WO2020158228A1 - 高強度鋼板及びその製造方法 - Google Patents

高強度鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020158228A1
WO2020158228A1 PCT/JP2019/049749 JP2019049749W WO2020158228A1 WO 2020158228 A1 WO2020158228 A1 WO 2020158228A1 JP 2019049749 W JP2019049749 W JP 2019049749W WO 2020158228 A1 WO2020158228 A1 WO 2020158228A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
martensite
temperature
seconds
Prior art date
Application number
PCT/JP2019/049749
Other languages
English (en)
French (fr)
Inventor
拓弥 平島
佑馬 本田
章紀 中村
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021009099A priority Critical patent/MX2021009099A/es
Priority to KR1020217023532A priority patent/KR102508292B1/ko
Priority to JP2020520081A priority patent/JP6809648B1/ja
Priority to US17/426,897 priority patent/US20220098698A1/en
Priority to CN201980090854.4A priority patent/CN113366126B/zh
Priority to EP19912317.5A priority patent/EP3919637B1/en
Publication of WO2020158228A1 publication Critical patent/WO2020158228A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength steel plate suitably used for automobile structural parts and the like, and a manufacturing method thereof. More specifically, the present invention relates to a low yield ratio high strength steel sheet having excellent surface characteristics and a method for manufacturing the same.
  • the composition is C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 1.0% by mass.
  • the content of the ferrite is 3.0%, the volume ratio of ferrite is 60% or more, the volume ratio of martensite is 5% or more, the volume ratio of retained austenite is 2% or more, and the average crystal grain size of ferrite is 5 ⁇ m or more. Accordingly, a low yield ratio high strength galvanized steel sheet having a tensile strength of 590 MPa or more, a strength-elongation balance of 21000 MPa ⁇ % or more and a yield ratio of 65% or less is disclosed.
  • the composition of components is C: 0.07 to 0.2%, Si: 0.005 to 1.5%, Mn: 1.0 to 3.1%, and P: Contains 0.001 to 0.06%, S: 0.001 to 0.01%, Al: 0.005 to 1.2%, N: 0.0005 to 0.01%, and has a metal structure of ferrite.
  • a high-strength steel sheet having a tensile strength of 590 MPa or more, which has improved workability by having a martensitic structure.
  • the composition of components is% by mass, C: 0.05 to 0.13%, Si: 0.6 to 1.2%, Mn: 1.6 to 2.4%, P: 0.1% or less, S: 0.005% or less, Al: 0.01 to 0.1%, N: less than 0.005%, and the microstructure of the steel sheet has a volume fraction of 80% ferrite.
  • a high strength steel sheet having a tensile strength of 590 MPa or more and a yield ratio of 70% or less is disclosed by setting martensite to 3 to 15% and pearlite to 0.5 to 10%.
  • the composition of components is% by mass, C: 0.06 to 0.12%, Si: 0.4 to 0.8%, Mn: 1.6 to 2.0%, Cr: 0.01-1.0%, V: 0.001-0.1%, P: 0.05% or less, S: 0.01% or less, Sol. Al: 0.01 to 0.5%, N: 0.005% or less, the metal structure has a volume ratio of equiaxed ferrite of 50% or more, a volume ratio of martensite of 5 to 15%, and retained austenite.
  • the volume ratio of the phases is 1 to 5%, the average particle size of the retained austenite phase is 10 ⁇ m or less, and the aspect ratio of the retained austenite phase is 5 or less, so that the tensile strength is 590 MPa or more, the total elongation is 30% or more, A high-strength steel sheet having a spreading rate of 60% or more is disclosed.
  • Patent Document 1 Although the technique disclosed in Patent Document 1 described above has a ferrite-martensite structure and improves the low yield ratio and ductility by defining the ferrite grain size, the annealing process is performed twice to obtain a plated steel sheet. ing. However, when the annealing process is performed twice, oxides are easily generated on the surface of the steel sheet, so that the surface characteristics are not excellent.
  • Patent Document 2 improves workability by using ferrite as the main phase, the martensite grain size is not described, so the martensite grain size cannot be controlled. Therefore, it is considered that a low yield ratio will not result.
  • the yield ratio disclosed in Patent Document 3 is defined by the present invention.
  • the yield ratio is less than 63%. It is considered that this is because the grain size of martensite cannot be controlled.
  • the annealing temperature and the cooling stop temperature for controlling the martensite grain size disclosed in Patent Document 3 also differ from the regulation of the present invention.
  • the one having a yield ratio of 63% or less disclosed in Patent Document 3 is considered to be not excellent in surface characteristics because Si and Mn are higher than those of the present invention.
  • Patent Document 4 has a ferrite-martensite structure, and further improves the low yield ratio and the workability by defining the volume ratio of retained austenite and the average grain size.
  • Cr and V are added to ensure.
  • Cr and V are known as elements that deteriorate the surface characteristics, and in order to have the excellent surface characteristics aimed at by the present invention, it is necessary to reduce the composition of these elements.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a low yield ratio and high strength steel sheet having excellent surface characteristics and a method for manufacturing the same.
  • the present inventors have conducted intensive research to solve the above problems. As a result, by adjusting the specific composition of the composition, making the steel structure a ferrite-martensite structure, and further controlling the martensite grain size, the martensite aspect ratio, and the carbon concentration in the martensite, the low yield ratio and high The inventors have found that a high-strength steel sheet can be obtained, and completed the present invention.
  • the inventors of the present invention set the area ratio of martensite to 10% or more in order to obtain the target strength in the present invention, and further, to obtain the low yield ratio targeted in the present invention, Martensite with an area ratio of less than 50% and an aspect ratio of 3 or less is 60% or more of all martensite, and the carbon concentration in martensite with an aspect ratio of 3 or less is 0.3% or more by mass% 0.9. % Or less, and it has been found that it is necessary to set the average particle size of martensite to 3.0 ⁇ m or less.
  • the aspect ratio refers to a value calculated by dividing the long side by the short side.
  • the present invention has been made based on the above findings, and the gist of the present invention is as follows.
  • the composition of components is% by mass, C: 0.06% or more and 0.120% or less, Si: 0.3% or more and 0.7% or less, Mn: 1.6% or more and 2.2% or less, P: 0.05% or less, S: 0.0050% or less, Al: 0.01% or more and 0.20% or less, N: 0.010% or less, and the balance consisting of Fe and inevitable impurities,
  • the steel structure has main phase ferrite and martensite in an area ratio of 10% or more and less than 50% with respect to the entire steel structure, and the average crystal grain size of the martensite is 3.0 ⁇ m or less.
  • the ratio of martensite having an aspect ratio of 3 or less is 60% or more, and the carbon concentration in the martensite having an aspect ratio of 3 or less is 0.30% or more and 0.90% or less in mass %.
  • the component composition is, in mass %, Cr: 0.01% or more and 0.20% or less, Mo: 0.01% or more and less than 0.15%, V: 0.001% or more and 0.05. %, the high-strength steel sheet according to [1] containing one or more selected from the group consisting of 2 or more.
  • a hot rolling step is performed, and the hot rolled steel sheet obtained in the hot rolling step is annealed at the annealing temperature.
  • a C1 point or more and A C3 point or less are held for 30 seconds or more, and the cooling is performed under the conditions of an average cooling rate from the annealing temperature to 350° C.: 5° C./second or more, a cooling stop temperature: 350° C. or less, and then T1.
  • a hot rolling step is performed, and then the hot rolled steel sheet obtained in the hot rolling step is cold-rolled.
  • a rolling process is performed, and the cold-rolled steel sheet obtained in the cold rolling process is held at an annealing temperature: A C1 point or more and A C3 point or less for 30 seconds or more, and the average cooling rate from the annealing temperature to 350° C.: 5
  • the T1 temperature (°C) is set to an arbitrary temperature within the temperature range of 200 to 250°C after cooling at a cooling stop temperature of 350°C/sec or more, the temperature range from 350°C to 300°C.
  • Retention time 50 seconds or less
  • the present invention controls the steel structure by adjusting the composition of components and the manufacturing method, and further controls the martensite grain size, the aspect ratio of martensite, and the carbon concentration in martensite.
  • the high-strength steel sheet of the present invention has excellent surface characteristics and a low yield ratio.
  • the high-strength steel sheet of the present invention to automobile structural members, it is possible to achieve both high strength and low yield ratio of automobile steel sheet. That is, according to the present invention, the performance of the automobile body can be improved.
  • the component composition of the high-strength steel sheet of the present invention (hereinafter sometimes referred to as “the steel sheet of the present invention") will be described.
  • “%”, which is a unit of the content of the component means “mass %”.
  • C 0.06% or more and 0.120% or less
  • C is an element that improves hardenability and is necessary to secure a predetermined area ratio of martensite. Further, C is an element that increases the strength of martensite, and is necessary from the viewpoint of ensuring the strength (TS) targeted in the present invention of TS ⁇ 590 MPa. If the C content is less than 0.06%, the above-mentioned predetermined strength cannot be obtained. Therefore, the C content is 0.06% or more. It is preferably 0.065% or more, and more preferably 0.070% or more. On the other hand, when the C content exceeds 0.120%, the area ratio of martensite is increased and the yield ratio is increased. Therefore, the C content is 0.120% or less. It is preferably 0.115% or less, more preferably 0.11% or less.
  • Si 0.3% or more and 0.7% or less Si is a strengthening element by solid solution strengthening.
  • the Si content is set to 0.3% or more. It is preferably 0.35% or more, and more preferably 0.40% or more.
  • the Si content is 0.7% or less. It is preferably 0.64% or less, and more preferably 0.60% or less.
  • Mn 1.6% or more and 2.2% or less Mn is contained in order to improve the hardenability of steel and to secure a predetermined martensite area ratio. If the Mn content is less than 1.6%, the strength decreases due to the formation of ferrite in the surface layer of the steel sheet. In addition, the yield ratio is increased by the formation of pearlite or bainite during cooling. Therefore, the Mn content is 1.6% or more. It is preferably 1.65% or more, and more preferably 1.70% or more. On the other hand, when Mn is excessively large, an oxide is formed on the surface of the steel sheet and the surface characteristics are significantly deteriorated. Therefore, the Mn content is 2.2% or less. It is preferably 2.14% or less, and more preferably 2.10% or less.
  • P 0.05% or less
  • P is an element that strengthens steel, but if its content is large, it segregates at the grain boundaries to deteriorate workability. Therefore, in order to obtain the minimum workability required when using the steel sheet of the present invention as a steel sheet for automobiles, the P content is set to 0.05% or less. It is preferably 0.03% or less, and more preferably 0.01% or less.
  • the lower limit of the P content is not particularly limited, but the lower limit industrially practicable at present is about 0.003%. Therefore, it is preferably 0.003% or more. More preferably, it is 0.005% or more.
  • the S content is 0.0050% or less. It is preferably 0.0020% or less, more preferably 0.0010% or less, and further preferably 0.0005% or less.
  • the lower limit of the S content is not particularly limited, but at present, the lower limit industrially practicable is about 0.0002%. Therefore, it is preferably 0.0002% or more. More preferably, it is 0.0005% or more.
  • Al 0.01% or more and 0.20% or less Al is added to sufficiently deoxidize and reduce coarse inclusions in steel. The effect is exhibited when the Al content is 0.01% or more. Preferably it is 0.02% or more. More preferably, it is 0.03% or more.
  • carbides containing Fe as a main component, such as cementite generated during winding after hot rolling become difficult to form a solid solution in the annealing step, and coarse inclusions and carbides are formed. Are generated, the workability is deteriorated. Therefore, in order to obtain the minimum workability required when using the steel sheet of the present invention as a steel sheet for automobiles, the Al content is 0.20% or less. It is preferably 0.17% or less, more preferably 0.15% or less.
  • N 0.010% or less
  • N is an element that forms coarse nitride-based inclusions such as AlN in steel, and deteriorates workability through the formation of these.
  • Ti when contained together with N, it is an element that forms coarse nitride-based or carbonitride-based inclusions such as TiN and (Nb, Ti)(C, N).
  • the N content is 0.010% or less. It is preferably 0.007% or less, and more preferably 0.005% or less.
  • the lower limit of the N content is not particularly limited, but at present, the lower limit industrially practicable is about 0.0006%. Therefore, it is preferably 0.0006% or more. More preferably, it is 0.0010% or more.
  • the above are the basic components of the steel sheet used in the present invention.
  • the steel sheet used in the present invention contains the above basic components, and the balance other than the above components has a component composition containing Fe (iron) and inevitable impurities.
  • the steel sheet of the present invention contains the above components, and the balance has a component composition of Fe and inevitable impurities.
  • the steel sheet of the present invention can contain the following components as optional components. In the present invention, when the following optional components are contained below the lower limit of each component, the components are included as unavoidable impurities described later.
  • Cr, Mo and V can be contained for the purpose of obtaining the effect of improving the hardenability of steel.
  • the Cr content and the Mo content are preferably 0.01% or more. It is more preferably 0.02% or more, and further preferably 0.03% or more.
  • V content is preferably 0.001% or more. The content is more preferably 0.002% or more, and further preferably 0.003% or more.
  • the Cr content is preferably 0.20% or less, more preferably 0.15% or less, and further preferably 0.10% or less.
  • Mo is contained, the Mo content is preferably less than 0.15%, more preferably 0.1% or less, and further preferably 0.05% or less.
  • V is contained, the V content is preferably 0.05% or less, more preferably 0.03% or less, and further preferably 0.01% or less.
  • Nb and Ti are finer or finer precipitation of old ⁇ grains. Contributes to higher strength through the generation of products.
  • Nb content and the Ti content are each 0.001% or more. It is more preferably 0.0015% or more, and further preferably 0.0020% or more.
  • the Nb content and the Ti content are each 0.02% or less. It is more preferably 0.017% or less, and further preferably 0.015% or less.
  • One or two selected from Cu: 0.001% or more and 0.20% or less, Ni: 0.001% or more and 0.10% or less Cu or Ni improves corrosion resistance in an environment where the automobile is used.
  • the corrosion product coats the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet.
  • the Cu content and the Ni content are each 0.001% or more. It is more preferably 0.002% or more, and even more preferably 0.003% or more.
  • the Cu content or the Ni content is too large, surface defects may occur and the surface characteristics may be deteriorated.
  • the Cu content is preferably 0.20% or less, more preferably 0.15% or less, and further preferably 0.1% or less.
  • the Ni content is preferably 0.10% or less, more preferably 0.07% or less, and further preferably 0.05% or less.
  • B 0.0001% or more and 0.002% or less B is an element that improves the hardenability of steel.
  • the B content is preferably 0.0001% or more. It is more preferably 0.0003% or more, and further preferably 0.0005% or more.
  • the B content is preferably 0.002% or less. It is more preferably 0.0015% or less, and further preferably 0.0010% or less.
  • the steel structure of the steel sheet of the present invention has main phase ferrite and martensite of 10% or more and less than 50% in terms of area ratio to the entire steel structure, and the average crystal grain size of martensite is 3.0 ⁇ m or less,
  • the ratio of martensite with an aspect ratio of 3 or less to the entire martensite is 60% or more, and the carbon concentration in martensite with an aspect ratio of 3 or less is 0.30% or more and 0.90% or less in mass %. ..
  • the area ratio refers to the area ratio with respect to the entire steel structure.
  • ferrite is the main phase.
  • the main phase refers to a microstructure that is contained within an area ratio of 50 to 100% with respect to the entire steel microstructure. Therefore, the fact that ferrite is the main phase means that ferrite is contained in an area ratio of 50 to 90% with respect to the entire steel structure.
  • the use of ferrite as the main phase is necessary from the viewpoint of reducing the yield strength and improving the yield ratio.
  • the lower limit of the area ratio of ferrite is preferably 55% or more, more preferably 60% or more.
  • the upper limit is preferably 85% or less, more preferably 80% or less.
  • the ferrite here means recrystallized ferrite, and does not include unrecrystallized ferrite that has not been recrystallized.
  • the area ratio of martensite 10% or more and less than 50%
  • the area ratio of martensite to the entire steel structure is 10% or more. It is preferably at least 15%, more preferably at least 20%.
  • the area ratio of martensite with respect to the entire steel structure is 50% or more, martensite becomes the main phase, and due to this, the amount of C in martensite decreases, and the yield ratio increases. Therefore, the area ratio of martensite is less than 50%. It is preferably 45% or less, and more preferably 40% or less.
  • the residual structure other than ferrite and martensite is one or more selected from retained austenite, bainite, unrecrystallized ferrite and pearlite, and the total amount thereof is 10 in area ratio. It is acceptable if it is 0.0% or less.
  • the area ratio of the total amount of one kind or two kinds or more selected from retained austenite, bainite, unrecrystallized ferrite and pearlite is preferably 7.0% or less. 0.0% or less is more preferable.
  • the area ratio of the remaining structure may be 0%.
  • ferrite is a structure formed by transformation from austenite at a relatively high temperature and consisting of BCC lattice crystal grains.
  • Unrecrystallized ferrite is a structure in which white streaky strain remains in the ferrite grains.
  • Martensite refers to a hard structure formed from austenite at a low temperature (a temperature below the martensite transformation point).
  • Bainite refers to a hard structure that is generated from austenite at a relatively low temperature (a temperature above the martensitic transformation point) and has fine carbides dispersed in acicular or plate-like ferrite.
  • Perlite is a structure formed from austenite at a relatively high temperature and composed of layered ferrite and cementite.
  • Retained austenite refers to a structure formed when the element such as C is concentrated in austenite and the martensite transformation point becomes room temperature or lower.
  • the value of the area ratio of each structure in the steel structure adopts the value obtained by measuring by the method described in the examples described later.
  • Martensite average crystal grain size 3.0 ⁇ m or less
  • the lower limit of the average grain size of martensite is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more.
  • the average grain size of martensite in the steel structure a value obtained by measuring by the method described in Examples described later is adopted.
  • Ratio of martensite having an aspect ratio of 3 or less with respect to the entire martensite 60% or more Martensite having an aspect ratio of 3 or less has high strength unlike needle-like martensite. Therefore, martensite having an aspect ratio of 3 or less is an important structure for obtaining the low yield ratio targeted by the present invention. If the area ratio of martensite having an aspect ratio of 3 or less is less than 60% with respect to the area ratio of all martensite, it is insufficient to obtain the low yield ratio targeted by the present invention. Therefore, the ratio of the area ratio of martensite having an aspect ratio of 3 or less to the entire martensite is 60% or more. It is preferably at least 65%, more preferably at least 70%. The upper limit of the ratio of martensite having an aspect ratio of 3 or less with respect to the entire martensite is not particularly limited and may be 100%. More preferably, it is 90% or less.
  • the aspect ratio of martensite in the steel structure adopts the value obtained by measurement by the method described in Examples described later.
  • Carbon concentration in martensite having an aspect ratio of 3 or less 0.30% or more and 0.90% or less by mass%
  • the carbon concentration in the martensite having an aspect ratio of 3 or less needs to be 0.30% or more by mass %. It is preferably 0.35% or more, and more preferably 0.40% or more.
  • the carbon concentration in the martensite having an aspect ratio of 3 or less exceeds 0.90% by mass%, the martensite remains as austenite without undergoing martensite transformation, and thus the area ratio of martensite becomes less than 10%. Strength is reduced. Therefore, the carbon concentration in martensite having an aspect ratio of 3 or less needs to be 0.90% or less in mass %. It is preferably 0.85% or less, and more preferably 0.8% or less.
  • the carbon concentration in martensite having an aspect ratio of 3 or less in the steel structure a value obtained by measurement by the method described in Examples described later is adopted.
  • the above-described steel structure is uniformly present in any plate thickness range except the range where the measurement position is the outermost layer 10 ⁇ m in the plate thickness direction. Therefore, the plate thickness measurement position may be measured at any position within the range where the steel structure is uniform.
  • the steel sheet of the present invention may have a plating layer on the surface of the steel sheet.
  • the galvanized layer includes a hot-dip galvanized layer (hereinafter sometimes referred to as GI), an alloyed hot-dip galvanized layer (hereinafter sometimes referred to as GA), and an electrogalvanized layer (hereinafter referred to as EG). Is preferred).
  • the plating metal may be other than zinc, and examples thereof include Al plating.
  • the Fe content in the plating layer is preferably in the range of 7 to 16% by mass. When the Fe content is less than 7% by mass, alloying unevenness may occur or flaking property may deteriorate. On the other hand, if the Fe content exceeds 16% by mass, the plating peel resistance may deteriorate.
  • the steel sheet of the present invention has high strength.
  • the tensile strength (TS) measured by the method described in Examples described later is 590 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but the tensile strength is preferably 780 MPa or less from the viewpoint of easy balance with other properties.
  • the steel sheet of the present invention has a low yield ratio (YR).
  • the lower limit of the yield ratio is not particularly limited, but the yield ratio is preferably 0.4 or more from the viewpoint of easy balance with other characteristics. It is more preferably 0.45 or more.
  • the steel sheet of the present invention has a yield ratio of 0.63 or less and a tensile strength of 590 MPa or more by setting the annealing temperature to A C1 point or more and A C3 point or less and the cooling stop temperature to 350° C. or less. It is possible.
  • the steel sheet of the present invention has excellent surface characteristics.
  • the surface characteristics referred to here are chemical conversion treatability in the case of hot-rolled steel sheets and cold-rolled steel sheets, and plating adhesion in the case of plated steel sheets.
  • the coverage is an area ratio of 95% or more
  • the symbol “ ⁇ ” is given, when it is 90% or more and less than 95%, the symbol “ ⁇ ” is given, and when it is less than 90%.
  • the symbol “x” was given, and the symbols “ ⁇ ” and “ ⁇ ” were evaluated as having good chemical conversion treatment properties (that is, excellent chemical conversion treatment properties).
  • chemical conversion treatment properties that is, excellent chemical conversion treatment properties.
  • the symbol “ ⁇ ” is given to those that have no non-plating defects
  • the symbol "x” is given to those that have non-plating defects, and there are no non-plating defects but uneven plating appearance etc.
  • the symbol “ ⁇ ” is given to the.
  • the non-plating defect means a region where the steel sheet is exposed without plating in the order of several ⁇ m to several mm.
  • the symbols “ ⁇ ” and “ ⁇ ” were taken to indicate that the plating was sufficiently adhered, and the plating adhesion was evaluated to be good (that is, the plating adhesion was excellent).
  • the method for manufacturing a high-strength steel sheet according to the present invention includes a hot rolling step described below, a cold rolling step performed as necessary, and an annealing step.
  • the temperature is the steel plate surface temperature unless otherwise specified.
  • the steel plate surface temperature can be measured using a radiation thermometer or the like.
  • a steel material (steel slab) having the above-described composition is subjected to a hot rolling step.
  • the steel slab used is preferably manufactured by a continuous casting method in order to prevent macrosegregation of the components.
  • the steel slab can also be manufactured by the ingot making method or the thin slab casting method.
  • Preferred conditions for the hot rolling process of the present invention include, for example, heating a steel slab having the above-described composition. If the heating temperature of the steel slab is less than 1200°C, sulfide may be precipitated and workability may be deteriorated. Therefore, in order to obtain the minimum workability required for using the high-strength steel sheet obtained in the present invention as a steel sheet for automobiles, the heating temperature of the steel slab is preferably 1200°C or higher. The temperature is more preferably 1230°C or higher, and further preferably 1250°C or higher. Although the upper limit of the heating temperature of the steel slab is not particularly limited, it is preferably 1400°C or lower. More preferably, it is set to 1350° C. or lower.
  • the average heating rate at the time of heating the steel slab is 5 to 15° C./minute, and the soaking time of the steel slab is 30 to 100 minutes.
  • the average heating rate at the time of heating the steel slab means the average of the heating rates from when the surface temperature of the steel slab starts heating to when it reaches the heating temperature.
  • the soaking time of the steel slab means the time from when the heating temperature is reached to when hot rolling is started.
  • the finish rolling finish temperature is preferably 840°C or higher.
  • the finish rolling end temperature is preferably 840°C or higher. More preferably, it is 860°C or higher.
  • the upper limit of the finish rolling end temperature is not particularly limited, it is preferable to set the finish rolling end temperature to 950° C. or lower because it becomes difficult to cool to the winding temperature described later. More preferably, it is 920° C. or lower.
  • the reduction ratio of finish rolling is preferably 70% or more from the viewpoint of making the aspect ratio of martensite 3 or less, and preferably 95% or less from the viewpoint of securing the area ratio of ferrite.
  • the winding temperature is preferably 700°C or lower. More preferably, it is 670°C or lower.
  • the lower limit of the coiling temperature is not particularly limited, but when cold rolling is performed after hot rolling, the coiling temperature is preferably 550° C. or higher in order to prevent deterioration of cold rollability. When cold rolling is not carried out, if the winding temperature is lower than 300°C, it becomes difficult to wind the hot-rolled steel sheet, so 300°C or higher is preferable.
  • the hot-rolled steel sheet after winding may be pickled.
  • pickling conditions are not particularly limited. Note that pickling of the hot rolled steel sheet after hot rolling may not be performed.
  • Cold rolling step is a step of cold rolling the hot rolled steel sheet obtained in the hot rolling step, if necessary.
  • it is preferable to carry out cold rolling under the conditions described below.
  • the reduction ratio of cold rolling is not particularly limited, but if the reduction ratio is less than 20%, the flatness of the steel sheet surface is poor and there is a risk that the structure will be uneven. Therefore, the rolling reduction is preferably 20% or more. It is more preferably 30% or more. More preferably, it is 40% or more. On the other hand, when the rolling reduction exceeds 90%, unrecrystallized ferrite may remain. Therefore, the rolling reduction is preferably 90% or less. It is more preferably 80% or less. It is even more preferably 70% or less.
  • the cold rolling step is not an essential step, and the cold rolling step may be omitted as long as the above-described steel structure and mechanical properties of the present invention can be obtained.
  • the annealing step is a step of annealing the hot rolled steel sheet obtained in the hot rolling step described above or the cold rolled steel sheet obtained in the cold rolling step described above.
  • the annealing process is performed under the conditions described below.
  • the obtained hot-rolled steel sheet or cold-rolled steel sheet is held at an annealing temperature of AC 1 point or more and AC 3 points or less for 30 seconds or more, and then the average cooling rate from the annealing temperature to 350° C. is 5
  • the T1 temperature (°C) is set to an arbitrary temperature in the temperature range of 200 to 250°C after cooling at a cooling stop temperature of 350°C/sec or more and a cooling stop temperature of 350°C or less
  • the retention time in the temperature range from less than 300° C. to T1 temperature (° C.) is 1000 seconds or less.
  • Annealing temperature is less than point C1 A, the amount of cementite becomes excessive, the area ratio of martensite is less than 10%. Therefore, the annealing temperature is set to A C1 point or higher. It is preferably (AC 1 point+10° C.) or higher. On the other hand, when the annealing temperature exceeds the AC3 point, the area ratio of martensite exceeds 50%, and the average crystal grain size of martensite becomes 3.0 ⁇ m or more, thereby increasing the yield ratio.
  • the annealing temperature is set to the AC 3 point or lower. It is preferably (A C3 point ⁇ 10° C.) or less.
  • a C1 point and the A C3 point are calculated by the following equations.
  • a C1 (°C) 723 + 22 (% Si) -18 (% Mn) +17 (% Cr) +4.5 (% Mo) +16 (% V)
  • a C3 (°C) 910-203 ( % C) 1/2 +45 (% Si) -30 (% Mn) -20 (% Cu) -15 (% Ni) +11 (% Cr) +32 (% Mo) +104 (%V)+400(%Ti)+460(%Al)
  • (% element symbol) indicates the content (mass %) in the steel of each element symbol, and is set to 0 when it is not contained.
  • Holding time at annealing temperature shall be 30 seconds or more. If the annealing holding time is less than 30 seconds, the recrystallization of ferrite does not proceed sufficiently, and the ferrite becomes unrecrystallized ferrite, thereby increasing the yield ratio. Further, since the diffusion of carbon is not promoted, the C concentration in martensite having an aspect ratio of 3 or less becomes low and the yield ratio becomes high. Therefore, the annealing holding time is set to 30 seconds or longer, preferably 35 seconds or longer. More preferably, it is 50 seconds or more.
  • the upper limit of the annealing holding time is not particularly limited, but from the viewpoint of suppressing coarsening of the austenite grain size and preventing an increase in yield ratio due to coarsening of the martensite grain size, the annealing holding time is preferably 900 seconds or less. .. It is more preferably 500 seconds or less, further preferably 300 seconds or less.
  • the cooling stop temperature is set to 350° C. or lower.
  • the cooling stop temperature is 320° C. or lower. More preferably, it is set to 300° C. or lower.
  • the average cooling rate from the annealing temperature to 350°C is less than 5°C/sec, a large amount of bainite and pearlite are produced, and the yield ratio becomes high. Therefore, the average cooling rate is 5° C./sec or more, preferably 7° C./sec or more, and more preferably 10° C./sec or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably 40° C./second or less. More preferably, the average cooling rate is 30° C./second or less.
  • the average cooling rate from lower than 350°C to the cooling stop temperature is not particularly limited.
  • the average cooling rate is preferably 5° C./second or more, and preferably 40 seconds/second or less.
  • the hot-rolled steel sheet or cold-rolled steel sheet is retained under the following conditions.
  • the residence time in the temperature range from 350° C. to 300° C. exceeds 50 seconds, pearlite and bainite are generated.
  • the residence time in the temperature range from 350° C. to 300° C. is 50 seconds or less.
  • the residence time in the above temperature range is preferably 45 seconds or less, more preferably 40 seconds or less.
  • the lower limit of the residence time in the above temperature range is not particularly limited and may be 0 seconds.
  • the residence time in the above temperature range is preferably 5 seconds or longer, more preferably 8 seconds or longer.
  • the residence time in the temperature range from less than 300°C to T1 temperature (°C) is 1000 seconds or less.
  • Perlite and bainite are less likely to occur in a temperature range of less than 300° C., but bainite is generated by holding for a long time, and martensite having an aspect ratio of 3 or less is reduced, so that the yield ratio is increased.
  • the reason for setting the T1 temperature (° C.) to any temperature in the temperature range of 200 to 250° C. is that the annealing temperature, the cooling rate, the cooling stop temperature, and the annealing including the residence time in the temperature range from 350° C. to 300° C. This is because the temperature range in which bainite is generated varies depending on the process conditions.
  • the residence time in the temperature range from less than 300°C to the T1 temperature (°C) is 1000 seconds or less. It is preferably 900 seconds or less, more preferably 800 seconds or less. The lower limit is not particularly limited and may be 0 second. The residence time in the above temperature range is preferably 10 seconds or longer, more preferably 50 seconds or longer.
  • the hot rolled steel sheet after the hot rolling step may be subjected to heat treatment for microstructure softening before cold rolling, and the hot rolled steel sheet or cold rolled sheet after the hot rolling step may be performed.
  • the cold rolled steel sheet after the rolling step may be subjected to temper rolling for shape adjustment after the annealing step. Further, if the characteristics of the steel sheet are not changed, plating treatment may be performed after the annealing step.
  • a temperature of 400° C. or more and 500° C. or less before cooling after staying in the temperature range from less than 300° C. to T1 temperature (° C.) for 1000 seconds or less, a temperature of 400° C. or more and 500° C. or less before cooling.
  • the area may be heated and plated.
  • an alloying treatment may be performed after the plating treatment.
  • the steel sheet is heated to more than 500° C. and 600° C. or less to perform the alloying treatment.
  • the steel sheet when performing hot dip galvanizing treatment on the annealed steel sheet (hot-rolled steel sheet or cold-rolled steel sheet), the steel sheet is immersed in a galvanizing bath at 420° C. or higher and 500° C. or lower, and then hot dip galvanizing treatment is performed. It is preferable to adjust the coating amount by means of gas wiping, or the like. Further, when the galvanizing alloying treatment is performed after the hot dip galvanizing treatment, it is preferable to carry out in a temperature range of 500° C. or more and 600° C. or less.
  • the steel sheet When performing galvanizing treatment on the annealed steel sheet (hot-rolled steel sheet or cold-rolled steel sheet), the steel sheet is immersed in a zinc plating bath whose pH is adjusted to 1 to 3 at room temperature or in a zinc-nickel bath, Electrogalvanizing is performed by passing an electric current. At that time, it is preferable to adjust the amount of plating adhered by adjusting the amount of electric current and the electrolysis time.
  • the manufacturing method of the present invention by controlling the annealing temperature in the annealing step, the cooling stop temperature, the residence temperature and the residence time, the martensite grain size in the steel structure of the obtained high-strength steel sheet, martensite. It is possible to control the aspect ratio and the carbon concentration in martensite, and it is possible to obtain a high strength steel sheet with a low yield ratio. Furthermore, since the high-strength steel sheet with a low yield ratio of the present invention has excellent surface characteristics, it can be suitably used for automobile structural members.
  • Example 1 The present invention will be specifically described with reference to examples. The present invention is not limited to the examples below.
  • the sample to be cold-rolled was formed by grinding a hot-rolled steel plate to a plate thickness of 3.2 mm, and then cold-rolling the plate thickness of 2.24 to 0.8 mm under the conditions shown in Table 2-1 to Table 2-3. It rolled and manufactured the cold-rolled steel plate. Next, the hot-rolled steel sheet and the cold-rolled steel sheet obtained above were annealed under the conditions shown in Tables 2-1 to 2-3 to produce steel sheets.
  • the blank column in Table 1 (column in which "-" is written in Table 1) represents that the additive was not intentionally added, and it may be unavoidably contained instead of 0% by mass.
  • ⁇ Area ratio of ferrite and martensite> For ferrite and martensite, a test piece was sampled from the rolling direction of each steel sheet and a direction perpendicular to the rolling direction, a plate thickness L cross section parallel to the rolling direction was mirror-polished, and a structure was developed with a nital solution, followed by scanning. It was observed using an electron microscope. 16 ⁇ 15 lattices with 4.8 ⁇ m intervals were placed on a region of actual length 82 ⁇ m ⁇ 57 ⁇ m on a SEM image with a magnification of 1500 ⁇ , and by the point counting method for counting the points on each phase, ferrite and martensite The area ratio was investigated (measured). The area ratio was an average value of three area ratios obtained from separate SEM images at a magnification of 1500 times. Martensite has a white structure, and ferrite has a black structure.
  • the steel structure of the steel sheet according to the present invention is uniform in the sheet thickness direction at any sheet thickness position except for the range of 10 ⁇ m from the surface layer in the sheet thickness direction. Therefore, the plate thickness measurement position may be measured at any position within the range where the above-described steel structure uniformly exists. In the present invention, the steel structure was observed in the thickness direction at a thickness of 1/4.
  • ⁇ Average grain size of martensite, aspect ratio of martensite> For the average grain size of martensite and the aspect ratio of martensite, test pieces were sampled from the rolling direction of each steel sheet and a direction perpendicular to the rolling direction, and a plate thickness L cross section parallel to the rolling direction was mirror-polished to obtain a nital material. After revealing the tissue with the liquid, it was observed using a scanning electron microscope. All the long sides and short sides of martensite contained in one of the SEM images at a magnification of 1500 were measured, and the average thereof was calculated as the average grain size of martensite. The aspect ratio of martensite was calculated by dividing the measured long side by the short side.
  • the steel structure of the steel sheet according to the present invention is uniform in the sheet thickness direction at any sheet thickness position except for the range of 10 ⁇ m from the surface layer in the sheet thickness direction. Therefore, the plate thickness measurement position may be measured at any position within the range where the above-described steel structure uniformly exists. In the present invention, the steel structure was observed in the thickness direction at a thickness of 1/4.
  • the carbon concentration in martensite is measured by X-ray diffraction after grinding the plate thickness of each steel plate to a thickness of 1/4, collecting a test piece, and mirror-polishing the plate thickness L cross section parallel to the rolling direction. did. Co-K ⁇ ray was used as the X-ray.
  • an electron beam microanalyzer (EPMA; Electron Probe Micro Analyzer) is used to measure 3 fields of view of 22.5 ⁇ m ⁇ 22.5 ⁇ m under the conditions of an accelerating voltage of 7 kV and a measurement point interval of 80 nm. Data are converted to C concentrations using a calibration curve method.
  • the martensite was discriminated, and the average value of the carbon concentration of martensite with an aspect ratio in the measurement visual field of 3 or less was calculated for 3 visual fields, and those values were calculated. The average was calculated.
  • the steel structure of the steel sheet according to the present invention is uniform in the sheet thickness direction at any sheet thickness position except for the range of 10 ⁇ m from the surface layer in the sheet thickness direction. Therefore, the plate thickness measurement position may be measured at any position within the range where the above-described steel structure uniformly exists. In the present invention, the steel structure was observed in the thickness direction at a thickness of 1/4.
  • the area ratio of the remaining tissue is determined by a point counting method that counts the number of points on each phase by placing a 16 ⁇ 15 grid with an interval of 4.8 ⁇ m on an area of actual length 82 ⁇ m ⁇ 57 ⁇ m on a SEM image at a magnification of 1500 ⁇ . was investigated (measured).
  • the area ratio was an average value of three area ratios obtained from separate SEM images at a magnification of 1500 times.
  • Perlite is a structure in which cementite is deposited in layers in ferrite
  • bainite is a structure in which cementite is spherically precipitated in ferrite
  • retained austenite is a black structure.
  • the steel structure of the steel sheet according to the present invention is uniform in the sheet thickness direction at any sheet thickness position except for the range of 10 ⁇ m from the surface layer in the sheet thickness direction. Therefore, the plate thickness measurement position may be measured at any position within the range where the above-described steel structure uniformly exists. In the present invention, the steel structure was observed in the thickness direction at a thickness of 1/4.
  • Example 1 those having a TS of 590 MPa or more and a YR of 0.63 or less and good chemical conversion treatability were regarded as acceptable and shown as remarks in Tables 3-1 to 3-3 as invention examples. On the other hand, if TS is less than 590 MPa, YR is more than 0.63, and the chemical conversion treatability is not good, any one or more of them is rejected and compared with the remarks of Table 3-1 to Table 3-3. Shown as an example. [Example 2]
  • the hot-dip galvanized steel sheet is a hot-dip galvanized steel sheet (hot-rolled steel sheet or cold-rolled steel sheet) that is dipped in a galvanizing bath at 420° C. or higher and 500° C. or lower to perform hot dip galvanizing treatment. After that, the coating adhesion amount was adjusted by gas wiping or the like. Further, the galvannealed steel sheet was subjected to a galvanizing treatment after the hot dip galvanizing treatment in a temperature range of 500° C. or higher and 600° C. or lower.
  • the electrogalvanized steel sheet is prepared by subjecting the annealed steel sheet (hot-rolled steel sheet or cold-rolled steel sheet) to electrogalvanizing treatment in a galvanizing bath whose pH is adjusted to 1 to 3 at room temperature, or in a zinc-nickel alloy.
  • the steel sheet was immersed in the bath, and electric galvanizing treatment was performed by passing an electric current.
  • ⁇ Plating adhesion> Visually observe the appearance of the steel sheet after plating, and the symbol “ ⁇ ” indicates that there are no non-plating defects, the symbol “x” indicates that non-plating defects occur, and there is no non-plating defect but uneven plating appearance, etc. The symbol “ ⁇ ” was given to the generated thing.
  • the non-plating defect is on the order of several ⁇ m to several mm and means a region where plating does not exist and the steel sheet is exposed.
  • Evaluation Results Table 5 shows the above-mentioned survey results and evaluation results.

Abstract

低降伏比高強度鋼板及びその製造方法を提供する。本発明は、成分組成は、質量%で、C:0.06%以上0.120%以下、Si:0.3%以上0.7%以下、Mn:1.6%以上2.2%以下、P:0.05%以下、S:0.0050%以下、Al:0.01%以上0.20%以下、N:0.010%以下を含有し、残部はFeおよび不可避的不純物からなり、鋼組織は、主相のフェライトと、鋼組織全体に対する面積率で10%以上50%未満のマルテンサイトを有し、マルテンサイトの平均結晶粒径が3.0μm以下であり、マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合が60%以上であり、アスペクト比が3以下のマルテンサイト中の炭素濃度が、質量%で、0.30%以上0.90%以下である高強度鋼板とする。

Description

高強度鋼板及びその製造方法
 本発明は、自動車構造部品等に好適に用いられる、高強度鋼板及びその製造方法に関する。より詳しくは、本発明は、表面特性に優れた低降伏比高強度鋼板及びその製造方法に関する。
 近年、地球環境保全の観点からCOなどの排気ガスを低減化する試みが進められている。自動車産業では車体を軽量化して燃費を向上させることにより、排気ガス量を低下させる対策が図られている。車体軽量化の手法のひとつとして、自動車に使用されている鋼板を高強度化することで板厚を薄肉化する手法が挙げられる。また、鋼板の高強度化とともに延性が低下することが知られており、高強度と延性を両立する鋼板が求められている。さらに、自動車部品として、例えばフロア周りの部品は表面特性に優れる必要がある。また、フロア周りの部品は複雑な形状に成形加工されることが多いため、成形加工時に割れが生じず、さらに形状が崩れにくい低降伏比の鋼板が求められている。
 このような要求に対して、例えば、特許文献1では、組成が、質量%で、C:0.05~0.20%、Si:0.3~1.8%、Mn:1.0~3.0%を含有し、組織が、フェライトの体積率を60%以上、マルテンサイトの体積率を5%以上、残留オーステナイトの体積率を2%以上とし、フェライトの平均結晶粒径を5μm以上とすることで、引張強度で590MPa以上、強度-伸びバランスが21000MPa・%以上、降伏比が65%以下の低降伏比高強度溶融亜鉛めっき鋼板を開示している。
 また、特許文献2では、成分組成が、質量%で、C:0.07~0.2%、Si:0.005~1.5%、Mn:1.0~3.1%、P:0.001~0.06%、S:0.001~0.01%、Al:0.005~1.2%、N:0.0005~0.01%を含有し、金属組織をフェライトとマルテンサイトの組織とすることで加工性を改善した引張強度が590MPa以上の高強度鋼板を開示している。
 また、特許文献3は、成分組成が、質量%で、C:0.05~0.13%、Si:0.6~1.2%、Mn:1.6~2.4%、P:0.1%以下、S:0.005%以下、Al:0.01~0.1%、N:0.005%未満を含有し、鋼板のミクロ組織が、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%とすることで、引張強度が590MPa以上、降伏比が70%以下の高強度鋼板を開示している。
 また、特許文献4は、成分組成が、質量%で、C:0.06~0.12%、Si:0.4~0.8%、Mn:1.6~2.0%、Cr:0.01~1.0%、V:0.001~0.1%、P:0.05%以下、S:0.01%以下、Sol.Al:0.01~0.5%、N:0.005%以下を含有し、金属組織が、等軸フェライトの体積率を50%以上、マルテンサイトの体積率を5~15%、残留オーステナイト相の体積率を1~5%とし、残留オーステナイト相の平均粒径を10μm以下、残留オーステナイト相のアスペクト比を5以下とすることで、引張強度で590MPa以上、全伸びが30%以上、穴広げ率が60%以上の高強度鋼板を開示している。
特開2001-192767号公報 特開2011-144409号公報 特開2012-177175号公報 特開2014-19928号公報
 上記した特許文献1に開示された技術は、フェライト‐マルテンサイト組織とし、フェライト粒径を規定することで低降伏比かつ延性を向上するものの、めっき鋼板とするために焼鈍工程を2度実施している。しかしながら、焼鈍工程を2度実施することで、鋼板の表面に酸化物が生成しやすくなるため、表面特性には優れない。
 また、上記した特許文献2に開示された技術は、フェライトを主相とすることで加工性を向上するものの、マルテンサイト粒径が記載されていないことから、マルテンサイト粒径を制御できてはおらず、低降伏比にはならないと考えられる。
 また、上記した特許文献3に開示された技術は、フェライト‐マルテンサイト組織とすることで低降伏比になると記載されているものの、特許文献3で開示している降伏比は本発明で規定している63%以下の降伏比よりも大きい。それはマルテンサイト粒径を制御できていないためと考えられる。特許文献3に開示されるマルテンサイト粒径を制御するための焼鈍温度や冷却停止温度も本発明の規定とは異なっている。また、特許文献3で開示している降伏比で63%以下のものはSiやMnが本発明よりも高いため、表面特性には優れないと思われる。
 また、上記した特許文献4に開示された技術は、フェライト‐マルテンサイト組織とし、さらに残留オーステナイトの体積率および平均粒径を規定することで低降伏比かつ加工性を向上するものの、焼入れ性を確保するためにCrやVを添加している。しかしながら、CrやVは表面特性を劣化させる元素として知られており、本発明で目的とする優れた表面特性を有するためには、これらの元素を低減した成分組成とする必要がある。
 本発明は、上記課題に鑑みてなされたものであり、表面特性に優れた低降伏比高強度鋼板及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、特定の成分組成に調整し、また鋼組織はフェライト‐マルテンサイト組織とし、さらにマルテンサイト粒径、マルテンサイトのアスペクト比およびマルテンサイト中の炭素濃度を制御することで、低降伏比高強度鋼板が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明者らは、本発明で目的とする強度を得るためにはマルテンサイトの面積率を10%以上とすること、さらに本発明で目的とする低降伏比を得るためには、マルテンサイトの面積率を50%未満、アスペクト比が3以下のマルテンサイトを全マルテンサイトの60%以上、アスペクト比が3以下のマルテンサイト中の炭素濃度を質量%で0.3%以上0.9%以下、およびマルテンサイトの平均粒径を3.0μm以下とすることが必要であることを知見した。なお、アスペクト比とは長辺を短辺で除することで算出する値を指す。
 本発明は以上の知見に基づきなされたものであり、本発明の要旨は以下の通りである。
[1] 成分組成は、質量%で、C:0.06%以上0.120%以下、Si:0.3%以上0.7%以下、Mn:1.6%以上2.2%以下、P:0.05%以下、S:0.0050%以下、Al:0.01%以上0.20%以下、N:0.010%以下を含有し、残部はFeおよび不可避的不純物からなり、鋼組織は、主相のフェライトと、鋼組織全体に対する面積率で10%以上50%未満のマルテンサイトを有し、前記マルテンサイトの平均結晶粒径が3.0μm以下であり、前記マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合が60%以上であり、前記アスペクト比が3以下のマルテンサイト中の炭素濃度が、質量%で、0.30%以上0.90%以下である高強度鋼板。
[2] 前記成分組成は、さらに、質量%で、Cr:0.01%以上0.20%以下、Mo:0.01%以上0.15%未満、V:0.001%以上0.05%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の高強度鋼板。
[3] 前記成分組成に加えてさらに、質量%で、下記A群~C群のうちから選ばれた1群または2群以上を含有する、[1]または[2]に記載の高強度鋼板。
            記
A群:Nb:0.001%以上0.02%以下、Ti:0.001%以上0.02%以下のうちから選ばれた1種又は2種
B群:Cu:0.001%以上0.20%以下、Ni:0.001%以上0.10%以下のうちから選ばれた1種又は2種
C群:B:0.0001%以上0.002%以下
[4] 鋼板の表面にめっき層を有する[1]~[3]のいずれか1つに記載の高強度鋼板。
[5] [1]~[3]のいずれかに記載の成分組成を有する鋼スラブを加熱した後、熱間圧延工程を施し、前記熱間圧延工程で得られた熱延鋼板を、焼鈍温度:AC1点以上AC3点以下で30秒以上保持し、該焼鈍温度から350℃までの平均冷却速度:5℃/秒以上、冷却停止温度:350℃以下の条件で冷却し、その後、T1温度(℃)を200~250℃の温度範囲における任意の温度とするとき、350℃から300℃までの温度域の滞留時間:50秒以下、300℃未満からT1温度(℃)までの温度域の滞留時間:1000秒以下の条件で滞留する焼鈍工程を施す高強度鋼板の製造方法。
[6] [1]~[3]のいずれかに記載の成分組成を有する鋼スラブを加熱した後、熱間圧延工程を施し、次いで前記熱間圧延工程で得られた熱延鋼板に冷間圧延工程を施し、前記冷間圧延工程で得られた冷延鋼板を、焼鈍温度:AC1点以上AC3点以下で30秒以上保持し、該焼鈍温度から350℃までの平均冷却速度:5℃/秒以上、冷却停止温度:350℃以下の条件で冷却し、その後、T1温度(℃)を200~250℃の温度範囲における任意の温度とするとき、350℃から300℃までの温度域の滞留時間:50秒以下、300℃未満からT1温度(℃)までの温度域の滞留時間:1000秒以下の条件で滞留する焼鈍工程を施す高強度鋼板の製造方法。
[7] 前記焼鈍工程後に、めっき処理を施す[5]または[6]に記載の高強度鋼板の製造方法。
 本発明は、成分組成及び製造方法を調整することにより、鋼組織を制御し、さらにマルテンサイト粒径、マルテンサイトのアスペクト比およびマルテンサイト中の炭素濃度を制御する。その結果、本発明の高強度鋼板は、表面特性に優れ、かつ、低降伏比となる。
 さらに、本発明の高強度鋼板を自動車構造部材に適用することにより、自動車用鋼板の高強度化と低降伏比との両立が可能となる。すなわち、本発明により、自動車車体が高性能化することが可能となる。
 以下、本発明の実施形態について説明する。なお、本発明はこの実施形態に限定されない。
 まず、本発明の高強度鋼板(以下、「本発明の鋼板」という場合がある。)の成分組成について説明する。下記の成分組成の説明において、成分の含有量の単位である「%」は「質量%」を意味する。
 C:0.06%以上0.120%以下
 Cは、焼入れ性を向上させる元素であり、所定のマルテンサイトの面積率を確保するために必要である。また、Cは、マルテンサイトの強度を上昇させる元素であり、本発明で目的とする強度(TS)がTS≧590MPaを確保する観点から必要である。C含有量が0.06%未満では、上記した所定の強度を得ることができなくなる。したがって、C含有量は0.06%以上とする。好ましくは0.065%以上とし、より好ましくは0.070%以上とする。一方、C含有量が0.120%を超えると、マルテンサイトの面積率を増加させ、降伏比を高くする。したがって、C含有量は0.120%以下とする。好ましくは0.115%以下とし、より好ましくは0.11%以下とする。
 Si:0.3%以上0.7%以下
 Siは固溶強化による強化元素である。上記した本発明の効果を得るには、Si含有量を0.3%以上とする。好ましくは0.35%以上とし、より好ましくは0.40%以上とする。一方、Si含有量が多くなりすぎると、フェライトの強度が高くなるため、降伏比が高くなる。また、Siが多くなりすぎると、鋼板の表面に酸化物を形成し、表面特性を著しく劣化させる。したがって、Si含有量は0.7%以下とする。好ましくは0.64%以下とし、より好ましくは0.60%以下とする。
 Mn:1.6%以上2.2%以下
 Mnは、鋼の焼入れ性を向上させ、所定のマルテンサイトの面積率を確保するために含有させる。Mn含有量が1.6%未満では、鋼板表層部にフェライトが生成することで強度が低下する。また、冷却時にパーライトまたはベイナイトが生成することで降伏比を高くする。したがって、Mn含有量は1.6%以上とする。好ましくは1.65%以上とし、より好ましくは1.70%以上とする。一方、Mnが多くなりすぎると、鋼板の表面に酸化物を形成し、表面特性を著しく劣化させる。したがって、Mn含有量は2.2%以下とする。好ましくは2.14%以下とし、より好ましくは2.10%以下とする。
 P:0.05%以下
 Pは、鋼を強化する元素であるが、その含有量が多いと粒界に偏析することで加工性を劣化させる。したがって、本発明の鋼板を自動車用の鋼板として用いる際に必要な最低限の加工性を得るために、P含有量は0.05%以下とする。好ましくは0.03%以下とし、より好ましくは0.01%以下とする。なお、P含有量の下限は特に限定されるものではないが、現在において、工業的に実施可能な下限は0.003%程度である。よって、好ましくは0.003%以上とする。より好ましくは0.005%以上とする。
 S:0.0050%以下
 Sは、MnS等の形成を通じて加工性を劣化させる。また、SとともにTiを含有する場合には、TiS、Ti(C、S)等の形成を通じて加工性を劣化させる恐れがある。したがって、本発明の鋼板を自動車用の鋼板として用いる際に必要な最低限の加工性を得るために、S含有量は0.0050%以下とする。好ましくは0.0020%以下とし、より好ましくは0.0010%以下とし、さらに好ましくは0.0005%以下とする。なお、S含有量の下限は特に限定されるものではないが、現在において、工業的に実施可能な下限は0.0002%程度である。よって、好ましくは0.0002%以上とする。より好ましくは0.0005%以上とする。
 Al:0.01%以上0.20%以下
 Alは十分な脱酸を行い、鋼中の粗大介在物を低減するために添加される。その効果が表れるのがAl含有量0.01%以上である。好ましくは0.02%以上とする。より好ましくは0.03%以上とする。一方、Al含有量が0.20%超えとなると、熱間圧延後の巻取り時に生成したセメンタイトなどのFeを主成分とする炭化物が焼鈍工程で固溶しにくくなり、粗大な介在物や炭化物が生成するため、加工性が劣化する。したがって、本発明の鋼板を自動車用の鋼板として用いる際に必要な最低限の加工性を得るために、Al量は0.20%以下とする。好ましくは0.17%以下とし、より好ましくは0.15%以下とする。
 N:0.010%以下
 Nは、鋼中でAlN等の窒化物系の粗大介在物を形成する元素であり、これらの生成を通じて加工性を劣化させる。また、NとともにTiを含有する場合には、TiN、(Nb、Ti)(C、N)等の窒化物系、炭窒化物系の粗大介在物を形成する元素であり、これらの生成を通じて加工性を劣化させる恐れがある。したがって、本発明の鋼板を自動車用の鋼板として用いる際に必要な最低限の加工性を得るために、N含有量は0.010%以下とする。好ましくは0.007%以下とし、より好ましくは0.005%以下とする。なお、N含有量の下限は特に限定されるものではないが、現在において、工業的に実施可能な下限は0.0006%程度である。よって、好ましくは0.0006%以上とする。より好ましくは0.0010%以上とする。
 以上が、本発明において用いられる鋼板の基本成分である。本発明において用いられる鋼板は、上記基本成分を含有し、上記成分以外の残部はFe(鉄)および不可避的不純物を含む成分組成を有する。ここで、本発明の鋼板は、上記成分を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。
 本発明の鋼板には、上記の成分に加えて、下記の成分を任意成分として含有させることができる。なお、本発明において、下記の任意成分を各成分の下限値未満で含む場合、その成分は後述する不可避的不純物として含まれるものとする。
 Cr:0.01%以上0.20%以下、Mo:0.01%以上0.15%未満、V:0.001%以上0.05%以下のうちから選ばれた1種または2種以上
 Cr、Mo、Vは、鋼の焼入れ性の向上効果を得る目的で、含有させることができる。このような効果を得るため、Cr、Moを含有させる場合には、Cr含有量、Mo含有量はそれぞれ0.01%以上にすることが好ましい。より好ましくはそれぞれ0.02%以上とし、さらに好ましくはそれぞれ0.03%以上とする。上記効果を得るため、Vを含有させる場合には、V含有量は0.001%以上にすることが好ましい。より好ましくは0.002%以上とし、さらに好ましくは0.003%以上とする。
 しかしながら、いずれの元素も多くなりすぎると水素イオンの発生を伴う酸化物形成反応を起こす場合がある。それにより地鉄表面のpHの上昇を妨げることとなりリン酸亜鉛結晶の析出を妨げ、化成不良が引き起こされる恐れがある。そのため、Crを含有させる場合には、Cr含有量は0.20%以下とすることが好ましく、より好ましくは0.15%以下とし、さらに好ましくは0.10%以下とする。Moを含有させる場合には、Mo含有量は0.15%未満とすることが好ましく、より好ましくは0.1%以下とし、さらに好ましくは0.05%以下とする。Vを含有させる場合には、V含有量は0.05%以下とすることが好ましく、より好ましくは0.03%以下とし、さらに好ましくは0.01%以下とする。
 Nb:0.001%以上0.02%以下、Ti:0.001%以上0.02%以下のうちから選ばれた1種または2種
 NbやTiは、旧γ粒の微細化や微細析出物の生成を通じて、高強度化に寄与する。このような効果を得るため、NbおよびTiのうちから選ばれた1種または2種を含有させる場合には、Nb含有量、Ti含有量はそれぞれ0.001%以上とすることが好ましい。より好ましくはそれぞれ0.0015%以上とし、さらに好ましくはそれぞれ0.0020%以上とする。一方、NbやTiを多量に含有させると、表面特性を劣化させる恐れがある。このため、NbおよびTiのうちから選ばれた1種または2種を含有させる場合には、Nb含有量、Ti含有量はそれぞれ0.02%以下とすることが好ましい。より好ましくはそれぞれ0.017%以下とし、さらに好ましくはそれぞれ0.015%以下とする。
 Cu:0.001%以上0.20%以下、Ni:0.001%以上0.10%以下のうちから選ばれた1種または2種
 CuやNiは、自動車の使用環境における耐食性を向上させ、かつ腐食生成物が鋼板表面を被覆することにより鋼板への水素侵入を抑制する効果がある。この効果を得るため、CuおよびNiのうちから選ばれた1種または2種を含有させる場合には、Cu含有量、Ni含有量はそれぞれ0.001%以上とすることが好ましい。より好ましくはそれぞれ0.002%以上とし、さらに好ましくはそれぞれ0.003%以上とする。しかしながら、Cu含有量やNi含有量が多くなりすぎると表面欠陥の発生を招来し、表面特性を劣化させる恐れがある。このため、Cuを含有する場合には、Cu含有量は0.20%以下とすることが好ましく、より好ましくは0.15%以下とし、さらに好ましくは0.1%以下とする。Niを含有する場合には、Ni含有量は0.10%以下とすることが好ましく、より好ましくは0.07%以下とし、さらに好ましくは0.05%以下とする。
 B:0.0001%以上0.002%以下
 Bは、鋼の焼入れ性を向上させる元素である。B含有により、Mn含有量が少ない場合であっても、所定の面積率のマルテンサイトを生成させる効果が得られる。このような効果を得るため、Bを含有する場合には、B含有量を0.0001%以上にすることが好ましい。より好ましくは0.0003%以上とし、さらに好ましくは0.0005%以上とする。一方、B含有量が0.002%超えになると、Mn系酸化物の粗大化を促進させるため、表面特性が劣化する恐れがある。したがって、Bを含有する場合には、B含有量は0.002%以下とすることが好ましい。より好ましくは0.0015%以下とし、さらに好ましくは0.0010%以下とする。
 次いで、本発明の高強度鋼板の鋼組織について説明する。
 本発明の鋼板の鋼組織は、主相のフェライトと、鋼組織全体に対する面積率で10%以上50%未満のマルテンサイトを有し、マルテンサイトの平均結晶粒径が3.0μm以下であり、マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合が60%以上であり、アスペクト比が3以下のマルテンサイト中の炭素濃度が質量%で0.30%以上0.90%以下である。なお、以降の説明において、面積率とは、鋼組織全体に対する面積率のことを指す。
 本発明では、フェライトが主相である。本発明において主相とは、鋼組織全体に対する面積率で50~100%の範囲内で含有する組織を指す。したがって、フェライトが主相ということは、鋼組織全体に対する面積率で50~90%のフェライトを含有することを意味する。本発明において、フェライトを主相とすることは降伏強度を低下させ、降伏比を良好にする観点から必要である。フェライトの面積率の下限は、好ましくは55%以上とし、より好ましくは60%以上とする。上限は、好ましくは85%以下とし、より好ましくは80%以下とする。ここで言うフェライトとは再結晶したフェライトのことを指し、再結晶していない未再結晶フェライトは含まない。
 マルテンサイトの面積率:10%以上50%未満
 上述のように、本発明の鋼板がTS≧590MPaの高強度を得るためには、鋼組織全体に対するマルテンサイトの面積率は10%以上とする。好ましくは15%以上とし、より好ましくは20%以上とする。一方、鋼組織全体に対するマルテンサイトの面積率が50%以上となると、マルテンサイトが主相となり、これに起因してマルテンサイト中のC量が減少することで、降伏比が高くなる。したがって、マルテンサイトの面積率は50%未満とする。好ましくは45%以下とし、より好ましくは40%以下とする。
 なお、本発明では、フェライトおよびマルテンサイト以外の残部組織は、残留オーステナイト、ベイナイト、未再結晶フェライトおよびパーライトのうちから選択される1種または2種以上であり、その合計量は面積率で10.0%以下であれば許容できる。フェライトおよびマルテンサイト以外の残部組織は、残留オーステナイト、ベイナイト、未再結晶フェライトおよびパーライトのうちから選択される1種または2種以上の合計量の面積率は、7.0%以下が好ましく、5.0%以下がより好ましい。なお、残部組織の面積率は0%であってもよい。
 本発明において、フェライトとは比較的高温でオーステナイトからの変態により生成し、BCC格子の結晶粒からなる組織である。未再結晶フェライトとはフェライト粒内に白い筋状のひずみが残存した組織である。マルテンサイトとは低温(マルテンサイト変態点以下の温度)でオーステナイトから生成した硬質な組織を指す。ベイナイトとは比較的低温(マルテンサイト変態点以上の温度)でオーステナイトから生成し、針状または板状のフェライト中に微細な炭化物が分散した硬質な組織を指す。パーライトとは比較的高温でオーステナイトから生成し、層状のフェライトとセメンタイトからなる組織を指す。残留オーステナイトとは、オーステナイト中にC等の元素が濃化することでマルテンサイト変態点が室温以下となることで生成する組織を指す。
 なお、本発明において、鋼組織における各組織の面積率の値は、後述する実施例に記載の方法で測定して得られた値を採用する。
 マルテンサイトの平均結晶粒径:3.0μm以下
 本発明で目的とする低降伏比を得るためには、フェライトの強度を下げるとともに、マルテンサイトの強度を上げる必要がある。そのためには、マルテンサイトの平均結晶粒径を小さくするのが効果的である。上記の効果を得るためには、マルテンサイトの平均結晶粒径を3.0μm以下にすることが必要である。好ましくは3.0μm未満、より好ましくは2.7μm以下、より一層好ましくは2.0μm以下とする。マルテンサイトの平均結晶粒径の下限は特に限定されないが、0.5μm以上とすることが好ましく、より好ましくは0.8μm以上とする。
 なお、本発明において、鋼組織におけるマルテンサイトの平均結晶粒径は、後述する実施例に記載の方法で測定して得られた値を採用する。
 マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合:60%以上
 アスペクト比が3以下のマルテンサイトは、針状のマルテンサイトとは異なり、高強度である。したがって、アスペクト比が3以下のマルテンサイトは、本発明で目的とする低降伏比を得るためには重要な組織となる。このアスペクト比が3以下のマルテンサイトの面積率が全マルテンサイトの面積率に対して60%未満では、本発明で目的とする低降伏比を得るためには不十分である。このため、マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの面積率の割合は、60%以上とする。好ましくは65%以上とし、より好ましくは70%以上とする。マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合の上限は特に限定されず、100%であってもよい。より好ましくは90%以下とする。
 なお、本発明において、鋼組織におけるマルテンサイトのアスペクト比は、後述する実施例に記載の方法で測定して得られた値を採用する。
 アスペクト比が3以下のマルテンサイト中の炭素濃度:質量%で0.30%以上0.90%以下
 マルテンサイトの強度を高め、かつ、本発明で目的とする低降伏比を得るためには、アスペクト比が3以下のマルテンサイト中の炭素濃度を高くする必要がある。上記の効果を得るためには、アスペクト比が3以下のマルテンサイト中の炭素濃度は、質量%で0.30%以上が必要である。好ましくは0.35%以上とし、より好ましくは0.40%以上とする。一方、アスペクト比が3以下のマルテンサイト中の炭素濃度は、質量%で0.90%超えとなると、マルテンサイト変態せずにオーステナイトのまま残るため、マルテンサイトの面積率が10%未満となり、強度が低下する。よって、アスペクト比が3以下のマルテンサイト中の炭素濃度は、質量%で0.90%以下とする必要がある。好ましくは0.85%以下とし、より好ましくは0.8%以下とする。
 なお、本発明において、鋼組織におけるアスペクト比が3以下のマルテンサイト中の炭素濃度は、後述する実施例に記載の方法で測定して得られた値を採用する。
 本発明では、測定位置が、板厚方向で最表層10μmの範囲を除く、どの板厚範囲でも上述の鋼組織が一様に存在する。そのため、板厚測定位置は、鋼組織が一様な範囲内のどの位置で測定してもよい。
 本発明の鋼板は、鋼板の表面にめっき層を有してもよい。めっき層としては、溶融亜鉛めっき層(以下、GIと称する場合がある。)、合金化溶融亜鉛めっき層(以下、GAと称する場合がある。)、電気亜鉛めっき層(以下、EGと称する場合がある。)が好ましい。
 なお、めっき金属は亜鉛以外でもよく、例えば、Alめっき等が挙げられる。
 めっき層中のFe含有量は、7~16質量%の範囲にあることが好ましい。Fe含有量が7質量%未満では、合金化ムラの発生、あるいはフレーキング性が劣化する可能性がある。一方、Fe含有量が16質量%超えでは、耐めっき剥離性が劣化する可能性がある。   
 次いで、本発明の高強度鋼板の特性(機械的特性)について説明する。
 上述のように、本発明の鋼板は、高強度である。具体的には、後述する実施例に記載の方法で測定した引張強度(TS)が590MPa以上である。なお、引張強度の上限は特に限定されないが、他の特性とのバランスの取りやすさの観点から、引張強度は780MPa以下が好ましい。
 また、本発明の鋼板は、降伏比(YR)が低い。具体的には、後述する実施例に記載の方法で測定した引張強度(TS)及び降伏強度(YS)の各値を用いて算出した降伏比(YR=YS/TS)が0.63以下である。好ましくは0.61以下とし、より好ましくは0.59以下とする。なお、降伏比の下限は特に限定されないが、他の特性とのバランスの取りやすさの観点から、降伏比は0.4以上が好ましい。より好ましくは0.45以上とする。
 なお、本発明の鋼板は、焼鈍温度をAC1点以上AC3点以下、冷却停止温度を350℃以下にすることで、降伏比が0.63以下、かつ引張強度が590MPa以上の特性を得ることが可能である。
 さらに、本発明の鋼板は、表面特性に優れる。ここで言う表面特性とは、熱延鋼板および冷延鋼板の場合には、化成処理性のことであり、めっき鋼板の場合には、めっき付着性のことである。
 具体的には、熱延鋼板および冷延鋼板の場合は、後述する実施例に記載の方法で実施した化成処理性の評価方法を用い、測定した化成結晶の被覆率を算出して化成処理性に優れるか否かを評価した。本発明では、この被覆率が、面積率で、95%以上の場合に記号「○」を付与し、90%以上95%未満の場合に記号「△」を付与し、90%未満の場合に記号「×」を付与し、記号が「○」および「△」を化成処理性が良好(すなわち、化成処理性に優れる)と評価した。
 めっき鋼板の場合は、外観を目視観察することでめっき付着性に優れるか否かを評価した。本発明では、不めっき欠陥が全くないものに記号「○」を付与し、不めっき欠陥が発生したものに記号「×」を付与し、不めっき欠陥はないがめっき外観ムラなどが生じたものに記号「△」を付与した。なお、不めっき欠陥とは、数μm~数mm程度のオーダーで、めっきが存在せずに鋼板が露出している領域を意味する。記号が「○」および「△」を、十分にめっきが付着したものとし、めっき付着性が良好(すなわち、めっき付着性に優れる)と評価した。
 次いで、本発明の高強度鋼板の製造方法について説明する。
 本発明の高強度鋼板の製造方法は、以下に説明する熱間圧延工程と、必要に応じて行う冷間圧延工程と、焼鈍工程とを有する。なお、以下の説明において、温度は特に断らない限り鋼板表面温度とする。鋼板表面温度は放射温度計等を用いて測定し得る。
 熱間圧延工程
 上述した成分組成を有する鋼素材(鋼スラブ)を、熱間圧延工程に供する。なお、使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造することが好ましい。鋼スラブは、造塊法、薄スラブ鋳造法によっても製造することが可能である。
 本発明の熱間圧延工程の好ましい条件は、例えば、まず上記した成分組成を有する鋼スラブを加熱する。鋼スラブの加熱温度が1200℃未満では、硫化物が析出し、加工性が劣化する可能性がある。よって、本発明で得られる高強度鋼板を自動車用の鋼板として用いるために必要とされる最低限の加工性を得るためには、鋼スラブの加熱温度は1200℃以上とすることが好ましい。より好ましくは1230℃以上とし、さらに好ましくは1250℃以上とする。なお、鋼スラブの加熱温度の上限は特に限定されないが、1400℃以下が好ましい。より好ましくは1350℃以下とする。
 また、鋼スラブ加熱時の平均加熱速度は、5~15℃/分とし、鋼スラブの均熱時間は30~100分とすることが好ましい。ここで、鋼スラブ加熱時の平均加熱速度とは、鋼スラブの表面温度が加熱を開始してから上記加熱温度に到達するまでの加熱速度の平均を意味する。鋼スラブの均熱時間とは、上記加熱温度に到達してから熱間圧延開始までの時間を意味する。
 鋼スラブを加熱した後、以下に記載の条件で熱間圧延を施すことが好ましい。
 仕上げ圧延終了温度は840℃以上が好ましい。仕上げ圧延終了温度が840℃未満では、巻取温度までの温度の低下に時間がかかり、地鉄表面が酸化することで表面特性を劣化させる可能性がある。したがって、仕上げ圧延終了温度は840℃以上が好ましい。より好ましくは860℃以上である。一方、仕上げ圧延終了温度の上限は特に限定しないが、後述の巻取温度までの冷却が困難になるため、仕上げ圧延終了温度は950℃以下が好ましい。より好ましくは920℃以下である。
 仕上げ圧延の圧下率は、マルテンサイトのアスペクト比を3以下にする観点から70%以上が好ましく、フェライトの面積率を確保する観点から95%以下が好ましい。
 巻取温度が700℃超では、地鉄表面が脱炭するおそれがあり、鋼板内部と鋼板表面で鋼組織に差が生じ、合金濃度ムラの原因となる。また、脱炭により鋼板表層にフェライトが生成し、これにより引張強度を低下させる。したがって、巻取温度は700℃以下が好ましい。より好ましくは670℃以下である。巻取温度の下限は特に限定されないが、熱間圧延後に冷間圧延を行う場合には、冷間圧延性の低下を防ぐため、巻取温度は550℃以上が好ましい。冷間圧延を行わない場合は、巻取温度が300℃未満になると、熱延鋼板の巻取が困難となるため、300℃以上が好ましい。
 巻取後の熱延鋼板を酸洗してもよい。この場合、酸洗条件は特に限定されない。なお、熱間圧延後の熱延鋼板の酸洗は行わなくてもよい。
 冷間圧延工程
 冷間圧延工程とは、必要に応じて、熱間圧延工程で得られた熱延鋼板を冷間圧延する工程である。冷間圧延工程を行う場合、本発明では以下に記載の条件で冷間圧延を施すことが好ましい。
 冷間圧延の圧下率は特に限定されないが、圧下率が20%未満の場合、鋼板表面の平坦度が悪く、組織が不均一となる危険性がある。そのため、圧下率は20%以上とすることが好ましい。より好ましくは30%以上とする。より一層好ましくは40%以上とする。一方、圧下率が90%超えの場合、未再結晶フェライトが残存するおそれがある。そのため、圧下率は90%以下とすることが好ましい。より好ましくは80%以下とする。より一層好ましくは70%以下とする。
 なお、本発明において、冷間圧延工程は必須の工程ではなく、上記した本発明の鋼組織および機械的特性が得られれば、冷間圧延工程を省略しても構わない。
 焼鈍工程
 焼鈍工程とは、上記した熱間圧延工程で得られた熱延鋼板、あるいは上記した冷間圧延工程で得られた冷延鋼板に対して、焼鈍を行う工程である。焼鈍工程は、本発明では以下に記載の条件で行う。
 焼鈍工程とは、得られた熱延鋼板または冷延鋼板を、AC1点以上AC3点以下の焼鈍温度で30秒以上保持し、その後、該焼鈍温度から350℃までの平均冷却速度を5℃/秒以上、冷却停止温度を350℃以下の条件で冷却し、その後、T1温度(℃)を200~250℃の温度範囲における任意の温度とするとき、350℃から300℃までの温度域の滞留時間を50秒以下、300℃未満からT1温度(℃)までの温度域の滞留時間を1000秒以下の条件で滞留する工程である。
 熱延鋼板または冷延鋼板を、AC1点以上AC3点以下の焼鈍温度に加熱後、この温度範囲で保持する。焼鈍温度がAC1点未満では、セメンタイトの生成量が過剰となり、マルテンサイトの面積率が10%未満となる。したがって、焼鈍温度はAC1点以上とする。好ましくは(AC1点+10℃)以上とする。一方、焼鈍温度がAC3点超えでは、マルテンサイトの面積率が50%超えとなり、またマルテンサイトの平均結晶粒径が3.0μm以上となることにより、降伏比を高くする。また、マルテンサイトの面積率が大きくなることで、アスペクト比が3以下のマルテンサイト中の炭素濃度が減少し、マルテンサイト強度が低下するため、降伏比が高くなる。したがって、焼鈍温度はAC3点以下とする。好ましくは(AC3点-10℃)以下とする。
 なお、ここでいうAC1点およびAC3点はそれぞれ以下の式により算出する。
C1(℃)=723+22(%Si)-18(%Mn)+17(%Cr)+4.5(%Mo)+16(%V)
C3(℃)=910-203(%C)1/2+45(%Si)-30(%Mn)-20(%Cu)-15(%Ni)+11(%Cr)+32(%Mo)+104(%V)+400(%Ti)+460(%Al)
ただし、各式において(%元素記号)は各元素記号の鋼中含有量(質量%)を示し、含有しない場合は0とする。
 焼鈍温度での保持時間(焼鈍保持時間)は30秒以上とする。焼鈍保持時間が30秒未満となると、フェライトの再結晶が十分に進行しないため、フェライトが未再結晶フェライトとなることで降伏比を高くする。また、炭素の拡散が促進しないため、アスペクト比が3以下のマルテンサイト中のC濃度が低くなり、降伏比が高くなる。したがって、焼鈍保持時間は30秒以上とし、好ましくは35秒以上とする。より好ましくは50秒以上とする。焼鈍保持時間の上限は特に限定されないが、オーステナイト粒径の粗大化を抑制し、マルテンサイト粒径の粗大化による降伏比の増加を防ぐ観点から、焼鈍保持時間は900秒以下とすることが好ましい。より好ましくは500秒以下、さらに好ましくは300秒以下とする。
 焼鈍温度で保持後、焼鈍温度から350℃までの平均冷却速度が5℃/秒以上、冷却停止温度が350℃以下の条件で、熱延鋼板または冷延鋼板を冷却する。冷却停止温度が350℃超えになると、その後の工程でベイナイトやパーライトが生成し、降伏比が高くなる。したがって、冷却停止温度は350℃以下とする。好ましくは、冷却停止温度は320℃以下とする。より好ましくは300℃以下とする。
 焼鈍温度から350℃までの平均冷却速度が5℃/秒未満ではベイナイトやパーライトが多量に生成し、降伏比が高くなる。したがって、上記平均冷却速度は5℃/秒以上とし、好ましくは7℃/秒以上とし、より好ましくは10℃/秒以上とする。上記平均冷却速度の上限は特に限定されるものではないが、40℃/秒以下とすることが好ましい。より好ましくは、上記平均冷却速度は30℃/秒以下とする。
 なお、冷却停止温度が350℃未満の場合には、350℃未満から冷却停止温度までの平均冷却速度は特に限定されない。この場合、パーライトやベイナイトの生成を抑制し、良好な降伏比を得る観点より、上記平均冷却速度は5℃/秒以上が好ましく、40秒/秒以下とすることが好ましい。
 その後、熱延鋼板または冷延鋼板を次の条件で滞留する。まず、350℃から300℃までの温度域の滞留時間を50秒以下とする条件で滞留させる。350℃から300℃までの温度域ではパーライトやベイナイトが生じ、アスペクト比が3以下のマルテンサイトが減少するため、強度を低下させ、降伏比を増加させる。したがって、本発明で目的とする降伏比を得るためには、その温度域での滞留時間を短くする必要がある。一方、350℃から300℃までの温度域の滞留時間が50秒超えではパーライトやベイナイトが生じる。これらの理由により、350℃から300℃までの温度域での滞留時間は50秒以下とする。上記温度域での滞留時間は、好ましくは45秒以下とし、さらに好ましくは40秒以下とする。上記温度域での滞留時間の下限は特に限定せず、0秒であっても構わない。上記温度域での滞留時間は、好ましくは5秒以上とし、より好ましくは8秒以上とする。
 続いて、300℃未満からT1温度(℃)までの温度域の滞留時間を1000秒以下とする条件で滞留させる。300℃未満の温度域ではパーライトやベイナイトが生じにくいが、長時間保持によりベイナイトが生成し、アスペクト比が3以下のマルテンサイトが減少するため、降伏比を増加させる。また、T1温度(℃)を200~250℃の温度範囲における任意の温度とする理由は、焼鈍温度、冷却速度、冷却停止温度、350℃から300℃までの温度域での滞留時間を含む焼鈍工程での条件に応じて、ベイナイトが生じる温度域が異なるためである。したがって、300℃未満からT1温度(℃)までの温度域の滞留時間は1000秒以下とする。好ましくは900秒以下、より好ましくは800秒以下とする。下限は特に限定せず、0秒であっても構わない。上記温度域での滞留時間は、好ましくは10秒以上とし、より好ましくは50秒以上とする。
 なお、本発明では、さらに、熱間圧延工程後の熱延鋼板には、冷間圧延前の組織軟質化のための熱処理をおこなってもよく、熱間圧延工程後の熱延鋼板または冷間圧延工程後の冷延鋼板には、焼鈍工程後に形状調整のための調質圧延を行ってもよい。
 また、鋼板の特性を変化させなければ、焼鈍工程後にめっき処理を施してもよい。
 めっき層を有する鋼板を製造する場合、上記した焼鈍工程における、300℃未満からT1温度(℃)までの温度域を1000秒以下で滞留した後、冷却前に、400℃以上500℃以下の温度域に加熱し、めっき処理を施してもよい。さらにめっき処理の後、合金化処理を施してもよい。合金化処理を行うときは、例えば、500℃超600℃以下に鋼板を加熱して合金化処理を施す。また、冷却後に電気亜鉛めっき処理を施してもよい。
 例えば、焼鈍後の鋼板(熱延鋼板あるいは冷延鋼板)に溶融亜鉛めっき処理を施す場合は、420℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整することが好ましい。
 また、溶融亜鉛めっき処理後に亜鉛めっきの合金化処理を施す場合は、500℃以上600℃以下の温度域で実施することが好ましい。
 焼鈍後の鋼板(熱延鋼板あるいは冷延鋼板)に電気亜鉛めっき処理を施す場合は、室温でpHを1~3に調整した亜鉛めっき浴中、もしくは亜鉛‐ニッケル浴中に鋼板を浸漬し、電流を流すことで電気亜鉛めっき処理を施す。その際、電流量や電解時間等の調整によって、めっき付着量を調整することが好ましい。
 以上に説明した本発明の製造方法によれば、焼鈍工程における焼鈍温度、冷却停止温度、滞留温度および滞留時間を制御することで、得られる高強度鋼板の鋼組織におけるマルテンサイト粒径、マルテンサイトのアスペクト比およびマルテンサイト中の炭素濃度を制御することができ、低降伏比の高強度鋼板を得ることが可能となる。さらに、本発明の低降伏比の高強度鋼板は、表面特性にも優れるため、自動車構造部材に好適に用いることも可能となる。
 [実施例1]
 本発明を、実施例を参照しながら具体的に説明する。なお、本発明は以下の実施例に限定されない。
 1.評価用鋼板の製造
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼素材を真空溶解炉にて溶製後、分塊圧延し27mm厚の分塊圧延材を得た。得られた分塊圧延材を板厚4.0mm厚まで、表2-1~表2-3に示す条件で熱間圧延し、熱延鋼板を製造した。なお、仕上げ圧延の圧下率は全条件で80~90%の範囲内だった。次いで、得られた熱延鋼板の一部については冷間圧延した。冷間圧延するサンプルは、熱延鋼板を研削加工し、板厚3.2mmにした後、板厚2.24~0.8mmまで、表2-1~表2-3に示す条件で冷間圧延し、冷延鋼板を製造した。次いで、上記により得られた熱延鋼板および冷延鋼板に、表2-1~表2-3に示す条件で焼鈍を行い、鋼板を製造した。なお、表1の空欄(表1中の「-」を表記した欄)は、意図的に添加していないことを表しており、0質量%ではなく、不可避的に入っている場合がある。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 2.評価方法
 各種製造条件で得られた鋼板に対して、鋼組織を解析することで組織分率を調査し、引張試験を実施することで引張強度等の機械的特性を評価した。各組織分率の調査および各評価の方法は次のとおりである。
 <フェライト、マルテンサイトの面積率>
 フェライトおよびマルテンサイトは、各鋼板の圧延方向および圧延方向に対して垂直方向から試験片を採取し、圧延方向に平行な板厚L断面を鏡面研磨し、ナイタール液で組織現出した後、走査電子顕微鏡を用いて観察した。倍率1500倍のSEM像上の、実長さ82μm×57μmの領域上に4.8μm間隔の16×15の格子をおき、各相上にある点数を数えるポイントカウンティング法により、フェライトおよびマルテンサイトの面積率を調査(測定)した。面積率は、倍率1500倍の別々のSEM像から求めた3つの面積率の平均値とした。マルテンサイトは白色の組織を呈しており、フェライトは黒色の組織を呈している。
 なお、本発明による鋼板の鋼組織は、板厚方向で表層から10μmの範囲を除き、どの板厚位置でも板厚方向で一様である。そのため、板厚測定位置は、上記した鋼組織が一様に存在する範囲内において、どの位置で測定してもよい。本発明では、板厚方向で板厚1/4の厚さにおいて鋼組織を観察した。
 <マルテンサイトの平均結晶粒径、マルテンサイトのアスペクト比>
 マルテンサイトの平均結晶粒径およびマルテンサイトのアスペクト比は、各鋼板の圧延方向および圧延方向に対して垂直方向から試験片を採取し、圧延方向に平行な板厚L断面を鏡面研磨し、ナイタール液で組織現出した後、走査電子顕微鏡を用いて観察した。倍率1500倍のSEM像の1つに含まれるマルテンサイト全ての長辺と短辺を測定し、それらの平均をマルテンサイトの平均結晶粒径として算出した。また、マルテンサイトのアスペクト比は、測定した長辺を短辺で除することで算出した。
 なお、本発明による鋼板の鋼組織は、板厚方向で表層から10μmの範囲を除き、どの板厚位置でも板厚方向で一様である。そのため、板厚測定位置は、上記した鋼組織が一様に存在する範囲内において、どの位置で測定してもよい。本発明では、板厚方向で板厚1/4の厚さにおいて鋼組織を観察した。
 <アスペクト比が3以下のマルテンサイト中の炭素濃度>
 マルテンサイト中の炭素濃度は、各鋼板の板厚1/4の厚さまで研削した後、試験片を採取し、圧延方向に平行な板厚L断面を鏡面研磨してからX線回折法により測定した。X線としてはCo-Kα線を用いた。本発明では、電子線マイクロアナライザ(EPMA;Electron Probe Micro Analyzer)で、加速電圧が7kV、測定点間隔が80nmの条件で、22.5μm×22.5μmの領域を3視野測定し、測定後のデータを検量線法を用いてCの濃度に変換する。同時に取得したInLens検出器によるSEM像と比較することで、マルテンサイトを判別し、測定視野内のアスペクト比が3以下のマルテンサイトの炭素濃度の平均値を3視野分算出し、それらの値を平均して算出した。
 なお、本発明による鋼板の鋼組織は、板厚方向で表層から10μmの範囲を除き、どの板厚位置でも板厚方向で一様である。そのため、板厚測定位置は、上記した鋼組織が一様に存在する範囲内において、どの位置で測定してもよい。本発明では、板厚方向で板厚1/4の厚さにおいて鋼組織を観察した。
 <残部組織の面積率>
 上記の残部組織は、各鋼板の圧延方向および圧延方向に対して垂直方向から試験片を採取し、圧延方向に平行な板厚L断面を鏡面研磨し、ナイタール液で組織現出した後、走査電子顕微鏡を用いて観察した。倍率1500倍のSEM像上の、実長さ82μm×57μmの領域上に4.8μm間隔の16×15の格子をおき、各相上にある点数を数えるポイントカウンティング法により、残部組織の面積率を調査(測定)した。面積率は、倍率1500倍の別々のSEM像から求めた3つの面積率の平均値とした。パーライトはフェライト内にセメンタイトが層状に析出した組織であり、ベイナイトはフェライト内にセメンタイトが球状に析出した組織であり、残留オーステナイトは黒色の組織を呈している。
 なお、本発明による鋼板の鋼組織は、板厚方向で表層から10μmの範囲を除き、どの板厚位置でも板厚方向で一様である。そのため、板厚測定位置は、上記した鋼組織が一様に存在する範囲内において、どの位置で測定してもよい。本発明では、板厚方向で板厚1/4の厚さにおいて鋼組織を観察した。
 <機械的特性>
 各鋼板の圧延方向から、標点間距離50mm、標点間幅25mm、板厚1.4mmのJIS5号試験片を採取し、引張速度が10mm/分で引張試験を行った。各試験片を用いて、引張強度(表3-1~表3-3ではTSと表記)および降伏強度(表3-1~表3-3ではYSと表記)をそれぞれ測定した。降伏比(表3-1~表3-3ではYRと表記)はYSをTSで除することにより算出した。
 <化成処理性>
 各鋼板を市販のアルカリ脱脂液で脱脂し、次に、表面調整液に浸漬し、その後、リン酸塩処理液(日本パーカライジング(株)製、パルボンドPB-L3080)に、浴温:40℃、処理時間:120秒の条件で浸漬する化成処理を行った。化成処理後の鋼板表面を目視で確認することで化成結晶の被覆率を算出した。ここでは、化成結晶の被覆率が面積率で95%以上の場合を記号「○」で示し、90%以上95%未満の場合を記号「△」で示し、90%未満の場合を記号「×」で示した。記号が「○」および「△」の場合を、均一な化成結晶が生成されたものとし、化成処理性が良好と評価した。
 3.評価結果
 上記した調査結果および評価結果を、それぞれ表3-1~表3-3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本実施例1では、TSが590MPa以上、YRが0.63以下および化成処理性が良好のものを合格とし、表3-1~表3-3の備考に発明例として示した。一方、TSが590MPa未満、YRが0.63超え、および化成処理性が良好ではないもののいずれか1つ以上に該当するものを不合格とし、表3-1~表3-3の備考に比較例として示した。
 [実施例2]
 1.評価用鋼板の製造
 表1に示す鋼種A、F、Yに対して、表4に示す条件で熱間圧延を施した熱延鋼板、および熱間圧延後に冷間圧延を施した冷延鋼板を用い、表4に示す条件で焼鈍を行い、亜鉛めっき処理を施し、めっき鋼板を製造した。なお、熱間圧延における仕上げ圧延の圧下率は、全条件で80~90%の範囲内だった。表4に示す「GI」は溶融亜鉛めっき鋼板であり、「GA」は合金化溶融亜鉛めっき鋼板であり、「EG」は電気亜鉛めっき鋼板である。
 溶融亜鉛めっき鋼板は、焼鈍後の鋼板(熱延鋼板あるいは冷延鋼板)に溶融亜鉛めっき処理を施す際に、420℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整した。
 また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後に亜鉛めっきの合金化処理を施す際に、500℃以上600℃以下の温度域で実施した。
 また、電気亜鉛めっき鋼板は、焼鈍後の鋼板(熱延鋼板あるいは冷延鋼板)に電気亜鉛めっき処理を施す際に、室温でpHを1~3に調整した亜鉛めっき浴中、もしくは亜鉛‐ニッケル浴中に鋼板を浸漬し、電流を流すことで電気亜鉛めっき処理を施した。
Figure JPOXMLDOC01-appb-T000008
 2.評価方法
 各種製造条件で得られた鋼板(めっき鋼板)に対して、鋼組織を解析することで組織分率を調査し、引張試験を実施することで引張強度等の機械的特性を評価した。各組織分率の調査および各評価の方法は実施例1に記載の方法と同様である。
 <めっき付着性>
 めっき後の鋼板の外観を目視観察し、不めっき欠陥が全くないものに記号「○」を、不めっき欠陥が発生したものに記号「×」を、不めっき欠陥はないがめっき外観ムラなどが生じたものに記号「△」を付与した。なお、不めっき欠陥とは数μm~数mm程度のオーダーで、めっきが存在せず、鋼板が露出している領域を意味する。記号が「○」および「△」の場合を、十分にめっきが付着したものとし、めっき付着性が良好と評価した。
 3.評価結果
 上記した調査結果および評価結果を、それぞれ表5に示す。
Figure JPOXMLDOC01-appb-T000009
 本実施例2では、TSが590MPa以上、YRが0.63以下およびめっき付着性が良好のものを合格とし、表5の備考に発明例として示した。一方、TSが590MPa未満、YRが0.63超え、およびめっき付着性が良好ではないもののいずれか1つ以上に該当するものを不合格とし、表5の備考に比較例として示した。

Claims (7)

  1.  成分組成は、質量%で、
    C:0.06%以上0.120%以下、
    Si:0.3%以上0.7%以下、
    Mn:1.6%以上2.2%以下、
    P:0.05%以下、
    S:0.0050%以下、
    Al:0.01%以上0.20%以下、
    N:0.010%以下
    を含有し、残部はFeおよび不可避的不純物からなり、
     鋼組織は、主相のフェライトと、鋼組織全体に対する面積率で10%以上50%未満のマルテンサイトを有し、
    前記マルテンサイトの平均結晶粒径が3.0μm以下であり、
    前記マルテンサイト全体に対する、アスペクト比が3以下のマルテンサイトの割合が60%以上であり、
    前記アスペクト比が3以下のマルテンサイト中の炭素濃度が、質量%で、0.30%以上0.90%以下である高強度鋼板。
  2.  前記成分組成は、さらに、質量%で、
    Cr:0.01%以上0.20%以下、
    Mo:0.01%以上0.15%未満、
    V:0.001%以上0.05%以下のうちから選ばれた1種又は2種以上を含有する請求項1に記載の高強度鋼板。
  3.  前記成分組成に加えてさらに、質量%で、下記A群~C群のうちから選ばれた1群または2群以上を含有する、請求項1または2に記載の高強度鋼板。
                記
    A群:Nb:0.001%以上0.02%以下、Ti:0.001%以上0.02%以下のうちから選ばれた1種又は2種
    B群:Cu:0.001%以上0.20%以下、Ni:0.001%以上0.10%以下のうちから選ばれた1種又は2種
    C群:B:0.0001%以上0.002%以下
  4.  鋼板の表面にめっき層を有する請求項1~3のいずれかに記載の高強度鋼板。
  5.  請求項1~3のいずれかに記載の成分組成を有する鋼スラブを加熱した後、熱間圧延工程を施し、
     前記熱間圧延工程で得られた熱延鋼板を、焼鈍温度:AC1点以上AC3点以下で30秒以上保持し、
    該焼鈍温度から350℃までの平均冷却速度:5℃/秒以上、冷却停止温度:350℃以下の条件で冷却し、
    その後、T1温度(℃)を200~250℃の温度範囲における任意の温度とするとき、
    350℃から300℃までの温度域の滞留時間:50秒以下、300℃未満からT1温度(℃)までの温度域の滞留時間:1000秒以下の条件で滞留する焼鈍工程を施す高強度鋼板の製造方法。
  6.  請求項1~3のいずれかに記載の成分組成を有する鋼スラブを加熱した後、熱間圧延工程を施し、次いで前記熱間圧延工程で得られた熱延鋼板に冷間圧延工程を施し、
     前記冷間圧延工程で得られた冷延鋼板を、焼鈍温度:AC1点以上AC3点以下で30秒以上保持し、
    該焼鈍温度から350℃までの平均冷却速度:5℃/秒以上、冷却停止温度:350℃以下の条件で冷却し、
    その後、T1温度(℃)を200~250℃の温度範囲における任意の温度とするとき、
    350℃から300℃までの温度域の滞留時間:50秒以下、300℃未満からT1温度(℃)までの温度域の滞留時間:1000秒以下の条件で滞留する焼鈍工程を施す高強度鋼板の製造方法。
  7.  前記焼鈍工程後に、めっき処理を施す請求項5または6に記載の高強度鋼板の製造方法。
PCT/JP2019/049749 2019-01-29 2019-12-19 高強度鋼板及びその製造方法 WO2020158228A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021009099A MX2021009099A (es) 2019-01-29 2019-12-19 Lamina de acero de alta resistencia y metodo para la produccion de la misma.
KR1020217023532A KR102508292B1 (ko) 2019-01-29 2019-12-19 고강도 강판 및 그 제조 방법
JP2020520081A JP6809648B1 (ja) 2019-01-29 2019-12-19 高強度鋼板及びその製造方法
US17/426,897 US20220098698A1 (en) 2019-01-29 2019-12-19 High-strength steel sheet and method for producing the same
CN201980090854.4A CN113366126B (zh) 2019-01-29 2019-12-19 高强度钢板及其制造方法
EP19912317.5A EP3919637B1 (en) 2019-01-29 2019-12-19 High-strength steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012790 2019-01-29
JP2019-012790 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158228A1 true WO2020158228A1 (ja) 2020-08-06

Family

ID=71842029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049749 WO2020158228A1 (ja) 2019-01-29 2019-12-19 高強度鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20220098698A1 (ja)
EP (1) EP3919637B1 (ja)
JP (1) JP6809648B1 (ja)
KR (1) KR102508292B1 (ja)
CN (1) CN113366126B (ja)
MX (1) MX2021009099A (ja)
WO (1) WO2020158228A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910129A (zh) * 2020-08-12 2020-11-10 宝武集团鄂城钢铁有限公司 一种极低屈强比1200MPa级超高强度厚钢板及其生产方法
CN115323266A (zh) * 2022-07-14 2022-11-11 江苏沙钢集团有限公司 一种经济型屈强比≦0.85的Q370qE钢板及其制造方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192767A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 延性に優れる低降伏比高張力溶融亜鉛めっき鋼板およびその製造方法
JP2011144409A (ja) 2010-01-13 2011-07-28 Nippon Steel Corp 加工性に優れた高強度鋼板およびその製造方法
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2012177175A (ja) 2011-02-28 2012-09-13 Jfe Steel Corp 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
WO2013051714A1 (ja) * 2011-10-06 2013-04-11 新日鐵住金株式会社 鋼板及びその製造方法
JP2013241636A (ja) * 2012-05-18 2013-12-05 Jfe Steel Corp 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2014019928A (ja) 2012-07-20 2014-02-03 Jfe Steel Corp 高強度冷延鋼板および高強度冷延鋼板の製造方法
JP2017520681A (ja) * 2014-06-06 2017-07-27 アルセロールミタル 高強度多相鋼、製造方法および使用
KR101767818B1 (ko) * 2016-03-08 2017-08-11 주식회사 포스코 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2017169940A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018026015A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830212B2 (ja) * 1990-08-08 1996-03-27 日本鋼管株式会社 加工性に優れた超高強度冷延鋼板の製造方法
JP4441417B2 (ja) * 2005-02-14 2010-03-31 新日本製鐵株式会社 成形加工性と溶接性に優れる高張力冷延鋼板及びその製造方法
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN101871078B (zh) * 2009-04-24 2012-08-08 宝山钢铁股份有限公司 一种超高强度冷轧钢及其制造方法
JP5644095B2 (ja) * 2009-11-30 2014-12-24 新日鐵住金株式会社 延性及び耐遅れ破壊特性の良好な引張最大強度900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
WO2012020511A1 (ja) * 2010-08-12 2012-02-16 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
CN103842545A (zh) * 2011-09-28 2014-06-04 杰富意钢铁株式会社 高强度钢板及其制造方法
KR101718176B1 (ko) 2012-08-07 2017-03-20 라인 가부시키가이샤 모바일 메신저 플랫폼에서의 수익 분배형 광고 시스템 및 그 방법
WO2014097559A1 (ja) * 2012-12-18 2014-06-26 Jfeスチール株式会社 低降伏比高強度冷延鋼板およびその製造方法
JP6049516B2 (ja) * 2013-03-26 2016-12-21 日新製鋼株式会社 溶接構造部材用高強度めっき鋼板およびその製造法
JP5776761B2 (ja) * 2013-12-27 2015-09-09 新日鐵住金株式会社 冷延鋼板およびその製造方法
US10494689B2 (en) * 2015-02-13 2019-12-03 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
WO2016157258A1 (ja) * 2015-03-27 2016-10-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN107614731B (zh) * 2015-05-29 2019-07-23 杰富意钢铁株式会社 高强度冷轧钢板、高强度镀覆钢板及它们的制造方法
JP2018031069A (ja) * 2016-08-19 2018-03-01 株式会社神戸製鋼所 厚鋼板およびその製造方法
CN109642281B (zh) * 2016-08-31 2021-02-23 杰富意钢铁株式会社 高强度冷轧薄钢板及其制造方法
JP6702357B2 (ja) * 2017-06-29 2020-06-03 Jfeスチール株式会社 低降伏比型高強度鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192767A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 延性に優れる低降伏比高張力溶融亜鉛めっき鋼板およびその製造方法
JP2011144409A (ja) 2010-01-13 2011-07-28 Nippon Steel Corp 加工性に優れた高強度鋼板およびその製造方法
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2012177175A (ja) 2011-02-28 2012-09-13 Jfe Steel Corp 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
WO2013051714A1 (ja) * 2011-10-06 2013-04-11 新日鐵住金株式会社 鋼板及びその製造方法
JP2013241636A (ja) * 2012-05-18 2013-12-05 Jfe Steel Corp 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2014019928A (ja) 2012-07-20 2014-02-03 Jfe Steel Corp 高強度冷延鋼板および高強度冷延鋼板の製造方法
JP2017520681A (ja) * 2014-06-06 2017-07-27 アルセロールミタル 高強度多相鋼、製造方法および使用
KR101767818B1 (ko) * 2016-03-08 2017-08-11 주식회사 포스코 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2017169940A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018026015A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910129A (zh) * 2020-08-12 2020-11-10 宝武集团鄂城钢铁有限公司 一种极低屈强比1200MPa级超高强度厚钢板及其生产方法
CN111910129B (zh) * 2020-08-12 2022-01-11 宝武集团鄂城钢铁有限公司 一种极低屈强比1200MPa级超高强度厚钢板及其生产方法
CN115323266A (zh) * 2022-07-14 2022-11-11 江苏沙钢集团有限公司 一种经济型屈强比≦0.85的Q370qE钢板及其制造方法与应用

Also Published As

Publication number Publication date
CN113366126B (zh) 2023-09-22
EP3919637B1 (en) 2023-11-15
EP3919637A1 (en) 2021-12-08
EP3919637A4 (en) 2021-12-08
JPWO2020158228A1 (ja) 2021-02-18
JP6809648B1 (ja) 2021-01-06
KR102508292B1 (ko) 2023-03-09
CN113366126A (zh) 2021-09-07
KR20210106556A (ko) 2021-08-30
US20220098698A1 (en) 2022-03-31
MX2021009099A (es) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6525114B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
RU2418090C2 (ru) Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства
WO2018146828A1 (ja) 高強度亜鉛めっき鋼板及びその製造方法
EP2716773B1 (en) Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
EP3543364B1 (en) High-strength steel sheet and method for producing same
EP2803747A1 (en) Cold-rolled steel sheet and method for producing cold-rolled steel sheet
JP6503584B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および熱処理板の製造方法
JP6249113B2 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
EP3178957A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP2243852A1 (en) High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof
CN114585766B (zh) 高强度钢板及其制造方法
EP3647444A1 (en) Hot-press member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
WO2017168958A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11850821B2 (en) Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and method for producing the same
JPWO2018088421A1 (ja) 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
JP6249140B1 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP6809648B1 (ja) 高強度鋼板及びその製造方法
KR20160077538A (ko) 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
CN114555845B (zh) 高强度钢板及其制造方法
CN114585765B (zh) 高强度钢板及其制造方法
JP6323617B1 (ja) 高強度亜鉛めっき鋼板及びその製造方法
JP2012031466A (ja) 高強度鋼板およびその製造方法
JP6947327B2 (ja) 高強度鋼板、高強度部材及びそれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020520081

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217023532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912317

Country of ref document: EP

Effective date: 20210830