WO2010134511A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2010134511A1
WO2010134511A1 PCT/JP2010/058331 JP2010058331W WO2010134511A1 WO 2010134511 A1 WO2010134511 A1 WO 2010134511A1 JP 2010058331 W JP2010058331 W JP 2010058331W WO 2010134511 A1 WO2010134511 A1 WO 2010134511A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
semiconductor device
layer
insulating layer
forming
Prior art date
Application number
PCT/JP2010/058331
Other languages
English (en)
French (fr)
Inventor
森 健太郎
中島 嘉樹
大輔 大島
菊池 克
山道 新太郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/320,798 priority Critical patent/US8710669B2/en
Priority to JP2011514414A priority patent/JPWO2010134511A1/ja
Publication of WO2010134511A1 publication Critical patent/WO2010134511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • the present invention relates to a semiconductor device in which a semiconductor element is built in a wiring board and a manufacturing method thereof.
  • Patent Documents 1 to 3 describe a semiconductor element built-in substrate that incorporates a conventional semiconductor element.
  • FIG. 19 is a cross-sectional view of a semiconductor element built-in substrate described in Patent Document 1.
  • the semiconductor element-embedded substrate (electronic device 1) of FIG. 19 wiring layers 10a to 10c and electrical insulating layers 9a to 9d are stacked on a core substrate 2, and vertical conduction vias 7a provided in the electrical insulating layers 9a to 9d.
  • Component built-in layers 5A and 5B are provided.
  • Patent Document 1 only describes an example in which a wiring layer and an electrical insulating layer are mainly provided on one side of the core substrate 2, but the wiring layer, the electrical insulating layer, and the electronic component built-in layer are provided on both surfaces of the core substrate 2. It may be formed.
  • a semiconductor element (chip) 30 is mounted on one side of a core substrate 121 described in Patent Document 2, and resin layers (insulating layers) 26a and 26b and wiring layers 27a and 27b are provided on both sides of the core substrate 121.
  • 2 is a cross-sectional view of a provided semiconductor device 110.
  • a wiring layer 33 connected to the electrode pad 31 of the chip 30 is previously provided on the chip 30 by using a wafer level packaging technique, and the wiring layer 33 and the upper wiring layer are formed by vias VH1. It is described that the wiring can be drawn out without increasing the wiring layer by connecting 27a.
  • Patent Document 2 as a method of manufacturing the semiconductor device 110, the resin layers 26a and 26b are formed on both surfaces of the core substrate 121, the resin layers are formed on both surfaces, and the via holes VH1 and VH2 are formed on both surfaces. Then, a seed layer is formed by electroless Cu plating on the entire surface of each resin layer 26a, 26b including the inside of the via holes VH1, VH2, and after forming a register pattern thereon, the via holes VH1, VH2 are made conductive by electroplating. The front and back wiring layers 27a and 27b are formed at the same time.
  • JP 2005-108937 A Japanese Patent Laid-Open No. 2005-311240 JP 2004-179288 A
  • Patent Documents 1 to 3 are incorporated herein by reference. The following analysis is given by the present invention.
  • a semiconductor element is built in one side of the core substrate and an insulating layer and a wiring layer are stacked only on one side as described in the example of Patent Document 1, the following warpage occurs. That is, when the core substrate is on the lower side, the entire semiconductor device has a concave warp, and a convex warp occurs around the semiconductor element. Therefore, problems arise in mounting other components and mounting the semiconductor device on the motherboard.
  • the pitch of the electrode terminals of the built-in semiconductor element is becoming increasingly narrow, and at least the wiring pitch and shape of the connection part and wiring layer directly connected to the semiconductor element must be reduced.
  • An attempt to miniaturize the shape causes an increase in cost and a decrease in yield.
  • An object of the present invention is to provide a semiconductor device that can be manufactured at a high yield while suppressing overall warpage in a semiconductor device having a semiconductor element built in a substrate, and a method for manufacturing the same.
  • a semiconductor device includes a core substrate, an insulating layer and a wiring layer provided on at least one layer on a first surface of the core substrate and a second surface opposite to the first surface, A via provided between the insulating layers and the core substrate and connecting the wiring layers; a semiconductor element mounted on the first surface of the core substrate with an electrode terminal formation surface facing; and the first surface A wiring layer penetrating through an insulating layer provided on the semiconductor element and directly connecting the electrode terminal of the semiconductor element and the wiring layer provided on the first surface; and a wiring layer directly connected to the connection portion
  • the minimum wiring pitch is smaller than the minimum wiring pitch of any wiring layer provided on the second surface.
  • a core wiring is provided on the surface of the first surface and the surface of the second surface opposite to the first surface, and further, the first surface and the first surface.
  • the semiconductor device in which a semiconductor element is built in a substrate, it is possible to obtain a semiconductor device having a structure that can be manufactured at a high yield while suppressing overall warpage. Further, according to the method for manufacturing a semiconductor device of the present invention, the semiconductor device can be manufactured at a low cost and with a high yield.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to Modification 1 of Embodiment 1. It is sectional drawing of the semiconductor device by the modification 2 in each embodiment. It is sectional drawing of the semiconductor device by the modification 3 in each embodiment. It is sectional drawing of the semiconductor device by the modification 4 in each embodiment. It is sectional drawing of the semiconductor device by the modification 5 in each embodiment. It is sectional drawing of the semiconductor device by the modification 6 in each embodiment. It is sectional drawing of the semiconductor device by Embodiment 3 of this invention.
  • FIG. 10 is a continuation of the process diagram according to Embodiment 4.
  • FIG. 10 is a process diagram of a method for manufacturing a semiconductor device according to a modification of Embodiment 4.
  • FIG. 10 is a continuation of the process diagram according to the modification of the fourth embodiment.
  • FIG. 10 is a process diagram of a method for manufacturing a semiconductor device according to Embodiment 5.
  • FIG. 10 is a continuation of the process diagram according to Embodiment 5.
  • FIG. 10 is a process diagram of a method for manufacturing a semiconductor device according to Embodiment 6. It is sectional drawing of the conventional semiconductor device described in patent document 1.
  • FIG. 10 is sectional drawing of the conventional semiconductor device described in patent document 2.
  • the semiconductor element 14 mounted in a table, and the insulating layer 16 provided on the first surface, and the electrode terminal 14a of the semiconductor element 14 and the wiring layer 19a provided on the first surface are directly connected Part 15 and the minimum wiring pitch of the wiring layer 19a directly connected to the connecting part 15 is Any provided dihedral wiring layer (19c, 19d, 22) smaller than the minimum wiring pitch of the.
  • the minimum wiring pitch is a distance from the center of
  • the warp of the entire semiconductor device can be reduced by the effect of the insulating layer on the second surface (FIG. 10, (See FIG. 11).
  • the insulating layer is also provided on the second surface opposite to the semiconductor element mounting surface, the warp of the entire semiconductor device can be reduced by the effect of the insulating layer on the second surface (FIG. 10, (See FIG. 11).
  • BGA Bit Grid Array
  • the minimum wiring pitch of the wiring layer 19a directly connected to the electrode terminal 14a is narrowed in accordance with the pitch of the electrode terminal 14a on the surface of the semiconductor element 14.
  • the minimum wiring pitch of the wiring layer (19c, 19d, 22) on the second surface which is the surface opposite to the semiconductor element mounting surface, is made larger than this.
  • each via 20 provided on the second surface is larger than the shape of the connection portion 15. That is, the connection portion 15 directly connected to the electrode terminal 14a of the semiconductor element 14 is formed into a small shape by fine processing, and the connection stability can be improved by forming each via on the second surface larger than this. At the same time, the semiconductor device 10 can be manufactured with a high yield.
  • the top diameter, the bottom diameter, and the height of each via 20 provided on the second surface are larger than the top diameter, the bottom diameter, and the height of the connection portion 15, respectively. That is, the top diameter of each via 20 is larger than the top diameter of the connection portion 15, the bottom diameter of each via 20 is larger than the bottom diameter of the connection portion 15, and the height of each via 20 is the height of the connection portion 15. Higher than that. Further, the volume of each via 20 provided on the second surface is three times or more than the volume of one connection portion 15.
  • the thickness of the wiring layer 19a directly connected to the connecting portion 15 is thinner than the thickness of any wiring layer (19c, 19d, 22) provided on the second surface.
  • the wiring layer 19a thin it is easy to form fine wiring, and the wiring layers (19c, 19d, 22) on the second surface that do not require fine wiring are formed thick.
  • the impedance of the wiring resistance can be reduced.
  • the thickness of each wiring layer (19c, 19d, 22) provided on the second surface the minimum It is desirable to increase the wiring width and the minimum wiring interval by 1.5 times or more because an effect for improving the yield of the semiconductor device can be obtained.
  • the material of the insulating layer 16 around the connecting portion 15 is different from the material of the insulating layers (18-1, 18-2) not including the connecting portion 15.
  • the insulating layer 16 around the connection portion 15 may be formed of a photosensitive resin, and the resin layer provided on the second surface may be formed of a non-photosensitive resin.
  • the connection portion 15 can employ a photo via formed by photolithography, and a finer via can be formed than a laser via formed by laser processing, so that a narrow pitch connection with the semiconductor element 14 can be supported.
  • the via provided in the insulating layer on the second surface can be realized by reducing the cost of the entire semiconductor device by selecting to use a laser that is lower in cost than the photo via by a combination of materials and processes.
  • non-photosensitive resins do not have a photosensitive function, so they have excellent mechanical properties, rupture strength, elastic modulus, elongation at break, etc. as resin materials, and are resistant to external stress.
  • the long-term reliability of the semiconductor device can be increased.
  • it is preferable that the connection part 15 does not contain a solder material or a resin component. By doing so, connection with a narrow pitch and connection with high reliability are possible.
  • at least one insulating layer 18-2 and two wiring layers 22 on the second surface are provided.
  • Each of the insulating layer and the wiring layer on the first surface may be one layer.
  • the number of insulating layers and wiring layers on the first surface can also be determined as necessary. That is, the insulating layer (16, 18-1) and the wiring layer (19a, 19b, 21) on the first surface may be two or more layers. In that case, a narrow-pitch, multi-pin semiconductor element can be incorporated.
  • the power supply and ground layers can be strengthened, so that the characteristic impedance can be improved.
  • External electrodes (21, 22) are provided on the outermost wiring layers (21, 22) of the first surface and the second surface, respectively.
  • the electronic component 24 connected to the external electrodes (21, 22) is further included. If the electronic component 24 is mounted on the same first surface as the semiconductor element 14 as shown in FIG. 4, a high-speed signal can be transmitted between the semiconductor element 14 and the electronic component 24. On the other hand, if the electronic component 24 is mounted on the second surface that does not incorporate the semiconductor element 14 as shown in FIG. 5, it can be mounted on the highly rigid core substrate 11 only through the single insulating layer 18-2. Therefore, mounting accuracy is improved.
  • a recess is formed in the first surface of the core substrate 11, and the semiconductor element 14 can be mounted in the recess. In this case, it is possible to reduce the thickness of the entire semiconductor device 10 by reducing the height of the semiconductor element 14. Furthermore, a plurality of semiconductor elements 14 may be mounted on the first surface of the core substrate 11 with the element formation surface as the front. In addition, as shown in FIGS. 6, 7, and 8, a reinforcing material is provided in at least one of the plurality of insulating layers. By providing the reinforcing goods, it is possible to effectively reduce the warpage of the entire semiconductor device 10 and the chip.
  • the method for manufacturing a semiconductor device has a core wiring 12 on the surface of the first surface and the surface of the second surface opposite to the first surface.
  • a core substrate 11 provided with a through via 13 for connecting the core wiring 12 between the first surface and the second surface is used (see FIG. 12A, etc.).
  • a step of mounting the semiconductor element 14 with the electrode terminal 14a formation surface as a front surface (FIG. 12B), and a first insulating layer covering the semiconductor element 14 on the first surface are formed.
  • a second wiring formation step for forming two wiring layers.
  • the step of forming the first insulating layer 16 and the step of forming the first wiring (19a, 21 in FIG. 17) include the step of forming the second insulating layer 18-2 and the second wiring (19c, 19d, 22) Implemented in a separate process from the forming process.
  • the via 20 and the wiring provided on the second surface have the processing accuracy required for the connection portion 15 directly connected to the electrode terminal 14a of the semiconductor element 14 and the wiring 19a directly connected to the connection portion 15.
  • the step of forming the first insulating layer 16 and the step of forming the first wiring 19a include the step of forming the second insulating layer 18-2 and the step of forming the second wiring 22 Is performed in a separate process.
  • a fine wiring can be formed using an additive method
  • a wiring can be formed at a low cost using a subtractive method.
  • a step of mounting the semiconductor element 14 is performed.
  • the semiconductor element 14 is often the most expensive component. Therefore, by mounting the semiconductor element 14 in the order of steps in which the frequency of occurrence of defects is reduced as much as possible, This is to prevent the non-defective semiconductor element 14 from being wasted due to a defect other than the element 14. That is, when a defect occurs in the insulating layer forming process or the wiring layer forming process after the semiconductor element 14 is mounted on the core substrate 11, repair of these itself is performed, or the semiconductor element 14 is peeled off from the core substrate 11. This is because it is often difficult to stably carry out the repairing process for replacing the core substrate 11.
  • a step of mounting the semiconductor element 14 can be performed after the step of forming the second wiring 19c. That is, by forming the insulating layer and the wiring layer on the second surface first and then mounting the semiconductor element 14 on the first surface, a non-defective semiconductor element 14 is wasted due to a defect other than the semiconductor element 14. Can be prevented. Further, as shown in FIG. 18, after the second wiring 19c formation step, the insulating layer 18-2 and the wiring layer 19d are further stacked on the surface of the second wiring layer 19c on the second surface to form the second surface. The step of mounting the semiconductor element 14 can be performed after the formation of the multilayer wiring is completed.
  • the first insulating layer 16 may be formed of a photosensitive resin, a fine via hole may be formed by photolithography, the second insulating resin may be formed of a non-photosensitive resin, and a via may be formed at low cost using a laser. Is possible.
  • the semiconductor element 14 includes the metal post 15 provided on the surface of the electrode terminal 14a, and the surface of the metal post 15 is exposed in the first wiring formation step (for example, FIG. 13A). As described above, a step may be included in which a part of the first insulating layer 16 is removed and the connection portion 15 is formed by the metal post 15.
  • the step of forming the first insulating layer 16 covering the semiconductor element 14 covers the outer peripheral portion of the semiconductor element 14 with the first insulating resin, and the surface of the semiconductor element 14 is the second.
  • FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device 10 according to the first embodiment.
  • a semiconductor device 10 in FIG. 1 includes a core substrate 11 in which front and back core wirings 12 are conducted through through vias 13, a semiconductor element 14 provided on the first surface of the core substrate 11, and a built-in semiconductor element 14.
  • a wiring 19 a is provided on the surface of the layer 16 and the built-in layer 16.
  • the electrode terminal 14a is provided in the surface of the semiconductor element 14, and the connection part 15 is connected to the electrode terminal 14a.
  • the wiring 19 a and the electrode terminal 14 a of the semiconductor element 14 are connected via the connection portion 15.
  • the wiring 19 a provided on the surface of the internal layer 16 and the core wiring 12 are connected via an internal layer via 17 provided in the internal layer 16.
  • An insulating layer A (18-1) is provided on the upper surface of the built-in layer 16, and the first electrode 21 and the wiring 19 a are connected via the via 20.
  • an insulating layer B (18-2) is provided on the second surface of the core substrate 11, which is the opposite surface provided with the built-in layer 16, and the second electrode 22 and the core wiring 12 are connected via the via 20. It is connected.
  • solder resists 23 are provided on both surfaces of the semiconductor device 10 so as to open the first electrode 21 and the second electrode 22.
  • the surface of the core substrate 11 on which the semiconductor element 14 is mounted is referred to as a first surface, and the opposite surface is referred to as a second surface.
  • the face has no further meaning.
  • wiring may be performed using the same conductive layer as the first electrode 21 and / or the same conductive layer as the second electrode 22.
  • the same conductive layer as the first electrode 21 and / or the same conductive layer as the second electrode 22 also serves as a wiring layer.
  • the insulating layer A (18-1) may have a plurality of layers. In that case, a narrow-pitch, multi-pin semiconductor element can be incorporated.
  • the power supply and ground layers can be strengthened, so that the characteristic impedance can be improved.
  • a reinforcing material 26 may be provided in the built-in layer 16 so as to surround the semiconductor element 14. In that case, warpage of the entire semiconductor device 10 and the chip can be effectively reduced.
  • a reinforcing material 26 may be provided on the insulating layer A (18-1). In that case, the warpage of the entire semiconductor device 10 can be effectively reduced.
  • a reinforcing material 26 may be provided on the insulating layer B (18-2). In that case, the warpage of the entire semiconductor device 10 can be effectively reduced.
  • a semiconductor element built-in substrate using the core substrate 11 as a support will be considered.
  • the semiconductor element 14 is built in one surface (first surface) of the core substrate 11 and the resin layer (insulating layer B18-2) is not provided on the opposite surface (second surface), as shown in FIG.
  • the warpage of the entire device 10 and the periphery of the chip greatly warps unevenness due to the relationship between the thermal expansion coefficient and the elastic modulus of the constituent materials. Therefore, there are problems in mounting other components on the semiconductor device 10, mounting the semiconductor device 10 on a motherboard, and long-term reliability.
  • the semiconductor element 14 may be embedded in the first surface of the core substrate 11. In that case, since the resin thickness of the built-in layer 16 can be reduced, warping of the semiconductor device 10 can be suppressed. Further, since the aspect ratio of the built-in layer via 17 can be reduced, the built-in layer via 17 can be manufactured with a high yield.
  • the built-in layer 16, the insulating layer A (18-1), and the insulating layer B (18-2) may be made of different insulating materials.
  • the warping of the entire semiconductor device 10 can be suppressed by making the insulating material of the insulating layer B (18-2) more elastic than the insulating material of the built-in layer 16 and the insulating layer A (18-1).
  • the electronic component 24 can be mounted on the semiconductor device 10 via the connection material 25.
  • the electronic component 24 may be mounted on either the first electrode 21 or the second electrode 22 of the semiconductor element 14, the distance between the built-in semiconductor element 14 and the electronic component 24 is made closer to the semiconductor element 14.
  • the wiring shape of the two electrodes 22 is preferably larger than the wiring of the nearest layer from the electrode surface of the semiconductor element 14, the via shape of the connection portion 15 that is a via, and the wiring shape of the wiring layer 19 a. Further, in this embodiment, by limiting the insulating layer B (18-2) to a single layer, a high-yield manufacturing technique is ensured. As a result, the yield of the insulating layer B (18-2) and the yield of the semiconductor device 10 can be improved.
  • the via shape indicates the top diameter, the bottom diameter, and the height of the via
  • the wiring shape indicates a wiring width, a pitch between wirings, a so-called wiring rule, and a wiring thickness.
  • the core substrate 11 for example, a resin substrate, silicon, ceramic, glass, glass-epoxy composite, or the like is used. In particular, an organic resin substrate, a glass-epoxy composite, or the like is desirable from the viewpoint of cost and warpage control.
  • the core substrate 11 is made of a rigid glass-epoxy composite.
  • the number of wiring layers of the core substrate 11 is not limited to two layers on both sides, and is preferably a multilayer. In the present embodiment, the number of wiring layers of the core substrate 11 is four. Further, in order to improve the yield of the semiconductor device 10, it is desirable that the manufactured core substrate 11 is subjected to a non-defective inspection before the semiconductor element 14 is mounted.
  • the specifications of the core substrate 11, for example, the wiring rule (L / S), via pitch, and via size are Specs (L / S: 50 ⁇ m / 50 ⁇ m, via pitch: 1 mm, via size 100 ⁇ m) that can be applied to mass production and can be realized at a high yield may be used. Further, by using such a high yield core substrate, the cost of the semiconductor device can be reduced.
  • the thickness of the semiconductor element 14 can be adjusted according to the thickness required for the entire semiconductor device 10. In the present embodiment, the thickness of the semiconductor element 14 is 50 ⁇ m. In FIG. 1, the number of semiconductor elements 14 is one, but a plurality of semiconductor elements 14 may be used. In the present embodiment, one semiconductor element 14 is built in the built-in layer 16.
  • DAF die attachment film
  • insulating paste insulating paste
  • silver paste a silver paste is used as an adhesive layer between the semiconductor element 14 and the core substrate 11.
  • DAF is used.
  • the area where the semiconductor element 14 of the core substrate 11 is mounted is an area where the core wiring 12 is not provided in order to ensure adhesion.
  • the built-in layer 16, the insulating layer A (18-1), and the insulating layer B (18-2) are made of, for example, a photosensitive or non-photosensitive organic material.
  • the organic material include an epoxy resin and an epoxy Acrylic resin, urethane acrylate resin, polyester resin, phenol resin, polyimide resin, BCB (benzocyclobutylene), PBO (polybenzoxazole), polynorbornene resin, etc., epoxy resin on woven fabric and non-woven fabric made of glass cloth, aramid fiber, etc., A material impregnated with epoxy acrylate resin, urethane acrylate resin, polyester resin, phenol resin, polyimide resin, BCB (benzocyclobenzene), PBO (polybenzoxazole), polynorbornene resin, or the like is used.
  • the built-in layer 16 may be made of a photosensitive resin
  • the insulating layer B (18-2) may be made of a non-photosensitive resin.
  • the connecting portion 15 formed in the built-in layer 16 is finely processed as a photo via, and the via 20 formed in the insulating layer B (18-2) is used with a laser such as a UV-YAG laser or a CO2 laser. And can be processed at low cost.
  • the built-in layer 16, the insulating layer A (18-1), and the insulating layer B (18-2) are made of a non-photosensitive epoxy resin.
  • the core wiring 12, the wiring 19, the first electrode 21, and the second electrode 22 are, for example, at least one metal selected from the group consisting of copper, silver, gold, nickel, aluminum, and palladium, or these as a main component. Use an alloy. In particular, it is desirable to form with copper from the viewpoint of electrical resistance value and cost.
  • the core wiring 12, the wiring 19, the first electrode 21, and the second electrode 22 are made of copper.
  • the through via 13, the built-in layer via 17, and the via 20 are made of, for example, at least one metal selected from the group consisting of copper, silver, gold, nickel, aluminum, and palladium, or an alloy containing these as a main component. In particular, it is desirable to form with copper from the viewpoint of electrical resistance value and cost.
  • the through via 13, the built-in layer via 17, and the via 20 are made of copper.
  • a capacitor that serves as a noise filter of the circuit may be provided at a desired position in each layer.
  • the dielectric material constituting the capacitor include metal oxides such as titanium oxide, tantalum oxide, Al 2 O 3 , SiO 2 , ZrO 2 , HfO 2, or Nb 2 O 5 , BST (Ba x Sr 1-x TiO 3). ), in PZT (PbZr x Ti 1-x O 3) or PLZT (Pb 1-y La y Zr x Ti 1-x O 3) perovskite material or SrBi 2 Ta Bi-based layered compounds such as 2 O 9, such as Preferably there is. However, 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1. Further, as a dielectric material constituting the capacitor, an organic material mixed with an inorganic material or a magnetic material may be used. In addition to semiconductor elements and capacitors, discrete parts may be provided.
  • a rigid core substrate is used as a support in a semiconductor element built-in substrate incorporating a semiconductor element, a high yield semiconductor device can be realized.
  • a single insulating layer is provided on the opposite surface of the built-in layer, the semiconductor device can be reduced in warpage.
  • FIG. 2 is a partial sectional view showing the semiconductor device 10 according to the second embodiment.
  • the semiconductor device 10 according to the first embodiment is different from the semiconductor device 10 according to the first embodiment in that the first surface of the core substrate 11 does not require the insulating layer A (18-1) and is configured only by the built-in layer 16.
  • the reinforcing material is not provided in the insulating material of the built-in layer 16 and the insulating layer B (18-2) in FIG. 2, but a reinforcing material may be provided as shown in FIGS.
  • the semiconductor The warp of the device 10 can be further reduced.
  • the number of wiring layers other than the core substrate 11 is one on the front and back, the factor of reducing the yield is reduced, and the semiconductor device 10 can be manufactured with a high yield.
  • the rigid core substrate 11 is used as the support in the semiconductor element built-in substrate in which the semiconductor element 14 is built, a high yield semiconductor device can be realized.
  • one insulating layer and one wiring layer are provided on both surfaces of the core substrate 11, the yield and the warpage of the semiconductor device can be significantly improved.
  • FIG. 9 is a cross-sectional view of a main part of the semiconductor device according to the third embodiment.
  • the semiconductor device 10 according to the third embodiment is different from that according to the first embodiment in which the multilayer insulating layer B (18-2) and the multilayer wiring layers 19c and 19d are provided on the second surface which is the opposite surface of the semiconductor element 14 mounting surface. Is different. Of the wiring layers on the second surface, the lowermost wiring layer is 19c, and the wiring layer above 19c is 19d. According to the third embodiment, since the second surface, which is the opposite surface of the semiconductor element 14 mounting surface, is also provided with the multilayer wiring, a wiring having a higher degree of freedom is formed even when the number of terminals of the semiconductor element 14 is larger. can do.
  • the semiconductor element 14 can be shielded from noise by strengthening the power source and the ground layer and providing a shield layer.
  • the semiconductor device 10 of the third embodiment can be manufactured with a high yield after the semiconductor element 14 is mounted on the core substrate 11.
  • the solder resist 23 is not provided on the second electrode 22 formation surface of the second surface, but if necessary, the solder resist is also formed on the outermost layer of the second surface as in the first embodiment. 23 can also be provided.
  • FIGS. 13 (a) and 13 (b) are cross-sectional views illustrating the method of manufacturing the semiconductor device 10 according to the fourth embodiment in the order of steps.
  • FIGS. 13 (a) and 13 (b) are processes following (a) to (c) of FIG.
  • the semiconductor device 10 of Embodiment 1 FIG. 1
  • a core substrate 11 is prepared in which core wirings 12 on the front and back sides are connected via through vias 13.
  • the core substrate is desirably a highly rigid material. Moreover, it is desirable that the non-defective product inspection has been completed.
  • a position mark for mounting the semiconductor element 14 is preferably provided on the core substrate 11. As long as the position mark can be recognized with high accuracy and functions as a position mark, a metal may be deposited on the core substrate 11 or a recess may be provided by wet etching or machining. In this embodiment, a glass-epoxy composite having a core substrate thickness of 0.8 mm and four wiring layers is used, and the position mark is the core wiring 12.
  • the semiconductor element 14 is mounted on the core substrate 11 provided with the position mark so that the surface of the electrode terminal 14a of the semiconductor element 14 is the front.
  • an adhesive layer is preferably provided between the core substrate 11 and the semiconductor element 14, but the resin surface of the uncured core substrate 11 may be handled as an adhesive surface.
  • the terminal surface (electrode terminal 14 a) and the side surface of the semiconductor element 14 are laminated with the built-in layer 16.
  • a film-like insulating material may be laminated so that the terminal surface and side surface of the semiconductor element 14 are collectively covered, or the terminal surface and side surface of the semiconductor element 14 may be separately laminated.
  • the film-like insulating resin there is no limitation to the film-like insulating resin, and it may be liquid.
  • the insulating material used for the built-in layer 16 is formed of, for example, a photosensitive or non-photosensitive organic material.
  • the organic material include epoxy resin, epoxy acrylate resin, urethane acrylate resin, polyester resin, phenol resin, and polyimide.
  • the lamination method is provided by a transfer molding method, a compression molding method, a printing method, a vacuum press, a vacuum lamination, a spin coating method, a die coating method, a curtain coating method, or the like.
  • an epoxy resin is used as the insulating resin, and the terminal surface and the side surface of the semiconductor element 14 are laminated together by vacuum lamination.
  • connection portion 15 is formed on the electrode terminal 14 a on the semiconductor element 14, the built-in layer via 17 is formed on the core substrate 11, and the connection portion 15 and the built-in layer via is formed on the built-in layer 16.
  • a wiring 19 a is formed to connect 17.
  • a hole to be a connection portion 15 and a built-in layer via 17 is formed in the built-in layer 16. The holes are formed by photolithography when the built-in layer 16 uses a photosensitive material. If a photosensitive material having a high pattern resolution is used, fine holes can be processed.
  • the hole is formed by a laser processing method, a dry etching method, or a blast method.
  • a laser processing method is used.
  • the hole 15 is filled with, for example, at least one metal selected from the group consisting of copper, silver, gold, nickel, aluminum, and palladium, or an alloy containing these as a main component, and the connection portion 15 and the built-in via Layer 17 is formed.
  • the filling method is performed by electrolytic plating, electroless plating, printing method, molten metal suction method, or the like.
  • the connecting portion 15 and the built-in via layer 17 are provided with a metal post for energization in advance on the semiconductor element 14 or on the core substrate 11, and after the built-in layer 16 is formed, the surface of the insulating resin is polished by polishing or the like. A method of forming a via by shaving to expose the surface of the metal post may be used.
  • the wiring 19a is formed by a method such as a subtractive method, a semi-additive method, or a full additive method.
  • the subtractive method is a method in which a resist having a desired pattern is formed on a copper foil provided on a substrate, an unnecessary copper foil is etched, and then the resist is removed to obtain a desired pattern.
  • a power supply layer is formed by an electroless plating method, a sputtering method, a CVD (chemical vapor deposition) method, etc., a resist having an opening in a desired pattern is formed, and a metal by electrolytic plating is formed in the resist opening. Is deposited, and after removing the resist, the power feeding layer is etched to obtain a desired wiring pattern.
  • a pattern is formed with a resist, and the catalyst is activated while leaving the resist as an insulating film.
  • a desired wiring pattern is obtained by depositing metal.
  • the wiring 19a for example, at least one metal selected from the group consisting of copper, silver, gold, nickel, aluminum, and palladium, or an alloy containing these as a main component is used. In particular, it is desirable to form with copper from the viewpoint of electrical resistance value and cost.
  • the insulating layer A (18-1), the first electrode 21, and the via 20 are formed on the upper surface of the built-in layer 16, and the second surface, which is the opposite surface of the built-in layer 16, is formed.
  • the insulating layer B (18-2), the second electrode 22, and the via 20 are formed.
  • the number of wiring layers of the insulating layer A (18-1) may be increased by the desired number of layers, but in this embodiment of the manufacturing method, the insulating layer B (18-2) is a single-layer wiring.
  • a wiring connecting the via 20 and the second electrode 22 may be provided in the same conductive layer as the second electrode 22.
  • the insulating layer B (18-2) may be formed before the semiconductor element 14 is mounted.
  • the semiconductor device 10 which is a substrate with a built-in semiconductor element is efficiently manufactured. Further, according to the present embodiment, since the rigid core substrate 11 is used as a support, the semiconductor device 10 with a high yield can be realized. In addition, since the single insulating layer is provided on the opposite surface of the built-in layer 16, the semiconductor device 10 can be reduced in warpage. In particular, the formation of the wiring layer 19a directly connected to the built-in layer 16 on the first surface of the core substrate 11 which is the semiconductor element mounting surface and the connecting portion 15 thereon, and the insulating layer B (18-2) on the second surface The wiring layer (second electrode) 22 including the vias 20 is formed in a separate process.
  • connection portion 15 directly connected to the electrode terminal 14a of the semiconductor element 14 and the wiring 19a are processed using a process capable of fine processing, and the formation of the insulating layer, via, and wiring layer on the second surface is low in cost.
  • a process capable of high-yield processing can be used.
  • the internal layer 16 is made of a high-resolution photosensitive material that can be finely processed, and the connection portion 15 is formed with high precision by photolithography, and the insulating layer B (18-2) is not exposed to light.
  • a hole that becomes a via hole may be formed at a low cost using a UV-YAG laser or a CO2 laser.
  • the entire wiring formation can be made at low cost.
  • FIG. 17 are partial cross-sectional views illustrating the method of manufacturing the semiconductor device according to the fifth embodiment in the order of steps.
  • the semiconductor device 10 of the second embodiment shown in FIG. 2 can be manufactured.
  • the manufacturing method according to the fifth embodiment is different from the manufacturing method according to the fourth embodiment in that the insulating layer on the first surface (the surface on which the semiconductor element 14 is mounted) of the core substrate 11 is composed of only the built-in layer 16 and the insulating layer A (18 The difference is that -1) is not formed.
  • parts different from the manufacturing method according to the fourth embodiment will be described. Parts that are not particularly described are the same as those in the manufacturing method according to the fourth embodiment.
  • a core substrate 11 is prepared in which core wirings 12 on the front and back sides are connected through through vias 13.
  • the semiconductor element 14 is mounted on the core substrate 11 provided with the position marks with the terminal surface of the semiconductor element 14 being on the upper surface.
  • the terminal surface and the side surface of the semiconductor element 14 are stacked with the built-in layer 16.
  • the connection portion 15 is connected to the electrode terminal 14 a of the semiconductor element 14, the internal layer via 17 is connected to the core substrate 11, and the connection portion 15 and the internal layer via 17 are connected to the internal layer 16.
  • the first electrode 21 to be formed is formed.
  • the insulating layer B (18-2), the second electrode 22, and the via 20 are formed on the opposite surface of the built-in layer 16.
  • a wiring (corresponding to 19a in FIG. 13A) may be provided in the same conductive layer as the first electrode 21, and the connecting portion 15 and the first electrode 21 may be connected by this wiring.
  • the semiconductor device 10 which is a substrate with a built-in semiconductor element is efficiently manufactured.
  • the rigid core substrate 11 is used as a support, a semiconductor device with a high yield can be realized.
  • the single insulating layer 18-2 is provided on the opposite surface of the built-in layer 16, it is possible to reduce the warpage of the semiconductor device.
  • one insulating layer and one wiring layer are provided on both surfaces of the core substrate 11, the yield and the warpage of the semiconductor device can be significantly improved.
  • FIG. 18A and 18B are cross-sectional views of the main part of the intermediate process showing the method for manufacturing the semiconductor device 10 of the sixth embodiment.
  • a multilayer insulating layer and a wiring layer are formed on the second surface of the core substrate 11 opposite to the semiconductor element mounting surface.
  • the second electrode 22 is first formed in the outermost wiring layer.
  • a test is performed before mounting the semiconductor element 14 to confirm that the core substrate 11 and the pattern on the second surface are free from defects.
  • FIG. 18B the semiconductor element 14 is mounted on a support substrate on which it has been confirmed that the wiring pattern on the second surface is free from defects. Thereafter, only the step of processing the first surface among the steps of the fourth and fifth embodiments is performed to complete the semiconductor device 10 shown in FIG.
  • the formation of the built-in layer 16, the connection portion 15, and the wiring 19a on the first surface, and the formation of the insulating layer 18-2, the via 20, and the wirings 19c and 19d on the second surface are performed in separate steps. Therefore, it is possible to finely process the connection portion 15 and the wiring layer 21 on the first surface, and to manufacture the via 20 and the wiring layer 22 on the second surface at a low cost and with a high yield.
  • the semiconductor element 14 is mounted on the core substrate 11 after the formation and testing of the wiring pattern on the second surface is completed. Therefore, the process of mounting the semiconductor element 14 on the core substrate 11 can be as late as possible. Therefore, the yield in the process after mounting the semiconductor element 14 on the core substrate can be particularly increased, and the probability that the semiconductor device 10 including the semiconductor element 14 must be discarded due to a defect other than the semiconductor element 14 is reduced. be able to.
  • each via provided on the second surface is larger than the shape of the connection portion.
  • the top diameter, the bottom diameter, and the height of each via provided on the second surface are larger than the top diameter, the bottom diameter, and the height of the connection portion, respectively.
  • the volume of each via provided on the second surface is three times or more the volume of the connection portion.
  • the thickness of the wiring layer directly connected to the connection portion is thinner than the thickness of any wiring layer provided on the second surface.
  • the thickness, minimum wiring width, and minimum wiring interval of each wiring layer provided on the second surface are 1 with respect to the thickness, minimum wiring width, and minimum wiring interval of the wiring layer directly connected to the connection portion. It is preferably 5 times larger.
  • the material of the insulating layer around the connecting portion is different from the material of the insulating layer not including the connecting portion.
  • the insulating layer around the connection portion is formed of a photosensitive resin, and the insulating layer provided on the second surface is formed of a non-photosensitive resin.
  • the elastic modulus of the insulating layer around the connecting portion is lower than the elastic modulus of the insulating layer not including the connecting portion.
  • the connecting portion does not contain a solder material or a resin component.
  • the insulating layer and the wiring layer on the second surface are each one layer.
  • the insulating layer and the wiring layer on the first surface are each one layer.
  • external electrodes are provided on the outermost wiring layers of the first surface and the second surface, respectively.
  • the minimum pitch of the connection portions is narrower than the minimum pitch of the external electrodes.
  • Form 15 It is preferable to further include an electronic component connected to the external electrode.
  • Form 16 It is preferable that a recess is formed in the first surface of the core substrate, and the semiconductor element is mounted in the recess.
  • a plurality of semiconductor elements are mounted on the first surface of the core substrate with an element formation surface as a front.
  • a reinforcing material is provided on at least one of the plurality of insulating layers.
  • Form 19 As stated in the second aspect.
  • Form 20 In the first wiring formation step, it is preferable to form a wiring using an additive method, and in the second wiring formation step, a wiring is formed using a subtractive method.
  • a step of mounting the semiconductor element is performed after the step of forming the second insulating layer.
  • a step of mounting the semiconductor element is performed after the second wiring formation step.
  • an insulating layer and a wiring layer are further stacked on the surface of the second wiring layer on the second surface, and after the formation of the multilayer wiring on the second surface is completed, the semiconductor It is preferable to carry out the step of mounting the element.
  • a via hole reaching the electrode terminal of the semiconductor element from the surface of the first insulating layer and a via hole reaching the core wiring provided on the first surface are formed, and the via hole is formed. Is preferably filled with a conductive layer to form the connection portion and the via.
  • Form 25 Forming the first insulating layer with a photosensitive resin, forming the via hole reaching the electrode terminal of the semiconductor element by photolithography, forming the second insulating layer with a non-photosensitive resin, And forming a via in the second insulating layer using a laser.
  • the semiconductor element is a semiconductor element having a metal post provided on the surface of the electrode terminal, wherein the first wiring forming step forms a part of the first insulating layer so that the surface of the metal post is exposed. It is preferable to include a step of removing and forming the connection portion by the metal post.
  • the step of forming the first insulating layer covering the semiconductor element includes a step of covering an outer peripheral portion of the semiconductor element with a first insulating resin, and a step of covering the surface of the semiconductor element with a second insulating resin. Is preferred.
  • the present invention is not limited only to the configurations of the above embodiments, and of course includes various modifications and corrections that can be made by those skilled in the art within the scope of the present invention. It is. In other words, within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.

Abstract

 半導体素子を内蔵する半導体素子内蔵基板において、高歩留まりで製造でき、且つ、低反り化を実現する半導体装置およびその製造方法を提供する。コア基板と、コア基板の第1面と第2面に少なくとも1層ずつ設けられた絶縁層及び配線層と、各絶縁層と前記コア基板に設けられ前記配線層間を接続するビアと、コア基板の第1面に電極端子形成面を表にして搭載された半導体素子と、第1面に設けられた絶縁層を貫通し、半導体素子の電極端子と第1面に設けられた配線層とを直接接続する接続部と、が設けられ、接続部に直接接続される配線層の最小配線ピッチは、第2面に設けられたいずれの配線層の最小配線ピッチより小さい。

Description

半導体装置及び半導体装置の製造方法
 (関連出願についての記載)
 本願は、先の日本特許出願2009-122209号(2009年5月20日出願)の優先権を主張するものであり、前記先の出願の全記載内容は、本書に引用をもって繰込み記載されているものとみなされる。
本発明は、半導体装置及びその製造方法に関する。特に、半導体素子を配線基板に内蔵した半導体装置及びその製造方法に関する。
 近年、電子機器の小型化、薄型化、高機能化、高性能化を実現するために、半導体パッケージの高密度実装技術が必要となっている。その解決手段の一つとして、配線基板の内部に半導体素子を内蔵する半導体素子内蔵基板が提案され、研究開発が進められている。また、配線基板に搭載する半導体素子の回路規模の増大に伴って、半導体素子の外部接続端子の数は増大し、その外部接続端子間のピッチは狭くなってきている。特許文献1乃至3には、従来の半導体素子を内蔵する半導体素子内蔵基板が記載されている。
 図19は、特許文献1に記載されている半導体素子内蔵基板の断面図である。図19の半導体素子内蔵基板(電子装置1)では、コア基板2上に配線層10a~10cと電気絶縁層9a~9dとを積層し、電気絶縁層9a~9dに設けられた上下導通ビア7a~7dにて各配線層10a~10cに所望の導通がなされた電子装置1において、配線層10a~10c又はコア基板2と電気絶縁層9a~9dとの間に、電子部品8を内蔵する電子部品内蔵層5A、5Bが設けられている。電子部品8の端子部8aは上下導通ビア7により配線層10a、10cに接続されている。なお、特許文献1には、主にコア基板2の片側に配線層と電気絶縁層を設ける実施例しか記載されていないが、コア基板2の両面に配線層、電気絶縁層及び電子部品内蔵層を形成してもよいと記載されている。
 図20は、特許文献2に記載されているコア基板121の片面に半導体素子(チップ)30を搭載し、コア基板121の両面に樹脂層(絶縁層)26a、26bと配線層27a、27bを設けた半導体装置110の断面図である。特許文献2では、ウェハレベルパッケージング技術を用いて、チップ30の電極パッド31に接続された配線層33をあらかじめ、チップ30上に設けておき、ビアVH1によりその配線層33と上層の配線層27aを接続することにより配線層を増やすことなく、配線を引き出すことができると記載されている。また、特許文献2には、上記半導体装置110の製造方法として、コア基板121の両面に樹脂層26a、26bを形成し、両面に樹脂層を形成してから、両面にビアホールVH1、VH2を形成し、ビアホールVH1、VH2の内部を含めて各樹脂層26a、26bの全面に無電界Cuめっきによりシード層を形成し、その上にレジスタパターンを形成した後、電界めっきによりビアホールVH1、VH2を導体で埋めると共に、表面と裏面の配線層27a、27bを同時に形成している。
特開2005-108937号公報 特開2005-311240号公報 特開2004-179288号公報
 上記特許文献1乃至3の開示事項は、本書に引用をもって繰り込み記載されているものとする。
以下の分析は本発明により与えられる。特許文献1の実施例に記載されているようにコア基板の片側に半導体素子を内蔵し、その片側のみに絶縁層と配線層を積層すると、以下の反りが発生する。すなわち、コア基板を下側にした場合に、半導体装置全体は凹の反りとなり、半導体素子周辺では凸の反りが生じる。したがって、他の部品の搭載や、半導体装置のマザーボードへの搭載に問題が生じる。
 また、内蔵する半導体素子の電極端子のピッチは益々狭くなってきており、少なくとも半導体素子に直接接続する接続部や配線層の配線ピッチや形状は小さくする必要があるが、全体のビア形状や配線形状を微細化しようとすると、コストアップや歩留まりの低下を招く。
 本発明の目的は、半導体素子を基板に内蔵した半導体装置において、全体の反りを抑制し、高歩留まりで製造することが可能な半導体装置及びその製造方法を提供することにある。
 本発明の第1の側面による半導体装置は、コア基板と、前記コア基板の第1面と前記第1面の反対面である第2面に少なくとも1層ずつ設けられた絶縁層及び配線層と、前記各絶縁層と前記コア基板に設けられ、前記配線層間を接続するビアと、前記コア基板の前記第1面に電極端子形成面を表にして搭載された半導体素子と、前記第1面に設けられた絶縁層を貫通し、前記半導体素子の電極端子と前記第1面に設けられた配線層とを直接接続する接続部と、が設けられ、前記接続部に直接接続される配線層の最小配線ピッチは、前記第2面に設けられたいずれの配線層の最小配線ピッチよりも小さい。
 本発明の第2の側面による半導体装置の製造方法は、第1面の表面と前記第1面の反対面である第2面の表面とにコア配線が設けられ、さらに前記第1面と第2面とのコア配線とを接続する貫通ビアが設けられたコア基板の第1面に、電極端子形成面を表にして半導体素子を搭載する工程と、前記第1面に前記半導体素子を覆う第1絶縁層を形成する工程と、前記第1絶縁層の表面に第1配線層を形成し、前記半導体素子の電極端子と接続部を介して接続された配線と、前記第1面に設けられた前記コア配線とビアを介して接続された配線と、を前記第1配線層に形成する第1配線形成工程と、前記第2面に第2絶縁層を形成する工程と、前記第2絶縁層の表面に第2配線層を形成し、前記第2面に設けられた前記コア配線とビアを介して接続された配線を前記第2配線層に形成する第2配線形成工程と、を備えた半導体装置の製造方法であって、前記第1絶縁層を形成する工程及び前記第1配線形成工程は、前記第2絶縁層を形成する工程及び第2配線形成工程とは、別工程で実施される。
 本発明によれば、半導体素子を基板に内蔵した半導体装置において、全体の反りを抑制し高歩留まりで製造することが可能な構造を有する半導体装置が得られる。また、本発明の半導体装置の製造方法によれば、半導体装置を低コストかつ高歩留まりで製造することができる。
本発明の実施形態1による半導体装置の断面図である。 本発明の実施形態2による半導体装置の断面図である。 実施形態1の変形例1による半導体装置の断面図である。 各実施形態における変形例2による半導体装置の断面図である。 各実施形態における変形例3による半導体装置の断面図である。 各実施形態における変形例4による半導体装置の断面図である。 各実施形態における変形例5による半導体装置の断面図である。 各実施形態における変形例6による半導体装置の断面図である。 本発明の実施形態3による半導体装置の断面図である。 半導体素子内蔵基板の片面にしか樹脂層を設けない従来の半導体装置における反りを説明する図面である。 本発明の一実施形態における反りを説明する図面である。 本発明の実施形態4による半導体装置の製造方法の工程図である。 実施形態4による工程図の続きである。 実施形態4の変形例による半導体装置の製造方法の工程図である。 実施形態4の変形例による工程図の続きである。 実施形態5による半導体装置の製造方法の工程図である。 実施形態5による工程図の続きである。 実施形態6による半導体装置の製造方法の工程図である。 特許文献1に記載されている従来の半導体装置の断面図である。 特許文献2に記載されている従来の半導体装置の断面図である。
 まず、本発明の概要について、必要に応じて図面を参照して説明する。なお、概要の説明において引用する図面及び図面の符号は実施形態の一例として示すものであり、それにより本発明による実施形態のバリエーションを制限するものではない。
 本発明の一実施形態の半導体装置10によれば、図1~図9のいずれかに記載のように、コア基板11と、コア基板11の第1面(16、18-1側)と第1面の反対面である第2面(18-2側)に少なくとも1層ずつ設けられた絶縁層(16、18-1、18-2)及び配線層(19a~d、21、22)と、各絶縁層(16、18-1、18-2)とコア基板11に設けられ、配線層間を接続するビア(13、17、20)と、コア基板11の第1面に電極端子形成面を表にして搭載された半導体素子14と、第1面に設けられた絶縁層16を貫通し、半導体素子14の電極端子14aと第1面に設けられた配線層19aとを直接接続する接続部15と、が設けられ、接続部15に直接接続される配線層19aの最小配線ピッチは、第2面に設けられたいずれの配線層(19c、19d、22)の最小配線ピッチよりも小さい。なお、本発明における最小配線ピッチとは、最小配線幅の配線を最小の間隔で平行に配線したときの配線の中心から配線の中心までの距離である。
 上記構成によれば、半導体素子搭載面の反対面である第2面にも絶縁層を設けるので第2面の絶縁層の効果により、半導体装置全体の反りを緩和することができる(図10、図11参照)。また、第2面にも配線層を形成することにより、上記半導体素子以外の他部品やBGA(Ball Grid Array)用のランドを第2面にも自在に配置することができるなど設計の自由度を高くすることができる。また、半導体素子14の表面に電極端子14aのピッチに合わせて、電極端子14aに直接接続される配線層19aの最小配線ピッチを狭くする。一方、半導体素子搭載面の反対面である第2面の配線層(19c、19d、22)の最小配線ピッチをこれより大きくする。上記構成により、第2面の配線層(19c、19d、22)を高歩留まりで製造することができ、配線層19aの歩留まり向上に注力することで半導体装置の製造歩留まりを向上させる効果が得られる。
 また、第2面に設けられた各ビア20の形状が、接続部15の形状よりいずれも大きい。すなわち、半導体素子14の電極端子14aに直接接続される接続部15は微細加工により小さな形状に形成し、第2面の各ビアの形状をこれより大きく形成することにより、接続安定性を高められるとともに高歩留まりで半導体装置10を製造できる。
また、第2面に設けられた各ビア20のトップ径、ボトム径、高さがそれぞれ接続部15のトップ径、ボトム径、高さより大きい。すなわち、各ビア20のトップ径は接続部15のトップ径より大きく、かつ、各ビア20のボトム径は接続部15のボトム径より大きく、かつ、各ビア20の高さは接続部15の高さより高い。また、第2面に設けられた各ビア20の体積が、接続部15一つの体積の3倍以上ある。これらのビア構造を採用することにより、半導体装置を外部の搭載基板や別部品との接続を行った際に発生する応力に対して耐性を高めることができ、高い信頼性を有する半導体装置を実現できる。さらに、接続部15に直接接続される配線層19aの厚さが第2面に設けられたいずれの配線層(19c、19d、22)の厚さより薄い。配線層19aの厚さを薄く形成することにより、微細な配線の形成を容易にすると共に、微細な配線が必要ではない第2面の配線層(19c、19d、22)は配線層を厚く形成し、配線抵抗の低インピーダンス化を図ることができる。また、接続部15に直接接続される配線層19aの厚さ、最小配線幅、最小配線間隔に対して、第2面に設けられた各配線層(19c、19d、22)の厚さ、最小配線幅、最小配線間隔がそれぞれ1.5倍以上大きくすることが半導体装置の歩留まり向上に対して効果が得られるため、望ましい。
 また、接続部15周辺の絶縁層16の材質が接続部15を含まない絶縁層(18-1、18-2)の材質と異なる。例えば、接続部15周辺の絶縁層16をより低弾性率の樹脂を用いることにより、微細加工が必要な接続部15周辺の応力を緩和することができる。また、接続部15周辺の絶縁層16を感光性樹脂で形成し、第2面に設けられた樹脂層を非感光性樹脂で形成しても良い。この構成とすることで、接続部15をフォトリソグラフィーによるフォトビアを採用でき、レーザー加工によるレーザービアよりも微細なビアが形成できるため半導体素子14との狭ピッチ接続に対応できる。さらに、第2面の絶縁層に設けるビアは、材料とプロセスの組み合わせでフォトビアより低コストとなるレーザーを用いる事を選択することで、半導体装置全体の低コスト化を実現することができる。また、非感光性樹脂は感光性樹脂と異なり、感光機能を有さないことから樹脂材料としての機械特性、破断強度、弾性率、破断伸び率などが優れており、外部応力に対して耐性を高めることができ、半導体装置の長期信頼性を高めることができる。さらに、接続部15がハンダ材料や樹脂成分を含まないことが好ましい。そのようにすれば、狭いピッチでの接続と、信頼度の高い接続が可能となる。また、第2面の絶縁層18-2及び配線層22は少なくとも1層ずつ設ける。絶縁層18-2は1層設ければ、反りを防ぐことができる。第1面の絶縁層及び配線層がそれぞれ1層であってもよい。第1面の絶縁層及び配線層の層数も必要に応じて決めることができる。すなわち、第1面の絶縁層(16、18-1)及び配線層(19a、19b、21)は2層以上の多層であっても構わない。その場合、狭ピッチ、多ピンの半導体素子を内蔵化することができる。また、信号層以外に、電源、グランド層を強化することが可能となるため、特性インピーダンスを向上させることができる。第1面と第2面の最外層の配線層(21、22)には、それぞれ外部電極(21、22)が設けられている。すなわち、外部電極(21、22)に別の電子部品等を搭載することや、外部電極(21、22)を介して別の配線基板に接続すること等が可能である。また、接続部15の最小ピッチは、この外部電極(21、22)の最小ピッチより狭い。接続部15に微細配線、微細ビアを適用し、他の層では緩い配線、大径ビアを適用することで配線体の歩留まりが向上できる。さらに、図4、図5のように、外部電極(21、22)に接続された電子部品24をさらに含む。図4のように半導体素子14と同じ第1面に電子部品24を搭載すれば、半導体素子14と電子部品24との間で高速信号が伝送可能となる。一方、図5のように半導体素子14を内蔵しない第2面に電子部品24を搭載すれば、単層の絶縁層18-2を介するだけで剛性の高いコア基板11への搭載が可能であるので、搭載精度が向上する。
 コア基板11の第1面に凹部が形成され、凹部内に半導体素子14を搭載することができる。この場合、半導体素子14の低背化が実現することにより、半導体装置10全体の薄型化を図ることができる。さらに、コア基板11の第1面に素子形成面を表にして搭載された半導体素子14が複数であってもよい。また、図6、図7、図8に記載のように、複数の絶縁層のうち、少なくとも一つの絶縁層に補強材を設ける。補強財を設けることにより半導体装置10の全体及びチップの反りを効果的に低減させることができる。
 また、本発明の一実施形態における半導体装置の製造方法は、図12から図18に示すように、第1面の表面と第1面の反対面である第2面の表面とにコア配線12が設けられ、さらに第1面と第2面とのコア配線12とを接続する貫通ビア13が設けられたコア基板11を用いる(図12(a)等参照)。このコア基板11の第1面に、電極端子14a形成面を表にして半導体素子14を搭載する工程(図12(b))と、第1面に半導体素子14を覆う第1絶縁層を形成する工程(図12(c))と、第1絶縁層の表面に第1配線層19aを形成し、半導体素子14の電極端子14aと接続部15を介して接続された配線と、第1面に設けられたコア配線12とビア17を介して接続された配線と、を第1配線層19aに形成する第1配線形成工程(図13(a))と、第2面に第2絶縁層18-2を形成する工程と、第2絶縁層18-2の表面に第2配線層22を形成し、第2面に設けられたコア配線12とビア20を介して接続された配線を第2配線層に形成する第2配線形成工程(図13(b))と、を備えた半導体装置10の製造方法であって、第1絶縁層16を形成する工程及び前記第1配線(19a、図17の21)の形成工程は、第2絶縁層18-2を形成する工程及び第2配線(19c、19d、22)形成工程とは、別工程で実施される。
 すなわち、従来は特許文献2に記載されているようにコア基板11の両面に絶縁層と配線層を形成する場合には、半導体素子内蔵基板であっても、両面同時に絶縁層と配線層を形成することが工程の短縮につながると考えられていた。しかし、両面同時に絶縁層と配線層を形成すると、両面の加工精度は同一になる。したがって、最小配線ピッチやビアの最小の形状も両面で同一となる。上記実施形態の製造方法では、半導体素子14の電極端子14aに直接接続される接続部15及び接続部15に直接接続される配線19aに求められる加工精度が第2面に設けられるビア20及び配線層(19c、19d、22)と異なることから、第1絶縁層16を形成する工程及び前記第1配線19a形成工程は、第2絶縁層18-2を形成する工程及び第2配線22形成工程とは、別工程で実施する。これによりそれぞれ微細化と低コスト化に最適な工程を選択することができる。例えば、第1配線形成工程ではアディティブ法を用いて微細な配線を形成し、第2配線形成工程ではサブトラクティブ法を用いて低コストに配線を形成することができる。
 さらに、図14~図15、図18に示すように、第2絶縁層18-2を形成する工程の後に、半導体素子14を搭載する工程を実施する。これは、半導体装置10に占める部品の中では、半導体素子14が最も高価な部品であることが多いため、できるだけ不良発生頻度が少なくなる工程順にて半導体素子14の搭載を実施することで、半導体素子14以外の不良により良品の半導体素子14が無駄になることを防ぐためである。つまり、半導体素子14をコア基板11に搭載した後の絶縁層形成工程や配線層形成工程で不良が生じた場合、これら自体の修理を行うことや、半導体素子14をコア基板11から剥がし、別なコア基板11に付け替えるリペア工程を安定的に実施することは困難な場合が多いためである。
 また、図18に示すように、第2配線19c形成工程の後に、半導体素子14を搭載する工程を実施することができる。すなわち、第2面に対して先に絶縁層、配線層を形成してから第1面に半導体素子14を搭載することにより、半導体素子14以外の不良により良品の半導体素子14が無駄になることを防ぐことができる。さらに、図18に示すように、第2配線19c形成工程の後に第2面の第2配線層19cの表面にさらに、積層して絶縁層18-2と配線層19dを形成し、第2面の多層配線の形成が完了してから半導体素子14を搭載する工程を実施することもできる。
 また、第1絶縁層16を形成する工程の後、第1絶縁層16の表面から半導体素子14の電極端子14aに達するビアホールと前記第1面に設けられたコア配線12に達するビアホールとを形成し、ビアホールを導電層で埋めて接続部15とビア17とを形成する。第1絶縁層16を感光性樹脂で形成し、フォトリソグラフィーにより微細なビアホールを形成するとともに、第2絶縁樹脂を非感光性樹脂により形成し、レーザーを用いて低コストにビアを形成することも可能である。また、半導体素子14が電極端子14aの表面に設けられた金属ポスト15を有する半導体素子14であって、第1配線形成工程(例えば図13(a))が、金属ポスト15の表面が露出するように第1絶縁層16の一部を除去し、金属ポスト15により接続部15を形成する工程を含むものであってもよい。
 また、半導体素子14を覆う第1絶縁層16を形成する工程(例えば図12(c)が、半導体素子14の外周部を第1の絶縁樹脂により覆う工程と、半導体素子14の表面を第2の絶縁樹脂により覆う工程とを備えるものであってもよい。以下、本発明の各実施形態について、実施形態毎に、図面を参照してより詳しく説明する。
[実施形態1]
 図1は、実施形態1の半導体装置10の構造を示す断面図である。図1の半導体装置10は、貫通ビア13を介し表裏のコア配線12が導通されたコア基板11と、コア基板11の第1面に設けられた半導体素子14と、半導体素子14を内蔵する内蔵層16と、内蔵層16の表面に配線19aが設けられている。また、半導体素子14の表面には、電極端子14aが設けられ、電極端子14aには、接続部15が接続されている。配線19aと半導体素子14の電極端子14aは、その接続部15を介して接続されている。また、内蔵層16の表面に設けられた配線19aとコア配線12は、内蔵層16内に設けられた内蔵層ビア17を介して接続されている。また、内蔵層16の上面には、絶縁層A(18-1)が設けられ、第1電極21と配線19aは、ビア20を介して接続されている。さらに、コア基板11の内蔵層16が設けられた反対面である第2面には、絶縁層B(18-2)が設けられ、第2電極22とコア配線12は、ビア20を介して接続されている。さらに、半導体装置10の両面には第1電極21と第2電極22を開口させるようにソルダーレジスト23が設けられている。なお、この明細書において、コア基板11の半導体素子14が搭載された方の面を第1面と呼び、その反対面を第2面と呼ぶが、本明細書において、第1面、第2面には、それ以上の意味はない。また、図1には図示していないが、第1電極21と同一の導電層、及び/または、第2電極22と同一の導電層、で配線を施してもよい。この場合、第1電極21と同一の導電層、及び/または、第2電極22と同一の導電層、はそれぞれ配線層ともなる。
 また、図3に示すように、絶縁層A(18-1)は複数層であっても構わない。その場合、狭ピッチ、多ピンの半導体素子を内蔵化することができる。また、信号層以外に、電源、グランド層を強化することが可能となるため、特性インピーダンスを向上させることができる。
 また、図6に示すように、内蔵層16には、半導体素子14を取り囲むように補強材26が設けられていても構わない。その場合、半導体装置10全体及びチップの反りを効果的に低減させることができる。
 また、図7に示すように、絶縁層A(18-1)には、補強材26が設けられていても構わない。その場合、半導体装置10全体の反りを効果的に低減させることができる。
 また、図8に示すように、絶縁層B(18-2)には、補強材26が設けられていても構わない。その場合、半導体装置10全体の反りを効果的に低減させることができる。
 ここで、コア基板11を支持体とした半導体素子内蔵基板について考える。コア基板11の一方の面(第1面)に半導体素子14を内蔵し、反対面(第2面)に樹脂層(絶縁層B18-2)を設けない場合、図10に示すように、半導体装置10全体とチップ周辺の反りは、構成材料の熱膨張係数と弾性率の関係により凹凸に大きく反ってしまう。そのため、他部品の半導体装置10への搭載、半導体装置10のマザーボードへの搭載、長期信頼性に課題があった。一方で、図11に示すように、半導体素子14の内蔵面の反対面に樹脂層(絶縁層B18-2)を設けることで、半導体装置10全体とチップ周辺の反りを抑えることが可能となる。また、絶縁層B(18-2)にはビア20を介して第2電極22を設けることができるため、設計自由度が高く外部電極の形成が可能となる。
 また、図示していないが、半導体素子14は、コア基板11の第1面に埋め込まれていても構わない。その場合、内蔵層16の樹脂厚が薄型にできるため、半導体装置10の反りを抑えることができる。また、内蔵層ビア17のアスペクト比が小さくできるため、高歩留まりに内蔵層ビア17を製造することができる。
 また、内蔵層16、絶縁層A(18-1)、絶縁層B(18-2)は、異なる絶縁材料でも構わない。例えば、絶縁層B(18-2)の絶縁材料を内蔵層16、絶縁層A(18-1)の絶縁材料よりも高弾性とすることで半導体装置10全体の反りを抑えることができる。
 また、図4、5に示すように、半導体装置10上に接続材料25を介して電子部品24を搭載することができる。電子部品24は、半導体素子14の第1電極21又は第2電極22どちらの面に搭載しても構わないが、内蔵した半導体素子14と電子部品24との距離を接近させ、半導体素子14と電子部品24間の高速伝送を実現させるために、第1電極21側に電子部品24を搭載し、第2電極22側はBGAとなることが望ましい。また、その場合、内蔵層16の反対面の絶縁層B(18-2)内に微細ビアと微細配線は不要であるため、絶縁層B(18-2)内のビア20のビア形状と第2電極22の配線形状は、半導体素子14の電極面からの最近接層の配線とビアである接続部15のビア形状と配線層19aの配線形状よりも大きいことが望ましい。さらに、この実施形態では絶縁層B(18-2)を単層に限定することで、高歩留まりな製造技術が確保される。以上により、絶縁層B(18-2)の歩留まり向上及び、半導体装置10の歩留まり向上が実現できる。
 ここで、ビア形状とは、ビアのトップ径とボトム径と高さのことを示し、配線形状とは、配線幅、配線間のピッチ、所謂、配線ルールと、配線の厚みのことを示す。
 コア基板11は、例えば、樹脂基板、シリコン、セラミック、ガラス、ガラス-エポキシ複合体等を用いる。特に、コスト、反り制御の観点から有機系の樹脂基板やガラス-エポキシ複合体等が望ましい。本実施形態では、コア基板11は、剛性のあるガラス-エポキシ複合体を用いた。また、コア基板11の配線層数は、両面2層に限らず、多層であることが望ましい。本実施形態では、コア基板11の配線層数は、4層とした。また、半導体装置10の歩留まり向上のために、製造されたコア基板11は、半導体素子14を搭載する前に良品検査を実施していることが望ましい。また、上述のように、第1電極21に電子部品24を搭載し、第2電極22にBGAを搭載する場合、コア基板11のスペック、例えば、配線ルール(L/S)、ビアピッチ、ビアサイズは量産対応が進み、高歩留まりに実現されるスペック(L/S:50μm/50μm、ビアピッチ:1mm、ビアサイズ100μm)で構わない。また、そのような高歩留まりなコア基板を用いることで半導体装置の低コスト化が実現できる。
 半導体素子14の厚さは、半導体装置10全体に要求される厚さに応じて調整することができる。本実施形態では、半導体素子14の厚みは50μmとした。図1では、半導体素子14の数はひとつだが、複数としても構わない。本実施形態では、内蔵層16に内蔵される半導体素子14はひとつとした。
 半導体素子14とコア基板11との間には、接着層としてダイアタッチメントフィルム(DAF)、絶縁性ペースト、又は銀ペーストが用いられていることが望ましい。本実施形態では、DAFを用いた。また、コア基板11の半導体素子14が搭載される領域には、密着性確保のためコア配線12がない領域であることが望ましい。
 内蔵層16、絶縁層A(18-1)、絶縁層B(18-2)は、例えば、感光性又は非感光性の有機材料で形成されており、有機材料は、例えば、エポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂等や、ガラスクロスやアラミド繊維などで形成された織布や不織布にエポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂等を含浸させた材料を用いる。また、内蔵層16を感光性樹脂で形成し、絶縁層B(18-2)を非感光性の樹脂を用いてもよい。そのようにすれば、内蔵層16へ形成する接続部15をフォトビアとして微細に加工すると共に、絶縁層B(18-2)に形成するビア20をUV-YAGレーザーやCO2レーザーなどのレーザーを用いて低コストに加工することもできる。本実施形態では、内蔵層16、絶縁層A(18-1)、絶縁層B(18-2)は、非感光性樹脂のエポキシ樹脂を用いた。
 コア配線12、配線19、第1電極21、第2電極22は、例えば、銅、銀、金、ニッケル、アルミニウム、およびパラジウムからなる群から選択された少なくとも1種の金属もしくはこれらを主成分とする合金を用いる。特に、電気抵抗値及びコストの観点から銅により形成することが望ましい。本実施形態では、コア配線12、配線19、第1電極21、第2電極22は、銅を用いた。
 貫通ビア13、内蔵層ビア17、ビア20は、例えば、銅、銀、金、ニッケル、アルミニウム、およびパラジウムからなる群から選択された少なくとも1種の金属もしくはこれらを主成分とする合金を用いる。特に、電気抵抗値及びコストの観点から銅により形成することが望ましい。本実施形態では、貫通ビア13、内蔵層ビア17、ビア20は、銅を用いた。
 各層の所望の位置に、回路のノイズフィルターの役割を果たすコンデンサが設けられていてもよい。コンデンサを構成する誘電体材料としては、酸化チタン、酸化タンタル、Al、SiO、ZrO、HfO又はNb等の金属酸化物、BST(BaSr1-xTiO)、PZT(PbZrTi1-x)又はPLZT(Pb1-yLaZrTi1-x)等のペロブスカイト系材料若しくはSrBiTa等のBi系層状化合物であることが好ましい。但し、0≦x≦1、0<y<1である。また、コンデンサを構成する誘電体材料として、無機材料や磁性材料を混合した有機材料等を使用してもよい。また、半導体素子やコンデンサ以外に、ディスクリート部品を設けても構わない。
 本実施形態により、半導体素子を内蔵する半導体素子内蔵基板において、剛性のあるコア基板を支持体としていることから、高歩留まりな半導体装置が実現できる。また、内蔵層の反対面に単層の絶縁層が設けられていることから、半導体装置の低反り化が実現できる。
[実施形態2]
 次に、本発明の実施形態2の半導体装置について説明する。図2は実施形態2による半導体装置10を示す部分断面図である。実施形態1に係る半導体装置10とは、コア基板11の第1面には、絶縁層A(18-1)は必要とせず、内蔵層16のみで構成されている点が異なっている。以下に、実施形態1による半導体装置10と異なる部分について説明を行う。特に記載のない部分については、実施形態1に係る半導体装置10と同じである。また、図2の内蔵層16、絶縁層B(18-2)の絶縁材料には補強材を設けていないが、図6、8のように補強材を設けても構わない。
 半導体素子14を内蔵する面(第1面)には、内蔵層16のみとすることで、コア基板16の両面には、内蔵層16と絶縁層B(18-2)しか存在しないため、半導体装置10の反りをより低減化できる。また、コア基板11以外の配線層数が、表裏で1層となることで歩留まりを低減させる要因が減少し、高い歩留まりで半導体装置10を製造することできる。
 本実施形態により、半導体素子14を内蔵する半導体素子内蔵基板において、剛性のあるコア基板11を支持体としていることから、高歩留まりな半導体装置が実現できる。また、コア基板11の両面に各々1層の絶縁層及び配線層が設けられていることから、半導体装置の高歩留まり化と低反り化が格段に向上できる。
[実施形態3]
 図9は、実施形態3による半導体装置の主要部の断面図である。実施形態3による半導体装置10は、半導体素子14搭載面の反対面である第2面に、多層の絶縁層B(18-2)と多層の配線層19c、19dを設けている実施形態1と異なっている。なお、第2面の配線層のうち、最下層の配線層を19c、19cより上層の配線層を19dとしている。実施形態3によれば、半導体素子14搭載面の反対面である第2面にも、多層配線を施しているので、半導体素子14の端子数がより多い場合でもより自由度の高い配線を形成することができる。また、第2面においても、電源やグランド層を強化することや、シールド層を設けることにより半導体素子14をノイズから遮蔽することもできる。なお、実施形態3の半導体装置10も後で述べる製造方法によれば、半導体素子14をコア基板11に搭載した後の歩留まりを高歩留まりに製造することができる。また、図9では、第2面の第2電極22形成面には、ソルダーレジスト23を設けていないが、必要に応じて、実施形態1と同様に、第2面の最外層にもソルダーレジスト23を設けることもできる。
[実施形態4]
 次に、半導体装置10の製造方法の実施形態について説明する。図12の(a)から(c)と図13の(a)、(b)は、実施形態4による半導体装置10の製造方法を工程順に示す断面図である。図13の(a)、(b)は、図12の(a)から(c)に続く工程である。本実施形態の製造方法によれば、実施形態1(図1)の半導体装置10を製造することができる。
 先ず、図12(a)に示すとおり、貫通ビア13を介し、表裏のコア配線12を接続したコア基板11を用意する。コア基板は、高剛性の材料であることが望ましい。また、良品検査を終えていることが望ましい。コア基板11上には、半導体素子14を搭載するための位置マークが設けられていることが好ましい。位置マークは、高精度に認識でき、位置マークとしての機能を果たしているのであれば、コア基板11上に金属を析出させてもよいし、ウェットエッチングや機械加工により窪みを設けても構わない。本実施形態では、コア基板の厚さは0.8mm、配線層数4層のガラス-エポキシ複合体を用い、位置マークはコア配線12とした。
 次に、図12(b)に示すとおり、位置マークが設けられたコア基板11上に、半導体素子14の電極端子14a面が表になるように半導体素子14を搭載する。この際、コア基板11と半導体素子14間には、接着層があることが望ましいが、未硬化のコア基板11の樹脂表面を接着面として扱っても構わない。
 次に、図12(c)に示すとおり、半導体素子14の端子面(電極端子14a)と側面を内蔵層16で積層する。積層方法は、半導体素子14の端子面と側面とを一括で覆われるようにフィルム状の絶縁材料を積層しても、半導体素子14の端子面と側面を分けて積層しても構わない。また、フィルム状の絶縁樹脂に限定するものはなく、液状でも構わない。
 内蔵層16に用いられる絶縁材料は、例えば感光性又は非感光性の有機材料で形成されており、有機材料は、例えば、エポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂等や、ガラスクロスやアラミド繊維などで形成された織布や不織布にエポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂等を含浸させた材料を用いる。積層方法は、トランスファーモールディング法、圧縮形成モールド法、印刷法、真空プレス、真空ラミネート、スピンコート法、ダイコート法、カーテンコート法などで設けられる。本実施形態では、絶縁樹脂はエポキシ樹脂を採用し、真空ラミネートにて半導体素子14の端子面と側面を一括で積層した。
 次に、図13(a)に示すとおり、半導体素子14上の電極端子14a上に接続部15と、コア基板11上に内蔵層ビア17と、内蔵層16上に接続部15と内蔵層ビア17とを接続する配線19aを形成する。まず、内蔵層16内に接続部15と内蔵層ビア17となる孔を形成する。孔は、内蔵層16が感光性の材料を使用する場合、フォトリソグラフィーにより形成される。パターン解像度が高い感光性の材料を用いれば、微細な孔の加工が可能である。内蔵層16が非感光性の材料又は、感光性の材料でパターン解像度が低い材料を使用する場合、孔は、レーザー加工法、ドライエッチング法又はブラスト法により形成される。本実施形態では、レーザー加工法を用いた。次に、孔内に例えば、銅、銀、金、ニッケル、アルミニウム、およびパラジウムからなる群から選択された少なくとも1種の金属もしくはこれらを主成分とする合金を充填させ、接続部15と内蔵ビア層17を形成する。充填方法は、電解めっき、無電解めっき、印刷法、溶融金属吸引法等で行う。
 また、接続部15と内蔵ビア層17は、半導体素子14上に又はコア基板11上に予め通電用の金属ポストを設けておき、内蔵層16を形成した後、研磨等により絶縁樹脂の表面を削って金属ポストの表面を露出させてビアを形成する方法でも構わない。
 配線19aは、サブトラクティブ法、セミアディティブ法又はフルアディティブ法等の方法により形成する。サブトラクティブ法は、基板上に設けられた銅箔上に所望のパターンのレジストを形成し、不要な銅箔をエッチングした後に、レジストを剥離して所望のパターンを得る方法である。セミアディティブ法は、無電解めっき法、スパッタ法、CVD(chemical vapor deposition)法等で給電層を形成した後、所望のパターンに開口されたレジストを形成し、レジスト開口部内に電解めっき法による金属を析出させ、レジストを除去した後に給電層をエッチングして所望の配線パターンを得る方法である。フルアディティブ法は、基板上に無電解めっき触媒を吸着させた後に、レジストでパターンを形成し、このレジストを絶縁膜として残したまま触媒を活性化し、無電解めっき法により絶縁膜の開口部に金属を析出させることで所望の配線パターンを得る方法である。配線19aは、例えば、銅、銀、金、ニッケル、アルミニウム、およびパラジウムからなる群から選択された少なくとも1種の金属もしくはこれらを主成分とする合金を用いる。特に、電気抵抗値及びコストの観点から銅により形成することが望ましい。
 次に、図13(b)に示すとおり、内蔵層16の上面に絶縁層A(18-1)、第1電極21、ビア20を形成し、内蔵層16の反対面である第2面に絶縁層B(18-2)、第2電極22、ビア20を形成する。ここで、絶縁層A(18-1)は、所望する層数分だけ配線層数を増して構わないが、この製造方法の実施形態では、絶縁層B(18-2)は、単層配線とする。なお、第2電極22と同一の導電層には、ビア20と第2電極22を接続する配線を設けてもよい。また、図14と図15に示すように、絶縁層B(18-2)は、半導体素子14を搭載する前に形成しても構わない。
 本実施形態をとることで、半導体素子内蔵基板である半導体装置10が効率よく作製される。また、本実施形態により、剛性のあるコア基板11を支持体としていることから、高歩留まりな半導体装置10が実現できる。また、内蔵層16の反対面に単層の絶縁層が設けられていることから、半導体装置10の低反り化が実現できる。特に、半導体素子搭載面であるコア基板11の第1面における内蔵層16とその上の接続部15に直接接続される配線層19aの形成と、第2面における絶縁層B(18-2)とビア20を含む配線層(第2電極)22の形成を別工程で行っている。したがって、半導体素子14の電極端子14aに直接接続される接続部15と配線19aの加工を微細加工が可能な工程を用いると共に、第2面の絶縁層、ビア、配線層の形成は低コストかつ高歩留まりな加工が可能な工程を用いることができる。例えば、内蔵層16に微細な加工が可能である高解像度の感光性材料を用い、フォトリソグラフィーの技術によって、接続部15を高精度に形成するとともに、絶縁層B(18-2)に非感光性の樹脂を用い、UV-YAGレーザーやCO2レーザーを用いて低コストでビアホールとなる孔を形成してもよい。また、配線19aをアディティブ法による微細な配線を形成し、第2面の配線19cをサブトラクティブ法による配線形成とすることで、配線形成全体を低コストにすることもできる。
[実施形態5]
 図16の(a)から(c)と図17は、実施形態5による半導体装置の製造方法を工程順に示す部分断面図である。実施形態5の半導体装置10の製造方法によれば、図2に示す実施形態2の半導体装置10を製造することができる。実施形態5による製造方法は、実施形態4による製造方法とは、コア基板11の第1面(半導体素子14搭載面)の絶縁層が内蔵層16のみで構成されており、絶縁層A(18-1)を形成していない点が異なっている。以下に、実施形態4に係る製造方法と異なる部分について説明を行う。特に記載のない部分については、実施形態4に係る製造方法と同じである。
 先ず、図16(a)に示すとおり、貫通ビア13を介し、表裏のコア配線12を接続したコア基板11を用意する。次に、図16(b)に示すとおり、位置マークが設けられたコア基板11上に、半導体素子14の端子面が上面にくる状態で搭載する。次に、図16(c)に示すとおり、半導体素子14の端子面と側面を内蔵層16で積層する。次に、図17に示すとおり、半導体素子14の電極端子14a上に接続部15と、コア基板11上に内蔵層ビア17と、内蔵層16上に接続部15と内蔵層ビア17とを接続する第1電極21を形成する。次に、内蔵層16の反対面に絶縁層B(18-2)、第2電極22、ビア20を形成する。なお、第1電極21と同一導電層には、配線(図13(a)の19aに相当)を設け、この配線により接続部15と第1電極21が接続されてもよい。
 本実施形態をとることで、半導体素子内蔵基板である半導体装置10が効率よく作製される。また、本実施形態により、剛性のあるコア基板11を支持体としていることから、高歩留まりな半導体装置が実現できる。また、内蔵層16の反対面に単層の絶縁層18-2が設けられていることから、半導体装置の低反り化が実現できる。さらに、コア基板11の両面に各々1層の絶縁層及び配線層が設けられていることから、半導体装置の高歩留まり化と低反り化が格段に向上できる。さらに、実施形態4と同様に、第1面の内蔵層16と接続部15と第1電極21となる配線層と、第2面の絶縁層18-2とビア20と配線層となる第2電極22を別工程で形成しているので、第1面の接続部15と配線層21を微細な加工を施して高精度に形成すると共に、第2面のビア20と配線層22を低コストかつ、高歩留まりに形成する等、それぞれ最適な工程を選択することができる。
[実施形態6]
 図18(a)、(b)は、実施形態6の半導体装置10の製造方法を示す途中工程の主要部断面図である。本実施形態においては、図18(a)に示すようにコア基板11の半導体素子搭載面の反対面である第2面に多層の絶縁層と配線層を形成する。さらに、最外層の配線層には、第2電極22を先に形成しておく。ここまで第2面の配線パターンが完成した段階で半導体素子14の搭載前に試験を行い、コア基板11及び第2面のパターンに欠陥がないことを確認しておく。次に、図18(b)に示すように第2面の配線パターンに欠陥がないことが確認された支持基板に半導体素子14を搭載する。この後は、実施形態4、実施形態5の工程のうち、第1面を加工する工程のみを実施して図9に示す半導体装置10を完成させる。
 この実施形態によれば、第1面の内蔵層16と接続部15と配線19aの形成と第2面の絶縁層18-2とビア20と配線19c、19dの形成を別工程で行っているので、第1面の接続部15と配線層21に微細な加工を施すと共に、第2面のビア20と配線層22を低コストかつ、高歩留まりで製造できる。
 さらに、実施形態6によれば、第2面の配線パターンの形成と試験が終わってから半導体素子14をコア基板11に搭載している。したがって、半導体素子14をコア基板11に搭載する工程をできるだけ後の工程にすることができる。そのため、半導体素子14をコア基板に搭載した後の工程での歩留まりを特に高めることができ、半導体素子14以外の不良で半導体素子14を含めた半導体装置10を廃棄しなければならなくなる確率を減らすことができる。
 以下に本発明において可能な又は好ましい形態を示す。
(形態1)
 第1の側面に既述のとおり。
(形態2)
 前記第2面に設けられた各ビアの形状が、前記接続部の形状よりいずれも大きいことが好ましい。
(形態3)
 前記第2面に設けられた各ビアのトップ径、ボトム径、高さがそれぞれ前記接続部のトップ径、ボトム径、高さより大きいことが好ましい。
(形態4)
 前記第2面に設けられた各ビアの体積が、前記接続部の体積の3倍以上あることが好ましい。
(形態5)
 前記接続部に直接接続される配線層の厚さが前記第2面に設けられたいずれの配線層の厚さより薄いことが好ましい。
(形態6)
 前記接続部に直接接続される配線層の厚さ、最小配線幅、最小配線間隔に対して、前記第2面に設けられた各配線層の厚さ、最小配線幅、最小配線間隔がそれぞれ1.5倍以上大きいことが好ましい。
(形態7)
 前記接続部周辺の絶縁層の材質が前記接続部を含まない絶縁層の材質と異なることが好ましい。
(形態8)
 前記接続部周辺の絶縁層が感光性樹脂で形成され、前記第2面に設けられた絶縁層が非感光性樹脂で形成されていることが好ましい。
(形態9)
 前記接続部周辺の絶縁層の弾性率が前記接続部を含まない絶縁層の弾性率より低いことが好ましい。
(形態10)
 前記接続部がハンダ材料や樹脂成分を含まないことが好ましい。
(形態11)
 前記第2面の絶縁層及び配線層がそれぞれ1層であることが好ましい。
(形態12)
 前記第1面の絶縁層及び配線層がそれぞれ1層であることが好ましい。
(形態13)
 前記第1面と第2面の最外層の配線層には、それぞれ外部電極が設けられていることが好ましい。
(形態14)
 前記接続部の最小ピッチは、前記外部電極の最小ピッチより狭いことが好ましい。
(形態15)
 前記外部電極に接続された電子部品をさらに含むことが好ましい。
(形態16)
 前記コア基板の前記第1面に凹部が形成され、前記凹部内に前記半導体素子が搭載されていることが好ましい。
(形態17)
 前記コア基板の前記第1面に素子形成面を表にして搭載された半導体素子が複数であることが好ましい。
(形態18)
 前記複数の絶縁層のうち、少なくとも一つの絶縁層に補強材を設けたことが好ましい。
(形態19)
 第2の側面に既述のとおり。
(形態20)
 前記第1配線形成工程では、アディティブ法を用いて配線を形成し、前記第2配線形成工程では、サブトラクティブ法を用いて配線を形成することが好ましい。
(形態21)
 前記第2絶縁層を形成する工程の後に、前記半導体素子を搭載する工程を実施することが好ましい。
(形態22)
 前記第2配線形成工程の後に、前記半導体素子を搭載する工程を実施することが好ましい。
(形態23)
 前記第2配線形成工程の後に前記第2面の第2配線層の表面にさらに、積層して絶縁層と配線層を形成し、前記第2面の多層配線の形成が完了してから前記半導体素子を搭載する工程を実施することが好ましい。
(形態24)
 前記第1絶縁層を形成する工程の後、前記第1絶縁層の表面から前記半導体素子の電極端子に達するビアホールと前記第1面に設けられたコア配線に達するビアホールとを形成し、前記ビアホールを導電層で埋めて前記接続部と前記ビアとを形成することが好ましい。
(形態25)
 前記第1絶縁層を感光性樹脂で形成する工程と、半導体素子の電極端子に達する前記ビアホールをフォトリソグラフィーにより形成する工程と、前記第2絶縁層を非感光性樹脂で形成する工程と、前記第2絶縁層にレーザーを用いてビアを形成する工程と、を含むことが好ましい。
(形態26)
 前記半導体素子が前記電極端子の表面に設けられた金属ポストを有する半導体素子であって、前記第1配線形成工程が、前記金属ポストの表面が露出するように前記第1絶縁層の一部を除去し、前記金属ポストにより前記接続部を形成する工程を含むことが好ましい。
(形態27)
 前記半導体素子を覆う第1絶縁層を形成する工程が、前記半導体素子の外周部を第1の絶縁樹脂により覆う工程と、前記半導体素子の表面を第2の絶縁樹脂により覆う工程とを備えることが好ましい。
 以上、実施例について説明したが、本発明は上記実施例の構成にのみ制限されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
すなわち、本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 10、100:半導体装置
 11:コア基板
 12:コア配線
 13:貫通ビア
 14:半導体素子
 14a:電極端子
 15:接続部(金属ポスト)
 16:内蔵層(絶縁層)
 17:内蔵層ビア
 18-1:絶縁層A
 18-2:絶縁層B
 19:配線層及び配線層に形成された配線
 19a:接続部15に直接接続する配線が形成される配線層及びその配線層に形成された配線
 19b:コア基板11の第1面側に設けられた配線層(配線)で19a以外の配線層及びその配線層に形成された配線
 19c:コア基板11の第2面側の下層配線層及びその配線層に形成された配線
 19d:コア基板11の第2面側の上層配線層及びその配線層に形成された配線
 20:ビア
 21:第1電極(配線層)
 22:第2電極(配線層)
 23:ソルダーレジスト
 24:電子部品
 25:接続材料
 26:補強材

Claims (27)

  1.  コア基板と、
     前記コア基板の第1面と前記第1面の反対面である第2面に少なくとも1層ずつ設けられた絶縁層及び配線層と、
     前記各絶縁層と前記コア基板に設けられ、前記配線層間を接続するビアと、
     前記コア基板の前記第1面に電極端子形成面を表にして搭載された半導体素子と、
     前記第1面に設けられた絶縁層を貫通し、前記半導体素子の電極端子と前記第1面に設けられた配線層とを直接接続する接続部と、が設けられ、
     前記接続部に直接接続される配線層の最小配線ピッチは、前記第2面に設けられたいずれの配線層の最小配線ピッチよりも小さいことを特徴とする半導体装置。
  2.  前記第2面に設けられた各ビアの形状が、前記接続部の形状よりいずれも大きいことを特徴とする請求項1記載の半導体装置。
  3.  前記第2面に設けられた各ビアのトップ径、ボトム径、高さがそれぞれ前記接続部のトップ径、ボトム径、高さより大きいことを特徴とする請求項1又は2記載の半導体装置。
  4.  前記第2面に設けられた各ビアの体積が、前記接続部の体積の3倍以上あることを特徴とする請求項1乃至3いずれか1項記載の半導体装置。
  5.  前記接続部に直接接続される配線層の厚さが前記第2面に設けられたいずれの配線層の厚さより薄いことを特徴とする請求項1乃至4いずれか1項記載の半導体装置。
  6.  前記接続部に直接接続される配線層の厚さ、最小配線幅、最小配線間隔に対して、前記第2面に設けられた各配線層の厚さ、最小配線幅、最小配線間隔がそれぞれ1.5倍以上大きいことを特徴とする請求項1乃至5いずれか1項記載の半導体装置。
  7.  前記接続部周辺の絶縁層の材質が前記接続部を含まない絶縁層の材質と異なることを特徴とする請求項1乃至6いずれか1項記載の半導体装置。
  8.  前記接続部周辺の絶縁層が感光性樹脂で形成され、前記第2面に設けられた絶縁層が非感光性樹脂で形成されていることを特徴とする請求項1乃至7いずれか1項記載の半導体装置。
  9.  前記接続部周辺の絶縁層の弾性率が前記接続部を含まない絶縁層の弾性率より低いことを特徴とする請求項1乃至8いずれか1項記載の半導体装置。
  10.  前記接続部がハンダ材料や樹脂成分を含まないことを特徴とする請求項1乃至9いずれか1項記載の半導体装置。
  11.  前記第2面の絶縁層及び配線層がそれぞれ1層であることを特徴とする請求項1乃至10いずれか1項記載の半導体装置。
  12.  前記第1面の絶縁層及び配線層がそれぞれ1層であることを特徴とする請求項1乃至11いずれか1項記載の半導体装置。
  13.  前記第1面と第2面の最外層の配線層には、それぞれ外部電極が設けられていることを特徴とする請求項1乃至12いずれか1項記載の半導体装置。
  14.  前記接続部の最小ピッチは、前記外部電極の最小ピッチより狭いことを特徴とする請求項13記載の半導体装置。
  15.  前記外部電極に接続された電子部品をさらに含むことを特徴とする請求項13又は14記載の半導体装置。
  16.  前記コア基板の前記第1面に凹部が形成され、前記凹部内に前記半導体素子が搭載されていることを特徴とする請求項1乃至15いずれか1項記載の半導体装置。
  17.  前記コア基板の前記第1面に素子形成面を表にして搭載された半導体素子が複数であることを特徴とする請求項1乃至16いずれか1項記載の半導体装置。
  18.  前記複数の絶縁層のうち、少なくとも一つの絶縁層に補強材を設けたことを特徴とする請求項1乃至17いずれか1項記載の半導体装置。
  19.  第1面の表面と前記第1面の反対面である第2面の表面とにコア配線が設けられ、さらに前記第1面と第2面とのコア配線とを接続する貫通ビアが設けられたコア基板の第1面に、電極端子形成面を表にして半導体素子を搭載する工程と、
     前記第1面に前記半導体素子を覆う第1絶縁層を形成する工程と、
     前記第1絶縁層の表面に第1配線層を形成し、前記半導体素子の電極端子と接続部を介して接続された配線と、前記第1面に設けられた前記コア配線とビアを介して接続された配線と、を前記第1配線層に形成する第1配線形成工程と、
     前記第2面に第2絶縁層を形成する工程と、
     前記第2絶縁層の表面に第2配線層を形成し、前記第2面に設けられた前記コア配線とビアを介して接続された配線を前記第2配線層に形成する第2配線形成工程と、
    を備えた半導体装置の製造方法であって、
     前記第1絶縁層を形成する工程及び前記第1配線形成工程は、前記第2絶縁層を形成する工程及び第2配線形成工程とは、別工程で実施されることを特徴とする半導体装置の製造方法。
  20.  前記第1配線形成工程では、アディティブ法を用いて配線を形成し、前記第2配線形成工程では、サブトラクティブ法を用いて配線を形成することを特徴とする請求項19記載の半導体装置の製造方法。
  21.  前記第2絶縁層を形成する工程の後に、前記半導体素子を搭載する工程を実施することを特徴とする請求項19又は20記載の半導体装置の製造方法。
  22.  前記第2配線形成工程の後に、前記半導体素子を搭載する工程を実施することを特徴とする請求項19乃至21いずれか1項記載の半導体装置の製造方法。
  23.  前記第2配線形成工程の後に前記第2面の第2配線層の表面にさらに、積層して絶縁層と配線層を形成し、前記第2面の多層配線の形成が完了してから前記半導体素子を搭載する工程を実施することを特徴とする請求項22記載の半導体装置の製造方法。
  24.  前記第1絶縁層を形成する工程の後、前記第1絶縁層の表面から前記半導体素子の電極端子に達するビアホールと前記第1面に設けられたコア配線に達するビアホールとを形成し、前記ビアホールを導電層で埋めて前記接続部と前記ビアとを形成することを特徴とする請求項19乃至23いずれか1項記載の半導体装置の製造方法。
  25.  前記第1絶縁層を感光性樹脂で形成する工程と、半導体素子の電極端子に達する前記ビアホールをフォトリソグラフィーにより形成する工程と、前記第2絶縁層を非感光性樹脂で形成する工程と、前記第2絶縁層にレーザーを用いてビアを形成する工程と、を含むことを特徴とする請求項24記載の半導体装置の製造方法。
  26.  前記半導体素子が前記電極端子の表面に設けられた金属ポストを有する半導体素子であって、前記第1配線形成工程が、前記金属ポストの表面が露出するように前記第1絶縁層の一部を除去し、前記金属ポストにより前記接続部を形成する工程を含むことを特徴とする請求項19乃至23いずれか1項記載の半導体装置の製造方法。
  27.  前記半導体素子を覆う第1絶縁層を形成する工程が、前記半導体素子の外周部を第1の絶縁樹脂により覆う工程と、前記半導体素子の表面を第2の絶縁樹脂により覆う工程とを備えることを特徴とする請求項19乃至26いずれか1項記載の半導体装置の製造方法。
PCT/JP2010/058331 2009-05-20 2010-05-18 半導体装置及び半導体装置の製造方法 WO2010134511A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/320,798 US8710669B2 (en) 2009-05-20 2010-05-18 Semiconductor device manufacture in which minimum wiring pitch of connecting portion wiring layer is less than minimum wiring pitch of any other wiring layer
JP2011514414A JPWO2010134511A1 (ja) 2009-05-20 2010-05-18 半導体装置及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009122209 2009-05-20
JP2009-122209 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134511A1 true WO2010134511A1 (ja) 2010-11-25

Family

ID=43126188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058331 WO2010134511A1 (ja) 2009-05-20 2010-05-18 半導体装置及び半導体装置の製造方法

Country Status (3)

Country Link
US (1) US8710669B2 (ja)
JP (1) JPWO2010134511A1 (ja)
WO (1) WO2010134511A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129419A (ja) * 2010-12-16 2012-07-05 Shinko Electric Ind Co Ltd 半導体パッケージ及びその製造方法
JP2014082493A (ja) * 2012-10-16 2014-05-08 Samsung Electro-Mechanics Co Ltd ハイブリッド積層基板及びその製造方法、並びにパッケージ基板
JP2015002263A (ja) * 2013-06-14 2015-01-05 日本特殊陶業株式会社 配線基板、多層配線基板の製造方法
KR20150057373A (ko) * 2013-11-19 2015-05-28 삼성전기주식회사 회로기판, 회로기판 제조방법 및 2단 비아 구조
US9048298B1 (en) * 2012-03-29 2015-06-02 Amkor Technology, Inc. Backside warpage control structure and fabrication method
JP2016195238A (ja) * 2015-03-31 2016-11-17 新光電気工業株式会社 配線基板及び半導体パッケージ
JP2018186258A (ja) * 2017-03-28 2018-11-22 大日本印刷株式会社 電子部品搭載基板およびその製造方法
TWI741354B (zh) * 2019-08-27 2021-10-01 日商Tdk股份有限公司 感測器用封裝基板及具備其之感測器模組暨內藏電子零件之基板
WO2023199578A1 (ja) * 2022-04-15 2023-10-19 Tdk株式会社 アンテナモジュール

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574639B2 (ja) * 2009-08-21 2014-08-20 三菱電機株式会社 半導体装置およびその製造方法
JP5775747B2 (ja) * 2011-06-03 2015-09-09 新光電気工業株式会社 配線基板及びその製造方法
US8780576B2 (en) 2011-09-14 2014-07-15 Invensas Corporation Low CTE interposer
US9536798B2 (en) * 2012-02-22 2017-01-03 Cyntec Co., Ltd. Package structure and the method to fabricate thereof
JP6144058B2 (ja) * 2013-01-31 2017-06-07 新光電気工業株式会社 配線基板及び配線基板の製造方法
JP6341714B2 (ja) * 2014-03-25 2018-06-13 新光電気工業株式会社 配線基板及びその製造方法
CN114242698A (zh) * 2014-07-17 2022-03-25 蓝枪半导体有限责任公司 半导体封装结构及其制造方法
US9515002B2 (en) 2015-02-09 2016-12-06 Micron Technology, Inc. Bonding pads with thermal pathways
FR3060846B1 (fr) * 2016-12-19 2019-05-24 Institut Vedecom Procede d’integration de puces de puissance et de bus barres formant dissipateurs thermiques
JP2020013835A (ja) 2018-07-13 2020-01-23 Tdk株式会社 センサー用パッケージ基板及びこれを備えるセンサーモジュール並びに電子部品内臓基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229670A (ja) * 2001-11-30 2003-08-15 Clover Denshi Kogyo Kk 多層配線基板の製造方法
JP2004179288A (ja) * 2002-11-26 2004-06-24 Shinko Electric Ind Co Ltd 電子部品実装構造及びその製造方法
JP2005108937A (ja) * 2003-09-29 2005-04-21 Dainippon Printing Co Ltd 電子装置およびその製造方法
JP2005136282A (ja) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd 多層配線基板及びその製造方法
JP2005311240A (ja) * 2004-04-26 2005-11-04 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005340159A (ja) * 2004-05-28 2005-12-08 Samsung Sdi Co Ltd 電子放出素子および電子放出素子の製造方法
JP2009076565A (ja) * 2007-09-19 2009-04-09 Shinko Electric Ind Co Ltd 多層配線基板及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077499A (ja) * 1999-09-03 2001-03-23 Toshiba Corp 複合配線基板およびその製造方法、それに用いる配線基板、並びに半導体装置
JP4854847B2 (ja) * 2000-02-25 2012-01-18 イビデン株式会社 多層プリント配線板および多層プリント配線板の製造方法
US6841862B2 (en) * 2000-06-30 2005-01-11 Nec Corporation Semiconductor package board using a metal base
JP3863391B2 (ja) * 2001-06-13 2006-12-27 Necエレクトロニクス株式会社 半導体装置
JP2006019441A (ja) * 2004-06-30 2006-01-19 Shinko Electric Ind Co Ltd 電子部品内蔵基板の製造方法
KR100726240B1 (ko) * 2005-10-04 2007-06-11 삼성전기주식회사 전자소자 내장 인쇄회로기판 및 그 제조방법
US7989707B2 (en) * 2005-12-14 2011-08-02 Shinko Electric Industries Co., Ltd. Chip embedded substrate and method of producing the same
JP4824397B2 (ja) * 2005-12-27 2011-11-30 イビデン株式会社 多層プリント配線板
JP2008182071A (ja) * 2007-01-25 2008-08-07 Toppan Printing Co Ltd 電子部品内蔵配線板及びその製造方法、並びに電子機器
WO2010024233A1 (ja) * 2008-08-27 2010-03-04 日本電気株式会社 機能素子を内蔵可能な配線基板及びその製造方法
WO2011108308A1 (ja) * 2010-03-04 2011-09-09 日本電気株式会社 半導体素子内蔵配線基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229670A (ja) * 2001-11-30 2003-08-15 Clover Denshi Kogyo Kk 多層配線基板の製造方法
JP2004179288A (ja) * 2002-11-26 2004-06-24 Shinko Electric Ind Co Ltd 電子部品実装構造及びその製造方法
JP2005108937A (ja) * 2003-09-29 2005-04-21 Dainippon Printing Co Ltd 電子装置およびその製造方法
JP2005136282A (ja) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd 多層配線基板及びその製造方法
JP2005311240A (ja) * 2004-04-26 2005-11-04 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005340159A (ja) * 2004-05-28 2005-12-08 Samsung Sdi Co Ltd 電子放出素子および電子放出素子の製造方法
JP2009076565A (ja) * 2007-09-19 2009-04-09 Shinko Electric Ind Co Ltd 多層配線基板及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129419A (ja) * 2010-12-16 2012-07-05 Shinko Electric Ind Co Ltd 半導体パッケージ及びその製造方法
US9048298B1 (en) * 2012-03-29 2015-06-02 Amkor Technology, Inc. Backside warpage control structure and fabrication method
JP2014082493A (ja) * 2012-10-16 2014-05-08 Samsung Electro-Mechanics Co Ltd ハイブリッド積層基板及びその製造方法、並びにパッケージ基板
KR101472633B1 (ko) * 2012-10-16 2014-12-15 삼성전기주식회사 하이브리드 적층기판, 그 제조방법 및 패키지 기판
JP2015002263A (ja) * 2013-06-14 2015-01-05 日本特殊陶業株式会社 配線基板、多層配線基板の製造方法
KR20150057373A (ko) * 2013-11-19 2015-05-28 삼성전기주식회사 회로기판, 회로기판 제조방법 및 2단 비아 구조
KR102163041B1 (ko) * 2013-11-19 2020-10-08 삼성전기주식회사 회로기판, 회로기판 제조방법 및 2단 비아 구조
JP2016195238A (ja) * 2015-03-31 2016-11-17 新光電気工業株式会社 配線基板及び半導体パッケージ
JP2018186258A (ja) * 2017-03-28 2018-11-22 大日本印刷株式会社 電子部品搭載基板およびその製造方法
TWI741354B (zh) * 2019-08-27 2021-10-01 日商Tdk股份有限公司 感測器用封裝基板及具備其之感測器模組暨內藏電子零件之基板
WO2023199578A1 (ja) * 2022-04-15 2023-10-19 Tdk株式会社 アンテナモジュール

Also Published As

Publication number Publication date
JPWO2010134511A1 (ja) 2012-11-12
US20120068359A1 (en) 2012-03-22
US8710669B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
WO2010134511A1 (ja) 半導体装置及び半導体装置の製造方法
JP5378380B2 (ja) 半導体装置及びその製造方法
TWI401000B (zh) 無核心層配線基板、半導體裝置及其製造方法
WO2019117073A1 (ja) ガラス配線基板、その製造方法及び半導体装置
JP3591524B2 (ja) 半導体装置搭載基板とその製造方法およびその基板検査法、並びに半導体パッケージ
JP5496445B2 (ja) 半導体装置の製造方法
WO2010041630A1 (ja) 半導体装置及びその製造方法
JP4452222B2 (ja) 多層配線基板及びその製造方法
US8039756B2 (en) Multilayered wiring board, semiconductor device in which multilayered wiring board is used, and method for manufacturing the same
JP5423874B2 (ja) 半導体素子内蔵基板およびその製造方法
JP5258045B2 (ja) 配線基板、配線基板を用いた半導体装置、及びそれらの製造方法
WO2011089936A1 (ja) 機能素子内蔵基板及び配線基板
JPWO2008056499A1 (ja) 半導体装置およびその製造方法
US20090001604A1 (en) Semiconductor Package and Method for Producing Same
JP5310103B2 (ja) 半導体装置及びその製造方法
US8872334B2 (en) Method for manufacturing semiconductor device
WO2010101167A1 (ja) 半導体装置及びその製造方法
JP5644107B2 (ja) 半導体装置
JP4063240B2 (ja) 半導体装置搭載基板とその製造方法、並びに半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13320798

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011514414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777744

Country of ref document: EP

Kind code of ref document: A1