なお、Ti系析出物の平均粒径は、本発明の成分組成や鋼組織等のもとでは通常0.01~0.10μmである。
 Nb:0.01~0.10%
 NbもTiと同様に、微細な析出物(Nbの炭化物、窒化物、炭窒化物を意味する。炭化物、窒化物および炭窒化物の少なくとも1種が析出する。)を形成することで、鋼組織の微細化に寄与する。その効果を得るためには、Nb含有量は0.01%以上とする。好ましいNb含有量は0.015%以上である。一方、多量にNbを添加すると伸びが著しく低下するため、その含有量は0.10%以下とする。好ましいNb含有量は0.06%以下である。
 また、本発明では、上記の成分に加え、以下成分を1種又は2種以上を含有してもよい。
 V:0.10%以下
 VもTiと同様に、微細な析出物を形成することで、鋼組織の微細化に寄与するため、必要に応じて添加することができる。この効果を得る観点からV含有量は0.01%以上が好ましい。ただし、多量にVを含有すると伸びが著しく低下する。そこで、V含有量は0.10%以下が好ましい。
 Cr:0.50%以下
 Crはマルテンサイトを生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を得る観点からCr含有量は0.01%以上が好ましい。ただし、Cr含有量が0.50%超えると、過剰にマルテンサイトが生成するだけでなく、焼鈍時にCr酸化物が鋼板表面に生成するためにめっき性が低下して、めっきムラが生成しやすい。そのため、Cr含有量は0.50%以下が好ましい。
 Mo:0.50%以下
 MoもCrと同様、マルテンサイトを生成して、さらに一部炭化物を生成して高強度化に寄与する元素である。この効果を得る観点からMo含有量は0.005%以上が好ましい。ただし、Mo含有量が0.50%を超えると、過剰にマルテンサイトが生成するため穴広げ性が低下する。そこで、その含有量は0.50%以下が好ましい。
 Cu:0.50%以下
 Cuは固溶強化、マルテンサイト相等の第2相の生成促進に寄与することで高強度化に寄与する元素であり、必要に応じて添加することができる。これら効果を発揮するためにはCu含有量は0.01%以上が好ましい。しかし、Cu含有量が0.50%を超えると効果が飽和し、またCuに起因する表面欠陥が発生しやすくなる。そこで、Cu含有量は0.50%以下が好ましい。
 Ni:0.50%以下
 NiもCuと同様、固溶強化、マルテンサイト相等の第2相の生成促進に寄与することで高強度化に寄与する元素であり、必要に応じて添加することができる。これら効果を発揮させるためにはNi含有量は0.01%以上が好ましい。また、Cuと同時に、添加すると、Cu起因の表面欠陥を抑制する効果があるため、Cu添加時にNi添加することが有効である。一方、Ni含有量が0.50%を超えても効果が飽和するため、その含有量を0.50%以下が好ましい。
 B:0.01%以下
 Bは焼入れ性を向上させ、第2相の生成を促進して高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を発揮するためには、B含有量は0.0002%以上が好ましい。一方、B含有量が0.01%を超えても効果が飽和するため、その含有量は0.01%以下が好ましい。
 Ca及び/又はREMの合計:0.005%以下
 CaおよびREMは、硫化物の形状を球状化し穴広げ性への硫化物の悪影響を改善に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮するためには合計含有量(一方しか含まない場合には一方の含有量)が0.0005%以上であることが好ましい。一方、合計含有量が0.005%を超えても効果が飽和するため、その合計含有量は0.005%以下が好ましい。
 上記以外の残部はFe及び不可避的不純物とする。不可避的不純物としては、例えば、Sb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.10%以下、Zn:0.10%以下、Co:0.10%以下である。また、本発明では、Ta、Mg、Zrを通常の鋼組成の範囲内で含有しても、その効果は失われない。
 <鋼組織>
 本発明のめっき鋼板等の鋼組織は、体積率で、フェライトを75~95%、マルテンサイトを3~15%、パーライトを0.5~10%、未再結晶フェライトを10%以下(0%含む)含み、残部が低温生成相からなり、フェライトの平均結晶粒径が6μm以下であり、マルテンサイトの平均結晶粒径が3μm以下かつ平均アスペクト比が4.0以下であり、平均粒径が0.10μm以下のNb系析出物を含有する。ここで述べる体積率は鋼板の全体に対する体積率であり、以下同様である。また、体積率や平均粒径等は実施例に記載の方法で得られる値を意味する。
 フェライト:75~95%
 フェライトの体積率が75%未満の形成では、硬質な第2相(フェライト相以外の相、具体的には、マルテンサイト、パーライト、未再結晶フェライト、ベイナイト、残留オーステナイトおよび球状セメンタイト等である。)が多くなるため、軟質なフェライト相と硬質第2相との硬度差が大きい箇所が多く存在し、穴広げ性が低下する。そのためフェライト相の体積率は75%以上とする。好ましくは82%以上である。フェライトの体積率が95%超では硬質な第2相が少ないため、引張強度の確保が困難である。そこで、フェライトの体積率の上限は95%とする。好ましいフェライト相の体積率は92%以下であり、さらに好ましくは90%未満である。
 フェライトの平均結晶粒径:6μm以下
 フェライトの平均粒径(平均結晶粒径)が6μm超では、穴広げ時にボイドが連結しやすくなり、良好な穴広げ性が得られないばかりか、スポット溶接時の鋼板表面のHAZ部の結晶粒径も粗大となってしまい、本発明の重要な表面割れを抑制することが困難となる。このため、フェライトの平均結晶粒径は6μm以下とする。好ましくは5μm以下である。なお、フェライトの平均結晶粒径の好ましい下限は、製造上のコスト面から0.3μm以上である。
 マルテンサイト:3~15%
 所望の引張強度および降伏比を確保するために、マルテンサイトの体積率は3%以上とする。好ましいマルテンサイトの体積率は5%以上である。硬質なマルテンサイトの体積率が15%を超えると降伏比が低下するため、その体積率は15%以下とする。その体積率を15%未満としてもよい。好ましい上記体積率は13%以下であり、さらに好ましくは11%以下であり、より好ましくは10%未満、最も好ましくは9%以下である。
 なお、下記の通り、本発明では少量のベイナイトを含む場合があるため、マルテンサイトとベイナイトの合計は15%未満、より一般的には13%以下であることが多い。
 マルテンサイトの平均結晶粒径:3μm以下かつ平均アスペクト比:4.0以下
 マルテンサイトの平均アスペクト比が4.0超では、スポット溶接時の鋼板表面のHAZ部において、抵抗溶接により高温となった際、マルテンサイトに濃化していたCやMnが均質にオーステナイト中に分散しないため、HAZ部の鋼組織中の硬度分布に偏りが起きてスポット溶接時に表面割れを生成しやすい。よって、スポット溶接時の表面割れを抑制するにはマルテンサイトは球状に近い方が好ましい。そこで、マルテンサイトの平均アスペクト比は4.0以下とする。好ましくは3.5以下とする。また、球状に近い方が好ましい観点から平均アスペクト比は0.25以上が好ましい。なお、ここでいうアスペクト比とは、楕円相当に換算した際に長辺を短辺で除した値(長辺/短辺)のことである。
 マルテンサイトの平均結晶粒径が3μm超では、マルテンサイトとフェライトとの界面に生成するボイドが連結しやすくなり、穴広げ性が劣化する。そこで、その上限は3μmとする。好ましい平均結晶粒径は2μm以下である。なお、マルテンサイトの平均結晶粒径の好ましい下限は、製造上のコスト面から、0.3μm以上である。
 パーライト:0.5~10%
 鋼組織にパーライトを含有することで引張強度を確保しつつ高降伏比を得ることが可能である。体積率で0.5%未満の場合は高い降伏比を得ることが困難であるため、パーライトの体積率は0.5%以上とする。また、パーライトの体積率が10%超では穴広げ性が低下するため、その上限は10%とする。好ましいパーライトの体積率は8%以下である。
 未再結晶フェライト:10%以下(0%含む)
 鋼組織に未再結晶フェライトを含有することで引張強度を確保しつつ高降伏比を得ることが可能である。しかし、未再結晶フェライトの体積率が10%を超える場合、延性が低下する他に、高い転位密度を保有しているため靭性に乏しく、スポット溶接時の表面割れが起こりやすい。そのため、未再結晶フェライトの体積率は10%以下とする。好ましい体積率は8%以下であり、さらに好ましくは5%未満である。
 その他の相
 鋼組織は、上記した、フェライト、マルテンサイト、パーライトおよび未再結晶フェライト以外の組織を含んでいてもよい。その場合の残部組織は、ベイナイト、残留オーステナイトおよび球状セメンタイト等から選択される低温生成相の1種であるか、或いは2種以上を組み合わせた混合組織としてもよい。このフェライト、マルテンサイト、パーライトおよび未再結晶フェライト以外の残部は、体積率で合計5.0%未満とすることが、成形性(伸び)の点から好ましい。従って、上記残部組織は体積率で0%でもよい。なお、通常、残留オーステナイトは4%未満や3%以下であり、その含有量は多くはない。
 平均粒径が0.10μm以下のNb系析出物
 鋼組織は、平均粒径が0.10μm以下のNb系析出物を含有する必要がある。Nb系析出物の平均粒径が0.10μm超では鋼板の析出強化による降伏強度を高めることが出来ず、降伏比が低下することに加え、フェライトやマルテンサイトの微細化が困難となり、焼鈍後の穴広げ性やスポット溶接性が低下する。このましい平均粒径は0.08μm以下である。なお、Nb系析出物とは、Nbの炭化物、窒化物、炭窒化物を意味し、これらのうち少なくとも1つが含まれていればよい。
 <薄鋼板>
 薄鋼板の成分組成および鋼組織は上記の通りである。また、薄鋼板の厚みは特に限定されないが、通常、0.4mm以上3.2mm以下である。
 <めっき鋼板>
 本発明のめっき鋼板は、本発明の薄鋼板上にめっき層を備えるめっき鋼板である。めっき層の種類は特に限定されず、例えば、溶融めっき層、電気めっき層のいずれでもよい。また、めっき層は合金化されためっき層でもよい。めっき層は亜鉛めっき層が好ましい。亜鉛めっき層はAlやMgを含有してもよい。また、溶融亜鉛-アルミニウム-マグネシウム合金めっき(Zn-Al-Mgめっき層)も好ましい。この場合、Al含有量を1質量%以上22質量%以下、Mg含有量を0.1質量%以上10質量%以下とし残部はZnとすることが好ましい。また、Zn-Al-Mgめっき層の場合、Zn、Al、Mg以外に、Si、Ni、Ce及びLaから選ばれる一種以上を合計で1質量%以下含有してもよい。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。なお、めっき金属は特に限定されないため、Znめっき以外に、Alめっき等でもよい。
 また、めっき層の組成も特に限定されず、一般的なものであればよい。例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層の場合、一般的には、Fe:20質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避的不純物からなる組成である。本発明では、片面あたりのめっき付着量が20~120g/mの溶融亜鉛めっき層、これがさらに合金化された合金化溶融亜鉛めっき層を有することが好ましい。なぜなら、20g/m未満では耐食性の確保が困難になる場合がある。一方、120g/mを超えると耐めっき剥離性が劣化する場合がある。また、目安として、めっき層が溶融亜鉛めっき層の場合にはめっき層中のFe含有量が7質量%未満であり、合金化溶融亜鉛めっき層の場合にはめっき層中のFe含有量は7~20質量%である。
 <熱延鋼板の製造方法>
 熱延鋼板の製造方法は、上記成分組成を有する鋼素材を、仕上げ圧延の最終パスの圧下率が12%以上、該最終パスの前のパスの圧下率が15%以上、仕上げ圧延終了温度が850~950℃の条件の熱間圧延し、該熱間圧延後、冷却停止温度までの第1平均冷却速度が75℃/s以上、冷却停止温度が700℃以下の1次冷却をし、該1次冷却後、巻取温度までの第2平均冷却速度が5℃/s以上75℃/s未満の条件で2次冷却をし、450~650℃の巻取温度で巻き取る方法である。なお、以下の説明において、温度は特に断らない限り鋼板表面温度とする。鋼板表面温度は放射温度計等を用いて測定し得る。
 使用する鋼スラブ(鋼素材)は、成分のマクロ偏析を防止すべく連続鋳造法で製造することが好ましい。鋼素材は、造塊法、薄スラブ鋳造法によっても製造することが可能である。
 また、熱間圧延では、鋼スラブを鋳造後、再加熱することなく1150~1270℃で熱間圧延を開始するか、もしくは1150~1270℃に再加熱した後、熱間圧延を開始することが好ましい。熱間圧延の好ましい条件は、まず、1150~1270℃の熱間圧延開始温度で鋼スラブを熱間圧延する。本発明では、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再加熱する従来法に加え、冷却することなく、温片のままで加熱炉に装入する、あるいは保熱を行った後に直ちに圧延する、あるいは鋳造後そのまま圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
 仕上げ圧延の最終パスの圧下率が12%以上
 最終パスの前のパスの圧下率が15%以上
 仕上げ圧延の最終パスの圧下率を12%以上にすることはオーステナイト粒内にせん断帯を多数導入し、熱間圧延後のフェライト変態の核生成サイトを増大して熱延板の微細化を図るという観点から必要である。好ましくは13%以上である。また、上限は特に限定されないが熱延負荷荷重が増大することで、板の幅方向での板厚変動が大きくなり、材質均一性が変化するという理由で30%以下が好ましい。
 最終パスの前のパスの圧下率を15%以上にすることは歪蓄積効果がより高まってオーステナイト粒内にせん断帯が多数導入され、フェライト変態の核生成サイトがさらに増大して熱延板の組織がより微細化するという観点から必要である。好ましくは15%以上である。また、上限は特に限定されないが熱延負荷荷重が増大することで、板の幅方向での板厚変動が大きくなり、材質均一性が変化するという理由で30%以下が好ましい。
 仕上げ圧延終了温度:850~950℃
 熱間圧延では、鋼板内の組織均一化、材質の異方性低減により、焼鈍後の伸びおよび穴広げ性を向上させるため、オーステナイト単相域にて終了する必要がある。そこで、仕上げ圧延終了温度は850℃以上とする。一方、仕上げ圧延終了温度が950℃超えでは、熱延組織が粗大になり、焼鈍後の特性が低下するため、仕上げ圧延終了温度は850~950℃とする。
 1次冷却
 1次冷却として、冷却停止温度までの第1平均冷却速度が75℃/s以上、冷却停止温度が700℃以下の冷却を行う。
 熱間圧延終了後、後述する焼鈍(冷間圧延後の加熱、冷却処理)後のNbの微細な析出物の析出状態を制御するために冷却条件を調整する。この制御により、最終的な鋼組織のフェライト、マルテンサイトを微細化させる効果もある。1次冷却の冷却停止温度までの平均冷却速度が75℃/s未満では多量にNbの析出物の形成が加速されて析出物が粗大化するため、鋼板の微細化に寄与することが困難となる。その結果、焼鈍後の穴広げ性やスポット溶接性が低下する。また、1次冷却の冷却停止温度が700℃超では、熱延鋼板にパーライトが過剰に生成し、熱延鋼板の鋼組織が不均質となり、焼鈍後の穴広げ性およびスポット溶接性が低下する。なお、冷却停止温度は700℃以下の任意の温度に設定すればよいが、600℃以上が好ましい。ただし、上記冷却停止温度は巻取温度を超える温度とする。
 2次冷却
 2次冷却として、該1次冷却後、巻取温度までの第2平均冷却速度が5℃/s以上75℃/s未満の条件で冷却を行う。
 上記平均冷却速度が5℃/s未満ではNb系の析出物が粗大化するため、焼鈍後の鋼組織の微細化が困難である。650℃超までの冷却速度の制御では、TiおよびNb系の析出部が粗大化するため、焼鈍後の鋼板組織の微細化が困難である。一方、上記平均冷却速度が75℃/s以上では巻取り後に固溶したTiおよびNb系の析出物が残存するため、焼鈍後の鋼板組織の微細化が困難である。そこで、650℃以下である巻取温度までの平均冷却速度を制御する。また、冷却停止温度(巻取温度に相当)が450℃未満ではNb系の析出量が少なく、鋼板内に固溶する量が多くなり、最終焼鈍後の鋼板組織の微細化が困難になる。そのため、冷却停止温度は450℃以上とする。
 巻取温度:450~650℃
 上記2次冷却後の巻取りにおける、巻取温度が650℃超では、パーライトが過剰に生成して鋼組織が不均質となり、TiおよびNb系の析出部が粗大化するため、巻取温度の上限は650℃とする。好ましくは630℃以下である。巻取温度が450℃未満では、TiおよびNbの鋼板内の固溶量が増加するため、鋼組織の微細化が困難となるため、巻取温度の下限は450℃とする。
 上記巻取後、空冷等により鋼板は冷やされ、下記の冷延フルハード鋼板の製造に用いられる。なお、熱延鋼板が中間製品として取引対象となる場合、通常、巻取後に冷やされた状態で取引対象となる。
 <冷延フルハード鋼板の製造方法>
 本発明の冷延フルハード鋼板(冷延ままの鋼板)の製造方法は、上記製造方法で得られた熱延鋼板を冷間圧延する冷延フルハード鋼板の製造方法である。
 冷間圧延条件は、例えば、所望の厚み等の観点から適宜設定される。本発明では30%以上の圧下率で冷間圧延を施すことが好ましい。この圧下率が低いと、フェライトの再結晶が促進されず、未再結晶フェライトが過剰に残存し、延性と穴広げ性が低下する場合があるためである。なお、通常、冷間圧延の圧下率は95%以下である。
 なお、熱延鋼板表面のスケールを除去する目的で、上記冷間圧延の前に酸洗を行う必要がある。酸洗条件は適宜設定すればよい。
 <薄鋼板の製造方法>
 薄鋼板の製造方法には、冷延フルハード鋼板を加熱し冷却して薄鋼板を製造する方法(1回法)と、冷延フルハード鋼板を加熱し冷却して熱処理板とし該熱処理板を加熱し冷却して薄鋼板を製造する方法(2回法)とがある。先ず1回法を説明する。
 最高到達温度が730~900℃
 最高到達温度が730℃未満の場合には、フェライトの再結晶が十分に進行せず、過剰な未再結晶フェライトが鋼組織に存在してしまい、成形性が劣化する。また、本発明に必要な第2相の形成も困難となる。一方、最高到達温度が900℃を超える場合は、析出物が粗大化し、鋼組織の微細化が困難となり、フェライトやマルテンサイトについて所望の平均結晶粒径を得られない。
 また、上記最高到達温度までの加熱における加熱条件は特に限定する必要はないが、平均加熱速度は2~50℃/sの範囲にすることが好ましい。平均加熱速度が2℃/s未満の場合、加熱中にNb系析出物が粗大化して、鋼組織の微細化が困難になる場合があるためである。また、平均加熱速度が50℃/sを超える場合、再結晶が十分に進行しないままγ生成の温度域となる場合があるため、未再結晶フェライトが過剰に残存する場合がある。
 最高到達温度の滞留(保持)時間を15~600s
 滞留時間が15s未満の場合には、フェライトの再結晶が十分に進行せず、過剰な未再結晶フェライトが鋼組織に存在してしまい、成形性が劣化する。また、本発明に必要な第2相の形成も困難となる。また、滞留時間が600s超となると、フェライトが粗大化し、穴広げ性が劣化するため、滞留時間は600s以下とする。
 冷却停止温度までの平均冷却速度が3~30℃/s
 冷却停止温度が600℃以下
 上記の加熱後は、冷却停止温度までの平均冷却速度が3~30℃/sの条件で冷却する必要がある。平均冷却速度が3℃/s未満では、冷却中にフェライト変態が進行して、マルテンサイトの体積率が減少するため、強度確保が困難である。一方、平均冷却速度が30℃/sを超える場合には、マルテンサイトが過剰に生成するため、穴広げ性の確保が困難である。また、冷却速度の制御温度域が600℃を超える場合には、パーライトが過剰に生成するため、鋼組織における各相について所定の体積率を得られず、延性(成形性)および穴広げ性が低下する。また、冷却停止温度は上記の通り600℃以下にする必要がある。
 また、600℃以上の温度域における露点を-40℃以下とする。これにより、焼鈍中の鋼板表面からの脱炭を抑制することができ、本発明で規定する590MPaの引張強度を安定的に実現することができる。上記温度域の露点が-40℃を超えると上記脱炭により鋼板の引張強度が590MPaを下回る場合がある。よって、上記温度域の露点は-40℃以下と定めた。雰囲気の露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。
 なお、薄鋼板が取引対象となる場合には、通常、上記冷却後または後述する調質圧延後に、室温まで冷却されて取引対象となる。
 次いで、2回法について説明する。2回法では先ず冷延フルハード鋼板を加熱し冷却して熱処理板とする。この熱処理板を得る製造方法が、本発明の熱処理板の製造方法である。
 上記熱処理板を得るための加熱は、加熱温度が700~900℃の条件の加熱である。この加熱を実施することで、微細な析出物を鋼組織内に均等に存在させることが可能な上、鋼組織の微細化を促進することも可能である。そこで、加熱温度は700~900℃とする。700℃未満では十分に上記の効果が得られない。900℃超では析出物が粗大化するため、次に行われる熱処理板の加熱で鋼組織を微細化することが困難である。
 上記加熱後に冷却する。冷却条件は特に限定されない。通常、平均冷却速度が1~30℃/sである。
 なお、上記加熱の加熱方法は特に限定されないが、連続焼鈍ライン(CAL)やバッチ焼鈍(BAF)で行うのが好ましい。
 2回法では、熱処理板に、さらに加熱および冷却を施す。この加熱及び冷却の条件(最高到達温度、露点、保持時間、平均冷却速度、冷却停止温度)は、1回法で冷延フルハード鋼板に施されるものと同様であるため、説明を省略する。
 なお、上記の方法で得られた薄鋼板に調質圧延を実施し、この調質圧延された薄鋼板を本発明の薄鋼板と捉えてもよい。伸長率の好ましい範囲は0.05~2.0%である。
 <めっき鋼板の製造方法>
 本発明のめっき鋼板の製造方法は、上記で得られた薄鋼板にめっきを施す、めっき鋼板の製造方法である。
 例えば、めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍と亜鉛めっきを1ラインで連続して行ってもよい。その他、Zn-Ni電気合金めっき等の電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。なお、亜鉛めっきの場合を中心に説明したが、Znめっき、Alめっき等のめっき金属の種類は特に限定されない。なお、上記めっき処理には、焼鈍後にめっき処理を行う場合以外に、めっきラインにて焼鈍とめっきを連続で施す場合のめっき処理も含む。
 以下は、溶融亜鉛めっきの場合を例に説明する。
 薄鋼板が、めっき浴に浸漬する鋼板温度は、(溶融亜鉛めっき浴温度-40)℃~(溶融亜鉛めっき浴温度+50)℃とすることが好ましい。めっき浴に浸漬する鋼板温度が(溶融亜鉛めっき浴温度-40)℃を下回ると、鋼板がめっき浴に浸漬される際に、溶融亜鉛の一部が凝固してしまい、めっき外観を劣化させる場合があることから、好ましい下限を(溶融亜鉛めっき浴温度-40)℃とする。また、めっき浴に浸漬する鋼板温度が(溶融亜鉛めっき浴温度+50)℃を超えると、めっき浴の温度が上昇するため、量産性に問題がある。そこで好ましい上限を(溶融亜鉛めっき浴温度+50)℃とする。
 また、溶融めっき後に、450~600℃の温度域で合金化処理を施してもよい。450~600℃の温度域で合金化処理することにより、めっき中のFe濃度は7~15%になり、めっきの密着性や塗装後の耐食性が向上する。合金化温度が450℃未満では、合金化が十分に進行せず、犠牲防食作用の低下や摺動性の低下を招く。合金化温度が600℃より高い温度では、合金化の進行が顕著となり、パウダリング性が低下する。
 また、生産性の観点から、上記の焼鈍(冷延フルハード鋼板等に対する加熱や冷却)、溶融めっき処理、合金化処理などの一連の処理は、連続溶融亜鉛めっきライン(CGL)で行うのが好ましい。また、上記溶融亜鉛めっき処理には、Al量を0.10~0.20%含む亜鉛めっき浴を用いることが好ましい。めっき後は、めっきの目付け量を調整するために、ワイピングを行うことができる。
 なお、上述のめっき層の説明で記載の通り、Znめっきが好ましいが、Alめっき等の他の金属を用いためっき処理でもよい。
 以下、本発明の実施例を説明する。ただし、本発明は、もとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成の鋼を溶製して鋳造してスラブを製造し、熱間圧延加熱温度を1250℃、最終パスおよび最終直前パスの圧下率、仕上げ圧延終了温度(FDT)を表2に示す条件で熱間圧延を行い(同じ厚みのスラブを用いた。)、板厚:3.2mmの熱延鋼板とした後、表2で示す第1平均冷却速度(冷速1)で第1冷却温度まで冷却した後、第2平均冷却温度(冷速2)で巻取温度まで冷却し、巻取り温度(CT)で巻取った。ついで、得られた熱延板を酸洗した後、冷間圧延を施し、冷延板(板厚:1.4mm)を製造した(この冷延板は冷延フルハード鋼板に相当する)。得られた冷延板を連続溶融亜鉛めっきラインにおいて、表2に示す製造条件に従う、加熱冷却処理(焼鈍)を行い、溶融亜鉛めっき処理を施した後、さらに表2に示す温度で合金化処理を行い、合金化溶融亜鉛めっき鋼板を得た。なお、表2に示すように、一部の鋼板については、冷間圧延後に第1の熱処理を連続焼鈍ラインで表2に示す温度で実施し、連続溶融亜鉛めっきラインでめっきを施した。また、表2に示すように、一部の鋼板については、めっきの合金化処理は行わなかった。ここで、めっき処理は、亜鉛めっき浴温度:460℃、亜鉛めっき浴Al濃度:0.14質量%(合金化処理する場合)、0.18質量%(合金化処理を施さない場合)、片面あたりのめっき付着量45g/m(両面めっき)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 製造した鋼板から、JIS5号引張試験片を圧延直角方向から長手方向(引張方向)となるように採取し、引張試験(JIS Z2241(1998))により、引張強さ(TS)、全伸び(EL)、降伏強さ(YS)を測定した。また、降伏比(YR)を算出した。
 穴広げ性に関しては、日本鉄鋼連盟規格(JFS T1001(1996))に準拠し、クリアランス12.5%にて、10mmφの穴を打抜き、かえりがダイ側になるように試験機にセットした後、60°の円錐ポンチで成形することにより穴広げ率(λ)を測定した。λ(%)が、60%以上を有するものを良好な穴広げ性を有する鋼板とした。
 スポット溶接性に関しては、製造された溶融亜鉛めっき鋼板の2枚を重ねた板の組み合わせについて、Cガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。なお、使用した一対の電極チップは、ともに先端の曲率半径R40、先端径6mmを有するアルミナ分散銅のDR型電極とした。溶接条件は、はじめに、加圧力を3500N、通電時間は18サイクル、ホールド時間は1サイクルとし、各溶融亜鉛めっき鋼板において、チリが発生する電流値を求めたのちに、その電流値から0.1kA低下させた電流値で再試験を実施して、表面に割れが発生しているかをマイクロスコープにて確認した。表面割れ(表面割れとはナゲットの中心を円の中心としてその直径7mm以内に、き裂が生成していること場合に表面割れありと定義する。ここで云うき裂とは長さが100μm以上の大きさのき裂を指す。)が存在した溶融亜鉛めっき鋼板を「×」、存在していない溶融亜鉛めっき鋼板を「○」とした。
 鋼板のフェライト、マルテンサイト、パーライト、未再結晶フェライトの体積率は、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、SEM(走査型電子顕微鏡)を用いて2000倍、5000倍の倍率で表面から1/4厚み位置を観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により、面積率を測定し、その面積率を体積率とした。フェライトおよびマルテンサイトの平均結晶粒径は、Media Cybernetics社のImage-Proを用いて、鋼組織写真から予め各々のフェライトおよびマルテンサイト結晶粒を識別しておいた写真を取り込むことで各相の面積が算出可能であり、その円相当直径を算出し、それらの値を平均して求めた。マルテンサイトのアスペクト比については、上記写真をもとに各粒でのアスペクト比を求め、それらを平均して求めた。
 また、残部組織も確認し、結果を表3に示した。
 また、Nb系析出物の平均粒径の測定方法は、得られた鋼板の表面から1/4厚みの位置から作製した薄膜を透過型電子顕微鏡(TEM)で10視野観察し(写真引伸で倍率:500000倍)、析出物の平均粒径を求めた。各々の析出物の粒径は、析出物が球状形状の場合はその直径を粒径とし、また、析出物が楕円形の場合は、析出物の長軸aと、長軸に直行する方向の短軸を測定し、長軸aと短軸bとの積a×bの平方根を粒径とした。10視野で観察された各々の析出物の粒径を加算し、析出物の個数で除した値を炭化物の平均粒径とした。
 測定した引張特性、穴広げ率、スポット溶接性、鋼組織の測定結果を表3に示す。
 表3に示す結果から、本発明例はいずれも降伏比が70%以上、引張強さが590MPa以上、伸びが28%以上、穴広げ率が60%以上およびスポット溶接時の表面割れを生じないことが確認された。一方、比較例は、鋼組織や成分組成が本発明範囲を満足せず、その結果、引張強さ、降伏比、伸び、穴広げ率、スポット溶接性の少なくとも1つの特性が劣る。
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1.  質量%で、
    C:0.05~0.11%、
    Si:0.60%以下、
    Mn:1.50~2.10%、
    P:0.05%以下、
    S:0.005%以下、
    Al:0.01~0.10%、
    N:0.010%以下、
    Ti:0.005~0.07%、
    Nb:0.01~0.10%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
     体積率で、フェライトを75~95%、マルテンサイトを3~15%、パーライトを0.5~10%、未再結晶フェライトを10%以下含み、残部が低温生成相からなり、前記フェライトの平均結晶粒径が6μm以下であり、前記マルテンサイトの平均結晶粒径が3μm以下かつ平均アスペクト比が4.0以下であり、平均粒径が0.10μm以下のNb系析出物を含有する鋼組織と、を有し、
     引張強さが590MPa以上であることを特徴とする薄鋼板。
  2.  前記成分組成は、さらに、質量%で、V:0.10%以下を含有することを特徴とする請求項1に記載の薄鋼板。
  3.  前記成分組成は、さらに、質量%で、
    Cr:0.50%以下、
    Mo:0.50%以下、
    Cu:0.50%以下、
    Ni:0.50%以下、
    B:0.01%以下、
    並びにCa及び/又はREMの合計:0.005%以下から選択される一種以上を含有することを特徴とする請求項1または2に記載の薄鋼板。
  4.  請求項1~3のいずれかに記載の薄鋼板の表面にめっき層を有することを特徴とするめっき鋼板。
  5.  前記めっき層が溶融亜鉛めっき層又は合金化溶融亜鉛めっき層であることを特徴とする請求項4に記載のめっき鋼板。
  6.  請求項1~3のいずれかに記載の成分組成を有する鋼素材を、仕上げ圧延の最終パスの圧下率が12%以上、該最終パスの前のパスの圧下率が15%以上、仕上げ圧延終了温度が850~950℃の条件で熱間圧延し、該熱間圧延後、冷却停止温度までの第1平均冷却速度が75℃/s以上、冷却停止温度が700℃以下の1次冷却をし、該1次冷却後、巻取温度までの第2平均冷却速度が5℃/s以上75℃/s未満の条件で2次冷却をし、450~650℃の巻取温度で巻き取ることを特徴とする熱延鋼板の製造方法。
  7.  請求項6に記載の製造方法で得られた熱延鋼板を酸洗し、冷間圧延することを特徴とする冷延フルハード鋼板の製造方法。
  8.  請求項7に記載の製造方法で得られた冷延フルハード鋼板を、600℃以上の温度域の露点を-40℃以下とし、最高到達温度が730~900℃の条件で加熱し、該最高到達温度で15~600s保持し、該保持後、冷却停止温度までの平均冷却速度が3~30℃/s、冷却停止温度が600℃以下の条件で冷却することを特徴とする薄鋼板の製造方法。
  9.  請求項7に記載の製造方法で得られた冷延フルハード鋼板を、加熱温度が700~900℃の条件で加熱し、冷却することを特徴とする熱処理板の製造方法。
  10.  請求項9に記載の製造方法で得られた熱処理板を、600℃以上の温度域の露点を-40℃以下とし、最高到達温度が730~900℃の条件で加熱し、該最高到達温度で15~600s保持し、該保持後、冷却停止温度までの平均冷却速度が3~30℃/s、冷却停止温度が600℃以下の条件で冷却することを特徴とする薄鋼板の製造方法。
  11.  請求項8又は10に記載の製造方法で得られた薄鋼板の表面にめっき処理を施すめっき工程を備えることを特徴とするめっき鋼板の製造方法。
  12.  前記めっき処理は、溶融亜鉛めっきし、450~600℃で合金化する処理であることを特徴とする請求項11に記載のめっき鋼板の製造方法。
PCT/JP2017/011077 2016-03-31 2017-03-21 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 WO2017169940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017537328A JP6308333B2 (ja) 2016-03-31 2017-03-21 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US16/087,931 US10900096B2 (en) 2016-03-31 2017-03-21 Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing plated steel sheet
MX2018011687A MX2018011687A (es) 2016-03-31 2017-03-21 Lamina de acero y lamina de acero chapeada, metodo para la produccion de lamina de acero laminada en caliente, metodo para la produccion de lamina de acero extra-dura laminada en frio, metodo para la produccion de lamina tratada termicamente, metodo para la produccion de lamina de acero, y metodo para la produccion de lamina de acero chapeada.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016070739 2016-03-31
JP2016-070739 2016-03-31
JP2016231184 2016-11-29
JP2016-231184 2016-11-29

Publications (1)

Publication Number Publication Date
WO2017169940A1 true WO2017169940A1 (ja) 2017-10-05

Family

ID=59964960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011077 WO2017169940A1 (ja) 2016-03-31 2017-03-21 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Country Status (4)

Country Link
US (1) US10900096B2 (ja)
JP (1) JP6308333B2 (ja)
MX (1) MX2018011687A (ja)
WO (1) WO2017169940A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499468A (zh) * 2019-09-22 2019-11-26 江苏方圆型钢有限公司 一种高屈服强度热轧型钢及其生产工艺
WO2020158228A1 (ja) * 2019-01-29 2020-08-06 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2020170710A1 (ja) * 2019-02-21 2020-08-27 Jfeスチール株式会社 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法
JPWO2021140901A1 (ja) * 2020-01-08 2021-07-15

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169941A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
MX2018011688A (es) 2016-03-31 2019-02-18 Jfe Steel Corp Lamina de acero y lamina de acero enchapada, metodo para producir lamina de acero laminada en caliente, metodo para producir lamina de acero de dureza completa laminada en frio, metodo para producir lamina termicamente tratada, metodo para producir lamina de acero, y metodo para producir lamina de acero enchapada.
MX2018011687A (es) * 2016-03-31 2019-02-18 Jfe Steel Corp Lamina de acero y lamina de acero chapeada, metodo para la produccion de lamina de acero laminada en caliente, metodo para la produccion de lamina de acero extra-dura laminada en frio, metodo para la produccion de lamina tratada termicamente, metodo para la produccion de lamina de acero, y metodo para la produccion de lamina de acero chapeada.
MX2022001480A (es) * 2019-08-06 2022-03-02 Jfe Steel Corp Hoja de acero delgada de alta resistencia y metodo para su fabricacion.
WO2023052814A1 (en) * 2021-09-29 2023-04-06 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104254A1 (fr) * 2003-05-19 2004-12-02 Usinor Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2011225955A (ja) * 2010-04-22 2011-11-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2014097559A1 (ja) * 2012-12-18 2014-06-26 Jfeスチール株式会社 低降伏比高強度冷延鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873638B2 (ja) 2001-03-09 2007-01-24 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP5834717B2 (ja) * 2011-09-29 2015-12-24 Jfeスチール株式会社 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
JP5884714B2 (ja) * 2012-01-31 2016-03-15 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2017169941A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
MX2018011688A (es) * 2016-03-31 2019-02-18 Jfe Steel Corp Lamina de acero y lamina de acero enchapada, metodo para producir lamina de acero laminada en caliente, metodo para producir lamina de acero de dureza completa laminada en frio, metodo para producir lamina termicamente tratada, metodo para producir lamina de acero, y metodo para producir lamina de acero enchapada.
MX2018011687A (es) * 2016-03-31 2019-02-18 Jfe Steel Corp Lamina de acero y lamina de acero chapeada, metodo para la produccion de lamina de acero laminada en caliente, metodo para la produccion de lamina de acero extra-dura laminada en frio, metodo para la produccion de lamina tratada termicamente, metodo para la produccion de lamina de acero, y metodo para la produccion de lamina de acero chapeada.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104254A1 (fr) * 2003-05-19 2004-12-02 Usinor Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2011225955A (ja) * 2010-04-22 2011-11-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2014097559A1 (ja) * 2012-12-18 2014-06-26 Jfeスチール株式会社 低降伏比高強度冷延鋼板およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158228A1 (ja) * 2019-01-29 2020-08-06 Jfeスチール株式会社 高強度鋼板及びその製造方法
JP6809648B1 (ja) * 2019-01-29 2021-01-06 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2020170710A1 (ja) * 2019-02-21 2020-08-27 Jfeスチール株式会社 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法
JPWO2020170710A1 (ja) * 2019-02-21 2021-03-11 Jfeスチール株式会社 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法
CN110499468A (zh) * 2019-09-22 2019-11-26 江苏方圆型钢有限公司 一种高屈服强度热轧型钢及其生产工艺
JPWO2021140901A1 (ja) * 2020-01-08 2021-07-15
WO2021140901A1 (ja) * 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
JP7252499B2 (ja) 2020-01-08 2023-04-05 日本製鉄株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
JPWO2017169940A1 (ja) 2018-04-05
US20190078173A1 (en) 2019-03-14
JP6308333B2 (ja) 2018-04-11
MX2018011687A (es) 2019-02-18
US10900096B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
JP6308333B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6354075B1 (ja) 高強度薄鋼板およびその製造方法
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6394812B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP5029361B2 (ja) 熱延鋼板及び冷延鋼板並びにそれらの製造方法
TWI502080B (zh) 加工性優異之高強度鋼板及其製造方法
JP5834717B2 (ja) 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
JP6260750B1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
TWI418640B (zh) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
JP6296214B1 (ja) 薄鋼板およびその製造方法
WO2018043456A1 (ja) 高強度冷延薄鋼板及びその製造方法
CN107075643A (zh) 高强度钢板、高强度热镀锌钢板、高强度热镀铝钢板和高强度电镀锌钢板、以及它们的制造方法
CA2786381C (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP6950826B2 (ja) 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法
WO2019188643A1 (ja) 高強度鋼板およびその製造方法
JP7164024B2 (ja) 高強度鋼板およびその製造方法
JP2018162477A (ja) 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材
JP5594438B2 (ja) 高張力熱延めっき鋼板およびその製造方法
CN114585758B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017537328

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011687

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774481

Country of ref document: EP

Kind code of ref document: A1