WO2010143476A1 - 炭化珪素単結晶の製造装置 - Google Patents
炭化珪素単結晶の製造装置 Download PDFInfo
- Publication number
- WO2010143476A1 WO2010143476A1 PCT/JP2010/057218 JP2010057218W WO2010143476A1 WO 2010143476 A1 WO2010143476 A1 WO 2010143476A1 JP 2010057218 W JP2010057218 W JP 2010057218W WO 2010143476 A1 WO2010143476 A1 WO 2010143476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seed crystal
- single crystal
- raw material
- guide member
- silicon carbide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
Definitions
- the present invention relates to an apparatus for manufacturing a silicon carbide single crystal, and more particularly to an apparatus for manufacturing a silicon carbide single crystal capable of manufacturing a good single crystal with no concave surface at the radial end.
- a sublimation recrystallization method is known as a method for producing a silicon carbide single crystal for producing a silicon carbide single crystal (hereinafter, appropriately abbreviated as a single crystal) from a seed crystal containing silicon carbide and a raw material for sublimation.
- This sublimation recrystallization method is a method in which a sublimation gas is heated to sublimate to generate a sublimation gas, and a sublimation gas is supplied to the seed crystal to grow a silicon carbide single crystal from the seed crystal.
- the present invention has been made in view of such a situation, and carbonization capable of producing a good quality silicon carbide single crystal without forming a concave surface at the radial end of the grown crystal.
- An object is to provide an apparatus for producing a silicon single crystal.
- the first feature of the present invention is a crucible body (crucible body 5) containing a sublimation raw material (sublimation raw material 3), and a seed crystal support (seed) that fixes the seed crystal at a position facing the pre-sublimation raw material.
- a lid body (lid body 9) provided with a crystal support portion 7), a guide member (guide member 11) extending in a cylindrical shape from the vicinity of the outer periphery of the seed crystal support portion toward the sublimation raw material, and the seed crystal support And a heat insulating material (heat insulating materials 21, 23, 25) disposed on the outer peripheral side of at least one of the portion and the guide member and having a thermal conductivity lower than that of the single crystal, the sublimation raw material And when the seed crystal is heated to grow the single crystal, the flow of heat (heat H) from the sublimation raw material toward the seed crystal is concentrated on the seed crystal by the heat insulating material.
- the gist The gist.
- the heat insulating material is disposed on the outer peripheral side of at least one of the seed crystal support part and the guide member, the heat flow from the sublimation raw material toward the seed crystal is concentrated on the seed crystal by the heat insulating material. Can do. Therefore, it is possible to manufacture a single crystal of good quality without forming a concave surface at the radial end of the grown single crystal.
- a crucible body (crucible body 5) containing a sublimation raw material (sublimation raw material 3) and a seed crystal support (seed crystal) that fixes the seed crystal at a position facing the pre-sublimation raw material.
- the guide member (guide member 43) is formed in a cylindrical shape, and the inner peripheral surfaces (inner peripheral surfaces 43a and 43b) of the guide member are on the outer peripheral side of the seed crystal support portion.
- the guide member has an outer peripheral surface (outer peripheral surface 43c) that is in contact with an inner wall surface (inner wall surface 5a) of the crucible body (crucible body 5).
- the silicon carbide single crystal manufacturing apparatus can manufacture a single crystal of good quality without forming a concave surface at the radial end of the grown single crystal.
- FIG. 1 is an explanatory view of a silicon carbide single crystal manufacturing apparatus according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a modified example of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing another modification of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- FIG. 5 is a schematic diagram showing a heat flow in the vicinity of a single crystal according to the first embodiment of the present invention.
- FIG. 5A shows an initial stage of single crystal growth.
- FIG. 5B shows the middle stage of single crystal growth.
- FIG. 5A shows an initial stage of single crystal growth.
- FIG. 6 is a cross-sectional view showing an apparatus for producing a silicon carbide single crystal according to a comparative example.
- FIG. 7 is a schematic diagram showing a heat flow in the vicinity of a single crystal according to a comparative example.
- FIG. 7A shows an initial stage of single crystal growth.
- FIG. 7B shows a stage during the growth of the single crystal.
- FIG. 8 is a sectional view showing a silicon carbide single crystal manufacturing apparatus according to the second embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing an apparatus for manufacturing a silicon carbide single crystal according to a third embodiment of the present invention.
- FIG. 1 is an explanatory view of an apparatus for producing a silicon carbide single crystal according to a first embodiment of the present invention.
- the manufacturing apparatus 1 includes a crucible body 5 in which one (in this embodiment, an upper portion, hereinafter, one is referred to as an upper portion) is opened and the sublimation raw material 3 is accommodated therein, and the crucible body 5 is opened.
- a lid 9 provided with a seed crystal support portion 7 disposed so as to block the upper portion and fixing the seed crystal at a position facing the sublimation raw material 3, and the sublimation raw material 3 from the vicinity of the outer periphery of the seed crystal support portion 7.
- the guide member 11 that extends in a cylindrical shape toward the other side that is the opposite side (downward in the present embodiment; hereinafter, the other side that is the opposite side is the lower side), and the seed crystal support portion 7 and a heat insulating material disposed on the outer peripheral side of at least one of the guide member 11. Accordingly, when the sublimation raw material 3 and the seed crystal are heated to grow a single crystal, the heat flow from the sublimation raw material 3 toward the seed crystal is concentrated on the seed crystal by the heat insulating material.
- the crucible body 5 is formed in a cylindrical body having an open upper end, and a powdery sublimation raw material 3 made of silicon carbide is accommodated in the bottom 5b. Further, a screw portion 5c is formed on the outer peripheral side of the upper end portion, and the lid body 9 is configured to be screwable.
- the crucible body 5 is made of graphite.
- the lid 9 is also formed in a cylindrical shape, and a threaded portion 9 a that is screwed into the upper end portion of the crucible body 5 is formed on the inner peripheral surface of the side wall portion. Further, in the lid body 9, a seed crystal is fixed toward the inner side of the crucible body 5 (that is, the lower side that is the sublimation raw material side) at the radial center of the inner surface of the position facing the sublimation raw material. A cylindrical seed crystal support portion 7 is projected.
- This lid 9 is also made of graphite.
- the guide member 11 is formed so as to expand in a truncated cone shape from the vicinity of the outer peripheral side of the seed crystal support portion 7 downward.
- the guide member 11 is held by the lower end portion 11 a of the guide member 11 being locked to the inner wall surface 5 a of the crucible body 5.
- a predetermined space S shown by hatching in FIG. 1 is defined by the inner surface of the lid body 9.
- the predetermined space S is formed in a substantially cylindrical shape.
- a heat insulating material is disposed at any part in the predetermined space S, that is, at least one outer peripheral side of the seed crystal support portion 7 and the guide member 11.
- a material of the heat insulating material for example, carbon felt is preferable.
- FIG. 2 is a sectional view of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- a disk-shaped heat insulating material 21 it is preferable to attach a disk-shaped heat insulating material 21 to the inner surface of the lid 9.
- the inner peripheral surface of the heat insulating material 21 is in contact with the outer peripheral surface 7 a of the seed crystal support portion 7, and the outer peripheral surface 21 a of the heat insulating material 21 is in contact with the inner peripheral surface of the lid 9.
- the thickness t of the heat insulating material 21 is formed to be thinner than the height of the seed crystal support portion 7, and the attachment means can employ bonding with an adhesive or the like.
- FIG. 3 is a cross-sectional view showing a modification of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- the heat insulating material 23 is substantially the same as that in FIG. 2, but the thickness is set to be substantially the same as the height of the seed crystal support portion 7. Therefore, when the heat insulating material 23 is attached to the lid body 9, the lower surface 23 a of the heat insulating material 23 and the lower surface of the seed crystal support portion 7 are formed in substantially the same plane.
- FIG. 4 is a cross-sectional view showing another modified example of the silicon carbide single crystal manufacturing apparatus according to the first embodiment of the present invention.
- the heat insulating material 25 is also formed in a disk shape, and the height position is arranged on the upper portion of the guide member 11. That is, it extends from the outer peripheral surface of the upper part of the guide member 11 in the lateral direction and extends to the inner wall surface 5 a of the crucible body 5.
- FIG. 5A and 5B are schematic diagrams showing the heat flow in the vicinity of a single crystal according to the first embodiment of the present invention, where FIG. Show.
- an isotherm T is a line connecting parts having the same temperature in the vicinity of the single crystal, and the heat flow is indicated by arrows. Since the arrow is perpendicular to the isotherm T, the flow direction of the heat H is perpendicular to the isotherm T.
- a heat insulating material 25 is disposed on the outer peripheral side of the guide member 11.
- the manufacturing apparatus 101 does not include a heat insulating material as shown in FIG. 6, the radial end portion 127a of the single crystal 127 surrounded by a circle is formed in a concave surface. This will be described with reference to FIG.
- the single crystal manufacturing apparatus 1 includes a crucible main body 5 that houses a sublimation raw material 3 and a seed crystal support 7 that fixes a seed crystal at a position facing the sublimation raw material 3.
- a seed crystal support 7 that fixes a seed crystal at a position facing the sublimation raw material 3.
- the guide member 11 that extends in a cylindrical shape from the vicinity of the outer periphery of the seed crystal support portion 7 toward the sublimation raw material 3.
- the heat insulating materials 21, 23, 25 are configured to be aggregated into the seed crystal.
- the heat insulating materials 21, 23, 25 are arranged on the outer peripheral side of at least one of the seed crystal support 7 and the guide member 11, the flow of heat H from the sublimation raw material 3 toward the seed crystal is performed.
- the heat insulating materials 21, 23, 25 can be integrated into the seed crystal. Therefore, the single crystal 27 with good quality can be manufactured without forming a concave surface at the radial end of the grown single crystal 27.
- the guide member itself is formed from a heat insulating material.
- FIG. 8 is a cross-sectional view showing an apparatus for producing a silicon carbide single crystal according to a second embodiment of the present invention.
- the manufacturing apparatus 31 is disposed so as to seal the crucible body 5 containing the sublimation raw material 3 inside and the opened upper part of the crucible body 5.
- a cover member 9 provided with a seed crystal support portion 7 on the inner side, and a sublimation raw material 3 from the vicinity of the outer periphery of the seed crystal support portion 7, that is, a guide member 33 extending in a cylindrical shape downward, is provided.
- 33 is formed from a heat insulating material.
- the shape of the guide member 33 is formed in the same shape as that of the first embodiment, and is formed so as to expand in a truncated cone shape from the vicinity of the outer periphery side of the seed crystal support portion 7 downward.
- the guide member 33 is held by the lower end 33 a of the guide member 33 being locked to the inner wall surface 5 a of the crucible body 5.
- the material of the guide member 33 itself is formed from a heat insulating material.
- the silicon carbide single crystal manufacturing apparatus 31 includes a crucible main body 5 that houses the sublimation raw material 3 and a seed crystal support 7 that fixes the seed crystal at a position facing the sublimation raw material 3. And a guide member 33 that extends in a cylindrical shape from the vicinity of the outer periphery of the seed crystal support portion 7 toward the sublimation raw material 3, and the guide member 33 is formed of a heat insulating material, whereby the sublimation raw material 3 When the seed crystal is heated to grow the single crystal 27, the flow of heat H from the sublimation raw material 3 toward the seed crystal is concentrated on the seed crystal by the guide member 33 made of a heat insulating material.
- the flow of heat H from the sublimation raw material 3 toward the seed crystal can be concentrated on the seed crystal by the guide member 33 made of a heat insulating material. Therefore, the single crystal 27 with good quality can be manufactured without forming a concave surface at the radial end of the grown single crystal 27.
- FIG. 9 is a sectional view showing a silicon carbide single crystal manufacturing apparatus 41 according to the third embodiment of the present invention.
- the guide member 43 is made of a heat insulating material, and is formed in a substantially cylindrical shape as shown in FIG. Specifically, the guide member 43 is formed in a cylindrical shape, and the inner peripheral surface thereof is located on the other side opposite to the other side (in the present embodiment) where the sublimation raw material 3 is located from the outer peripheral side of the seed crystal support portion 7. Is formed such that the diameter increases obliquely downward), and the outer peripheral surface is in contact with the inner wall surface 5 a of the crucible body 5.
- the inner peripheral surface of the guide member 43 includes an upper inner peripheral surface 43a that extends in the vertical direction and a tapered lower inner peripheral surface 43b that has a diameter that increases obliquely downward from the lower end of the upper inner peripheral surface 43a.
- the outer peripheral surface 43c is formed in the cylindrical surface extended in the vertical direction from an upper end to a lower end. The upper surface 43 d of the guide member 43 is joined while being in contact with the inner surface of the lid body 9.
- the guide member 43 is formed in a cylindrical shape, and the inner peripheral surfaces 43a and 43b thereof are formed so that the diameter increases obliquely from the outer peripheral side of the seed crystal support portion 7 to the sublimation raw material 3.
- the outer peripheral surface 43 c is in contact with the inner wall surface 5 a of the crucible body 5.
- the flow of heat H from the sublimation raw material 3 toward the seed crystal can be concentrated on the seed crystal by the guide member 43 made of a heat insulating material. Therefore, the single crystal 27 with good quality can be manufactured without forming a concave surface at the radial end of the grown single crystal 27.
- the guide member 11 may be provided, and the heat insulating material may be disposed in the entire predetermined space S shown in FIG.
- the manufacturing apparatus described in FIG. 2 was used as a manufacturing apparatus for a silicon carbide single crystal according to an example of the present invention. Moreover, the manufacturing apparatus 101 demonstrated in FIG. 6 was used as a comparative example.
- Each lid and crucible body was made of graphite.
- a molded heat insulating material mainly made of carbon felt was used as the heat insulating material.
- this heat insulating material one having a lower thermal conductivity than the lid and the crucible body was used.
- the thermal conductivity of graphite, which is the material of the lid and crucible body, at room temperature is about 100 W / (m ⁇ K), and the thermal conductivity of the heat insulating material at room temperature is about 0.2 W / (m ⁇ K). )Met.
- the heat insulating material is disposed in the manufacturing apparatus according to the present invention, and the heat insulating material is not disposed in the conventional manufacturing apparatus serving as the comparative example.
- the single crystal of the example of the present invention was able to obtain a good single crystal in which no concave surface was formed at the radial end portion.
- a concave surface as shown in FIG. 6 was formed at the radial end.
- the upper part of the crucible main body 5 is opened, it is not restricted to this,
- the lower part of the crucible main body 5 may be opened.
- the guide member extends in a cylindrical shape from the vicinity of the outer periphery of the seed crystal support portion toward the upper portion opposite to the lower portion.
- the silicon carbide single crystal manufacturing apparatus can manufacture a single crystal of good quality without forming a concave surface at the radial end of the grown single crystal. Therefore, it is useful in the field of manufacturing a silicon carbide single crystal.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本発明による単結晶製造装置1は、昇華用原料を収容する坩堝本体5と、昇華用原料と対向する位置に種結晶支持部7を設けた蓋体9と、種結晶支持部7の外周近傍から昇華用原料に向けて筒状に延びるガイド部材11と、種結晶支持部7およびガイド部材11の少なくともいずれかの外周側に配設されると共に、単結晶27よりも熱伝導率が低く設定された断熱材21とを備え、昇華用原料3および種結晶を加熱して単結晶27を成長させるときに、昇華用原料3から種結晶に向かう熱Hの流れを断熱材21によって種結晶に集約させるように構成している。
Description
本発明は炭化珪素単結晶の製造装置に関し、特に径方向端部に凹面が生ずることのない良好な単結晶を製造することのできる炭化珪素単結晶の製造装置に関する。
従来、炭化珪素を含む種結晶および昇華用原料から、炭化珪素単結晶(以下、単結晶と適宜省略する)を製造する炭化珪素単結晶の製造方法として昇華再結晶法が知られている。この昇華再結晶法は、昇華用原料を加熱して昇華させて昇華ガスを発生させ、昇華ガスを種結晶に供給することにより、この種結晶から炭化珪素の単結晶を成長させる方法である。
ここで、昇華ガスを集約して効率的に種結晶に供給するために、下方に向かうにつれて徐々に径が拡大するコーン状ガイドを用いる技術が開示されている(例えば、特許文献1,2参照)。また、坩堝本体の上部内壁面を下方に向かうにつれて徐々に径が拡大する円錐状(テーパ状)に形成した製造装置も知られている(例えば、特許文献3参照)。
しかしながら、上述した従来の炭化珪素単結晶の製造装置を用いて単結晶を製造すると、径方向端部の下面が凹状にへこむ品質不良が生じるおそれがあった。この原因として、特許文献1,2に係る技術においては、結晶成長が進行するにつれて、昇華用原料から種結晶に向かう熱がガイド部材から当該ガイド部材の外周側に向けて流れることが考えられる。また、特許文献3に係る技術においては、坩堝本体の上部内壁面が高い熱伝導率の黒鉛からなるため、結晶成長が進行するにつれて、昇華用原料から種結晶に向かう熱が上部内壁面から坩堝本体に向けて流れることが考えられる。
そこで、本発明は、このような状況に鑑みてなされたものであり、成長結晶の径方向端部に凹面が形成されることのない良好な品質の炭化珪素単結晶を製造することができる炭化珪素単結晶の製造装置の提供を目的とする。
本発明の第1の特徴は、昇華用原料(昇華用原料3)を収容する坩堝本体(坩堝本体5)と、前昇華用原料と対向する位置に種結晶を固定する種結晶支持部(種結晶支持部7)を設けた蓋体(蓋体9)と、前記種結晶支持部の外周近傍から前記昇華用原料に向けて筒状に延びるガイド部材(ガイド部材11)と、前記種結晶支持部および前記ガイド部材の少なくともいずれかの外周側に配設されると共に、単結晶よりも熱伝導率が低く設定された断熱材(断熱材21,23,25)とを備え、前記昇華用原料および種結晶を加熱して前記単結晶を成長させるときに、前記昇華用原料から前記種結晶に向かう熱(熱H)の流れを前記断熱材によって前記種結晶に集約させるように構成したことを要旨とする。
このように、種結晶支持部およびガイド部材の少なくともいずれかの外周側に断熱材を配設しているため、昇華用原料から種結晶に向かう熱の流れを断熱材によって種結晶に集約させることができる。従って、成長した単結晶の径方向端部に凹面が形成されることなく、良好な品質の単結晶を製造することができる。
本発明の他の特徴では、昇華用原料(昇華用原料3)を収容する坩堝本体(坩堝本体5)と、前昇華用原料と対向する位置に種結晶を固定する種結晶支持部(種結晶支持部7)を設けた蓋体(蓋体9)と、前記種結晶支持部の外周近傍から前記昇華用原料に向けて筒状に延びるガイド部材(ガイド部材33)とを備え、前記ガイド部材を単結晶よりも熱伝導率が低い断熱材から形成することにより、前記昇華用原料および種結晶を加熱して前記単結晶を成長させるときに、前記昇華用原料から前記種結晶に向かう熱(熱H)の流れを前記断熱材によって前記種結晶に集約させるように構成したことを要旨とする。
本発明の他の特徴では、前記ガイド部材(ガイド部材43)は、筒状に形成されており、前記ガイド部材の内周面(内周面43a,43b)は前記種結晶支持部の外周側から前記昇華用原料に斜めに向けて径が拡がるように形成され、前記ガイド部材の外周面(外周面43c)は、前記坩堝本体(坩堝本体5)の内壁面(内壁面5a)に当接していることを要旨とする。
本発明に係る炭化珪素単結晶の製造装置によれば、成長した単結晶の径方向端部に凹面が形成されることなく、良好な品質の単結晶を製造することができる。
以下、本発明の実施の形態に係る炭化珪素単結晶の製造装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各材料層の厚みやその比率などは現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
[第1実施形態]
まず、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態による炭化珪素単結晶の製造装置の説明図である。
まず、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態による炭化珪素単結晶の製造装置の説明図である。
この製造装置1は、一方(本実施形態においては、上部。以下、一方を上部とする)が開口されて内方に昇華用原料3を収容する坩堝本体5と、坩堝本体5の開口された上部を封鎖するように配設され、昇華用原料3と対向する位置に種結晶を固定する種結晶支持部7を設けた蓋体9と、種結晶支持部7の外周近傍から昇華用原料3、つまり、一方の反対側である他方(本実施形態においては、下方。以下、一方の反対側である他方を下方とする。)に向けて筒状に延びるガイド部材11と、種結晶支持部7およびガイド部材11の少なくともいずれかの外周側に配設された断熱材とを備えている。これによって、昇華用原料3および種結晶を加熱して単結晶を成長させるときに、昇華用原料3から種結晶に向かう熱の流れを断熱材によって種結晶に集約させるように構成されている。
坩堝本体5は、上端が開口した円筒体に形成され、その底部5bに炭化珪素からなる粉体状の昇華用原料3が収容されている。また、上端部の外周側には、ネジ部5cが形成されており、蓋体9が螺合可能に構成されている。坩堝本体5は、黒鉛から形成されている。
蓋体9も円筒状に形成されており、側壁部の内周面には、坩堝本体5の上端部に螺合するネジ部9aが形成されている。また、蓋体9において、昇華用原料と対向する位置内面の径方向中央部には、坩堝本体5の内方側(即ち、昇華用原料側となる下側)に向けて、種結晶を固定する円柱状の種結晶支持部7が突設されている。この蓋体9も黒鉛から形成されている。
さらに、ガイド部材11が、種結晶支持部7の外周側近傍から下方に向けて円錐台状に広がって形成されている。ガイド部材11の下端部11aが坩堝本体5の内壁面5aに係止されることにより、ガイド部材11が保持されている。
そして、蓋体9を坩堝本体5の上端部に螺合させた状態では、種結晶支持部7の外周面7aと、ガイド部材11の外周面と、坩堝本体5の上端部の内壁面5aと、蓋体9の内面とによって、図1のハッチングに示す所定空間Sが画成される。この所定空間Sは、略円筒状に形成されている。本実施形態においては、この所定空間S内のいずれかの部位、即ち、種結晶支持部7およびガイド部材11の少なくもいずれかの外周側に断熱材を配設する。この断熱材の材質としては、例えば、カーボンフェルトなどが好ましい。
図2は、本発明の第1実施形態による炭化珪素単結晶の製造装置の断面図である。
前述した断熱材の一例として、蓋体9の内面に円盤状の断熱材21を取り付けることが好ましい。この断熱材21の内周面は種結晶支持部7の外周面7aに当接し、断熱材21の外周面21aは蓋体9の内周面に当接している。この断熱材21の厚さtは、種結晶支持部7の高さよりも薄く形成されており、取付手段は、接着剤による接着などを採用することができる。
図3は、本発明の第1実施形態による炭化珪素単結晶の製造装置の変形例を示す断面図である。
この断熱材23は、図2とほぼ同じであるが、厚さが種結晶支持部7の高さと略同一に設定されている。従って、断熱材23を蓋体9に取り付けた状態では、断熱材23の下面23aと種結晶支持部7の下面とは略同一面状に形成されている。
図4は、本発明の第1実施形態による炭化珪素単結晶の製造装置の別の変形例を示す断面図である。
この断熱材25も円盤状に形成されており、高さ位置がガイド部材11の上部に配置されている。即ち、ガイド部材11の上部の外周面から横方向に拡がり坩堝本体5の内壁面5aまで延びている。
次いで、本実施形態の製造装置におけるガイド部材近傍の熱流れを簡単に説明する。
図5は、本発明の第1実施形態による単結晶近傍の熱の流れを示す概略図であり、(a)は単結晶の成長初期段階を示し、(b)は単結晶の成長途中段階を示す。
なお、2000℃を超える高温領域では、空間、黒鉛(カーボン)、炭化珪素(SiC)、断熱材の熱伝導率を比較すると、空間>黒鉛(カーボン)>炭化珪素(SiC)>断熱材の順となる。
また、図5(a),(b)においては、単結晶近傍における温度が等しい部位を結んだ線を等温線Tとし、矢印で熱の流れを示している。矢印が等温線Tと直交しているため、熱Hの流れ方向は等温線Tに直交した向きになる。ガイド部材11の外周側には、断熱材25が配設されている。
まず、図5(a)に示すように、昇華用原料3と種結晶を加熱すると、昇華用原料3から上方に向かって熱Hが移動する。この加熱温度は、昇華用原料3の方が種結晶よりも高く設定されている。ガイド部材11の外周側には、断熱材25が配設されており、断熱材25の熱伝導率は、単結晶を構成する炭化珪素よりも低いため、ガイド部材11近傍に熱Hが移動した場合には、ガイド部材11の内周側に沿って移動方向が変わり、SiC単結晶に向けて熱Hが集約され、等温線Tが下に凸の形状に形成される。従って、図5(b)に示すように、単結晶27は等温線Tに沿って下に凸状に成長するため、従来のように径方向端部に凹面が形成されることがない。
一方、従来技術に係る製造装置101は、図6に示すように断熱材を設けていないため、丸で囲った単結晶127の径方向端部127aが凹面に形成されてしまう。これを図7を用いて説明する。
まず、図7(a)に示すように、昇華用原料3と種結晶を加熱すると、昇華用原料3から上方に向かって熱Hが移動する。この加熱温度は、昇華用原料3の方が種結晶よりも高く設定されている。熱伝導率は、空間Sの方がSiC単結晶127よりも高いため、ガイド部材11近傍に熱Hが移動した場合には、ガイド部材11を通過してガイド部材11の外周側に抜けて移動する。従って、SiC単結晶127に向けて熱Hが集約されないため、等温線Tの形状が上に凸の湾曲形状となり、単結晶27の径方向端部127aに凹面が形成される。
本実施形態による作用効果を説明する。
(1)本発明の第1実施形態による単結晶製造装置1は、昇華用原3料を収容する坩堝本体5と、昇華用原料3と対向する位置に種結晶を固定する種結晶支持部7を設けた蓋体9と、種結晶支持部7の外周近傍から昇華用原料3に向けて筒状に延びるガイド部材11と、種結晶支持部7およびガイド部材11の少なくともいずれかの外周側に配設された断熱材21,23,25と、を備え、昇華用原料3および種結晶を加熱して単結晶27を成長させるときに、昇華用原料3から種結晶に向かう熱Hの流れを断熱材21,23,25によって種結晶に集約させるように構成している。
このように、種結晶支持部7およびガイド部材11の少なくともいずれかの外周側に断熱材21,23,25を配設しているため、昇華用原料3から種結晶に向かう熱Hの流れを断熱材21,23,25によって種結晶に集約させることができる。従って、成長した単結晶27の径方向端部に凹面が形成されることなく、良好な品質の単結晶27を製造することができる。
[第2実施形態]
次いで、本発明の第2実施形態について説明するが、前述した第1実施形態と同一構造の部位には同一符号を付して説明を省略する。
次いで、本発明の第2実施形態について説明するが、前述した第1実施形態と同一構造の部位には同一符号を付して説明を省略する。
本実施形態では、ガイド部材自体を断熱材から形成している。
図8は、本発明の第2実施形態による炭化珪素単結晶の製造装置を示す断面図である。
本実施形態による製造装置31は、上部が開口され、内方に昇華用原料3を収容する坩堝本体5と、坩堝本体5の開口された上部を封鎖するように配設され、坩堝本体5の内方側に種結晶支持部7を設けた蓋体9と、種結晶支持部7の外周近傍から昇華用原料3、つまり、下方に向けて筒状に延びるガイド部材33とを備え、ガイド部材33を断熱材から形成している。これにより、昇華用原料3および種結晶を加熱して単結晶を成長させるときに、昇華用原料3から種結晶に向かう熱Hの流れをガイド部材33によって種結晶に集約させるように構成している。
ガイド部材33の形状は、第1実施形態と同一形状に形成されており、種結晶支持部7の外周側近傍から下方に向けて円錐台状に広がって形成されている。ガイド部材33の下端部33aが坩堝本体5の内壁面5aに係止されることにより、ガイド部材33が保持されている。このガイド部材33自体の材質が、断熱材から形成されている。
本実施形態による作用効果を説明する。
(1)本実施形態による炭化珪素単結晶の製造装置31は、昇華用原料3を収容する坩堝本体5と、昇華用原料3と対向する位置に種結晶を固定する種結晶支持部7を設けた蓋体9と、種結晶支持部7の外周近傍から昇華用原料3に向けて筒状に延びるガイド部材33と、を備え、ガイド部材33を断熱材から形成することにより、昇華用原料3および種結晶を加熱して単結晶27を成長させるときに、昇華用原料3から種結晶に向かう熱Hの流れを断熱材からなるガイド部材33によって種結晶に集約させるように構成している。
本実施形態によっても、昇華用原料3から種結晶に向かう熱Hの流れを断熱材からなるガイド部材33によって種結晶に集約させることができる。従って、成長した単結晶27の径方向端部に凹面が形成されることなく、良好な品質の単結晶27を製造することができる。
[第3実施形態]
次いで、本発明の第3実施形態について説明するが、前述した第1および第2実施形態と同一構造の部位には同一符号を付して説明を省略する。
次いで、本発明の第3実施形態について説明するが、前述した第1および第2実施形態と同一構造の部位には同一符号を付して説明を省略する。
図9は、本発明の第3実施形態による炭化珪素単結晶の製造装置41を示す断面図である。
本実施形態によるガイド部材43は断熱材からなり、図9に示すように、略円筒状に形成されている。具体的にガイド部材43は、筒状に形成されており、その内周面は種結晶支持部7の外周側から昇華用原料3の位置する、一方の反対側である他方(本実施形態においては、下方)に斜めに向けて径が拡がるように形成され、外周面は坩堝本体5の内壁面5aに当接している。即ち、ガイド部材43の内周面は、縦方向に延びる上側内周面43aと、上側内周面43aの下端から斜め下方に径寸法が拡がるテーパ状の下側内周面43bとからなる。また、外周面43cは、上端から下端に至るまで縦方向に延びる円筒面に形成されている。なお、ガイド部材43の上面43dが蓋体9の内面に当接したまま接合されている。
本実施形態による作用効果を説明する。
(1)ガイド部材43は、筒状に形成されており、その内周面43a,43bは、種結晶支持部7の外周側から昇華用原料3に斜めに向けて径が拡がるように形成され、外周面43cは坩堝本体5の内壁面5aに当接している。
本実施形態によっても、昇華用原料3から種結晶に向かう熱Hの流れを断熱材からなるガイド部材43によって種結晶に集約させることができる。従って、成長した単結晶27の径方向端部に凹面が形成されることなく、良好な品質の単結晶27を製造することができる。
なお、前述した実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
例えば、ガイド部材11を設けると共に、図1に示す所定空間S全体に断熱材を配設するようにしても良い。
次いで、本発明を実施例を通してさらに具体的に説明する。
まず、本発明例に係る炭化珪素単結晶の製造装置として、図2で説明した製造装置を用いた。また、比較例として、図6で説明した製造装置101を用いた。
それぞれの蓋体および坩堝本体は、黒鉛から形成した。本発明例による断熱材には、カーボンフェルトを主原料とした成形断熱材を用いた。この断熱材は、蓋体および坩堝本体よりも熱伝導率の低いものを使用した。なお、蓋体および坩堝本体の材質である黒鉛の室温における熱伝導率は、約100W/(m・K)であり、断熱材の室温における熱伝導率は、約0.2W/(m・K)であった。このように、本発明例による製造装置には断熱材が配設され、比較例となる従来の製造装置には断熱材が配設されていない。
これらの製造装置を用いて、炭化珪素単結晶を成長させたところ、本発明例の単結晶は、径方向端部に凹面が形成されない良好な単結晶を得ることができたが、比較例の単結晶では、径方向端部に図6に示すような凹面が形成された。このように、本発明例の製造装置の方が良好な単結晶を製造することができることが判明した。
[その他の実施形態]
本実施形態においては、坩堝本体5の上部が開口されているが、これに限られず、例えば、坩堝本体5の下部が開口されていてもよい。この場合、ガイド部材は、種結晶支持部の外周近傍から下部の反対側である上部に向けて筒状に延びる。
本実施形態においては、坩堝本体5の上部が開口されているが、これに限られず、例えば、坩堝本体5の下部が開口されていてもよい。この場合、ガイド部材は、種結晶支持部の外周近傍から下部の反対側である上部に向けて筒状に延びる。
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
なお、日本国特許出願第2009-139253号(2009年6月10日出願)の全内容が、参照により、本願明細書に組み込まれている。
以上のように、本発明に係る炭化珪素単結晶の製造装置は、成長した単結晶の径方向端部に凹面が形成されることなく、良好な品質の単結晶を製造することができることができるため、炭化珪素単結晶の製造分野において有用である。
3 昇華用原料
5 坩堝本体
7 種結晶支持部
9 蓋体
11,33,43 ガイド部材
21,23,25 断熱材
5 坩堝本体
7 種結晶支持部
9 蓋体
11,33,43 ガイド部材
21,23,25 断熱材
Claims (3)
- 昇華用原料を収容する坩堝本体と、
前記昇華用原料と対向する位置に種結晶を固定する種結晶支持部を設けた蓋体と、
前記種結晶支持部の外周近傍から前記昇華用原料に向けて筒状に延びるガイド部材と、
前記種結晶支持部および前記ガイド部材の少なくともいずれかの外周側に配設されると共に、単結晶よりも熱伝導率が低く設定された断熱材とを備え、
前記昇華用原料および種結晶を加熱して前記単結晶を成長させるときに、前記昇華用原料から前記種結晶に向かう熱の流れを前記断熱材によって前記種結晶に集約させるように構成したことを特徴とする炭化珪素単結晶の製造装置。 - 昇華用原料を収容する坩堝本体と、
前記昇華用原料と対向する位置に種結晶を固定する種結晶支持部を設けた蓋体と、
前記種結晶支持部の外周近傍から前記昇華用原料に向けて筒状に延びるガイド部材とを備え、
前記ガイド部材を、単結晶よりも熱伝導率が低く設定された断熱材から形成することにより、前記昇華用原料および種結晶を加熱して前記単結晶を成長させるときに、前記昇華用原料から前記種結晶に向かう熱の流れを前記断熱材によって前記種結晶に集約させるように構成したことを特徴とする炭化珪素単結晶の製造装置。 - 前記ガイド部材は筒状に形成されており、
前記ガイド部材の内周面は、前記種結晶支持部の外周側から前記昇華用原料に斜めに向けて径が拡がるように形成され、前記ガイド部材の外周面は、前記坩堝本体の内壁面に当接していることを特徴とする請求項2に記載の炭化珪素単結晶の製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080025247.9A CN102459718B (zh) | 2009-06-10 | 2010-04-23 | 碳化硅单晶的制造装置 |
US13/377,328 US20120132139A1 (en) | 2009-06-10 | 2010-04-23 | Apparatus of manufacturing silicon carbide single crystal |
EP10786007.4A EP2441861B1 (en) | 2009-06-10 | 2010-04-23 | Device for producing silicon carbide single crystals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-139253 | 2009-06-10 | ||
JP2009139253A JP5403671B2 (ja) | 2009-06-10 | 2009-06-10 | 炭化珪素単結晶の製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143476A1 true WO2010143476A1 (ja) | 2010-12-16 |
Family
ID=43308736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057218 WO2010143476A1 (ja) | 2009-06-10 | 2010-04-23 | 炭化珪素単結晶の製造装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120132139A1 (ja) |
EP (1) | EP2441861B1 (ja) |
JP (1) | JP5403671B2 (ja) |
CN (1) | CN102459718B (ja) |
WO (1) | WO2010143476A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10435810B2 (en) * | 2013-02-05 | 2019-10-08 | Dow Silicones Corporation | Graphite crucible for sublimation growth of SiC crystal |
CN113122924A (zh) * | 2021-04-23 | 2021-07-16 | 福建北电新材料科技有限公司 | 晶体生长组件、晶体生长装置和方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130014273A (ko) * | 2011-07-29 | 2013-02-07 | 엘지이노텍 주식회사 | 잉곳 제조 장치 |
JP5699963B2 (ja) * | 2012-02-16 | 2015-04-15 | 三菱電機株式会社 | 単結晶の製造方法および製造装置 |
JP5582585B2 (ja) * | 2012-04-25 | 2014-09-03 | 國防部軍備局中山科學研究院 | るつぼ |
US20150132486A1 (en) * | 2013-11-12 | 2015-05-14 | Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defence | Vapor deposition apparatus and method using the same |
JP6354399B2 (ja) * | 2014-07-04 | 2018-07-11 | 住友電気工業株式会社 | 坩堝および単結晶の製造方法 |
US20160002820A1 (en) * | 2014-07-04 | 2016-01-07 | Sumitomo Electric Industries, Ltd. | Crucible and method for producing single crystal |
JP6394124B2 (ja) * | 2014-07-04 | 2018-09-26 | 住友電気工業株式会社 | 坩堝および単結晶の製造方法 |
CN106929919A (zh) * | 2015-12-29 | 2017-07-07 | 中国科学院上海硅酸盐研究所 | 一种碳化硅晶体生长用坩埚 |
JP6694807B2 (ja) | 2016-12-26 | 2020-05-20 | 昭和電工株式会社 | 炭化珪素単結晶の製造方法 |
JP7076279B2 (ja) | 2018-04-26 | 2022-05-27 | 昭和電工株式会社 | SiC単結晶成長装置およびSiC単結晶の成長方法 |
JP7242977B2 (ja) | 2018-11-14 | 2023-03-22 | 株式会社レゾナック | SiC単結晶製造装置及びSiC単結晶の製造方法 |
US11326274B2 (en) * | 2019-06-26 | 2022-05-10 | Showa Denko K.K. | Single crystal growth crucible having a first housing and a second housing, and single crystal production device |
CN111349971B (zh) * | 2020-03-30 | 2021-04-23 | 福建北电新材料科技有限公司 | 晶体原料盛载装置及晶体生长装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060297A (ja) | 2000-08-21 | 2002-02-26 | Agency Of Ind Science & Technol | 単結晶の成長装置および成長方法 |
JP2004224663A (ja) | 2003-01-27 | 2004-08-12 | National Institute Of Advanced Industrial & Technology | 単結晶成長装置 |
JP2005225710A (ja) * | 2004-02-12 | 2005-08-25 | Denso Corp | SiC単結晶の製造方法およびSiC単結晶の製造装置 |
JP2007308355A (ja) | 2006-05-22 | 2007-11-29 | Bridgestone Corp | 炭化ケイ素単結晶の製造装置及びその製造方法 |
WO2008089181A2 (en) * | 2007-01-16 | 2008-07-24 | Ii-Vi Incorporated | Guided diameter sic sublimation growth with multi-layer growth guide |
WO2009060561A1 (ja) * | 2007-11-08 | 2009-05-14 | Panasonic Corporation | 単結晶成長装置 |
JP2009139253A (ja) | 2007-12-07 | 2009-06-25 | Tokai Rika Co Ltd | ポジションセンサ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683507A (en) * | 1995-09-05 | 1997-11-04 | Northrop Grumman Corporation | Apparatus for growing large silicon carbide single crystals |
US5985024A (en) * | 1997-12-11 | 1999-11-16 | Northrop Grumman Corporation | Method and apparatus for growing high purity single crystal silicon carbide |
JP4174847B2 (ja) * | 1998-03-26 | 2008-11-05 | 株式会社デンソー | 単結晶の製造方法 |
US6428621B1 (en) * | 2000-02-15 | 2002-08-06 | The Fox Group, Inc. | Method for growing low defect density silicon carbide |
JP4903946B2 (ja) * | 2000-12-28 | 2012-03-28 | 株式会社ブリヂストン | 炭化ケイ素単結晶の製造方法及び製造装置 |
US7217323B2 (en) * | 2003-04-04 | 2007-05-15 | Denso Corporation | Equipment and method for manufacturing silicon carbide single crystal |
JP2009091173A (ja) * | 2007-10-04 | 2009-04-30 | Denso Corp | 炭化珪素単結晶の製造装置 |
-
2009
- 2009-06-10 JP JP2009139253A patent/JP5403671B2/ja active Active
-
2010
- 2010-04-23 CN CN201080025247.9A patent/CN102459718B/zh active Active
- 2010-04-23 US US13/377,328 patent/US20120132139A1/en not_active Abandoned
- 2010-04-23 WO PCT/JP2010/057218 patent/WO2010143476A1/ja active Application Filing
- 2010-04-23 EP EP10786007.4A patent/EP2441861B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060297A (ja) | 2000-08-21 | 2002-02-26 | Agency Of Ind Science & Technol | 単結晶の成長装置および成長方法 |
JP2004224663A (ja) | 2003-01-27 | 2004-08-12 | National Institute Of Advanced Industrial & Technology | 単結晶成長装置 |
JP2005225710A (ja) * | 2004-02-12 | 2005-08-25 | Denso Corp | SiC単結晶の製造方法およびSiC単結晶の製造装置 |
JP2007308355A (ja) | 2006-05-22 | 2007-11-29 | Bridgestone Corp | 炭化ケイ素単結晶の製造装置及びその製造方法 |
WO2008089181A2 (en) * | 2007-01-16 | 2008-07-24 | Ii-Vi Incorporated | Guided diameter sic sublimation growth with multi-layer growth guide |
WO2009060561A1 (ja) * | 2007-11-08 | 2009-05-14 | Panasonic Corporation | 単結晶成長装置 |
JP2009139253A (ja) | 2007-12-07 | 2009-06-25 | Tokai Rika Co Ltd | ポジションセンサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2441861A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10435810B2 (en) * | 2013-02-05 | 2019-10-08 | Dow Silicones Corporation | Graphite crucible for sublimation growth of SiC crystal |
CN113122924A (zh) * | 2021-04-23 | 2021-07-16 | 福建北电新材料科技有限公司 | 晶体生长组件、晶体生长装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2441861B1 (en) | 2020-03-11 |
US20120132139A1 (en) | 2012-05-31 |
JP5403671B2 (ja) | 2014-01-29 |
CN102459718B (zh) | 2014-10-08 |
EP2441861A1 (en) | 2012-04-18 |
EP2441861A4 (en) | 2013-04-03 |
CN102459718A (zh) | 2012-05-16 |
JP2010285309A (ja) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010143476A1 (ja) | 炭化珪素単結晶の製造装置 | |
JP5346821B2 (ja) | 炭化ケイ素単結晶の製造装置 | |
JP5271601B2 (ja) | 単結晶の製造装置及び製造方法 | |
JP4150642B2 (ja) | 単結晶の成長方法および成長装置 | |
JP5432573B2 (ja) | 炭化珪素単結晶の製造装置および炭化珪素単結晶の製造方法 | |
JP2008074662A (ja) | 炭化珪素単結晶製造装置 | |
JP2011184208A (ja) | 炭化ケイ素単結晶の製造装置及び炭化ケイ素単結晶の製造方法 | |
JP5734439B2 (ja) | 種結晶保持体および結晶成長装置 | |
JP5240100B2 (ja) | 炭化珪素単結晶の製造装置 | |
JP5603990B2 (ja) | 炭化珪素単結晶の製造装置 | |
JP5012655B2 (ja) | 単結晶成長装置 | |
JP2012036035A (ja) | 炭化ケイ素単結晶の製造方法 | |
JP5516167B2 (ja) | 炭化珪素単結晶の製造装置 | |
JP2011251884A (ja) | 炭化ケイ素単結晶の製造装置 | |
JP5397503B2 (ja) | 単結晶成長装置 | |
JP2011105570A (ja) | 炭化ケイ素単結晶の製造装置 | |
JP2016117624A (ja) | 坩堝 | |
JP2010180117A (ja) | 炭化珪素単結晶の製造装置 | |
JP6394124B2 (ja) | 坩堝および単結晶の製造方法 | |
JP4947383B2 (ja) | 単結晶の成長方法および成長装置 | |
JP2011219293A (ja) | 単結晶製造装置及び炭化珪素単結晶の製造方法 | |
JP6354399B2 (ja) | 坩堝および単結晶の製造方法 | |
JP2011051824A (ja) | 単結晶製造装置 | |
JP2000044396A (ja) | 炭化珪素単結晶の製造方法 | |
JP2010248038A (ja) | 炭化珪素単結晶の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080025247.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010786007 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13377328 Country of ref document: US |