WO2017009938A1 - 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 - Google Patents

鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2017009938A1
WO2017009938A1 PCT/JP2015/070069 JP2015070069W WO2017009938A1 WO 2017009938 A1 WO2017009938 A1 WO 2017009938A1 JP 2015070069 W JP2015070069 W JP 2015070069W WO 2017009938 A1 WO2017009938 A1 WO 2017009938A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
iron
content
hot
Prior art date
Application number
PCT/JP2015/070069
Other languages
English (en)
French (fr)
Inventor
由梨 戸田
東 昌史
上西 朗弘
裕之 川田
丸山 直紀
元一 重里
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PCT/JP2015/070069 priority Critical patent/WO2017009938A1/ja
Priority to MX2018000329A priority patent/MX2018000329A/es
Priority to ES15898251T priority patent/ES2785410T3/es
Priority to EP15898251.2A priority patent/EP3323907B1/en
Priority to BR112018000090-6A priority patent/BR112018000090A2/ja
Priority to PL15898251T priority patent/PL3323907T3/pl
Priority to US15/743,398 priority patent/US10822672B2/en
Priority to KR1020187000710A priority patent/KR102057946B1/ko
Priority to CN201580081574.9A priority patent/CN107849666B/zh
Priority to JP2017528042A priority patent/JP6460239B2/ja
Publication of WO2017009938A1 publication Critical patent/WO2017009938A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a steel plate, a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, and an alloyed hot dip galvanized steel plate, which are suitable as structural members for automobiles, buildings, home appliances, etc. It relates to the manufacturing method.
  • Delayed fracture is a phenomenon in which hydrogen that has entered the steel material accumulates in the stress concentration part and destroys the steel material.
  • Non-Patent Document 1 discloses that elements such as Cr, Mo, and V are effective in improving delayed fracture resistance. This is a technology that suppresses embrittlement of grain boundaries by precipitating carbides such as Cr, Mo, and V in crystal grains and utilizing these carbides as sites for trapping hydrogen (hydrogen trap sites). It is.
  • High-strength materials are difficult to plastically deform and are not easily broken, so they are often used in environments where high stress acts. Moreover, in a steel material used as a member after forming, such as a steel plate for automobiles, residual stress is generated after forming. Since this residual stress also increases as the steel plate strength increases, the fear of delayed fracture increases with high strength steel plates.
  • the function of the carbides of elements such as Cr, Mo, and V described above as the hydrogen trap site is derived from the consistency (matching strain) at the interface between the matrix and the carbide. Reduced after rolling and heat treatment. Therefore, the use of carbides of elements such as Cr, Mo, and V as hydrogen trap sites is not applicable to the types of steel sheets that require cold rolling and heat treatment.
  • Patent Document 1 discloses that an oxide mainly composed of Ti and Mg is effective for suppressing hydrogen defects (improving delayed fracture resistance).
  • the hydrogen embrittlement countermeasure disclosed in Patent Document 1 is particularly for improving hydrogen embrittlement after high heat input welding, but the object of Patent Document 1 is a thick steel plate, which is a high molding required for thin steel plates. No consideration is given to both compatibility and delayed fracture resistance.
  • Non-Patent Document 2 discloses that hydrogen embrittlement of thin steel sheets is promoted due to work-induced transformation of the amount of retained austenite. That is, it is disclosed that the amount of retained austenite needs to be regulated in order not to deteriorate the delayed fracture resistance in the thin steel plate.
  • Non-Patent Document 2 relates to a high-strength thin steel sheet having a specific structure, and is not a fundamental improvement measure for delayed fracture resistance.
  • Patent Document 2 discloses a steel plate for a hollow container that is excellent in resistance to squeezing as a thin steel plate aimed at improving both delayed fracture resistance and formability.
  • hydrogen that penetrates into the steel sheet during production is trapped by an oxide in the steel sheet, thereby suppressing “striking” (surface defects) that occurs after blow-off.
  • Patent Document 2 contains a large amount of oxide inside.
  • the oxide is dispersed at a high density in the steel plate, the formability deteriorates. Therefore, the technique disclosed in Patent Document 2 cannot be applied to an automotive steel plate that requires high formability.
  • Japanese Unexamined Patent Publication No. 11-293383 Japanese Laid-Open Patent Publication No. 11-100568 Japanese Unexamined Patent Publication No. 01-230715 Japanese Unexamined Patent Publication No. 02-217425
  • An object of the present invention is to improve delayed fracture resistance while securing formability in a steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more.
  • An object of this invention is to provide the steel plate which solves this subject, a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, and those manufacturing methods.
  • the present inventors have intensively studied a method for solving the above problems.
  • a steel sheet having a C content of 0.05 to 0.40% and a tensile strength of 780 MPa or more one or two of tempered martensite as the main phase and ferrite and bainite as the second phase.
  • Containing seeds at the required volume fraction and forming a structure with limited volume fraction of other phases precipitating iron-based carbides in the tempered martensite at a required number density or more, and iron-based
  • the present inventors have found that the delayed fracture resistance can be improved while securing the formability of the steel sheet by using 20% or more of the carbides as ⁇ -based carbides.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the chemical components are mass%, C: 0.05 to 0.40%, Si: 0.05 to 3.00%, Mn: 1.50% or more 3. Less than 50%, P: 0.04% or less, S: 0.01% or less, N: 0.01% or less, O: 0.006% or less, Al: 0 to 2.00%, Cr: 0 To 1.00%, Mo: 0 to 1.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00% Nb: 0 to 0.30%, Ti: 0 to 0.30%, V: 0 to 0.50% B: 0 to 0.01% Ca: 0 to 0.04%, Mg: 0 to 0.04%, and REM: 0 to 0.04%, the balance being
  • a structure composed of Fe and impurities and having a thickness of 1/4 part has a volume fraction of tempered martensite: 30 to 70%, and one or two of ferrite and bainite: 20% or more in total 70 In the structure having a thickness of
  • the chemical component is, in mass%, Cr: 0.05 to 1.00%, Mo: 0.01 to 1.00%, Ni: 0.05 to One or more of 1.00% and Cu: 0.05 to 1.00% may be contained.
  • the chemical component is mass%, Nb: 0.005 to 0.30%, Ti: 0.005 to 0.30%, and V: One or more of 0.005 to 0.50% may be contained.
  • the chemical component may contain B: 0.0001 to 0.01% by mass%.
  • the chemical component is, by mass%, Ca: 0.0005 to 0.04%, Mg: 0.0005 to 0.00.
  • One or more of 04% and REM: 0.0005 to 0.04% may be contained.
  • an average major axis of the iron-based carbide may be 350 nm or less.
  • Fe is 15% by mass or less on the surface of the steel sheet according to any one of (1) to (6), with the balance being Zn, A hot-dip galvanized layer made of Al and impurities is formed.
  • Fe is 15% by mass or less on the surface of the steel sheet according to any one of the above (1) to (6), and the balance is An alloyed hot-dip galvanized layer made of Zn, Al, and impurities is formed.
  • a steel sheet, a hot dip galvanized steel sheet, and an alloyed hot dip galvanized steel sheet that are suitable as structural members for automobiles, buildings, home appliances, etc., and have excellent delayed fracture resistance with a tensile strength of 780 MPa or more, And a manufacturing method thereof.
  • Non-Patent Document 1 It is well known that carbides such as Cr, Mo, and V function as hydrogen trap sites to improve delayed fracture resistance due to hydrogen embrittlement (see Non-Patent Document 1).
  • heat treatment for precipitating carbides such as Cr, Mo, and V takes a long time, it is manufactured using a production line (continuous annealing line, continuous plating line, etc.) that requires heat treatment to be performed in a short time. It is difficult to utilize precipitation of carbides such as Cr, Mo, and V in order to improve delayed fracture resistance in a steel sheet that needs to be processed.
  • the function of trapping hydrogen is derived from the consistency (matching strain) at the interface between the base metal and the carbide, but the hydrogen trapping ability of carbides such as Cr, Mo, and V precipitated during hot rolling is In order to improve the delayed fracture resistance, the precipitation of carbides such as Cr, Mo and V is reduced in the types of steel sheets that require cold rolling and heat treatment. It is difficult to use.
  • the present inventors have found that the structure and the iron-based carbide (particularly, ⁇ ) in the steel sheet having a tensile strength of 780 MPa or more. It has been found that by controlling suitably the system carbide), the delayed fracture resistance can be improved while maintaining the moldability.
  • steel plate according to this embodiment a steel plate excellent in delayed fracture resistance according to an embodiment of the present invention (hereinafter, also referred to as “steel plate according to this embodiment”) will be described.
  • the steel sheet according to the present embodiment has a tensile strength of 780 MPa or more, a steel sheet excellent in delayed fracture resistance, a hot-dip galvanized steel sheet, and a galvannealed steel sheet, the main phase of the structure is tempered martensite, and the second phase Is formed by precipitating fine iron-based carbides (cementite and ⁇ -based carbides) in tempered martensite and using these iron-based carbides as hydrogen trap sites.
  • the basic idea is to improve delayed fracture resistance while maintaining the properties.
  • a steel plate excellent in delayed fracture resistance according to an embodiment of the present invention (hereinafter sometimes referred to as “steel plate according to this embodiment”) has a chemical composition of mass% and C: 0.05. To 0.40%, Si: 0.05 to 3.00%, Mn: 1.50% or more and less than 3.50%, P: 0.04% or less, S: 0.01% or less, N: 0.00.
  • the balance is made of Fe and impurities
  • the structure having a thickness of 1/4 part is tempered martensite by volume fraction: 3 70% and one or two types of ferrite and bainite: 20% or more and 70% or less in total, and in the structure having a thickness of 1/4 part, the retained austenite is less than 10% in volume fraction Yes, fresh martensite is 10% or less, pearlite is 10% or less, and the total volume fraction of the retained austenite, the fresh martensite, and the pearlite is 15% or less, and the thickness 1
  • the hot dip galvanized steel sheet (hereinafter, also referred to as “hot dip galvanized steel sheet according to this embodiment”) having excellent delayed fracture resistance according to this embodiment has 15 Fe on the surface of the steel sheet according to this embodiment.
  • a hot-dip galvanized layer having a balance of Zn, Al, and impurities is formed with a mass% or less.
  • alloyed hot-dip galvanized steel sheet (hereinafter, also referred to as “alloyed hot-dip galvanized steel sheet according to this embodiment”) excellent in delayed fracture resistance according to this embodiment is formed on the surface of the steel sheet according to this embodiment.
  • An alloyed hot-dip galvanized layer comprising Fe, 15% by mass or less and the balance of Zn, Al, and impurities is formed.
  • the unit “mass%” of the content of each element contained in the chemical component is hereinafter referred to as “%”.
  • the steel plate according to this embodiment is a steel plate containing 0.05 to 0.40% C and having a tensile strength of 780 MPa or more.
  • C is an element necessary for increasing the strength of the steel sheet and precipitating iron-based carbides (cementite, ⁇ -based carbides, etc.) that function as hydrogen trap sites. If the C content is less than 0.05%, it is difficult to obtain a tensile strength of 780 MPa or more. On the other hand, if the C content is less than 0.05%, the amount of precipitated iron carbide is insufficient, and the delayed fracture resistance is not improved.
  • the C content of the steel sheet according to this embodiment is 0.05 to 0.40%.
  • a preferable lower limit of the C content is 0.10%.
  • the upper limit with preferable C content is 0.25%.
  • Si 0.05 to 3.00% Si is an effective element for improving the strength. Further, Si is an element having an action of suppressing precipitation of iron-based carbides in austenite and an action of suppressing coarsening of iron-based carbides generated in martensite. The finer the iron-based carbides in martensite, the better the delayed fracture resistance, so Si has the effect of improving the delayed fracture resistance.
  • the Si content is less than 0.05%, the above effects cannot be obtained sufficiently, so the Si content needs to be 0.05% or more.
  • the Si content is 0.10% or more.
  • the Si content exceeds 3.00%, the strength of the steel sheet is excessively increased and the formability of the steel sheet is lowered, so the Si content needs to be 3.00% or less.
  • the Si content is preferably 2.00% or less.
  • Mn 1.50 to less than 3.50%
  • Mn is an effective element for improving the strength of the steel sheet.
  • Mn is an element having an action of suppressing ferrite transformation that occurs during cooling during annealing or hot dip galvanizing heat treatment. This action is required to keep the tempered martensite amount of the steel sheet according to this embodiment within a predetermined range.
  • the Mn content When the Mn content is less than 1.50%, the above-described effects cannot be obtained sufficiently, and tempered martensite having a required volume fraction cannot be obtained. Therefore, the Mn content needs to be 1.50% or more. Preferably, the Mn content is 1.70% or more. On the other hand, if the Mn content is 3.50% or more, the strength of the slab or hot-rolled sheet is excessively increased and the manufacturability of the steel sheet is lowered, so the Mn content needs to be less than 3.50%. . Preferably, the Mn content is 3.00% or less.
  • P 0.04% or less
  • P is an impurity element, an element that segregates in the central portion of the plate thickness of the steel sheet to inhibit toughness and embrittle the weld. If the P content exceeds 0.04%, a decrease in toughness and embrittlement of the welded portion become significant, so the P content needs to be 0.04% or less. Preferably, the P content is 0.02% or less. The lower the P content, the better. Therefore, the lower limit of the P content is not particularly limited. However, since it is economically disadvantageous to make the P content less than 0.0001%, 0.0001% is the P content. Is a practical lower limit.
  • S 0.01% or less
  • S is an impurity element and is an element that inhibits weldability and also inhibits manufacturability during casting and hot rolling.
  • S is an element that forms coarse MnS and impairs hole expansibility. If the S content exceeds 0.01%, the weldability, manufacturability, and hole expandability are significantly reduced. Therefore, the S content needs to be 0.01% or less. Preferably, the S content is 0.005% or less. The lower the S content, the better. Therefore, the lower limit of the S content is not particularly limited. However, since it is economically disadvantageous to make the S content less than 0.0001%, 0.0001% is contained in S. This is a practical lower limit of the amount.
  • N 0.01% or less N is an element that inhibits bendability and hole expansibility by forming coarse nitrides, and is an element that causes blowholes during welding. If the N content exceeds 0.01%, the bendability and hole expansibility decrease and the occurrence of blowholes become significant, so the N content needs to be 0.01% or less. The lower the N content, the better. Therefore, the lower limit of the N content is not particularly limited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased. This is a practical lower limit of the N content.
  • O 0.006% or less
  • O is an element that forms an oxide and impairs moldability. If the O content exceeds 0.006%, the moldability deteriorates significantly, so the O content needs to be 0.006% or less. The lower the O content, the better. Therefore, the lower limit is not particularly limited. However, if the O content is less than 0.001%, an excessive cost increase is economically undesirable, so 0.001% is O. This is a practical lower limit of the content.
  • the steel plate according to the present embodiment is one or more of Al, Cr, Mo, Ni, and Cu, one or more of Nb, Ti, and V, B, and / or , Ca, Mg, and REM may be appropriately contained.
  • the lower limit of the content of these elements is 0%.
  • Al is an element effective as a deoxidizing material, and is an element having an action of suppressing precipitation of iron carbide in austenite, similar to Si. Furthermore, since Al oxide contributes to the improvement of delayed fracture resistance, Al may be contained in the steel sheet according to the present embodiment. However, if the Al content exceeds 2.00%, an Al oxide is excessively generated and the manufacturability deteriorates, so the Al content needs to be 2.00% or less. Preferably, the Al content is 1.00% or less. Since Al need not be included in the steel sheet according to the present embodiment, the lower limit of the Al content is 0%. However, since it is difficult to completely remove Al contained as an impurity in the raw material of the steel sheet, the lower limit value of the Al content may be 0.001%.
  • Cr 0 to 1.00% Cr is an element that improves the tensile strength of the steel sheet, and has the effect of suppressing ferrite transformation during cooling after annealing in an annealing facility or hot dip galvanizing facility, thereby increasing the amount of tempered martensite. It is an element. Since Cr does not need to be included in the steel sheet according to the present embodiment, the lower limit of the Cr content is 0%. However, in order to obtain the above-described effect, the Cr content may be 0.05% or more. More preferably, the Cr content is 0.10% or more. On the other hand, if the Cr content exceeds 1.00%, the manufacturability during production and hot rolling is impaired, so the Cr content is preferably 1.00% or less. More preferably, the Cr content is 0.70% or less.
  • Mo 0 to 1.00%
  • Mo is an element that improves the tensile strength and the like of the steel sheet, and suppresses ferrite transformation during cooling after annealing in an annealing facility or continuous hot dip galvanizing facility, thereby increasing the amount of tempered martensite. Element. Since Mo need not be included in the steel sheet according to the present embodiment, the lower limit of the Mo content is 0%. However, in order to obtain the above-described effect, the Mo content may be 0.01% or more. The Mo content is more preferably 0.05% or more. On the other hand, if the Mo content exceeds 1.00%, the manufacturability at the time of production and hot rolling is impaired, so the Mo content is preferably 1.00% or less. The Mo content is more preferably 0.70% or less.
  • Ni 0 to 1.00%
  • Ni is an element that improves the tensile strength and the like of the steel sheet, and suppresses ferrite transformation during cooling after annealing in an annealing facility or continuous hot dip galvanizing facility, thereby increasing the amount of tempered martensite. Element. Since Ni need not be included in the steel sheet according to the present embodiment, the lower limit of the Ni content is 0%. However, in order to obtain the above-described effect, the Ni content may be 0.05% or more. The Ni content is more preferably 0.10% or more. On the other hand, if the Ni content exceeds 1.00%, the manufacturability during production and hot rolling is hindered, so the Ni content is preferably 1.00% or less. The Ni content is more preferably 0.70% or less.
  • Cu 0 to 1.00%
  • Cu is an element that improves the tensile strength and the like of the steel sheet, and suppresses ferrite transformation during cooling after annealing in an annealing facility or continuous hot dip galvanizing facility, thereby increasing the amount of tempered martensite.
  • the lower limit of the Cu content is 0%.
  • the Cu content may be 0.05% or more.
  • the Cu content is more preferably 0.10% or more.
  • the Cu content is more preferably 0.70% or less.
  • Nb is an element that contributes to an increase in the strength of the steel sheet by precipitate strengthening, fine grain strengthening, and dislocation strengthening. Since Nb does not need to be included in the steel sheet according to the present embodiment, the lower limit of the Nb content is 0%. However, in order to obtain the above effect, the Nb content may be 0.005% or more. The Nb content is more preferably 0.010% or more. On the other hand, if the Nb content exceeds 0.30%, the amount of carbonitride deposited increases and the moldability deteriorates, so the Nb content is preferably 0.30% or less. The Nb content is more preferably 0.20% or less.
  • Ti is an element that contributes to an increase in the strength of the steel sheet by precipitate strengthening, fine grain strengthening, and dislocation strengthening. Since Ti does not need to be included in the steel sheet according to this embodiment, the lower limit of the Ti content is 0%. However, in order to obtain the above effect, the Ti content may be 0.005% or more. The Ti content is more preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.30%, the precipitated amount of carbonitride increases and the moldability deteriorates, so the Ti content is preferably 0.30% or less. The Ti content is more preferably 0.15% or less.
  • V 0 to 0.50%
  • V is an element that contributes to an increase in the strength of the steel sheet by precipitate strengthening, fine grain strengthening, and dislocation strengthening. Since V does not need to be included in the steel sheet according to the present embodiment, the lower limit of the V content is 0%. However, in order to obtain the above-described effect, the V content may be 0.005% or more. The V content is more preferably 0.10% or more. On the other hand, if the V content exceeds 0.50%, the amount of carbonitride deposited increases and the moldability deteriorates, so the V content is preferably 0.50% or less. The V content is more preferably 0.35% or less.
  • B 0 to 0.01%
  • B is an element that strengthens the grain boundary, and also has an effect of suppressing ferrite transformation and thereby increasing the amount of tempered martensite during cooling after annealing in an annealing facility or continuous hot dip galvanizing facility. It is. Since B need not be included in the steel sheet according to the present embodiment, the lower limit of the B content is 0%. However, in order to obtain the above-described effect, the B content may be 0.0001% or more. The B content is more preferably 0.0005% or more. On the other hand, if the B content exceeds 0.01%, the manufacturability during hot rolling decreases, so the B content is preferably 0.01% or less. The B content is more preferably 0.005% or less.
  • Ca, Mg, and REM are elements that control the form of oxides and sulfides and contribute to improving the hole expansibility of the steel sheet. Since Ca, Mg, and REM do not need to be included in the steel sheet according to the present embodiment, the lower limit of each of the Ca content, the Mg content, and the REM content is 0%. However, in order to obtain the above-described effect, each of the Ca content, the Mg content, and the REM content may be 0.0005% or more. Each of the Ca content, the Mg content, and the REM content is more preferably 0.0010% or more.
  • the Ca content, Mg content, and REM content each exceed 0.04%, the castability deteriorates, so the Ca content, Mg content, and REM content each are 0.04% or less. Is preferred.
  • Each of the Ca content, the Mg content, and the REM content is more preferably 0.01% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid
  • the “REM content” refers to the total content of these 17 elements.
  • lanthanoid is used as REM
  • REM is often added industrially in the form of misch metal.
  • the steel plate according to the present embodiment exhibits the effect of the steel plate according to the present embodiment.
  • metal REM such as metal La and metal Ce
  • the steel plate which concerns on this embodiment exhibits the effect of the steel plate which concerns on this embodiment.
  • the steel sheet according to this embodiment is made of iron and impurities in the balance in addition to the above elements.
  • Impurities are components mixed in by various factors of raw materials such as ore or scrap, or manufacturing processes when industrially producing steel materials, and are allowed within a range that does not adversely affect the present invention. Means things.
  • Tensile strength 780 MPa or more
  • the steel sheet according to this embodiment has a tensile strength of 780 MPa or more. This tensile strength can be obtained by controlling the chemical composition of the steel sheet within the above-described range and setting the structure of the steel sheet as described below.
  • the plate thickness 1/4 part is a surface having a depth of 1/8 of the steel plate thickness t from the steel plate surface (the upper surface and the lower surface of the steel plate) and a surface having a depth of 3/8 of the steel plate thickness t from the steel plate surface. Is the area between.
  • a surface having a depth of 1/4 of the steel sheet thickness t from the steel sheet surface is the center plane of the 1/4 thickness.
  • the plate thickness 1 ⁇ 4 part is located between the center surface of the steel plate and the surface of the plate, and thus has an average structure. Therefore, in the steel plate according to the present embodiment, the structure at the 1/4 thickness portion is defined.
  • the structure A is a structure that has the ⁇ -based carbide and has the greatest influence on the tensile strength and delayed fracture resistance of the steel sheet according to the present embodiment, that is, the main phase.
  • the structure B is a structure having no ⁇ -based carbide, and is a second phase for optimizing various properties of the steel sheet according to the present embodiment. Since the structure C does not have a function of improving various properties of the steel sheet according to the present embodiment, it is a structure that does not need to be included, and the lower limit of the content is 0% by volume.
  • Tempered martensite with a thickness of 1/4 part (main phase): 30 to 70%
  • main phase 30 to 70%
  • tempered martensite is an important structure for ensuring the strength and delayed fracture resistance of the steel sheet.
  • Tempered martensite is an aggregate of lath-shaped crystal grains and contains iron-based carbide inside.
  • the iron-based carbide belongs to a plurality of iron-based carbide groups extending in different directions and functions as a hydrogen trap site.
  • the major axis of the iron-based carbide is, for example, 5 nm or more.
  • a part of the iron-based carbide in the tempered martensite can be converted to an ⁇ -based carbide described later by a heat treatment performed under appropriate conditions.
  • Tempered martensite is obtained by tempering the quenched martensite. If the volume fraction of this tempered martensite is less than 30%, the tensile strength of the steel sheet cannot be increased to 780 MPa or more. Therefore, the volume fraction of tempered martensite is set to 30% or more. The volume fraction of tempered martensite is preferably 35% or more.
  • volume fraction of tempered martensite exceeds 70%, the tensile strength of the steel sheet increases excessively and the formability of the steel sheet decreases, so the volume fraction of tempered martensite is 70% or less.
  • the volume fraction of tempered martensite is preferably 65% or less.
  • Structure B One or two types of ferrite and bainite (second phase): 20% or more in total
  • the structure other than the tempered martensite is mainly one of ferrite and bainite. Or it is the structure
  • Ferrite is a soft structure that causes a reduction in the strength of the steel sheet, but improves the processing characteristics of the steel sheet. In order to ensure the processing characteristics of the steel sheet, 20% or more of ferrite may be present in the structure of the steel sheet. In addition, since ferrite does not contain iron-based carbide, it does not affect the delayed fracture resistance.
  • Bainite like martensite, is an aggregate of lath-like crystal grains, and has a structure containing, for example, an iron-based carbide having a major axis of 5 nm or more. This iron-based carbide functions as a hydrogen trap site, and the delayed fracture resistance of the steel sheet is improved. On the other hand, since bainite is softer than martensite, the formability of the steel sheet is not excessively impaired. Therefore, 20% or more of bainite may be present in the structure of the steel sheet.
  • bainite containing iron-based carbide is also a structure that contributes to the improvement of delayed fracture resistance.
  • bainite is a structure that is generated by holding at a required temperature for a long time. I can't keep it.
  • the inventors of the present invention include a structure included in the steel sheet according to the present embodiment, an essential structure A including ⁇ -based carbide (that is, tempered martensite), and an essential structure B not including ⁇ -based carbide (that is, ferrite and bainite).
  • an essential structure A including ⁇ -based carbide that is, tempered martensite
  • an essential structure B not including ⁇ -based carbide that is, ferrite and bainite.
  • the volume fraction of one or two of ferrite and bainite (second phase) is less than 20% in total, the amount of tempered martensite or other structures described later becomes excessive. Processing characteristics required for molding cannot be obtained. Therefore, the total volume fraction of one or two (second phase) of ferrite and bainite is 20% or more.
  • the total volume fraction of one or two (second phase) of ferrite and bainite is preferably 25% or more. Since the lower limit value of the volume fraction of tempered martensite is 30%, the upper limit of the total volume fraction of one or two types (second phase) of ferrite and bainite is 70%. The volume fraction of ferrite and bainite alone is not specified.
  • the volume fraction of one of ferrite and bainite is 0%, if the volume fraction of the other of ferrite and bainite is 20% or more, the processing characteristics necessary for molding of an automobile member can be obtained. It is done. For example, when the volume fraction of tempered martensite is 30%, the total volume fraction of one or two of ferrite and bainite reaches close to 70%. Tempered martensite containing carbide and capable of controlling the precipitation amount of iron-based carbide by heat treatment is regarded as the main phase of the structure of the steel sheet according to this embodiment.
  • the steel sheet according to this embodiment may contain retained austenite, fresh martensite, and pearlite in addition to tempered martensite, ferrite, and bainite.
  • Residual austenite contributes to the improvement of moldability by the TRIP effect.
  • volume fraction of retained austenite increases, there is a concern that when it is molded as an automobile member, it is transformed into hard fresh martensite and the processing characteristics are deteriorated.
  • the inventors of the present invention have confirmed through experiments that the processing characteristics deteriorate when the volume fraction of retained austenite in the structure of the steel sheet is 10% or more. Therefore, in the steel sheet according to this embodiment, the volume fraction of retained austenite is less than 10%.
  • the volume fraction of retained austenite is preferably 7% or less.
  • the steel sheet according to this embodiment has sufficient formability. Therefore, since the steel plate according to the present embodiment does not need to contain retained austenite, the lower limit value of the volume fraction of retained austenite is 0%.
  • Fresh martensite is martensite that does not contain Fe carbide. Although the steel plate containing fresh martensite has high strength but has poor processing characteristics, the volume fraction of fresh martensite of the steel plate according to this embodiment is limited to 10% or less. On the other hand, even if the volume fraction of fresh martensite is 0%, the steel plate according to this embodiment has sufficient strength. Therefore, since the steel plate according to the present embodiment does not need to contain fresh martensite, the lower limit value of the volume fraction of fresh martensite is 0%.
  • the pearlite volume fraction of the steel sheet according to the present embodiment is limited to 10% or less.
  • pearlite is a structure containing cementite, which is Fe carbide, but since celite cannot be changed to ⁇ -based carbide, pearlite does not have the effect of improving delayed fracture resistance. Therefore, since the steel plate according to this embodiment does not need to contain pearlite, the lower limit value of the pearlite volume fraction is 0%.
  • the total volume fraction of residual austenite, fresh martensite, and pearlite of the steel sheet according to this embodiment needs to be 15% or less, and is preferably 12% or less, or 10% or less. Residual austenite, fresh martensite, and pearlite with a total volume fraction exceeding 15% may impair the processing characteristics of the steel sheet.
  • Tempered martensite, ferrite, bainite, and retained austenite, as well as fresh martensite, pearlite, and other structures, confirmation of their location, and measurement of volume fraction are the Nital reagent and JP Using the reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473, corroding the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling direction, and observing the cross section with a scanning electron microscope and transmission electron microscope at 1000 to 100,000 times be able to.
  • crystal orientation analysis by FE-SEM crystal orientation analysis using EBSD: Electron Back-Scatter Diffraction
  • FE-SEM Field Emission Scanning Electron Microscope
  • tempered martensite and bainite have different carbide formation sites and crystal orientation relationships (elongation directions). Therefore, using FE-SEM, the elongation of iron-based carbides in the lath-like crystal grains is increased. By observing the direction, tempered martensite and bainite can be easily distinguished.
  • Samples were collected with the tempered martensite, ferrite, and bainite volume fractions and / or pearlite volume fractions at 1 ⁇ 4 part of the steel plate thickness taken as the observation plane of the plate thickness section parallel to the rolling direction of the steel plate. Then, the observation surface is polished, etched with a nital solution, and a thickness of 1/4 part (in the range of 1/8 to 3/8 of the thickness centered at 1/4 of the thickness) is FE- It is obtained by measuring the area fraction of each tissue, which is obtained by observing with SEM, and regarding these area fractions as volume fractions. In addition, the area fraction of each structure
  • Fresh martensite and retained austenite are clearly distinguished from the above structures (tempered martensite, ferrite, bainite) by etching the cross section of the steel sheet with a repeller solution and observing a 1 ⁇ 4 part thickness with FE-SEM. be able to. Therefore, the volume fraction of fresh martensite can be obtained as the difference between the area fraction of the uncorroded region observed with FE-SEM and the area fraction of retained austenite measured with X-rays.
  • the number density of iron-based carbides in the tempered martensite is defined as 5 ⁇ 10 7 (pieces / mm 2 ) or more, and the ratio of the number of ⁇ -based carbides to the number in all iron-based carbides is 20 The reason for prescribing at least% will be explained.
  • the number density of iron-based carbides having a major axis of 5 nm or more in the tempered martensite, which is the main phase in the structure having a thickness of 1/4 part is 5 ⁇ 10 7 (pieces / mm 2 ) or more.
  • “number density of iron-based carbides in tempered martensite” is the number of iron-based carbides contained in tempered martensite in the observation surface divided by the area of tempered martensite in the observation surface. Is a value obtained by
  • Martensite immediately after quenching has high strength, but its delayed fracture resistance is low, so its improvement is necessary. Accordingly, martensite is tempered to form tempered martensite, and iron carbide having a major axis of 5 nm or more is precipitated in the tempered martensite at a thickness of 1/4 part by 5 ⁇ 10 7 (pieces / mm 2 ) or more. Delayed fracture resistance of tempered martensite (main phase) is superior to martensite that has not been tempered.
  • the present inventors investigated the relationship between delayed fracture resistance and the number density of iron-based carbides in tempered martensite at a thickness of 1/4 part. The result is shown in FIG.
  • the number density of the iron-based carbide was determined by taking a sample with the plate thickness section parallel to the rolling direction of the steel plate as the observation surface, polishing the observation surface, etching with a nital solution, and FE 10 fields at 1/4 thickness. A value obtained by dividing the number of iron-based carbides having a major axis of 5 nm or more contained in the tempered martensite in each visual field by the SEM with a magnification of 5000 times and dividing the number of iron-based carbides in the visual field by the area of the tempered martensite in the visual field. Measured by averaging. Note that the number of iron-based carbides having a major axis of less than 5 nm was not measured.
  • iron-based carbide having a major axis of less than 5 nm does not greatly affect the delayed fracture resistance of the steel sheet.
  • an iron-based carbide having a major axis of 5 nm or more may be simply referred to as “iron-based carbide”.
  • the delayed fracture resistance of a steel sheet is obtained by bending a strip-shaped test piece having a length of 100 mm, a width of 30 mm, and a thickness of 1.3 mm or 1.6 mm cut at right angles to the rolling direction of the steel sheet, and performing this strip-shaped test. After mounting a water-resistant strain gauge on the surface of the strip, the strip-shaped test piece is immersed in an aqueous thiocyanammonium solution, and the aqueous thiocyanammonium solution is electrolyzed at a current density of 0.1 mA / cm 2 , so that the inside of the strip-shaped test piece Hydrogen was penetrated into the steel sheet, and evaluation was made by confirming the occurrence of cracks after 2 hours.
  • the radius of bending of the strip-shaped test piece was 10 mm.
  • the load stress given to the strip-shaped test piece having a thickness of 1.3 mm is 60% of the tensile strength (TS) of the steel plate, and the load stress given to the strip-shaped test piece having a thickness of 1.6 mm is the tensile strength (TS of the steel plate) ) Of 90%.
  • a strip-shaped test piece fractured with a load stress of 60% of the tensile strength (TS) is “VERY BAD”, and does not break with a load stress of 60% of the tensile strength (TS), and a load of 90% of the tensile strength (TS).
  • the strip-shaped test piece that was broken by stress was evaluated as “BAD”, and the strip-shaped test piece that was not broken by both load stresses was evaluated as “GOOD”.
  • the number density of iron-based carbides in the tempered martensite at a thickness of 1/4 part was defined as 5 ⁇ 10 7 (pieces / mm 2 ) or more.
  • the number density of iron-based carbides in the tempered martensite at a thickness of 1/4 part is preferably 1 ⁇ 10 8 (pieces / mm 2 ) or more, more preferably 3 ⁇ 10 8 (pieces / mm 2 ) or more. It is.
  • the major axis of the iron-based carbide in the tempered martensite is preferably as small as possible, and is preferably 350 nm or less.
  • the major axis of the iron-based carbide in the tempered martensite is more preferably 250 nm or less, and still more preferably 200 nm or less.
  • iron-based carbides having a long diameter that is too small do not have an effect of improving delayed fracture resistance, iron-based carbides having a long diameter of less than 5 nm are not considered in the steel sheet according to this embodiment.
  • board thickness 1/4 part is located in the middle of the center surface of a steel plate, and the surface of a plate, it has an average structure
  • Ratio of the number of ⁇ -based carbides to the number of all iron-based carbides 20% or more
  • the ratio of the number of ⁇ -based carbides to the number of all iron-based carbides in the tempered martensite according to this embodiment (hereinafter referred to as “the number of ⁇ -based carbides”) , “ May be abbreviated as“ ratio of ⁇ -based carbide ”) is 20% or more.
  • the iron-based carbide in the tempered martensite is mainly cementite (Fe 3 C).
  • cementite Normally, it is considered that the interface between the parent phase iron (bcc structure) and cementite (Fe 3 C) functions as a trap site for trapping hydrogen. Therefore, the presence of cementite is said to contribute to the improvement of delayed fracture resistance.
  • cementite is the starting point for ductile fracture, it is difficult to improve both formability and delayed fracture resistance using only cementite.
  • the iron-based carbides composed of Fe and C include ⁇ -based carbides, ⁇ -based carbides, cementite ( ⁇ -based carbides) and the like having different crystal structures. These iron-based carbides precipitate in martensite in a state having a specific crystal orientation relationship with iron of the bcc structure of the parent phase.
  • ⁇ -based carbide (Fe 2.4 C) and bcc-structured iron are coherent interfaces, two-phase interfaces, and all atoms are the most in each phase. An interface close to the interface where the relationship between adjacent atoms is satisfied is formed. Since the interface between ⁇ -based carbide (Fe 2.4 C) and iron (bcc structure) is more consistent than the interface between cementite and iron (bcc structure), the hydrogen trapping capability is higher than that of cementite. Guessed. Further, since ⁇ -based carbide is finer than cementite, it is difficult to become a starting point for ductile fracture.
  • ⁇ -based carbides hexagonal crystals
  • cementite orthorhombic crystals
  • the present inventors observed a thin film sample with an electron microscope and identified the type of iron-based carbide. An iron-based carbide was irradiated with an electron beam, and the obtained diffraction pattern was analyzed to identify an ⁇ -based carbide (Fe 2.4 C).
  • Ratio of epsilon carbides of iron-based carbide in each sample (Fe 2.4 C) as 10000 times magnification, epsilon-containing carbide according to each field obtained by measuring at 10 fields (Fe 2.4 It was calculated by averaging the proportion of C).
  • the delayed fracture resistance was evaluated by the evaluation method described above.
  • the proportion of ⁇ -based carbide (Fe 2.4 C) in the iron-based carbide is preferably 30% or more, and more preferably 40% or more.
  • the ratio of the ⁇ -based carbide in the iron-based carbide is less than 20%, not only the delayed fracture resistance is inferior, but also good processing characteristics cannot be obtained.
  • the 1 ⁇ 4 part of the plate thickness is located between the center surface of the steel plate and the surface of the plate, and thus has an average structure. Therefore, in the steel sheet according to the present embodiment, if the ratio of the ⁇ -based carbides in the iron-based carbides in the tempered martensite at the 1 ⁇ 4 part thickness is within a suitable range, good characteristics can be obtained over the entire steel sheet. .
  • a hot dip galvanized layer composed of Fe, 15% by mass or less and the balance of Zn, Al, and impurities is formed on the surface of the steel sheet according to the present embodiment.
  • the Fe concentration in the hot dip galvanized layer is often less than 7% by mass.
  • the lower limit of the Fe concentration in the hot dip galvanizing is not particularly limited, but is preferably 1.0% by mass.
  • the alloyed galvanized steel sheet according to the present embodiment is alloyed by forming a hot-dip galvanized layer composed of Fe, 15% by mass or less, and the balance of Zn, Al, and impurities on the surface of the steel sheet according to the present embodiment. It is characterized by being.
  • the lower limit value of the Fe concentration in the alloyed hot dip galvanizing is not particularly limited, but is usually 7% by mass in many cases.
  • the method for producing the steel sheet of the present invention comprises: (A) A cast slab having the same composition as that of the steel sheet according to the present embodiment is (a1) directly subjected to hot rolling and then wound, or (a2) once cooled and heated to hot rolling. Served, then wound (B) After pickling, it is subjected to cold rolling, then annealed, (C) The annealed steel sheet is cooled in two stages, then tempered, and then (D) The tempered steel sheet is further cooled in two stages. (D) is an important process for setting the ratio of the ⁇ -based carbide in the iron-based carbide to 20% or more.
  • the cast slab used for hot rolling may be a cast slab, and is not limited to a specific cast slab.
  • it may be a slab manufactured by a continuous casting slab or a thin slab caster.
  • the cast slab is subjected to hot rolling.
  • the cast slab may be directly subjected to hot rolling after casting, or may be subjected to hot rolling after being once cooled and then reheated.
  • the hot rolling is completed in a temperature range above the Ar 3 transformation point (temperature at which ferrite transformation starts when the steel is cooled).
  • the cast slab needs to be heated at the start of hot rolling to a temperature that can be achieved. This is because when the finish rolling temperature is in the two-phase temperature range of (austenite + ferrite), the non-uniformity of the structure of the hot-rolled steel sheet increases, and the formability of the finally obtained steel sheet deteriorates.
  • the steel sheet according to this embodiment having a maximum tensile strength of 780 MPa or more may contain a large amount of alloy elements.
  • the finish rolling temperature is not less than the Ar 3 transformation point.
  • the finally obtained steel sheet has good formability. It was confirmed.
  • the rough rolled sheets may be joined together and continuously hot rolled, or the rough rolled sheets may be wound up once and used for the next hot rolling.
  • the coiling temperature after completion of hot rolling needs to be a temperature at which the thickness of the oxide generated on the steel sheet surface increases excessively and the pickling property does not deteriorate.
  • the coiling temperature after the hot rolling is completed is a temperature at which coarse ferrite and pearlite are generated in the hot-rolled structure, and the structure non-uniformity after annealing becomes large and the formability of the final product is not deteriorated. It is necessary to.
  • the microstructure after annealing is refined to improve the strength-ductility balance, and the second phase is uniformly dispersed. It was confirmed that the formability of the finally obtained steel sheet can be improved.
  • the wound hot-rolled steel sheet is rewound, pickled, and subjected to cold rolling, thereby obtaining a cold-rolled steel sheet.
  • pickling may be performed once or may be performed in a plurality of times.
  • the pickled hot-rolled steel sheet needs to be cold-rolled at such a high reduction rate as to keep the shape of the cold-rolled steel sheet flat and impart sufficient ductility to the final product.
  • the rolling reduction is too high, the rolling load becomes excessive and rolling becomes difficult.
  • the present inventors have confirmed that, for example, when the cumulative rolling reduction during cold rolling (cold rolling reduction) is 50%, a suitable result is obtained.
  • the slab having the chemical composition of the steel sheet according to the present embodiment was cold-rolled with the cumulative reduction ratio during cold rolling being 90%, the steel sheet was cracked.
  • the number of rolling passes and the rolling reduction for each pass are not particularly limited.
  • the annealing is preferably continuous annealing in order to increase manufacturability.
  • the annealing temperature is insufficient (for example, about 750 ° C.), sufficient martensite cannot be generated in the cold-rolled steel sheet after annealing, so that the tempered martensite volume fraction of the finally obtained steel sheet is 30 It is difficult to make more than%.
  • the annealing temperature is excessive (for example, about 1000 ° C.)
  • the manufacturing cost is increased, which is not economically preferable.
  • the shape of the steel sheet is deteriorated. Inducing troubles such as lowering.
  • the martensite contained in the cold-rolled steel sheet after annealing becomes excessive when the annealing temperature is excessive, the volume fraction of tempered martensite of the finally obtained steel sheet exceeds 70%.
  • annealing time is inadequate (for example, about 1 second)
  • generated by hot rolling cannot be dissolved, and the martensite contained in the cold-rolled steel plate after annealing is insufficient. Therefore, the volume fraction of tempered martensite in the finally obtained steel sheet cannot be made 30% or more.
  • the annealing time is excessive, the manufacturing cost is increased, which is not economically preferable.
  • the tempered martensite amount of the finally obtained steel sheet may be within an appropriate range. Confirmed that it was possible.
  • the cold-rolled steel sheet after annealing is cooled.
  • This cooling needs to be two-stage cooling in which the cooling rate is changed according to the cooling temperature range in order to secure a sufficient ferrite amount.
  • the two-stage cooling after annealing and before tempering is referred to as the first two-stage cooling
  • the first-stage cooling and the second-stage cooling included in the first two-stage cooling are respectively the primary cooling and the secondary cooling. May be called.
  • the cooling stop temperature in the first stage cooling is set to 500 ° C. or higher.
  • the cooling at the first stage is stopped at a temperature higher than the temperature at which transformation from austenite to ferrite occurs, a sufficient amount of ferrite cannot be secured as in the case where the cooling stop temperature is less than 500 ° C. .
  • the cooling rate to the cooling stop temperature in the first stage cooling is 0.5 to 200 ° C./second.
  • the cooling rate to the cooling stop temperature in the first stage cooling is less than 0.5 ° C./second, pearlite is generated, and the volume fraction of tempered martensite in the finally obtained steel sheet is set to 30% or more. I can't.
  • the cooling rate up to the cooling stop temperature in the first stage cooling is set to 200 ° C./second or less.
  • the cooling stop temperature is set to 100 ° C. or higher.
  • the cooling stop temperature In the second stage of cooling, if the cooling stop temperature exceeds 450 ° C., the total volume fraction of ferrite and bainite becomes less than 20%, and the processing characteristics cannot be secured, so the cooling stop temperature is set to 450 ° C. or less. In the second stage of cooling, if the cooling rate is less than 1 ° C./second, the amount of ferrite or bainite in the finally obtained steel sheet is less than 20%, and the processing characteristics cannot be secured, so the cooling rate is 1 ° C. / Second or more. On the other hand, since it is difficult to realize a cooling rate exceeding 200 ° C./second, the cooling rate up to the cooling stop temperature in the second stage cooling is set to 200 ° C./second or less.
  • cooling method may be roll cooling, air cooling, water cooling, or a combination thereof.
  • the cold-rolled steel sheet is tempered to thereby control the structure.
  • martensite contained in the cold-rolled steel sheet is tempered to produce 20% by volume or more of tempered martensite, and the number density of iron-based carbides in this tempered martensite is 5 ⁇ 10 7 (pieces / mm 2 ). That's it.
  • the steel sheet temperature is maintained at a predetermined holding temperature (isothermal holding temperature) for a predetermined time (isothermal holding time).
  • a predetermined holding temperature isothermal holding temperature
  • a predetermined time isothermal holding time.
  • the holding temperature in tempering is excessive (for example, about 550 ° C.)
  • the martensite is excessively tempered and the finally obtained steel sheet has a tensile strength of less than 780 MPa.
  • the holding temperature in tempering is excessive, the precipitated iron carbide is coarsened and the delayed fracture resistance is not improved.
  • tempering of martensite becomes insufficient and it is difficult to make the number density of iron-based carbides 5 ⁇ 10 7 (pieces / mm 2 ) or more.
  • iron-based carbides include ⁇ -based carbides, ⁇ -based carbides, cementite ( ⁇ -based carbides), and the like having different crystal structures.
  • ⁇ -based carbide Fe 2.4 C
  • ⁇ -based carbide forms an interface close to the matching interface with iron having a bcc structure, and thus has a high hydrogen trap capability.
  • ⁇ -based carbide is finer than cementite, it is difficult to become a starting point for ductile fracture.
  • the inventors estimate that the amount of ⁇ inclusions is influenced not only by the cooling conditions in tempering but also by the C content, the cooling temperature of annealing, the holding temperature in tempering, and the holding time in tempering. . In order to obtain the required ⁇ -based inclusions, it is necessary to determine the production conditions in consideration of the interaction of these ⁇ -based inclusion amount control factors.
  • the present inventors have produced a large number of ⁇ -based carbides and improved delayed fracture resistance, so that a temperature range of holding temperature to about 350 ° C. and about 350 ° C. to 100 ° C. It was found that it is necessary to perform two-stage cooling with different cooling rates depending on the temperature range.
  • the two-stage cooling after tempering is referred to as the second two-stage cooling
  • the cooling in the temperature range from the holding temperature to about 350 ° C. included in the second two-stage cooling is referred to as the third cooling, and about 350 ° C. to 100 ° C. Cooling in this temperature range is sometimes referred to as quaternary cooling.
  • the cooling rate is too low (eg about 1 ° C./sec) or too high (eg about 75 ° C./sec) in the tertiary cooling range, or the cooling rate is low in the fourth cooling range. If it was too low (for example, about 1 ° C./sec) or too high (for example, about 65 ° C./sec), the amount of ⁇ -based carbide was insufficient. According to the experiments by the present inventors, it has been found that if the temperature for changing the cooling rate is 350 ° C. ⁇ 10 ° C., the necessary effect can be obtained.
  • the inventors set the C content to 0.06%, set the annealing conditions and the holding time and holding temperature in the tempering to the values exemplified above, and the cooling rate in the temperature range of holding temperature to 350 ° C. is about 12%.
  • the cooling rate in the temperature range of 350 to 100 ° C. is about 16 ° C./sec and the end temperature of the second two-stage cooling is 100 ° C. or less
  • the number density of the iron-based carbide is 5 ⁇ . It has been found that it is possible to produce a steel sheet that is 10 7 pieces / mm 2 or more and the ratio of the ⁇ -based carbides in the iron-based carbides at a thickness of 1/4 part is 20% or more.
  • the ⁇ -based carbide (Fe 2.4 C) is finer than cementite and is unlikely to become a starting point for ductile fracture, so that the delayed fracture resistance can be remarkably enhanced while maintaining the formability.
  • the manufacturing method of the galvanized steel sheet according to this embodiment is as follows: (A) A cast slab having the same composition as that of the steel sheet according to the present embodiment is (a1) directly subjected to hot rolling and then wound, or (a2) once cooled and heated to hot rolling.
  • the hot dip galvanizing is hot dip galvanizing in which Fe is 15% by mass or less and the balance is Zn, Al, and impurities.
  • the plated layer When a plated layer having Fe of less than 7% by mass is formed on a steel sheet, the plated layer is usually not used for alloying and is often used as a hot dip galvanized steel sheet. On the other hand, when a plated layer having Fe of 7% by mass or more is formed on a steel sheet, the plated layer is usually subjected to alloying treatment and used as an alloyed hot-dip galvanized steel sheet in many cases.
  • (A) and (b) of the method for manufacturing a galvanized steel sheet according to the present embodiment are the same as (a) and (b) of the method for manufacturing a steel sheet according to the present embodiment.
  • (d) of the manufacturing method of the galvanized steel plate which concerns on this embodiment it is necessary to perform two-stage cooling similarly to the manufacturing method of the steel plate which concerns on this embodiment.
  • the hot dip galvanization is performed by immersing the steel sheet in a plating bath after the steel plate temperature is set close to the galvanizing bath temperature.
  • a hot dip galvanized layer can be uniformly formed on the steel sheet surface with good adhesion.
  • the steel plate after annealing is cooled in two steps to the vicinity of the galvanizing bath temperature, or cooled in two steps and then further cooled to room temperature. If the cooling rate is insufficient during the two-stage cooling, a part of the retained austenite is decomposed to become a carbide, so that the processing characteristics deteriorate.
  • the plating bath may contain Fe, Al, Mg, Mn, Si, Cr and the like in addition to pure zinc.
  • the same structure control as that of the tempering of the steel sheet according to the present embodiment is performed by immersing the steel sheet in a hot dip galvanizing bath. If the thermal history of the steel sheet at the time of immersion is the same as the thermal history of the tempering of the steel sheet according to this embodiment described above, immersing the steel sheet in the hot dip galvanizing bath does not impair the characteristics of the steel sheet.
  • the number of fine iron-based carbides in the tempered martensite of the main phase of the required structure is 5 ⁇ 10 7 (pieces / mm 2 ).
  • the ratio of the ⁇ -based carbide in the iron-based carbide is set to 20% or more, and the delayed fracture resistance can be remarkably enhanced while maintaining the moldability.
  • the method for producing an alloyed galvanized steel sheet according to this embodiment is as follows: (A) A cast slab having the same composition as that of the steel sheet according to the present embodiment is (a1) directly subjected to hot rolling and then wound, or (a2) once cooled and heated to hot rolling.
  • the manufacturing method of the alloyed galvanized steel sheet according to the present embodiment may include (e) reheating, performing heat treatment, and then cooling to room temperature after (d).
  • the alloying hot dip galvanizing is galvannealed hot dip galvanizing in which Fe is 15% by mass or less and the balance is Zn, Al, and impurities.
  • the method for producing an alloyed galvanized steel sheet according to this embodiment is obtained by adding a step of alloying a hot-dip galvanized layer to the method for producing a galvanized steel sheet of the present invention.
  • the alloying temperature is insufficient, an alloyed layer with good adhesion cannot be formed.
  • the alloying temperature is excessive, the alloyed layer becomes too thick and the moldability of the plating layer is lowered.
  • the ratio of ⁇ -based carbides in iron-based carbides forming an interface with high hydrogen trapping capacity is increased.
  • the heat treatment may be performed again.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the manufacturing method of the Example of a steel plate is as follows.
  • a cast slab having the composition disclosed in the table is (a1) directly subjected to hot rolling and then wound, or (a2) once cooled and heated. And then subjecting to hot rolling, then winding, (b) pickling, and then cold rolling, then annealing, and (c) cooling the annealed steel sheet in two stages, and then tempering Thereafter, (d) the tempered steel sheet was further cooled in two stages.
  • the manufacturing method of the example of a hot-dip galvanized steel sheet is as follows.
  • a cast slab having the composition disclosed in the table is (a1) directly subjected to hot rolling and then wound or (a2) once cooled.
  • a cast slab having the composition disclosed in the table is directly subjected to hot rolling and then wound, or (a2) once After cooling, it is heated and subjected to hot rolling, and then wound, (b) After pickling and cold rolling, then annealed, and then (c-1) two-stage cooling of the annealed steel sheet Then, the hot dip galvanization is performed after bringing the temperature of the steel plate to around the hot dip galvanizing bath temperature, and then the alloying treatment is performed, or (c-2) the annealed steel plate is cooled in two stages and further cooled to room temperature.
  • the volume fraction of tempered martensite (structure A volume fraction), the total volume fraction of one or two of ferrite and bainite (structure B volume fraction), retained austenite, fresh martensite, And pearlite total volume fraction (structure C volume fraction), number density of iron carbide in tempered martensite (carbide number density), and number of ⁇ -based carbides relative to the number of iron carbides in tempered martensite Ratio (ratio of ⁇ -based carbide).
  • TS tensile strength
  • EL total elongation
  • hole expansibility
  • tensile strength and elongation a JIS No. 5 test piece was sampled at right angles to the rolling direction of the steel sheet, a tensile test was performed in accordance with JIS Z 2242, and tensile strength (TS) and total elongation (El) were measured. About hole expansibility, the hole expansion rate ((lambda) (%)) was measured based on Japan Iron and Steel Federation specification JFS T1001. The symbol “* 3” in the table indicates that TS, EL, and ⁇ were not evaluated because cracking occurred.
  • the delayed fracture resistance of a steel sheet is obtained by bending a strip-shaped test piece having a length of 100 mm, a width of 30 mm, and a thickness of 1.3 mm or 1.6 mm cut at right angles to the rolling direction of the steel sheet, and performing this strip-shaped test. After mounting a water-resistant strain gauge on the surface of the strip, the strip-shaped test piece is immersed in an aqueous thiocyanammonium solution, and the aqueous thiocyanammonium solution is electrolyzed at a current density of 0.1 mA / cm 2 , so that the inside of the strip-shaped test piece Hydrogen was penetrated into the steel sheet, and evaluation was made by confirming the occurrence of cracks after 2 hours.
  • the radius of bending of the strip-shaped test piece was 10 mm.
  • the load stress given to the strip-shaped test piece having a thickness of 1.3 mm is 60% of the tensile strength (TS) of the steel plate, and the load stress given to the strip-shaped test piece having a thickness of 1.6 mm is the tensile strength (TS of the steel plate) ) Of 90%.
  • a strip-shaped test piece fractured with a load stress of 60% of the tensile strength (TS) is “VERY BAD”, and does not break with a load stress of 60% of the tensile strength (TS), and a load of 90% of the tensile strength (TS).
  • the strip-shaped test piece that was broken by stress was evaluated as “BAD”, and the strip-shaped test piece that was not broken by both load stresses was evaluated as “GOOD”.
  • a steel plate rated “GOOD” is a steel plate having excellent delayed fracture resistance.
  • Hot-dip galvanized steel sheets and methods for producing them can be provided. Therefore, the present invention has high applicability in the construction member manufacturing and utilization industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明の一態様に係る鋼板は、所定の化学成分を有し、板厚1/4部の組織が、体積分率で、焼戻しマルテンサイト:30~70%、およびフェライト及びベイナイトの1種又は2種:合計で20%以上70%以下を含有し、前記板厚1/4部の組織において、体積分率で、残留オーステナイトが10%未満であり、フレッシュマルテンサイトが10%以下であり、パーライトが10%以下であり、且つこれらの合計体積分率が15%以下であり、前記板厚1/4部における前記焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度が5×10個/mm以上であり、前記板厚1/4部における長径5nm以上の前記鉄系炭化物の個数に対する、ε系炭化物の個数の割合が20%以上であり、引張強度が780MPa以上である。

Description

鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
 本発明は、自動車、建造物、家電製品等の構造部材として好適な、引張強度が780MPa以上の耐遅れ破壊特性に優れた鋼板、溶融亜鉛めっき鋼板、及び、合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法に関する。
 近年、自動車、建造物、家電製品等の構造部材として用いられる鋼板には、所要の強度および成型性の他、優れた耐遅れ破壊特性が求められる。遅れ破壊は、鋼材へ侵入した水素が応力集中部に集積して、鋼材を破壊する現象である。
 遅れ破壊は、高強度ボルト、PC鋼線、およびラインパイプ等の高強度鋼材において発生することが従来から知られている。これら高強度鋼材に関する、各種の耐遅れ破壊特性の向上策が提案されている。
 例えば、非特許文献1には、Cr、Mo、及びV等の元素が耐遅れ破壊特性の向上に有効であることが開示されている。これは、Cr、Mo、及び、V等の炭化物を結晶粒内に析出させ、これら炭化物を、水素をトラップするサイト(水素トラップサイト)として活用することにより、粒界の脆化を抑制する技術である。
 高強度材料は、塑性変形し難く、さらに破断し難いので、高い応力が作用する環境で使用される場合が多い。また、自動車用鋼板のように、成型後に部材として使用する鋼材においては、成型加工後に残留応力が発生する。この残留応力も、鋼板強度が高くなるほど大きくなるので、高強度鋼板では遅れ破壊の懸念が高まる。
 そのため、高強度鋼板を自動車部品に適用するためには、鋼板を成型して部品を得るために鋼板の成型性を高め、なおかつ、高い応力が作用する環境での使用に耐えるために、鋼板の耐遅れ破壊特性も高めることが必須である。
 また、上述のCr、Mo、及びV等の元素の炭化物の、水素トラップサイトとしての機能は、母相と炭化物との界面での整合性(整合歪)に由来し、上記機能は、冷間圧延及び熱処理を経ると低減する。それ故、Cr、Mo、及びV等の元素の炭化物を水素トラップサイトとして用いることは、冷間圧延および熱処理が必要とされる種類の鋼板には適用できない。
 特許文献1には、主にTi、およびMgからなる酸化物が水素性欠陥の抑制(耐遅れ破壊特性の向上)のために有効であることが開示されている。特許文献1に開示の水素脆性対策は、特に、大入熱溶接後の水素脆性を改善するためのものであるが、特許文献1の対象は厚鋼板であり、薄鋼板に要求される高い成型性と耐遅れ破壊特性との両立については考慮されていない。
 薄鋼板の水素脆性に関しては、例えば、非特許文献2に、残留オーステナイト量の加工誘起変態に起因して薄鋼板の水素脆性が助長されることが開示されている。即ち、薄鋼板において、耐遅れ破壊特性を劣化させないためには、残留オーステナイトの量を規制する必要があることが開示されている。
 しかし、非特許文献2に開示の耐遅れ破壊特性向上策は、特定の組織を持つ高強度薄鋼板に関するものであり、根本的な耐遅れ破壊特性向上策とはいえないものである。
 耐遅れ破壊特性と成型性との両方の改善を目的とする薄鋼板として、特許文献2に、耐つまとび性に優れたホウロウ容器用鋼板が開示されている。この鋼板は、製造時に鋼板中に侵入する水素を鋼板内の酸化物でトラップして、ホウロウがけの後に発生する「つまとび」(表面欠陥)を抑制するものである。
 それ故、特許文献2に開示の鋼板は、内部に多量の酸化物を含む。しかし、酸化物を鋼板内に高密度で分散させると、成型性が劣化する。従って、特許文献2に開示の技術を、高い成型性を必要とする自動車用鋼板に適用することはできない。
 一方、鋼板の成型性を向上させる手法として、鋼板中に残留オーステナイトを分散させ、鋼板の加工時(成型時)に、残留オーステナイトをマルテンサイトへ変態させる変態誘起塑性(TRIP効果)を用いる手法が知られている(特許文献3及び4、参照)。しかし、成型後に生成したマルテンサイトが遅れ破壊の発生を助長するので、成型性と耐遅れ破壊特性との向上を図る鋼板において、TRIP効果を活用することは難しい(非特許文献2、参照)。このように、鋼板において、成型性と耐遅れ破壊特性との両方を高めることは困難である。
日本国特開平11-293383号公報 日本国特開平11-100638号公報 日本国特開平01-230715号公報 日本国特開平02-217425号公報
「遅れ破壊解明の新展開」(日本鉄鋼協会、1997年1月発行) CAMP-ISIJ Vol.5 NO.6 1839~1842頁、山崎ら、1992年10月、日本鉄鋼協会発行
 前述したように、鋼板において、成型性と耐遅れ破壊特性との両方を高めることは困難である。本発明は、引張強度が780MPa以上の鋼板、溶融亜鉛めっき鋼板、及び、合金化溶融亜鉛めっき鋼板において、成型性を確保しつつ、耐遅れ破壊特性の向上を図ることを課題とする。本発明は、該課題を解決する鋼板、溶融亜鉛めっき鋼板、及び、合金化溶融亜鉛めっき鋼板と、それらの製造方法とを提供することを目的とする。
 本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、C含有量が0.05~0.40%であり、引張強度が780MPa以上である鋼板において、主相である焼戻しマルテンサイト、および第二相であるフェライト及びベイナイトの1種又は2種を所要の体積分率で含有し、且つその他の相の体積分率が制限された組織を形成し、焼戻しマルテンサイト中に鉄系炭化物を所要の個数密度以上で析出させ、かつ、鉄系炭化物の20%以上をε系炭化物とすることにより、鋼板の成型性を確保しつつ、耐遅れ破壊特性を向上させることができることを本発明者らは見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。
(1)本発明の一態様に係る鋼板は、化学成分が、質量%で、C:0.05~0.40%、Si:0.05~3.00%、Mn:1.50%以上3.50%未満、P:0.04%以下、S:0.01%以下、N:0.01%以下、O:0.006%以下、Al:0~2.00%、Cr:0~1.00%、Mo:0~1.00%、Ni:0~1.00%、Cu:0~1.00%Nb:0~0.30%、Ti:0~0.30%、V:0~0.50%B:0~0.01%Ca:0~0.04%、Mg:0~0.04%、及び、REM:0~0.04%を含有し、残部がFeおよび不純物からなり、板厚1/4部の組織が、体積分率で、焼戻しマルテンサイト:30~70%、およびフェライト及びベイナイトの1種又は2種:合計で20%以上70%以下を含有し、前記板厚1/4部の組織において、体積分率で、残留オーステナイトが10%未満であり、フレッシュマルテンサイトが10%以下であり、パーライトが10%以下であり、且つ前記残留オーステナイト、前記フレッシュマルテンサイト、および前記パーライトの合計体積分率が15%以下であり、前記板厚1/4部における前記焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度が5×10個/mm以上であり、前記板厚1/4部における長径5nm以上の前記鉄系炭化物の個数に対する、ε系炭化物の個数の割合が20%以上であり、引張強度が780MPa以上である。
(2)上記(1)に記載の鋼板では、前記化学成分が、質量%で、Cr:0.05~1.00%、Mo:0.01~1.00%、Ni:0.05~1.00%、及び、Cu:0.05~1.00%の1種又は2種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼板では、前記化学成分が、質量%で、Nb:0.005~0.30%、Ti:0.005~0.30%、及び、V:0.005~0.50%の1種又は2種以上を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の鋼板では、前記化学成分が、質量%で、B:0.0001~0.01%を含有してもよい。
(5)上記(1)~(4)のいずれか一項に記載の鋼板では、前記化学成分が、質量%で、Ca:0.0005~0.04%、Mg:0.0005~0.04%、及び、REM:0.0005~0.04%の1種又は2種以上を含有してもよい。
(6)上記(1)~(5)のいずれか一項に記載の鋼板は、前記鉄系炭化物の平均長径が350nm以下であってもよい。
(7)本発明の別の態様に係る溶融亜鉛めっき鋼板では、上記(1)~(6)のいずれか一項に記載の鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び不純物からなる溶融亜鉛めっき層が形成されている。
(8)本発明の別の態様に係る合金化溶融亜鉛めっき鋼板では、上記(1)~(6)のいずれか一項に記載の鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び不純物からなる合金化溶融亜鉛めっき層が形成されている。
 本発明によれば、自動車、建造物、家電製品等の構造部材として好適な、引張強度が780MPa以上の耐遅れ破壊特性に優れた鋼板、溶融亜鉛めっき鋼板、及び、合金化溶融亜鉛めっき鋼板と、それらの製造方法とを提供することができる。
焼戻しマルテンサイト中の鉄系炭化物の個数密度(個/mm)と耐遅れ破壊特性の関係を示す図である。 鉄系炭化物中のε系炭化物の割合と耐遅れ破壊特性の関係を示す図である。
 Cr、Mo、及びV等の炭化物が水素トラップサイトとして機能し、水素脆性に起因する耐遅れ破壊特性が向上することは周知である(非特許文献1、参照)。しかし、Cr、Mo、及びV等の炭化物を析出させるための熱処理には長時間を要するので、熱処理を短時間で行う必要がある製造ライン(連続焼鈍ラインや連続めっきライン等)を用いて製造する必要がある鋼板において、耐遅れ破壊特性の向上のためにCr、Mo、及びV等の炭化物の析出を活用することは難しい。
 水素をトラップする機能は、母材と炭化物との界面での整合性(整合歪)に由来するが、熱間圧延の際に析出させたCr、Mo、及びV等の炭化物の水素トラップ能力は、冷間圧延および熱処理を経ることで低下するので、冷間圧延および熱処理が必要とされる種類の鋼板において、耐遅れ破壊特性の向上のためにCr、Mo、及びV等の炭化物の析出を用いることは難しい。
 以上の通り、鋼板において、耐遅れ破壊特性と成型性との両方を高めることは、極めて難しいが、本発明者らは、引張強度が780MPa以上の鋼板において、組織及び鉄系炭化物(特に、ε系炭化物)を好適に制御することにより、成型性を維持しつつ、耐遅れ破壊特性を向上させられることを知見した。
 以下、本発明の一実施形態に係る耐遅れ破壊特性に優れた鋼板(以下「本実施形態に係る鋼板」ということがある)について説明する。
 本実施形態に係る鋼板は、引張強度が780MPa以上の耐遅れ破壊特性に優れた鋼板、溶融めっき鋼板、及び、合金化溶融亜鉛めっき鋼板において、組織の主相を焼戻しマルテンサイトとし、第二相をフェライト及びベイナイトの1種又は2種とし、焼戻しマルテンサイト中に微細な鉄系炭化物(セメンタイト、およびε系炭化物)を析出させて、これら鉄系炭化物を水素トラップサイトとして活用することにより、成型性を維持しつつ、耐遅れ破壊特性の向上を図ることを基本思想とする。
 具体的に、本発明の一実施形態に係る耐遅れ破壊特性に優れた鋼板(以下「本実施形態に係る鋼板」ということがある)は、化学成分が、質量%で、C:0.05~0.40%、Si:0.05~3.00%、Mn:1.50%以上3.50%未満、P:0.04%以下、S:0.01%以下、N:0.01%以下、O:0.006%以下、Al:0~2.00%、Cr:0~1.00%、Mo:0~1.00%、Ni:0~1.00%、Cu:0~1.00%Nb:0~0.30%、Ti:0~0.30%、V:0~0.50%B:0~0.01%Ca:0~0.04%、Mg:0~0.04%、及び、REM:0~0.04%を含有し、残部がFeおよび不純物からなり、板厚1/4部の組織が、体積分率で、焼戻しマルテンサイト:30~70%、およびフェライト及びベイナイトの1種又は2種:合計で20%以上70%以下を含有し、前記板厚1/4部の組織において、体積分率で、残留オーステナイトが10%未満であり、フレッシュマルテンサイトが10%以下であり、パーライトが10%以下であり、且つ前記残留オーステナイト、前記フレッシュマルテンサイト、および前記パーライトの合計体積分率が15%以下であり、前記板厚1/4部における前記焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度が5×10個/mm以上であり、前記板厚1/4部における長径5nm以上の前記鉄系炭化物の個数に対する、ε系炭化物の個数の割合が20%以上であり、引張強度が780MPa以上である。
 本実施形態に係る耐遅れ破壊特性に優れた溶融亜鉛めっき鋼板(以下「本実施形態に係る溶融亜鉛めっき鋼板」ということがある。)は、本実施形態に係る鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び、不純物からなる溶融亜鉛めっき層が形成されている。
 本実施形態に係る耐遅れ破壊特性に優れた合金化溶融亜鉛めっき鋼板(以下「本実施形態に係る合金化溶融亜鉛めっき鋼板」ということがある。)は、本実施形態に係る鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び、不純物からなる合金化溶融亜鉛めっき層が形成されている。
 まず、本実施形態に係る鋼板の化学成分について説明する。化学成分に含まれる各元素の含有量の単位「質量%」は、以下「%」と記載する。
 C:0.05~0.40%
 本実施形態に係る鋼板は、Cを0.05~0.40%含有する、引張強度が780MPa以上の鋼板である。Cは、鋼板の強度上昇、および水素トラップサイトとして機能する鉄系炭化物(セメンタイト、ε系炭化物等)の析出のために必要な元素である。C含有量が0.05%未満であると、引張強度780MPa以上を得るのが難しい。また、C含有量が0.05%未満であると、析出する鉄系炭化物の量が不十分となり、耐遅れ破壊特性が向上しない。
 一方、C含有量が0.40%を超えると、マルテンサイト変態開始温度が低下し、十分な量のマルテンサイトを確保することができず、従って30~70体積%の焼戻しマルテンサイトを確保することが難しくなる。
 それ故、本実施形態に係る鋼板のC含有量は0.05~0.40%とする。C含有量の好ましい下限値は0.10%である。C含有量の好ましい上限値は0.25%である。
 Si:0.05~3.00%
 Siは、強度の向上のために有効な元素である。さらに、Siは、オーステナイト中での鉄系炭化物の析出を抑制する作用、および、マルテンサイト中に生成した鉄系炭化物の粗大化を抑制する作用を有する元素である。マルテンサイト中の鉄系炭化物が微細であるほど、耐遅れ破壊特性は向上するので、Siは耐遅れ破壊特性を向上させる効果を有する。
 Si含有量が0.05%未満では、上述の効果が十分に得られないので、Si含有量は0.05%以上とする必要がある。好ましくは、Si含有量は0.10%以上である。一方、Si含有量が3.00%を超えると、鋼板の強度が上昇しすぎて、鋼板の成型性が低下するので、Si含有量は3.00%以下とする必要がある。Si含有量は、好ましくは2.00%以下である。
 Mn:1.50~3.50%未満
 Mnは、鋼板の強度の向上のために有効な元素である。また、Mnは、焼鈍又は溶融亜鉛めっきのための熱処理時に、冷却途中で生じるフェライト変態を抑制する作用を有する元素である。この作用は、本実施形態に係る鋼板の焼戻しマルテンサイト量を所定の範囲内とするために必要とされる。
 Mn含有量が1.50%未満では、上述の効果が十分に得られないので、所要の体積分率の焼戻しマルテンサイトが得られなくなる。従って、Mn含有量は1.50%以上とする必要がある。好ましくは、Mn含有量は1.70%以上である。一方、Mn含有量が3.50%以上になると、スラブや熱延板の強度が過度に上昇し、鋼板の製造性が低下するので、Mn含有量は3.50%未満とする必要がある。好ましくは、Mn含有量は3.00%以下である。
 P:0.04%以下
 Pは、不純物元素であり、鋼板の板厚中央部に偏析して靭性を阻害し、また、溶接部を脆化させる元素である。P含有量が0.04%を超えると、靭性の低下と溶接部の脆化とが顕著になるので、P含有量を0.04%以下とする必要がある。好ましくは、P含有量は0.02%以下である。P含有量は、少ないほど好ましいので、P含有量の下限は特に限定しないが、P含有量を0.0001%未満とすることは経済的に不利であるので、0.0001%がP含有量の実質的な下限である。
 S:0.01%以下
 Sは、不純物元素で、溶接性を阻害し、また、鋳造時および熱延時の製造性を阻害する元素である。また、Sは、粗大なMnSを形成して、穴拡げ性を阻害する元素である。S含有量が0.01%を超えると、溶接性の低下、製造性の低下、及び、穴拡げ性の低下が顕著になるので、S含有量は0.01%以下とする必要がある。好ましくは、S含有量は0.005%以下である。S含有量は、少ないほど好ましいので、S含有量の下限は特に限定しないが、S含有量を0.0001%未満とすることは、経済的に不利であるので、0.0001%がS含有量の実質的な下限である。
 N:0.01%以下
 Nは、粗大な窒化物を形成することにより、曲げ性および穴拡げ性を阻害する元素であり、また、溶接時のブローホールの発生原因となる元素である。N含有量が0.01%を超えると、曲げ性および穴拡げ性の低下、並びにブローホールの発生が顕著となるので、N含有量は0.01%以下とする必要がある。N含有量は、少ないほど好ましいので、N含有量の下限は特に限定しないが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くので、0.0005%がN含有量の実質的な下限である。
 O:0.006%以下
 Oは、酸化物を形成し、成型性を阻害する元素である。O含有量が0.006%を超えると、成型性の低下が顕著となるので、O含有量を0.006%以下とする必要がある。O含有量は、少ないほど好ましいので、下限は特に限定しないが、O含有量を0.001%未満とすることは、過度のコスト高を招き経済的に好ましくないので、0.001%がO含有量の実質的な下限である。
 本実施形態に係る鋼板は、上記元素の他、Al、Cr、Mo、Ni、及び、Cuの1種又は2種以上、Nb、Ti、Vの1種又は2種以上、B、及び/又は、Ca、Mg、及び、REMの1種又は2種以上を、適宜含有してもよい。ただし、本実施形態に係る鋼板がこれら元素を含有することは必須ではないので、これら元素の含有量の下限値は0%である。
 Al:0~2.00%
 Alは、脱酸材として有効な元素であり、また、Siと同様に、オーステナイト中での鉄系炭化物の析出を抑制する作用を有する元素である。さらに、Al酸化物は、耐遅れ破壊特性の向上に寄与するので、Alを本実施形態に係る鋼板に含有させてもよい。しかし、Al含有量が2.00%を超えると、Al酸化物が過剰に生成し、製造性が劣化するので、Al含有量は2.00%以下とする必要がある。好ましくは、Al含有量は1.00%以下である。Alが本実施形態に係る鋼板に含まれる必要は無いので、Al含有量の下限は0%である。しかし、鋼板の原材料に不純物として含まれるAlを完全に除去することは困難であるので、Al含有量の下限値を0.001%としてもよい。
 Cr:0~1.00%
 Crは、鋼板の引張強度等を向上させる元素であるとともに、焼鈍設備または溶融亜鉛めっき設備での焼鈍後の冷却時に、フェライト変態を抑制し、これにより焼戻しマルテンサイトの量を増大させる作用を有する元素である。Crが本実施形態に係る鋼板に含まれる必要は無いので、Cr含有量の下限は0%である。しかし、上述の効果を得るために、Cr含有量を0.05%以上としてもよい。より好ましくは、Cr含有量は0.10%以上である。一方、Cr含有量が1.00%を超えると、製造時及び熱延時の製造性を阻害するので、Cr含有量は1.00%以下が好ましい。より好ましくは、Cr含有量は0.70%以下である。
 Mo:0~1.00%
 Moは、鋼板の引張強度等を向上させる元素であるとともに、焼鈍設備または連続溶融亜鉛めっき設備での焼鈍後の冷却時に、フェライト変態を抑制し、これにより焼戻しマルテンサイトの量を増大させる作用を有する元素である。Moが本実施形態に係る鋼板に含まれる必要は無いので、Mo含有量の下限は0%である。しかし、上述の効果を得るために、Mo含有量を0.01%以上としてもよい。Mo含有量は、より好ましくは0.05%以上である。一方、Mo含有量が1.00%を超えると、製造時及び熱延時の製造性を阻害するので、Mo含有量は1.00%以下が好ましい。Mo含有量は、より好ましくは0.70%以下である。
 Ni:0~1.00%
 Niは、鋼板の引張強度等を向上させる元素であるとともに、焼鈍設備または連続溶融亜鉛めっき設備での焼鈍後の冷却時に、フェライト変態を抑制し、これにより焼戻しマルテンサイトの量を増大させる作用を有する元素である。Niが本実施形態に係る鋼板に含まれる必要は無いので、Ni含有量の下限は0%である。しかし、上述の効果を得るために、Ni含有量は0.05%以上としてもよい。Ni含有量は、より好ましくは0.10%以上である。一方、Ni含有量が1.00%を超えると、製造時及び熱延時の製造性を阻害するので、Ni含有量は1.00%以下が好ましい。Ni含有量はより好ましくは0.70%以下である。
 Cu:0~1.00%
 Cuは、鋼板の引張強度等を向上させる元素であるとともに、焼鈍設備または連続溶融亜鉛めっき設備での焼鈍後の冷却時に、フェライト変態を抑制し、これにより焼戻しマルテンサイトの量を増大させる作用を有する元素である。Cuが本実施形態に係る鋼板に含まれる必要は無いので、Cu含有量の下限は0%である。しかし、上述の効果を得るために、Cu含有量は0.05%以上としてもよい。Cu含有量は、より好ましくは0.10%以上である。一方、Cu含有量が1.00%を超えると、製造時及び熱延時の製造性を阻害するので、Cu含有量は1.00%以下が好ましい。Cu含有量は、より好ましくは0.70%以下である。
 Nb:0~0.30%
 Nbは、析出物強化、細粒強化、および転位強化によって、鋼板の強度の上昇に寄与する元素である。Nbが本実施形態に係る鋼板に含まれる必要は無いので、Nb含有量の下限は0%である。しかし、上述の効果を得るために、Nb含有量は0.005%以上としてもよい。Nb含有量は、より好ましくは0.010%以上である。一方、Nb含有量が0.30%を超えると、炭窒化物の析出量が増えて成型性が劣化するので、Nb含有量は0.30%以下が好ましい。Nb含有量は、より好ましくは0.20%以下である。
 Ti:0~0.30%
 Tiは、析出物強化、細粒強化、および転位強化によって、鋼板の強度の上昇に寄与する元素である。Tiが本実施形態に係る鋼板に含まれる必要は無いので、Ti含有量の下限は0%である。しかし、上述の効果を得るために、Ti含有量は0.005%以上としてもよい。Ti含有量は、より好ましくは0.010%以上である。一方、Ti含有量が0.30%を超えると、炭窒化物の析出量が増えて成型性が劣化するので、Ti含有量は0.30%以下が好ましい。Ti含有量は、より好ましくは0.15%以下である。
 V:0~0.50%
 Vは、析出物強化、細粒強化、および転位強化によって、鋼板の強度の上昇に寄与する元素である。Vが本実施形態に係る鋼板に含まれる必要は無いので、V含有量の下限は0%である。しかし、上述の効果を得るために、V含有量を0.005%以上としてもよい。V含有量はより好ましくは0.10%以上である。一方、V含有量が0.50%を超えると、炭窒化物の析出量が増えて成型性が劣化するので、V含有量は0.50%以下が好ましい。V含有量は、より好ましくは0.35%以下である。
 B:0~0.01%
 Bは、粒界を強化する元素であり、また、焼鈍設備または連続溶融亜鉛めっき設備での焼鈍後の冷却時に、フェライト変態を抑制し、これにより焼戻しマルテンサイトの量を増大させる作用を有する元素である。Bが本実施形態に係る鋼板に含まれる必要は無いので、B含有量の下限は0%である。しかし、上述の効果を得るために、B含有量を0.0001%以上としてもよい。B含有量は、より好ましくは0.0005%以上である。一方、B含有量が0.01%を超えると、熱延時の製造性が低下するので、B含有量は0.01%以下が好ましい。B含有量は、より好ましくは0.005%以下である。
 Ca:0~0.04%
 Mg:0~0.04%
 REM:0~0.04%
 Ca、Mg、及び、REMは、酸化物および硫化物の形態を制御し、鋼板の穴拡げ性の向上に寄与する元素である。Ca、Mg、及び、REMが本実施形態に係る鋼板に含まれる必要は無いので、Ca含有量、Mg含有量、及び、REM含有量それぞれの下限は0%である。しかし、上述の効果を得るために、Ca含有量、Mg含有量、およびREM含有量それぞれは0.0005%以上としてもよい。Ca含有量、Mg含有量、およびREM含有量それぞれは、より好ましくは0.0010%以上である。一方、Ca含有量、Mg含有量、およびREM含有量それぞれが0.04%を超えると、鋳造性が劣化するので、Ca含有量、Mg含有量、およびREM含有量それぞれは0.04%以下が好ましい。Ca含有量、Mg含有量、およびREM含有量それぞれは、より好ましくは0.01%以下である。
 なお、「REM」とは、Sc、Yおよびランタノイドのからなる合計17元素を指し、上記「REM含有量」とは、これらの17元素の合計含有量を意味する。ランタノイドをREMとして用いる場合、工業的には、REMはミッシュメタルの形で添加する場合が多い。この場合も、本実施形態に係る鋼板は、本実施形態に係る鋼板の効果を発揮する。また、金属Laや金属Ceなどの金属REMを含有させても、本実施形態に係る鋼板は、本実施形態に係る鋼板の効果を発揮する。
 本実施形態に係る鋼板は、上記元素の他、残部が鉄及び不純物からなるものである。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 引張強度:780MPa以上
 本実施形態に係る鋼板の引張強度は780MPa以上とする。この引張強度は、鋼板の化学成分を上述した範囲内に制御し、且つ、鋼板の組織を以下に説明するような形態とすることにより得られる。
 次に、本実施形態に係る鋼板の板厚1/4部の組織(以下、「組織」と略す場合がある)について説明する。板厚1/4部とは、鋼板表面(鋼板の上面および下面)から鋼板厚さtの1/8の深さの面と、鋼板表面から鋼板厚さtの3/8の深さの面との間の領域である。鋼板表面から鋼板厚さtの1/4の深さの面が、板厚1/4部の中心面である。板厚1/4部は、鋼板の中心面と板の表面との中間に位置するので、平均的な組織を有している。従って、本実施形態に係る鋼板では、板厚1/4部における組織が規定される。
 本実施形態に係る鋼板の板厚1/4部の組織を、体積分率で、
(組織A)焼戻しマルテンサイト:30~70%、
(組織B)フェライト及びベイナイトの1種又は2種:合計で20%以上、および
(組織C)残留オーステナイト、フレッシュマルテンサイト、およびパーライト:それぞれ10%未満
と規定する。組織Aは、ε系炭化物を有することにより本実施形態に係る鋼板の引張強度および耐遅れ破壊特性に最も大きく影響する組織、すなわち主相である。組織Bは、ε系炭化物を有しない組織であり、本実施形態に係る鋼板の諸特性を最適化するための第二相である。組織Cは、本実施形態に係る鋼板の諸特性を向上させる働きを有しないので、含まれる必要が無い組織であり、その含有量の下限値は0体積%である。
 (組織A)板厚1/4部の焼戻しマルテンサイト(主相):30~70%
 組織において、焼戻しマルテンサイトは、鋼板の強度及び耐遅れ破壊特性を確保するうえで重要な組織である。
 焼戻しマルテンサイトは、ラス状の結晶粒の集合体であり、内部に鉄系炭化物を含有する。その鉄系炭化物は、異なる方向に伸長する複数の鉄系炭化物群に属し、水素トラップサイトとして機能する。鉄系炭化物の長径は、例えば5nm以上である。焼戻しマルテンサイト中の鉄系炭化物の一部は、適切な条件で行われる熱処理によって、後述するε系炭化物とすることができる。
 焼入れされたマルテンサイトに焼戻しを施すことにより、焼戻しマルテンサイトが得られる。この焼戻しマルテンサイトの体積分率が30%未満であると、鋼板の引張強度を780MPa以上とすることができないので、焼戻しマルテンサイトの体積分率は30%以上とする。焼戻しマルテンサイトの体積分率は、好ましくは35%以上である。
 焼戻しマルテンサイトの体積分率が70%を超えると、鋼板の引張強度が上昇しすぎて、鋼板の成型性が低下するので、焼戻しマルテンサイトの体積分率は、70%以下とする。焼戻しマルテンサイトの体積分率は、好ましくは65%以下である。
 (組織B)フェライト及びベイナイトの1種又は2種(第二相):合計で20%以上
 本実施形態に係る鋼板において、上述の焼戻しマルテンサイト以外の組織は、主にフェライトおよびベイナイトの1種又は2種から構成される組織Bである。
 フェライトは軟質な組織であり、鋼板の強度低下を招くが、鋼板の加工特性を向上させる組織である。鋼板の加工特性を確保するために、鋼板の組織にフェライトが20%以上存在してもよい。なお、フェライトは鉄系炭化物を含まないので、耐遅れ破壊特性に影響しない。
 ベイナイトも、マルテンサイトと同様に、ラス状の結晶粒の集合体であり、内部に、例えば長径5nm以上の、鉄系炭化物を含む組織である。この鉄系炭化物が水素トラップサイトとして機能して、鋼板の耐遅れ破壊特性が向上する。一方、ベイナイトは、マルテンサイトと比較して軟質であるので、鋼板の成型性を過度に損なうことがない。従って、鋼板の組織にベイナイトが20%以上存在してもよい。
 なお、鉄系炭化物を含むベイナイトも、耐遅れ破壊特性の向上に寄与する組織である。しかしベイナイトは、マルテンサイト生成後の熱処理によって炭化物の析出を制御できるマルテンサイトと異なり、所要の温度に長時間保持して生成する組織であるので、その鉄系炭化物の一部をε系炭化物のまま留めることができない。
 本発明者らは、本実施形態に係る鋼板に含まれる組織を、ε系炭化物を含む必須組織A(すなわち焼戻しマルテンサイト)と、ε系炭化物を含まない必須組織B(すなわちフェライトおよびベイナイト)と、本実施形態に係る鋼板に含まれる必要が無い組織Cに分類し、それぞれのグループの含有量を規定することが、耐遅れ破壊特性、成型性、および引張強度の全てを好ましく制御するために必要であると判断した。従って、本実施形態に係る鋼板では、フェライトとベイナイトとの合計の体積分率が規定される。
 フェライト及びベイナイトの1種又は2種(第二相)の体積分率が合計で20%未満であると、焼戻しマルテンサイト、または後述するその他の組織の量が過剰となるので、自動車用部材の成型に必要な加工特性が得られない。従って、フェライト及びベイナイトの1種又は2種(第二相)の合計体積分率は20%以上とする。フェライト及びベイナイトの1種又は2種(第二相)の合計体積分率は、好ましくは25%以上である。焼戻しマルテンサイトの体積分率の下限値が30%であるので、フェライト及びベイナイトの1種又は2種(第二相)の合計体積分率の上限は70%である。フェライト及びベイナイトそれぞれ単独での体積分率は規定されない。フェライト及びベイナイトのうちの一方の体積分率が0%であっても、フェライト及びベイナイトのうちの他方の体積分率が20%以上であれば、自動車用部材の成型に必要な加工特性が得られる。
 なお、例えば、焼戻しマルテンサイトの体積分率が30%の場合、フェライト及びベイナイトの1種又は2種の合計の体積分率は、70%近くに達するが、この場合も、所要量の鉄系炭化物を含有し、かつ、熱処理で鉄系炭化物の析出量を制御できる焼戻しマルテンサイトを、本実施形態に係る鋼板の組織の主相とみなる。
 (組織C)残留オーステナイト:10体積%未満
 (組織C)フレッシュマルテンサイト:10体積%以下
 (組織C)パーライト:10体積%以下
 (組織C)残留オーステナイト、フレッシュマルテンサイト、およびパーライトの合計量:15体積%以下
 本実施形態に係る鋼板は、焼戻しマルテンサイト、フェライト、およびベイナイトの他に、残留オーステナイト、フレッシュマルテンサイト、およびパーライトを含有する場合がある。
 残留オーステナイトは、TRIP効果による成型性の向上に寄与する。しかし、残留オーステナイトの体積分率が増加すると、自動車用部材として成型する際に硬質なフレッシュマルテンサイトへ変態し、加工特性が低下する懸念がある。
 本発明者らは、鋼板の組織中の残留オーステナイトの体積分率が10%以上になると、加工特性が劣化することを実験により確認した。それ故、本実施形態に係る鋼板において、残留オーステナイトの体積分率を10%未満とする。残留オーステナイトの体積分率は好ましくは7%以下である。一方、残留オーステナイトの体積分率が0%であっても、本実施形態に係る鋼板は、十分な成型性を有する。従って、本実施形態に係る鋼板は残留オーステナイトを含む必要が無いので、残留オーステナイトの体積分率の下限値は0%である。
 フレッシュマルテンサイトは、Fe炭化物を含まないマルテンサイトである。フレッシュマルテンサイトを含む鋼板は高強度であるが、加工特性が劣るので、本実施形態に係る鋼板のフレッシュマルテンサイトの体積分率を10%以下に制限する。一方、フレッシュマルテンサイトの体積分率が0%であっても、本実施形態に係る鋼板は十分な強度を有する。従って、本実施形態に係る鋼板はフレッシュマルテンサイトを含む必要が無いので、フレッシュマルテンサイトの体積分率の下限値は0%である。
 パーライトは、鋼板の加工特性を低下させる。従って、本実施形態に係る鋼板のパーライトの体積分率を10%以下に制限する。一方、パーライトはFe炭化物であるセメンタイトを含む組織であるが、このセメンタイトをε系炭化物に変化させることはできないので、パーライトは耐遅れ破壊特性を向上させる効果を十分に有しない。従って、本実施形態に係る鋼板はパーライトを含む必要が無いので、パーライトの体積分率の下限値は0%である。
 さらに、本実施形態に係る鋼板の、残留オーステナイト、フレッシュマルテンサイト、およびパーライトの合計の体積分率は15%以下とする必要があり、12%以下、または10%以下とされることが好ましい。合計の体積分率が15%超である残留オーステナイト、フレッシュマルテンサイト、およびパーライトは、鋼板の加工特性を損なうおそれがある。
 焼戻しマルテンサイト、フェライト、ベイナイト、及び、残留オーステナイト、さらに、フレッシュマルテンサイト、パーライト、及び、その他の組織の同定、存在位置の確認、及び、体積分率の測定は、ナイタール試薬、及び、特開昭59-219473号公報に開示の試薬を用い、鋼板圧延方向断面又は圧延方向直角方向断面を腐食させて、1000~100000倍の走査型電子顕微鏡及び透過型電子顕微鏡で断面を観察することで行うことができる。
 また、FE-SEM(電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)に付属のEBSD:Electron Back-Scatter Diffractionを用いた結晶方位解析法)による結晶方位解析、またはマイクロビッカース硬度測定等の微小領域の硬度測定からも、組織の判別が可能である。
 例えば、前述したように、焼戻しマルテンサイト及びベイナイトでは、炭化物の形成サイトおよび結晶方位関係(伸長方向)等が異なるので、FE-SEMを用いて、ラス状結晶粒の内部の鉄系炭化物の伸長方向を観察することにより、焼戻しマルテンサイトとベイナイトとを容易に区別することができる。
 鋼板の板厚1/4部における焼戻しマルテンサイト、フェライト、及び、ベイナイトの体積分率、及び/又はパーライトの体積分率は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタール液でエッチングし、板厚1/4部(板厚の1/4の箇所を中心とする板厚の1/8~3/8の範囲)を、FE-SEMで観察することにより求められる、各組織の面積分率を測定し、これら面積分率を体積分率とみなすことにより得られる。なお、各組織の面積分率とは、5000倍の倍率で、10視野測定することにより得られる各視野での各組織の面積分率の平均値である。
 フレッシュマルテンサイト及び残留オーステナイトは、鋼板の断面をレペラ液でエッチングし、板厚1/4部をFE-SEMで観察することにより、上記組織(焼戻しマルテンサイト、フェライト、ベイナイト)と明瞭に区別することができる。それ故、フレッシュマルテンサイトの体積分率は、FE-SEMで観察した腐食されていない領域の面積分率と、X線で測定した残留オーステナイトの面積分率との差分として求めることができる。
 次に、焼戻しマルテンサイト中の鉄系炭化物の個数密度を5×10(個/mm)以上と規定し、かつ、全ての鉄系炭化物中の個数に対するε系炭化物の個数の割合を20%以上と規定する理由について説明する。
 板厚1/4部における焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度:5×10(個/mm)以上
 本実施形態に係る鋼板において、耐遅れ破壊特性と成型性との両方を高めるために、板厚1/4部の組織において主相である焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度を5×10(個/mm)以上と規定する。本実施形態において、「焼戻しマルテンサイト中の鉄系炭化物の個数密度」とは、観察面中の焼戻しマルテンサイトが含む鉄系炭化物の個数を、観察面中の焼戻しマルテンサイトの面積で除すことにより得られる値である。
 焼入れ直後のマルテンサイトは、高強度であるが、耐遅れ破壊特性が低いので、その改善が必要である。そこで、マルテンサイトを焼戻して焼戻しマルテンサイトとし、板厚1/4部において、この焼戻しマルテンサイト中に、長径5nm以上の鉄系炭化物を5×10(個/mm)以上析出させる。焼戻しマルテンサイト(主相)の耐遅れ破壊特性は、焼戻しされていないマルテンサイトよりも優れている。
 本発明者らは、耐遅れ破壊特性と、板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物の個数密度との関係を調査した。その結果を図1に示す。
 鉄系炭化物の個数密度は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタール液でエッチングし、板厚1/4部における10視野をFE-SEMで、倍率5000倍で観察し、各視野中の焼戻しマルテンサイトに含まれる、長径5nm以上の鉄系炭化物の個数を、視野中の焼戻しマルテンサイトの面積で除することにより得られる値を平均することにより測定した。なお、長径が5nm未満の鉄系炭化物の個数は測定しなかった。長径が5nm未満の鉄系炭化物は、鋼板の耐遅れ破壊特性に大きな影響を及ぼさないからである。以降、長径5nm以上の鉄系炭化物を単に「鉄系炭化物」と称する場合がある。
 鋼板の耐遅れ破壊特性は、鋼板の圧延方向に直角に切り出した長さ100mm、幅30mm、および厚さ1.3mmまたは1.6mmの短冊状試験片を3点曲げ加工し、この短冊状試験片の表面に耐水性の歪みゲージを装着した後、短冊状試験片をチオシアンアンモニウム水溶液中に浸漬し、電流密度0.1mA/cmでチオシアンアンモニウム水溶液を電気分解することにより短冊状試験片内に水素を侵入させ、2時間後、割れの発生の有無を確認することにより評価した。
 短冊状試験片の曲げ加工の半径は10mmとした。厚さ1.3mmの短冊状試験片に与える負荷応力は、鋼板の引張強度(TS)の60%とし、厚さ1.6mmの短冊状試験片に与える負荷応力は、鋼板の引張強度(TS)の90%とした。引張強度(TS)の60%の負荷応力で破断した短冊状試験片を「VERY BAD」、引張強度(TS)の60%の負荷応力で破断せず、引張強度(TS)の90%の負荷応力で破断した短冊状試験片を「BAD」、両方の負荷応力で破断しなかった短冊状試験片を「GOOD」と評価した。
 本発明者らは、図1に示すように、板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物の個数密度が少なくとも5×10(個/mm)以上となると、耐遅れ破壊特性が著しく向上することも知見した。
 このことから、板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物の個数密度は5×10(個/mm)以上と規定した。板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物の個数密度は、好ましくは1×10(個/mm)以上であり、より好ましくは3×10(個/mm)以上である。
 焼戻しマルテンサイト中の鉄系炭化物による耐遅れ破壊特性向上効果は、鉄系炭化物が小さいほど顕著である。そして、鉄系炭化物の殆どは、マルテンサイトのラス内に析出しているので、延性および成型性などの鋼板に必要な機械特性を阻害しない。それ故、焼戻しマルテンサイト中の鉄系炭化物の長径は小さいほど好ましく、350nm以下が好ましい。焼戻しマルテンサイト中の鉄系炭化物の長径は、より好ましくは250nm以下であり、さらに、より好ましくは200nm以下である。一方、長径が小さすぎる鉄系炭化物は耐遅れ破壊特性向上効果を有しないので、本実施形態に係る鋼板において、長径が5nm未満である鉄系炭化物は考慮されない。
 なお、上述のように、板厚1/4部は、鋼板の中心面と板の表面との中間に位置するので、平均的な組織を有している。従って、本実施形態に係る鋼板では、板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物の個数密度を好適な範囲内とすれば、鋼板全体にわたり良好な特性が得られる。
 全ての鉄系炭化物の個数に対するε系炭化物の個数の割合:20%以上
 本実施形態に係る焼戻しマルテンサイト中の全ての鉄系炭化物の個数に対して、ε系炭化物の個数が占める割合(以下、「ε系炭化物の割合」と略す場合がある)を20%以上とする。これにより、成型性、特に穴拡げ性を阻害することなく、耐遅れ破壊特性を向上させることができる。
 焼戻しマルテンサイト中の鉄系炭化物は、主として、セメンタイト(FeC)である。通常、母相の鉄(bcc構造)とセメンタイト(FeC)との界面が水素をトラップするトラップサイトとして機能すると考えられている。それ故、セメンタイトの存在は、耐遅れ破壊特性の向上に寄与するといわれている。
 しかし、セメンタイトは、延性破壊の起点となるので、セメンタイトだけを用いて成型性と耐遅れ破壊特性との両方を向上させることは難しい。
 本発明者らは、鋭意検討の結果、種々の鉄系炭化物のうちε系炭化物(Fe2.4C)を用いれば、耐遅れ破壊特性と成型性との両方を向上させることができると発想した。
 FeとCよりなる鉄系炭化物には、結晶構造の異なるε系炭化物、χ系炭化物、およびセメンタイト(θ系炭化物)等が存在する。これらの鉄系炭化物は、マルテンサイト中で、母相のbcc構造の鉄と特定の結晶方位関係を有した状態で析出する。
 上述の種々の鉄系炭化物のうち、ε系炭化物(Fe2.4C)と、bcc構造の鉄とは、整合界面(Coherent interface、二つの相の界面で、全ての原子について各相における最隣接原子の関係が満足されている界面)に近い界面を形成する。ε系炭化物(Fe2.4C)と鉄(bcc構造)との界面は、セメンタイトと鉄(bcc構造)との界面より、整合性が優れているので、水素トラップ能力が、セメンタイトより高いと推測される。また、ε系炭化物は、セメンタイトより微細であるので、延性破壊の起点となり難い。
 そこで、本発明者らは、ε系炭化物(Fe2.4C)に着目し、鉄系炭化物中のε系炭化物の割合と耐遅れ破壊特性との関係を調査した。その結果を図2に示す。
 ε系炭化物(六方晶)とセメンタイト(斜方晶)とは、結晶構造が異なるので、X線回折又は電子線回折の回折パターンが異なり、容易に区別できる。本発明者らは、電子顕微鏡で薄膜試料を観察して、鉄系炭化物の種類を同定した。鉄系炭化物に電子線を照射し、得られた回折パターンを解析して、ε系炭化物(Fe2.4C)を同定した。
 各試料の鉄系炭化物中のε系炭化物(Fe2.4C)の割合は、観察倍率を10000倍として、10視野で測定して得られた各視野に係るε系炭化物(Fe2.4C)の割合を平均することにより算出した。耐遅れ破壊特性の評価は、前述した評価方法で行った。
 図2から、鉄系炭化物中のε系炭化物(Fe2.4C)の割合を20%以上とすることにより、優れた加工特性および耐遅れ破壊特性を確保できることが解る。加工特性および耐遅れ破壊特性をさらに向上させるために、鉄系炭化物中のε系炭化物(Fe2.4C)の割合は、30%以上が好ましく、40%以上がさらに好ましい。
 なお、鉄系炭化物中のε系炭化物の割合が20%未満であると、耐遅れ破壊特性が劣るだけでなく、良好な加工特性が得られない。
 上述のように、板厚1/4部は、鋼板の中心面と板の表面との中間に位置するので、平均的な組織を有している。従って、本実施形態に係る鋼板では、板厚1/4部における焼戻しマルテンサイト中の鉄系炭化物中のε系炭化物の割合を好適な範囲内とすれば、鋼板全体にわたり良好な特性が得られる。
 本実施形態に係る亜鉛めっき鋼板は、本実施形態に係る鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び、不純物からなる溶融亜鉛めっき層が形成されていることを特徴とする。通常、溶融亜鉛めっき層内のFe濃度は7質量%未満とされることが多い。溶融亜鉛めっき中のFe濃度の下限値は、特に限定されないが、1.0質量%とすることが好ましい。
 本実施形態に係る合金化亜鉛めっき鋼板は、本実施形態に係る鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び、不純物からなる溶融亜鉛めっき層が形成され合金化されていることを特徴とする。合金化溶融亜鉛めっき中のFe濃度の下限値は、特に限定されないが、通常、7質量%とされる場合が多い。
 次に、本実施形態に係る鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法について説明する。
 まず、本発明鋼板の製造方法について説明する。
 本発明鋼板の製造方法は、
(a)本実施形態に係る鋼板と同じ組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、
(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、
(c)焼鈍された鋼板を二段階冷却し、次いで、焼戻しを行い、その後、
(d)焼戻された鋼板をさらに二段階冷却する
ことを特徴とする。(d)が、鉄系炭化物中のε系炭化物の割合を20%以上とするために重要な工程である。
 熱間圧延に供する鋳造スラブは、鋳造したスラブであればよく、特定の鋳造スラブに限定されない。例えば、連続鋳造スラブや、薄スラブキャスターで製造したスラブであればよい。鋳造スラブは、熱間圧延に供する。この場合、鋳造スラブを鋳造後、直接熱間圧延に供しても良いし、一旦冷却した後に再加熱してから熱間圧延に供しても良い。
 鋳造スラブを、直接、連続鋳造-直接圧延(CC-DR)又は熱間圧延に供する場合、Ar変態点(鋼の冷却時にフェライト変態が始まる温度)以上の温度域で熱間圧延を完了することができる温度まで、熱間圧延開始の際に鋳造スラブを加熱しておく必要がある。仕上げ圧延温度が(オーステナイト+フェライト)の2相温度域にあると、熱延鋼板の組織の不均一性が大きくなり、最終的に得られる鋼板の成型性が劣化するからである。
 引張最大強度が780MPa以上である、本実施形態に係る鋼板は、合金元素を多量に含む場合がある。この場合、鋳造スラブを熱間圧延する際の圧延荷重が大きくなるので、高温で熱間圧延することが好ましい。以上のことから、仕上げ圧延温度は、Ar変態点以上とする。
 本発明者らが実験を行った結果、例えば熱間圧延前の加熱温度を約1120℃とし、仕上圧延終了温度を920℃とした場合、最終的に得られる鋼板が良好な成型性を有することを確認した。
 なお、熱間圧延時、粗圧延板同士を接合して連続的に熱間圧延を行ってもよいし、また、粗圧延板を一旦巻取って、次の熱間圧延に供してもよい。
 熱間圧延完了後の巻取り温度は、鋼板表面に生成する酸化物の厚さが過度に増大して、酸洗性が低下することがない温度とする必要がある。また、熱間圧延完了後の巻取り温度は、熱延組織中に粗大なフェライトやパーライトが生成して、焼鈍後の組織不均一が大きくなり、最終製品の成型性が劣化することがない温度とする必要がある。
 本発明者らが実験を行った結果、例えば巻取温度を約590℃とした場合、焼鈍後の組織を微細化して、強度-延性バランスを向上させ、さらに、第二相を均一に分散させることにより、最終的に得られる鋼板の成型性を向上させられることを確認した。
 巻取った熱延鋼板を巻戻し、酸洗を施し、冷間圧延に供し、これにより冷延鋼板を得る。酸洗で、熱延鋼板の表面の酸化物を除去することにより、冷延鋼板の化成処理性およびめっき性が向上する。酸洗は、一回でもよいし、複数回に分けて行ってもよい。
 酸洗した熱延鋼板は、冷延鋼板の形状を平坦に保ち、また、最終製品に十分な延性を付与できる程度に高い圧下率で冷間圧延される必要がある。一方、圧下率が高すぎる場合、圧延荷重が過大になり、圧延が困難となる。本発明者らは、実験を行った結果、例えば冷間圧延時の累積圧下率(冷間圧延率)を50%とした場合、好適な結果が得られることを確認した。一方、例えば冷間圧延時の累積圧下率を90%として、本実施形態に係る鋼板の化学成分を有するスラブを冷間圧延した場合、鋼板に割れが生じた。なお、圧延パスの回数、パス毎の圧下率は、特に限定されない。
 次に、冷延鋼板を焼鈍する。焼鈍は、製造性を高めるために、好ましくは連続焼鈍である。
 焼鈍温度が不十分(例えば約750℃)である場合、十分なマルテンサイトを焼鈍後の冷延鋼板に生成させることができないので、最終的に得られる鋼板の焼戻しマルテンサイトの体積分率を30%以上にすることが難しい。
 一方、焼鈍温度が過剰(例えば約1000℃)である場合、製造コストの上昇を招き、経済的に好ましくなく、さらに、鋼板形状が劣悪になり、例えば連続焼鈍設備において鋼板を運搬するロールの寿命を低下させる等のトラブルを誘発する。さらに、焼鈍温度が過剰であると、焼鈍後の冷延鋼板に含まれるマルテンサイトが過剰になるので、最終的に得られる鋼板の焼戻しマルテンサイトの体積分率が70%を超える。
 また、焼鈍時間が不十分(例えば約1秒)である場合、熱間圧延で生成した鉄系炭化物を溶解させることができず、また、焼鈍後の冷延鋼板に含まれるマルテンサイトが不足するので、最終的に得られる鋼板の焼戻しマルテンサイトの体積分率を30%以上にすることができない。一方、焼鈍時間が過剰である場合、製造コストの上昇を招き、経済的に好ましくない。
 本発明者らが実験を行った結果、例えば焼鈍温度を約840℃とし、焼鈍時間を約100秒とした場合、最終的に得られる鋼板の焼戻しマルテンサイト量を適切な範囲内とすることが可能であることを確認した。
 焼鈍の終了後の冷延鋼板は、冷却される。この冷却は、十分なフェライト量を確保するために、冷却温度域に応じて冷却速度を変える二段階冷却とする必要がある。以降、焼鈍後かつ焼戻し前の二段階冷却を一回目の二段階冷却と称し、一回目の二段階冷却に含まれる一段階目の冷却および二段階目の冷却それぞれを、一次冷却および二次冷却と称する場合がある。
 1段階目の冷却における冷却停止温度が500℃未満であると、十分なフェライト量を確保することができず、加工特性が劣化するので、冷却停止温度は500℃以上とする。一方、オーステナイトからフェライトへの変態が生じる温度を上回る温度で1段階目の冷却を停止した場合も、冷却停止温度が500℃未満である場合と同様に、十分なフェライト量を確保することができない。
 1段階目の冷却における冷却停止温度までの冷却速度は0.5~200℃/秒とする。1段階目の冷却における冷却停止温度までの冷却速度が0.5℃/秒未満であると、パーライトが生成し、最終的に得られる鋼板の焼戻しマルテンサイトの体積分率を30%以上にすることができない。一方、200℃/秒を超える冷却速度は実現が難しいので、1段階目の冷却における冷却停止温度までの冷却速度は200℃/秒以下とする。
 2段階目の冷却において、冷却停止温度が100℃未満であると、フェライト又はベイナイトを確保することができず、加工特性が劣化するので、冷却停止温度は100℃以上とする。2段階目の冷却において、冷却停止温度が450℃を超えると、フェライトおよびベイナイトの合計体積分率が20%未満となり、加工特性を確保できなくなるので、冷却停止温度は450℃以下とする。
 2段階目の冷却において、冷却速度が1℃/秒未満であると、最終的に得られる鋼板のフェライトまたはベイナイトの量が20%未満となり、加工特性を確保できなくなるので、冷却速度は1℃/秒以上とする。一方、200℃/秒を超える冷却速度は実現が難しいので、2段階目の冷却における冷却停止温度までの冷却速度は200℃/秒以下とする。
 なお、冷却方法は、ロール冷却、空冷、水冷、及び、これらの併用のいずれでもよい。
 本発明者らが実験を行った結果、例えば、1段階目の冷却における冷却速度を2℃/秒とし、2段階目の冷却速度を45℃/秒とする条件で冷却を行った場合、フェライトおよびベイナイトの1種又は2種の合計量が適切な範囲内となることを確認した。
 上述の2段階で行う冷却に次いで、冷延鋼板を焼戻し、これにより組織制御を行う。この焼戻しによって、冷延鋼板に含まれるマルテンサイトを焼き戻して20体積%以上の焼戻しマルテンサイトを生成させ、この焼戻しマルテンサイトにおける鉄系炭化物の個数密度を5×10(個/mm)以上とする。
 焼戻しにおいて、鋼板温度は所定の保持温度(等温保持温度)に所定時間(等温保持時間)だけ維持される。焼戻しにおける保持温度が低すぎる(例えば約150℃)場合、5×10(個/mm)以上の鉄系炭化物の個数密度を得ることが難しく、十分な耐遅れ破壊特性を得ることができない。
 一方、焼戻しにおける保持温度が過剰である(例えば約550℃)場合、マルテンサイトが過度に焼き戻されて、最終的に得られる鋼板の引張強度が780MPa未満となる。また、焼戻しにおける保持温度が過剰であると、析出した鉄系炭化物が粗大化し、耐遅れ破壊特性が向上しない。
 焼戻しにおける保持時間が不足する(例えば約1秒)場合、マルテンサイトの焼戻しが不十分となり、かつ、鉄系炭化物の個数密度を5×10(個/mm)以上とすることが難しい。
 本発明者らが実験を行った結果、例えば焼戻しにおける保持温度を約400℃とし、且つ焼戻しにおける保持時間を約290秒とした場合、最終的に得られる鋼板の焼戻しマルテンサイト量、および鉄系炭化物の個数密度を適切な範囲内とすることが可能であることが確認された。
 上記温度保持の後、焼戻しマルテンサイトに含まれる鉄系炭化物の20%以上をε系炭化物とするように、冷却を行う。
 前述したように、鉄系炭化物とは、結晶構造の異なるε系炭化物、χ系炭化物、およびセメンタイト(θ系炭化物)等である。これら種々の鉄系炭化物のうち、ε系炭化物(Fe2.4C)は、bcc構造の鉄と、整合界面に近い界面を形成するので、水素トラップ能力が高い。しかも、ε系炭化物はセメンタイトより微細であるので、延性破壊の起点となり難い。
 本発明者らは、ε系介在物の量が、焼戻しにおける冷却条件だけではなく、C含有量、焼鈍の冷却温度、焼戻しにおける保持温度、焼戻しにおける保持時間にも影響されると推定している。必要とされるε系介在物を得るためには、これらε系介在物量の制御因子の相互作用を考慮して、製造条件を決定する必要がある。
 本発明者らは、種々の実験を行った結果、ε系炭化物を多数生成させ、耐遅れ破壊特性を向上させるためには、保持温度~約350℃の温度範囲と、約350℃~100℃の温度範囲とで冷却速度を異ならせる二段階冷却を行うことが必要であると知見した。以降、焼戻し後の二段階冷却を二回目の二段階冷却と称し、二回目の二段階冷却に含まれる保持温度~約350℃の温度範囲の冷却を三次冷却と称し、約350℃~100℃の温度範囲の冷却を四次冷却と称する場合がある。
 本発明者らの実験によれば、三次冷却範囲において冷却速度が低すぎる(例えば約1℃/sec)場合もしくは高すぎる(例えば約75℃/sec)場合、または四次冷却範囲において冷却速度が低すぎる(例えば約1℃/sec)場合もしくは高すぎる(例えば約65℃/sec)場合、ε系炭化物の量が不足した。
 本発明者らの実験によれば、冷却速度を変化させる温度を350℃±10℃とすれば、必要な効果が得られることがわかった。一方、冷却速度を変化させる温度が低すぎる(例えば約200℃)場合、ε系炭化物の量が不足した。さらに、二回目の二段階冷却の終了温度が高すぎる(例えば約200℃)場合も、ε系炭化物の量が不足した。
 本発明者らは、例えばC含有量を0.06%とし、焼鈍条件および焼戻しにおける保持時間および保持温度を上に例示した値とし、且つ保持温度~350℃の温度範囲の冷却速度を約12℃/secとし、350~100℃の温度範囲の冷却速度を約16℃/secとし、二回目の二段階冷却の終了温度を100℃以下とすることにより、鉄系炭化物の個数密度が5×10個/mm以上であり、板厚1/4部における鉄系炭化物中のε系炭化物の割合が20%以上である鋼板の製造が実施可能であることを知見した。
 そして、前述したように、ε系炭化物(Fe2.4C)はセメンタイトより微細で、延性破壊の起点となり難いので、成型性を維持しつつ、耐遅れ破壊特性を著しく高めることができる。
 耐遅れ破壊特性が顕著に向上するメカニズムは明確でないが、上述した温度保持の間に、微細なε系炭化物の核が焼戻しマルテンサイト中に生成し、その後の上記の2段階冷却で、微細なε系炭化物が生成すると推測される。
 次に、本実施形態に係る亜鉛めっき鋼板の製造方法、及び、本実施形態に係る合金化亜鉛めっき鋼板の製造方法について説明する。
 本実施形態に係る亜鉛めっき鋼板の製造方法は、
(a)本実施形態に係る鋼板と同じ組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、
(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、
(c1)焼鈍された鋼板を二段階冷却して、鋼板の温度を溶融亜鉛めっき浴温度付近にしてから溶融亜鉛めっきを施し、又は、
(c2)焼鈍された鋼板を二段階冷却して、さらに室温まで冷却し、その後、溶融亜鉛めっき浴温度付近まで加熱して、溶融亜鉛めっきを施し、
(d)溶融亜鉛めっきされた鋼板をさらに二段階冷却する
ことを特徴とする。
 溶融亜鉛めっきは、Feが以上15質量%以下で、残部がZn、Al、及び、不純物からなる溶融亜鉛めっきである。
 鋼板に、Feが7質量%未満のめっき層を形成した場合、通常、めっき層に合金化処理を施さず、溶融亜鉛めっき鋼板として使用する場合が多い。一方、鋼板に、Feが7質量%以上のめっき層を形成した場合、通常、めっき層に合金化処理を施して、合金化溶融亜鉛めっき鋼板として使用する場合が多い。
 本実施形態に係る亜鉛めっき鋼板の製造方法の(a)および(b)は、本実施形態に係る鋼板の製造方法の(a)および(b)と同じである。また、本実施形態に係る亜鉛めっき鋼板の製造方法の(d)では、本実施形態に係る鋼板の製造方法と同様に、二段階冷却を行う必要がある。
 本実施形態に係る亜鉛めっき鋼板の製造方法においては、焼鈍後、二段階冷却してから、鋼板の温度を亜鉛めっき浴温度付近として溶融亜鉛めっきを施すか、又は、鋼板を二段階冷却してからさらに室温まで冷却し、次いで、亜鉛めっき浴温度付近まで加熱してから、溶融亜鉛めっきを施す。焼鈍と、溶融亜鉛めっきとの間に行われる二段階冷却は、上述した本実施形態に係る鋼板の製造方法の(c)に含まれる二段階冷却と同様に行われる。
 溶融亜鉛めっきは、鋼板温度を亜鉛めっき浴温度付近としてから、めっき浴に浸漬して行う。鋼板温度を亜鉛めっき浴温度付近としてからめっき浴に浸漬することにより、鋼板表面に溶融亜鉛めっき層を、密着性良く均一に形成することができる。
 焼鈍後の鋼板を、亜鉛めっき浴温度付近まで二段階冷却し、又は、二段階冷却してからさらに室温まで冷却する。二段階冷却の際、冷却速度が不足すると、残留オーステナイトの一部が分解して炭化物となるので、加工特性が劣化する。
 鋼板を溶融亜鉛めっき浴に浸漬する際の温度が低すぎる場合、鋼板のめっき浴への侵入時、抜熱が大きく、溶融亜鉛の一部が凝固して、めっき外観を劣化させる場合がある。一方、鋼板を溶融亜鉛めっき浴に浸漬する際の温度が高すぎる場合、めっき浴温度が上昇して操業トラブルを誘発することがある。なお、めっき浴は、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有してもよい。
 本実施形態に係る溶融亜鉛めっき鋼板の製造方法では、鋼板を溶融亜鉛めっき浴に浸漬することにより、本実施形態に係る鋼板の焼戻しと同様の組織制御を行う。浸漬時の鋼板の熱履歴が、上述した本実施形態に係る鋼板の焼戻しの熱履歴と同様であれば、鋼板を溶融亜鉛めっき浴に浸漬することは、鋼板の特性を損なわない。
 鋼板表面に溶融亜鉛めっき層を形成した後は、本実施形態に係る亜鉛めっき鋼板の製造方法の(d)では、本実施形態に係る鋼板の製造方法(d)と同様に、二段階冷却を行う必要がある。
 上記めっき浴での保持と、めっき後の上記2段階冷却の組合せにより、所要の組織の主相の焼戻しマルテンサイト中に微細な鉄系炭化物を個数密度で5×10(個/mm)以上を析出させ、かつ、鉄系炭化物中のε系炭化物の割合を20%以上とし、成型性を維持しつつ、耐遅れ破壊特性を顕著に高めることができる。
 本実施形態に係る合金化亜鉛めっき鋼板の製造方法は、
(a)本実施形態に係る鋼板と同じ組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、
(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、
(c-1)焼鈍された鋼板を二段階冷却して、鋼板の温度を溶融亜鉛めっき浴温度付近にしてから溶融亜鉛めっきを施し、次いで合金化処理を施し、又は、
(c-2)焼鈍された鋼板を二段階冷却し、さらに室温まで冷却し、その後、亜鉛めっき浴温度付近まで加熱して、溶融亜鉛めっきを施し、次いで合金化処理を施し、
(d)合金化処理された鋼板をさらに二段階冷却する
ことを特徴とする。
 さらに、本実施形態に係る合金化亜鉛めっき鋼板の製造方法は、(d)に続き、(e)再加熱して、熱処理を施した後、室温まで冷却する
ことを含んでも良い。
 前記合金化溶融亜鉛めっきは、Feが15質量%以下で、残部がZn、Al、及び、不純物からなる合金化溶融亜鉛めっきである。
 本実施形態に係る合金化亜鉛めっき鋼板の製造方法は、本発明亜鉛めっき鋼板の製造方法に、溶融亜鉛めっき層を合金化する工程が加わったものである。合金化温度が不足すると、密着性のよい合金化層が形成されず、一方、過剰であると、合金化層が厚くなりすぎて、めっき層の成型性が低下する。
 本発明者らが実験を行った結果、例えば合金化温度を約480℃とした場合、良好な合金化層を有する合金化溶融亜鉛めっき鋼板が得られることを確認された。
 本実施形態に係る合金化亜鉛めっき鋼板の製造方法は、合金化および二段階冷却を行った後に、水素トラップ能力の高い界面を形成する鉄系炭化物中のε系炭化物の割合を増加させるように、再度の熱処理を行っても良い。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 鋼板の実施例の製造方法は、(a)表に開示された組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、(c)焼鈍された鋼板を二段階冷却し、次いで、焼戻しを行い、その後、(d)焼戻された鋼板をさらに二段階冷却することを備えていた。
 溶融亜鉛めっき鋼板の実施例の製造方法は、(a)表に開示された組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、(c1)焼鈍された鋼板を二段階冷却して、鋼板の温度を溶融亜鉛めっき浴温度付近にしてから溶融亜鉛めっきを施し、又は、(c2)焼鈍された鋼板を二段階冷却して、さらに室温まで冷却し、その後、溶融亜鉛めっき浴温度付近まで加熱して、溶融亜鉛めっきを施し、(d)溶融亜鉛めっきされた鋼板をさらに二段階冷却することを備えていた。
 合金化溶融亜鉛めっき鋼板の実施例の製造方法は、(a)表に開示された組成を有する鋳造スラブを、(a1)直接、熱間圧延に供し、次いで巻取り、又は、(a2)一旦冷却した後加熱して、熱間圧延に供し、次いで巻取り、(b)酸洗後、冷間圧延に供し、次いで、焼鈍し、その後、(c-1)焼鈍された鋼板を二段階冷却して、鋼板の温度を溶融亜鉛めっき浴温度付近にしてから溶融亜鉛めっきを施し、次いで合金化処理を施し、又は、(c-2)焼鈍された鋼板を二段階冷却し、さらに室温まで冷却し、その後、亜鉛めっき浴温度付近まで加熱して、溶融亜鉛めっきを施し、次いで合金化処理を施し、(d)合金化処理された鋼板をさらに二段階冷却することを備えていた。
 常法に従い、全ての熱延鋼板は酸洗された。全ての実施例および比較例(熱間圧延または冷間圧延中に割れが発生したものを除く)の熱間圧延後の板厚は3.2mmであり、一次冷却速度は2℃/secであり、二次冷却速度は45℃/secであった。その他の製造条件は、表に示された通りであった。表中の記号「*1」は、冷間圧延中に割れが発見されたので、製造が中止されたことを示し、表中の記号「*2」は、熱間圧延中に割れが発見されたので、製造が中止されたことを示す。記号「*1」または「*2」が付された例は、特性評価が行われなかった。めっきに関し「NO」と記載された例にはめっきが行われなかった。めっきに関し「YES」と記載され、且つ合金化に関し「NO」と記載された例には溶融亜鉛めっきが行われ、めっきに関し「YES」と記載され、且つ合金化に関し「YES」と記載された例には溶融亜鉛めっきが行われた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 得られた鋼板において、焼戻しマルテンサイトの体積分率(組織A体積分率)、フェライト及びベイナイトの1種又は2種の合計体積分率(組織B体積分率)、残留オーステナイト、フレッシュマルテンサイト、およびパーライトの合計体積分率(組織C体積分率)、焼戻しマルテンサイト中の鉄系炭化物の個数密度(炭化物個数密度)、及び、焼戻しマルテンサイト中の鉄系炭化物の個数に対するε系炭化物の個数の割合(ε系炭化物の割合)を求めた。さらに、得られた鋼板の引張強度(TS)、全伸び(EL)、及び、穴拡げ性(λ)を測定し、得られた鋼板の耐遅れ破壊特性を評価した。
 引張強度と伸びについては、鋼板の圧延方向に直角にJIS5号試験片を採取し、JIS Z 2242に準拠して引張試験を行い、引張強度(TS)と全伸び(El)を測定した。穴拡げ性については、日本鉄鋼連盟規格JFS T1001に準拠して穴拡げ率(λ(%))を測定した。表中の記号「*3」は、割れが生じたので、TS、EL、およびλの評価が行われなかったことを示す。
 鋼板の耐遅れ破壊特性は、鋼板の圧延方向に直角に切り出した長さ100mm、幅30mm、および厚さ1.3mmまたは1.6mmの短冊状試験片を3点曲げ加工し、この短冊状試験片の表面に耐水性の歪みゲージを装着した後、短冊状試験片をチオシアンアンモニウム水溶液中に浸漬し、電流密度0.1mA/cmでチオシアンアンモニウム水溶液を電気分解することにより短冊状試験片内に水素を侵入させ、2時間後、割れの発生の有無を確認することにより評価した。
 短冊状試験片の曲げ加工の半径は10mmとした。厚さ1.3mmの短冊状試験片に与える負荷応力は、鋼板の引張強度(TS)の60%とし、厚さ1.6mmの短冊状試験片に与える負荷応力は、鋼板の引張強度(TS)の90%とした。引張強度(TS)の60%の負荷応力で破断した短冊状試験片を「VERY BAD」、引張強度(TS)の60%の負荷応力で破断せず、引張強度(TS)の90%の負荷応力で破断した短冊状試験片を「BAD」、両方の負荷応力で破断しなかった短冊状試験片を「GOOD」と評価した。「GOOD」評価の鋼板は耐遅れ破壊特性に優れる鋼板である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表に示される通り、本発明の実施例の鋼板においては、析出した多量の鉄系炭化物が水素トラップサイトとして機能して耐遅れ破壊特性が顕著に優れ、かつ、組織の相構成で成型性にも優れていることが解る。また、比較例の鋼板においては、強度、耐遅れ破壊特性、成型性の少なくともいずれかが劣っていることが解る。
 前述したように、本発明によれば、自動車、建造物、家電製品等の構造部材として好適な、引張強度が780MPa以上の耐遅れ破壊特性に優れた鋼板、溶融亜鉛めっき鋼板、及び、合金化溶融亜鉛めっき鋼板と、それらの製造方法を提供することができる。よって、本発明は、構造部材製造及び利用産業において利用可能性が高いものである。

Claims (8)

  1.  化学成分が、質量%で、
    C:0.05~0.40%、
    Si:0.05~3.00%、
    Mn:1.50%以上3.50%未満、
    P:0.04%以下、
    S:0.01%以下、
    N:0.01%以下、
    O:0.006%以下、
    Al:0~2.00%、
    Cr:0~1.00%、
    Mo:0~1.00%、
    Ni:0~1.00%、
    Cu:0~1.00%
    Nb:0~0.30%、
    Ti:0~0.30%、
    V:0~0.50%
    B:0~0.01%
    Ca:0~0.04%、
    Mg:0~0.04%、及び、
    REM:0~0.04%
    を含有し、残部がFeおよび不純物からなり、
     板厚1/4部の組織が、体積分率で、
    焼戻しマルテンサイト:30~70%、および
    フェライト及びベイナイトの1種又は2種:合計で20%以上70%以下
    を含有し、
     前記板厚1/4部の組織において、体積分率で、残留オーステナイトが10%未満であり、フレッシュマルテンサイトが10%以下であり、パーライトが10%以下であり、且つ前記残留オーステナイト、前記フレッシュマルテンサイト、および前記パーライトの合計体積分率が15%以下であり、
     前記板厚1/4部における前記焼戻しマルテンサイト中の、長径5nm以上の鉄系炭化物の個数密度が5×10個/mm以上であり、
     前記板厚1/4部における長径5nm以上の前記鉄系炭化物の個数に対する、ε系炭化物の個数の割合が20%以上であり、
     引張強度が780MPa以上である
    ことを特徴とする鋼板。
  2.  前記鋼板の前記化学成分が、質量%で、
    Cr:0.05~1.00%、
    Mo:0.01~1.00%、
    Ni:0.05~1.00%、及び、
    Cu:0.05~1.00%の1種又は2種以上を含有する
    ことを特徴とする請求項1に記載の鋼板。
  3.  前記鋼板の前記化学成分が、質量%で、
    Nb:0.005~0.30%、
    Ti:0.005~0.30%、及び、
    V :0.005~0.50%の1種又は2種以上を含有する
    ことを特徴とする請求項1又は2に記載の鋼板。
  4.  前記鋼板の前記化学成分が、質量%で、
    B:0.0001~0.01%を含有する
    ことを特徴とする請求項1~3のいずれか一項に記載の鋼板。
  5.  前記鋼板の前記化学成分が、質量%で、
    Ca:0.0005~0.04%、
    Mg:0.0005~0.04%、及び、
    REM:0.0005~0.04%の1種又は2種以上を含有する
    ことを特徴とする請求項1~4のいずれか一項に記載の鋼板。
  6.  前記鉄系炭化物の平均長径が350nm以下であることを特徴とする請求項1~5のいずれか一項に記載の鋼板。
  7.  請求項1~6のいずれか一項に記載の鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び不純物からなる溶融亜鉛めっき層が形成されている
    ことを特徴とする溶融亜鉛めっき鋼板。
  8.  請求項1~6のいずれか一項に記載の鋼板の表面に、Feが15質量%以下で、残部がZn、Al、及び不純物からなる合金化溶融亜鉛めっき層が形成されている
    ことを特徴とする合金化溶融亜鉛めっき鋼板。
PCT/JP2015/070069 2015-07-13 2015-07-13 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 WO2017009938A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2015/070069 WO2017009938A1 (ja) 2015-07-13 2015-07-13 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
MX2018000329A MX2018000329A (es) 2015-07-13 2015-07-13 Lamina de acero, lamina de acero galvanizado por inmersion en caliente, lamina de acero recocido y galvanizado y metodos de fabricacion.
ES15898251T ES2785410T3 (es) 2015-07-13 2015-07-13 Chapa de acero, chapa de acero galvanizada por inmersión en caliente, chapa de acero galvanizada y recocida y métodos de fabricación de las mismas
EP15898251.2A EP3323907B1 (en) 2015-07-13 2015-07-13 Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
BR112018000090-6A BR112018000090A2 (ja) 2015-07-13 2015-07-13 A steel plate, a hot-dip zinc-coated carbon steel sheet, alloying hot-dip zinc-coated carbon steel sheets, and those manufacturing methods
PL15898251T PL3323907T3 (pl) 2015-07-13 2015-07-13 Blacha stalowa cienka, blacha stalowa cienka cynkowana zanurzeniowo na gorąco, blacha stalowa cienka cynkowana z przeżarzaniem i sposoby ich wytwarzania
US15/743,398 US10822672B2 (en) 2015-07-13 2015-07-13 Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor
KR1020187000710A KR102057946B1 (ko) 2015-07-13 2015-07-13 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판, 그리고 그들의 제조 방법
CN201580081574.9A CN107849666B (zh) 2015-07-13 2015-07-13 钢板、热浸镀锌钢板和合金化热浸镀锌钢板、以及它们的制造方法
JP2017528042A JP6460239B2 (ja) 2015-07-13 2015-07-13 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070069 WO2017009938A1 (ja) 2015-07-13 2015-07-13 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2017009938A1 true WO2017009938A1 (ja) 2017-01-19

Family

ID=57757132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070069 WO2017009938A1 (ja) 2015-07-13 2015-07-13 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法

Country Status (10)

Country Link
US (1) US10822672B2 (ja)
EP (1) EP3323907B1 (ja)
JP (1) JP6460239B2 (ja)
KR (1) KR102057946B1 (ja)
CN (1) CN107849666B (ja)
BR (1) BR112018000090A2 (ja)
ES (1) ES2785410T3 (ja)
MX (1) MX2018000329A (ja)
PL (1) PL3323907T3 (ja)
WO (1) WO2017009938A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031445B1 (ko) * 2017-12-22 2019-10-11 주식회사 포스코 내충격특성이 우수한 고강도 강판 및 그 제조방법
CN114729432B (zh) * 2020-03-16 2023-07-21 日本制铁株式会社 钢板
CN113355602A (zh) * 2021-06-03 2021-09-07 全球能源互联网研究院有限公司 一种架空导线用芯线材料及其制备方法
DE102021121997A1 (de) 2021-08-25 2023-03-02 Thyssenkrupp Steel Europe Ag Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197183A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 水素脆化の発生しない超高強度薄鋼板及び製造方法
JPH08134549A (ja) * 1994-11-10 1996-05-28 Kobe Steel Ltd 耐水素脆化特性にすぐれる超高強度薄鋼板の製造方法
WO2009096595A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 高強度鋼板とその製造方法
WO2009110607A1 (ja) * 2008-03-07 2009-09-11 株式会社神戸製鋼所 冷延鋼板
JP2010090432A (ja) * 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
WO2010109702A1 (ja) * 2009-03-27 2010-09-30 株式会社神戸製鋼所 冷延鋼板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230715A (ja) 1987-06-26 1989-09-14 Nippon Steel Corp プレス成形性の優れた高強度冷延鋼板の製造方法
JPH0733551B2 (ja) 1989-02-18 1995-04-12 新日本製鐵株式会社 優れた成形性を有する高強度鋼板の製造方法
JP3435035B2 (ja) 1997-09-24 2003-08-11 新日本製鐵株式会社 加工性およびほうろう密着性に優れた連続鋳造ほうろう用鋼板およびその製造方法
JP3527092B2 (ja) 1998-03-27 2004-05-17 新日本製鐵株式会社 加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法
JPH11293383A (ja) 1998-04-09 1999-10-26 Nippon Steel Corp 水素性欠陥の少ない厚鋼板およびその製造方法
EP1431406A1 (en) 2002-12-20 2004-06-23 Sidmar N.V. A steel composition for the production of cold rolled multiphase steel products
WO2009016881A1 (ja) * 2007-08-01 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho 曲げ加工性および疲労強度に優れた高強度鋼板
JP4712882B2 (ja) 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
US8128762B2 (en) 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
ES2613410T3 (es) * 2009-05-27 2017-05-24 Nippon Steel & Sumitomo Metal Corporation Lámina de acero de alta resistencia, lámina de acero bañado en caliente, y lámina de acero bañado en caliente de aleación que tienen excelentes características de fatiga, alargamiento y colisión, y método de fabricación para dichas láminas de acero
CN101928875A (zh) 2009-06-22 2010-12-29 鞍钢股份有限公司 具有良好成形性能的高强度冷轧钢板及其制备方法
CN102639739B (zh) * 2009-11-30 2014-09-10 新日铁住金株式会社 耐氢脆化特性优异的最大拉伸强度为900MPa以上的高强度钢板及其制造方法
EP2530180B1 (en) * 2010-01-29 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for manufacturing the steel sheet
JP4893844B2 (ja) * 2010-04-16 2012-03-07 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2617849B1 (en) * 2010-09-16 2017-01-18 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
JP5765116B2 (ja) 2010-09-29 2015-08-19 Jfeスチール株式会社 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
BR112014002026B1 (pt) 2011-07-29 2019-03-26 Nippon Steel & Sumitomo Metal Corporation Chapa de aço de alta resistência e chapa de aço galvanizado de alta resistência em fixabilidade de forma,e método de produção das mesmas.
CA2850462C (en) * 2011-09-30 2016-10-11 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance and manufacturing method thereof
CA2850195C (en) 2011-09-30 2016-10-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof
RU2566131C1 (ru) 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Гальванизированный горячим способом стальной лист и способ его изготовления
JP5454745B2 (ja) * 2011-10-04 2014-03-26 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN103290307B (zh) 2012-02-27 2016-09-21 株式会社神户制钢所 耐冲击性优越的高强度钢板及其制造方法
WO2014020640A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP5632947B2 (ja) 2012-12-12 2014-11-26 株式会社神戸製鋼所 加工性と低温靭性に優れた高強度鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197183A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 水素脆化の発生しない超高強度薄鋼板及び製造方法
JPH08134549A (ja) * 1994-11-10 1996-05-28 Kobe Steel Ltd 耐水素脆化特性にすぐれる超高強度薄鋼板の製造方法
WO2009096595A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 高強度鋼板とその製造方法
WO2009110607A1 (ja) * 2008-03-07 2009-09-11 株式会社神戸製鋼所 冷延鋼板
JP2010090432A (ja) * 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
WO2010109702A1 (ja) * 2009-03-27 2010-09-30 株式会社神戸製鋼所 冷延鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kinzoku Zairyo Gijutsu Kenkyusho", ZUKAI KINZOKU ZAIRYO GIJUTSU YOGO JITEN, 30 January 2000 (2000-01-30), pages 454 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
KR20180016549A (ko) 2018-02-14
JP6460239B2 (ja) 2019-01-30
JPWO2017009938A1 (ja) 2018-03-29
BR112018000090A2 (ja) 2018-08-28
EP3323907A1 (en) 2018-05-23
PL3323907T3 (pl) 2020-07-27
MX2018000329A (es) 2018-03-14
EP3323907A4 (en) 2018-12-12
CN107849666A (zh) 2018-03-27
US10822672B2 (en) 2020-11-03
KR102057946B1 (ko) 2019-12-20
EP3323907B1 (en) 2020-03-04
CN107849666B (zh) 2020-05-12
ES2785410T3 (es) 2020-10-06
US20180209006A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
KR102252841B1 (ko) 고강도 아연 도금 강판 및 그 제조 방법
KR101618477B1 (ko) 고강도 강판 및 그 제조 방법
JP6040753B2 (ja) 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法
JP5352793B2 (ja) 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101621639B1 (ko) 강판, 도금 강판 및 그들의 제조 방법
JP6314520B2 (ja) 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法
JP5251208B2 (ja) 高強度鋼板とその製造方法
JP5114747B2 (ja) 穴拡げ性と延性のバランスが極めて良好な高強度鋼板の製造方法と亜鉛めっき鋼板の製造方法
JPWO2009125874A1 (ja) 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法
KR102544884B1 (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
JP7235102B2 (ja) 鋼板及びその製造方法
CN111511945A (zh) 高强度冷轧钢板及其制造方法
JP2008056993A (ja) 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP6460239B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6460238B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
KR102658163B1 (ko) 고강도 강판 및 그 제조 방법
JP7216933B2 (ja) 鋼板およびその製造方法
TWI546390B (zh) 鋼板、熔融鍍鋅鋼板及合金化熔融鍍鋅鋼板以及其等之製造方法
TWI551695B (zh) 鋼板、熔融鍍鋅鋼板及合金化熔融鍍鋅鋼板以及其等之製造方法
CN114945690B (zh) 钢板及其制造方法
KR20220095232A (ko) 강판 및 그 제조 방법
KR20240051978A (ko) 열간 프레스용 강판, 그의 제조 방법, 열간 프레스 부재 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528042

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000710

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/000329

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15743398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000090

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000090

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180103