WO2010143677A1 - 電気化学素子用セパレータ及びそれを用いた電気化学素子 - Google Patents

電気化学素子用セパレータ及びそれを用いた電気化学素子 Download PDF

Info

Publication number
WO2010143677A1
WO2010143677A1 PCT/JP2010/059820 JP2010059820W WO2010143677A1 WO 2010143677 A1 WO2010143677 A1 WO 2010143677A1 JP 2010059820 W JP2010059820 W JP 2010059820W WO 2010143677 A1 WO2010143677 A1 WO 2010143677A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
fine particles
inorganic fine
surface area
electrochemical element
Prior art date
Application number
PCT/JP2010/059820
Other languages
English (en)
French (fr)
Inventor
阿部浩史
阿部敏浩
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to US13/377,496 priority Critical patent/US20120094184A1/en
Priority to JP2011518571A priority patent/JP5588437B2/ja
Priority to CN2010800261590A priority patent/CN102460773A/zh
Priority to KR1020117029522A priority patent/KR101237331B1/ko
Publication of WO2010143677A1 publication Critical patent/WO2010143677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a separator for an electrochemical element excellent in heat resistance and reliability and an electrochemical element using the same.
  • Electrochemical elements such as lithium secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density.
  • lithium secondary batteries tend to have higher capacities as mobile devices become more sophisticated, and ensuring safety is important.
  • a polyolefin microporous film having a thickness of about 20 to 30 ⁇ m, for example, is used as a separator interposed between a positive electrode and a negative electrode.
  • separator material the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit.
  • polyethylene having a low melting point may be applied.
  • a separator for example, a uniaxially stretched film or a biaxially stretched film is used to increase the porosity and improve the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the above stretching. However, with such a stretched film, the degree of crystallinity has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery. Therefore, it can be said that the margin for ensuring the safety of the battery is sufficient. hard.
  • the film is distorted by the above stretching, and when this is exposed to high temperature, there is a problem that shrinkage occurs due to residual stress.
  • the shrinkage temperature is very close to the melting point, ie the shutdown temperature.
  • the current must be immediately reduced to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the temperature of the battery easily rises to the shrinkage temperature of the separator, and there is a risk of an internal short circuit.
  • a first separator layer mainly including a resin for ensuring a shutdown function, and a filler having a heat resistant temperature of 150 ° C. or more It has been proposed to form an electrochemical element by using a porous separator having a second separator layer containing mainly as a main component (Patent Document 1).
  • Patent Document 1 it is possible to provide an electrochemical element such as a lithium secondary battery excellent in safety that hardly causes thermal runaway even when abnormally overheated.
  • Patent Documents 2 and 3 For the purpose of further improving the heat shrinkability, it has also been proposed to use plate-like particles as a filler having a heat resistant temperature of 150 ° C. or more (Patent Documents 2 and 3).
  • fillers having a heat-resistant temperature of 150 ° C. or higher described in the prior art documents can be found to exhibit an irregular shape depending on the type, raw material, and production method.
  • Inorganic fillers are generally produced by solid phase reactions, and many are heterogeneous reactions. Therefore, unlike the case of synthesizing an organic substance by a wet method, a large variation occurs in each particle shape and particle diameter.
  • the nonwoven fabric in which the heat-resistant filler of Patent Document 1 is filled in the voids of the nonwoven fabric made of heat-resistant fibrous material, the nonwoven fabric itself is hardly thermally deformed, and thus heat shrinkage at high temperatures is suppressed. If the fillability of the heat-resistant filler is low, lithium is easily deposited, which may cause a fine short circuit or a breakdown voltage failure.
  • the particle diameter of the filler can be made uniform by classification treatment or the like, but it is difficult to align the filler shape variation by classification treatment or the like.
  • the first separator for an electrochemical device of the present invention is a separator for an electrochemical device including inorganic fine particles and a fibrous material, wherein the primary particles of the inorganic fine particles can approximate a geometric shape, and the inorganic fine particles Obtained by approximating the geometrical shape of the primary particles, the theoretical specific surface area of the inorganic fine particles calculated from the surface area, volume and true density of the primary particles of the inorganic fine particles, and the inorganic fine particles measured by the BET method.
  • the difference from the actual specific surface area is within ⁇ 15% of the theoretical specific surface area.
  • the second separator for an electrochemical element of the present invention is an electrochemical element separator including inorganic fine particles and a microporous film, wherein the primary particles of the inorganic fine particles can approximate a geometric shape,
  • the inorganic particles measured by the BET method and the theoretical specific surface area of the inorganic particles calculated from the surface area, volume and true density of the primary particles of the inorganic particles obtained by approximating the geometrical shape of the primary particles of the inorganic particles.
  • the difference from the actual specific surface area of the fine particles is within ⁇ 15% of the theoretical specific surface area.
  • the electrochemical element of the present invention is characterized by including a positive electrode, a negative electrode, and the first electrochemical element separator or the second electrochemical element separator of the present invention.
  • an electrochemical element separator and an electrochemical element that are excellent in heat resistance and reliability.
  • FIG. 1A is a schematic plan view of a lithium secondary battery according to the present invention
  • FIG. 1B is a schematic cross-sectional view of FIG. 1A
  • FIG. 2 is a schematic external view of a lithium secondary battery according to the present invention.
  • the first separator for an electrochemical element of the present invention (hereinafter simply referred to as a separator) includes inorganic fine particles and a fibrous material, and the primary particles of the inorganic fine particles can approximate a geometric shape. Obtained by approximating the geometrical shape of the primary particles, the theoretical specific surface area of the inorganic fine particles calculated from the surface area, volume and true density of the primary particles of the inorganic fine particles, and the inorganic fine particles measured by the BET method. The difference from the actual specific surface area is within ⁇ 15% of the theoretical specific surface area.
  • the separator of the present invention contains the inorganic fine particles, whereby the heat resistance of the separator is improved, and the thermal contraction of the separator can be suppressed even when the separator is in a high temperature state. Moreover, the separator of this invention can hold
  • the inorganic fine particles whose difference between the theoretical specific surface area and the actual specific surface area is within ⁇ 15% of the theoretical specific surface area have a uniform particle shape and few irregular particles. For this reason, when the said inorganic fine particle is used as a filler of a separator, while being able to raise the filling rate in a separator, a moderate space
  • the shape of the primary particles is usually a square, a rectangle such as a rectangle, or a geometric shape such as a sphere or a cylinder. Can be approximated.
  • the theoretical specific surface area is calculated from the surface area, volume and true density of the so-called virtual primary particles of the inorganic fine particles obtained by approximating the geometrical shape of the primary particles of the inorganic fine particles regardless of whether the inorganic fine particles are aggregated or not. To do. However, when all of the inorganic fine particles are completely dispersed in the primary particles, the virtual primary particles coincide with the actual primary particles.
  • the theoretical specific surface area is R
  • the surface area of the primary particles of the inorganic fine particles determined by approximating the geometric shape of the primary particles of the inorganic fine particles is S
  • the volume is V
  • the true density is D.
  • the surface area R is calculated from the following formula.
  • the particle diameter of the inorganic fine particles necessary for geometrically calculating the surface area S and the volume V is obtained as follows.
  • the particle size is obtained as an average particle size (D50%) obtained from a general particle size distribution measuring apparatus such as a laser scattering method.
  • the primary particle shape of the inorganic fine particles cannot be approximated to a sphere, for example, when the aspect ratio is 5 or more, information on the length (size) in both the vertical direction and the horizontal direction is necessary. In this case, only the average particle diameter obtained from a normal particle size distribution measuring device can only obtain either vertical or horizontal information and cannot be calculated.
  • the particles are actually observed with a scanning electron microscope (SEM), and the dimensions of the individual particles are measured with a scale or the like.
  • SEM scanning electron microscope
  • the number of particles to be observed is 100 or more, and the surface area S and volume V of the inorganic fine particles are obtained from the average value of the measured values.
  • the actually measured particle size of the inorganic fine particles is preferably 0.05 to 3 ⁇ m including the size in the vertical and horizontal directions although the particle aspect ratio is high. If the particle size is less than 0.05 ⁇ m, the particles tend to aggregate and the filling property tends not to be improved. Moreover, when the particle diameter exceeds 3 ⁇ m, it tends to be difficult to contain in the voids of the fibrous material described later.
  • the actual specific surface area is a measured value of the specific surface area of the actual dispersed particles of the inorganic fine particles obtained by actual measurement by the BET method regardless of the presence or absence of aggregation of the inorganic fine particles.
  • the actual specific surface area of the inorganic fine particles is preferably 1 to 10 m 2 / g.
  • the actual specific surface area is less than 1 m 2 / g, it means that the dispersed particle diameter is too large, and it tends to be difficult to improve the filling property.
  • the actual specific surface area exceeds 10 m 2 / g, the abundance of impurities (water, acid, alkali component, etc.) adhering to the surface of the particles tends to increase and adversely affect the performance of the electrochemical device.
  • the difference between the theoretical specific surface area and the actual specific surface area of the inorganic fine particles will be described.
  • the difference between the theoretical specific surface area and the actual specific surface area of the inorganic fine particles is within ⁇ 15% of the theoretical specific surface area.
  • the shape of the virtual primary particle that approximates the geometric shape of the primary particle of the inorganic fine particle is approximate to the shape of the actual dispersed particle. That is, this means that the inorganic fine particles to be used are highly dispersible and the proportion of particles present as primary particles is high. Therefore, if the difference between the theoretical specific surface area and the actual specific surface area of the inorganic fine particles is within ⁇ 15% of the theoretical specific surface area, the shape of the inorganic fine particles is uniform and irregularly shaped particles. There will be less.
  • the ratio of the difference between the theoretical specific surface area and the actual specific surface area of the inorganic fine particles will be specifically described.
  • the theoretical specific surface area is R
  • the actual specific surface area is J
  • the ratio of the difference to the theoretical specific surface area R is Assuming W (%), W is calculated from the following equation.
  • W (%) ⁇ (J ⁇ R) / R ⁇ ⁇ 100 W needs to be within ⁇ 15%, more preferably within ⁇ 10%, and most preferably within ⁇ 5%.
  • fine particles (A) the inorganic fine particles
  • the shape of the primary particles of the fine particles (A) is not particularly limited as long as it can approximate a geometric shape, such as a quadrangle, a sphere, and a cylinder.
  • a rectangular or spherical shape particularly a plate shape or a disk shape having an aspect ratio of 5 to 100 is preferable.
  • the plate-like surface can be oriented parallel to the main surface of the separator, and the penetration inhibition strength of the separator can be improved. It is. Further, if the aspect ratio is less than 5, the penetration suppression strength of the separator due to the orientation of the plate-like particles tends to be weak. Tend to be.
  • the constituent material of the fine particles (A) examples include iron oxide, Al 2 O 3 (alumina), SiO 2 (silica), TiO 2 , BaTiO 3 , ZrO 2 and other inorganic oxides; aluminum nitride, silicon nitride and the like Inorganic nitrides; poorly soluble ion binding compounds such as calcium fluoride, barium fluoride, and barium sulfate; covalent bonding compounds such as silicon and diamond; clays such as montmorillonite;
  • the inorganic oxide may be a mineral resource derived material such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof.
  • a conductive material exemplified by a metal a conductive oxide such as SnO 2 , tin-indium oxide (ITO), a carbonaceous material such as carbon black, graphite, or the like is used as a material having electrical insulation (
  • covering with the said inorganic oxide etc. may be sufficient.
  • the inorganic oxide particles fine particles are preferable, and among them, boehmite, alumina, silica and the like are more preferable.
  • the fine particles (A) whose difference between the theoretical specific surface area and the actual specific surface area is within ⁇ 15% of the theoretical specific surface area are dispersed particles larger than a desired dispersed particle diameter (for example, 0.05 to 3 ⁇ m). It can be obtained by using a starting material having a diameter and subjecting the starting material to a dry crushing treatment or a wet crushing treatment.
  • a starting material an alumina, silica, boehmite, etc. having an average sparge shape with an average dispersed particle diameter of 3 to 6 ⁇ m is used, and the starting material is loaded into a pulverizer together with a dispersant and a solvent (for example, water) and pulverized.
  • fine particles (A) having a difference between the theoretical specific surface area and the actual specific surface area within ⁇ 15% of the theoretical specific surface area can be produced.
  • size of the difference of the said theoretical specific surface area and the said actual specific surface area can be controlled by adjusting the time of a crushing process.
  • dispersant for example, anionic, cationic and nonionic surfactants; polymer dispersants such as polyacrylic acid and polyacrylate can be used. More specifically, ADEKA “Adekator (trade name) series”, “Adekanol (trade name) series”, San Nopco “SN Dispersant (trade name) series”, Lion “Politi (trade name)” “Series”, “Armin (trade name) series”, “Duomin (trade name) series”, “Homogenol (trade name) series”, “Leodoll (trade name) series”, “Amate (trade name) series” , “Falback (trade name) series”, “Ceramisole (trade name) series”, “Polystar (trade name) series” manufactured by NOF Corporation, “Ajisper (trade name) series” manufactured by Ajinomoto Fine Techno Co., Ltd., Toagosei Co., Ltd. There are “Aron Dispersant (trade name) series” made by the company.
  • the starting material in the shape of the roughly confetti shape is composed of aggregated particles in which primary particles are aggregated, and various commercially available products can be used.
  • “Sun Outdoor (trade name)” SiO 2 ) manufactured by Asahi Glass S-Itech Co., Ltd.
  • a starting material having a secondary particle structure that is not roughly in the shape of confetti can be used.
  • Examples include “Zeolex 94HP (trade name)” (clay) manufactured by Huber.
  • a medialess pulverizer such as a jet mill, a high-pressure homogenizer, or a hybridizer, or a disperser that uses media such as a ball mill, a bead mill, a sand mill, or a vibration mill can be used.
  • a disperser using media is preferable to a crusher that uses the collision force of members.
  • a normal ceramic material such as zirconia or alumina having a particle diameter of about 0.1 to 10 mm is preferably used, and it is more preferable to use a medium having a higher Mohs hardness than a member to be crushed.
  • the stud-shaped part is peeled off to obtain a substantially plate-like particle material.
  • the content of the fine particles (A) in the separator is preferably 30% by volume or more, more preferably 40% by volume in the total volume of the constituent components after the separator is dried. That's it.
  • the upper limit of the content of the fine particles (A) is preferably 80% by volume, for example. This is because within this range, the heat resistance of the separator can be improved and the strength of the separator can be maintained.
  • the fibrous material (hereinafter referred to as fibrous material (B)) has electrical insulating properties, is electrochemically stable, and is used in the production of an electrolyte solution and a separator as described in detail below.
  • the solvent used in the liquid composition containing the fine particles (A) to be used is stable, but those having a heat resistant temperature of 150 ° C. or higher are preferable.
  • the heat resistant temperature of 150 ° C. or more means that the material does not substantially deform at a temperature of 150 ° C.
  • the difference between the length at room temperature (25 ° C.) and the length at 150 ° C. is It means within ⁇ 5% of the length at room temperature.
  • the “fibrous material” as used in the present invention refers to those having an aspect ratio [length in the long direction / width in the direction perpendicular to the long direction (diameter)] of 4 or more.
  • the temperature of the separator further increases by 20 ° C. or higher. Even if it rises, its shape is kept stable. Even when the shutdown function is not provided, it is not substantially deformed even at a temperature of 150 ° C., for example, occurrence of a short circuit due to heat shrinkage that has occurred in a separator composed of a conventional polyethylene porous film is prevented.
  • the fibrous material (B) for example, cellulose, cellulose modified product (carboxymethyl cellulose and the like), polypropylene (PP), polyethylene (PE), polyester [polyethylene terephthalate (PET), polyethylene naphthalate (PEN), Polybutylene terephthalate (PBT), etc.], polyacrylonitrile (PAN), aramid, polyamideimide, polyimide, polyvinyl alcohol (PVA), and other resins; glass, alumina, silica and other inorganic materials (inorganic oxides), and the like.
  • the fibrous material (B) may contain one of these constituent materials, or may contain two or more. Further, the fibrous material (B) may contain various additives (for example, an antioxidant in the case of a resin) as a constituent component, if necessary, in addition to the above constituent materials. Good.
  • the fibrous material (B) preferably forms a sheet-like material, and is particularly preferably a woven or non-woven fabric of the fibrous material (B). It is because it becomes easy to hold
  • the fibrous material (B) forms a sheet-like material, particularly when the opening diameter of the void of the sheet-like material is large (for example, when the opening diameter of the void is 5 ⁇ m or more), part or all of the fine particles (A) Is preferably held in the voids of the sheet-like material. Thereby, the short circuit of an electrochemical element can be suppressed.
  • sheet-like material examples include paper, PP nonwoven fabric, polyester nonwoven fabric (PET nonwoven fabric, PEN nonwoven fabric, PBT nonwoven fabric, etc.), PAN nonwoven fabric, and the like.
  • the weight per unit area (weight per unit area) of the sheet material is 30 to 80% by volume which is a preferable content of the fine particles (A).
  • the thickness of the sheet is preferably 7 to 20 ⁇ m.
  • fine particles (C) other than the fine particles (A) and hot-melt fine particles (D) can be mixed.
  • the fine particles (C) include the following inorganic fine particles or organic fine particles, and these can be used alone or in combination of two or more.
  • the inorganic fine particles (inorganic powder) include oxide fine particles such as iron oxide, SiO 2 , Al 2 O 3 , TiO 2 , BaTiO 2 , and ZrO 2 ; nitride fine particles such as aluminum nitride and silicon nitride; calcium fluoride Insoluble ion-binding compound fine particles such as barium fluoride, barium sulfate, etc .; Covalent compound fine particles such as silicon and diamond; Clay fine particles such as montmorillonite, mineral resources such as zeolite, apatite, kaolin, mullite, spinel and olivine Derived fine particles or these artificial fine particles.
  • conductive fine particles such as metal fine particles; oxide fine particles such as SnO 2 and tin-indium oxide (ITO); carbonaceous fine particles such as carbon black and graphite; It may be fine particles that have been electrically insulated by surface treatment with a material that constitutes the non-electrically conductive inorganic fine particles or a material that constitutes the crosslinked polymer fine particles described below.
  • Organic fine particles include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc.
  • various heat-resistant resin fine particles made of polypropylene (PP), polysulfone, polyether sulfone, polyphenylene sulfide, tetrafluoroethylene, polyacrylonitrile, aramid, polyacetal, and the like.
  • the organic resin (polymer) constituting these organic fine particles is a mixture, modified body, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. Polymer, etc.) and a crosslinked body (in the case of thermoplastic polyimide).
  • the heat-meltable fine particles (D) have electrical insulation properties, are stable with respect to the electrolytic solution, fine particles (A), and fibrous materials (B), and the operating voltage of the electrochemical element. Fine particles that do not cause side reactions such as oxidation-reduction in the range may be used. Further, as the heat-meltable fine particles (D), fine particles having a melting point of 80 to 130 ° C. are preferable. Mixing hot-melting fine particles (D) with a melting point of 80-130 ° C provides a so-called shutdown function that melts the hot-melting fine particles (D) when the separator is heated and closes the gaps in the separator. can do.
  • Examples of the constituent material of the heat-meltable fine particles (D) having a melting point of 80 to 130 ° C. include polyethylene (PE), copolymerized polyolefins having a structural unit derived from ethylene of 85 mol% or more, polyolefin derivatives (chlorinated polyethylene, etc.) Polyolefin wax, petroleum wax, carnauba wax and the like.
  • Examples of the copolymerized polyolefin include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-vinyl acetate copolymer (EVA), an ethylene-methyl acrylate copolymer, or an ethylene-ethyl acrylate copolymer. it can.
  • the heat-meltable fine particles (D) may have only one kind of these constituent materials, or may have two or more kinds. Among these, PE, polyolefin wax, or EVA having a structural unit derived from ethylene of 85 mol% or more is preferable. Moreover, the heat-meltable fine particles (D) may contain various additives (for example, antioxidants) added to the resin as necessary in addition to the above-described constituent materials as the constituent components. Good.
  • the fine particles other than the fine particles (A) are composite fine particles having a core-shell structure in which the inorganic fine particles in the fine particles (C) are used as a core and the resin of the heat-meltable fine particles (D) is used as a shell. E).
  • the content of the heat-meltable fine particles (D) and composite fine particles (E) in the separator is preferably 30 to 70% by volume in the total volume of the constituent components after the separator is dried.
  • the content is less than 30% by volume, the shutdown effect at the time of heating tends to be small, and when the content exceeds 70% by volume, the effect of preventing dendrite short-circuiting by the fine particles (A) tends to be small.
  • the particle diameters of the fine particles (C), the heat-meltable fine particles (D), and the composite fine particles (E) are 0.001 ⁇ m or more, more preferably 0.1 ⁇ m or more, and 15 ⁇ m or less, more preferably 1 ⁇ m or less. Recommended. This is because uniform mixing with the fine particles (A) is possible within this range.
  • the separator of the present invention binds the fine particles (A) and, if included, the fine particles (C), the hot-melt fine particles (D), the composite fine particles (E), and the fibrous material (B). Therefore, a binder (F) is usually used. However, the binder (F) may not be used when all of the fine particles included have self-adsorption properties.
  • the binder (F) is any one that is electrochemically stable and stable with respect to the electrolyte solution, and can bind the fine particles and the fine particles to the fibrous material (B).
  • EVA having a structural unit derived from vinyl acetate of 20 to 35 mol%, ethylene-acrylate copolymer such as ethylene-ethyl acrylate copolymer (EEA), fluorine-based rubber, styrene-butadiene rubber (SBR), Examples thereof include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyurethane, epoxy resin, and the like.
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl pyrrolidone
  • polyurethane epoxy
  • a heat-resistant resin having a heat resistance of 150 ° C. or higher is preferable, and particularly a highly flexible material such as an ethylene-acrylic acid copolymer, a fluorine-based rubber, or SBR is more preferable.
  • the heat resistant resin having heat resistance of 150 ° C. or higher refers to a resin that does not substantially decompose at 150 ° C. in the present invention.
  • Specific examples include “Evaflex series (trade name)” (EVA) manufactured by Mitsui DuPont Polychemical Co., Ltd., EVA manufactured by Nihon Unicar Co., Ltd.
  • a cross-linked acrylic resin (self-crosslinking acrylic resin) having a low glass transition temperature and having a structure in which butyl acrylate is a main component and is cross-linked is also preferable.
  • the content of the binder (F) in the separator is preferably 1% by volume or more, more preferably 5% by volume or more, and more preferably 10% by volume or more in the total volume of the constituent components after the separator is dried. More preferably. Moreover, it is preferable that content of a binder (F) is 30 volume% or less, and it is further more preferable that it is 20 volume% or less. When the content of the binder (F) is less than 1% by volume, the effect of binding the fine particles and the fine particles and the fibrous material (B) tends to be small.
  • a liquid composition containing fine particles (A) in an ion-permeable sheet-like material (various woven fabrics, nonwoven fabrics, etc.) composed of a fibrous material (B) having a heat-resistant temperature of 150 ° C. or higher (in the following, the slurry is applied using a coating device such as a dip coater, a blade coater, a roll coater, or a die coater, and then dried at a predetermined temperature.
  • the slurry for forming the separator of the present invention contains fine particles (A) and, if necessary, fine particles (C), heat-meltable fine particles (D), composite fine particles (E), binder (F) and the like. These are dispersed in a solvent.
  • the binder (F) may be dissolved in the solvent.
  • the solvent used in the slurry can uniformly disperse the fine particles (A), fine particles (C), hot-melt fine particles (D), and composite fine particles (E), and can evenly dissolve or disperse the binder (F).
  • Any organic solvent such as water or aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone;
  • the solid content including fine particles (A), fine particles (C), hot-melt fine particles (D), composite fine particles (E), and binder (F) is preferably set to 30 to 70% by mass, for example. . Further, the slurry may not be a single slurry containing all of the fine particles (A), fine particles (C), hot-melt fine particles (D), composite fine particles (E), and binder (F).
  • the liquid composition (1) may be applied to a sheet and dried to form the support layer (X), and then the liquid composition (2) may be applied to form the shutdown layer (Y).
  • a thickener can be added for the purpose of adjusting the viscosity of the slurry.
  • the thickener may be any thickener that does not have side effects such as agglomeration of fine particles (hereinafter referred to as filler) in the slurry and can adjust the slurry to the required viscosity. Higher ones are preferred. Further, it preferably has good solubility or dispersibility in the solvent. When a large amount of undissolved matter and aggregates (so-called “mamakoko”) are present in the slurry, the dispersion of the filler becomes non-uniform, and a portion having a low filler concentration is generated in the dried coating film.
  • the effect of imparting heat resistance using the filler is weakened, and as a result, the reliability and heat resistance of the electrochemical element may be reduced.
  • the residue remaining on the filter is 1 or less per liter of slurry, more preferably the slurry. It is 1 or less per 5L.
  • thickener examples include synthetic polymers such as polyethylene glycol, urethane-modified polyether, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer (more specifically, for example, manufactured by San Nopco).
  • SN thickener trade name (trade name) series
  • cellulose derivatives such as carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose
  • natural polysaccharides such as xanthan gum, welan gum, gellan gum, guar gum, carrageenan
  • starches such as dextrin and pregelatinized starch
  • Clay minerals such as montmorillonite and hectorite
  • inorganic oxides such as fumed silica, fumed alumina, and fumed titania can be used. These may be used singly or in combination of two or more.
  • the thickener content is suitable for maintaining the stable dispersion state by suppressing the settling of filler in the slurry, and good applicability is obtained when coating using a coating machine. Any amount can be used as long as it can be adjusted within the viscosity range. More specifically, the viscosity range is preferably 5 to 100 mPa ⁇ s, more preferably 10 to 100 mPa ⁇ s, and still more preferably 10 to 70 mPa ⁇ s. If the viscosity is less than 5 mPa ⁇ s, it may be difficult to suppress sedimentation of the filler, and it may be difficult to ensure the stability of the slurry. If the viscosity exceeds 100 mPa ⁇ s, the required thickness is uniform. It tends to be difficult to apply to.
  • the viscosity of the slurry can be measured with a vibration viscometer or an E-type viscometer.
  • the absolute amount of thickener contained in the slurry will remain in the separator when a thickener that does not volatilize in the drying step after coating is used. It is not preferable, and the volume ratio with respect to the total solid content in the slurry is preferably 10% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the solvent refers to the remaining part of the slurry excluding the solid content remaining when the coating film is dried.
  • the phrase “water as a main component” means that 70% or more of water is contained among the components in the solvent.
  • the water used as the solvent is preferably purified water obtained by distilling well water, tap water, ion exchange water, or the like.
  • water obtained by sterilizing the purified water with gamma rays, ethylene oxide gas, ultraviolet rays or the like.
  • preservatives and bactericides may be added as appropriate to prevent the thickener from being decomposed.
  • these include, for example, benzoic acid, parahydroxybenzoic acid esters, alcohols such as ethanol and methanol, chlorines such as sodium hypochlorite, acids such as hydrogen peroxide, boric acid and acetic acid, sodium hydroxide , Alkalis such as potassium hydroxide, and nitrogen-containing organic sulfur compounds (for example, “Nopcoside (trade name) series” manufactured by San Nopco).
  • an antifoaming agent can be appropriately used.
  • the antifoaming agent for example, various types of defoaming agents of mineral oil type, silicone type, acrylic type and polyether type can be used. Specific examples of antifoaming agents include “Formrex (trade name)” manufactured by Nikka Chemical Co., Ltd., “Surfinol (trade name) series” manufactured by Nissin Chemical Co., Ltd., and “Awazero (trade name) series” manufactured by Sugawara Engineering Co., Ltd. “SN deformer (trade name) series” manufactured by San Nopco Co., Ltd. can be used.
  • a dispersant can be appropriately added for the purpose of preventing aggregation of fillers.
  • the dispersant include various anionic, cationic, and nonionic surfactants, and polymer dispersants such as polyacrylic acid and polyacrylate.
  • an additive can be appropriately added to the slurry for the purpose of controlling the interfacial tension.
  • a solvent is an organic solvent
  • alcohol ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate
  • the solvent is water
  • alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.
  • modified silicone materials for example, “SN wet (trade name) series” manufactured by San Nopco
  • Interfacial tension can also be controlled using “SN deformer (trade name) series”).
  • the fibrous material (B) is further added to the slurry, and the slurry is applied onto a substrate such as a film or a metal foil using a coating device such as a blade coater, a roll coater, or a die coater. And it is the manufacturing method which peels from the said base material, after drying at predetermined
  • the slurry used in the production method (II) is the same as the slurry used in the production method (I) except that the fibrous material (B) is contained. It may be produced as described above and applied to the substrate a plurality of times. Further, in the separator obtained by the production method (II), when the fibrous material (B) forms a sheet-like material, one of the fine particles (A) is placed in the voids of the formed sheet-like material. It is preferable that a part or the whole is held.
  • Production method (I) and production method (II) are methods for producing a separator alone.
  • a slurry is directly applied to a positive electrode or a negative electrode by a blade coater, roll coater, die coater, spray. This is a method of applying and drying using a coating apparatus such as a coater.
  • the same slurry as that used in the production method (II) is used.
  • the slurry to be used may be applied multiple times as two or more types of slurry instead of a single slurry.
  • the second separator for an electrochemical element of the present invention includes inorganic fine particles and a microporous film, and the primary particles of the inorganic fine particles can approximate a geometric shape. Obtained by approximating the geometrical shape of the primary particles, the theoretical specific surface area of the inorganic fine particles calculated from the surface area, volume and true density of the primary particles of the inorganic fine particles, and the inorganic fine particles measured by the BET method. The difference from the actual specific surface area is within ⁇ 15% of the theoretical specific surface area.
  • the separator of the present embodiment has substantially the same configuration as the separator of the first embodiment except that a microporous membrane is used instead of the fibrous material of the separator of the first embodiment, and has substantially the same effect. Moreover, the separator of this invention can hold
  • microporous membrane (hereinafter referred to as microporous membrane (G)) has electrical insulating properties, is electrochemically stable, and is further used in the production of the above-described electrolyte and separator.
  • the solvent used in the liquid composition containing (A) is not particularly limited as long as it is stable, but it is preferably formed from a resin having a melting point of 80 to 130 ° C. Thereby, a shutdown function can be provided to the separator of the present invention.
  • Examples of the resin having a melting point of 80 to 130 ° C. include polyethylene (PE), copolymerized polyolefin, polyolefin derivatives (such as chlorinated polyethylene), polyolefin wax, petroleum wax, and carnauba wax.
  • Examples of the copolymer polyolefin include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-vinyl acetate copolymer (EVA), an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and the like. Examples thereof include an ethylene-acrylic acid copolymer.
  • the ethylene-derived structural unit in the copolymerized polyolefin is preferably 85 mol% or more.
  • polycycloolefin etc. can also be used.
  • As the resin one of the above exemplified resins may be used alone, or two or more of them may be used.
  • PE polyolefin wax
  • EVA having a structural unit derived from ethylene of 85 mol% or more
  • the said resin may contain the various additives generally added to resin, for example, antioxidant etc. as needed.
  • the thickness of the microporous membrane (G) is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. If the thickness of the microporous membrane (G) is less than 3 ⁇ m, the effect of completely preventing a short circuit tends to be small, and the strength of the separator tends to be insufficient, making it difficult to handle. On the other hand, when the thickness of the microporous membrane (G) exceeds 50 ⁇ m, the impedance when the electrochemical device is obtained tends to increase, and the energy density of the electrochemical device tends to decrease.
  • the separator of the present invention may contain fine particles (C) other than the fine particles (A), heat-meltable fine particles (D), composite fine particles (E), and a binder (F), as in the separator of the first embodiment. Good.
  • the separator of the present invention does not need to contain the heat-meltable fine particles (D), but contains the heat-meltable fine particles (D). You may go out.
  • the slurry described in the first embodiment is applied to the microporous film (G) formed of a resin having a melting point of 80 to 130 ° C. using a coating apparatus such as a blade coater, a roll coater, or a die coater. It is a manufacturing method which dries at a predetermined temperature after coating using.
  • the slurry may be applied on one side of the microporous membrane (G) or on both sides.
  • the support layer (X) containing the fine particles (A) can be formed on at least one surface of the microporous membrane (G) which is the shutdown layer (Y).
  • the total thickness of the support layer (X) can be variously selected depending on the thickness of the microporous membrane (G).
  • the total thickness of the support layer (X) indicates the thickness of the one side, and the support layer (X) is fine.
  • it is formed on both surfaces of the porous membrane (G), it indicates a thickness obtained by adding the thicknesses of both surfaces.
  • the total thickness of the support layer (X) is preferably 10% or more, more preferably 20% or more with respect to the thickness of the microporous membrane (G). If it is less than 10%, the heat shrinkage force of the microporous membrane (G) becomes larger than the support force of the support layer (X), and it tends to be difficult to suppress the heat shrinkage of the entire separator.
  • the total thickness of the support layer (X) is preferably selected so that the total thickness of the separator is 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the total thickness of the support layer is preferably 1.5 ⁇ m or more, more preferably 3.0 ⁇ m or more, and preferably 35 ⁇ m or less. Is 15 ⁇ m or less.
  • the microporous membrane (G) may be subjected to a hydrophilic treatment for the purpose of improving the wettability of the microporous membrane (G).
  • a hydrophilic treatment for the purpose of improving the wettability of the microporous membrane (G).
  • the discharge amount can be within a range of, for example, 30 to 150 W ⁇ min / m 2 .
  • the thickness of the separator of the present invention is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the thickness of the separator is less than 3 ⁇ m, the effect of completely preventing a short circuit tends to be small, and the strength of the separator is insufficient, and the handling tends to be difficult.
  • the thickness of the separator exceeds 50 ⁇ m, the impedance of the electrochemical device tends to increase, and the energy density of the electrochemical device tends to decrease.
  • the porosity of the separator of the present invention is preferably 20% or more, more preferably 30% or more, preferably 70% or less, more preferably 60% or less.
  • the porosity of the separator is less than 20%, the ion permeability tends to be small.
  • the porosity of the separator exceeds 70%, the strength of the separator tends to be insufficient.
  • the porosity of the separator according to the first embodiment of the present invention is calculated by obtaining the sum for each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following equation. it can.
  • a i ratio of component i expressed by mass%
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of separator (g / cm 2 )
  • t The thickness (cm) of the separator.
  • the porosity of the separator according to Embodiment 2 of the present invention is calculated by obtaining the sum for each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula. it can.
  • average density (g / cm 3 ) between each component contained in the support layer and the microporous membrane, a i : ratio of component i expressed in mass%, ⁇ i : of component i Density (g / cm 3 ), m: mass per unit area of separator (g / cm 2 ), t: thickness of separator (cm), t m : thickness of microporous film (cm), ⁇ m : It is the density (g / cm 3 ) of the microporous membrane.
  • the mass m per unit area of the separator is obtained by measuring the mass of the separator cut out in a 20 cm square with an electronic balance and calculating the mass per 1 cm 2.
  • the thickness t m of the microporous membrane is obtained by measuring the thicknesses of 10 measurement points randomly with a micrometer and averaging them.
  • the air permeability of the separator of the present invention indicated by the Gurley value of the separator is preferably 10 to 300 sec.
  • the Gurley value is measured by a method in accordance with Japanese Industrial Standard (JIS) P 8117, and is indicated by the number of seconds that 100 mL of air permeates the membrane under a pressure of 0.879 g / mm 2 .
  • JIS Japanese Industrial Standard
  • the air permeability of the separator exceeds 300 sec, the ion permeability tends to decrease, and when it is less than 10 sec, the strength of the separator tends to decrease.
  • the strength of the separator of the present invention is preferably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm.
  • the piercing strength of the separator is less than 50 g, for example, when lithium dendrite crystals are generated, there is a possibility that a short circuit may occur due to the breaking of the separator.
  • the electrochemical device of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and the separator according to Embodiment 1 or 2.
  • the electrochemical device of the present invention includes the separator according to Embodiment 1 or 2, it has excellent heat resistance and reliability.
  • the electrochemical device of the present invention is not particularly limited, and includes lithium primary batteries, supercapacitors, and the like in addition to lithium secondary batteries using a non-aqueous electrolyte.
  • a configuration of a lithium secondary battery which is a main application, will be described as an example.
  • Examples of the form of the lithium secondary battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the positive electrode is a positive electrode used in a conventionally known lithium secondary battery, that is, a positive electrode containing a positive electrode active material capable of occluding and releasing Li ions, a conductive additive, a binder, etc. There is no limit.
  • Examples of the positive electrode active material include a general formula of Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, Sn, etc.).
  • LiMPO 4 M: Co, Ni, Mn, Fe, etc.
  • the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
  • a carbon material such as carbon black
  • a binder for example, a fluororesin such as polyvinylidene fluoride (PVDF) is used, and these materials and a positive electrode active material are mixed.
  • PVDF polyvinylidene fluoride
  • a positive electrode mixture layer is formed on the surface of the positive electrode current collector, for example, by the positive electrode mixture.
  • the positive electrode current collector for example, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used, but usually an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • the lead portion on the positive electrode side is usually provided by forming an exposed portion of the positive electrode current collector without forming the positive electrode mixture layer on a part of the positive electrode current collector and forming the lead portion at the time of producing the positive electrode.
  • the lead portion is not necessarily integrated with the positive electrode current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the positive electrode current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known lithium secondary battery, that is, a negative electrode containing a negative electrode active material capable of inserting and extracting Li ions.
  • the negative electrode active material examples include occlusion of Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • MCMB mesocarbon microbeads
  • One or a mixture of two or more releasable carbon-based materials is used.
  • simple substances such as Si, Sn, Ge, Bi, Sb, In and alloys thereof; lithium-containing nitrides; or compounds that can be charged and discharged at a low voltage close to lithium metal such as oxides such as Li 4 Ti 5 O 12 ;
  • lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material.
  • a negative electrode mixture obtained by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is formed into a molded body (negative electrode mixture layer) using the negative electrode current collector as a core material.
  • a conductive additive carbon material such as carbon black
  • a binder such as PVDF
  • a finished product or a laminate of the above-mentioned various alloys or lithium metal foils alone or laminated on the surface of the negative electrode current collector is used as the negative electrode.
  • the negative electrode current collector When a current collector is used for the negative electrode, the negative electrode current collector may be a copper or nickel foil, a punching metal, a net, an expanded metal, or the like, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the electrode can be used in the form of a laminated electrode body in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or a wound electrode body in which this is wound.
  • the non-aqueous electrolyte a solution in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], or the like is used.
  • RfOSO 2 LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], or the like
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulf
  • a combination that can obtain a high dielectric constant, such as a mixed solvent of ethylene carbonate and chain carbonate.
  • vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, and fluorobenzene are used for the purpose of improving the safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes.
  • Additives such as t-butylbenzene can also be added as appropriate.
  • the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
  • FIG. 1A is a schematic plan view of a lithium secondary battery according to the present invention
  • FIG. 1B is a schematic cross-sectional view of FIG. 1A
  • FIG. 2 is a schematic external view of a lithium secondary battery according to the present invention.
  • the battery shown in FIGS. 1A, 1B and 2 will be described.
  • the negative electrode 1 according to the present invention and the positive electrode 2 according to the present invention are wound in a spiral shape through the separator 3 according to the present invention, and further flattened.
  • the spirally wound electrode body 6 is formed by being pressurized and is accommodated in a rectangular tube-shaped outer can 4 together with a non-aqueous electrolyte.
  • FIG. 1B in order to avoid complication, the metal foil and the non-aqueous electrolyte that are the current collectors of the negative electrode 1 and the positive electrode 2 are not illustrated, and the central portion of the wound electrode body 6 and the separator 3 are not illustrated. Does not show hatching indicating the cross section.
  • the outer can 4 is made of an aluminum alloy and constitutes an outer casing of the battery.
  • the outer can 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of a polyethylene sheet is arrange
  • the negative electrode lead portion 8 and the positive electrode lead portion 7 are drawn out.
  • a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy that seals the opening of the outer can 4 via a polypropylene insulating packing 10.
  • a stainless steel lead plate 13 is attached via 12.
  • the cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 so that the inside of the battery is sealed. Further, the lid plate 9 is provided with a non-aqueous electrolyte inlet 14, and the non-aqueous electrolyte inlet 14 is welded and sealed by, for example, laser welding with a sealing member inserted. Thus, the battery is sealed.
  • the nonaqueous electrolyte injection port 14 is displayed including the nonaqueous electrolyte injection port itself and the sealing member for convenience.
  • the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the internal pressure rises due to the temperature rise of the battery or the like.
  • the outer can 4 and the cover plate 9 function as a positive electrode terminal by directly welding the positive electrode lead portion 7 to the cover plate 9.
  • the terminal 11 functions as a negative electrode terminal by welding to the lead plate 13 and connecting the negative electrode lead portion 8 and the terminal 11 through the lead plate 13, but depending on the material of the outer can 4, etc. The sign may be reversed.
  • Example 1 5 kg of boehmite (true density: 3.0 g / cm 3 ) having an average particle diameter of 4 ⁇ m, which is obtained by agglomerating plate-like primary particles in an approximately flat shape, 5 kg of ion-exchanged water and a dispersant (aqueous polycarboxylic acid ammonium salt: San Nopco) “SN Dispersant 5468” (solid content concentration 40%) 0.5 kg was added, and the mixture was crushed for 10 hours with a ball mill with an internal volume of 20 L and a rotation number of 40 times / min to prepare a dispersion.
  • a dispersant aqueous polycarboxylic acid ammonium salt: San Nopco
  • SN Dispersant 5468 solid content concentration 40%
  • boehmite powder The treated dispersion was vacuum dried at 120 ° C. to obtain boehmite powder.
  • this boehmite powder was observed by SEM, the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles was approximated to a square plate shape, 100 primary particles were observed with an SEM, and the average particle diameter M, average thickness N of the primary particles were measured. The theoretical specific surface area was calculated.
  • boehmite powder As a sample, heat treatment at 150 ° C. for 2 hours, and using a BET specific surface area measuring device “Bell Soap Mini” manufactured by Bell Japan Inc., the actual specific surface area of the boehmite powder (BET specific surface area) was measured.
  • a PET non-woven fabric (width 200 mm, thickness 17 ⁇ m, basis weight 10 g / m 2 ) was used as the fibrous material (B), and this PET non-woven fabric was immersed in the liquid composition at a rate of 1 m / min.
  • the separator was pulled up, applied, and dried to obtain a separator of this example.
  • the separator obtained had a thickness of 23 ⁇ m, a mass per unit area of 3.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.5%, and a Gurley value of 200 sec.
  • Example 2 A dispersion was prepared in the same manner as in Example 1 except that boehmite having an average particle size of 3 ⁇ m in which plate-like primary particles were aggregated in a roughly flat shape was used, and dried under the same conditions to obtain boehmite powder. .
  • this boehmite powder was observed by SEM, the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles is approximated to a square plate shape, and in the same manner as in Example 1, the average particle diameter M, the average thickness N, the theoretical specific surface area, and the actual specific surface area. And the ratio W was calculated
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 23 ⁇ m, a mass per unit area of 3.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.5%, and a Gurley value of 200 sec.
  • Example 3 A dispersion was prepared in the same manner as in Example 1 except that boehmite having an average particle diameter of 6 ⁇ m in which plate-like primary particles were aggregated in a roughly flat shape was used, and dried under the same conditions to obtain boehmite powder. .
  • this boehmite powder was observed by SEM, the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles is approximated to a square plate shape, and in the same manner as in Example 1, the average particle diameter M, the average thickness N, the theoretical specific surface area, and the actual specific surface area. And the ratio W was calculated
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 23 ⁇ m, a mass per unit area of 3.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.5%, and a Gurley value of 200 sec.
  • Example 4 5 kg of alumina (true density: 3.9 g / cm 3 ) with an average particle size of 4 ⁇ m, in which plate-like primary particles are aggregated in an approximately confetti shape, 5 kg of ion-exchanged water and a dispersant (aqueous polycarboxylic acid ammonium salt: San Nopco) “SN Dispersant 5468” (solid content concentration 40%) 0.5 kg was added, and the mixture was pulverized for 15 hours with a ball mill with an internal volume of 20 L and a rotation number of 40 times / min to prepare a dispersion.
  • a dispersant aqueous polycarboxylic acid ammonium salt: San Nopco
  • SN Dispersant 5468 solid content concentration 40%
  • the treated dispersion was vacuum dried at 120 ° C. to obtain alumina powder.
  • this alumina powder was observed by SEM, the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles is approximated to a square plate shape, and the average particle diameter M, average thickness N, theoretical specific surface area, actual specific surface area are obtained in the same manner as in Example 1. And the ratio W was obtained.
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 20 ⁇ m, a mass per unit area of 3.8 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 50.0%, and a Gurley value of 180 sec.
  • Example 5 5 kg of ion-exchanged water and a dispersing agent (aqueous polycarboxylic acid ammonium salt: Sannopco) on 5 kg of silica (true density: 2.2 g / cm 3 ) having an average particle diameter of 4 ⁇ m in which plate-like primary particles are aggregated in a roughly flat shape.
  • a dispersing agent aqueous polycarboxylic acid ammonium salt: Sannopco
  • silica true density: 2.2 g / cm 3
  • “SN Dispersant 5468” solid content concentration 40%
  • the treated dispersion was vacuum dried at 120 ° C. to obtain silica powder.
  • the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles is approximated to a square plate shape, and in the same manner as in Example 1, the average particle diameter M, the average thickness N, the theoretical specific surface area, and the actual specific surface area. And the ratio W was obtained.
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 25 ⁇ m, a mass per unit area of 2.7 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.9%, and a Gurley value of 210 sec.
  • Example 6 5 kg of boehmite (true density: 3.0 g / cm 3 ) having an average particle diameter of 4 ⁇ m in which spherical primary particles are aggregated in a tuft shape, 5 kg of ion-exchanged water and a dispersant (aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco) SN Dispersant 5468 ”, solid content concentration 40%) and 0.5 kg were added, and the mixture was pulverized for 4 hours with a ball mill with an internal volume of 20 L and a rotation number of 40 times / minute to prepare a dispersion.
  • a dispersant aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco
  • SN Dispersant 5468 solid content concentration 40%
  • boehmite powder The treated dispersion was vacuum dried at 120 ° C. to obtain boehmite powder.
  • this boehmite powder was observed by SEM, the shape of the primary particles was substantially spherical.
  • the shape of the primary particles was approximated to be spherical, and the average particle diameter M, theoretical specific surface area, actual specific surface area, and ratio W were determined in the same manner as in Example 1.
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 23 ⁇ m, a mass per unit area of 3.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.5%, and a Gurley value of 200 sec.
  • Example 7 5 kg of alumina (true density: 3.9 g / cm 3 ) having an average particle diameter of 3 ⁇ m in which spherical primary particles are aggregated in a tuft shape, 5 kg of ion-exchange water and a dispersant (aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco) SN Dispersant 5468 ", solid content concentration 40%) and 0.5 kg were added, and the mixture was pulverized for 5 hours with a ball mill with an internal volume of 20 L and a number of rotations of 40 times / minute to prepare a dispersion.
  • alumina true density: 3.9 g / cm 3
  • a dispersant aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco
  • the treated dispersion was vacuum dried at 120 ° C. to obtain alumina powder.
  • this alumina powder was observed by SEM, the shape of the primary particles was substantially spherical.
  • the shape of the primary particles was approximated to be spherical, and the average particle diameter M, the theoretical specific surface area, the actual specific surface area and the ratio W were determined in the same manner as in Example 1.
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 20 ⁇ m, a mass per unit area of 3.8 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 50.0%, and a Gurley value of 180 sec.
  • Example 8 5 kg of silica (true density: 2.2 g / cm 3 ) having an average particle diameter of 3 ⁇ m in which spherical primary particles are aggregated in a tuft shape, 5 kg of ion-exchanged water, and a dispersant (aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco) SN Dispersant 5468 ”, solid content concentration 40%) and 0.5 kg were added, and the mixture was pulverized for 4 hours with a ball mill with an internal volume of 20 L and a rotation number of 40 times / minute to prepare a dispersion.
  • a dispersant aqueous polycarboxylic acid ammonium salt: manufactured by San Nopco
  • SN Dispersant 5468 solid content concentration 40%
  • the treated dispersion was vacuum dried at 120 ° C. to obtain silica powder.
  • silica powder was observed by SEM, the shape of the primary particles was substantially spherical.
  • the shape of the primary particles was approximated to be spherical, and the average particle diameter M, the theoretical specific surface area, the actual specific surface area and the ratio W were determined in the same manner as in Example 1.
  • the separator of this example was obtained in the same manner as in Example 1 using the above dispersion.
  • the separator obtained had a thickness of 25 ⁇ m, a mass per unit area of 2.7 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 49.9%, and a Gurley value of 210 sec.
  • Example 9 A liquid composition was prepared in the same manner as in Example 1 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The obtained separator had a thickness of 20 ⁇ m, a mass per unit area of 1.6 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 44.7%, and a Gurley value of 200 sec.
  • Example 10 A liquid composition was prepared in the same manner as in Example 2 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The obtained separator had a thickness of 20 ⁇ m, a mass per unit area of 1.6 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 44.7%, and a Gurley value of 200 sec.
  • Example 11 A liquid composition was prepared in the same manner as in Example 3 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The obtained separator had a thickness of 20 ⁇ m, a mass per unit area of 1.6 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 44.7%, and a Gurley value of 200 sec.
  • Example 12 A liquid composition was prepared in the same manner as in Example 4 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The separator obtained had a thickness of 19 ⁇ m, a mass per unit area of 1.8 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 46.0%, and a Gurley value of 200 sec.
  • Example 13 A liquid composition was prepared in the same manner as in Example 5 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The separator obtained had a thickness of 21 ⁇ m, a mass per unit area of 1.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 48.6%, and a Gurley value of 200 sec.
  • Example 14 A liquid composition was prepared in the same manner as in Example 6 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The obtained separator had a thickness of 20 ⁇ m, a mass per unit area of 1.6 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 44.7%, and a Gurley value of 200 sec.
  • Example 15 A liquid composition was prepared in the same manner as in Example 7 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The obtained separator had a thickness of 20 ⁇ m, a mass per unit area of 1.8 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 46.0%, and a Gurley value of 200 sec.
  • Example 16 A liquid composition was prepared in the same manner as in Example 8 except that the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this example. The separator obtained had a thickness of 21 ⁇ m, a mass per unit area of 1.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 48.6%, and a Gurley value of 200 sec.
  • Example 1 A dispersion was prepared in the same manner as in Example 1 except that the pulverization time in the ball mill was 6 hours, and dried under the same conditions to obtain boehmite powder.
  • this boehmite powder was observed by SEM, the shape of the primary particles was substantially plate-like.
  • the shape of the primary particles is approximated to a square plate shape, and in the same manner as in Example 1, the average particle diameter M, the average thickness N, the theoretical specific surface area, and the actual specific surface area. And the ratio W was calculated
  • the separator of this comparative example was obtained like Example 1 using the said dispersion liquid.
  • the separator obtained had a thickness of 20 ⁇ m, a mass per unit area of 2.8 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 52.2%, and a Gurley value of 100 sec.
  • Example 2 A liquid composition was prepared in the same manner as in Example 1 except that the dispersion prepared in Comparative Example 1 was used and the polyethylene emulsion as the heat-meltable fine particles (D) was not added. Further, as a microporous membrane (G), a corona discharge treatment was performed on one side of a polyethylene microporous membrane (width 300 mm, thickness 15 ⁇ m, density 0.95 g / cm 3 ) at a discharge amount of 40 W ⁇ min / m 2 . I prepared something. Next, the liquid composition was applied to one side of the polyethylene microporous membrane subjected to corona discharge treatment using a die coater and dried to obtain a separator of this comparative example. The separator obtained had a thickness of 20 ⁇ m, a mass per unit area of 1.4 ⁇ 10 ⁇ 3 g / cm 2 , a porosity of 51.6%, and a Gurley value of 200 sec.
  • Thermal shrinkage (%) 100 ⁇ (10 ⁇ x) / 10
  • x is the vertical or horizontal dimension (cm) of the separator after being left for 1 hour in a thermostat set at 150 ° C.
  • the thermal shrinkage is small in the separators of Examples 1 to 16 in which the ratio W of the difference between the theoretical specific surface area and the actual specific display area to the theoretical specific surface area is within ⁇ 15%.
  • the heat shrinkage rate was small because the nonwoven fabric which consists of a heat resistant fibrous material (B) was used.
  • the thermal shrinkage rate was increased because the fine particle (A) filling rate was small.
  • lithium secondary batteries were produced as follows.
  • the thickness of the positive electrode mixture layer was adjusted so that the total thickness was 150 ⁇ m, and the positive electrode mixture layer was cut to a width of 43 mm to produce a positive electrode having a length of 280 mm and a width of 43 mm. Further, an aluminum tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • Negative Electrode Graphite as negative electrode active material 90 parts by mass and PVDF as binder: 10 parts by mass were mixed so as to be uniform using NMP as a solvent to prepare a negative electrode mixture-containing paste.
  • This negative electrode mixture-containing paste was intermittently applied on both sides of a 10 ⁇ m-thick current collector made of copper foil so that the active material application length was 290 mm on the front surface and 230 mm on the back surface, dried, and then subjected to calendar treatment.
  • the thickness of the negative electrode mixture layer was adjusted so that the total thickness was 142 ⁇ m, and the negative electrode mixture layer was cut so as to have a width of 45 mm to produce a negative electrode having a length of 290 mm and a width of 45 mm.
  • a nickel tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • the batteries using the separators of Examples 1 to 16 and Comparative Example 2 were capable of constant current and constant voltage charging up to 4.2 V, while the battery using the separator of Comparative Example 1 was 4.
  • the voltage increased only to around 0V, and constant voltage charging could not be performed at 4.2V. This is probably because the separator of Comparative Example 1 had a low filling rate of the fine particles (A), causing a slight short circuit at the corner portion of the flat wound electrode body, and the voltage not rising.
  • the electrochemical device of the present invention is preferably used for various applications such as a power source of a portable electronic device such as a mobile phone or a notebook personal computer to which a conventional electrochemical device such as a lithium secondary battery is applied. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明の電気化学素子用セパレータは、無機微粒子と、繊維状物又は微多孔膜とを含み、前記無機微粒子の一次粒子は、幾何学形状に近似でき、前記無機微粒子の一次粒子を幾何学形状に近似して求めた、前記無機微粒子の一次粒子の表面積、体積及び真密度から算出される前記無機微粒子の理論比表面積と、BET法により実測される前記無機微粒子の実比表面積との差が、前記理論比表面積に対して±15%以内であることを特徴とする。

Description

電気化学素子用セパレータ及びそれを用いた電気化学素子
 本発明は、耐熱性と信頼性とに優れた電気化学素子用セパレータ及びそれを用いた電気化学素子に関するものである。
 リチウム二次電池などの電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。例えば、リチウム二次電池では、携帯機器の高性能化に伴って高容量化がさらに進む傾向にあり、安全性の確保が重要となっている。
 現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚さが20~30μm程度のポリオレフィン系の微多孔膜が使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。
 ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを上記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。
 また、上記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、即ちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の微多孔膜セパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡の危険性があるからである。
 このようなセパレータの熱収縮による短絡を防止し、電池の信頼性を高める技術として、例えば、シャットダウン機能を確保するための樹脂を主体として含む第1セパレータ層と、耐熱温度が150℃以上のフィラーを主体として含む第2セパレータ層とを有する多孔質のセパレータを用いて電気化学素子を構成することが提案されている(特許文献1)。
 特許文献1の技術によれば、異常過熱した際にも熱暴走が生じ難い安全性に優れたリチウム二次電池などの電気化学素子を提供することができる。
 一方、さらに耐熱収縮性を向上させる目的で、耐熱温度が150℃以上のフィラーとして板状粒子を用いる提案もされている(特許文献2及び3)。
国際公開第2007/66768号パンフレット 特開2007-157723号公報 特開2008-004439号公報
 ところで、先行技術文献に記載されている耐熱温度が150℃以上のフィラーは、種類、原料、製造方法によっては、いびつな形状を示すものが見られる。無機フィラーは固相反応で生成する場合が一般的であり、多くは不均一反応である。従って、湿式で有機物を合成する場合と違い、一つ一つの粒子形状や粒子径に大きなばらつきが生じることとなる。
 例えば、略金平糖のような形状の粒子を特許文献1の耐熱フィラーとして用いた場合、第2セパレータ層の充填密度が極端に低くなり、高温での第1セパレータ層の熱収縮応力に負けてセパレータ全体が収縮して短絡を引き起こす場合がある。また、耐熱フィラーの粒子径のばらつきが大きい場合も時として同様の理由で短絡の原因となる傾向が見られる。
 また、耐熱性の繊維状物からなる不織布の空隙内に特許文献1の耐熱フィラーを充填したセパレータにおいては、不織布そのものが熱変形しにくいので高温での熱収縮は抑制されるものの、セパレータへの耐熱フィラーの充填性が低いと容易にリチウムの析出が起こり、微短絡や耐電圧不良を引き起こす原因となるおそれがある。
 さらに、フィラーの粒子径は分級処理などにより均一化が可能であるが、フィラーの形状ばらつきを分級処理などでそろえることは困難である。
 本発明の第1の電気化学素子用セパレータは、無機微粒子と、繊維状物とを含む電気化学素子用セパレータであって、前記無機微粒子の一次粒子は、幾何学形状に近似でき、前記無機微粒子の一次粒子を幾何学形状に近似して求めた、前記無機微粒子の一次粒子の表面積、体積及び真密度から算出される前記無機微粒子の理論比表面積と、BET法により実測される前記無機微粒子の実比表面積との差が、前記理論比表面積に対して±15%以内であることを特徴とする。
 また、本発明の第2の電気化学素子用セパレータは、無機微粒子と、微多孔膜とを含む電気化学素子用セパレータであって、前記無機微粒子の一次粒子は、幾何学形状に近似でき、前記無機微粒子の一次粒子を幾何学形状に近似して求めた、前記無機微粒子の一次粒子の表面積、体積及び真密度から算出される前記無機微粒子の理論比表面積と、BET法により実測される前記無機微粒子の実比表面積との差が、前記理論比表面積に対して±15%以内であることを特徴とする。
 また、本発明の電気化学素子は、正極、負極及び上記本発明の第1の電気化学素子用セパレータ又は第2の電気化学素子用セパレータを含むことを特徴とする。
 本発明によれば、耐熱性と信頼性とに優れた電気化学素子用セパレータ及び電気化学素子を提供することができる。
図1Aは、本発明に係るリチウム二次電池の平面概略図であり、図1Bは、図1Aの断面概略図である。 図2は、本発明に係るリチウム二次電池の外観概略図である。
 (実施形態1)
 先ず、本発明の第1の電気化学素子用セパレータの実施形態を説明する。本発明の第1の電気化学素子用セパレータ(以下、単にセパレータという。)は、無機微粒子と、繊維状物とを含み、上記無機微粒子の一次粒子は、幾何学形状に近似でき、上記無機微粒子の一次粒子を幾何学形状に近似して求めた、上記無機微粒子の一次粒子の表面積、体積及び真密度から算出される上記無機微粒子の理論比表面積と、BET法により実測される上記無機微粒子の実比表面積との差が、上記理論比表面積に対して±15%以内であることを特徴とする。
 本発明のセパレータは、上記無機微粒子を含むことにより、セパレータの耐熱性が向上し、セパレータが高温状態となってもセパレータの熱収縮を抑制できる。また、本発明のセパレータは、上記繊維状物を含むことにより、上記無機微粒子を確実にセパレータに保持できる。
 さらに、上記理論比表面積と上記実比表面積との差が上記理論比表面積に対して±15%以内の無機微粒子は、その粒子形状が均一であり、いびつな形状の粒子が少ない。このため、上記無機微粒子をセパレータの充填材として使用すると、セパレータ中での充填率を高めることができるとともに、セパレータに適度の空隙を形成できる。従って、本発明のセパレータをリチウム二次電池に用いた場合、セパレータ中での無機微粒子の充填率が高いことから、リチウムのデンドライトによる微短絡を抑制することができ、また、セパレータに適度の空隙が確保されているため、イオンの移動をスムーズにして、高電流での充放電に対応することができる。
 次に、上記理論比表面積と上記実比表面積について説明する。
 上記無機微粒子は、たとえその一次粒子が凝集して二次粒子を形成している場合であっても、その一次粒子形状は、通常、正方形、長方形などの四角形又は球形又は円筒形といった幾何学形状に近似することができる。上記理論比表面積は、上記無機微粒子の凝集の有無にかかわらず、上記無機微粒子の一次粒子を幾何学形状に近似して求めた上記無機微粒子のいわば仮想一次粒子の表面積、体積及び真密度から算出するものである。但し、上記無機微粒子の全てが完全に一次粒子に分散している場合は、上記仮想一次粒子は、実際の一次粒子と一致する。
 即ち、上記理論比表面積をR、上記無機微粒子の一次粒子を幾何学形状に近似して求めた上記無機微粒子の一次粒子の表面積をS、その体積をV及びその真密度をDとすると理論比表面積Rは下記式から算出される。
 R=S/(V×D)
 ここで、理論比表面積Rの単位をm/gとすると、表面積Sの単位はm、体積Vの単位はm、真密度Dの単位はg/mと次元を一致させる。
 また、表面積Sと体積Vとを幾何学的に算出する場合に必要な無機微粒子の粒子径は、次にようにして求める。無機微粒子の一次粒子形状が球形に近似できる場合は、その粒子径はレーザー散乱法などの一般の粒度分布測定装置から得られる平均粒子径(D50%)として求める。一方、無機微粒子の一次粒子形状が球形に近似できない場合、例えば、アスペクト比が5以上の粒子の場合には、縦方向及び横方向の両方の長さ(大きさ)の情報が必要である。この場合、通常の粒度分布測定装置から得られる平均粒子径だけでは、縦横どちらか一方の情報しか得られず計算ができない。従って、無機微粒子の形状が球形に近似できない場合は、その粒子を実際に走査型電子顕微鏡(SEM)で観察して、個々の粒子の寸法をスケールなどで測定する。その際に観測する粒子の数は100個以上とし、その測定値の平均値により無機微粒子の表面積Sと体積Vを求める。
 上記無機微粒子の実測される粒子径、即ち分散粒子径は、粒子のアスペクト比が高いものの縦方向、横方向の大きさも含め0.05~3μmであることが好ましい。粒子径が0.05μm未満であると凝集しやすく、充填性を高めることができない傾向がある。また、粒子径が3μmを超えると後述する繊維状物の空隙に含有させることが困難となる傾向がある。
 一方、上記実比表面積は、上記無機微粒子の凝集の有無にかかわらず、BET法により実測して求めた上記無機微粒子の実際の分散粒子の比表面積の実測値である。
 上記無機微粒子の実比表面積は1~10m/gであることが好ましい。実比表面積が1m/g未満であると、それは分散粒子径が大きすぎることを意味し、充填性を高めることが困難となる傾向がある。また、実比表面積が10m/gを超えると、粒子の表面に付着した不純物(水分、酸、アルカリ成分など)の存在量が増え、電気化学素子の性能に悪影響を与える傾向がある。
 次に、上記無機微粒子の上記理論比表面積と上記実比表面積との差について説明する。上記理論比表面積と上記実比表面積との説明から明らかなように、上記無機微粒子の上記理論比表面積と上記実比表面積との差が、上記理論比表面積に対して±15%以内であることは、上記無機微粒子の一次粒子を幾何学形状に近似した仮想一次粒子の形状と、実際の分散粒子の形状とが近似していることを意味する。即ち、このことは、使用する上記無機微粒子の分散性が高く、一次粒子として存在する粒子の割合が高いことを意味する。このため、上記無機微粒子の上記理論比表面積と上記実比表面積との差が、上記理論比表面積に対して±15%以内であれば、上記無機微粒子形状が均一であり、いびつな形状の粒子が少ないことになる。
 上記無機微粒子の上記理論比表面積と上記実比表面積との差の割合を具体的に説明すると、上記理論比表面積をR、上記実比表面積をJ、それらの差の理論比表面積Rに対する割合をW(%)とすると、Wは下記式から算出される。
 W(%)={(J-R)/R}×100
 Wは±15%以内であることが必要であり、±10%以内がより好ましく、±5%以内が最も好ましい。
 次に、上記無機微粒子(以下、微粒子(A)という。)について説明する。
 微粒子(A)の一次粒子の形状については、幾何学形状に近似することができれば、四角形、球形、円筒形など特に制限は無い。特に、粒子を均一に整列させるという目的で、四角形や球形で、特にアスペクト比が5~100の板状又は円盤状であるものが好ましい。板状又は円盤状であると、微粒子(A)をセパレータに充填した際に、その板状面をセパレータの主面に対して平行に配向させることができ、セパレータの貫通抑制強度を向上できるからである。また、アスペクト比が5未満であると、板状粒子の配向によるセパレータの貫通抑制強度が弱くなる傾向があり、アスペクト比が100を超えると、粒子の比表面積が大きくなりすぎるために取り扱いが困難になる傾向がある。
 微粒子(A)の構成材料としては、例えば、酸化鉄、Al(アルミナ)、SiO(シリカ)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結合性化合物;シリコン、ダイヤモンドなどの共有結合性化合物;モンモリロナイトなどの粘土;などが挙げられる。ここで、上記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質又はこれらの人造物などであってもよい。また、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、上記無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。耐酸化性をより高める観点からは、上記無機酸化物の粒子(微粒子)が好ましく、中でも、ベーマイト、アルミナ、シリカなどがより好ましい。
 上記理論比表面積と上記実比表面積との差が上記理論比表面積に対して±15%以内の微粒子(A)は、所望とする分散粒子径(例えば、0.05~3μm)より大きい分散粒子径を有する出発材料を用い、その出発材料に乾式解砕処理又は湿式解砕処理を施すことにより得ることができる。例えば、出発材料として平均分散粒子径が3~6μmの概略金平糖形状のアルミナ、シリカ、ベーマイトなどを用い、その出発原料を分散剤及び溶媒(例えば水)とともに解砕機に装填して解砕処理することにより、上記理論比表面積と上記実比表面積との差が上記理論比表面積に対して±15%以内の微粒子(A)を作製することができる。また、解砕処理の時間を調整することにより、上記理論比表面積と上記実比表面積との差の大きさを制御できる。
 上記分散剤としては、例えば、アニオン系、カチオン系、ノニオン系の各種界面活性剤;ポリアクリル酸、ポリアクリル酸塩などの高分子系分散剤などを用いることができる。より具体的には、ADEKA社製「アデカトール(商品名)シリーズ」、「アデカノール(商品名)シリーズ」、サンノプコ社製「SNディスパーサント(商品名)シリーズ」、ライオン社製「ポリティ(商品名)シリーズ」、「アーミン(商品名)シリーズ」、「デュオミン(商品名)シリーズ」、花王社製「ホモゲノール(商品名)シリーズ」、「レオドール(商品名)シリーズ」、「アミート(商品名)シリーズ」、日油社製「ファルバック(商品名)シリーズ」、「セラミゾール(商品名)シリーズ」、「ポリスター(商品名)シリーズ」、味の素ファインテクノ社製「アジスパー(商品名)シリーズ」、東亞合成社製「アロン分散剤(商品名)シリーズ」などがある。
 上記概略金平糖形状の出発材料は、一次粒子が凝集した凝集粒子からなり、各種市販品を使用することができる。例えば、旭硝子エスアイテック社製「サンラブリー(商品名)」(SiO)、石原産業社製「NST-B1(商品名)」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ(商品名)」、「HLシリーズ(商品名)」、林化成社製「ミクロンホワイト(商品名)」(タルク)、林化成社製「ベンゲル(商品名)」(ベントナイト)、河合石灰社製「BMM(商品名)」、「BMT(商品名)」(ベーマイト)、河合石灰社製「セラシュールBMT-B(商品名)」(アルミナ(Al))、キンセイマテック社製「セラフ(商品名)」(アルミナ)、斐川鉱業社製「斐川マイカ Z-20(商品名)」(セリサイト)などが入手可能である。さらに、概略金平糖形状ではないが二次粒子構造の出発材料を用いることもでき、例えば、大明化学社製「ベーマイト C06(商品名)」、「ベーマイト C20(商品名)」(ベーマイト)、米庄石灰工業社製「ED-1(商品名)」(CaCO)、J.M.Huber社製「Zeolex 94HP(商品名)」(クレイ)などが挙げられる。
 上記解砕機としては、ジェットミル、高圧ホモジナイザー、ハイブリダイザーなどメディアレスの粉砕機や、ボールミル、ビーズミル、サンドミル、振動ミルなどメディアを使用する分散機などを使用することができる。特に、低エネルギーでしかも解砕効率を上げるためには、部材の衝突力を利用する粉砕機よりも、メディア使用の分散機が好ましい。メディアとしては粒子径0.1~10mm程度のジルコニア、アルミナなど通常のセラミックス材料が好適に用いられ、解砕する部材よりもモース硬度の高いメディアを使用するほうがより好ましい。
 例えば、上記概略金平糖形状の出発材料に分散剤と水とを加え、ボールミルなどで解砕すれば、スタッド形状部分がはがれてほぼ板状の粒子材料が得られる。
 短絡防止機能をより確実なものとするため、微粒子(A)のセパレータ中での含有量は、セパレータの乾燥後の構成成分の全体積中、30体積%以上が好ましく、より好ましくは40体積%以上である。微粒子(A)の含有量の上限は、例えば80体積%であることが好ましい。この範囲内であれば、セパレータの耐熱性を向上できるとともに、セパレータの強度を維持できるからである。
 上記繊維状物(以下、繊維状物(B)という。)は、電気絶縁性を有しており、電気化学的に安定で、さらに下記に詳述する電解液や、セパレータの製造の際に使用する微粒子(A)を含有する液状組成物に用いる溶媒に安定であれば、特に制限はないが、耐熱温度が150℃以上のものが好ましい。本発明で耐熱温度が150℃以上とは、150℃の温度で実質的に変形しないことをいい、具体的には室温(25℃)での長さと、150℃での長さとの差が、室温での長さに対して±5%以内であることをいう。また、本発明でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものをいう。
 耐熱温度が150℃以上の繊維状物を用いて、例えばシャットダウン機能を付与した膜を作製した場合、当該膜が120℃程度に加熱されてシャットダウンが起こった後に、さらに20℃以上セパレータの温度が上昇しても、その形状が安定に保たれる。シャットダウン機能を付与しない場合においても150℃の温度においても実質的に変形せず、例えば従来のポリエチレン製の多孔性フィルムで構成されるセパレータで生じていた熱収縮に起因する短絡の発生が防止される。
 繊維状物(B)の構成材料としては、例えば、セルロース、セルロース変成体(カルボキシメチルセルロースなど)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエステル[ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など]、ポリアクリロニトリル(PAN)、アラミド、ポリアミドイミド、ポリイミド、ポリビニルアルコール(PVA)などの樹脂;ガラス、アルミナ、シリカなどの無機材料(無機酸化物);などが挙げられる。繊維状物(B)は、これらの構成材料の1種を含有していてもよく、2種以上を含有していてもよい。また、繊維状物(B)は、構成成分として、上記の構成材料の他に、必要に応じて、各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していてもよい。
 また、繊維状物(B)は、シート状物を形成していることが好ましく、特に繊維状物(B)の織布又は不織布であることが好ましい。繊維状物(B)がシート状物を形成することにより、前述の微粒子(A)を保持しやすくなるからである。繊維状物(B)がシート状物を形成し、特にそのシート状物の空隙の開口径が大きい場合(例えば、空隙の開口径が5μm以上の場合)、微粒子(A)の一部又は全部は、上記シート状物の空隙内に保持されていることが好ましい。これにより、電気化学素子の短絡を抑制できる。
 上記シート状物を具体的に例示すると、例えば、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などが挙げられる。
 繊維状物(B)がシート状物を形成している場合、シート状物の単位面積当たりの重量(目付け重量)は、前述の微粒子(A)の好適含有量である30~80体積%を確保するため、又は引張り強度などの機械的強度を確保するために、3~30g/mが好ましく、シート状物の厚さは7~20μmが好ましい。
 本発明のセパレータには、微粒子(A)以外の微粒子(C)や、熱溶融性微粒子(D)を混合することができる。
 微粒子(C)としては、以下の無機微粒子又は有機微粒子が挙げられ、これらを1種単独で、又は2種以上を同時に使用できる。無機微粒子(無機粉末)としては、例えば、酸化鉄、SiO、Al、TiO、BaTiO、ZrOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結合性化合物微粒子;シリコン、ダイヤモンドなどの共有結合性化合物微粒子;モンモリロナイトなどの粘土微粒子、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビンなどの鉱物資源由来微粒子あるいはこれらの人造物微粒子;などが挙げられる。また、金属微粒子;SnO、スズ-インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記非電気伝導性の無機微粒子を構成する材料や、下記架橋高分子微粒子を構成する材料など)で表面処理することで、電気絶縁性を持たせた微粒子であってもよい。また、有機微粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などからなる各種架橋高分子微粒子や、ポリプロピレン(PP)、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、テトラフルオロエチレン、ポリアクリロニトリル、アラミド、ポリアセタールなどからなる耐熱性樹脂微粒子が例示できる。また、これらの有機微粒子を構成する有機樹脂(高分子)は、上記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体など)、架橋体(熱可塑性のポリイミドの場合)であってもよい。
 また、熱溶融性微粒子(D)としては、電気絶縁性を有しており、電解液や微粒子(A)及び繊維状物(B)に対して安定であり、また、電気化学素子の作動電圧範囲において酸化還元といった副反応を起こさない微粒子であればよい。また、熱溶融性微粒子(D)としては、融点が80~130℃の微粒子が好ましい。融点が80~130℃の熱溶融性微粒子(D)を混合することで、セパレータが加熱された時に上記熱溶融性微粒子(D)が溶融して、セパレータの空隙を閉塞するいわゆるシャットダウン機能を発揮することができる。
 融点が80~130℃の熱溶融性微粒子(D)の構成材料としては、例えば、ポリエチレン(PE)、エチレン由来の構造単位が85モル%以上の共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。上記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルアクリレート共重合体、又はエチレン-エチルアクリレート共重合体が例示できる。また、ポリシクロオレフィンなどを用いることもできる。熱溶融性微粒子(D)は、これらの構成材料の1種のみを有していてもよく、2種以上を有していてもよい。これらの中でも、PE、ポリオレフィンワックス、又はエチレン由来の構造単位が85モル%以上のEVAが好適である。また、熱溶融性微粒子(D)は、構成成分として、上記の構成材料の他に、必要に応じて、樹脂に添加される各種添加剤(例えば、酸化防止剤など)を含有していてもよい。
 さらに、微粒子(A)以外の微粒子は、上記微粒子(C)の中の無機微粒子をコアとし、これに上記熱溶融性微粒子(D)の構成樹脂をシェルとして複合化したコアシェル構造の複合微粒子(E)であってもよい。
 熱溶融性微粒子(D)や複合微粒子(E)のセパレータ中での含有量は、セパレータの乾燥後の構成成分の全体積中、30~70体積%が好ましい。含有量が30体積%未満であると加熱時のシャットダウン効果が小さくなる傾向があり、含有量が70体積%を超えると微粒子(A)によるデンドライト短絡防止効果が小さくなる傾向がある。
 微粒子(C)、熱溶融性微粒子(D)及び複合微粒子(E)の粒子径は、0.001μm以上、より好ましくは0.1μm以上であって、15μm以下、より好ましくは1μm以下のものが推奨される。この範囲内であれば、微粒子(A)との均一混合が可能だからである。
 また、本発明のセパレータには、微粒子(A)及び含まれていれば微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)と、繊維状物(B)とを結着するために、通常、バインダ(F)が用いられる。但し、含まれる上記微粒子の全てが自己吸着性を有する場合には、バインダ(F)を使用しなくてもよい。
 バインダ(F)としては、電気化学的に安定で且つ電解液に対しても安定で、さらに含まれる上記微粒子同士及び上記微粒子と繊維状物(B)とを良好に結着できるものであればよく、例えば、酢酸ビニル由来の構造単位が20~35モル%のEVA、エチレン-エチルアクリレート共重合体(EEA)などのエチレン-アクリレート共重合体、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、エポキシ樹脂などが挙げられ、これらを単独で、又は2種以上を同時に使用することができる。これらバインダ(F)を使用する場合には、後述するセパレータ形成用の液状組成物の溶媒に溶解させるか、又は分散させたエマルジョンやプラスチゾルの形態で用いることができる。
 上記例示のバインダ(F)の中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン-アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。ここで、150℃以上の耐熱性を有する耐熱樹脂とは、本発明では、150℃において実質的に分解などが生じない樹脂をいう。これらの具体例としては、三井デュポンポリケミカル社製の「エバフレックスシリーズ(商品名)」(EVA)、日本ユニカー社製のEVA、三井デュポンポリケミカル社製の「エバフレックス-EEAシリーズ(商品名)」(EEA)、日本ユニカー社製のEEA、ダイキン工業社製の「ダイエルラテックスシリーズ(商品名)」(フッ素ゴム)、JSR社製の「TRD-2001(商品名)」(SBR)、日本ゼオン社製の「BM-400B(商品名)」(SBR)などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。
 バインダ(F)のセパレータ中での含有量は、セパレータの乾燥後の構成成分の全体積中、1体積%以上であることが好ましく、5体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。また、バインダ(F)の含有量は、30体積%以下であることが好ましく、20体積%以下であることがさらに好ましい。バインダ(F)の含有量が1体積%未満であると、前述の微粒子同士及び上記微粒子と繊維状物(B)とを結着させる効果が小さくなる傾向がある。また、バインダ(F)の含有量が30体積%を超えると、バインダ(F)により繊維状物(B)の空隙が埋められてしまい、イオンの透過性が悪くなり電気化学素子の特性に悪影響が出る傾向がある。
 次に、本実施形態のセパレータの製造方法を説明する。本実施形態のセパレータの製造方法としては、例えば、下記製造方法(I)、(II)及び(III)が採用できる。
 <製造方法(I)>
 製造方法(I)では、耐熱温度が150℃以上の繊維状物(B)からなるイオン透過性のシート状物(各種の織布、不織布など)に、微粒子(A)を含む液状組成物(以下、スラリーという。)をディップコーター、ブレードコーター、ロールコーター、ダイコーターなどの塗布装置を用いて塗布した後に、所定の温度で乾燥する製造方法である。
 本発明のセパレータを形成するための上記スラリーは、微粒子(A)及び、必要に応じて、微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)、バインダ(F)などを含有し、これらを溶媒に分散させたものである。バインダ(F)については上記溶媒に溶解していてもよい。上記スラリーに用いられる溶媒は、微粒子(A)、微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)を均一に分散でき、また、バインダ(F)を均一に溶解又は分散できるものであればよく、例えば、水、あるいは、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;などの有機溶媒が挙げられる。
 上記スラリーでは、微粒子(A)、微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)、バインダ(F)を含む固形分含量を、例えば30~70質量%とすることが好ましい。また、上記スラリーは、微粒子(A)、微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)、バインダ(F)のすべてを含有した単独のスラリーでなくてもよく、例えば微粒子(A)とバインダ(F)よりなる液状組成物(1)と、微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)からなる液状組成物(2)の2種類とし、先に液状組成物(1)をシート状物に塗布及び乾燥して支持層(X)を形成した後、液状組成物(2)を塗布してシャットダウン層(Y)を形成させてもよい。
 また、上記スラリーの粘度を調整する目的で、増粘剤を加えることもできる。増粘剤としては、スラリー中の微粒子(以下、フィラーという。)を凝集させるなどの副作用がなく、必要な粘度にスラリーを調整できる増粘剤であればよいが、少量の添加で増粘効果の高いものが好ましい。また、上記溶媒に対して良好な溶解性あるいは分散性を有していることが好ましい。未溶解分や凝集物(いわゆる、「ままこ」)が、スラリー中に多数存在すると、フィラーの分散が不均一になり、乾燥した塗膜中にフィラーの濃度の低い部分が発生する。このような場合、フィラーを用いた耐熱性付与の効果が弱くなり、ひいては、電気化学素子の信頼性、耐熱性が低下するといったおそれがある。スラリー中でのままこの含有量の目安としては、スラリーを目開き30μmのメッシュフィルターに通したときに、フィルター上に残る残渣がスラリー1L当り1個以下であることが好ましく、さらに好ましくは、スラリー5L当り1個以下である。
 上記増粘剤としては、例えば、ポリエチレングリコール、ウレタン変性ポリエーテル、ポリアクリル酸、ポリビニルアルコール、ビニルメチルエーテル-無水マレイン酸共重合体などの合成高分子(より具体的には、例えばサンノプコ社製「SNシックナー(商品名)シリーズ」);カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体;キサンタンガム、ウェランガム、ジェランガム、グアーガム、カラギーナンなどの天然多糖類;デキストリン、アルファー化でんぷんなどのでんぷん類;モンモリロナイト、ヘクトライトなどの粘土鉱物;ヒュームドシリカ、ヒュームドアルミナ、ヒュームドチタニアなどの無機酸化物類などを使用することができる。これらは1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 上記増粘剤の含有量としては、スラリー中のフィラーの沈降などを抑制し安定な分散状態を維持するのに適しており、塗工機を用いて塗布する際に、良好な塗布性が得られる粘度範囲に調整できる量であればよい。上記粘度範囲は、より具体的には、5~100mPa・sが好ましく、10~100mPa・sがより好ましく、10~70mPa・sがさらに好ましい。粘度が5mPa・s未満であるとフィラーの沈降を抑制することが困難になり、スラリーの安定性を確保することが困難になるおそれがあり、粘度が100mPa・sを超えると必要な厚みに均一に塗布することが困難になる傾向がある。
 上記スラリーにおける粘度は、振動式粘度計、E型粘度計により測定することができる。
 また、上記スラリー中に含有する増粘剤の絶対量は、増粘剤が塗布後の乾燥工程で揮発しないものを用いる場合には、セパレータ中に残留することになるため、多量に用いるのは好ましくなく、スラリー中の全固形分に対する体積比率で10%以下が好ましく、5%以下がより好ましく、1%以下であることがさらに好ましい。
 上記溶媒としては、水を主成分とするものを用いるのが好ましい。本発明で溶媒とは、スラリー中で塗膜の乾燥時に残る固形分を除いた残りの部分を指す。また、水を主成分とするとは、溶媒中の構成成分の内、水が70%以上含有されていることを指す。特に、環境保護の観点からは、水100%の溶媒を用いるのが好ましい。溶媒として用いる水は、井戸水、水道水、イオン交換水などを蒸留処理した精製水を用いることが好ましい。さらにはこの精製水にガンマ線、エチレンオキサイトガス、紫外線などによる滅菌処理を施した水を用いることが好ましい。上記増粘剤として特に天然多糖類を用いる場合には、溶媒である水を滅菌処理することにより、バクテリアなどによる天然多糖類の分解を抑制することができ、これによりスラリーの粘度の経時変化を抑制することができる。
 さらに、上記スラリーの貯蔵安定性を確保するために、適宜防腐剤や殺菌剤を添加して増粘剤の分解を抑制してもよい。これらの例としては、例えば、安息香酸、パラヒドロキシ安息香酸エステル、エタノール、メタノールなどのアルコール類、次亜塩素酸ナトリウムなどの塩素類、過酸化水素、ホウ酸、酢酸などの酸類、水酸化ナトリウム、水酸化カリウムなどのアルカリ類、窒素含有有機硫黄系化合物(例えばサンノプコ社製「ノプコサイド(商品名)シリーズ」などが挙げられる。
 また、上記スラリーが発泡しやすく、塗布性に影響する場合には、適宜消泡剤を用いることができる。消泡剤としては、例えば、ミネラルオイル系、シリコーン系、アクリル系、ポリエーテル系の各種消泡剤を用いることができる。消泡剤の具体例としては、日華化学社製「フォームレックス(商品名)」、日信化学社製「サーフィノール(商品名)シリーズ」、荏原エンジニアリング社製「アワゼロン(商品名)シリーズ」、サンノプコ社製「SNデフォーマー(商品名)シリーズ」などを用いることができる。
 上記スラリーには、フィラー同士の凝集を防ぐ目的で適宜分散剤を添加することが可能である。分散剤の具体例としては、例えば、アニオン系、カチオン系、ノニオン系の各種界面活性剤、ポリアクリル酸、ポリアクリル酸塩などの高分子系分散剤などを用いることができる。より具体的には、ADEKA社製「アデカトール(商品名)シリーズ」、「アデカノール(商品名)シリーズ」、サンノプコ社製「SNディスパーサント(商品名)シリーズ」、ライオン社製「ポリティ(商品名)シリーズ」、「アーミン(商品名)シリーズ」、「デュオミン(商品名)シリーズ」、花王社製「ホモゲノール(商品名)シリーズ」、「レオドール(商品名)シリーズ」、「アミート(商品名)シリーズ」、日油社製「ファルバック(商品名)シリーズ」、「セラミゾール(商品名)シリーズ」、「ポリスター(商品名)シリーズ」、味の素ファインテクノ社製「アジスパー(商品名)シリーズ」、東亞合成社製「アロン分散剤(商品名)シリーズ」などがある。
 また、上記スラリーに、界面張力を制御する目的で、適宜添加剤を加えることができる。添加剤としては、溶媒が有機溶媒である場合には、アルコール(エチレングリコール、プロピレングリコールなど)、又は、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを用いることができる。溶媒が水の場合には、アルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)、変性シリコーン系材料、疎水性シリカ系材料(例えばサンノプコ社製「SNウエット(商品名)シリーズ」、「SNデフォーマー(商品名)シリーズ」)を用いて界面張力を制御することもできる。
 <製造方法(II)>
 製造方法(II)では、上記スラリーにさらに繊維状物(B)を含有させ、このスラリーをフィルムや金属箔などの基材上にブレードコーター、ロールコーター、ダイコーターなどの塗布装置を用いて塗布し、所定の温度で乾燥した後に、上記基材から剥離する製造方法である。
 製造方法(II)で使用するスラリーは、繊維状物(B)を含有させること以外は、製造方法(I)で用いるスラリーと同様のものであり、必要に応じてスラリーを単独ではなく2種以上作製し、基材に複数回塗布してもよい。また、製造方法(II)で得られるセパレータにおいても、繊維状物(B)がシート状物を形成している場合には、形成されたシート状物の空隙内に、微粒子(A)の一部又は全部が保持されていることが好ましい。
 <製造方法(III)>
 製造方法(I)及び製造方法(II)は、セパレータを単独で製造する方法であるが、製造方法(III)では、スラリーを正極又は負極の上に直接ブレードコーター、ロールコーター、ダイコーター、スプレーコーターなどの塗布装置を用いて塗布して乾燥する方法である。製造方法(III)では、製造方法(II)で用いたスラリーと同様のスラリーを使用する。また、用いるスラリーも単独のスラリーではなく2種以上のスラリーとして複数回塗布してもよい。
 (実施形態2)
 次に、本発明の第2の電気化学素子用セパレータの実施形態を説明する。本発明の第2の電気化学素子用セパレータ(以下、単にセパレータという。)は、無機微粒子と、微多孔膜とを含み、上記無機微粒子の一次粒子は、幾何学形状に近似でき、上記無機微粒子の一次粒子を幾何学形状に近似して求めた、上記無機微粒子の一次粒子の表面積、体積及び真密度から算出される上記無機微粒子の理論比表面積と、BET法により実測される上記無機微粒子の実比表面積との差が、上記理論比表面積に対して±15%以内であることを特徴とする。
 本実施形態のセパレータは、実施形態1のセパレータの繊維状物に代えて微多孔膜を用いた以外は、実施形態1のセパレータと略同様の構成であり、略同様の効果を奏する。また、本発明のセパレータは、上記微多孔膜を含むことにより、上記無機微粒子を確実にセパレータに保持できる。
 上記微多孔膜(以下、微多孔膜(G)という。)は、電気絶縁性を有しており、電気化学的に安定で、さらに前述の電解液や、セパレータの製造の際に使用する微粒子(A)を含有する液状組成物に用いる溶媒に安定であれば、特に制限はないが、融点が80~130℃の樹脂から形成されていることが好ましい。これにより、本発明のセパレータにシャットダウン機能を付与できる。
 上記融点が80~130℃の樹脂としては、例えば、ポリエチレン(PE)、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。上記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-酢酸ビニル共重合体(EVA)、あるいは、エチレン-メチルアクリレート共重合体やエチレン-エチルアクリレート共重合体などの、エチレン-アクリル酸共重合体が例示できる。上記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが好ましい。また、ポリシクロオレフィンなどを用いることもできる。上記樹脂には、上記例示の樹脂を1種単独で用いてもよく、2種以上を用いても構わない。
 上記樹脂としては、上記例示の材料の中でも、PE、ポリオレフィンワックス、又はエチレン由来の構造単位が85モル%以上のEVAが好適に用いられる。また、上記樹脂は、必要に応じて、樹脂に一般に添加される各種添加剤、例えば、酸化防止剤などを含有していてもよい。
 微多孔膜(G)の厚さは、3μm以上が好ましく、より好ましくは5μm以上であって、50μm以下が好ましく、より好ましくは30μm以下である。微多孔膜(G)の厚さが3μm未満であると、短絡を完全に防止する効果が小さくなる傾向があり、また、セパレータの強度が不十分となり取り扱いが困難になる傾向がある。一方、微多孔膜(G)の厚さが50μmを超えると、電気化学素子としたときのインピーダンスが高くなる傾向があり、また、電気化学素子のエネルギー密度が小さくなる傾向がある。
 本発明のセパレータには、実施形態1のセパレータと同様に、微粒子(A)以外の微粒子(C)、熱溶融性微粒子(D)、複合微粒子(E)及びバインダ(F)を含んでいてもよい。
 上記微多孔膜が、上記融点が80~130℃の樹脂で形成されていれば、本発明のセパレータは熱溶融性微粒子(D)を含む必要はないが、熱溶融性微粒子(D)を含んでいてもよい。
 次に、本実施形態のセパレータの製造方法を説明する。本実施形態の製造方法では、融点が80~130℃の樹脂から形成されている微多孔膜(G)に、実施形態1で説明したスラリーをブレードコーター、ロールコーター、ダイコーターなどの塗布装置を用いて塗布した後に、所定の温度で乾燥する製造方法である。
 上記スラリーは、微多孔膜(G)の片面に塗布してもよく、両面に塗布してもよい。これにより、シャットダウン層(Y)である微多孔膜(G)の少なくとも片面に微粒子(A)を含む支持層(X)を形成できる。
 上記支持層(X)の全厚さは、微多孔膜(G)の厚さにより種々選択できる。ここで、支持層(X)の全厚さとは、支持層(X)が微多孔膜(G)の片面に形成されている場合はその片面の厚さを指し、支持層(X)が微多孔膜(G)の両面に形成されている場合は両面の厚さを足し合わせた厚さを指す。
 上記支持層(X)の全厚さは、微多孔膜(G)の厚さに対し10%以上であることが好ましく、より好ましくは20%以上である。10%未満であると微多孔膜(G)の熱収縮力が支持層(X)の支持力より大きくなり、セパレータ全体としての熱収縮を抑制することが困難となる傾向がある。また、上記支持層(X)の全厚さは、セパレータの全厚さが50μm以下となるように選択することが好ましく、より好ましくは30μm以下となるように選択する。例えば、厚さ15μmの微多孔膜(G)を基材として用いる場合、支持層の全厚さは1.5μm以上が好ましく、より好ましくは3.0μm以上であり、35μm以下が好ましく、より好ましくは15μm以下である。
 上記スラリーの溶媒に水を用いる場合、微多孔膜(G)の濡れ性を改善させる目的などで、微多孔膜(G)に親水化処理を施してもよい。例えば、親水化処理としてコロナ放電処理をする場合、放電量として例えば30~150W・min/mの範囲内で処理することができる。
 (実施形態1及び2に共通するセパレータの特性)
 最後に、実施形態1及び実施形態2のセパレータにそれぞれ共通する特性について説明する。
 本発明のセパレータの厚さは、3μm以上が好ましく、より好ましくは5μm以上であって、50μm以下が好ましく、より好ましくは30μm以下である。セパレータの厚さが3μm未満であると、短絡を完全に防止する効果が小さくなる傾向があり、また、セパレータの強度が不十分となり取り扱いが困難になる傾向がある。一方、セパレータの厚さが50μmを超えると、電気化学素子としたときのインピーダンスが高くなる傾向があり、また、電気化学素子のエネルギー密度が小さくなる傾向がある。
 本発明のセパレータの空隙率は、20%以上が好ましく、より好ましくは30%以上であって、70%以下が好ましく、より好ましくは60%以下である。セパレータの空隙率が20%未満であると、イオン透過性が小さくなる傾向があり、また、セパレータの空隙率が70%を超えると、セパレータの強度が不足する傾向がある。
 本発明の実施形態1のセパレータの空隙率:P(%)は、セパレータの厚さ、面積当たりの質量、構成成分の密度から、次式を用いて各成分iについての総和を求めることにより計算できる。
 P=[1-{m/(Σaρ)×t}]×100
 ここで、上記式中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積当たりの質量(g/cm)、t:セパレータの厚さ(cm)である。
 本発明の実施形態2のセパレータの空隙率:P(%)は、セパレータの厚さ、面積当たりの質量、構成成分の密度から、次式を用いて各成分iについての総和を求めることにより計算できる。
 P={1-m/(ρ×t)}×100
 ρ={(t-t)×(Σaρ)+t×ρ}/t
 ここで、上記式中、ρ:支持層に含まれる各成分と微多孔膜との平均密度(g/cm)、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積当たりの質量(g/cm)、t:セパレータの厚さ(cm)、t:微多孔膜の厚さ(cm)、ρ:微多孔膜の密度(g/cm)である。
 上記いずれの式においても、セパレータの単位面積当たりの質量mは、20cm四方に切り出したセパレータの質量を電子天秤で測定し、1cm当たりの質量として算出したものであり、セパレータの厚さt及び微多孔膜の厚さtは、マイクロメーターでランダムに10箇所の測定点の厚さを測定して平均化したものである。
 セパレータのガーレー値で示される本発明のセパレータの透気度は、10~300secであることが好ましい。ここでガーレー値とは、日本工業規格(JIS)P 8117に準拠した方法で測定されるもので、0.879g/mmの圧力下で100mLの空気が膜を透過する秒数で示される。セパレータの透気度が300secを超えると、イオン透過性が小さくなる傾向があり、他方、10sec未満では、セパレータの強度が小さくなる傾向がある。
 また、本発明のセパレータの強度は、直径が1mmのニードルを用いた突き刺し強度で50g以上であることが好ましい。セパレータの突き刺し強度が50g未満では、例えば、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生するおそれがある。
 (実施形態3)
 次に、本発明の電気化学素子について説明する。本発明の電気化学素子は、正極と、負極と、非水電解液と、実施形態1又は実施形態2のセパレータとを備えていることを特徴とする。
 本発明の電気化学素子は、実施形態1又は実施形態2のセパレータを備えているので、耐熱性及び信頼性に優れている。
 本発明の電気化学素子は、特に限定されるものではなく、非水電解液を用いるリチウム二次電池の他、リチウム一次電池やスーパーキャパシタなどが含まれる。以下、特に主要な用途であるリチウム二次電池の構成を例示して説明する。 
 リチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 上記正極としては、従来から知られているリチウム二次電池に用いられている正極、即ち、Liイオンを吸蔵・放出可能な正極活物質、導電助剤、バインダなどを含有する正極であれば特に制限はない。
 上記正極活物質としては、例えば、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Ti、Snなど)の一般式で代表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。上記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、Ni及びMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを例示することができる。
 上記導電助剤としては、例えば、カーボンブラックなどの炭素材料が用いられ、上記バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂が用いられ、これらの材料と正極活物質とが混合された正極合剤により正極合剤層が、例えば正極集電体の表面に形成される。
 また、上記正極集電体としては、例えば、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚さが10~30μmのアルミニウム箔が好適に用いられる。
 正極側のリード部は、通常、正極作製時に、正極集電体の一部に正極合剤層を形成せずに正極集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から正極集電体と一体化されたものであることは要求されず、正極集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
 上記負極としては、従来から知られているリチウム二次電池に用いられている負極、即ち、Liイオンを吸蔵・放出可能な負極活物質を含有する負極であれば特に制限はない。
 上記負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、Liイオンを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの単体及びその合金;リチウム含有窒化物;又はLiTi12などの酸化物などのリチウム金属に近い低電圧で充放電できる化合物;もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、負極集電体を芯材として成形体(負極合剤層)に仕上げたもの、又は上記各種合金やリチウム金属の箔を単独もしくは負極集電体表面に積層したものなどが負極として用いられる。
 上記負極に集電体を用いる場合には、負極集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚さを薄くする場合、厚さの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
 電極は、上記正極と上記負極とを、本発明のセパレータを介して積層した積層電極体や、さらにこれを巻回した巻回電極体の形態で用いることができる。
 上記非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
 上記非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い誘電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
 このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。
 以下、本発明の電気化学素子の一例であるリチウム二次電池を図面に基づき説明する。図1Aは、本発明に係るリチウム二次電池の平面概略図であり、図1Bは、図1Aの断面概略図である。また、図2は、本発明に係るリチウム二次電池の外観概略図である。
 図1A、B及び図2に示す電池について説明すると、本発明に係る負極1と本発明に係る正極2は本発明に係るセパレータ3を介して渦巻状に巻回され、さらに扁平状になるように加圧されて巻回電極体6を形成し、角筒形の外装缶4に非水電解液と共に収容されている。ただし、図1Bでは、煩雑化を避けるため、負極1や正極2の集電体である金属箔や非水電解液などは図示しておらず、巻回電極体6の中央部及びセパレータ3には断面を示すハッチングを表示していない。
 外装缶4はアルミニウム合金製で、電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、負極1、正極2及びセパレータ3からなる巻回電極体6からは、負極1及び正極2のそれぞれ一端に接続された負極リード部8と正極リード部7が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の封口用の蓋板9には、ポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
 この蓋板9は外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。また、蓋板9には非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。図1A、B及び図2では、便宜上、非水電解液注入口14は、非水電解液注入口自体と封止部材とを含めて表示している。さらに、蓋板9には、電池の温度上昇などにより内圧が上昇した際に、内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
 図1A、B及び図2に示したリチウム二次電池では、正極リード部7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極リード部8をリード板13に溶接し、そのリード板13を介して負極リード部8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
 (実施例1)
 板状の一次粒子が概略金平糖形状に凝集した平均粒子径が4μmのベーマイト(真密度:3.0g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、ベーマイト粉末を得た。このベーマイト粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このベーマイト粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、100個の一次粒子をSEM観察し、一次粒子の平均粒子径Mと、平均厚さNと測定をして理論比表面積を算出した。
 また、上記乾燥後のベーマイト粉末0.3gをサンプルとして、150℃で2時間熱処理して、日本ベル社製のBET比表面積測定装置「ベルソープミニ」を用いて、上記ベーマイト粉末の実比表面積(BET比表面積)を測定した。
 次に、上記理論比表面積と上記実比表示面積との差を求め、その差の上記理論比表面積に対する割合W(%)を求めた。
 一方、上記分散液500gに、バインダ(F)として樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45%)を17g、熱溶融性微粒子(D)としてポリエチレンエマルジョン(三井化学社製「ケミパール(商品名)シリーズ W700」、PE粒子径1μm、固形分含量45%)を3g加え、スリーワンモーターで3時間攪拌して液状組成物を得た。この液状組成物の固形分含量は50%であった。
 次に、PET製不織布(幅200mm、厚さ17μm、目付け重量10g/m)を繊維状物(B)として用い、このPET製不織布を上記液状組成物中に1m/minの速度で浸漬及び引き上げをして塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは23μm、単位面積当たりの質量は3.4×10-3g/cm、空隙率は49.5%、ガーレー値は200secであった。
 (実施例2)
 板状の一次粒子が概略金平糖形状に凝集した平均粒子径が3μmのベーマイトを用いた以外は、実施例1と同様にして分散液を作製し、同様の条件で乾燥してベーマイト粉末を得た。このベーマイト粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このベーマイト粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、実施例1と同様にして、平均粒子径M、平均厚さN、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは23μm、単位面積当たりの質量は3.4×10-3g/cm、空隙率は49.5%、ガーレー値は200secであった。
 (実施例3)
 板状の一次粒子が概略金平糖形状に凝集した平均粒子径が6μmのベーマイトを用いた以外は、実施例1と同様にして分散液を作製し、同様の条件で乾燥してベーマイト粉末を得た。このベーマイト粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このベーマイト粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、実施例1と同様にして、平均粒子径M、平均厚さN、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは23μm、単位面積当たりの質量は3.4×10-3g/cm、空隙率は49.5%、ガーレー値は200secであった。
 (実施例4)
 板状の一次粒子が概略金平糖形状に凝集した平均粒子径が4μmのアルミナ(真密度:3.9g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで15時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、アルミナ粉末を得た。このアルミナ粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このアルミナ粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、実施例1と同様にして、平均粒子径M、平均厚さN、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は3.8×10-3g/cm、空隙率は50.0%、ガーレー値は180secであった。
 (実施例5)
 板状の一次粒子が概略金平糖形状に凝集した平均粒子径が4μmのシリカ(真密度:2.2g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、シリカ粉末を得た。このシリカ粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このシリカ粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、実施例1と同様にして、平均粒子径M、平均厚さN、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは25μm、単位面積当たりの質量は2.7×10-3g/cm、空隙率は49.9%、ガーレー値は210secであった。
 (実施例6)
 球状の一次粒子が房状に凝集した平均粒子径が4μmのベーマイト(真密度:3.0g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで4時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、ベーマイト粉末を得た。このベーマイト粉末をSEMにより観察したところ、一次粒子の形状は略球状であった。このベーマイト粉末の理論比表面積を計算するため、上記一次粒子の形状を球状に近似し、実施例1と同様にして、平均粒子径M、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは23μm、単位面積当たりの質量は3.4×10-3g/cm、空隙率は49.5%、ガーレー値は200secであった。
 (実施例7)
 球状の一次粒子が房状に凝集した平均粒子径が3μmのアルミナ(真密度:3.9g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで5時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、アルミナ粉末を得た。このアルミナ粉末をSEMにより観察したところ、一次粒子の形状は略球状であった。このアルミナ粉末の理論比表面積を計算するため、上記一次粒子の形状を球状に近似し、実施例1と同様にして、平均粒子径M、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は3.8×10-3g/cm、空隙率は50.0%、ガーレー値は180secであった。
 (実施例8)
 球状の一次粒子が房状に凝集した平均粒子径が3μmのシリカ(真密度:2.2g/cm)5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩:サンノプコ社製「SNディスパーサント5468」、固形分濃度40%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで4時間解砕処理をして分散液を作製した。
 処理後の分散液を120℃で真空乾燥し、シリカ粉末を得た。このシリカ粉末をSEMにより観察したところ、一次粒子の形状は略球状であった。このシリカ粉末の理論比表面積を計算するため、上記一次粒子の形状を球状に近似し、実施例1と同様にして、平均粒子径M、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本実施例のセパレータを得た。得られたセパレータの厚さは25μm、単位面積当たりの質量は2.7×10-3g/cm、空隙率は49.9%、ガーレー値は210secであった。
 (実施例9)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例1と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.6×10-3g/cm、空隙率は44.7%、ガーレー値は200secであった。
 (実施例10)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例2と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.6×10-3g/cm、空隙率は44.7%、ガーレー値は200secであった。
 (実施例11)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例3と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.6×10-3g/cm、空隙率は44.7%、ガーレー値は200secであった。
 (実施例12)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例4と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは19μm、単位面積当たりの質量は1.8×10-3g/cm、空隙率は46.0%、ガーレー値は200secであった。
 (実施例13)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例5と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは21μm、単位面積当たりの質量は1.4×10-3g/cm、空隙率は48.6%、ガーレー値は200secであった。
 (実施例14)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例6と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.6×10-3g/cm、空隙率は44.7%、ガーレー値は200secであった。
 (実施例15)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例7と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.8×10-3g/cm、空隙率は46.0%、ガーレー値は200secであった。
 (実施例16)
 熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例8と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本実施例のセパレータを得た。得られたセパレータの厚さは21μm、単位面積当たりの質量は1.4×10-3g/cm、空隙率は48.6%、ガーレー値は200secであった。
 (比較例1)
 ボールミルでの解砕処理時間を6時間とした以外は、実施例1と同様にして分散液を作製し、同様の条件で乾燥してベーマイト粉末を得た。このベーマイト粉末をSEMにより観察したところ、一次粒子の形状は略板状であった。このベーマイト粉末の理論比表面積を計算するため、上記一次粒子の形状を四角板状に近似し、実施例1と同様にして、平均粒子径M、平均厚さN、理論比表面積、実比表面積及び割合Wを求めた。
 また、上記分散液を用いて、実施例1と同様にして本比較例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は2.8×10-3g/cm、空隙率は52.2%、ガーレー値は100secであった。
 (比較例2)
 比較例1で作製した分散液を用い、熱溶融性微粒子(D)であるポリエチレンエマルジョンを加えないこと以外は、実施例1と同様にして液状組成物を作製した。また、微多孔膜(G)として、ポリエチレン製微多孔膜(幅300mm、厚さ15μm、密度0.95g/cm)の片面に、放電量40W・min/mでコロナ放電処理を施したものを準備した。次に、上記ポリエチレン製微多孔膜のコロナ放電処理を施した片面に、上記液状組成物をダイコーターを用いて塗布し、乾燥して本比較例のセパレータを得た。得られたセパレータの厚さは20μm、単位面積当たりの質量は1.4×10-3g/cm、空隙率は51.6%、ガーレー値は200secであった。
 <セパレータの評価>
 実施例1~16及び比較例1~2で作製したセパレータを、縦10cm、横10cmの大きさに切り出し、紙製封筒の中に収め、150℃に調整した恒温槽内に1時間放置した。その後、各セパレータを恒温槽から取り出して、縦及び横の寸法を測定し、これらの値と恒温槽での放置前の寸法とから下記式によって、縦方向及び横方向の熱収縮率(%)をそれぞれ算出し、そのうち数値の大きな方をセパレータの熱収縮率とした。その結果を表1に示す。また、表1には用いた微粒子(A)に関して、その一次粒子の平均粒子径M、平均厚さN、及び理論比表面積、実比比面積、割合Wを示した。
 熱収縮率(%)=100×(10-x)/10
 上記式中、xは150℃に設定した恒温槽内で1時間放置した後のセパレータの縦又は横の寸法(cm)である。
Figure JPOXMLDOC01-appb-T000001
 表1から、理論比表面積と実比表示面積との差の理論比表面積に対する割合Wが±15%以内の実施例1~16のセパレータでは熱収縮率が小さいことが分かる。また、比較例1でも耐熱性の繊維状物(B)からなる不織布を用いたためか、熱収縮率が小さかった。一方、比較例2のセパレータでは微粒子(A)の充填率が小さいためか、熱収縮率が大きくなった。
 <リチウム二次電池の作製>
 実施例1~16及び比較例1~2で作製したセパレータを用い、下記のようにしてリチウム二次電池を作製した。
 (1)正極の作製
 正極活物質であるLiCoO:85質量部、導電助剤であるアセチレンブラック:10質量部、及びバインダであるPVDF:5質量部を、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、活物質塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚さを調整し、幅43mmになるように切断して、長さ280mm、幅43mmの正極を作製した。さらに、この正極のアルミニウム箔の露出部にアルミニウム製のタブを溶接してリード部を形成した。
 (2)負極の作製
 負極活物質である黒鉛:90質量部と、バインダであるPVDF:10質量部とを、NMPを溶剤として均一になるように混合して、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、活物質塗布長が表面290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmになるように負極合剤層の厚みを調整し、幅45mmになるように切断して、長さ290mm、幅45mmの負極を作製した。さらに、この負極の銅箔の露出部にニッケル製のタブを溶接してリード部を形成した。
 (3)電池の組立て
 上記のようにして得られた正極と負極とを、実施例1~16及び比較例1~2のそれぞれのセパレータを介して渦巻状に巻回して巻回電極体とした。さらに、この巻回電極体を押しつぶして扁平状にし、厚さ6mm、高さ50mm、幅34mmのアルミニウム製の角形外装缶に挿入した。
 次に、エチレンカーボネート及びエチルメチルカーボネートを体積比で1:2に混合した溶媒に、LiPFを濃度1.2mol/Lで溶解した電解液を調製して、この電解液を上記外装缶に注入した後に封止を行って、図1A、B及び図2に示したものと同様の構成のリチウム二次電池を作製した。 
 (4)電池の充電
 上記のようにして作製した各リチウム二次電池について、常温(25℃)で、電池電圧が4.2Vとなるまで850mAの定電流で充電後、総充電時間が3時間となるまで4.2Vで定電圧充電を行った。
 その結果、実施例1~16及び比較例2のセパレータを用いた電池は、4.2Vまでの定電流定電圧充電が可能であったが、比較例1のセパレータを用いた電池は、4.0V付近までしか電圧が上昇せず、4.2Vで定電圧充電をするに至らなかった。これは比較例1のセパレータでは微粒子(A)の充填率が低く、扁平状巻回電極体のコーナー部に微短絡を起こして電圧が上昇しなかったものと考えられる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 本発明によれば、耐熱性と信頼性とに優れた電気化学素子用セパレータと電気化学素子を提供できる。また、本発明の電気化学素子は、従来のリチウム二次電池などの電気化学素子が適用されている携帯電話やノート型パーソナルコンピューターなどの携帯電子機器の電源用途などの各種用途に好ましく用いることができる。
 1 負極
 2 正極
 3 セパレータ

Claims (17)

  1.  無機微粒子と、繊維状物とを含む電気化学素子用セパレータであって、
     前記無機微粒子の一次粒子は、幾何学形状に近似でき、
     前記無機微粒子の一次粒子を幾何学形状に近似して求めた、前記無機微粒子の一次粒子の表面積、体積及び真密度から算出される前記無機微粒子の理論比表面積と、BET法により実測される前記無機微粒子の実比表面積との差が、前記理論比表面積に対して±15%以内であることを特徴とする電気化学素子用セパレータ。
  2.  バインダをさらに含み、
     前記無機微粒子と前記繊維状物とは、前記バインダによって結着している請求項1に記載の電気化学素子用セパレータ。
  3.  前記繊維状物の耐熱温度が、150℃以上である請求項1に記載の電気化学素子用セパレータ。
  4.  前記繊維状物がシート状物を形成し、
     前記無機微粒子の一部又は全部が、前記シート状物の空隙内に保持されている請求項1に記載の電気化学素子用セパレータ。
  5.  近似された前記無機微粒子の幾何学形状が、板状又は球状である請求項1に記載の電気化学素子用セパレータ。
  6.  前記無機微粒子が、ベーマイト、アルミナ及びシリカから選択される少なくとも一つからなる請求項1に記載の電気化学素子用セパレータ。
  7.  前記無機微粒子の前記実比表面積が、1~10m/gである請求項1に記載の電気化学素子用セパレータ。
  8.  前記無機微粒子の実測される粒子径が、0.05~3μmである請求項1に記載の電気化学素子用セパレータ。
  9.  正極、負極及び請求項1~8のいずれかに記載の電気化学素子用セパレータを含むことを特徴とする電気化学素子。
  10.  無機微粒子と、微多孔膜とを含む電気化学素子用セパレータであって、
     前記無機微粒子の一次粒子は、幾何学形状に近似でき、
     前記無機微粒子の一次粒子を幾何学形状に近似して求めた、前記無機微粒子の一次粒子の表面積、体積及び真密度から算出される前記無機微粒子の理論比表面積と、BET法により実測される前記無機微粒子の実比表面積との差が、前記理論比表面積に対して±15%以内であることを特徴とする電気化学素子用セパレータ。
  11.  バインダをさらに含み、
     前記無機微粒子と前記微多孔膜とは、前記バインダによって結着している請求項10に記載の電気化学素子用セパレータ。
  12.  前記微多孔膜が、融点が80~130℃の樹脂から形成されている請求項10に記載の電気化学素子用セパレータ。
  13.  近似された前記無機微粒子の幾何学形状が、板状又は球状である請求項10に記載の電気化学素子用セパレータ。
  14.  前記無機微粒子が、ベーマイト、アルミナ及びシリカから選択される少なくとも一つからなる請求項10に記載の電気化学素子用セパレータ。
  15.  前記無機微粒子の前記実比表面積が、1~10m/gである請求項10に記載の電気化学素子用セパレータ。
  16.  前記無機微粒子の実測される粒子径が、0.05~3μmである請求項10に記載の電気化学素子用セパレータ。
  17.  正極、負極及び請求項10~16のいずれかに記載の電気化学素子用セパレータを含むことを特徴とする電気化学素子。
     
PCT/JP2010/059820 2009-06-10 2010-06-10 電気化学素子用セパレータ及びそれを用いた電気化学素子 WO2010143677A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/377,496 US20120094184A1 (en) 2009-06-10 2010-06-10 Separator for electrochemical device, and electrochemical device including same
JP2011518571A JP5588437B2 (ja) 2009-06-10 2010-06-10 電気化学素子用セパレータ及びそれを用いた電気化学素子
CN2010800261590A CN102460773A (zh) 2009-06-10 2010-06-10 电化学元件用隔膜以及使用该隔膜的电化学元件
KR1020117029522A KR101237331B1 (ko) 2009-06-10 2010-06-10 전기 화학 소자용 세퍼레이터 및 그것을 사용한 전기 화학 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-138937 2009-06-10
JP2009138937 2009-06-10
JP2009-215512 2009-09-17
JP2009215512 2009-09-17

Publications (1)

Publication Number Publication Date
WO2010143677A1 true WO2010143677A1 (ja) 2010-12-16

Family

ID=43308932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059820 WO2010143677A1 (ja) 2009-06-10 2010-06-10 電気化学素子用セパレータ及びそれを用いた電気化学素子

Country Status (5)

Country Link
US (1) US20120094184A1 (ja)
JP (1) JP5588437B2 (ja)
KR (1) KR101237331B1 (ja)
CN (1) CN102460773A (ja)
WO (1) WO2010143677A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109038A (ja) * 2010-11-15 2012-06-07 Toyota Motor Corp イオン伝導体及び電池
WO2012143158A1 (de) * 2011-04-20 2012-10-26 Evonik Litarion Gmbh Separator mit additiv zur verbesserung der beschichtungsgüte und reduzierung von agglomeraten im keramischen kompositmaterial
CN102959765A (zh) * 2011-03-07 2013-03-06 日立麦克赛尔株式会社 电池用隔膜以及电池
JP5172047B2 (ja) * 2010-12-17 2013-03-27 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
US20130171499A1 (en) * 2011-04-05 2013-07-04 Jae Won Yang Porous membrane and method for manufacturing the same
JP2013211101A (ja) * 2012-03-30 2013-10-10 Ube Ind Ltd 電気化学素子用セパレータ、その製造方法及びそれを用いた電気化学素子
WO2015079624A1 (ja) * 2013-11-29 2015-06-04 ソニー株式会社 電極および電池
JP2015522904A (ja) * 2012-12-10 2015-08-06 サムスン トータル ペトロケミカルズ カンパニー リミテッド 水系コーテイング液を利用した有/無機複合コーテイング多孔性分離膜とその製造方法及び前記分離膜を利用した電気化学素子
JP2015145318A (ja) * 2014-02-03 2015-08-13 河合石灰工業株式会社 高充填性ベーマイト及びその製造方法
JP2015524991A (ja) * 2012-11-30 2015-08-27 エルジー・ケム・リミテッド 表面特徴の異なる無機物粒子の二重多孔性コーティング層を含む二次電池用分離膜、それを含む二次電池、及び分離膜の製造方法
JP2016039138A (ja) * 2014-08-05 2016-03-22 日本合成化学工業株式会社 リチウムイオン二次電池セパレータ用コート剤用組成物およびその製造方法
JP2018073842A (ja) * 2012-06-12 2018-05-10 三菱製紙株式会社 リチウムイオン電池用セパレータ
JP2018147769A (ja) * 2017-03-07 2018-09-20 マクセルホールディングス株式会社 電気化学素子用セパレータおよび非水電解質電池
US10811658B2 (en) 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475791B1 (ko) * 2012-03-09 2014-12-23 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터, 그 제조 방법 및 비수계 이차전지
TW201351758A (zh) 2012-06-11 2013-12-16 Enerage Inc 電化學裝置隔離膜及其製備方法
CN103515561B (zh) * 2012-06-29 2016-01-20 安炬科技股份有限公司 电化学装置隔离膜及其制备方法
CN103531733A (zh) * 2012-07-04 2014-01-22 安炬科技股份有限公司 电化学隔离膜结构及其制作方法
DE102012023294A1 (de) 2012-11-28 2014-05-28 Li-Tec Battery Gmbh Separator für eine Lithium-lonen-Batterie sowie Lithium-lonen-Batterie enthaltend den Separator
FR2999019A1 (fr) * 2012-11-30 2014-06-06 Saint Gobain Ct Recherches Utilisation d'une poudre a base de silice pour la fabrication d'un element de separation d'une batterie lithium-ion
KR101298340B1 (ko) * 2013-02-12 2013-08-20 삼성토탈 주식회사 유/무기 복합 코팅 다공성 분리막 및 이를 이용한 이차전지소자
KR102107877B1 (ko) * 2013-10-02 2020-05-07 가부시키가이샤 무라타 세이사쿠쇼 전지, 전해질, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
US20160344009A1 (en) * 2014-01-27 2016-11-24 Sumitomo Chemical Company, Limited Coating liquid and laminated porous film
CN106328872B (zh) * 2014-01-27 2019-05-07 住友化学株式会社 涂布液及层叠多孔膜
KR101707193B1 (ko) * 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
CN110024202A (zh) * 2016-12-02 2019-07-16 旭化成株式会社 非水电解质电池用无机颗粒
PL3553869T3 (pl) * 2017-10-20 2021-11-02 Lg Chem, Ltd. Zespół elektrod i urządzenie elektrochemiczne zawierające zespół elektrod
EP3719866A4 (en) * 2017-11-29 2021-01-27 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
CN109346650A (zh) * 2018-10-25 2019-02-15 苏州捷力新能源材料有限公司 一种陶瓷pvdf混涂的锂离子电池隔膜及制备方法
CN112020784B (zh) * 2018-12-21 2023-12-19 株式会社Lg新能源 用于电化学装置的隔板和包含该隔板的电化学装置
CN111653430B (zh) * 2020-04-28 2021-10-08 安徽诚越电子科技有限公司 一种高闪火电压高电导率铝电解电容器用电解液以及铝电解电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059871A1 (fr) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2008016311A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 二次電池用塗工塗料の製造方法およびその製造装置
JP2009302009A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2010160939A (ja) * 2009-01-07 2010-07-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824926B1 (en) * 1998-03-20 2004-11-30 Ensci Inc Silica filled polymeric separator containing efficiency improving diatomite additives
JP4198009B2 (ja) * 2003-08-07 2008-12-17 ジャパンゴアテックス株式会社 固体高分子電解質膜及び燃料電池
KR100732803B1 (ko) * 2003-09-18 2007-06-27 마쯔시다덴기산교 가부시키가이샤 리튬이온 2차전지
US8405957B2 (en) * 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2008004430A1 (en) * 2006-07-06 2008-01-10 Panasonic Corporation Method for production of member for secondary battery, apparatus for production of the member, and secondary battery using the member
KR101223081B1 (ko) * 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 전지용 세퍼레이터 및 리튬 2차 전지
JP2009032677A (ja) * 2007-07-04 2009-02-12 Hitachi Maxell Ltd セパレータ用多孔質膜およびその製造方法、電池用セパレータおよびその製造方法、電池用電極およびその製造方法、ならびにリチウム二次電池
US20100221965A1 (en) * 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059871A1 (fr) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2008016311A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 二次電池用塗工塗料の製造方法およびその製造装置
JP2009302009A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2010160939A (ja) * 2009-01-07 2010-07-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109038A (ja) * 2010-11-15 2012-06-07 Toyota Motor Corp イオン伝導体及び電池
JP5172047B2 (ja) * 2010-12-17 2013-03-27 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JPWO2012081556A1 (ja) * 2010-12-17 2014-05-22 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
EP2573837A1 (en) * 2011-03-07 2013-03-27 Hitachi Maxell, Ltd. Separator for batteries, and battery
EP2573837A4 (en) * 2011-03-07 2013-10-09 Hitachi Maxell SEPARATOR FOR BATTERIES AND BATTERY
CN102959765A (zh) * 2011-03-07 2013-03-06 日立麦克赛尔株式会社 电池用隔膜以及电池
US20130171499A1 (en) * 2011-04-05 2013-07-04 Jae Won Yang Porous membrane and method for manufacturing the same
US9293750B2 (en) * 2011-04-05 2016-03-22 W-Scope Corporation Porous membrane and method for manufacturing the same
JP2014512086A (ja) * 2011-04-20 2014-05-19 エボニック リタリオン ゲゼルシャフト ミット ベシュレンクテル ハフツング 被覆品質の改善及びセラミック複合材料中でのアグロメレイトの低減のための添加剤を有するセパレータ
WO2012143158A1 (de) * 2011-04-20 2012-10-26 Evonik Litarion Gmbh Separator mit additiv zur verbesserung der beschichtungsgüte und reduzierung von agglomeraten im keramischen kompositmaterial
JP2013211101A (ja) * 2012-03-30 2013-10-10 Ube Ind Ltd 電気化学素子用セパレータ、その製造方法及びそれを用いた電気化学素子
JP2018073842A (ja) * 2012-06-12 2018-05-10 三菱製紙株式会社 リチウムイオン電池用セパレータ
US10811658B2 (en) 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
JP2015524991A (ja) * 2012-11-30 2015-08-27 エルジー・ケム・リミテッド 表面特徴の異なる無機物粒子の二重多孔性コーティング層を含む二次電池用分離膜、それを含む二次電池、及び分離膜の製造方法
JP2015522904A (ja) * 2012-12-10 2015-08-06 サムスン トータル ペトロケミカルズ カンパニー リミテッド 水系コーテイング液を利用した有/無機複合コーテイング多孔性分離膜とその製造方法及び前記分離膜を利用した電気化学素子
WO2015079624A1 (ja) * 2013-11-29 2015-06-04 ソニー株式会社 電極および電池
US10629912B2 (en) 2013-11-29 2020-04-21 Murata Manufacturing Co., Ltd. Electrode and battery
JP2015145318A (ja) * 2014-02-03 2015-08-13 河合石灰工業株式会社 高充填性ベーマイト及びその製造方法
JP2016039138A (ja) * 2014-08-05 2016-03-22 日本合成化学工業株式会社 リチウムイオン二次電池セパレータ用コート剤用組成物およびその製造方法
JP2018147769A (ja) * 2017-03-07 2018-09-20 マクセルホールディングス株式会社 電気化学素子用セパレータおよび非水電解質電池

Also Published As

Publication number Publication date
JP5588437B2 (ja) 2014-09-10
JPWO2010143677A1 (ja) 2012-11-29
KR101237331B1 (ko) 2013-02-28
CN102460773A (zh) 2012-05-16
US20120094184A1 (en) 2012-04-19
KR20120023078A (ko) 2012-03-12

Similar Documents

Publication Publication Date Title
JP5588437B2 (ja) 電気化学素子用セパレータ及びそれを用いた電気化学素子
US9972816B2 (en) Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
KR101137975B1 (ko) 전기 화학 소자의 제조방법
JP5259721B2 (ja) 電池用セパレータおよびそれを用いた非水電解液電池
JP5144651B2 (ja) 電池用セパレータおよび非水電解液電池
JP5421358B2 (ja) 電気化学素子
JP5576740B2 (ja) 電気化学素子
EP1826842A1 (en) Separator for electrochemical device and electrochemical device
JP5451426B2 (ja) 電池用セパレータおよびそれを用いたリチウムイオン二次電池
TWI390788B (zh) Electrochemical components
JP2011181195A (ja) リチウムイオン二次電池
JP2010135313A (ja) 電気化学素子
WO2015046126A1 (ja) 非水電池用多孔質層、非水電池用セパレータ、非水電池用電極および非水電池
JP2011018589A (ja) 絶縁層形成用スラリー、リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池
JPWO2012005152A1 (ja) 非水電池用セパレータおよび非水電池
JP7037946B2 (ja) 非水電池用多孔質層、その製造方法、非水電池用セパレータ、非水電池用電極および非水電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026159.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518571

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117029522

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13377496

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786208

Country of ref document: EP

Kind code of ref document: A1