WO2010143444A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2010143444A1
WO2010143444A1 PCT/JP2010/003885 JP2010003885W WO2010143444A1 WO 2010143444 A1 WO2010143444 A1 WO 2010143444A1 JP 2010003885 W JP2010003885 W JP 2010003885W WO 2010143444 A1 WO2010143444 A1 WO 2010143444A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
main
liquid chamber
vibration isolator
vibration
Prior art date
Application number
PCT/JP2010/003885
Other languages
English (en)
French (fr)
Inventor
松本義紀
柳田基宏
植木哲
大橋正明
長島康寿之
樋口寛
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009139066A external-priority patent/JP5393272B2/ja
Priority claimed from JP2009139068A external-priority patent/JP5393273B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201080031322.2A priority Critical patent/CN102803783B/zh
Priority to EP10785975.3A priority patent/EP2441976B1/en
Priority to US13/377,449 priority patent/US9188191B2/en
Publication of WO2010143444A1 publication Critical patent/WO2010143444A1/ja
Priority to US14/883,811 priority patent/US9435396B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/107Passage design between working chambers

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles, industrial machines, and the like and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
  • the present application claims priority based on Japanese Patent Application No. 2009-139066 filed in Japan on June 10, 2009 and Japanese Patent Application No. 2009-139068 filed on June 10, 2009 in Japan, The contents are incorporated here.
  • a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, the vibration generating unit, and A second mounting member connected to either one of the vibration receiving portions, an elastic body that elastically connects the first and second mounting members and closes an opening on one axial side of the first mounting member;
  • a diaphragm that closes the opening on the other side in the axial direction of the first mounting member, a liquid chamber formed inside the first mounting member, a main liquid chamber whose elastic body is part of the partition, and a diaphragm that are part of the partition
  • the structure provided with the partition member divided into the subliquid chamber used as a part is known.
  • the partition member is formed with a restriction passage that communicates the main liquid chamber and the sub liquid chamber, and the sealed liquid in the liquid chamber passes between the main liquid chamber and the sub liquid chamber through the restriction passage. it can.
  • an elastic body is disposed below the partition member, a main liquid chamber is formed below the partition member, and the partition member There is a suspension type vibration isolator in which a sub liquid chamber is formed above.
  • a large vibration (load) is input due to road surface unevenness or the like, and the internal volume of the main liquid chamber decreases rapidly, and then the internal volume of the main liquid chamber is rebounded by an elastic body.
  • a rapid pressure drop locally occurs in the vicinity of the opening on the main liquid chamber side of the restriction passage.
  • cavitation in which a large number of bubbles are generated in the liquid in the main liquid chamber or the restriction passage occurs.
  • the bubbles generated by the cavitation disappear from the liquid as the internal volume of the main liquid chamber decreases again and the liquid pressure in the main liquid chamber increases.
  • a shock wave is generated when the bubble disappears, and this shock wave propagates to a metal material such as the first mounting member, thereby generating abnormal noise.
  • a vibration isolator that suppresses the occurrence of cavitation
  • a hydraulic valve type in which a valve that opens and closes in response to hydraulic pressure fluctuations is provided in a partition member is used.
  • An anti-vibration device is provided.
  • the valve is a valve body that opens and closes a communication hole that communicates the main liquid chamber and the sub liquid chamber, and is opened when the liquid pressure in the main liquid chamber decreases.
  • the valve (valve element) is opened when the liquid pressure in the main liquid chamber decreases, and the main liquid chamber and the sub liquid chamber communicate with each other through the communication hole. Therefore, a decrease in the hydraulic pressure in the main liquid chamber can be suppressed. As a result, the occurrence of cavitation is thereby suppressed.
  • a two-liquid mixed vibration isolator in which a plurality of liquids are sealed in a liquid chamber, for example as shown in Patent Document 3 below, has been proposed.
  • an elastic body is disposed above the partition member, a diaphragm is disposed below the partition member, a main liquid chamber is formed above the partition member, and a lower portion of the partition member.
  • the sub-chamber is an upright vibration isolator, in which a first liquid mainly composed of ethylene glycol and a second liquid composed of silicone oil are sealed in the liquid chamber.
  • the spring constant changes depending on the characteristics of the liquid flowing through the restricted passage.
  • the vibration isolator that contains a plurality of liquids, when a small amplitude vibration such as an idle vibration is input, the first liquid flows in the restriction passage and the vibration is attenuated. Further, when a large amplitude vibration is input, the second liquid flows in the restriction passage, and the vibration damping performance is exhibited in a frequency range different from the case where the first liquid flows.
  • JP-A-8-61423 JP 2004-169750 A Japanese Patent No. 2860701
  • the above-described hydraulic valve type vibration isolator has a problem that the original vibration isolating performance of the vibration isolator is reduced because the valve may be opened and closed even when a small amplitude vibration is input.
  • the valve opens and closes, there is a problem that the valve abuts on the partition member and noise is generated, or the configuration of the partition member is complicated or enlarged by the valve.
  • the conventional upright two-liquid mixing type vibration isolator described above has a configuration in which the specific gravity of the second liquid is lighter than the specific gravity of the first liquid, and the second liquid is accumulated on the main liquid chamber side. .
  • the vapor pressure is not higher than that of the first liquid, the cavitation of the second liquid is not excited, so that the effect of reducing cavitation collapse cannot be obtained.
  • the main liquid chamber the specific gravity of the second liquid is the first specific gravity. If the liquid is heavier than the liquid, a sufficient amount of the second liquid is required to fill the secondary liquid chamber) and the orifice.
  • the second liquid tends to boil and vaporizes in a small amount even at room temperature. Therefore, if the amount of the second liquid is excessively increased, bubbles always remain in the liquid chamber, and sufficient resonance cannot be obtained. Therefore, in the technique described in Patent Document 3, an encapsulated liquid obtained by adding a small amount of the second liquid having a high vapor pressure to the first liquid is not assumed.
  • the second liquid rises and collects in the secondary liquid chamber. Even if a large vibration is input in this state, the second liquid may not reach the vicinity of the opening on the main liquid chamber side where the liquid pressure locally decreases. Therefore, cavitation does not occur preferentially in the second liquid in the vicinity of the opening, and cavitation may occur in the first liquid in the vicinity of the opening on the main liquid chamber side. As a result, there is a problem that the noise reduction effect is not stable.
  • the present invention takes the above-described conventional problems into consideration, and suppresses the occurrence of cavitation without reducing the anti-vibration performance of the anti-vibration device or complicating or increasing the size of the anti-vibration device.
  • An object of the present invention is to provide an anti-vibration device capable of performing Furthermore, the present invention provides a vibration isolator capable of immediately suppressing cavitation and reducing abnormal noise even when a large vibration is input in a state where the second liquid is separated from the first liquid. The purpose is to do.
  • the vibration isolator includes a cylindrical first mounting member connected to one of a vibration generating unit and a vibration receiving unit, a second mounting member connected to the other, An elastic body that elastically connects the first mounting member and the second mounting member; a liquid chamber inside the first mounting member; an upper main liquid chamber having the elastic body as a part of a wall surface; And a partition member that divides the auxiliary liquid chamber on the side, and a restriction passage that causes a liquid column resonance when the liquid in the liquid chamber flows while the main liquid chamber and the auxiliary liquid chamber communicate with each other. And a liquid-filled vibration isolator in which a liquid is sealed in the liquid chamber.
  • the sealing liquid contains a first liquid as a main liquid and a second liquid insoluble in the first liquid as an additive liquid.
  • the vapor pressure of the second liquid is higher than the vapor pressure of the main component of the first liquid at the same temperature, and the specific gravity of the second liquid is lighter than the specific gravity of the first liquid.
  • the vibration isolator according to the first embodiment of the present invention is a so-called upright vibration isolator.
  • the second liquid When vibration is not input to the vibration isolator and the first liquid and the second liquid that are insoluble in each other are separated in the liquid chamber, the second liquid having a specific gravity higher than that of the first liquid rises, The second liquid gathers in the main liquid chamber. If a large vibration is input in this state, for example, the first liquid or the second liquid passes through the restriction passage, the internal volume of the main liquid chamber fluctuates, or cavitation occurs in the main liquid chamber. Due to the above, innumerable granular second liquids are dispersed in the first liquid in an independent state.
  • the second liquid is collected in the main liquid chamber where cavitation occurs as described above, even when a large vibration is input in a state where the second liquid is separated from the first liquid.
  • the second liquid is immediately dispersed in the first liquid in the main liquid chamber, and the cavitation of the first liquid in the vicinity of the opening is suppressed as described above.
  • the bubbles generated in the second liquid can be prevented from growing greatly. Therefore, the bubble contraction speed during condensation is suppressed from increasing, and the shock wave caused by cavitation collapse in the second liquid is suppressed to a small level.
  • the elastic body is formed with a liquid reservoir recess that is disposed in the vicinity of the main liquid chamber side opening of the restriction passage and stores the second liquid.
  • the second liquid that has flowed into the upper main liquid chamber accumulates inside the liquid reservoir recess.
  • the liquid reservoir recess is formed in the vicinity of the main liquid chamber side opening, the second liquid flowing into the main liquid chamber from the main liquid chamber side opening tends to gather inside the liquid reservoir recess.
  • the cavitation described above is most likely to occur around the main liquid chamber side opening, but the second liquid separated from the first liquid gathers in the vicinity of the main liquid chamber side opening of the restriction passage.
  • the second liquid opens on the main liquid chamber side.
  • the second liquid is likely to flow into the restriction passage and to be dispersed in the peripheral portion of the main liquid chamber side opening. Therefore, the above-described cavitation suppression action by the second liquid is efficiently performed.
  • the term “near” in the present invention means a position that at least partially overlaps the main liquid chamber side opening in a plan view, or a position that is close enough to achieve the same function even if slightly spaced.
  • the liquid reservoir recess is disposed on the front side in the direction of the sealed liquid flow from the restriction passage to the main liquid chamber through the main liquid chamber side opening. Is preferred.
  • the second liquid that has flowed into the main liquid chamber from the opening on the main liquid chamber side flows into the inside of the liquid reservoir recess by that flow, and therefore the second liquid is likely to gather inside the liquid reservoir recess.
  • the second liquid separated from the first liquid is stored inside the liquid reservoir, when a large vibration is input and the liquid pressure in the main liquid chamber rises, the second liquid in the liquid reservoir is the main liquid. It tends to flow into the restricted passage from the liquid chamber side opening.
  • the surface tension of the second liquid is smaller than the surface tension of the first liquid.
  • a vibration isolator includes a cylindrical first mounting member connected to one of a vibration generating unit and a vibration receiving unit, a second mounting member connected to the other, An elastic body elastically connecting the first mounting member and the second mounting member; a liquid chamber inside the first mounting member; a lower main liquid chamber having the elastic body as a part of a wall surface; A partition member that divides into an upper sub liquid chamber, and a restriction passage that forms a liquid column resonance when the liquid in the liquid chamber flows while the main liquid chamber and the sub liquid chamber communicate with each other. And a liquid-filled vibration isolator in which a liquid is sealed in the liquid chamber.
  • the sealing liquid contains a first liquid as a main liquid and a second liquid insoluble in the first liquid as an additive liquid.
  • the vapor pressure of the second liquid is higher than the vapor pressure of the main component of the first liquid at the same temperature, and the specific gravity of the second liquid is heavier than the specific gravity of the first liquid.
  • the vibration isolator according to the second embodiment of the present invention is a so-called suspended vibration isolator.
  • the second liquid having a higher specific gravity than the first liquid is lowered, The second liquid gathers in the main liquid chamber.
  • the internal volume of the main liquid chamber fluctuates, or cavitation occurs in the main liquid chamber.
  • Innumerable granular second liquids are dispersed in the first liquid in a state independent from each other.
  • the second liquid is collected in the main liquid chamber where cavitation occurs as described above, even when a large vibration is input in a state where the second liquid is separated from the first liquid.
  • the second liquid is immediately dispersed in the first liquid in the main liquid chamber, and the cavitation of the first liquid in the vicinity of the opening is suppressed as described above.
  • the bubbles generated in the second liquid can be prevented from growing greatly. Therefore, the bubble contraction speed during condensation is suppressed from increasing, and the shock wave caused by cavitation collapse in the second liquid is suppressed to a small level.
  • the elastic body is formed with a liquid reservoir recess that is disposed in the vicinity of the main liquid chamber side opening of the restriction passage and stores the second liquid.
  • the second liquid opens on the main liquid chamber side.
  • the second liquid is likely to flow into the restriction passage and to be dispersed in the peripheral portion of the main liquid chamber side opening. Therefore, the above-described cavitation suppression action by the second liquid is efficiently performed.
  • the term “near” in the present invention means a position that at least partially overlaps the main liquid chamber side opening in a plan view, or a position that is close enough to achieve the same function even if slightly spaced.
  • the liquid reservoir recess is disposed on the front side in the sealed liquid flow direction from the restriction passage through the main liquid chamber side opening to the main liquid chamber. preferable.
  • the second liquid that has flowed into the main liquid chamber from the opening on the main liquid chamber side flows into the inside of the liquid reservoir recess, and thus the second liquid tends to gather inside the liquid reservoir recess.
  • the second liquid separated from the first liquid is stored inside the liquid reservoir, when the large vibration is input and the liquid pressure in the main liquid chamber increases, the second liquid in the liquid reservoir is the main liquid. It tends to flow into the restricted passage from the liquid chamber side opening.
  • the surface tension of the second liquid is smaller than the surface tension of the first liquid.
  • the vibration isolator according to the present invention it is possible to suppress the occurrence of cavitation without reducing the vibration isolating performance or complicating or increasing the size of the configuration. Furthermore, according to the vibration isolator according to the present invention, even when a large vibration is input in a state where the second liquid is separated from the first liquid, the cavitation is immediately suppressed to reduce abnormal noise. Can do.
  • symbol O shown in FIG. 1 has shown the center axis line of the outer cylinder 3 (equivalent to the 1st attachment member in this invention), and is only described as "the axis line O" below.
  • a direction along the axis O is referred to as an “axial direction”
  • a direction perpendicular to the axis O is referred to as a “radial direction”
  • a direction around the axis O is referred to as a “circumferential direction”.
  • the upper side in the axial direction in FIG. 1 is the rebound side, that is, the opposite side to the input direction of the static load.
  • the bound side is referred to as “lower side”
  • the rebound side is referred to as “upper side”.
  • the vibration isolator 1 is used when an engine, which is an example of a vibration generating unit, is mounted on a vehicle body, which is an example of a vibration receiving unit, for attenuating the vibration of the vibration generating unit.
  • the vibration isolator 1 includes a substantially cylindrical outer cylinder 3 connected to a vehicle body (not shown) via a vehicle body bracket (not shown), and an engine (not shown) via an engine bracket (not shown).
  • An elastic body that elastically connects the inner cylinder 4 (corresponding to the second mounting member in the present invention) connected to the outer cylinder 3 and the inner cylinder 4 and closes the upper open end of the outer cylinder 3.
  • the outer cylinder 3, the inner cylinder 4, and the elastic body 5 are integrally formed, and the vibration isolation device body 2 is configured by the outer cylinder 3, the inner cylinder 4, and the elastic body 5.
  • the main liquid chamber 7A is formed above the sub liquid chamber 7B with the partition member 8 interposed therebetween, the diaphragm 6 is disposed below the partition member 8, and the inner cylinder 4 Is an erecting type vibration isolator protruding upward from the elastic body 5, and is a compression type vibration isolating apparatus in which a compressive force acts on the elastic body 5 when an initial load is input.
  • a substantially cylindrical upper cylinder part 30 is formed on the upper side of the outer cylinder 3, and a substantially cylindrical lower cylinder part 31 having a smaller diameter than the upper cylinder part 30 is formed on the lower side.
  • the upper cylinder part 30 and the lower cylinder part 31 are substantially cylindrical metal members whose both ends are open. Between the upper cylinder part 30 and the lower cylinder part 31, the aperture
  • the inner cylinder 4 is a columnar member extending in the axial direction, and the lower portion of the inner cylinder 4 has a tapered shape that is gradually reduced in diameter as it goes downward.
  • a screw hole 40 extending in the axial direction from the center of the upper end surface of the inner cylinder 4 is formed in the upper part of the inner cylinder 4.
  • an anchor portion 41 protruding outward in the radial direction is formed in an intermediate portion in the axial direction of the inner cylinder 4.
  • the elastic body 5 is a rubber body that closes the upper opening of the outer cylinder 3, and has a substantially truncated cone shape in which the upper surface and the lower surface are gradually reduced in diameter toward the upper side.
  • the elastic body 5 is vulcanized and bonded to the inner peripheral surface of the upper cylindrical portion 31 and the throttle portion 32 of the outer cylinder 3, and the inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the lower portion of the inner cylinder 4.
  • a rubber shock absorber 50 that covers the anchor portion 41 of the inner cylinder 4 is integrally formed at the upper end of the elastic body 5.
  • the buffer body 50 and the anchor portion 41 form a rebound stopper that restricts rebound in which the inner cylinder 4 rises relative to the outer cylinder 3.
  • a rubber covering body 51 that covers the inner peripheral surface of the lower cylinder portion 30 of the outer cylinder 3 is integrally formed at the lower end portion of the elastic body 5.
  • the coating film 51 covers the entire circumference of the inner circumferential surface of the outer cylinder 3.
  • the elastic body 5, the buffer body 50, and the covering body 51 described above may be an elastic body made of a synthetic resin or the like in addition to rubber.
  • the elastic body 5 is provided with a liquid reservoir recess 50 capable of containing a liquid and communicating with the main liquid chamber 7A.
  • the liquid reservoir recess 50 is a recess for storing the second liquid L2 described later, and is disposed in the vicinity of the main liquid chamber side opening 86 described later, as shown in FIG.
  • the liquid reservoir recess 50 is disposed at an outer peripheral portion of the elastic body 5, that is, at a position shifted from the axis O in a plan view. Specifically, the liquid reservoir recess 50 is formed in the lowermost portion of the tapered lower surface of the elastic body 5. Further, the liquid reservoir recess 50 is disposed on the front side in the flow direction of the sealed liquid L flowing into the main liquid chamber 7A from the orifice 80 described later through the main liquid chamber side opening 86. That is, the liquid reservoir recess 50 is arranged adjacent to one side in the circumferential direction of the main liquid chamber side opening 86 formed at one end in the circumferential direction of the orifice 80 in plan view.
  • the liquid reservoir recess 50 and the main liquid chamber side opening 86 do not have to be arranged continuously, and may be arranged in a slightly separated state or in a polymerized state.
  • the liquid reservoir recess 50 is erected from the outer wall of the ceiling wall 51 formed along the vertical plane with respect to the axis O, and the lower end is connected to the tapered lower surface of the elastic body 5.
  • the diaphragm 6 is a film body that closes the lower opening of the outer cylinder 3 and can be deformed as the hydraulic pressure in the sub liquid chamber 7B varies.
  • the diaphragm 6 is formed in a circular shape when viewed from above, and has an inverted saddle shape that bulges downward. More specifically, the diaphragm 6 includes an annular diaphragm ring 60 and a film-like diaphragm rubber 61 stretched inside the diaphragm ring 60.
  • the outer peripheral edge of the diaphragm rubber 61 is vulcanized and bonded to the inner peripheral surface of the diaphragm ring 60 over the entire circumference.
  • the diaphragm ring 60 is fitted in the lower opening of the outer cylinder 3 and fixed by caulking, whereby the diaphragm 6 closes the outer cylinder 3 from the lower side.
  • the inside of the outer cylinder 3 positioned between the diaphragm 6 and the elastic body 5 is a liquid chamber 7 that is liquid-tightly closed by the diaphragm 6 and the elastic body 5 and filled with the sealing liquid L.
  • the liquid chamber 7 has the elastic body 5 in a part of partition by the partition member 8.
  • FIG. The liquid chamber 7 has a main liquid chamber 7A whose inner volume changes due to deformation of the elastic body 5 and a diaphragm 6 in a part of the partition wall, and a sub liquid chamber 7B whose inner volume changes due to deformation of the diaphragm 6. It is divided into and.
  • the partition member 8 is a member that is fitted inside the lower cylinder portion 31 of the outer cylinder 3 and divides the liquid chamber 7 vertically.
  • the partition member 8 includes an annular partition member main body 81 and a membrane 82 stretched inside the annular partition member main body 81.
  • the partition member main body 81 is a resin member, and a circumferential groove 81 a serving as an orifice 80 is formed on the outer peripheral surface of the partition member main body 81. Further, a flange portion 81 b protruding radially inward is formed on the inner peripheral surface of the partition member main body 81 over the entire circumference.
  • the circumferential groove 81 a is closed from the outside in the radial direction of the partition member 8 by a coating film 51 coated on the inner circumferential surface of the outer cylinder 3. With this configuration, an orifice 80 that connects the main liquid chamber 7A and the sub liquid chamber 7B is formed.
  • a main liquid chamber side opening 86 for communicating the orifice 80 and the main liquid chamber 7A is formed on the upper surface of the partition member main body 81 (upper wall portion of the circumferential groove 81a).
  • a sub liquid chamber side opening (not shown) that connects the orifice 80 and the sub liquid chamber 7B is formed on the lower surface of the partition member main body 81 (the lower wall portion of the circumferential groove 81a).
  • the membrane 82 is a disk-shaped rubber member, and the outer edge portion thereof is vulcanized and bonded to the flange portion 81 b of the annular partition member main body 81.
  • the inner side of the annular partition member body 81b is closed by the membrane 82.
  • the liquid chamber 7 surrounded by the outer cylinder 3, the elastic body 5 and the diaphragm 6 contains the first liquid L1 as the main liquid and the second liquid L2 as the additive liquid.
  • Filling liquid L is filled.
  • the first liquid L1 and the second liquid L2 are incompatible, that is, are insoluble liquids. More specifically, the second liquid L2 that is the additive liquid is smaller than the first liquid L1 that is the main liquid, and the weight ratio of the second liquid L2 contained in the sealing liquid L is the weight of the first liquid L1. Less than the ratio.
  • the second liquid L2 has a higher vapor pressure than the main component of the first liquid L1 at the same temperature (at least in a temperature range of ⁇ 30 ° C. or more and 100 ° C. or less).
  • the vapor pressure of the second liquid L2 is It is twice or more the vapor pressure of the main component of one liquid L1.
  • the specific gravity of the second liquid L2 is lighter than the specific gravity of the first liquid L1, and the second liquid L2 rises (floats) in the first liquid L1. Further, the second liquid L2 has a smaller surface tension than the first liquid L1.
  • the first liquid L1 examples include those containing ethylene glycol and propylene glycol, or ethylene glycol alone or propylene glycol alone.
  • the second liquid L2 examples include silicone oil.
  • the sealing liquid L contains the first liquid L1 in the range of 60 wt% to 99.9 wt% and the second liquid L2 in the range of 0.1 wt% to 40 wt%.
  • the sealing liquid L contains the first liquid L1 in the range of 80 wt% to 99 wt% and the second liquid L2 in the range of 0.5 wt% to 20 wt%.
  • the second liquid L2 is contained in an amount of 0.5 g to 20 g.
  • the first liquid L1 and the second liquid L2 are orifices 80, the internal volume of the main liquid chamber 7A fluctuates, and cavitation occurs in the main liquid chamber 7A.
  • countless granular second liquids L2 are dispersed in the first liquid L1 in an independent state.
  • the internal volume of the main liquid chamber 7A suddenly increases and the liquid pressure in the main liquid chamber 7A decreases, the first flow rate in the vicinity of the main liquid chamber side opening 86 of the orifice 80 where the flow velocity increases particularly in the main liquid chamber 7A.
  • Cavitation occurs preferentially in the second liquid L2 having a higher vapor pressure than the main component of the liquid L1. Therefore, a local decrease in hydraulic pressure in the vicinity of the main liquid chamber side opening 86 is suppressed, and a phenomenon in which cavitation occurs in the first liquid L1 in the vicinity of the main liquid chamber side opening 86 is suppressed. Further, even if cavitation occurs in the first liquid L1, bubbles generated thereby are suppressed to be small. Therefore, the shock wave caused by the cavitation collapse in the first liquid L1 is suppressed to a small level.
  • the second liquid L2 is in the form of particles having a small particle diameter and is dispersed in the first liquid L1. Therefore, the phenomenon that the bubbles generated in the second liquid L2 grow greatly is suppressed. Therefore, the phenomenon that the contraction speed of the bubbles at the time of condensation is increased is suppressed, and the shock wave caused by the cavitation collapse in the second liquid L2 is suppressed to be small. In addition, countless shock waves generated from the individual second liquids L2 interfere with each other and cancel their energy. Therefore, the shock wave resulting from cavitation collapse in the second liquid L2 is suppressed to a small level.
  • the second liquid L2 dispersed in the first liquid L1 rises in the first liquid L1 because its specific gravity is lighter than that of the first liquid L1.
  • the second liquid L2 flows through the orifice 80 and flows into the main liquid chamber 7A from the main liquid chamber side opening 86.
  • the second liquid L2 finally collects and collects inside the liquid reservoir recess 50 disposed in the vicinity of the main liquid chamber side opening 86.
  • the liquid reservoir recess 50 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 80 through the main liquid chamber side opening 86 into the main liquid chamber 7A.
  • the second liquid L2 that has flowed into the main liquid chamber 7A from the main liquid chamber side opening 86 flows into the liquid reservoir recess 50 at a flow rate that has flowed into the main liquid chamber 7A.
  • the two liquids L2 are easy to gather.
  • the second liquid L2 is immediately dispersed in the first liquid L1 in the main liquid chamber 7A.
  • the second liquid L2 has a surface tension smaller than that of the first liquid L1
  • the second liquid L2 is easily dispersed in a wide range in the first liquid L1 and becomes a fine particle having a small particle diameter in the first liquid L1.
  • Innumerable granular second liquids L2 are dispersed in the first liquid L1 independently of each other.
  • the liquid reservoir recess 50 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 80 through the main liquid chamber side opening 86 into the main liquid chamber 7A.
  • the second liquid L2 easily flows into the orifice 80 from the main liquid chamber side opening 86.
  • the second liquid L2 is dispersed in the first liquid L1 in the vicinity of the main liquid chamber side opening 86.
  • the vibration isolator 1 of the present embodiment when a large vibration is input with the second liquid L2 dispersed in the first liquid L1, the cavitation of the first liquid L1 in the vicinity of the main liquid chamber side opening 86 is achieved. Is suppressed, and a shock wave caused by cavitation collapse generated in the second liquid L2 is suppressed to be small. Therefore, the shock wave of cavitation collapse that occurs in the entire vibration isolator 1 can be reduced, and abnormal noise can be reduced.
  • the vibration isolator 1 of the present embodiment since only a small amount of the second liquid L2 is added, the vibration isolating performance of the vibration isolator 1 is hardly affected. Therefore, abnormal noise can be reduced without reducing the vibration isolation performance of the vibration isolation device 1. Furthermore, according to the vibration isolator 1 of the present embodiment, since it is not necessary to change the structure of the partition member 8 or the like, the noise is reduced without complicating or increasing the size of the vibration isolator 1. Can do.
  • the specific gravity of the second liquid L2 is lighter than the specific gravity of the first liquid L1. Therefore, when the second liquid L2 is separated in the first liquid L1 after a lapse of time after the engine is stopped, the second liquid L2 is accumulated in the upper main liquid chamber 7A. Therefore, even when the first liquid L1 and the second liquid L2 are separated, the second liquid L2 is immediately dispersed in the first liquid L1 in the main liquid chamber 7A when a large vibration is input, The above-described noise reduction effect is exhibited. Therefore, not only during traveling but also abnormal noise due to large vibrations at the time of starting can be reduced, and the effect of reducing abnormal noise is stably exhibited.
  • the second liquid L2 separated from the first liquid L1 is accumulated in the liquid reservoir recess 50 disposed in the vicinity of the main liquid chamber side opening 86. Therefore, when a large vibration is input in a state where the second liquid L2 is separated in the first liquid L1, the second liquid L2 collected in the vicinity of the main liquid chamber side opening 86 in the main liquid chamber 7A is the main liquid. Dispersed in the first liquid L1 in the chamber 7A. Further, in the main liquid chamber 7A, the second liquid L2 flows into the orifice 80 from the main liquid chamber side opening 86, and the second liquid is contained in the first liquid L1 in the vicinity of the main liquid chamber side opening 86 where cavitation is likely to occur. L2 is distributed. Therefore, the above-described noise reduction effect is effectively exhibited.
  • the liquid reservoir recess 50 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 80 through the main liquid chamber side opening 86 into the main liquid chamber 7A. Therefore, the second liquid L2 tends to gather inside the liquid reservoir recess 50. As a result, the above-described noise reduction effect is more stably exhibited. Further, since the liquid reservoir recess 50 is disposed on the front side in the flow direction of the sealed liquid L flowing into the main liquid chamber 7A from the orifice 80 through the main liquid chamber side opening 86, the liquid reservoir recess 50 The second liquid L2 easily flows into the orifice 80 from the main liquid chamber side opening 86. As a result, the second liquid L2 can be dispersed around the main liquid chamber side opening 86 where cavitation is most likely to occur, and cavitation can be efficiently suppressed.
  • An anti-vibration device 101 is used when an engine, which is an example of a vibration generating unit, is mounted on a vehicle body, which is an example of a vibration receiving unit, for attenuating the vibration of the vibration generating unit.
  • the vibration isolator 101 includes a substantially cylindrical outer cylinder 103 connected to a vehicle body (not shown) via a vehicle body bracket (not shown), and an engine (not shown) via an engine bracket (not shown).
  • the inner cylinder 104 (corresponding to the second mounting member in the present embodiment) coupled to the outer cylinder 103 and the inner cylinder 104 are elastically coupled and the lower open end of the outer cylinder 103 is closed.
  • the outer cylinder 103, the inner cylinder 104, and the elastic body 105 are integrally formed, and the outer cylinder 103, the inner cylinder 104, and the elastic body 105 constitute the vibration isolator main body 102.
  • the main liquid chamber 107A is formed below the sub liquid chamber 107B with the partition member 108 interposed therebetween, the diaphragm 106 is disposed above the partition member 108, and the inner cylinder 104 is formed.
  • the suspension type vibration isolator protrudes downward from the elastic body 105 and is a tension type vibration isolation apparatus in which a tensile force acts on the elastic body 105 when an initial load is input.
  • the outer cylinder 103 is a substantially cylindrical metal member whose both ends are open.
  • the lower cylinder 130 constituting the lower part of the outer cylinder 103 and the upper part of the outer cylinder 103 constitute the lower cylinder.
  • a caulking portion 133 that is bent radially inward and is caulked and fixed to a diaphragm 106 (diaphragm ring 160 described later) is formed at the upper end portion of the outer cylinder 103 (upper cylinder portion 131) over the entire circumference.
  • a cover 134 that covers the inner peripheral surface of the outer cylinder 103 over the entire circumference is vulcanized and bonded to the inner peripheral surface of the outer cylinder 103.
  • the covering body 134 is a film made of an elastic material such as rubber and is formed integrally with the elastic body 105.
  • the inner cylinder 104 includes a columnar mounting portion 140 that extends in the axial direction, and an insert portion 141 that is fixed to the upper end portion of the mounting portion 140 by welding or the like and embedded in the elastic body 105.
  • the attachment portion 140 is a metal member that is disposed on the inner side of the lower end portion of the outer cylinder 103 and that is disposed on the axis O. And the lower end of the attaching part 140 protrudes below the lower end of the outer cylinder 103.
  • the mounting portion 140 is formed with a female screw hole 140a for screwing onto an unillustrated engine side bracket.
  • the female screw hole 140a is disposed on the axis O and extends from the upper end surface to the lower end surface of the mounting portion 140.
  • the upper part of the attachment part 140 is embedded inside the elastic body 105.
  • the upper end of the female screw hole 140a is closed by the insert portion 141.
  • the lower portion of the attachment portion 140 protrudes downward from the lower surface of the elastic body 105.
  • the insert portion 141 is a cylindrical metal fitting that is formed in a tapered shape that is gradually expanded in diameter as it goes upward.
  • the convex part 141a inserted in the inner side of the said female screw hole 140a is formed in the bottom part of the insert part 141. As shown in FIG.
  • the elastic body 105 is a rubber body that closes the lower opening of the outer cylinder 103, and has a substantially truncated cone shape in which the upper surface (outer peripheral surface) is gradually reduced in diameter as it goes upward.
  • the outer peripheral portion of the lower end portion of the elastic body 105 is vulcanized and bonded to the inner peripheral surface of the lower end portion of the outer cylinder 103 (lower cylinder portion 130). Further, the elastic body 105 is vulcanized and bonded to the inner and outer peripheral surfaces and the inner bottom surface of the insert portion 141 embedded inside thereof, and is also vulcanized and bonded to the outer peripheral surface of the upper portion of the mounting portion 140.
  • an elastic body made of synthetic resin or the like may be used in addition to rubber.
  • the elastic body 105 is provided with a liquid reservoir recess 150 capable of containing a liquid and communicating with the main liquid chamber 107A.
  • the liquid reservoir recess 150 is a recess for storing a second liquid L2 described later, and is disposed in the vicinity of a main liquid chamber side opening 186 described later as shown in FIG.
  • the liquid reservoir recess 150 is arranged at an outer peripheral portion of the elastic body 105, that is, at a position shifted from the axis O in a plan view. Specifically, it is formed on the lowermost portion of the tapered upper surface of the elastic body 105. Further, the liquid reservoir recess 150 is disposed on the front side in the flow direction of the sealed liquid L flowing into the main liquid chamber 107A from the orifice 180 described later through the main liquid chamber side opening 186. That is, the liquid reservoir recess 150 is disposed adjacent to one side in the circumferential direction of the main liquid chamber side opening 186 formed at one end in the circumferential direction of the orifice 180 in plan view.
  • the liquid reservoir recess 150 and the main liquid chamber side opening 186 may not be arranged continuously, and may be arranged in a slightly separated state or in a polymerized state.
  • the liquid reservoir recess 150 is provided with a bottom wall portion 151 formed along a plane perpendicular to the axis O, and an upper end thereof is connected to the tapered upper surface of the elastic body 105 from the outer edge of the bottom wall portion 151.
  • a peripheral wall portion 152 is provided.
  • the partition member 108 is a cylindrical partition member main body 181 having a top, a movable plate 182 disposed above the partition member main body 181, and placed on the upper surface of the partition member main body 181, and houses the movable plate 182 inside.
  • the partition member main body 181 is fitted inside the upper tube portion 131 of the outer tube 103 and is locked to the step portion 132 of the outer tube 103.
  • the partition member main body 181 includes an annular peripheral wall portion 184 and a top wall portion 185 disposed inside the upper end portion of the peripheral wall portion 184.
  • the peripheral wall portion 184 is formed with a peripheral groove 184a extending along the circumferential direction on the outer peripheral surface, and the longitudinal section has a U-shape.
  • the circumferential groove 184a communicates the main liquid chamber 107A and the sub liquid chamber 107B.
  • the circumferential groove 184a is a groove portion that forms an orifice 180 (corresponding to a restriction passage in the present embodiment) in which liquid column resonance occurs when the liquid in the liquid chamber 107 flows. That is, the orifice 180 is formed by closing the circumferential groove 184a from the outside in the radial direction by the inner circumferential surface (the coating body 134) of the outer cylinder 103.
  • a main liquid chamber side opening 186 that communicates the orifice 180 and the main liquid chamber 107A is formed on the lower surface of the peripheral wall portion 184 (the lower wall portion of the peripheral groove 184a).
  • a sub liquid chamber side opening (not shown) that connects the orifice 180 and the sub liquid chamber 107B is formed.
  • the main liquid chamber side opening 186 is formed at one end of the orifice 180 in the circumferential direction.
  • An auxiliary liquid chamber side opening (not shown) is formed at the other end of the orifice 180 in the circumferential direction.
  • the top wall portion 185 is a wall portion formed perpendicular to the axis O.
  • the top wall 185 is formed with a plurality of through holes 185 a that are opened inside the storage member 183.
  • the storage member 183 includes a ceiling wall portion 187 disposed to face the top wall portion 185 of the partition member main body 181, a peripheral wall portion 188 suspended from the outer edge of the ceiling wall portion 187, and a radial direction from the lower end of the peripheral wall portion 188. And a flange portion 189 protruding toward the outside.
  • the top wall portion 187 is a wall portion formed perpendicular to the axis O.
  • the top wall 187 is formed with a plurality of through holes 187 a that are opened inside the storage member 183.
  • the flange portion 189 is placed on the upper surface of the partition member main body 181 (the peripheral wall portion 184), and is sandwiched and fixed between the partition member main body 181 and a diaphragm ring 160 described later.
  • the movable plate 182 is a plate-like member made of an elastic material such as rubber, and is housed inside the peripheral wall portion 188 of the housing member 183.
  • the movable plate 182 can be displaced in the axial direction between the top wall 187 of the storage member 183 and the top wall 185 of the partition member main body 181.
  • the movable plate 182 appropriately closes the through holes 187a and 185a formed in the top wall 187 of the storage member 183 and the top wall 187 of the partition member main body 181.
  • the diaphragm 106 is a film body that can be deformed as the hydraulic pressure in the sub liquid chamber 107B varies, and is formed in a dome shape that bulges upward. More specifically, the diaphragm 106 includes an annular diaphragm ring 160 and a film-like diaphragm rubber 161 stretched inside the diaphragm ring 160. The outer edge of the diaphragm rubber 161 is vulcanized and bonded to the inner peripheral surface of the diaphragm ring 160 over the entire circumference. Diaphragm 106 is caulked and fixed by bending diaphragm ring 160 radially inward over the entire circumference together with the upper end of outer cylinder 103.
  • the liquid chamber 107 surrounded by the outer cylinder 103, the elastic body 105, and the diaphragm 106 contains the first liquid L1 as the main liquid and the sealed liquid L containing the second liquid L2 as the additive liquid. Filled.
  • the first liquid L1 and the second liquid L2 are incompatible, that is, are insoluble liquids. More specifically, the second liquid L2 that is the additive liquid is smaller than the first liquid L1 that is the main liquid, and the weight ratio of the second liquid L2 contained in the sealing liquid L is the weight of the first liquid L1. Less than the ratio.
  • the second liquid L2 has a higher vapor pressure than the main component of the first liquid L1 at the same temperature (at least in a temperature range of ⁇ 30 ° C. or more and 100 ° C.
  • the vapor pressure of the second liquid L2 is It is twice or more the vapor pressure of the main component of one liquid L1.
  • the specific gravity of the second liquid L2 is heavier than that of the first liquid L1, and the second liquid L2 descends (sinks) in the first liquid L1. Further, the second liquid L2 has a smaller surface tension than the first liquid L1.
  • the first liquid L1 examples include those containing ethylene glycol and propylene glycol, or ethylene glycol alone or propylene glycol alone.
  • the second liquid L2 examples include fluorine oil.
  • the sealing liquid L contains the first liquid L1 in the range of 60 wt% to 99.9 wt% and the second liquid L2 in the range of 0.1 wt% to 40 wt%.
  • the sealing liquid L contains the first liquid L1 in the range of 80 wt% to 99 wt% and the second liquid L2 in the range of 0.5 wt% to 20 wt%.
  • the second liquid L2 is contained in an amount of 0.5 g to 20 g.
  • the first liquid L1 and the second liquid L2 are orificed. 180 passes through, the internal volume of the main liquid chamber 107A varies, and cavitation occurs in the main liquid chamber 107A. As a result, countless granular second liquids L2 are dispersed in the first liquid L1 in an independent state.
  • the first liquid flow rate increases in the main liquid chamber 107A, particularly near the main liquid chamber side opening 186 of the orifice 180 where the flow velocity increases.
  • Cavitation occurs preferentially in the second liquid L2 having a higher vapor pressure than the main component of the liquid L1. Therefore, a local decrease in hydraulic pressure in the vicinity of the main liquid chamber side opening 186 is suppressed, and a phenomenon in which cavitation occurs in the first liquid L1 in the vicinity of the main liquid chamber side opening 186 is suppressed. Even if cavitation occurs, bubbles generated thereby are kept small. Therefore, the shock wave resulting from the cavitation collapse in the first liquid L1 is suppressed to a small level.
  • the second liquid L2 is in the form of particles having a small particle diameter and is dispersed in the first liquid L1. Therefore, the phenomenon that the bubbles generated in the second liquid L2 grow greatly is suppressed. Therefore, the phenomenon that the contraction speed of the bubbles at the time of condensation is increased is suppressed, and the shock wave caused by the cavitation collapse in the second liquid L2 is suppressed to be small. In addition, countless shock waves generated from the individual second liquids L2 interfere with each other and cancel their energy. Therefore, the shock wave resulting from cavitation collapse in the second liquid L2 is suppressed to a small level.
  • the second liquid L2 dispersed in the first liquid L1 is lower in the first liquid L1 because the specific gravity is heavier than that of the first liquid L1. Then, the second liquid L2 flows, flows through the orifice 180, and flows into the main liquid chamber 107A from the main liquid chamber side opening 186. The second liquid L2 finally collects and collects inside the liquid reservoir recess 150 disposed in the vicinity of the main liquid chamber side opening 186.
  • the liquid reservoir recess 150 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 180 through the main liquid chamber side opening 186 into the main liquid chamber 107A.
  • the second liquid L2 is likely to gather.
  • the second liquid L2 is immediately dispersed in the first liquid L1 in the main liquid chamber 107A.
  • the second liquid L2 has a surface tension smaller than that of the first liquid L1
  • the second liquid L2 is easily dispersed in a wide range in the first liquid L1 and becomes a fine particle having a small particle diameter in the first liquid L1.
  • Innumerable granular second liquids L2 are dispersed in the first liquid L1 independently of each other.
  • the liquid reservoir recess 150 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 180 through the main liquid chamber side opening 186 into the main liquid chamber 107A.
  • the second liquid L2 easily flows into the orifice 180 from the main liquid chamber side opening 186.
  • the second liquid L2 is dispersed in the first liquid L1 in the vicinity of the main liquid chamber side opening 186.
  • the vibration isolator 101 of the present embodiment when a large vibration is input with the second liquid L2 dispersed in the first liquid L1, the cavitation of the first liquid L1 in the vicinity of the main liquid chamber side opening 186 is achieved. Is suppressed, and a shock wave caused by cavitation collapse generated in the second liquid L2 is suppressed to be small. Therefore, the shock wave of cavitation collapse that occurs in the entire vibration isolator 101 can be reduced, and abnormal noise can be reduced.
  • the vibration isolator 101 of the present embodiment since only a small amount of the second liquid L2 is added, the vibration isolator performance of the vibration isolator 101 is hardly affected. Therefore, abnormal noise can be reduced without reducing the vibration isolation performance of the vibration isolation device 101. Furthermore, according to the vibration isolator 101 of this embodiment, since it is not necessary to change the structure of the partition member 108 and the like, the noise is reduced without complicating and increasing the size of the vibration isolator 101. Can do.
  • the specific gravity of the second liquid L2 is heavier than the specific gravity of the first liquid L1. Therefore, when the second liquid L2 is separated from the first liquid L1 after a lapse of time after the engine is stopped, the second liquid L2 is accumulated in the lower main liquid chamber 107A. Therefore, even when the first liquid L1 and the second liquid L2 are separated, the second liquid L2 is immediately dispersed in the first liquid L1 in the main liquid chamber 107A when a large vibration is input, The above-described noise reduction effect is exhibited. Therefore, not only during traveling but also abnormal noise due to large vibrations at the time of starting can be reduced, and the effect of reducing abnormal noise is stably exhibited.
  • the second liquid L2 separated from the first liquid L1 is accumulated in the liquid reservoir recess 150 disposed in the vicinity of the main liquid chamber side opening 186. Therefore, when a large vibration is input in a state where the second liquid L2 is separated in the first liquid L1, the second liquid L2 collected in the vicinity of the main liquid chamber side opening 186 in the main liquid chamber 107A is the main liquid. Dispersed in the first liquid L1 in the chamber 107A.
  • the second liquid L2 flows into the orifice 180 from the main liquid chamber side opening 186, and the second liquid L2 is contained in the first liquid L1 in the vicinity of the main liquid chamber side opening 186 where cavitation is likely to occur. Is distributed. Therefore, the above-described noise reduction effect is effectively exhibited.
  • the liquid reservoir recess 150 is disposed on the front side in the flow direction of the sealed liquid L flowing from the orifice 180 through the main liquid chamber side opening 186 into the main liquid chamber 107A. Therefore, the second liquid L2 tends to gather inside the liquid reservoir recess 150. As a result, the above-described noise reduction effect is more stably exhibited. Further, since the liquid reservoir recess 150 is disposed on the front side in the flow direction of the sealed liquid L flowing into the main liquid chamber 107A from the orifice 180 through the main liquid chamber side opening 186, the liquid reservoir recess 150 The second liquid L2 easily flows into the orifice 180 from the main liquid chamber side opening 186. As a result, the second liquid L2 can be dispersed around the main liquid chamber side opening 186 where cavitation is most likely to occur, and cavitation can be efficiently suppressed.
  • the second liquid L2 has a smaller surface tension than the first liquid L1, and is easily dispersed in a wide range in the first liquid L2. Therefore, cavitation of the first liquid L1 is effectively suppressed, and abnormal noise can be reduced. Moreover, the second liquid L2 having a smaller surface tension than the first liquid L1 is dispersed independently of each other with a small particle diameter in the first liquid L1. Therefore, the shock wave generated due to the cavitation collapse of the second liquid L2 is reliably suppressed to be small, and abnormal noise is effectively reduced.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist thereof.
  • the first liquid L1 and the second liquid L2 are not limited to those described above, and can be appropriately changed as long as they are incompatible liquids. It is also possible to use the second liquid L2 having the same or higher surface tension than the first liquid L1.
  • the liquid contained in the encapsulating liquid L is not limited to two types of liquids (first liquid L1 and second liquid L2), but may be encapsulated liquid L containing three or more types of liquids.
  • the first liquid may be composed of a plurality of compatible components (liquids).
  • the vapor pressure of the first liquid may be higher than the vapor pressure of the second liquid.
  • the first liquid is compatible ethylene glycol (vapor pressure at normal temperature 13.4 Pa, content 96%, main component) and water (vapor pressure 3173 Pa at normal temperature
  • the second liquid is made of silicon oil 1cst
  • the vapor pressure of the first liquid (mixed solution) becomes 400 Pa and the vapor pressure of the second liquid (167 Pa). Higher than.
  • the vapor pressure of the second liquid is higher than the vapor pressure (13.4 Pa) of the main component of the first liquid, an effect of suppressing the occurrence of cavitation can be obtained.
  • the first liquid comprises compatible ethylene glycol (vapor pressure at normal temperature 13.4 Pa, content 96%, main component) and water (vapor pressure at normal temperature 3173 Pa
  • the second liquid is made of fluorine oil
  • the vapor pressure of the first liquid (mixed solution) is 400 Pa, which is higher than the vapor pressure of the second liquid.
  • the vapor pressure of the second liquid is higher than the vapor pressure (13.4 Pa) of the main component of the first liquid, an effect of suppressing the occurrence of cavitation can be obtained.
  • a liquid having a vapor pressure higher than water and a light specific gravity is used as the second liquid, it is possible to use water alone as the first liquid.
  • a liquid having a higher vapor pressure and higher specific gravity than water is used as the second liquid, it is possible to use water alone as the first liquid.
  • the vibration isolator according to the present invention is not limited to the engine mount of the vehicle, but can be applied to the vibration isolator other than the engine mount.
  • the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.
  • the diaphragms 6 and 106 are caulked and fixed to the end portions of the outer cylinders 3 and 103.
  • the diaphragms 6 and 106 are
  • the diaphragm may be fixed to the outer cylinder (first mounting member) with a stopper or the like.
  • the orifices 80 and 180 are formed in the partition members 8 and 108.
  • the orifices 80 and 180 may be formed in addition to the partition members 8 and 108.
  • an orifice (restriction passage) may be formed by grooving a part of the outer cylinder (first mounting member), or an orifice (restriction passage) by grooving a part of a caulking portion such as a diaphragm ring. ) May be formed.
  • the liquid reservoir recesses 50 and 150 are provided on the front side in the flow direction of the sealed liquid L from the orifices 80 and 180 through the main liquid chamber side openings 86 and 186 to the main liquid chambers 7A and 107A.
  • the liquid reservoir recesses 50 and 150 can be disposed at a position different from the above-described position.
  • the liquid reservoir recesses 50 and 150 may be disposed vertically below the main liquid chamber side openings 86 and 186.

Abstract

 振動発生部及び振動受部のうちの何れか一方に連結される筒状の第一取付部材(3)、および他方に連結される第二取付部材(4)と、第一取付部材(3)と第二取付部材(4)とを弾性的に連結する弾性体(5)と、第一取付部材(3)の内側の液室(7)を、弾性体を壁面の一部とする上側の主液室(7A)と下側の副液室(7B)とに区画する仕切り部材(8)と、を備えるとともに、主液室(7A)と副液室(7B)とを連通する制限通路(80)が形成された液体封入型の防振装置である。さらに、封入液(L)には、主液として第一液体(L1)が含有されていると共に、添加液として第一液体(L1)に対して不溶な第二液体(L2)が含有されており、第二液体(L2)の蒸気圧は、同一温度において第一液体(L1)の蒸気圧の主たる成分よりも高く、且つ、第二液体(L2)の比重は、第一液体(L1)の比重よりも軽い。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。本願は、2009年6月10日に、日本に出願された特願2009-139066号及び2009年6月10日に、日本に出願された特願2009-139068号に基づき優先権を主張し、その内容をここに援用する。
 上記した防振装置として、従来、例えば下記特許文献1に示されているように、振動発生部および振動受部のいずれか一方に連結される筒状の第一取付部材と、振動発生部および振動受部のいずれか他方に連結される第二取付部材と、第一、第二取付部材を弾性的に連結するとともに第一取付部材の軸方向一方側の開口部を閉塞する弾性体と、第一取付部材の軸方向他方側の開口部を閉塞するダイヤフラムと、第一取付部材の内部に形成された液室を、弾性体を隔壁の一部とする主液室とダイヤフラムを隔壁の一部とする副液室とに区画する仕切り部材と、を備える構成が知られている。上記した仕切り部材には、主液室と副液室とを連通する制限通路が形成されており、この制限通路を通って液室内の封入液が主液室と副液室との間で往来できる。
 上記した液体封入型の防振装置としては、例えば下記特許文献1に示されている、弾性体が仕切り部材の上方に配設され、仕切り部材の上方に主液室が形成されていると共に仕切り部材の下方に副液室が形成された正立式の防振装置がある。
 また、上記以外の防振装置としては、例えば下記特許文献2に示されている、弾性体が仕切り部材の下方に配設され、仕切り部材の下方に主液室が形成されていると共に仕切り部材の上方に副液室が形成された吊り下げ式の防振装置がある。
 ところで、液体封入型の防振装置では、例えば路面の凹凸等により大きな振動(荷重)が入力されて主液室の内容積が急激に減少した後、弾性体のリバウンドによって主液室の内容積が急激に増大すると、制限通路の主液室側の開口部付近で急激な圧力低下が局所的に生じる。その結果、主液室内や制限通路内の液中に多数の気泡が生成されるキャビテーションが発生する問題がある。このキャビテーションによって生成された気泡は、主液室の内容積が再び減少して主液室内の液圧が上昇するのに伴って液中から消滅する。しかし、気泡が消滅する時に衝撃波が発生し、この衝撃波が第一取付部材などの金属材料に伝播することで異音が生じる。
 そこで、従来、キャビテーションの発生を抑制する防振装置として、例えば下記特許文献2に示されているような、液圧変動に応じて開閉されるバルブが仕切り部材に設けられた液圧バルブ式の防振装置が提供されている。前記バルブは、主液室と副液室とを連通する連通孔を開閉する弁体であり、主液室の液圧が低下したときに開放される。このような液圧バルブ式の防振装置によれば、主液室の液圧が低下したときにバルブ(弁体)が開放され、主液室と副液室とが連通孔を介して連通されるので、主液室の液圧低下を抑えることができる。その結果これにより、キャビテーションの発生が抑制される。
 また、従来の液体封入型の防振装置としては、例えば下記特許文献3に示されているような、液室に複数の液体が封入された2液混合式の防振装置が提案されている。詳しく説明すると、この防振装置は、弾性体が仕切り部材の上方に配設されると共にダイヤフラムが仕切り部材の下方に配設され、仕切り部材の上方に主液室が形成され、仕切り部材の下方に副液室が形成された正立式の防振装置であって、液室に、エチレングリコールを主体とする第一液体と、シリコーンオイルからなる第二液体と、がそれぞれ封入されている。液体封入型の防振装置では、制限通路を流通する液体の特性によってバネ定数が変化する。そのため、上記した複数の液体を封入した防振装置によれば、アイドル振動等の小振幅の振動が入力された時には、制限通路内に第一液体が流通して振動が減衰される。また、大振幅の振動が入力された時には、制限通路内に第二液体が流通して、第一液体が流通する場合と異なる周波数域で振動減衰性能が発揮される。
特開平8-61423号公報 特開2004-169750号公報 特許第2860701号公報
 しかしながら、上記した液圧バルブ式の防振装置では、小振幅の振動が入力された時にもバルブが開閉される場合があるため、防振装置本来の防振性能が低減するという問題がある。また、バルブが開閉する際にバルブが仕切り部材に当接して異音が生じたり、バルブによって仕切り部材の構成が複雑化又は大型化する問題もある。
 一方、上記した従来の正立式の2液混合式の防振装置は、第二液体の比重が第一液体の比重よりも軽く、第二液体が主液室側に溜まる構成を備えている。しかしながら、蒸気圧が第一液体よりも高くなければ、第二液体のキャビテーションが励起されないので、キャビテーション崩壊を低減する効果は得られない。さらに、第二液体として蒸気圧の高い液体を用いた場合、上記特許文献3に記載されているような共振を変化させる効果を得るためには、主液室(第二液体の比重が第一液体よりも重い場合は副液室)及びオリフィスを満たす程度の十分な量の第二液体が必要となる。しかし、第二液体は沸騰しやすく常温においても少量は気化する。そのため、第二液体の量が増量され過ぎると、液室内に常に気泡が残存し、十分な共振が得られない。よって、上記特許文献3に記載された技術では、蒸気圧が高い少量の第二液体を第一液体に添加してなる封入液は想定されていない。
 これに対し、仮に、第二液体の含有量を少量とし、第一液体中に第二液体が分散された状態にすると、蒸気圧が高い第二液体において優先的にキャビテーションが発生する。そのため、制限通路の主液室側の開口部付近における局所的な圧力低下が抑えられ、この開口部付近において第一液体にキャビテーションが発生するのが抑制される。その結果、防振装置全体として異音が低減される。しかしながら、上記した吊り下げ式の防振装置において第二液体の比重が第一液体よりも軽いと、例えば一定時間振動が入力されない状態が続き、互いに不溶な第一液体と第二液体とが分離されたとき、第二液体が上昇して副液室内に集まる。この状態で大振動が入力されても、局所的に液圧が低下する主液室側の開口部付近に第二液体が到達しない場合がある。そのため、開口部付近において第二液体で優先的にキャビテーションが発生せず、主液室側の開口部付近の第一液体でキャビテーションが生じるおそれがある。その結果、異音の低減効果が安定しないという問題がある。
 本発明は、上記した従来の問題が考慮されたもので、防振装置の防振性能を低減させたり防振装置の構成を複雑化・大型化したりすることなく、キャビテーションの発生を抑制することができる防振装置を提供することを目的とする。さらに、本発明は、第二液体が第一液体から分離された状態において大振動が入力された場合であっても、直ちにキャビテーションを抑制して異音を低減させることができる防振装置を提供することを目的としている。
 本発明の第1実施形態に係る防振装置は、振動発生部および振動受部のいずれか一方に連結される筒状の第一取付部材、および他方に連結される第二取付部材と、前記第一取付部材と前記第二取付部材とを弾性的に連結する弾性体と、前記第一取付部材の内側の液室を、前記弾性体を壁面の一部とする上側の主液室と下側の副液室とに区画する仕切り部材と、を備えるとともに、前記主液室と前記副液室とを連通すると共に前記液室内の液体が流通することで液柱共振が生じる制限通路が形成され、前記液室に封入液が封入された液体封入型の防振装置である。そして、前記封入液には、主液として第一液体が含有され、添加液として前記第一液体に対して不溶な第二液体が含有されている。そして、前記第二液体の蒸気圧は、同一温度において前記第一液体の主たる成分の蒸気圧よりも高く、且つ、前記第二液体の比重は、前記第一液体の比重よりも軽い。
 本発明の第1実施形態に係る防振装置は、いわゆる正立式の防振装置である。この防振装置に振動が入力されない状態が続き、互いに不溶な第一液体と第二液体とが液室内において分離されたとき、第一液体よりも比重が軽い第二液体は上昇し、上側の主液室に第二液体が集まる。そして、この状態において、大振動が入力されると、例えば第一液体や第二液体が制限通路を通過したり、主液室の内容積が変動したり、主液室内においてキャビテーションが発生したりすること等に起因して、第一液体中に無数の粒状の第二液体が互いに独立した状態で分散される。そして、主液室の内容積が急激に増大して主液室の液圧が低下したとき、主液室において特に流速が速まる制限通路の開口部付近で、第一液体の主たる成分よりも蒸気圧の高い第二液体で優先的にキャビテーションが発生する。その結果、前記開口部付近における局所的な液圧低下が抑えられ、この開口部付近の第一液体にキャビテーションが発生するのが抑制される。また、仮に第一液体にキャビテーションが発生しても、それによって生成される気泡が小さく抑えられるため、第一液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 また、このとき、上述したようにキャビテーションが発生する主液室に第二液体が集まっているので、第二液体が第一液体から分離された状態で大振動が入力された場合であっても、第二液体が直ちに主液室内の第一液体中に分散され、上述したように開口部付近における第一液体のキャビテーションが抑制される。
 一方、第二液体は第一液体中に分散しているので、この第二液体中で発生する気泡が大きく成長するのが抑えられる。したがって、凝縮時における気泡の収縮速度が高くなるのが抑制され、第二液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 さらに、第一液体中に分散された個々の粒状の第二液体からの無数の衝撃波同士が、互いに干渉し合ってそのエネルギーを打ち消し合うため、第二液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 なお、その後さらに振動(荷重)が繰り返し入力されると、第二液体が第一液体中でより一層細かく且つ全域に亘って均等に分散される。そのため、開口部付近における第一液体のキャビテーションがより一層抑制される。
 また、本発明に係る防振装置は、前記弾性体に、前記制限通路の主液室側開口の近傍に配設されて前記第二液体が溜まる液溜め凹部が形成されていることが好ましい。これにより、第一液体と第二液体とが分離されたとき、上側の主液室に流入した第二液体が液溜め凹部の内側に溜まる。
 このとき、液溜め凹部が主液室側開口の近傍に形成されているので、主液室側開口から主液室内に流入した第二液体が液溜め凹部の内側に集まりやすい。また、上述したキャビテーションは主液室側開口の周辺で最も発生し易いが、第一液体から分離した第二液体が制限通路の主液室側開口の近傍に集まっている。そのため、第一液体と第二液体とが分離された状態で大振動が入力され、主液室の内容積が急激に縮小して液圧が上昇したとき、第二液体が主液室側開口から制限通路内に流入しやすく、主液室側開口の周辺部分に第二液体が分散されやすい。したがって、上述した第二液体によるキャビテーションの抑制作用が効率的に行われる。
 なお、本発明における「近傍」とは、平面視において主液室側開口に少なくとも一部において重なる位置、若しくは、若干離間されていても同様の作用を奏する程度に接近した位置を意味する。
 また、本発明に係る防振装置は、前記液溜め凹部が、前記主液室側開口を介した前記制限通路から前記主液室への封入液流通方向の前方側に配設されていることが好ましい。
 上記構成により、主液室側開口から主液室に流入した第二液体が、その流れで液溜め凹部の内側に流入するため、液溜め凹部の内側に第二液体が集まり易い。また、第一液体から分離した第二液体が液溜め部の内側に溜められた状態で、大振動が入力されて主液室の液圧が上昇したとき、液溜め部内の第二液体が主液室側開口から制限通路内に流入し易い。
 また、本発明に係る防止装置は、前記第二液体の表面張力が、前記第一液体の表面張力よりも小さいことが好ましい。
 上記構成により、第二液体は、第一液体中に容易に広範囲に分散される。さらに、第二液体は、第一液体中において粒子径が小さい細かい粒状になり、互いに独立して第一液体中に分散される。
 本発明の第2実施形態に係る防振装置は、振動発生部および振動受部のいずれか一方に連結される筒状の第一取付部材、および他方に連結される第二取付部材と、前記第一取付部材と前記第二取付部材とを弾性的に連結する弾性体と、前記第一取付部材の内側の液室を、前記弾性体を壁面の一部とする下側の主液室と上側の副液室とに区画する仕切り部材と、を備えるとともに、前記主液室と前記副液室とを連通すると共に前記液室内の液体が流通することで液柱共振が生じる制限通路が形成され、前記液室に封入液が封入された液体封入型の防振装置である。そして、前記封入液には、主液として第一液体が含有され、添加液として前記第一液体に対して不溶な第二液体が含有されている。そして、前記第二液体の蒸気圧は、同一温度において前記第一液体の主たる成分の蒸気圧よりも高く、且つ、前記第二液体の比重は、前記第一液体の比重よりも重い。
 本発明の第2実施形態に係る防振装置は、いわゆる吊り下げ式の防振装置である。この防振装置に振動が入力されない状態が続き、互いに不溶な第一液体と第二液体とが液室内において分離されたとき、第一液体よりも比重が重い第二液体は下降し、下側の主液室に第二液体が集まる。そして、この状態において、大振動が入力されると、例えば第一液体や第二液体が制限通路を通過したり、主液室の内容積が変動したり、さらには主液室内においてキャビテーションが発生したりすること等に起因して、第一液体中に無数の粒状の第二液体が互いに独立した状態で分散される。そして、主液室の内容積が急激に増大して主液室の液圧が低下したとき、主液室において特に流速が速まる制限通路の開口部付近で、第一液体の主たる成分よりも蒸気圧の高い第二液体で優先的にキャビテーションが発生する。その結果、前記開口部付近における局所的な液圧低下が抑えられ、この開口部付近の第一液体にキャビテーションが発生するのが抑制される。また、仮に第一液体にキャビテーションが発生しても、それによって生成される気泡が小さく抑えられるため、第一液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 また、このとき、上述したようにキャビテーションが発生する主液室に第二液体が集まっているので、第二液体が第一液体から分離された状態で大振動が入力された場合であっても、第二液体が直ちに主液室内の第一液体中に分散され、上述したように開口部付近における第一液体のキャビテーションが抑制される。
 一方、第二液体は第一液体中に分散しているので、この第二液体中で発生する気泡が大きく成長するのが抑えられる。したがって、凝縮時における気泡の収縮速度が高くなるのが抑制され、第二液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 さらに、第一液体中に分散された個々の粒状の第二液体からの無数の衝撃波同士が、互いに干渉し合ってそのエネルギーを打ち消し合うため、第二液体中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 なお、その後さらに振動(荷重)が繰り返し入力されると、第二液体が第一液体中でより一層細かく且つ全域に亘って均等に分散される。そのため、開口部付近における第一液体のキャビテーションがより一層抑制される。
 また、本発明に係る防振装置は、前記弾性体に、前記制限通路の主液室側開口の近傍に配設されて前記第二液体が溜まる液溜め凹部が形成されていることが好ましい。
 上記構成により、第一液体と第二液体とが分離されたとき、下側の主液室に流入した第二液体が液溜め凹部の内側に溜まる。このとき、液溜め凹部が主液室側開口の近傍に形成されているので、主液室側開口から主液室内に流入した第二液体が液溜め凹部の内側に集まりやすい。また、上述したキャビテーションは主液室側開口の周辺で最も発生し易いが、第一液体から分離した第二液体が制限通路の主液室側開口の近傍に集まっている。そのため、第一液体と第二液体とが分離された状態で大振動が入力され、主液室の内容積が急激に縮小して液圧が上昇したとき、第二液体が主液室側開口から制限通路内に流入しやすく、主液室側開口の周辺部分に第二液体が分散されやすい。したがって、上述した第二液体によるキャビテーションの抑制作用が効率的に行われる。
 なお、本発明における「近傍」とは、平面視において主液室側開口に少なくとも一部において重なる位置、若しくは、若干離間されていても同様の作用を奏する程度に接近した位置を意味する。
 また、本発明に係る防止装置は、前記液溜め凹部が、前記主液室側開口を介した前記制限通路から前記主液室への封入液流通方向の前方側に配設されていることが好ましい。
 上記構成により、主液室側開口から主液室に流入した第二液体は、その流れで液溜め凹部の内側に流入するため、液溜め凹部の内側に第二液体が集まり易い。また、第一液体から分離した第二液体が液溜め部の内側に溜められた状態で、大振動が入力されて主液室の液圧が上昇したとき、液溜め部内の第二液体が主液室側開口から制限通路内に流入し易い。
 また、本発明に係る防止装置は、前記第二液体の表面張力が、前記第一液体の表面張力よりも小さいことが好ましい。
 上記構成により、第二液体は、第一液体中に容易に広範囲に分散される。さらに第二液体は、第一液体中において粒子径が小さい細かい粒状になり、互いに独立して第一液体中に分散される。
 本発明に係る防振装置によれば、防振性能を低減させたり構成を複雑化・大型化したりすることなく、キャビテーションの発生を抑制することができる。さらに、本発明に係る防振装置によれば、第二液体が第一液体から分離された状態において大振動が入力された場合であっても、直ちにキャビテーションを抑制して異音を低減させることができる。
本発明の第1実施形態における防振装置の縦断面図である。 本発明の第1実施形態における防振装置の横半断面図である。 本発明の第2実施形態における防振装置の縦断面図である。 本発明の第2実施形態における防振装置の横半断面図である。
 以下、本発明に係る防振装置の実施形態について、図面に基いて説明する。
 なお、本実施形態では、図1に示す符号Oは外筒3(本発明における第一取付部材に相当する。)の中心軸線を示しており、以下、単に「軸線O」と記す。また、軸線Oに沿った方向を「軸方向」とし、軸線Oに垂直な方向を「径方向」とし、軸線O回りの方向を「周方向」とする。また、図1における軸方向下側は、バウンド側、つまり防振装置1を設置した際に静荷重(初期荷重)が入力される方向である。一方、図1における軸方向上側は、リバウンド側、つまり前記静荷重の入力方向の反対側である。以下の説明においてバウンド側を「下側」とし、リバウンド側を「上側」とする。
 本発明の第1実施形態に係る防振装置1は、振動発生部の一例であるエンジンを振動受部の一例である車体にマウントさせる際に用いられ、振動発生部の振動を減衰させるための装置である。図1に示すように、防振装置1は、図示せぬ車体ブラケットを介して図示せぬ車体に連結される略円筒状の外筒3と、図示せぬエンジンブラケットを介して図示せぬエンジンに連結される内筒4(本発明における第二取付部材に相当する。)と、外筒3と内筒4とを弾性的に連結するとともに外筒3の上側の開口端を閉塞する弾性体5と、外筒3の下側の開口端を閉塞するダイヤフラム6と、外筒3の内側に形成された液室7を上側の主液室7Aと下側の副液室7Bとに区画する仕切り部材8と、を備えている。なお、外筒3と内筒4と弾性体5とは一体的に形成されており、外筒3と内筒4と弾性体5とによって防振装置本体2が構成されている。また、本実施の形態における防振装置1は、主液室7Aが仕切り部材8を挟んで副液室7Bの上方に形成され、ダイヤフラム6が仕切り部材8の下方に配設され、内筒4が弾性体5の上方に向けて突出された正立式の防振装置であり、初期荷重が入力されることで弾性体5に圧縮力が作用する圧縮式の防振装置である。
 外筒3の上側には略円筒状の上筒部30が形成され、下側には上筒部30よりも小径の略円筒状の下筒部31が形成されている。上筒部30及び下筒部31は両端がそれぞれ開放された略円筒状の金属製部材である。上筒部30と下筒部31との間には、内周側へ縮径された絞り部32が全周に亘って形成されている。
 内筒4は、軸方向に延在する柱状部材であり、内筒4の下部は下方に向かうに従い漸次縮径された先細り形状を有している。また、内筒4の上部には、内筒4の上端面の中心から軸方向に延びるねじ孔40が穿設されている。また、内筒4の軸方向の中間部分には、径方向外側に突出したアンカ部41が形成されている。
 弾性体5は、外筒3の上側の開口部を閉塞するゴム体であり、上面及び下面が上方に向かうに従い漸次縮径された略円錐台形状を有している。弾性体5は、外筒3の上筒部31及び絞り部32の内周面に加硫接着されるとともに、内周面が内筒4の下部の外周面に加硫接着されている。この弾性体5の上端部には、内筒4のアンカ部41を被覆するゴム製の緩衝体50が一体形成されている。そして、緩衝体50及びアンカ部41によって、内筒4が外筒3に対して相対的に上昇するリバウンドを規制するリバウンドストッパが形成されている。また、弾性体5の下端部には、外筒3の下筒部30の内周面を被覆するゴム製の被覆体51が一体形成されている。被覆膜51は、外筒3の内周面の全周を覆っている。なお、上記した弾性体5、緩衝体50及び被覆体51は、ゴム以外に合成樹脂等からなる弾性体でもよい。
 また、弾性体5には、液体を収容可能であって主液室7Aに連通された液溜め凹部50が設けられている。この液溜め凹部50は、後述する第二液体L2を溜めるための凹部であり、図2に示すように、後述する主液室側開口86の近傍に配設されている。
 詳しく説明すると、液溜め凹部50は、弾性体5の外周部分、つまり平面視において軸線Oからずれた位置に配置されている。具体的には、液溜め凹部50は、弾性体5のテーパー状の下面のうちの最も下側の部分に形成されている。また、液溜め凹部50は、後述するオリフィス80から主液室側開口86を通って主液室7Aに流入する封入液Lの流通方向の前方側に配設されている。つまり、液溜め凹部50は、平面視において、オリフィス80の周方向の一方側の端部に形成された主液室側開口86の周方向の一方側に隣接して配置されている。なお、平面視において、液溜め凹部50と主液室側開口86とは連続して配置されてなくてもよく、多少離間された状態または重合された状態で配置されてもよい。また、液溜め凹部50は、軸線Oに対する垂直面に沿って形成された天壁部51と、天壁部51の外縁から立設されて下端が弾性体5のテーパー状の下面に連結された周壁部52と、を備えている。
 ダイヤフラム6は、外筒3の下側の開口部を閉塞すると共に副液室7Bの液圧変動に伴い変形可能な膜体である。そして、ダイヤフラム6は、上面視円形状に形成されていると共に下側に向けて膨出した逆椀状となっている。詳しく説明すると、ダイヤフラム6は、円環状のダイヤフラムリング60と、このダイヤフラムリング60の内側に張設された膜状のダイヤフラムゴム61と、を備えている。ダイヤフラムゴム61の外周縁部は、全周にわたってダイヤフラムリング60の内周面に加硫接着されている。そして、ダイヤフラムリング60が、外筒3の下側の開口部内に嵌合されてカシメ固定されることにより、ダイヤフラム6は外筒3を下側から閉塞している。
 上記したダイヤフラム6と弾性体5との間に位置する外筒3の内部が、これらのダイヤフラム6および弾性体5によって液密に閉塞されて封入液Lが充填された液室7である。そして、液室7は、仕切り部材8によって、弾性体5を隔壁の一部に有している。そして、液室7は、弾性体5の変形により内容積が変化する主液室7Aと、ダイヤフラム6を隔壁の一部に有し、このダイヤフラム6の変形により内容積が変化する副液室7Bと、に区画されている。
 仕切り部材8は、外筒3の下筒部31の内側に嵌合され、液室7を上下に区画するための部材である。仕切り部材8は、円環状の仕切り部材本体81と、円環状の仕切り部材本体81の内側に張設されたメンブラン82と、を備えている。
 仕切り部材本体81は、樹脂製の部材であり、仕切り部材本体81の外周面には、オリフィス80となる周溝81aが形成されている。また、仕切り部材本体81の内周面には、径方向内側に突出したフランジ部81bが全周に亘って形成されている。前記周溝81aは、外筒3の内周面に被覆された被覆膜51によって、仕切り部材8の径方向の外側から閉塞されている。この構成により、主液室7Aと副液室7Bとを連通するオリフィス80が形成されている。また、仕切り部材本体81の上面(周溝81aの上壁部)には、オリフィス80と主液室7Aとを連通する主液室側開口86が形成されている。そして、仕切り部材本体81の下面(周溝81aの下壁部)には、オリフィス80と副液室7Bとを連通する図示せぬ副液室側開口が形成されている。
 メンブラン82は、円板状のゴム製の部材であり、その外縁部が円環状の仕切り部材本体81のフランジ部81bに加硫接着されている。そして、メンブラン82によって円環状の仕切り部材本体81bの内側が閉塞されている。
 ところで、上記した外筒3と弾性体5とダイヤフラム6とで囲まれた液室7には、主液として第一液体L1が含有されていると共に、添加液として第二液体L2が含有された封入液Lが充填されている。そして、第一液体L1および第二液体L2は、非相溶性を有する、つまり互いに不溶な液体である。詳しく説明すると、添加液である第二液体L2は、主液である第一液体L1に比べて少量であり、封入液L中に含まれる第二液体L2の重量比率は第一液体L1の重量比率よりも小さい。また、第二液体L2は、同一温度(少なくとも-30℃以上100℃以下の温度範囲)において、第一液体L1の主たる成分よりも蒸気圧が高く、例えば、第二液体L2の蒸気圧は第一液体L1の主たる成分の蒸気圧の2倍以上である。また、第二液体L2の比重は、第一液体L1の比重よりも軽く、第一液体L1中において第二液体L2は上昇(浮上)する。また、第二液体L2は、第一液体L1よりも表面張力が小さい。
 上記した第一液体L1としては、例えばエチレングリコールとプロピレングリコールとを含有するもの、又はエチレングリコール単体若しくはプロピレングリコール単体等が挙げられる。また第二液体L2としては、例えばシリコーンオイル等が挙げられる。また、前記封入液Lは、第一液体L1を60重量%以上99.9重量%以下含有し、第二液体L2を0.1重量%以上40重量%以下含有している。好ましくは、前記封入液Lは、第一液体L1を80重量%以上99重量%以下含有し、第二液体L2を0.5重量%以上20重量%以下含有している。例えば、封入液L中の第一液体L1が100gであるときに、第二液体L2は0.5g~20g含まれている。
 次に、本発明の第1実施形態に係る防振装置1の作用について説明する。
 例えば走行中に路面の凹凸等によって内筒4と外筒3とが軸方向に大きく相対変位し、防振装置1に大振動が入力されると、第一液体L1や第二液体L2がオリフィス80を通過したり、主液室7Aの内容積が変動したり、さらには主液室7A内においてキャビテーションが発生する。その結果、第一液体L1中に無数の粒状の第二液体L2が互いに独立した状態で分散される。そして、主液室7Aの内容積が急激に増大して主液室7Aの液圧が低下したとき、主液室7Aにおいて特に流速が速まるオリフィス80の主液室側開口86付近で、第一液体L1の主たる成分よりも蒸気圧が高い第二液体L2で優先的にキャビテーションが発生する。そのため、主液室側開口86付近での局所的な液圧低下が抑えられ、主液室側開口86付近の第一液体L1にキャビテーションが発生する現象が抑制される。また、仮に第一液体L1にキャビテーションが発生しても、それによって生成される気泡が小さく抑えられる。そのため、第一液体L1中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 また、第二液体L2は小さい粒子径の粒状となって第一液体L1中に分散している。そのため、第二液体L2中で発生する気泡が大きく成長する現象が抑えられる。したがって、凝縮時における気泡の収縮速度が高くなる現象が抑制され、第二液体L2中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。しかも、個々の第二液体L2から発生する無数の衝撃波同士は、互いに干渉し合ってそのエネルギーを打ち消し合う。そのため、第二液体L2中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 一方、エンジンが停止してから時間が経過すると、第一液体L1中に分散された第二液体L2は、第一液体L1よりも比重が軽いため、第一液体L1中において上昇する。そして、第二液体L2は、オリフィス80内を流通して主液室側開口86から主液室7A内に流入する。そして、第二液体L2は、最終的に、主液室側開口86の近傍に配設された液溜め凹部50の内側に集まって溜まる。ここで、液溜め凹部50が、オリフィス80内から主液室側開口86を通って主液室7Aに流入する封入液Lの流通方向の前方側に配設されている。そのため、主液室側開口86から主液室7Aに流入した第二液体L2は、主液室7Aに流入した流速で液溜め凹部50の内側に流入するため、液溜め凹部50の内側に第二液体L2が集まり易い。
 そして、上述したように第一液体L1と第二液体L2とが分離された状態において、大振動が入力され、主液室7Aの内容積が急激に増大して液圧が低下したとき、主液室7A内に第一液体L1が集まっているので、第二液体L2が主液室7A内の第一液体L1中に直ちに分散される。特に、第二液体L2は、第一液体L1よりも表面張力が小さいため、第一液体L1中に容易に広範囲に分散されると共に、第一液体L1中において粒子径が小さい細かい粒状になる。また、無数の粒状の第二液体L2は互いに独立して第一液体L1中に分散される。そのため、主液室側開口86付近において第二液体L2に優先的にキャビテーションが発生し、主液室側開口86付近における局所的な液圧低下が抑えられる。そして、その結果、主液室側開口86付近における第一液体L1のキャビテーションが効果的に抑制される。
 なお、液溜め凹部50が、オリフィス80内から主液室側開口86を通って主液室7Aに流入する封入液Lの流通方向の前方側に配設されているので、液溜め凹部50内の第二液体L2は主液室側開口86からオリフィス80内に流入し易い。そして、第二液体L2は、主液室側開口86近傍の第一液体L1中に分散する。
 本実施形態の防振装置1によれば、第一液体L1中に第二液体L2が分散された状態で大振動が入力されたとき、主液室側開口86付近における第一液体L1のキャビテーションが抑えられると共に、第二液体L2中で発生するキャビテーション崩壊に起因する衝撃波が小さく抑えられる。そのため、防振装置1全体で発生するキャビテーション崩壊の衝撃波を低減させることができ、異音を低減させることができる。
 また、本実施形態の防振装置1によれば、少量の第二液体L2を添加させるだけなので、防振装置1の防振性能にほとんど影響を与えることがない。そのため、防振装置1の防振性能が低減することなく、異音を低減させることができる。さらに、本実施形態の防振装置1によれば、仕切り部材8等の構造を変更する必要がないため、防振装置1の構成が複雑化・大型化することなく、異音を低減させることができる。
 また、本実施形態の防振装置1によれば、第二液体L2の比重が第一液体L1の比重に比べて軽い。そのため、エンジンが停止してから時間が経過して第一液体L1中で第二液体L2が分離されると、第二液体L2が上側の主液室7Aに溜まる。そのため、第一液体L1と第二液体L2とが分離された状態であっても、大振動が入力されると第二液体L2が主液室7A内の第一液体L1中に直ちに分散され、上記した異音の低減効果が発揮される。したがって、走行中に限らず、発進時における大振動による異音も低減させることができ、異音の低減効果が安定して発揮される。
 また、本実施形態の防振装置1によれば、第一液体L1から分離した第二液体L2が、主液室側開口86の近傍に配設された液溜め凹部50に溜まる。そのため、第二液体L2が第一液体L1中で分離された状態において大振動が入力された時に、主液室7A内において主液室側開口86近傍に集められた第二液体L2が主液室7A内で第一液体L1中に分散される。さらに、主液室7A内において、第二液体L2が主液室側開口86からオリフィス80内に流入し、キャビテーションが発生しやすい主液室側開口86近傍の第一液体L1中に第二液体L2が分散される。そのため、上記した異音の低減効果が効果的に発揮される。
 また、液溜め凹部50が、オリフィス80内から主液室側開口86を通って主液室7Aに流入する封入液Lの流通方向の前方側に配設されている。そのため、液溜め凹部50の内側に第二液体L2が集まり易い。その結果、上述した異音の低減効果がより安定して発揮される。また、液溜め凹部50が、オリフィス80内から主液室側開口86を通って主液室7Aに流入する封入液Lの流通方向の前方側に配設されているため、液溜め凹部50内の第二液体L2が主液室側開口86からオリフィス80内に流入し易い。その結果、キャビテーションが最も発生しやすい主液室側開口86周辺に第二液体L2を分散させることができ、効率的にキャビテーションを抑制できる。
 本発明の第2実施形態に係る防振装置101は、振動発生部の一例であるエンジンを振動受部の一例である車体にマウントさせる際に用いられ、振動発生部の振動を減衰させるための装置である。図3に示すように、防振装置101は、図示せぬ車体ブラケットを介して図示せぬ車体に連結される略円筒状の外筒103と、図示せぬエンジンブラケットを介して図示せぬエンジンに連結される内筒104(本実施形態における第二取付部材に相当する。)と、外筒103と内筒104とを弾性的に連結するとともに外筒103の下側の開口端を閉塞する弾性体105と、外筒103の上側の開口端を閉塞するダイヤフラム106と、外筒103の内側に形成された液室107を、弾性体105を壁面の一部とする下側の主液室107Aとダイヤフラム106を壁面の一部とする上側の副液室107Bとに区画する仕切り部材108と、を備えている。なお、外筒103と内筒104と弾性体105とは一体的に形成されており、外筒103と内筒104と弾性体105とによって防振装置本体102が構成されている。また、本実施形態における防振装置101は、主液室107Aが仕切り部材108を挟んで副液室107Bの下方に形成され、ダイヤフラム106が仕切り部材108の上方に配設され、内筒104が弾性体105の下方に向けて突出された吊り下げ式の防振装置であり、初期荷重が入力されることで弾性体105に引張力が作用する引張式の防振装置である。
 外筒103は、両端がそれぞれ開放された略円筒状の金属製部材であり、外筒103の下側部分を構成する下筒部130と、外筒103の上側部分を構成して前記下筒部130よりも大径に設定された上筒部131と、小径の下筒部130と大径の上筒部131との間に全周に亘って介在された環状の段差部132と、を備えている。また、外筒103(上筒部131)の上端部には、径方向内側に折り曲げられてダイヤフラム106(後述するダイヤフラムリング160)にカシメ固定されるカシメ部133が全周に亘って形成されている。また、外筒103の内周面には、外筒103の内周面を全周に亘って被覆する被覆体134が加硫接着されている。この被覆体134は、ゴム等の弾性材料からなる被膜であり、弾性体105と一体に形成されている。
 内筒104は、軸方向に延在する柱状の取付部140と、取付部140の上端部に溶接等により固定されて弾性体105内に埋設されたインサート部141と、を備えている。取付部140は、外筒103の下端部の内側に配設されていると共に軸線O上に配設された金属製部材である。そして、取付部140の下端は、外筒103の下端よりも下方に突出している。また、取付部140には、図示せぬエンジン側ブラケットに螺着するための雌ねじ孔140aが形成されている。この雌ねじ孔140aは、軸線O上に配設されていると共に取付部140の上端面から下端面にかけて延設されている。この取付部140の上部は、弾性体105の内側に埋設されている。そして、雌ねじ孔140aの上端はインサート部141によって閉塞されている。また、取付部140の下部は、弾性体105の下面から下方に向けて突出している。インサート部141は、上方に向かうに従い漸次拡径されたテーパー形状に形成され、底部を有する筒金具である。そして、インサート部141の底部には、上記雌ねじ孔140aの内側に嵌め込まれる凸部141aが形成されている。
 弾性体105は、外筒103の下側の開口部を閉塞するゴム体であり、上面(外周面)が上方に向かうに従い漸次縮径された略円錐台形状を成している。また、弾性体105の下端部の外周部は外筒103(下筒部130)の下端部の内周面に加硫接着されている。また、弾性体105は、その内側に埋設されたインサート部141の内外周面および内側底面に対してそれぞれ加硫接着されているとともに、取付部140の上部の外周面に加硫接着されている。なお、弾性体105及び上記した被覆体134には、ゴム以外に合成樹脂等からなる弾性体を用いてもよい。
 また、弾性体105には、液体を収容可能であって主液室107Aに連通された液溜め凹部150が設けられている。この液溜め凹部150は、後述する第二液体L2を溜めるための凹部であり、図4に示すように、後述する主液室側開口186の近傍に配設されている。
 詳しく説明すると、液溜め凹部150は、弾性体105の外周部分、つまり平面視において軸線Oからずれた位置に配置されている。具体的には、弾性体105のテーパー状の上面のうち最も下側の部分に形成されている。また、液溜め凹部150は、後述するオリフィス180から主液室側開口186を通って主液室107Aに流入する封入液Lの流通方向の前方側に配設されている。つまり、液溜め凹部150は、平面視において、オリフィス180の周方向の一方側の端部に形成された主液室側開口186の周方向の一方側に隣接して配置されている。なお、平面視において、液溜め凹部150と主液室側開口186とは連続して配置されてなくてもよく、多少離間された状態または重合された状態で配置されてもよい。また、液溜め凹部150は、軸線Oに対する垂直面に沿って形成された底壁部151と、底壁部151の外縁から立設されて上端が弾性体105のテーパー状の上面に連結された周壁部152と、を備えている。
 仕切り部材108は、頂部を有する筒状の仕切り部材本体181と、仕切り部材本体181の上方に配設された可動板182と、仕切り部材本体181の上面に載置され内側に可動板182を収納する収納部材183と、を備えている。
 仕切り部材本体181は、外筒103の上筒部131の内側に嵌合されていると共に、外筒103の段差部132に係止されている。仕切り部材本体181は、円環状の周壁部184と、周壁部184の上端部の内側に配設された天壁部185と、を備えている。周壁部184は、外周面に周方向に沿って延設する周溝184aが形成されており、縦断面がU字型を成している。周溝184aは、主液室107Aと副液室107Bとを連通する。また、周溝184aは、液室107内の液体が流通することで液柱共振が生じるオリフィス180(本実施形態の制限通路に相当する。)を形成する溝部である。すなわち、外筒103の内周面(被膜体134)によって周溝184aが径方向の外側から閉塞されることより、オリフィス180が形成されている。また、周壁部184の下面(周溝184aの下壁部)には、オリフィス180と主液室107Aとを連通する主液室側開口186が形成されている。さらに、周壁部184の上面(周溝184aの上壁部)には、オリフィス180と副液室107Bとを連通する図示せぬ副液室側開口が形成されている。主液室側開口186は、オリフィス180の周方向の一方側の端部に形成されている。また、図示せぬ副液室側開口は、オリフィス180の周方向の他方側の端部に形成されている。天壁部185は、軸線Oに対して垂直に形成された壁部である。そして、天壁部185には、収納部材183の内側に開放された複数の貫通孔185aが形成されている。
 収納部材183は、仕切り部材本体181の天壁部185の上方に対向配置された天壁部187と、天壁部187の外縁から垂下された周壁部188と、周壁部188の下端から径方向の外側に向けて突出されたフランジ部189と、を備えている。天壁部187は、軸線Oに対して垂直に形成された壁部である。そして、天壁部187には、収納部材183の内側に開放された複数の貫通孔187aが形成されている。フランジ部189は、仕切り部材本体181(周壁部184)の上面に載置されており、仕切り部材本体181と後述するダイヤフラムリング160との間に挟み込まれて固定されている。
 可動板182は、例えばゴムなどの弾性材料からなる板状の部材であり、収納部材183の周壁部188の内側に収納されている。可動板182は、収納部材183の天壁部187と仕切り部材本体181の天壁部185との間で軸方向に変位可能となっている。そして、可動板182によって、収納部材183の天壁部187や仕切り部材本体181の天壁部187に形成された貫通孔187a,185aが適宜閉塞される。
 ダイヤフラム106は、副液室107Bの液圧変動に伴って変形可能な膜体であり、上方に向けて膨出したドーム状に形成されている。詳しく説明すると、ダイヤフラム106は、円環状のダイヤフラムリング160と、ダイヤフラムリング160の内側に張設された膜状のダイヤフラムゴム161と、を備えている。ダイヤフラムゴム161の外縁部は、全周にわたってダイヤフラムリング160の内周面に加硫接着されている。ダイヤフラム106は、ダイヤフラムリング160が外筒103の上端部と共に全周にわたって径方向の内側に屈曲されることでカシメ固定されている。
 外筒103と弾性体105とダイヤフラム106とで囲まれた液室107には、主液として第一液体L1が含有されていると共に、添加液として第二液体L2が含有された封入液Lが充填されている。そして、第一液体L1および第二液体L2は、非相溶性を有する、つまり互いに不溶な液体である。詳しく説明すると、添加液である第二液体L2は、主液である第一液体L1に比べて少量であり、封入液L中に含まれる第二液体L2の重量比率は第一液体L1の重量比率よりも小さい。また、第二液体L2は、同一温度(少なくとも-30℃以上100℃以下の温度範囲)において、第一液体L1の主たる成分よりも蒸気圧が高く、例えば、第二液体L2の蒸気圧は第一液体L1の主たる成分の蒸気圧の2倍以上である。また、第二液体L2の比重は、第一液体L1の比重よりも重く、第一液体L1中において第二液体L2は下降(沈下)する。また、第二液体L2は、第一液体L1よりも表面張力が小さい。
 上記した第一液体L1としては、例えばエチレングリコールとプロピレングリコールとを含有するもの、又はエチレングリコール単体若しくはプロピレングリコール単体等が挙げられる。また、第二液体L2としては、例えばフッ素オイル等が挙げられる。また、前記封入液Lは、第一液体L1を60重量%以上99.9重量%以下含有し、第二液体L2を0.1重量%以上40重量%以下含有している。好ましくは、前記封入液Lは、第一液体L1を80重量%以上99重量%以下含有し、第二液体L2を0.5重量%以上20重量%以下含有している。例えば、封入液L中の第一液体L1が100gであるときに、第二液体L2は0.5g~20g含まれている。
 次に、本発明の第2実施形態に係る防振装置101の作用について説明する。
 例えば走行中に路面の凹凸等によって内筒104と外筒103とが軸方向に大きく相対変位し、防振装置101に大振動が入力されると、第一液体L1や第二液体L2がオリフィス180を通過したり、主液室107Aの内容積が変動したり、さらには主液室107A内においてキャビテーションが発生する。その結果、第一液体L1中に無数の粒状の第二液体L2が互いに独立した状態で分散される。そして、主液室107Aの内容積が急激に増大して主液室107Aの液圧が低下したとき、主液室107Aにおいて特に流速が速まるオリフィス180の主液室側開口186付近で、第一液体L1の主たる成分よりも蒸気圧が高い第二液体L2で優先的にキャビテーションが発生する。そのため、主液室側開口186付近における局所的な液圧低下が抑えられ、主液室側開口186付近の第一液体L1にキャビテーションが発生する現象が抑制されるまた、仮に第一液体L1にキャビテーションが発生しても、それによって生成される気泡が小さく抑えられる。そのため、第一液体L1中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 また、第二液体L2は小さい粒子径の粒状となって第一液体L1中に分散している。そのため、第二液体L2中で発生する気泡が大きく成長する現象が抑えられる。したがって、凝縮時における気泡の収縮速度が高くなる現象が抑制され、第二液体L2中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。しかも、個々の第二液体L2から発生する無数の衝撃波同士は、互いに干渉し合ってそのエネルギーを打ち消し合う。そのため、第二液体L2中のキャビテーション崩壊に起因する衝撃波が小さく抑えられる。
 一方、エンジンが停止してから時間が経過すると、第一液体L1中に分散された第二液体L2は、第一液体L1よりも比重が重いため、第一液体L1中において下降する。そして、第二液体L2はしていき、オリフィス180内を流通して主液室側開口186から主液室107A内に流入する。そして、第二液体L2は、最終的に、主液室側開口186の近傍に配設された液溜め凹部150の内側に集まって溜まる。ここで、液溜め凹部150が、オリフィス180内から主液室側開口186を通って主液室107Aに流入する封入液Lの流通方向の前方側に配設されている。そのため、主液室側開口186から主液室107Aに流入した第二液体L2は、主液室107Aに流入した流速流れで液溜め凹部150の内側に流入するため、液溜め凹部150の内側に第二液体L2が集まり易い。
 そして、上述したように第一液体L1と第二液体L2とが分離された状態において、大振動が入力され、主液室107Aの内容積が急激に増大して液圧が低下したとき、主液室107A内に第一液体L1が集まっているので、第二液体L2が主液室107A内の第一液体L1中に直ちに分散される。特に、第二液体L2は、第一液体L1よりも表面張力が小さいため、第一液体L1中に容易に広範囲に分散されると共に、第一液体L1中において粒子径が小さい細かい粒状になる。また、無数の粒状の第二液体L2は互いに独立して第一液体L1中に分散される。そのため、主液室側開口186付近において第二液体L2に優先的にキャビテーションが発生し、主液室側開口186付近における局所的な液圧低下が抑えられる。そして、その結果、主液室側開口186付近における第一液体L1のキャビテーションが効果的に抑制される。
 なお、液溜め凹部150が、オリフィス180内から主液室側開口186を通って主液室107Aに流入する封入液Lの流通方向の前方側に配設されているので、液溜め凹部50内の第二液体L2は主液室側開口186からオリフィス180内に流入し易い。そして、第二液体L2は、主液室側開口186近傍の第一液体L1中に分散する。
 本実施形態の防振装置101によれば、第一液体L1中に第二液体L2が分散された状態で大振動が入力されたとき、主液室側開口186付近における第一液体L1のキャビテーションが抑えられると共に、第二液体L2中で発生するキャビテーション崩壊に起因する衝撃波が小さく抑えられる。そのため、防振装置101全体で発生するキャビテーション崩壊の衝撃波を低減させることができ、異音を低減させることができる。
 また、本実施形態の防振装置101によれば、少量の第二液体L2を添加させるだけなので、防振装置101の防振性能にほとんど影響を与えることがない。そのため、防振装置101の防振性能が低減することなく、異音を低減させることができる。さらに、本実施形態の防振装置101によれば、仕切り部材108等の構造を変更する必要がないため、防振装置101の構成が複雑化・大型化することなく、異音を低減させることができる。
 また、本実施形態の防振装置101によれば、第二液体L2の比重が第一液体L1の比重に比べて重い。そのため、エンジンが停止してから時間が経過して第一液体L1中で第二液体L2が分離されると、第二液体L2が下側の主液室107Aに溜まる。そのため、第一液体L1と第二液体L2とが分離された状態であっても、大振動が入力されると第二液体L2が主液室107A内の第一液体L1中に直ちに分散され、上記した異音の低減効果が発揮される。したがって、走行中に限らず、発進時における大振動による異音も低減させることができ、異音の低減効果が安定して発揮される。
 また、本実施形態の防振装置101によれば、第一液体L1から分離した第二液体L2が、主液室側開口186の近傍に配設された液溜め凹部150に溜まる。そのため、第二液体L2が第一液体L1中で分離された状態において大振動が入力された時に、主液室107A内における主液室側開口186近傍に集められた第二液体L2が主液室107A内で第一液体L1中に分散される。さらに、主液室107Aにおいて、第2液体L2が主液室側開口186からオリフィス180内に流入し、キャビテーションが発生しやすい主液室側開口186近傍の第一液体L1中に第二液体L2が分散される。そのため、上記した異音の低減効果が効果的に発揮される。
 また、液溜め凹部150が、オリフィス180内から主液室側開口186を通って主液室107Aに流入する封入液Lの流通方向の前方側に配設されている。そのため、液溜め凹部150の内側に第二液体L2が集まり易い。その結果、上述した異音の低減効果がより安定して発揮される。また、液溜め凹部150が、オリフィス180内から主液室側開口186を通って主液室107Aに流入する封入液Lの流通方向の前方側に配設されているため、液溜め凹部150内の第二液体L2が主液室側開口186からオリフィス180内に流入し易い。その結果、キャビテーションが最も発生しやすい主液室側開口186周辺に第二液体L2を分散させることができ、効率的にキャビテーションを抑制できる。
 また、第二液体L2は、第一液体L1よりも表面張力が小さく、第一液体L2中に広範囲に容易に分散される。そのため、第一液体L1のキャビテーションが効果的に抑制され、異音を低減できる。しかも、第一液体L1よりも表面張力が小さい第二液体L2は、第一液体L1中において小さな粒子径で互いに独立して分散される。そのため、第二液体L2のキャビテーション崩壊に起因して発生する衝撃波が確実に小さく抑えられ、異音が効果的に低減される。
 以上、本発明に係る防振装置の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、第一液体L1および第二液体L2は、前述したものに限らず、非相溶性を有する液体であれば適宜変更可能である。また、第一液体L1と比較して表面張力が同等若しくは高い第二液体L2を用いることも可能である。
 さらに、封入液Lに含有される液体は、二種類の液体(第一液体L1、第二液体L2)に限らず、三種類以上の液体を含有する封入液Lでもよい。
 また、本発明は、第一液体が相溶性を有する複数の成分(液体)から構成されていてもよい。この場合、第二液体の蒸気圧が同一温度において第一液体の主たる成分の蒸気圧より高ければ、第一液体の蒸気圧の方が第二液体の蒸気圧よりも高くてもよい。例えば、本発明の第1実施形態において、第一液体が、相溶性を有するエチレングリコール(常温時の蒸気圧13.4Pa、含有率96%、主成分)と水(常温時の蒸気圧3173Pa、含有率4%、副成分)との混合溶液からなり、第二液体がシリコンオイル1cstからなる場合、第一液体(混合溶液)の蒸気圧が400Paとなって第二液体の蒸気圧(167Pa)よりも高い。しかし、第二液体の蒸気圧は第一液体の主成分の蒸気圧(13.4Pa)よりも高いため、キャビテーションの発生を抑制する効果を得ることができる。
 また、本発明の第2実施形態において、第一液体が、相溶性を有するエチレングリコール(常温時の蒸気圧13.4Pa、含有率96%、主成分)と水(常温時の蒸気圧3173Pa、含有率4%、副成分)との混合溶液からなり、第二液体がフッ素オイルからなる場合、第一液体(混合溶液)の蒸気圧が400Paとなって第二液体の蒸気圧よりも高くなるが、第二液体の蒸気圧は第一液体の主成分の蒸気圧(13.4Pa)よりも高いため、キャビテーションの発生を抑制する効果を得ることができる。
 なお、本発明の第1実施形態において、水よりも蒸気圧が高く比重が軽い液体を第二液体として用いる場合、第一液体として水単体を用いることも可能である。
 また、本発明の第2実施形態において、水よりも蒸気圧が高く比重が重い液体を第二液体として用いる場合、第一液体として水単体を用いることも可能である。
 また、本発明に係る防振装置は、車両のエンジンマウントに限定されず、エンジンマウント以外に防振装置に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントにも適用することも可能である。
 また、上記した実施の形態では、外筒3、103の端部にダイヤフラム6、106(ダイヤフラムリング60、160)がカシメ固定されているが、本発明は、ダイヤフラム6、106が外筒3、103にカシメ固定された構成に限定されず、例えば、ダイヤフラムが外筒(第一取付部材)に止め具等によって固定されていてもよい。
 また、上記した実施形態では、仕切り部材8、108にオリフィス80、180が形成されているが、本発明では、仕切り部材8、108以外にオリフィス80、180が形成されていてもよい。例えば、外筒(第一取付部材)の一部に溝加工してオリフィス(制限通路)を形成してもよく、或いは、ダイヤフラムリング等のカシメ部分の一部に溝加工してオリフィス(制限通路)を形成してもよい。
 また、上記した実施形態では、液溜め凹部50、150は、主液室側開口86、186を介したオリフィス80、180から主液室7A、107Aへの封入液Lの流通方向の前方側に配設されているが、本発明では、液溜め凹部50、150が上記した位置と異なる位置に配設させることも可能である。例えば、主液室側開口86、186の鉛直下方に液溜め凹部50、150を配設してもよい。
 その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
 本発明によれば、防振性能が低減したり構成が複雑化・大型化することなく、キャビテーションの発生を抑制することができる。
1、101 防振装置
3、103 外筒(第一取付部材)
4、104 内筒(第二取付部材)
5、105 弾性体
7、107 液室
7A、107A 主液室
7B、107B 副液室
8、108 仕切り部材
50、162 液溜め凹部
80、180 オリフィス(制限通路)
86、186 主液室側開口
L 封入液
L1 第一液体
L2 第二液体

Claims (8)

  1.  振動発生部および振動受部のうちのいずれか一方に連結される筒状の第一取付部材、および他方に連結される第二取付部材と、
     前記第一取付部材と前記第二取付部材とを弾性的に連結する弾性体と、
     前記第一取付部材の内側の液室を、前記弾性体を壁面の一部とする上側の主液室と下側の副液室とに区画する仕切り部材と、を備えるとともに、
     前記主液室と前記副液室とを連通すると共に前記液室内の液体が流通することで液柱共振が生じる制限通路が形成され、
     前記液室に封入液が封入された液体封入型の防振装置であって、
     前記封入液には、主液として第一液体が含有されていると共に、添加液として前記第一液体に対して不溶な第二液体が含有されており、
     前記第二液体の蒸気圧は、同一温度において前記第一液体の主たる成分の蒸気圧よりも高く、且つ、前記第二液体の比重は、前記第一液体の比重よりも軽い防振装置。
  2.  請求項1に記載の防振装置において、
     前記弾性体には、前記制限通路の主液室側開口の近傍に配設されて前記第二液体が溜まる液溜め凹部が形成されている防振装置。
  3.  請求項2に記載の防振装置において、
     前記液溜め凹部は、前記主液室側開口を介した前記制限通路から前記主液室への封入液流通方向の前方側に配設されている防振装置。
  4.  請求項1から3のいずれか一項に記載の防振装置において、
     前記第二液体の表面張力は、前記第一液体の表面張力よりも小さい防振装置。
  5.  振動発生部および振動受部のうちのいずれか一方に連結される筒状の第一取付部材、および他方に連結される第二取付部材と、
     前記第一取付部材と前記第二取付部材とを弾性的に連結する弾性体と、
     前記第一取付部材の内側の液室を、前記弾性体を壁面の一部とする下側の主液室と上側の副液室とに区画する仕切り部材と、を備えるとともに、
     前記主液室と前記副液室とを連通すると共に前記液室内の液体が流通することで液柱共振が生じる制限通路が形成され、
     前記液室に封入液が封入された液体封入型の防振装置であって、
     前記封入液には、主液として第一液体が含有されていると共に、添加液として前記第一液体に対して不溶な第二液体が含有されており、
     前記第二液体の蒸気圧は、同一温度において前記第一液体の主たる成分の蒸気圧よりも高く、且つ、前記第二液体の比重は、前記第一液体の比重よりも重い防振装置。
  6.  請求項1に記載の防振装置において、
     前記弾性体には、前記制限通路の主液室側開口の近傍に配設されて前記第二液体が溜まる液溜め凹部が形成されている防振装置。
  7.  請求項2に記載の防振装置において、
     前記液溜め凹部は、前記主液室側開口を介した前記制限通路から前記主液室への封入液流通方向の前方側に配設されている防振装置。
  8.  請求項1から3のいずれか一項に記載の防振装置において、
     前記第二液体の表面張力は、前記第一液体の表面張力よりも小さい防振装置。
PCT/JP2010/003885 2009-06-10 2010-06-10 防振装置 WO2010143444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080031322.2A CN102803783B (zh) 2009-06-10 2010-06-10 隔振装置
EP10785975.3A EP2441976B1 (en) 2009-06-10 2010-06-10 Vibrationproof device
US13/377,449 US9188191B2 (en) 2009-06-10 2010-06-10 Vibrationproof device
US14/883,811 US9435396B2 (en) 2009-06-10 2015-10-15 Vibrationproof device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-139066 2009-06-10
JP2009139066A JP5393272B2 (ja) 2009-06-10 2009-06-10 防振装置
JP2009-139068 2009-06-10
JP2009139068A JP5393273B2 (ja) 2009-06-10 2009-06-10 防振装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/377,449 A-371-Of-International US9188191B2 (en) 2009-06-10 2010-06-10 Vibrationproof device
US14/883,811 Division US9435396B2 (en) 2009-06-10 2015-10-15 Vibrationproof device

Publications (1)

Publication Number Publication Date
WO2010143444A1 true WO2010143444A1 (ja) 2010-12-16

Family

ID=43308704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003885 WO2010143444A1 (ja) 2009-06-10 2010-06-10 防振装置

Country Status (4)

Country Link
US (2) US9188191B2 (ja)
EP (1) EP2441976B1 (ja)
CN (1) CN102803783B (ja)
WO (1) WO2010143444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878238A (zh) * 2012-10-16 2013-01-16 三一矿机有限公司 一种减震器及矿用自卸车
US20150048562A1 (en) * 2012-03-31 2015-02-19 Yamashita Rubber Kabushiki Kaisha Inverted liquid sealed mount

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8407897B2 (en) * 2008-10-28 2013-04-02 Bridgestone Corporation Method of manufacturing a vibration isolator
JP2014196808A (ja) * 2013-03-29 2014-10-16 東海ゴム工業株式会社 流体封入式防振装置
US10221916B2 (en) 2013-06-03 2019-03-05 Bridgestone Corporation Anti-vibration apparatus
FR3014158B1 (fr) * 2013-12-03 2016-11-04 Anvis Sd France Sas Dispositif antivibratoire hydroelastique comprenant du propanediol et son application.
US10030738B2 (en) 2014-02-17 2018-07-24 Bridgestone Corporation Vibration-damping device
JP6274927B2 (ja) * 2014-03-17 2018-02-07 株式会社ブリヂストン 防振装置
JP6460782B2 (ja) * 2014-12-25 2019-01-30 Toyo Tire株式会社 液体封入式防振装置
JP6546477B2 (ja) * 2015-08-24 2019-07-17 住友理工株式会社 流体封入式防振装置
US10794446B2 (en) * 2018-03-12 2020-10-06 Sumitomo Riko Company Limited Vibration damping device
FR3079578B1 (fr) * 2018-04-03 2021-02-19 Hutchinson Dispositif antivibratoire et vehicule comportant un tel dispositif antivibratoire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285537A (ja) * 1988-06-06 1990-03-27 Tokai Rubber Ind Ltd 流体封入式マウント装置
JPH06221372A (ja) * 1993-01-22 1994-08-09 Toyota Motor Corp 流体封入式筒型マウント装置
JPH0861423A (ja) 1994-08-25 1996-03-08 Kurashiki Kako Co Ltd 流体封入式エンジンマウント及びその製造方法
JP2860701B2 (ja) 1990-09-27 1999-02-24 豊田合成株式会社 液封入防振装置
JP2004169750A (ja) 2002-11-18 2004-06-17 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2008298150A (ja) * 2007-05-30 2008-12-11 Yamashita Rubber Co Ltd 液封防振装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952075A (en) * 1973-10-03 1976-04-20 Asahi Denka Kogyo K.K. Fluorine-containing compounds
DE3019337C2 (de) 1980-05-21 1986-07-31 Fa. Carl Freudenberg, 6940 Weinheim Elastisches Gummilager
JPS57163747A (en) 1981-03-31 1982-10-08 Tokai Rubber Ind Ltd Anti-oscillation supporter for automobile engine
JPS5989844A (ja) * 1982-11-13 1984-05-24 Tokai Rubber Ind Ltd 防振支持体
JPS60205041A (ja) 1984-03-30 1985-10-16 Nissan Motor Co Ltd 防振マウント
JP2986586B2 (ja) * 1991-07-30 1999-12-06 倉敷化工株式会社 流体封入式マウント
JP3688836B2 (ja) * 1996-12-27 2005-08-31 株式会社ブリヂストン 防振装置
JPH10252811A (ja) 1997-01-10 1998-09-22 Tokai Rubber Ind Ltd 液体封入式筒型マウント装置
JP3702683B2 (ja) * 1998-12-22 2005-10-05 東海ゴム工業株式会社 流体封入式防振装置
JP3603631B2 (ja) * 1998-12-24 2004-12-22 東海ゴム工業株式会社 流体封入式防振装置
JP3728984B2 (ja) 1999-06-30 2005-12-21 東海ゴム工業株式会社 流体封入式防振装置
JP3826768B2 (ja) 2001-11-08 2006-09-27 東海ゴム工業株式会社 流体封入式防振装置
JP4221237B2 (ja) 2003-03-19 2009-02-12 倉敷化工株式会社 液体封入マウント用封入液の封入装置、及び液体封入マウントの製造方法
WO2005100815A1 (ja) 2004-04-08 2005-10-27 Toyo Tire & Rubber Co.,Ltd. 防振装置
CN1701189A (zh) 2004-10-12 2005-11-23 东洋橡胶工业株式会社 液体封装式防振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285537A (ja) * 1988-06-06 1990-03-27 Tokai Rubber Ind Ltd 流体封入式マウント装置
JP2860701B2 (ja) 1990-09-27 1999-02-24 豊田合成株式会社 液封入防振装置
JPH06221372A (ja) * 1993-01-22 1994-08-09 Toyota Motor Corp 流体封入式筒型マウント装置
JPH0861423A (ja) 1994-08-25 1996-03-08 Kurashiki Kako Co Ltd 流体封入式エンジンマウント及びその製造方法
JP2004169750A (ja) 2002-11-18 2004-06-17 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2008298150A (ja) * 2007-05-30 2008-12-11 Yamashita Rubber Co Ltd 液封防振装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048562A1 (en) * 2012-03-31 2015-02-19 Yamashita Rubber Kabushiki Kaisha Inverted liquid sealed mount
US9470287B2 (en) * 2012-03-31 2016-10-18 Yamashita Rubber Kabushiki Kaisha Inverted liquid sealed mount
CN102878238A (zh) * 2012-10-16 2013-01-16 三一矿机有限公司 一种减震器及矿用自卸车

Also Published As

Publication number Publication date
US9435396B2 (en) 2016-09-06
US9188191B2 (en) 2015-11-17
EP2441976B1 (en) 2018-04-11
CN102803783B (zh) 2015-01-28
US20160033000A1 (en) 2016-02-04
CN102803783A (zh) 2012-11-28
EP2441976A1 (en) 2012-04-18
US20120139174A1 (en) 2012-06-07
EP2441976A4 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2010143444A1 (ja) 防振装置
US7802777B2 (en) Liquid-filled vibration isolator
JP4228219B2 (ja) 流体封入式防振装置
JP2012172832A (ja) 液封入式防振装置
JP5452484B2 (ja) 防振装置
JP2009103223A (ja) 防振装置
JP5393273B2 (ja) 防振装置
WO2018135312A1 (ja) 防振装置
JP2007271004A (ja) 流体封入式防振装置
WO2022075067A1 (ja) 防振装置
JP5469926B2 (ja) 防振装置
JP5393272B2 (ja) 防振装置
US20220389986A1 (en) Vibration-damping device
JP7027147B2 (ja) 防振装置
JP5346697B2 (ja) 防振装置
JP4088836B2 (ja) 流体封入式防振装置
JP2007032745A (ja) 流体封入式防振装置
JP2005233243A (ja) 流体封入式エンジンマウント
JP2007333019A (ja) 防振装置
JP5740292B2 (ja) 防振装置の製造方法、及び防振装置
JP5135240B2 (ja) 防振装置
JP5809879B2 (ja) 防振装置
JP2008163987A (ja) 防振装置
JP2015218779A (ja) 液体封入式防振装置
JP2011106480A (ja) 防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031322.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10083/DELNP/2011

Country of ref document: IN

Ref document number: 2010785975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377449

Country of ref document: US