WO2010134326A1 - タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法 - Google Patents

タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法 Download PDF

Info

Publication number
WO2010134326A1
WO2010134326A1 PCT/JP2010/003347 JP2010003347W WO2010134326A1 WO 2010134326 A1 WO2010134326 A1 WO 2010134326A1 JP 2010003347 W JP2010003347 W JP 2010003347W WO 2010134326 A1 WO2010134326 A1 WO 2010134326A1
Authority
WO
WIPO (PCT)
Prior art keywords
tar
containing gas
catalyst
mixture
gas reforming
Prior art date
Application number
PCT/JP2010/003347
Other languages
English (en)
French (fr)
Inventor
鈴木公仁
藤本健一郎
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2011514330A priority Critical patent/JP4897112B2/ja
Priority to BRPI1010991-9A priority patent/BRPI1010991B1/pt
Priority to CN201080021561.XA priority patent/CN102427879B/zh
Priority to US13/320,524 priority patent/US9393551B2/en
Publication of WO2010134326A1 publication Critical patent/WO2010134326A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/005Rotary drum or kiln gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention is a tar-containing gas reforming catalyst that converts a high-temperature tar-containing gas generated when a carbonaceous raw material is pyrolyzed into a gas such as hydrogen, carbon monoxide, or methane (hereinafter sometimes referred to as a catalyst).
  • the present invention relates to a method for producing a tar-containing gas reforming catalyst, a tar-containing gas reforming method using the tar-containing gas reforming catalyst, and a method for regenerating the tar-containing gas reforming catalyst.
  • Patent Documents 1 and 2 disclose a technique for indirectly recovering sensible heat of crude COG. Specifically, in the techniques of Patent Document 1 and Patent Document 2, a sensible heat is circulated through a heat transfer pipe in a heat transfer pipe provided inside a coke oven riser pipe (or between the riser section and the dry main). Recover.
  • Patent Document 3 discloses a technique for applying a catalyst such as crystalline aluminosilicate or crystalline silica to the outer surface of a heat transfer tube. According to this technique, deposits such as tar are decomposed into low molecular weight hydrocarbons via the applied catalyst, and thus heat transfer efficiency can be stably maintained.
  • a catalyst such as crystalline aluminosilicate or crystalline silica
  • this technique is also a technique for indirectly recovering the sensible heat of crude COG, and whether or not the decomposition products of heavy hydrocarbons such as tar become light hydrocarbons that are easy to use as gas fuel etc. It is not considered at all. Furthermore, the degradation over time of the decomposition activity by catalytically toxic sulfur compounds such as hydrogen sulfide contained at a high concentration in the crude COG has not been studied.
  • Ni x Mg 1-x O—SiO 2 spray-dried solid solution catalyst Ni / Al 2 O 3 catalyst, active Al 2 O 3 catalyst, Fe / Al 2 O 3 catalyst, etc.
  • the reforming activity of these catalysts was insufficient.
  • the energy conversion catalyst is susceptible to sulfur poisoning and carbon deposition. For this reason, it has been difficult to produce a catalyst suitable for the decomposition reaction of tars mainly composed of a condensed polycyclic aromatic compound that easily causes carbon deposition in an atmosphere containing a high-concentration sulfur compound as described above.
  • sintering of the supported metal particles tends to occur. For this reason, it has been difficult to realize reproduction of catalyst activity by regeneration.
  • Patent Document 4 a method for producing a hydrocarbon reforming catalyst by spray drying and mixing with a nickel magnesia compound using silica or alumina as a binder, or a nickel magnesia compound A method for producing a hydrocarbon reforming catalyst by physically mixing silica powder or alumina powder is also known.
  • high catalytic activity and final product strength cannot be obtained by a method in which silica powder or alumina powder is physically added to and mixed with nickel magnesia compound powder and then molded and fired.
  • Patent Document 5 by removing impurities (H 2 S, COS, aromatic hydrocarbons, tar, dust, etc.) contained in crude COG, it is used as a fuel for city gas or a raw material for chemical synthesis.
  • a method for obtaining purified COG is disclosed.
  • purified hydrocarbons obtained by conventional methods contain lower hydrocarbons and aromatic hydrocarbons, which cause poisoning of the reformer catalyst. There is a fear.
  • Patent Document 6 discloses a manufacturing system in which synthesis gas is manufactured by a reformer after performing pre-reforming using a commercially available catalyst.
  • a catalyst used in a reformer that produces the latter synthesis gas. That is, a reforming catalyst for crude COG or purified COG containing a high concentration of tar has not been studied so far.
  • Non-Patent Document 1 proposes a catalyst produced using a precipitate from a solution containing nickel, magnesium and aluminum as a partial oxidation catalyst for methane.
  • Patent Document 7 discloses that an oxide composed of nickel, magnesium, and calcium includes at least one of Group 3B elements, Group 4A elements, Group 6B elements, Group 7B elements, Group 1A elements, and lanthanoid elements.
  • a mixed catalyst is disclosed.
  • Patent Document 8 contains magnesium, aluminum, and nickel as constituent elements, and contains one or more elements selected from alkali metals, alkaline earth metals, Zn, Co, Ce, Cr, Fe, and La.
  • a catalyst is disclosed.
  • Non-Patent Document 2 proposes magnesia and nickel supported catalysts for ceria zirconia compounds as well as nickel supported catalysts for ceria, zirconia, and ceria zirconia compounds for triforming reactions from methane to carbon dioxide, steam and oxygen.
  • a catalyst that contains sulfur in a raw material such as city gas, isooctane, kerosene, and propane and generates hydrogen for a fuel cell from a relatively lower hydrocarbon
  • a porous carrier composed of aluminum and magnesium as in Patent Document 9
  • a mixture of silicon, zirconium, cerium, titanium, aluminum, yttrium, scandium, oxides of at least one element selected from Group 1A elements and Group 2A elements have been proposed.
  • Patent Document 10 As a hydrogen production catalyst from lower hydrocarbons such as propane, butane, and city gas, as disclosed in Patent Document 10, a catalyst containing magnesium, aluminum, and nickel as constituent elements and containing silicon, etc. Has been proposed. However, the hydrocarbons targeted by these catalysts are easily decomposed into lower-chain hydrocarbons. Further, the sulfur content that can be a catalyst poison contained in the raw material is limited to 50 ppm or less as shown in Patent Document 9. That is, with respect to these known catalysts, no consideration has been given to reforming heavy hydrocarbons such as tar in a gas atmosphere containing a high concentration of sulfur in the tar-containing gas.
  • the present invention occurs when a carbonaceous raw material such as coal or biomass is pyrolyzed, contains tars mainly composed of heavy chain hydrocarbons, condensed polycyclic aromatic hydrocarbons and the like, and contains hydrogen sulfide at a high concentration.
  • Tar-containing gas such as crude gas or purified gas
  • tar that contains high-performance and stable conversion to light chemicals such as methane, carbon monoxide, and hydrogen without using expensive platinum group in the presence of catalyst
  • the present invention employs the following means in order to solve the above-described problems.
  • a first aspect of the present invention is an oxide containing nickel, magnesium, cerium, and aluminum, which contains at least one composite oxide, and the alumina content as a single compound is 5% by mass or less.
  • This is a limited tar-containing gas reforming catalyst.
  • the composite oxide may have a crystal phase of NiMgO, MgAl 2 O 4 , or CeO 2 .
  • the crystallite size of the (200) plane of the NiMgO crystal phase obtained by X-ray diffraction measurement is 1 nm to
  • the crystallite size of the (311) plane of the MgAl 2 O 4 crystal phase may be 1 nm to 50 nm, and the crystallite size of the (111) plane of the CeO 2 crystal phase may be 1 nm to 50 nm.
  • a second aspect of the present invention includes a step of forming a precipitate by coprecipitation from a mixed solution containing a nickel compound, a magnesium compound, and a cerium compound; and a step of calcining the precipitate;
  • a method for producing a tar-containing gas reforming catalyst comprising: a step of producing a mixture by adding alumina powder and water or alumina sol to the baked precipitate; and a step of firing the mixture.
  • the mixture may be dried and pulverized before the mixture is calcined, or The mixture may be dried, calcined, ground and molded.
  • a third aspect of the present invention includes a step of producing a precipitate by coprecipitation from a mixed solution containing a nickel compound, a magnesium compound, and a cerium compound; alumina powder and water or alumina sol in the precipitate;
  • a method for producing a tar-containing gas reforming catalyst comprising: a step of producing a mixture by adding; and a step of calcining the mixture.
  • the mixture in the firing step, the mixture may be dried and pulverized before firing the mixture, or the The mixture may be dried, calcined, ground and molded.
  • a fourth aspect of the present invention is a step of producing a precipitate by coprecipitation from a mixed solution containing a nickel compound, a magnesium compound, and a cerium compound; alumina powder and water or alumina sol in the precipitate; A step of producing an intermediate mixture by adding a solution; a step of calcining the intermediate mixture; and a step of producing a mixture by adding alumina powder and water or alumina sol to the calcined intermediate mixture; A process for calcining the mixture; and a method for producing a tar-containing gas reforming catalyst.
  • a fifth aspect of the present invention is a step of producing a mixture by coprecipitation from a mixed solution containing a nickel compound, a magnesium compound, a cerium compound, and an aluminum compound; and a step of firing the mixture; Is a method for producing a tar-containing gas reforming catalyst.
  • the mixture may be dried and pulverized before the mixture is calcined in the calcining step, or the The mixture may be dried, calcined, ground and molded.
  • a tar-containing gas reforming method using the tar-containing gas reforming catalyst produced by the production method according to any one of (4) to (11) above.
  • a tar-containing gas reforming method comprising a step of bringing hydrogen, carbon dioxide, and water vapor in a tar-containing gas generated when a carbonaceous raw material is pyrolyzed into contact with the tar-containing gas reforming catalyst. It is.
  • the tar-containing gas may contain 20 ppm to 4000 ppm of hydrogen sulfide.
  • the tar-containing gas may be a dry distillation gas generated when dry distillation of coal.
  • the tar-containing gas may be a coke oven gas discharged from a coke oven.
  • the tar-containing gas may be a dry distillation gas generated when the biomass is dry distilled.
  • the tar-containing gas may be brought into contact with the tar-containing gas reforming catalyst in an atmosphere of 600 to 1000 ° C. (20)
  • tar-containing gas generated when pyrolyzing coal or biomass can be stably converted into light chemical substances such as carbon monoxide and hydrogen.
  • the tar-containing gas contains hydrogen sulfide at a high concentration, it is brought into contact with the catalyst as it is without desulfurization treatment to reform the tar in the crude gas or to modify the hydrocarbon component in the refined gas.
  • the tar-containing gas can be stably converted into light chemical substances such as carbon monoxide and hydrogen.
  • a tar-containing gas such as crude COG or biomass dry distillation gas containing about 20 ppm to 4000 ppm of hydrogen sulfide can be efficiently and stably converted by a reforming reaction using the tar-containing gas reforming catalyst of the present invention. Can be converted to light chemicals.
  • the tar-containing gas reforming catalyst produced by the production method of the present invention has a higher reforming activity of the tar-containing gas, a lower carbon deposition rate, and a catalyst produced by the impregnation support method, and The activity can be maintained stably for a long time.
  • the inventors of the present invention have used a tar-containing gas (crude gas) containing hydrogen sulfide at a high concentration, which is generated when coal or biomass is pyrolyzed, as a catalyst in a state of a crude gas containing hydrogen sulfide at a high concentration.
  • the method of stably converting the tar in the crude gas into a light chemical substance such as carbon monoxide and hydrogen was studied.
  • a catalyst for reforming the tar-containing gas (1) nickel, magnesium, cerium, and aluminum are included as constituent elements, and (2) the alumina phase (alumina as a single compound) is not contained in excess of 5% by mass, (3) A high concentration of hydrogen sulfide by using as a catalyst a metal oxide containing at least one complex oxide, preferably mainly containing a crystal phase of NiMgO, MgAl 2 O 4 , and CeO 2 ; and It has been discovered that even when a crude gas or a refined gas containing a large amount of tar mainly composed of a condensed polycyclic aromatic hydrocarbon or the like is reformed, the catalyst is less likely to cause a decrease in activity or carbon deposition due to sulfur poisoning. Because this catalyst is less susceptible to sulfur poisoning and carbon deposition, it can be stably reformed in crude gas with little deterioration over time and converted to light chemicals such as carbon monoxide and hydrogen. it can.
  • the present inventors unlike the conventional method for producing a catalyst by an impregnation support method, the present inventors generate a precipitate by coprecipitation from a mixed solution containing a nickel compound, a magnesium compound, and a cerium compound. Or after producing
  • the solid-phase crystallization method (1) enables fine precipitation of active species metals and enables high-speed reaction, and (2) sintering (coarsening) because the precipitated active metals are firmly bonded to the matrix (matrix).
  • this solid-phase crystallization method is used to preliminarily compound the active element nickel element with alumina as a matrix, magnesia, and the like, and further coexist with cerium, so that a nickel compound, A precipitate is formed by coprecipitation from a mixed solution containing a magnesium compound and a cerium compound, and the above-mentioned catalyst is obtained by adding and drying and baking an aluminum component during or after the coprecipitation. Can do.
  • nickel metal is finely deposited in a cluster form on the oxide surface from the oxide matrix. Utilizing this phenomenon, the surface area of the active metal can be obtained even in harsh situations that contain a large amount of components such as tar, which are likely to cause carbon deposition, in a high concentration atmosphere of sulfur components that can be poisoned by sulfur.
  • the active metal can be newly deposited even if it is large and is poisoned with sulfur, and heavy hydrocarbons can be converted into light hydrocarbons with high efficiency.
  • the impregnation support method As the impregnation support method, a simultaneous impregnation method and a sequential impregnation method are known.
  • a solution obtained by mixing all catalytically active components and promoter components in a solution state is supported on a porous oxide carrier such as alumina or silica and dried.
  • a solution of a catalytically active component and a promoter component is supported stepwise on a porous oxide carrier such as alumina or silica and dried.
  • the inventors generate a precipitate by coprecipitation from a solution containing a nickel compound, a magnesium compound, and a cerium compound, and after the coprecipitation or after the formation of the precipitate, an aluminum component is added and dried and fired.
  • the present inventors have found a method for producing a contained gas reforming catalyst.
  • the catalyst by such a production method has a high reforming activity of the tar-containing gas and can be reformed over a long period of time. Furthermore, even if the catalyst performance deteriorates due to carbon deposition or sulfur poisoning, this catalyst can be regenerated by bringing it into contact with water vapor and / or air.
  • the present inventors have found that
  • the tar-containing gas reforming catalyst according to the first embodiment of the present invention is an oxide containing nickel, magnesium, cerium, and aluminum.
  • This tar-containing gas reforming catalyst contains at least one complex oxide (that is, composed of one or more complex oxides, or a mixture of complex oxides and simple metal oxides). Constituted) and does not contain more than 5 mass% of alumina (alumina phase) as a single compound.
  • Nickel functions as a main active component that causes a reforming reaction to proceed with water vapor, hydrogen, and carbon dioxide that are present in the gas or introduced from the outside with heavy hydrocarbons. Even when high-concentration hydrogen sulfide coexists in the tar-containing gas, the nickel metal is finely dispersed in clusters on the catalyst surface to increase the surface area, and in a reducing atmosphere, active metal particles are present during the reaction. Even when poisoned, new active metal particles are finely precipitated from the matrix (NiMgO phase), so that they are hardly affected by a decrease in activity due to sulfur poisoning. From this matrix compound, active metal particles can be precipitated in a fine cluster under a reducing atmosphere.
  • the condensed polycyclic aromatic-based tar is also highly reactive at high temperatures immediately after dry distillation, and is highly efficient by contacting finely dispersed highly active nickel metal having a high specific surface area. Converts and decomposes to light hydrocarbons. Further, since the precipitated nickel is firmly bonded to the matrix compound, aggregation (sintering) between the nickel particles is suppressed, and the catalytic activity is hardly lowered even during a long-time reaction.
  • magnesia is a basic oxide and reacts with hydrocarbon-derived precipitated carbon on the main active component element by possessing the function of adsorbing carbon dioxide.
  • the catalyst surface can be kept clean and the catalyst performance can be stably maintained for a long period of time.
  • the crystallite size of the (220) plane obtained by X-ray diffraction measurement of the nickel-magnesium solid solution oxide (NiMgO phase) is preferably 1 nm to 50 nm.
  • the thickness is 1 nm or more, the NiMgO phase is sufficiently developed and Ni clusters can be sufficiently precipitated from the NiMgO phase. For this reason, the fall of catalyst activity can be avoided.
  • it is 50 nm or less, it can be avoided that the grain growth of the NiMgO phase becomes too large, and the size of Ni grains precipitated therefrom is increased. Accordingly, it is possible to avoid a decrease in activity due to a decrease in surface area and the occurrence of carbon deposition.
  • Cerium does not dissolve in the nickel-magnesium solid solution oxide, but exists in the vicinity of the nickel-magnesium oxide (NiMgO) surface as cerium oxide (CeO 2 ), and absorbs and releases oxygen even in a tar-containing gas atmosphere. It plays a role in reducing nickel from nickel-magnesium solid solution oxide and precipitating more nickel metal particles. In addition, it functions to reduce the amount of deposited carbon deposited on the catalyst by converting the lattice oxygen of cerium oxide and the deposited carbon into carbon monoxide, carbon dioxide, or the like.
  • the crystallite size of the (111) plane determined by X-ray diffraction measurement of cerium oxide (CeO 2 phase) is preferably 1 nm to 50 nm.
  • the thickness is 1 nm or more, the CeO 2 phase is sufficiently developed, and the oxygen storage / release function that is originally possessed can be sufficiently exhibited.
  • grains from the adjacent NiMgO phase can be acquired, and sufficient catalyst activity can be exhibited.
  • it is 50 nm or less it can be avoided that the precipitation of Ni particles from the NiMgO phase cannot be sufficiently promoted due to the small contact area with the adjacent NiMgO phase. Therefore, sufficient catalytic activity can be expressed.
  • Alumina preferably does not exist as a single alumina phase, but serves as a support as a reaction field. Furthermore, alumina partially reacts with a nickel magnesium compound to form MgAl 2 O 4 , and the NiMgO crystal phase is finely divided, so that the active species nickel precipitated on the surface from each NiMgO crystal phase is highly advanced. It is in a dispersed state, and in particular, it is difficult to form an unevenly distributed portion of nickel that is likely to be the starting point of carbon precipitation, and also functions to exhibit high carbon precipitation resistance.
  • alumina phase As a single compound is produced.
  • the alumina (alumina phase) as a single compound is near 0 mass%, for example, you may be restrict
  • the crystallite size of the (311) plane obtained by X-ray diffraction measurement of the magnesium-aluminum compound (MgAl 2 O 4 phase) formed by alumina is preferably 1 nm to 50 nm.
  • the thickness is 1 nm or more, the MgAl 2 O 4 phase is sufficiently developed, the NiMgO phase is easily refined, and the catalytic activity can be sufficiently exhibited.
  • the crushing strength is lowered due to a decrease in the strength of the molded body itself, which causes a practical problem.
  • it is 50 nm or less, it can be avoided that the Ni composition in the NiMgO phase becomes too high due to the extraction of many Mg components from the NiMgO phase. That is, it can be avoided that sufficient catalytic activity cannot be exhibited due to Ni particles precipitated from the NiMgO phase being too large.
  • the carbonaceous raw material referred to in the present invention refers to a raw material containing carbon that is pyrolyzed to produce tar, and refers to a wide range of materials including carbon in constituent elements such as coal and biomass and plastic containers and packaging, Biomass refers to woodland residue, thinned wood, unused trees, lumber residue, construction waste, woody waste such as rice straw, or secondary products such as wood chips and pellets made from them, and regeneration. This refers to papermaking waste such as waste paper that can no longer be reused as paper, food residues such as agricultural residues and potatoes, and activated sludge.
  • the tar generated when pyrolyzing a carbonaceous raw material differs in properties depending on the raw material to be pyrolyzed, but is an organic compound that is liquid at room temperature containing 5 or more carbons, and is a chain hydrocarbon Or a mixture of aromatic hydrocarbons, etc., if coal pyrolysis, for example, condensed polycyclic aromatics such as naphthalene, phenanthrene, pyrene, anthracene, etc. are the main components, biomass, especially woody waste If pyrolysis of food waste biomass such as benzene, toluene, naphthalene, indene, anthracene, phenol, etc.
  • a hetero compound containing a heterogeneous element such as nitrogen in the ring is also included, but is not particularly limited thereto.
  • Pyrolysis tar exists in a gaseous state at a high temperature immediately after pyrolysis. Further, it exists in a mist state in purified COG cooled to approximately room temperature.
  • a coke oven is generally used when coal is used as a raw material, and an externally heated rotary kiln, moving bed furnace, fluidized bed furnace or the like is used when biomass is used as a raw material.
  • an externally heated rotary kiln, moving bed furnace, fluidized bed furnace or the like is used when biomass is used as a raw material.
  • the present invention is not limited to these.
  • the reforming reaction of tar-containing gas that gasifies by contacting tar-containing gas is a reaction that converts heavy hydrocarbon tar into light chemical substances such as methane, carbon monoxide, hydrogen, etc.
  • a hydrogenation reaction, a steam reforming reaction, a dry reforming reaction, or the like that can occur with hydrogen, water vapor, carbon dioxide, oxygen, or the like in the tar-containing gas can be considered.
  • hydrogen, water vapor, or carbon dioxide is introduced from the outside, the reaction proceeds more efficiently.
  • the temperature of the catalyst layer is controlled by the combustion heat that partially burns hydrogen and hydrocarbon components by introducing air or oxygen into the catalyst layer as necessary. It is also possible to proceed with the reforming reaction while maintaining a certain level.
  • the tar-containing gas reforming catalyst according to this embodiment preferably has a nickel content of 1 to 50% by mass as a main active component.
  • the content is 1% by mass or more, the nickel reforming performance can be sufficiently exhibited.
  • the contents of magnesium, cerium, and aluminum forming the matrix can be appropriately maintained, and the concentration of nickel metal deposited on the catalyst is high and avoids coarsening. it can. For this reason, it can avoid that performance deteriorates with time under this reaction condition.
  • the magnesium content is preferably 1 to 45% by mass. In the case of 1 mass% or more, it is easy to make use of the properties of the basic oxide of magnesia, and it is possible to suppress the carbon deposition of hydrocarbons and to keep the catalyst performance stable for a long period of time.
  • magnesium content is 45 mass% or less, content of other nickel, cerium, and aluminum can be kept appropriate, and the reforming activity of a catalyst can fully be exhibited.
  • the magnesium content is less than 1% by mass, the nickel concentration in the solid solution of magnesium and nickel is high, so that the nickel particles precipitated from the solid solution phase are easily coarsened, and after the reforming reaction of the tar-containing gas. The amount of carbon deposition on the catalyst tends to increase.
  • the cerium content is preferably 1 to 40% by mass. In the case of 1 mass% or more, it can be avoided that nickel is hardly precipitated from nickel magnesia due to the oxygen storage ability of cerium oxide. In the case of 40% by mass or less, the ratio of magnesia that suppresses nickel and carbon deposition, which are main active components, can be maintained within an appropriate range, and the reforming activity of the catalyst can be sufficiently exhibited.
  • the aluminum content is preferably 20 to 80% by mass in terms of alumina. If this amount is less than 20% by mass, it becomes a ceramic mainly composed of nickel magnesia (NiMgO) phase, and since the proportion of MgAl 2 O 4 phase is small, the NiMgO phase does not become finer and Ni particles precipitated therefrom become larger and active. The strength tends to be remarkably lowered when it is molded or molded. If it exceeds 80% by mass, the ratio of nickel, which is the main active component, and magnesia that suppresses carbon deposition becomes low, so that there is a possibility that the reforming activity of the catalyst cannot be fully exhibited.
  • NiMgO nickel magnesia
  • the catalyst preferably has a nickel content of 1 to 35% by mass, a magnesium content of 1 to 35% by mass, a cerium content of 3 to 35% by mass, and a converted alumina content of 20 to 80% by mass. preferable.
  • the catalyst produced by the above method may be a powder or a molded body.
  • powder it is preferable to adjust the particle size and surface area, and in the case of a molded body, the pore volume, pore diameter, shape, etc. are appropriately adjusted in consideration of the surface area and strength.
  • the molded body may be any of a spherical shape, a cylindrical shape, a ring shape, a wheel shape, a granular shape, and the like, and may be any of a metal or ceramic honeycomb substrate coated with a catalyst component.
  • each starting material in advance after calculation.
  • the catalyst may be prepared by blending at that time thereafter.
  • a method called a scanning high frequency inductively coupled plasma method may be used as a method for measuring the content of each metal species constituting the reforming catalyst.
  • an alkali melting agent for example, sodium carbonate, sodium borate, etc.
  • the sample solution is atomized and thermally excited in the high-temperature plasma state in the device, and when this returns to the ground state, an emission spectrum with an element-specific wavelength is generated.
  • the element type and amount can be qualitatively and quantitatively determined from the strength.
  • the catalyst in order to confirm whether or not the prepared oxide forms a desired crystal structure, the catalyst can be evaluated by wide-angle X-ray diffraction as follows. First, after setting the material in a powder sample holder, a Rigaku RINT1500 was used to generate CuK ⁇ rays at an output of 40 kV and 150 mA, the monochromator was graphite, the divergence and scattering slits were 1 °, the light receiving slits 0. The crystal structure is evaluated from the peak position and intensity by measuring 15 mm, the monochrome light receiving slit is 0.8 mm, and measuring the sampling width of 0.01 deg and the scanning speed of 2 deg / min.
  • the crystallite size of 2 can be evaluated with high accuracy.
  • MgAl 2 O 4 can be evaluated with a (311) diffraction line
  • NiMgO can be evaluated with a (200) diffraction line.
  • K is a constant, it is set to 0.9 because a half-value width is used for ⁇ as shown below.
  • is a measured X-ray wavelength, which is 1.54056 mm in this measurement.
  • is the spread of the diffraction line depending on the size of the crystal grains, and the half width is used.
  • is the Bragg angle of CeO 2 (111) or MgAl 2 O 4 (311) or NiMgO (200) diffraction lines.
  • a Kiya-type hardness meter was used to measure the strength of the molded catalyst. Specifically, the strength (crushing strength) is evaluated by placing the molded body on the table of the hardness meter, pressing from above, and measuring the strength when the molded body is crushed in N (Newton) units. Can do.
  • the second embodiment of the present invention is a method for producing a tar reforming catalyst used for reforming a tar-containing gas.
  • the tar-containing gas reforming catalyst here is a metal oxide catalyst containing nickel, magnesium, cerium, and aluminum as constituent metals.
  • This catalyst is produced as follows. First, a precipitate is produced by coprecipitation from a solution of a nickel compound, a magnesium compound, and a cerium compound. During the coprecipitation or after the formation of the precipitate, an aluminum component is further added to form an aluminum mixture containing nickel, magnesium, cerium, and aluminum. This aluminum mixture is dried and calcined to produce a catalyst comprising a mixture containing nickel, magnesium, cerium, and an oxide (oxide and / or composite oxide) of aluminum.
  • the catalyst produced by the above production method can increase the homogeneity of each component in the catalyst material as compared with the catalyst produced by the conventional impregnation support method. Accordingly, the active ingredient nickel can be finely precipitated. Further, the cerium compound as a cocatalyst is also present in a homogeneously dispersed manner, and its function can be efficiently exhibited. Therefore, the reforming activity of the tar-containing gas is high, and stable activity can be maintained for a long time.
  • a precipitant is added to a mixed solution of a nickel compound, a magnesium compound, and a cerium compound. Then, nickel, magnesium and cerium are co-precipitated to generate a precipitate (S1-1). Next, the precipitate is dried (S1-2) and further calcined (S1-3). This calcination produces oxides of nickel, magnesium and cerium. Alumina powder and water or alumina sol is added to this oxide (S1-4). These are mixed to form a mixture (S1-5). The mixture is dried (S1-6) and further calcined (S1-7). In particular, the molded catalyst prepared by this measure possesses high strength.
  • a precipitant is added to a mixed solution of a nickel compound, a magnesium compound, and a cerium compound, and nickel, magnesium, and cerium are coprecipitated to generate a precipitate (S2-1).
  • alumina powder and water, or alumina sol is added to the precipitate (S2-2). These are mixed to produce a mixture (intermediate mixture) (S2-3).
  • the mixture is dried (S2-4) and further calcined (S2-10) to produce a catalyst.
  • alumina powder and water or alumina sol may be further added (S2-6). ).
  • S2-7 the mixture is dried (S2-8), and further calcined (S2-10) to produce a catalyst.
  • calcination may be performed after drying (S2-9).
  • a precipitant is added to a mixed solution of a nickel compound, a magnesium compound, a cerium compound, and an aluminum compound (S3-1).
  • nickel, magnesium, cerium, and aluminum are coprecipitated to form a precipitate (S3-2).
  • the precipitate (mixture) is dried (S3-3) and further baked (S3-4).
  • the catalyst may be manufactured by such a measure. That is, the aluminum component may be added to the mixed solution as a component to be coprecipitated, instead of being added to the precipitate after coprecipitation from the solution of the nickel compound, the magnesium compound, and the cerium compound.
  • the drying of the precipitate and the mixture in each production method may be a general drying method regardless of the temperature or the drying method.
  • the co-precipitate after drying may be baked (calcined) after coarse pulverization as necessary. Note that coarse pulverization is not necessary when the precipitate after drying is maintained in powder form by drying the fluidized bed or the like.
  • the mixture can be fired in air, and the temperature may be in the range of 600 to 1300 ° C.
  • the calcination temperature is high, sintering of the mixture proceeds and the strength increases.
  • the specific surface area becomes small and the catalytic activity decreases, it is desirable to determine in consideration of the balance.
  • After firing it can be used as a catalyst as it is, but it may be molded by press molding or the like and used as a molded product.
  • a calcination or molding step can be added between the drying and the calcination. In that case, the calcination may be performed in air at about 400 to 800 ° C., and the molding may be performed by press molding or the like.
  • a catalyst produced by such a production method it is a tar-containing gas mainly composed of a condensed polycyclic aromatic that contains a large amount of hydrogen sulfide generated when the carbonaceous raw material is thermally decomposed and is liable to cause carbon deposition.
  • the accompanying heavy hydrocarbons such as tar can be reformed with high efficiency and converted into light hydrocarbons mainly composed of hydrogen, carbon monoxide, and methane.
  • catalyst performance deteriorates, by contacting at least one of water vapor or air with the catalyst at a high temperature, the deposited carbon and adsorbed sulfur on the catalyst can be removed to recover the catalyst performance. Therefore, stable operation for a long time is possible.
  • the tar-containing gas reforming catalyst manufactured by the above-described manufacturing method is different from a catalyst obtained by simply supporting each component of nickel, magnesium, and cerium on an alumina carrier and drying and calcining.
  • the nickel magnesia crystal phase is further refined, and Ni particles precipitated therefrom are highly finely dispersed. Therefore, a molded product having a high activity and a small amount of carbon deposition can be obtained.
  • each metal compound having high solubility in water For example, not only inorganic salts such as nitrates, carbonates, sulfates and chlorides, but also organic salts such as acetates are suitably used. Particularly preferred are nitrates, carbonates or acetates, which are thought to be difficult to retain impurities that can be poisoned by catalyst after calcination.
  • the precipitating agent used when forming a precipitate from these solutions changes the pH of the solution from neutral to basic, in which nickel, magnesium, cerium, or aluminum precipitates mainly as hydroxides.
  • a potassium carbonate aqueous solution a sodium carbonate aqueous solution, a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, an ammonia aqueous solution, a urea solution, or the like is preferably used.
  • the tar-containing gas reforming catalyst produced by the above method contains a large amount of hydrogen sulfide generated when the carbonaceous raw material is pyrolyzed, and is a condensed polycyclic aromatic-based tar that easily causes carbon precipitation. Even if it contains gas, it shows high carbon precipitation resistance, reforms accompanying heavy hydrocarbons such as tar with high efficiency, and deteriorates over time to light chemical substances mainly composed of hydrogen, carbon monoxide, and methane. Less stable conversion.
  • the reforming reaction proceeds stably even in a hydrogen sulfide-containing atmosphere.
  • the lower the hydrogen sulfide concentration in the gas the lower the poisoning.
  • the hydrogen sulfide concentration in the gas is high (from 3000 ppm to 4000 ppm)
  • the tar-containing gas can be sufficiently reformed.
  • the hydrogen sulfide concentration in the gas is 3000 ppm or less, the effect can be more sufficiently exhibited.
  • the hydrogen, carbon dioxide, and water vapor described above may be hydrogen, carbon dioxide, or water vapor contained in the tar-containing gas, or may be hydrogen, carbon dioxide, or water vapor that is appropriately added from the outside.
  • the tar gasification reaction in which the tar in the tar-containing gas is gasified by catalytic reforming is not necessarily clear because the reaction path is complicated, but between the tar-containing gas and hydrogen introduced from the outside, for example, It is considered that the conversion reaction to light hydrocarbons such as methane proceeds by hydrogenolysis of the condensed polycyclic aromatic in tar as represented by (Formula 2) (In (Formula 2), only methane is (If it is generated) In addition, between the tar-containing gas and carbon dioxide introduced from outside, hydrogen and carbon monoxide by dry reforming with condensed polycyclic aromatic carbon dioxide in tar as represented by (formula 3). The conversion reaction proceeds. Furthermore, steam reforming and a water gas shift reaction as represented by (Equation 4) proceed between the tar-containing gas or water vapor introduced from the outside. The reaction proceeds in the same manner for hydrocarbon components other than tar in the tar-containing gas.
  • the reduction condition is that nickel particles that are active metals are precipitated in a fine cluster form from the catalyst according to one embodiment of the present invention.
  • the reduction condition is that nickel particles that are active metals are precipitated in a fine cluster form from the catalyst according to one embodiment of the present invention.
  • a gas atmosphere containing at least one of hydrogen, carbon monoxide, and methane in a gas atmosphere in which water vapor is mixed with these reducing gases, or in an atmosphere in which an inert gas such as nitrogen is mixed in these gases It may be below.
  • the reduction temperature is preferably 500 ° C. to 1000 ° C., or 600 ° C. to 1000 ° C., for example.
  • the reduction time depends on the amount of catalyst to be charged, and for example, 30 minutes to 4 hours is preferable.
  • the time required for the reduction of the entire catalyst is not particularly limited.
  • the inlet temperature of the catalyst layer is preferably 500 to 1000 ° C.
  • the inlet temperature of the catalyst layer is more preferably 550 to 1000 ° C. It is possible to proceed the reaction at a relatively high temperature when the carbonaceous raw material is coal, and at a relatively low temperature when it is biomass.
  • the tar-containing gas generated by pyrolyzing or partially oxidizing the carbonaceous raw material is a tar-containing gas having a very high hydrogen sulfide concentration such as crude COG discharged from the coke oven
  • Hydrocarbons can be reformed and gasified.
  • thermal decomposition or partial oxidation specifically refers to dry distillation, or producing a tar-containing gas by oxidizing only a part of a carbonaceous raw material for gasification.
  • coke is produced by heating and dry distillation after filling the raw material coal into the furnace. As shown in FIG. 1, the coke oven gas generated is connected to the riser 1 at the top of the furnace.
  • Aqueous water 2 (ammonia water) is sprayed from the part called and cooled, and then collected in the dry main 4 which is an air collecting tube.
  • the gas component has sensible heat of about 800 ° C. in the riser 1 of the coke oven 3, the gas component is rapidly cooled to 100 ° C. or less after spraying the cold water 2, and the sensible heat is effective. Not available for use. Therefore, if this gas sensible heat can be used effectively and heavy hydrocarbon components such as tar can be converted into fuel components such as hydrogen and light hydrocarbons such as methane, it will not only lead to energy amplification but also the reducing properties produced there. Gas volume is greatly amplified.
  • the carbon dioxide emission generated in the blast furnace process that currently reduces iron ore by coke can be significantly reduced.
  • it can be converted into a useful product, not just used for conventional fuel applications, and it may lead to a higher level of energy use by converting it into synthesis gas suitable for direct reduction of iron ore. is there.
  • the tar contained in the crude COG changes over time from the coke oven charging to the start of the kiln, and fluctuates in the range of about 0.1 to 150 g / Nm 3 .
  • the purified COG purified by a conventional method includes a primary cooler, a tar extractor, Although it is refined by treatment with an electrostatic precipitator, etc., there is about 0.01 to 0.02 g / Nm 3 of tar, and even if it is refined with a final cooler, naphthalene is about 0.2 to 0.4 g / Nm 3 , and contains 5 to 10 g / Nm 3 of light oil even after scrubber treatment.
  • the purified COG which is the tar-containing gas
  • fuel components such as light hydrocarbons such as hydrogen and carbon monoxide, as with the conversion of crude COG, reduction of carbon dioxide emissions, conversion to useful materials other than fuel, etc. Can be expected.
  • the tar reforming catalyst incorporated in the catalytic reactor is a catalyst for conversion from tar to light chemical substances mainly composed of hydrogen, carbon monoxide, and methane.
  • the catalyst deteriorates in performance by adsorbing to the catalyst the carbon deposited on the surface or the sulfur component contained in the pyrolysis gas obtained in the pyrolysis step. Therefore, as a method of regenerating a deteriorated catalyst, water vapor is introduced into the catalyst reactor, and carbon on the catalyst surface is removed by the reaction of water vapor and carbon, or sulfur adsorbed on the catalyst is removed by the reaction of water vapor and sulfur. Thus, the catalyst can be regenerated.
  • the carbon on the catalyst surface is removed by the combustion reaction of oxygen and carbon in the air, or the sulfur adsorbed on the catalyst is removed by the reaction of oxygen and sulfur.
  • regenerate the catalyst The entire amount of the regenerated catalyst can be reused, or a part of the regenerated catalyst can be replaced with a new catalyst.
  • Example 1 Nickel nitrate, cerium nitrate, and magnesium nitrate were precisely weighed so that the molar ratio of each metal element was 1: 1: 8, and a mixed aqueous solution was prepared by heating at 60 ° C. and heated to 60 ° C. Aqueous potassium carbonate was added. As a result, nickel, magnesium and cerium were coprecipitated as hydroxides and sufficiently stirred with a stirrer. Thereafter, the mixture was aged for a certain period of time while being kept at 60 ° C., and then subjected to suction filtration and sufficiently washed with pure water at 80 ° C.
  • the precipitate obtained after washing was dried at 120 ° C. and coarsely pulverized. And what was baked (calcination) at 600 degreeC in the air was pulverized, Then, it put into the beaker and added the alumina sol. Next, what was sufficiently mixed in a mixer equipped with stirring blades was transferred to an eggplant-shaped flask, attached to a rotary evaporator, and sucked with stirring to evaporate water. Transfer the nickel, magnesium, cerium, and aluminum compound adhering to the wall of the eggplant-shaped flask to an evaporating dish, dry at 120 ° C, calcine at 600 ° C, and press the powder into a 3mm diameter tablet using a compression molding machine As a result, a tablet molding was obtained.
  • the molded body was fired in air at 950 ° C. to prepare a catalyst molded body in which Ni 0.1 Ce 0.1 Mg 0.8 O was mixed with 50% by mass of aluminum as alumina.
  • NiMgO, MgAl 2 O 4 , and CeO 2 phases No single alumina phase was present in the resulting catalyst.
  • the size of each crystallite was 29 nm, 16 nm, and 29 nm. Furthermore, when the molded body was measured with a Kiyama-type hardness meter, it was found that a high strength of about 100 N was maintained.
  • This catalyst was used at 60 cm 3 and fixed with quartz wool so as to be located at the center of the SUS reaction tube, a thermocouple was inserted at the center position of the catalyst layer, and these fixed bed reaction tubes were set at predetermined positions.
  • 1-methylnaphthalene which is a liquid substance that is actually contained in tar and has a low viscosity at room temperature, is used as a representative substance as a simulated substance for tar generated during coal dry distillation, and a flow rate of 0.025 g / min with a precision pump.
  • Example 2 In the same manner as in Example 1, nickel nitrate, cerium nitrate, and magnesium nitrate were used as raw materials, and nickel, magnesium, and cerium were coprecipitated as hydroxides. Next, alumina sol was added to the precipitate so as to be 50% by mass as alumina. And what was fully mixed with the mixer which attached the stirring blade was moved to the eggplant type flask, attached to the rotary evaporator, and the water
  • This catalyst was subjected to the reforming reaction of the simulated tar using the fixed bed reactor in the same manner as in Example 1 under the same reduction and reaction conditions.
  • Example 3 In the same manner as in Example 1, nickel, cerium, magnesium, and aluminum were hydroxylated by the same operation except that nickel nitrate, cerium nitrate, and magnesium nitrate were used as raw materials and aluminum nitrate was used to form a mixed aqueous solution. After co-precipitation as a product, the mixture was aged for a certain period of time while maintaining at 60 ° C., and then subjected to suction filtration and sufficiently washed with pure water at 80 ° C.
  • Example 3 without adding alumina sol to this precipitate, this precipitate was transferred to an evaporating dish, dried at 120 ° C., pulverized in a mortar, and the powder was press-molded in the same manner as in Example 1 using a compression molding machine. As a result, a tablet molding was obtained. The molded body was fired in air at 950 ° C. to obtain a catalyst molded body. As a result of confirming the component of the molded body by ICP analysis, it was confirmed to be a desired component. Further, as a result of XRD measurement of this preparation, it was found that it was composed of NiMgO, MgAl 2 O 4 , and CeO 2 phases. There was no single alumina phase in the resulting catalyst. The size of each crystallite was 14 nm, 14 nm, and 22 nm.
  • This catalyst was subjected to a simulated tar reforming reaction under the same reduction and reaction conditions using a fixed bed reactor in the same manner as in Example 1.
  • Example 4 In the same manner as in Example 1, nickel, cerium, and magnesium were coprecipitated as hydroxides, and then aged by continuing stirring for a certain time while maintaining at 60 ° C. Thereafter, suction filtration was performed, and the product was sufficiently washed at 80 ° C. pure. The precipitate obtained after washing was dried at 120 ° C. and coarsely pulverized, then baked (calcinated) at 600 ° C. in the air, crushed, put in a beaker, added with alumina sol, and a mixer equipped with stirring blades And mixed well. This was transferred to an eggplant-shaped flask, attached to a rotary evaporator, and sucked with stirring to evaporate water.
  • the nickel, magnesium, cerium, and alumina compounds adhering to the wall of the eggplant-shaped flask were transferred to an evaporating dish, dried at 120 ° C., ground in a mortar, and then fired at 950 ° C. in air.
  • the fired powder thus obtained was press-molded in the same manner as in Example 1 using a compression molding machine having a diameter of 20 mm to obtain a tablet molding. Thereafter, the molded body was coarsely pulverized in a mortar, and sized using a sieve so that the range was 1.0 to 2.8 mm. As a result of confirming the components of the sized product by ICP analysis, it was confirmed to be a desired component.
  • this catalyst was reduced under the same conditions using a fixed bed reactor. Under the reaction conditions of 3, the reforming reaction of the simulated tar was performed. As a result, the methane selectivity was 2.5%, the CO selectivity was 36.6%, the CO 2 selectivity was 34.3%, the carbon deposition rate was 4.3%, and the decomposition rate was 77.7%. The hydrogen amplification factor was 2.2 times.
  • the catalyst obtained by this preparation method is prone to the decomposition reaction of 1-methylnaphthalene, which is a simulated tar, even under severe conditions where it is susceptible to sulfur poisoning and high carbon deposition. I know that.
  • Example 5 A catalyst molded body was prepared by the same preparation method as in Example 1 except that the mass% of nickel, cerium, and magnesium was changed to the ratio shown in Table 4.
  • the mass% of alumina in Table 4 is mass% when aluminum is alumina (the catalyst obtained in Example 5 does not have an alumina single phase).
  • this catalyst was subjected to reduction under the same conditions using a fixed bed reactor.
  • the reforming reaction of the simulated tar was performed under the reaction conditions of 2.
  • Example 6 A catalyst molded body was prepared by the same preparation method as in Example 1 except that the calcination temperature was 500 ° C. As a result of confirming the component of the molded body by ICP analysis, it was confirmed to be a desired component. On the other hand, as a result of XRD measurement of this preparation, almost a diffraction curve is obtained, and only a very small peak of NiMgO, MgAl 2 O 4 , and CeO 2 phases is seen (a single phase of alumina exists in the obtained catalyst) It was an amorphous structure. The size of each crystallite obtained from the small broad peak was 0.9 nm, 0.6 nm, and 0.5 nm. This molded catalyst was obtained as No. 1 of Example 1. The activity was evaluated under the same conditions as in 3. As a result, the catalytic activity was found to be moderate, with the decomposition rate of 1-methylnaphthalene being about 43% on average over 8 hours and the hydrogen amplification rate being about 1.7.
  • Example 7 A catalyst molded body was prepared by the same preparation method as in Example 1 except that the calcination temperature was 1500 ° C. As a result of confirming the component of the molded body by ICP analysis, it was confirmed to be a desired component. On the other hand, as a result of XRD measurement of this preparation product, a very sharp diffraction curve was observed, and it was found that it was composed of NiMgO, MgAl 2 O 4 , and CeO 2 phases (the obtained catalyst has a single phase of alumina). Not) The size of each crystallite obtained from the very sharp peak was 76 nm, 67 nm, and 82 nm.
  • This molded catalyst was obtained as No. 1 of Example 1. The activity was evaluated under the same conditions as in 3. As a result, the catalytic activity was such that the decomposition rate of 1-methylnaphthalene was about 66% on average for 8 hours, of which the carbon deposition rate was 9%, and the hydrogen amplification rate was about 1.8. Therefore, this catalyst has a relatively high conversion rate of 1-methylnaphthalene to a gas component, while a relatively high carbon deposition rate.
  • Example 8 Exactly the same as in Example 1, a catalyst calcined powder in which 50% by mass of aluminum as alumina was mixed with Ni 0.1 Ce 0.1 Mg 0.8 O as alumina (a single phase of alumina was present in the obtained catalyst). The powder was press-molded into a tablet with a diameter of 20 mm using a compression molding machine to prepare a tablet molding. The molded body was roughly pulverized in a mortar, and then adjusted to 1.0 to 2.8 mm using a sieve.
  • this catalyst was subjected to no reduction at all using a fixed bed reactor. Under the reaction conditions of 3, the reforming reaction of the simulated tar was performed. As a result, the methane selectivity was 3.1%, the CO selectivity was 35.8%, the CO 2 selectivity was 32.7%, the carbon deposition rate was 5.6%, and the decomposition rate was 77.2%. The hydrogen amplification factor was 2.2 times.
  • the catalyst obtained by this preparation method is a simulated tar without being subjected to a reduction treatment in advance even under severe conditions where it is highly susceptible to sulfur poisoning and has high carbon deposition properties. It can be seen that the decomposition reaction of 1-methylnaphthalene proceeds.
  • Example 9 No. of Example 1 The reaction was continued for 8 hours under the conditions of No. 3, and then the starting material was stopped, and the catalyst layer was used under the conditions of 60 mL / min for N 2 as a carrier gas and 60 mL / min for H 2 O as a gas. After removing the carbon and sulfur deposited on the catalyst by maintaining the temperature at 800 ° C. for 5 hours, and starting the addition of the raw material under the same conditions as in Example 2, the activity of 90% or more before the regeneration was obtained. It was confirmed to show. In addition, the hydrogen concentration in the reformed gas in this test was high, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
  • Example 10 Similar to Example 9, No. 1 in Example 1 was obtained. The reaction was allowed to proceed for 8 hours under the conditions of No. 3, and then the raw material charging was stopped, and the catalyst layer temperature was set to 800 ° C. under conditions of N 2 of 60 mL / min and air of 60 mL / min as carrier gases. After removing carbon and sulfur deposited on the catalyst by holding for 2 hours, starting the addition of raw materials under the same conditions as in Example 1, it was confirmed that 90% or more of the activity before regeneration was exhibited. . In addition, the hydrogen concentration in the reformed gas in this test was high, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
  • Example 11 A batch furnace capable of simulating a coke oven is charged with 80 kg of charging coal used in an actual coke oven, heated to 800 ° C. according to the actual coke oven, and the actual coke oven gas and the accompanying actual tar are added. Generated. The tar in the tar-containing gas at that time was about 0.04 g / L. The gas was collected with a suction pump and used in the experiment. The nickel, magnesium, cerium and alumina compounds obtained by the same preparation method as in Example 1 were calcined at 600 ° C., and the powder was molded into a ring shape using a ring tableting machine and then fired at 950 ° C. in air.
  • a reaction tube is placed inside an electric furnace heated to a reaction temperature of 800 ° C., and the molded catalyst is placed in the center of the reaction tube.
  • gas collected from the batch furnace The catalytic cracking activity of the actual coke oven gas and the accompanying actual tar was continuously evaluated for 5 hours.
  • the inlet gas flow rate was 10 NL / min, and the catalyst filling amount was about 1 L. It was confirmed by gas chromatography that the inlet gas composition was almost the same as the actual coke oven gas. Further, it was confirmed that the gas contained 2400-2500 ppm of hydrogen sulfide.
  • the tar concentration in the gas was evaluated by the following method.
  • each gas is collected by attaching a 1 L vacuum collection bottle that has been evacuated in advance to the inlet and outlet cocks of the catalyst layer. And the inside of a collection bottle was wash
  • the tar decomposition rate reached about 90.5% after 2 hours from the start of the reaction
  • the hydrogen amplification rate reached 2.4 on average for 5 hours
  • the coal dry distillation tar almost the same as that discharged from the coke oven. It was verified that the catalytic dry gasification reaction progressed against the contained gas.
  • Example 12 Using the rotary kiln 7 shown in FIG. 2 as a dry distillation furnace, the temperature is raised to 800 ° C., and a 20 kg / h of the rotary kiln 7 is used in the rotary kiln 7 from the hopper 5 filled with a coal lump (classified to 5 cm or less). The coal mass was introduced at the feed rate. Thereby, dry distillation gas containing tar was generated.
  • the tar-containing gas (dry distillation gas) was filled with the same ring-shaped molded catalyst as in Example 11 and kept at about 800 ° C. while the flow rate was adjusted to about 10 Nm 3 / h by the induction fan 11.
  • the catalyst decomposition activity of the tar-containing gas was continuously evaluated for 8 hours by introducing it into the catalyst tower 8 and bringing it into contact with the catalyst. Thereafter, the reformed gas was water-cooled with a scrubber 9, dust was removed with an oil bubbler 10, and then burned and diffused with a flare stack 12.
  • restoration processing was performed for 30 minutes by hydrogen 5Nm ⁇ 3 > / h before raw material addition.
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst charge was about 15 L.
  • the tar in the tar-containing gas at that time was about 60 g / Nm 3 . It was confirmed by gas chromatography that the inlet gas composition was almost the same as the actual coke oven gas.
  • the tar concentration in the gas is determined at normal temperature after removing the dichloromethane by collecting the tar components in the gas through a five-stage impinger filled with dichloromethane by sucking the gas from the inlet and outlet of the catalyst layer for a certain period of time. The liquid components were evaluated by quantifying them. And the tar decomposition rate was calculated
  • Example 13 Using the same equipment as in Example 12, supplying building waste chips (classified to 5 cm or less) at a supply rate of 10 kg / h, and dry distillation with a rotary kiln 7 held at 800 ° C., thereby containing biomass tar Gas (dry distillation gas) was generated.
  • the tar-containing gas was introduced into a catalyst tower filled with the same shaped catalyst as in Example 9 and kept at about 800 ° C., and contacted with the catalyst, whereby the catalytic decomposition activity of the tar-containing gas was continuously evaluated for 8 hours.
  • the reduction process was performed for 30 minutes by hydrogen 5Nm ⁇ 3 > / h before raw material injection
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst charge was about 15 L.
  • the tar in the biomass tar-containing gas at that time was about 10 g / Nm 3 .
  • the inlet gas composition was confirmed near the coke oven gas, hydrogen, CO, methane, that the CO 2 is a composition whose main component by gas chromatography.
  • about 16% of the water contained in the building waste as a raw material was volatilized and contained in the gas as water vapor.
  • the gas contained about 25 ppm of hydrogen sulfide.
  • the tar decomposition rate was evaluated by collecting tar components in the tar-containing gas from the inlet and outlet of the catalyst layer and quantifying the tar content in the same manner as in Example 12. As a result, the tar decomposition rate remained stable at 95% after 3 hours from the start of the reaction, and the hydrogen amplification rate was stable at about 6.8 over 8 hours. It was verified that is progressing stably.
  • Example 14 After reforming for 8 hours in Example 12, the supply of coal as a raw material was stopped, the inside of the system was purged with nitrogen, and then air was supplied from the gas intake port installed near the inlet of the rotary kiln 7 maintained at 800 ° C. Suction and air heated by a rotary kiln were introduced into the catalyst tower for about 10 hours to oxidize and remove the deposited carbon and adsorbed sulfur deposited on the reformed catalyst surface. Then, after purging the system with nitrogen in order to drive out the oxygen content, after reducing again with hydrogen 5Nm 3 / h for 30 minutes, the raw material is supplied at the same rate as in Example 12 and brought into contact with the catalyst.
  • the catalytic decomposition activity of the tar-containing gas was continuously evaluated for 8 hours.
  • the tar decomposition rate and hydrogen amplification rate after regeneration were almost the same as those before regeneration, and it was verified that the catalyst was sufficiently regenerated by air combustion.
  • catalytic decomposition of the tar-containing gas and subsequent catalyst regeneration were repeated five times.
  • the hydrogen amplification rate was as stable as before regeneration, suggesting the possibility of long-term operation.
  • Example 15 After reforming in Example 13 for 8 hours, the supply of building waste chips as raw materials was stopped, and the system was purged with nitrogen as in Example 14, and then near the rotary kiln 7 inlet maintained at 800 ° C. By sucking air from the installed gas intake and introducing air heated by a rotary kiln into the catalyst tower for about 10 hours, the deposited carbon and adsorbed sulfur deposited on the reformed catalyst surface were removed by oxidation and regenerated. . Then, after purging the system with nitrogen in order to drive out the oxygen content, after reducing again with hydrogen 5Nm 3 / h for 30 minutes, the raw material is supplied at the same rate as in Example 13 and brought into contact with the catalyst.
  • the catalytic decomposition activity of the tar-containing gas was continuously evaluated for 8 hours.
  • the tar decomposition rate and hydrogen amplification rate after regeneration were almost the same as before regeneration, and it was verified that the catalyst was sufficiently regenerated by air combustion even in the case of building waste chips.
  • catalytic decomposition of this biomass tar-containing gas and subsequent catalyst regeneration were repeated seven times, and the hydrogen amplification rate was as stable as before regeneration, suggesting the possibility of long-term operation.
  • the industrial catalyst had a low conversion rate of 1-methylnaphthalene to a gas component (12.6%), and a very high carbon deposition rate. Since the carbon deposition rate is very high, there is a possibility that the catalyst life is short, and even if the regeneration treatment is performed after the reaction, it is necessary to perform the oxidation treatment at a high temperature or for a long time. It is expected that the catalytically active particles cause sintering due to combustion heat, and the performance after regeneration is further lowered.
  • Comparative Example 2 The same test equipment as in Example 12 was used, and the industrial catalyst (SC11NK) used in Comparative Example 1 was packed in a catalyst tower for evaluation. As a result, tar decomposition rate is only about 22% on average over 8 hours, hydrogen amplification rate is also about 1.5, and industrial catalysts have low tar decomposition rate even when evaluated under actual coke oven gas and actual tar. There was found.
  • Example 3 In the same manner as in Example 1, a nickel and magnesium precipitate was prepared, filtered, washed and dried, and then baked in air at 950 ° C. for 20 hours to obtain a nickel and magnesia compound. Thereafter, silica sol was added so that SiO 2 in the catalyst was in a proportion of 50 mass% to prepare a slurry. Thereafter, spray drying was performed under the condition that the average particle size was about 50 ⁇ m, and the powder obtained there was calcined at 950 ° C. in air. Furthermore, after the obtained solid solution oxide was molded and fired by the same experimental method as in Example 1, No. 1 in Example 1 was obtained. The activity was evaluated under the same conditions as in 3. As a result, the decomposition rate of 1-methylnaphthalene is only about 15% on average for 8 hours, and the catalytic activity is very low. The hydrogen amplification rate is also about 1.0, and the catalyst activity is low. There was found.
  • Example 4 Except for using nickel nitrate and magnesium nitrate as raw materials, nickel and magnesium hydroxide were coprecipitated in the same manner as in Example 1, followed by filtration, washing, drying and coarse pulverization. Then, after crushing what was baked (calcined) at 600 ° C. in the air, put it in a beaker, add alumina sol and mix well with a mixer equipped with stirring blades, transfer it to an eggplant type flask, and Water was evaporated by attaching to an evaporator and sucking with stirring.
  • the mixture was molded and baked by the same experimental method as in Example 1, and then No. 1 in Example 1.
  • the activity was evaluated under the same conditions as in 3.
  • the catalytic activity was 1-methylnaphthalene decomposition rate of about 62.6% on average over 8 hours (including carbon deposition rate of 13.9%) and hydrogen amplification rate of about 1.7. Only the activity was shown, and it was found that the amount of carbon deposition was very large.
  • 1-methylnaphthalene decomposition rate was about 20.5% on average over 8 hours (including carbon deposition rate of 10.2%), and hydrogen amplification rate was about 1.4, which is low. Not shown, it was found that the amount of carbon deposition was relatively large.
  • tar-containing gas generated when pyrolyzing coal or biomass can be stably converted into light chemical substances such as carbon monoxide and hydrogen. For this reason, the present invention has sufficient industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明は、ニッケル、マグネシウム、セリウム、アルミニウムを含む酸化物であって、少なくとも1種の複合酸化物を含み、単独化合物としてのアルミナ含有量が5質量%以下に制限されたタール含有ガス改質用触媒を提供する。

Description

タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
 本発明は、炭素質原料を熱分解した際に発生する高温のタール含有ガスを、水素、一酸化炭素、メタン等のガスへ変換するタール含有ガス改質用触媒(以下、触媒と呼ぶ場合がある)、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法に関する。
 本願は、2009年5月19日に、日本に出願された特願2009-121045号、及び、2010年3月31日に、日本に出願された特願2010-083934号に基づき優先権を主張し、その内容をここに援用する。
 鉄鋼業はエネルギー多消費産業であるが、高炉法一貫製鉄プロセスにおける廃熱のうち約4割が未利用廃熱である。そのうち、回収されやすいが従来は利用されていない熱源としてコークス炉から発生する高温のコークス炉ガス(粗COG)の顕熱がある。特許文献1及び特許文献2は、粗COGの顕熱を間接的に回収する技術を開示している。具体的には、特許文献1や特許文献2の技術では、コークス炉上昇管の内部(又は上昇管部とドライメーンとの間)に設けられる伝熱管内に熱媒体を循環流通させて顕熱を回収する。しかし、これらの方法では粗COGに随伴するタール・軽油等が伝熱管の外表面へ付着し、付着物の炭化・凝集による緻密化が進行する。その結果、経時伝熱効率の低下や熱交換効率の低下が不可避である。これら問題点を解決する技術として、特許文献3は、伝熱管の外表面に結晶性アルミノシリケートや結晶性シリカ等の触媒を塗布する技術を開示している。この技術によれば、塗布した触媒を介してタール等の付着物が低分子量の炭化水素に分解するため、伝熱効率を安定維持させることができる。しかし、この技術も粗COGの顕熱を間接的に回収する技術であり、また、タール等の重質炭化水素の分解生成物がガス燃料等として利用しやすい軽質炭化水素になるか否かなど全く考慮されていない。さらには、粗COG中に高濃度で含まれる硫化水素等の触媒被毒性硫黄化合物による分解活性の経時劣化についても検討されていない。
 高温で生成する反応性ガスを、その顕熱を利用して、触媒存在下、直接化学反応を導入して化学エネルギーに変換する技術は殆どない。従来、高温ガスの顕熱は間接的に回収され(又は全く利用されず)、冷却後のガスを処理して利用するケースが殆どであった。粗COGは顕熱を有しているが、2000ppmを越える硫黄化合物を含有している。従って、上述のような技術は、タールのような重質炭化水素の分解反応に関する触媒反応を設計する観点からは極めて実現が困難と考えられる。特許文献4に記載されているように、NiMg1-xO-SiO噴霧乾燥固溶体触媒、Ni/Al触媒、活性Al触媒、Fe/Al触媒などは検討はされていたが、これらの触媒の改質活性は不十分であった。また、エネルギー変換触媒は、硫黄被毒や炭素析出を受けやすい。このため、上述のような高濃度硫黄化合物を含んだ雰囲気下、炭素析出を起こしやすい縮合多環芳香族主体のタールの分解反応に適する触媒を製造することが困難であった。また、一旦反応を進行させて触媒としての性能が劣化した後、触媒を空気燃焼して再生させる場合、担持金属粒子のシンタリング(粗大化)が起こりやすい。このため、再生による触媒活性の再現を実現することも困難であった。
 また、上述の担持法以外にも、特許文献4のようにシリカやアルミナをバインダーとしてニッケルマグネシア化合物に混合して噴霧乾燥法により炭化水素改質用触媒を製造する方法や、ニッケルマグネシア系化合物にシリカ粉末やアルミナ粉末を物理混合して炭化水素改質用触媒を製造する方法も知られている。しかしながら、ニッケルマグネシア化合物粉末に対してシリカ粉末又はアルミナ粉末を物理的に添加して混合した後、成型及び焼成を行う方法では、高い触媒活性や最終製品強度を得られない。
 特許文献5には、粗COG中に含まれる不純物(HS、COS、芳香族炭化水素、タール、ダスト等)を除去することにより、都市ガス等の燃料や化学合成用の原料として使用される精製COGを得る方法が開示されている。COGを用いてメタノール合成プラントを建設する際には、常法により得られる精製COGには低級炭化水素や芳香族炭化水素が残留しているため、それらが改質装置の触媒の被毒を起こす恐れがある。そこで、例えば特許文献6には、市販の触媒を用いたプレリフォーミングを行った後、改質装置で合成ガスを製造する製造システムが開示されている。しかしながら、後段の合成ガスを製造する改質装置に用いる触媒については言及されていない。すなわち、タールを高濃度に含有した粗COGや精製COGの改質触媒に関してはこれまで検討されていなかった。
 一方、炭化水素の改質用原料として一般に用いられるメタン改質用触媒は古くから数多くの研究がなされている。
 例えば非特許文献1においては、メタンの部分酸化触媒として、ニッケルと、マグネシウムと、アルミニウムとを含む溶液からの沈殿物を用いて製造される触媒が提案されている。
 特許文献7には、ニッケルと、マグネシウムと、カルシウムとにより構成される酸化物に第3B族元素、第4A族元素、第6B族元素、第7B族元素、第1A族元素およびランタノイド元素の少なくとも一種を混合した触媒が開示されている。
 特許文献8には、マグネシウムと、アルミニウムと、ニッケルとを構成元素とし、且つアルカリ金属、アルカリ土類金属、Zn、Co、Ce、Cr、Fe、Laから選ばれる1種以上の元素を含有する触媒が開示されている。
 非特許文献2においては、メタンから二酸化炭素、スチーム及び酸素へのトリフォーミング反応用として、セリア、ジルコニア、及びセリアジルコニア化合物へのニッケル担持触媒と共に、セリアジルコニア化合物へのマグネシア及びニッケル担持触媒が提案されている。
 一方、都市ガス、イソオクタン、灯油、プロパンなど原料中に硫黄分を含み且つ比較的低級炭化水素から燃料電池用水素を発生する触媒としては、特許文献9のようにアルミニウム及びマグネシウムからなる多孔質担体と珪素、ジルコニウム、セリウム、チタン、アルミニウム、イットリウム、スカンジウム、第1A族元素、第2A族元素から選ばれる少なくとも1種類以上の元素の酸化物との混合物が提案されている。
 また、プロパン、ブタン、都市ガス等の低級炭化水素からの水素製造触媒としては、特許文献10に開示されているように、マグネシウムとアルミニウムとニッケルとを構成元素とし、且つ珪素を含有する触媒などが提案されている。
 しかし、これらの触媒の対象となる炭化水素は低級且つ鎖式の炭化水素に分解しやすい。また、原料中に含まれる触媒毒となり得る硫黄分は特許文献9に示されているような50ppm以下のものに限られている。即ち、これら公知の触媒に関しては、タール含有ガスにおいて硫黄分が高濃度に含まれるガス雰囲気下、タール等重質炭化水素を改質することへの検討は全く行われていなかった。
 さらに、近年の地球温暖化問題により、二酸化炭素排出量削減の有効手段として炭素質原料の一つであるバイオマス利用が注目されており、バイオマスの高効率エネルギー変換に関する研究が行われている。また、昨今のエネルギー資源確保の観点から、過去精力的に行われてきた石炭の有効活用に関する研究も実用化に向けて見直されてきている。その中で、バイオマスの乾留で生成するタールをガス化して、粗ガス(未精製ガス)を生成し、その顕熱を利用する方法については、特に触媒を用いたタールの触媒改質を中心に、特許文献11や特許文献12などに開示される技術のように種々検討されている。しかしながら、高価な貴金属を使用するために不経済であることや、触媒寿命が短いこと等の課題を有していた。
日本国特公昭59-44346号公報 日本国特開昭58-76487号公報 日本国特開平8-134456号 日本国特開2003-55671号公報 日本国特開2008-239443号公報 日本国特開2000-248286号公報 日本国特開2000-469号公報 日本国特開2006-61760号公報 日本国特開2007-313496号公報 日本国特開2008-18414号公報 日本国特開2008-132458号公報 日本国特開2007-229548号公報
F.Basile et al., Stud. Surf. Sci. Catal., Vol.119(1998) C.Song et al., Catalysis Today, Vol.98(2004)
 本発明は、石炭やバイオマスなどの炭素質原料を熱分解した時に発生し、重質鎖式炭化水素や縮合多環芳香族炭化水素などを主成分とするタールを含むと共に硫化水素を高濃度で含むタール含有ガス(粗ガス又は精製ガス等)を、触媒存在下で、高価な白金族を使わずに高性能且つ安定的にメタン、一酸化炭素、水素等の軽質化学物質に変換するタール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール改質方法、及び、タール含有ガス改質用触媒の再生方法を提供することを目的とする。
 本発明は、上述の課題を解決するために以下の手段を採用した。
(1)本発明の第1の態様は、ニッケル、マグネシウム、セリウム、アルミニウムを含む酸化物であって、少なくとも1種の複合酸化物を含み、単独化合物としてのアルミナ含有量が5質量%以下に制限されているタール含有ガス改質用触媒である。
(2)上記(1)に記載のタール含有ガス改質用触媒では、前記複合酸化物が、NiMgO、MgAl、CeOの結晶相を有してもよい。
(3)上記(2)に記載のタール含有ガス改質用触媒では、前記各結晶相の内、X線回折測定により求めたNiMgO結晶相の(200)面の結晶子の大きさが1nm~50nm、MgAl結晶相の(311)面の結晶子の大きさが1nm~50nm、CeO結晶相の(111)面の結晶子の大きさが1nm~50nmであってもよい。

(4)本発明の第2の態様は、ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;前記沈殿物をか焼する工程と;か焼された前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより混合物を生成する工程と;前記混合物を焼成する工程と;を備えるタール含有ガス改質用触媒の製造方法である。
(5)上記(4)に記載のタール含有ガス改質用触媒の製造方法では、前記焼成する工程において、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕してもよく、又は、前記混合物を乾燥、か焼、粉砕、及び成型してもよい。
(6)本発明の第3の態様は、ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより、混合物を生成する工程と;前記混合物を焼成する工程と;を備えるタール含有ガス改質用触媒の製造方法である。
(7)上記(6)に記載のタール含有ガス改質用触媒の製造方法では、前記焼成する工程において、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕してもよく、又は、前記混合物を乾燥、か焼、粉砕、及び成型してもよい。
(8)本発明の第4の態様は、ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより、中間混合物を生成する工程と;前記中間混合物をか焼する工程と;か焼された前記中間混合物にアルミナ粉末と水、又はアルミナゾルを添加することにより混合物を生成する工程と;前記混合物を焼成する工程と;を備えるタール含有ガス改質用触媒の製造方法である。
(9)上記(8)に記載のタール含有ガス改質用触媒の製造方法では、前記焼成する工程において、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕してもよく、又は、前記混合物を乾燥、か焼、粉砕、及び成型してもよい。
(10)本発明の第5の態様は、ニッケル化合物と、マグネシウム化合物と、セリウム化合物と、アルミニウム化合物とを含む混合溶液から共沈により混合物を生成する工程と;前記混合物を焼成する工程と;を備えるタール含有ガス改質用触媒の製造方法である。
(11)上記(10)に記載のタール含有ガス改質用触媒の製造方法では、前記焼成する工程において、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕してもよく、又は、前記混合物を乾燥、か焼、粉砕、及び成型してもよい。
(12)本発明の第6の態様は、上記(4)~(11)のいずれか1項に記載の製造方法で製造されるタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、炭素質原料を熱分解した際に発生するタール含有ガス中の水素と、二酸化炭素と、水蒸気とを前記タール含有ガス改質用触媒に接触させる工程を備えるタール含有ガス改質方法である。
(13)上記(12)に記載のタール含有ガス改質方法では、炭素質原料を熱分解した際に発生するタール含有ガス中のタールを凝縮して回収する工程と;前記タールを加熱してガス化する工程と;外部から導入される、水素と、二酸化炭素と、水蒸気と、の少なくともいずれか1つを前記タール含有ガス改質用触媒に接触させる工程と;を備えてもよい。
(14)上記(13)に記載のタール含有ガス改質方法では、前記タール含有ガス改質用触媒に接触させる工程において、更に、外部から導入される酸素含有ガスを前記タール含有ガス改質用触媒に接触させてもよい。
(15)上記(12)に記載のタール含有ガス改質方法では、前記タール含有ガスが、硫化水素を20ppm以上4000ppm以下含んでもよい。
(16)上記(12)に記載のタール含有ガス改質方法では、前記タール含有ガスが、石炭を乾留したときに発生する乾留ガスであってもよい。
(17)上記(12)に記載のタール含有ガス改質方法では、前記タール含有ガスが、コークス炉から排出されるコークス炉ガスであってもよい。
(18)上記(12)に記載のタール含有ガス改質方法では、前記タール含有ガスが、バイオマスを乾留したときに発生する乾留ガスであってもよい。
(19)上記(12)に記載のタール含有ガス改質方法では、前記タール含有ガス改質用触媒に前記タール含有ガスを600~1000℃の雰囲気下で接触させてもよい。
(20)本発明の第7の態様は、上記(12)に記載のタール含有ガス改質方法の実施により、前記触媒が、炭素析出、硫黄被毒の少なくともいずれかにより性能劣化した場合に、前記触媒に水蒸気、または空気のいずれかを接触させて、前記触媒を再生するタール含有ガス改質用触媒の再生方法である。
 本発明によれば、石炭やバイオマスを熱分解した際に発生するタール含有ガスを、安定的に一酸化炭素、水素等の軽質化学物質へ変換することができる。特に、タール含有ガスが硫化水素を高濃度で含んでいても、脱硫処理せずにそのまま触媒と接触させて、粗ガス中のタールを改質して、又は精製ガス中の炭化水素成分を改質して、タール含有ガスを一酸化炭素、水素等の軽質化学物質へ安定的に変換することができる。
 例えば、硫化水素を約20ppm~4000ppm程度含有する粗COGやバイオマス乾留ガス等のタール含有ガスに対しても、本発明のタール含有ガス改質用触媒により高効率で且つ安定に、改質反応によって軽質化学物質へと変換することができる。
 また、本発明の製造方法により製造されたタール含有ガス改質用触媒は、含浸担持法で製造された触媒と比較して、タール含有ガスの改質活性が高く、炭素析出率が低く、且つ長時間安定して活性を維持することができる。
コークス炉からコークス炉ガスが排出される部分を示した図である。 実施例における石炭乾留プロセスとそこで発生するタール含有ガスを、触媒を用いて改質するプロセスを説明する図である。 本発明の一実施形態に係るタール含有ガス改質用触媒の製造方法の一例を示すフローチャートである。 本発明の一実施形態に係るタール含有ガス改質用触媒の製造方法の他の一例を示すフローチャートである。 本発明の一実施形態に係るタール含有ガス改質用触媒の製造方法の更に他の一例を示すフローチャートである。
 本発明者らは、石炭やバイオマスを熱分解した際に発生する、硫化水素を高濃度で含むタール含有ガス(粗ガス)を、硫化水素を高濃度で含む粗ガスの状態のままで触媒と接触させて、粗ガス中のタールを、一酸化炭素、水素等の軽質化学物質に安定して変換する方法について鋭意検討した。その結果、タール含有ガス改質用触媒として、(1)ニッケル、マグネシウム、セリウム、アルミニウムを構成元素とし、(2)アルミナ相(単独化合物としてのアルミナ)を5質量%超含まず、(3)少なくとも1種の複合酸化物を含み、好ましくはNiMgO、MgAl、及び、CeOの結晶相を主に含有する金属酸化物を触媒として用いることにより、硫化水素を高濃度で含み、且つ縮合多環芳香族炭化水素等を主成分とするタールを多く含む粗ガスや精製ガスを改質しても、触媒に硫黄被毒による活性低下や炭素析出が生じ難いことを発見した。この触媒は、硫黄被毒による活性低下や炭素析出が生じ難いため、経時劣化が少なく安定的に粗ガス中のタールを改質することができ、一酸化炭素や水素等の軽質化学物質へ変換できる。
 すなわち、本発明者らは、従来の含浸担持法による触媒の製造方法とは異なり、ニッケル化合物、マグネシウム化合物、及び、セリウム化合物を含む混合溶液から共沈により沈殿物を生成し、この共沈時又は前記沈殿物の生成後に、アルミニウム成分を加えて乾燥及び焼成してタール含有ガス改質用触媒を製造する方法を見出した。固相晶析法は、(1)活性種金属の微細析出が可能で高速反応が可能である、(2)析出した活性金属がマトリクス(母相)と強固に結合するためシンタリング(粗大化)しにくく活性低下を抑制可能である、(3)析出した活性種金属を焼成によりマトリクスへ再度吸蔵でき再生が可能である、などの種々の特徴を有する。本発明の一実施形態においては、この固相晶析法を利用し、予め活性種であるニッケル元素をマトリクスとなるアルミナ、マグネシアなどと化合物化し、そこへさらにセリウムを共存させるため、ニッケル化合物、マグネシウム化合物、及び、セリウム化合物を含む混合溶液から共沈により沈殿物を生成し、共沈時又は前記沈殿物の生成後に、アルミニウム成分を加えて乾燥及び焼成することにより、上述の触媒を得ることができる。この触媒をタール含有ガス中の還元性ガス又は反応前の還元性ガスに接触させると、酸化物マトリクスからニッケル金属が酸化物表面にクラスター状に微細析出する。この現象を利用して、硫黄被毒となり得る硫黄成分の高濃度の雰囲気下、タール等重質炭化水素などの炭素析出を起こしやすい成分を多量に含んだ過酷な状況においても、活性金属の表面積が大きく且つ硫黄被毒を受けても新たに活性金属が析出可能であり、重質炭化水素を高い効率で軽質炭化水素へ変換できる。
 含浸担持法としては、同時含浸法や逐次含浸法などが知られている。同時含浸法では、アルミナ、シリカ等の多孔質酸化物担体に、触媒活性成分や助触媒成分を溶液状態で全て混合した溶液を担持させ、乾燥する。一方、逐次含浸法では、アルミナ、シリカ等の多孔質酸化物担体に、触媒活性成分や助触媒成分の溶液を段階的に担持させ、乾燥する。
 また、本発明者らは、ニッケル化合物、マグネシウム化合物、及び、セリウム化合物を含む溶液から共沈により沈殿物を生成し、共沈時又は前記沈殿物の生成後に、アルミニウム成分を加えて乾燥及び焼成することにより、ニッケル、マグネシウム、セリウム、及び、アルミニウムを含んだ酸化物であって、好ましくは、少なくとも1種の複合酸化物を含み、単独化合物としてアルミナを5質量%超含まない酸化物によるタール含有ガス改質用触媒を製造する方法を見出した。このような製造方法による触媒は、タール含有ガスの改質活性が高く且つ長時間に亘って改質することができる。更に、この触媒は、炭素析出や硫黄被毒により触媒性能が劣化しても、水蒸気及び/又は空気を接触させることで再生することができ、この再生した触媒は、ほぼ劣化前のままの性能を保持することを本発明者らは発見した。
 以下、本発明の第1実施形態から第4実施形態について、詳細に説明する。
(第1実施形態)タール含有ガス改質用触媒
 本発明の第1実施形態に係るタール含有ガス改質用触媒は、ニッケル、マグネシウム、セリウム、及びアルミニウムを含む酸化物である。このタール含有ガス改質用触媒は、少なくとも1種の複合酸化物を含み(即ち、1種又は2種以上の複合酸化物から構成される、又は、複合酸化物と単純金属酸化物の混合物から構成され)、単独化合物としてアルミナ(アルミナ相)を5質量%超含まない。
 ニッケルは重質炭化水素をガス中に存在又は外部より導入される水蒸気、水素、二酸化炭素との間で改質反応を進行させる主活性成分として機能する。タール含有ガス中に高濃度の硫化水素が共存した場合でも、上記ニッケル金属が触媒表面上でクラスター状に微細分散して表面積が大きくなるため、そして、還元雰囲気下では反応中に活性金属粒子が被毒を受けても新たな活性金属粒子がマトリクス(NiMgO相)から微細析出するため、硫黄被毒による活性低下の影響を受け難い。このマトリクスの化合物から、還元雰囲気下、活性金属粒子を微細クラスター状に析出させることができる。また、縮合多環芳香族主体のタールも乾留直後の高温状態で反応性に富む状態であり、且つ微細分散して高比表面積を持った高活性なニッケル金属と接触することにより、高効率に軽質炭化水素へ変換・分解する。また、析出したニッケルがマトリクスの化合物と強固に結合しているために、ニッケル粒子間での凝集(シンタリング)を抑制し、長時間の反応中でも触媒活性が低下し難いという効果がある。
 ニッケル元素と化合物化した成分の内、マグネシアは塩基性酸化物であり、二酸化炭素を吸着する機能を保有することにより、主活性成分元素上での炭化水素由来の析出炭素と反応して、一酸化炭素として酸化除去する役割を発揮するために、触媒表面を清浄に保ち、触媒性能を長期間安定に保持できる。
 ここで、ニッケル-マグネシウム固溶体酸化物(NiMgO相)のX線回折測定により求めた(220)面の結晶子サイズは、1nm~50nmであるのが望ましい。1nm以上である場合、NiMgO相の発達が十分であり、NiMgO相からのNiクラスターの析出を十分に行わせることができる。このため、触媒活性の低下を回避することができる。また、50nm以下である場合、NiMgO相の粒成長が大きくなりすぎることに起因して、そこから析出するNi粒のサイズが大きくなることを回避することができる。従って、表面積の低下による活性の低下や、炭素析出の発生を回避することができる。
 セリウムは、ニッケル-マグネシウム固溶体酸化物には固溶せずに、酸化セリウム(CeO)としてニッケル-マグネシウム酸化物(NiMgO)表面近傍に存在し、タール含有ガス雰囲気下であっても酸素吸放出機能を発揮して、ニッケル-マグネシウム固溶体酸化物からニッケルを還元し、より多くのニッケル金属粒子を析出させる役割を果たす。また、酸化セリウムの格子酸素と析出炭素との間で一酸化炭素や二酸化炭素等に変換して、触媒上に堆積する析出炭素量を減らす機能を発揮する。
 ここで、酸化セリウム(CeO相)のX線回折測定により求めた(111)面の結晶子サイズは、1nm~50nmであるのが望ましい。1nm以上の場合、CeO相の発達が十分であり、本来保有する酸素吸放出機能を十分に発揮することができる。これにより、隣接するNiMgO相からのNi粒の析出を促進する効果を得られ、十分な触媒活性を発揮することができる。また、50nm以下の場合、隣接するNiMgO相との接触面積が小さくなることに起因してNiMgO相からのNi粒の析出が十分に促進できなくなることを回避することができる。従って、十分な触媒活性を発現できる。
 アルミナは、好ましくは単独アルミナ相としては存在しないが、反応場としての担体の役割を果たす。更に、アルミナは、一部ニッケルマグネシウム化合物と反応してMgAlを形成し、NiMgO結晶相を細かく分断すること等により、NiMgOの各結晶相から表面に析出する活性種のニッケルが高度な分散状態になり、特に炭素析出の起点となり易いニッケルの偏在部分等が形成され難く、高い耐炭素析出性を発揮するような機能も果たす。後述する本発明の一実施形態に係るタール含有ガス改質用触媒の製造方法によれば、好ましい態様において、アルミニウムは全てがニッケルやマグネシウムなどの化合物と反応して複合酸化物を形成して、単独化合物としてのアルミナ(アルミナ相)を5質量%超含まないタール含有ガス改質用触媒が製造される。尚、単独化合物としてのアルミナ(アルミナ相)は、0質量%に近いことが好ましく、例えば3質量%以下、又は1質量%以下に制限されていてもよい。
 ここで、アルミナが形成するマグネシウム-アルミニウム化合物(MgAl相)のX線回折測定により求めた(311)面の結晶子サイズは、1nm~50nmであるのが望ましい。1nm以上の場合、MgAl相の発達が十分で有り、NiMgO相の微細化が起こりやすく、触媒活性を十分に発揮できる。更に、成型体自体の強度の低下により圧壊強度が低くなり実用上問題となることを回避できる。また、50nm以下の場合、NiMgO相から多くのMg成分を引き抜くことに起因してNiMgO相におけるNi組成が高くなりすぎることを回避できる。すなわち、NiMgO相から析出するNi粒が大きくなりすぎることに起因して、十分な触媒活性を発現できなくなることを回避できる。
 本発明でいう炭素質原料とは、熱分解してタールを生成する炭素を含む原料のことで、石炭並びにバイオマスやプラスチックの容器包装類等の構成元素に炭素を含む広範囲なものを指すが、中でもバイオマスとは、林地残材、間伐材、未利用樹、製材残材、建設廃材、稲わら等の木質系廃棄物、又はそれらを原料とした木質チップ、ペレット等の二次製品や、再生紙として再利用できなくなった古紙等の製紙系廃棄物、農業残渣、厨芥類等の食品廃棄物、活性汚泥等を指す。
 また、炭素質原料を熱分解した際に発生するタールとは、熱分解される原料により性状が異なるが、炭素が5個以上含まれた常温で液体の有機化合物であって、鎖式炭化水素や芳香族炭化水素等からなる混合物を指し、石炭の熱分解であれば、例えば、ナフタレン、フェナンスレン、ピレン、アントラセン等の縮合多環芳香族等が主成分であり、バイオマス、特に木質系廃棄物の熱分解であれば、例えば、ベンゼン、トルエン、ナフタレン、インデン、アントラセン、フェノール等、食品廃棄物系バイオマスの熱分解であれば、例えば、上記以外にインドール、ピロール等の六員環又は五員環に窒素等の異種元素を含むヘテロ化合物も含まれるが、特にそれらに限定されるものではない。熱分解タールは、熱分解直後の高温状態ではガス状で存在する。また、ほぼ室温に冷却された精製COG中ではミスト状で存在する。
 なお、炭素質原料の熱分解方法としては、石炭を原料とする場合には一般にコークス炉が用いられ、バイオマスを原料とする場合には外熱式ロータリーキルンや移動床炉、流動床炉等を用いることができるが、特にこれらのみに限定するものではない。
 また、タール含有ガスを接触してガス化するタール含有ガスの改質反応は、重質炭化水素であるタールからメタン、一酸化炭素、水素等の軽質化学物質へ変換する反応であるが、反応経路が複雑で必ずしも明らかではないが、タール含有ガス中の水素や水蒸気、二酸化炭素、酸素等との間で起こり得る水素化反応やスチームリフォーミング反応、ドライリフォーミング反応等が考えられる。さらに、外部から水素や水蒸気、二酸化炭素を導入するとより高効率に反応が進行する。これら一連の反応は吸熱反応のため、実機に適用した場合、反応器に入る高温の顕熱を有するガスが触媒層内で改質されて出口では温度が低下するが、より高効率にタール等の重質炭化水素成分を改質する場合には、必要に応じて空気若しくは酸素を触媒層内に導入することで、一部水素や炭化水素成分を燃焼させた燃焼熱で触媒層の温度をある程度保ちながら、さらに改質反応を進めることも可能である。
 さらに、本実施形態に係るタール含有ガス改質用触媒は、主活性成分であるニッケル含有量が1~50質量%であることが好ましい。1質量%以上の場合、ニッケルの改質性能を十分に発揮することができる。50質量%以下の場合には、マトリクスを形成するマグネシウム、セリウム、アルミニウムの含有量を適切に保つことができ、触媒上に析出するニッケル金属の濃度が高く且つ粗大化することを回避することができる。このため、本反応条件下において性能が経時劣化することを回避できる。
 また、マグネシウム含有量は1~45質量%であることが好ましい。1質量%以上の場合、マグネシアの有する塩基性酸化物の性質を活かし易く、炭化水素の炭素析出を抑制して触媒性能を長期間安定に保持し易くすることができる。マグネシウム含有量が45質量%以下の場合、他のニッケル、セリウム、アルミニウムの含有量を適切に保ち、触媒の改質活性を十分に発揮することができる。さらに、マグネシウム含有量が1質量%未満である場合、マグネシウムとニッケルの固溶体中のニッケル濃度が高くなるため、固溶相から析出するニッケル粒が粗大化し易く、タール含有ガスの改質反応後での触媒上の炭素析出量が多くなり易い傾向がある。
 また、セリウムの含有量は1~40質量%であることが好ましい。1質量%以上の場合、酸化セリウムの酸素吸蔵能によるニッケルマグネシアからのニッケルの析出が起こり難くなることを回避することができる。40質量%以下の場合には、主活性成分であるニッケルや炭素析出を抑制するマグネシアの割合を適正な範囲に保つことができ、触媒の改質活性を十分発揮させることができる。
 さらに、アルミニウムの含有量はアルミナに換算して20~80質量%であることが好ましい。この量が20質量%未満では、ニッケルマグネシア(NiMgO)相主体のセラミックスとなり、MgAl相の割合が少ないためにNiMgO相が微細化せずにそこから析出するNi粒が大きくなって活性が低くなったり、成型した際、強度が著しく低くなる傾向がある。80質量%を超える場合には、主活性成分であるニッケルや炭素析出を抑制するマグネシアの割合が低くなるため、触媒の改質活性を十分発揮できなくなる恐れがある。
 尚、触媒は、ニッケル含有量が1~35質量%、マグネシウム含有量が1~35質量%、セリウム含有量が3~35質量%、換算アルミナ含有量が20~80質量%であることがさらに好ましい。
 また、上記方法で製造された触媒は、粉末であってもよいし、成型体であっても良い。粉末であれば粒径や表面積を、また、成型体であれば表面積と強度との兼ね合いで細孔容積、細孔径、形状等を適宜調整することが好ましい。成型体は、球状、シリンダー状、リング状、ホイール状、粒状等いずれでもよく、さらに、金属又はセラミックスのハニカム状基材へ触媒成分をコーティングしたもの等いずれでもよい。また、各金属種の含有量を上記範囲になるように調製するためには、各出発原料を予め計算の上、準備しておくことが好ましい。尚、一度触媒が狙いの成分組成となれば、それ以降はその時の配合で調製すればよい。
 また、上記の元素以外に触媒製造工程等で混入する不可避的不純物や触媒性能が変わらない他成分を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。
 尚、上記改質触媒を構成する各金属種の含有量の測定方法は、走査型高周波誘導結合プラズマ法(ICP)と呼ばれる方法を用いてもよい。具体的には、試料を粉砕後、アルカリ融解剤(例えば、炭酸ナトリウム、ホウ酸ナトリウム、等)を加えて白金坩堝内で加熱融解し、冷却後に塩酸溶液に加温下で全量溶解させる。その溶液をICP分析装置へインジェクションすると、装置内の高温プラズマ状態の中で試料溶液が原子化・熱励起し、これが基底状態に戻る際に元素固有の波長の発光スペクトルを生じるため、その発光波長及び強度から含有元素種、量を定性・定量することができる。
 また、調製した酸化物が所望の結晶構造を形成しているかどうかを確認するために、触媒の広角X線回折による評価を以下のようにして行うことができる。まず、材料を粉末試料用ホルダーにセットした後、Rigaku製RINT1500を用い、40kV、150mAの出力でCuKα線を発生させ、モノクロメーターを黒鉛とし、発散スリット及び散乱スリットを1°、受光スリット0.15mm、モノクロ受光スリットを0.8mmとして、サンプリング幅0.01deg、スキャン速度を2deg/minの条件で測定し、ピーク位置、強度より結晶構造を評価する。そこで得られた測定プロファイルの中で、特に2θが約29deg近辺に現れるCeO(111)、約37deg近辺に現れるMgAl(311)、約43deg近辺に現れるNiMgO(200)の各ピークについて、ピークトップの半分の高さの位置でのピーク幅(半値幅)を計測し、その値から以下のScherrerの式(式1)を用いて算出する。
  Dhkl=Kλ/βcosθ   (式1)
 ここで、Dhklは(hkl)面に垂直方向の結晶子の大きさのため、CeOのXRD測定で最も強度の高い(111)回折線で評価すればS/N比が高いため、CeOの結晶子の大きさを高い精度で評価できる。同様に、MgAlであれば(311)回折線、NiMgOであれば(200)回折線で評価可能である。Kは定数だが下記に示すようにβに半値幅を用いることから0.9とする。λは測定X線波長であり、本測定では1.54056Åである。またβは結晶粒の大きさによる回折線の広がりであり、上記半値幅を用いる。θはCeO(111)又はMgAl(311)又はNiMgO(200)回折線のブラッグ角である。
 さらに、上記成型触媒の強度の測定には、木屋式硬度計を用いた。具体的には成型体を前記硬度計の台上に置き、上からプレスし、成型体が潰れた時点の強度をN(ニュートン)単位で計測することで、強度(圧壊強度)を評価することができる。
(第2実施形態)タール含有ガス改質用触媒の製造方法
 以下、本発明の第2実施形態に係るタール含有ガス改質用触媒の製造方法について、図3~図5に示すフローチャートを参照しながら説明する。
 本発明の第2実施形態は、タール含有ガスの改質のために用いるタール改質用触媒の製造方法である。ここでいうタール含有ガス改質触媒とは、構成金属として、ニッケル、マグネシウム、セリウム、及びアルミニウムを含有する金属酸化物触媒である。この触媒は、以下のように製造される。
 まず、ニッケル化合物、マグネシウム化合物、及び、セリウム化合物の溶液から共沈により沈殿物を生成する。この共沈時、又は沈殿物の生成後に、さらにアルミニウム成分を加えて、ニッケル、マグネシウム、セリウム、及び、アルミニウムを含有したアルミニウム混合物を生成する。このアルミニウム混合物を乾燥及び焼成して、ニッケル、マグネシウム、セリウム、及び、アルミニウムの酸化物(酸化物及び/又は複合酸化物)を含有した混合物からなる触媒を製造する。
 上述の製造方法で製造された触媒は、従来の含浸担持法で製造された触媒と比較して、触媒材料中の各成分の均質性を高くすることができる。従って、活性成分のニッケルを微細析出させることができる。また、助触媒のセリウム化合物も均質に分散して存在し、その機能を効率的に発揮できる。従って、タール含有ガスの改質活性が高く、且つ長期間に亘り安定した活性を維持することができる。
 以下に、具体的な方策1を、図3に示すフローチャートを参照して説明する。
 まず、ニッケル化合物とマグネシウム化合物とセリウム化合物との混合溶液に沈殿剤を添加する。そして、ニッケルとマグネシウムとセリウムとを共沈させて沈殿物を生成する(S1-1)。次に、その沈殿物を乾燥し(S1-2)、更にか焼する(S1-3)。このか焼により、ニッケルとマグネシウムとセリウムとの酸化物が生成される。この酸化物に、アルミナ粉末と水とを、又はアルミナゾルを添加する(S1-4)。そして、これらを混合して混合物を生成する(S1-5)。この混合物を乾燥し(S1-6)、更に焼成する(S1-7)。特にこの方策で調製した成型触媒は、高い強度を保有する。
 以下に、具体的な方策2を、図4に示すフローチャートを参照して説明する。
 まず、ニッケル化合物とマグネシウム化合物とセリウム化合物との混合溶液に沈殿剤を添加して、ニッケルとマグネシウムとセリウムとを共沈させて沈殿物を生成する(S2-1)。次に、その沈殿物に、アルミナ粉末と水とを、又はアルミナゾルを添加する(S2-2)。そして、これらを混合して混合物(中間混合物)を生成する(S2-3)。そして、その混合物を乾燥(S2-4)し、更に焼成(S2-10)することで触媒が製造される。また、上述のように生成した中間混合物を乾燥(S2-4)し、更にか焼(S2-5)した後、更にアルミナ粉末と水とを、又はアルミナゾルを添加しても良い(S2-6)。そして、これらを混合して混合物を生成し(S2-7)、この混合物を乾燥(S2-8)し、更に焼成(S2-10)することで触媒が製造される。また、乾燥後にか焼を行ってもよい(S2-9)。
 以下に、具体的な方策3を、図5に示すフローチャートを参照して説明する。
 まず、ニッケル化合物とマグネシウム化合物とセリウム化合物とアルミニウム化合物との混合溶液に沈殿剤を添加する(S3-1)。これにより、ニッケルとマグネシウムとセリウムとアルミニウムとを共沈させて沈殿物を生成する(S3-2)。次に、この沈殿物(混合物)を乾燥し(S3-3)、更に焼成する(S3-4)。このような方策で、触媒を製造してもよい。すなわち、アルミニウム成分は、ニッケル化合物と、マグネシウム化合物と、セリウム化合物との溶液からの共沈後の沈殿物に加えるのではなく、共沈される成分として混合溶液に加えてもよい。
 ここで、各製法における沈殿物や混合物の乾燥は、特に温度や乾燥方法を問わず、一般的な乾燥方法であればよい。乾燥後の共沈殿物は必要に応じて粗粉砕を行った後、焼成(か焼)してもよい。なお、流動層等の乾燥により乾燥後の沈殿物が粉状を保っている場合は、粗粉砕は不要である。
 沈殿物や混合物の乾燥の前には、ろ過をしておくことが、乾燥の手間を少なくすることができ、好ましい。更に、ろ過後の沈殿物は、純水等で洗浄しておくことが、不純物量を低減できることからより好ましい。
 また、上記混合物の焼成は、空気中で行うことができ、温度は600~1300℃の範囲であれば良い。焼成温度が高いと混合物の焼結が進行し、強度は上昇するが、一方で比表面積が小さくなるために触媒活性は低下するため、そのバランスを考慮して決定するのが望ましい。焼成後は、そのまま触媒として使用することもできるが、プレス成型等で成型して成型物して使用してもよい。なお、乾燥と焼成の間に、か焼や成型工程も加えることができ、その場合、か焼は空気中で400~800℃程度で行えば良く、成型は、プレス成型等で行えば良い。
 このような製造方法で製造される触媒を用いることにより、炭素質原料を熱分解した際に発生する多量の硫化水素を含み、炭素析出を起こしやすい縮合多環芳香族主体のタール含有ガスであっても、随伴するタール等重質炭化水素を高効率に改質して、水素、一酸化炭素、メタンを主体とする軽質炭化水素に変換することができる。また、触媒性能が劣化した際、水蒸気又は空気の少なくともいずれかを高温下で触媒に接触させることにより、触媒上の析出炭素や吸着硫黄を除去して触媒性能を回復させることができる。従って、長期間安定した運転が可能になる。
 上述の製造方法で製造されたタール含有ガス改質用触媒は、単にニッケルとマグネシウムとセリウムとの各成分をアルミナの担体に担持させて乾燥及び焼成した触媒とは異なり、セリウム成分とアルミニウム成分とが、ニッケルとマグネシウムとの共沈物との間で高度に均質な混合物を形成することが可能となる。即ち、その混合物に乾燥-焼成工程、又は乾燥-か焼-粉砕-成型-焼成工程を経させることで、ニッケル及びマグネシウムに対し、セリウム、アルミニウムが均質に分布した焼結体を形成することができる。この焼結体は、ニッケルマグネシア結晶相がより一層微細化され、そこから析出するNi粒が高度に微細分散することから、高活性で炭素析出量の少ない成型物を得ることができる。
 より具体的には、まず、ニッケル化合物とマグネシウム化合物とセリウム化合物、又はアルミニウム化合物との混合溶液を作成する際、水に対して溶解度の高い各金属化合物を用いることが適当である。例えば、硝酸塩、炭酸塩、硫酸塩、塩化物等の無機塩のみならず、酢酸塩等の有機塩も好適に用いられる。特に好ましくは、焼成後に触媒被毒になり得る不純物が残り難いと考えられる硝酸塩又は炭酸塩又は酢酸塩である。また、それらの溶液から沈殿物を形成する際に用いる沈殿剤は、上記溶液のpHをニッケル、マグネシウム、セリウム、又はアルミニウムが主に水酸化物として沈殿する中性~塩基性へ変化させるものであれば何でも用いることができるが、例えば、炭酸カリウム水溶液や炭酸ナトリウム水溶液、水酸化カリウム水溶液や水酸化ナトリウム水溶液、アンモニア水溶液や尿素溶液等が好適に用いられる。
 上記の方法で製造されたタール含有ガス改質用触媒を用いることにより、炭素質原料を熱分解した際に発生する多量の硫化水素を含み、炭素析出を起こし易い縮合多環芳香族主体のタール含有ガスであっても、高い耐炭素析出性を示し、随伴するタール等重質炭化水素を高効率に改質して、水素、一酸化炭素、メタンを主体とする軽質化学物質に経時劣化が少なく安定に変換することができる。
 また、本実施形態に係るタール含有ガス改質方法は、硫化水素含有雰囲気下でも安定して改質反応が進行するが、ガス中の硫化水素濃度は低ければ低いほど被毒されない。しかし、ガス中の硫化水素濃度が高濃度(3000ppm以上4000ppm以下)である場合でも、十分にタール含有ガスを改質することができる。また、ガス中の硫化水素濃度が3000ppm以下である場合には、更に十分にその効果を発揮することができる。
(第3実施形態)タール含有ガス改質用触媒を用いたタール含有ガス改質方法
 次に、本発明の第3実施形態に係る、触媒を用いたタール含有ガス改質方法について説明する。この改質方法では、上述した触媒の存在下、又は、還元後の触媒存在下、炭素質原料を熱分解した際に発生するタール含有ガスと、水素・二酸化炭素・水蒸気とを接触させて、タール含有ガスを改質する。
 上述した水素・二酸化炭素・水蒸気に関しては、タール含有ガスに含まれる水素・二酸化炭素・水蒸気であってもよいし、外部から適宜に加えられる水素・二酸化炭素・水蒸気であってもよい。
 ここで、タール含有ガス中のタールを接触改質してガス化するタールガス化反応は、反応経路が複雑で必ずしも明らかではないが、タール含有ガス中若しくは外部より導入する水素との間では、例えば、(式2)で表されるような、タール中縮合多環芳香族の水素化分解によるメタンを始めとする軽質炭化水素への転化反応が進行すると考えられる((式2)ではメタンのみが生成される場合を記す)。また、タール含有ガス中若しくは外部より導入する二酸化炭素との間では、(式3)で表されるような、タール中縮合多環芳香族の二酸化炭素によるドライリフォーミングによる水素と一酸化炭素への転化反応が進行する。さらに、タール含有ガス中若しくは外部より導入する水蒸気との間では、(式4)で表されるような、スチームリフォーミング及び水性ガスシフト反応が進行する。また、タール含有ガス中タール以外の炭化水素成分についても、同様にして反応が進行する。
  C+(2n-m/2)H → nCH       (式2)
  C+n/2CO → nCO+m/2H      (式3)
  C+2nHO → nCO+(m/2+n)H   (式4)
 従って、メタン等の高カロリーガスを製造する場合には、外部から水素を加えることが望ましい。また、水素や一酸化炭素を製造する場合には、外部から二酸化炭素を加えることが望ましい。さらに、水素をより多く製造する場合には、外部から水蒸気を加えることが望ましい。尚、タール以外の炭化水素成分も、上記の(式2)~(式4)に従って、反応が進行する。
 ここで、タール含有ガス改質用触媒は還元することが好ましいが、反応中に還元が進行するため、還元しなくても良い。しかしながら、特にタール含有ガス改質触媒が反応前に還元処理を必要とする場合、還元条件としては、本発明の一実施形態に係る触媒から活性金属であるニッケル粒子が微細クラスター状に析出するために、比較的高温で且つ還元性雰囲気にするのであれば、特に制限されるものではない。しかしながら、例えば、水素、一酸化炭素、メタンの少なくともいずれかを含むガス雰囲気下、又はそれら還元性ガスに水蒸気を混合したガス雰囲気下、又はそれらのガスに窒素等の不活性ガスを混合した雰囲気下であっても良い。また、還元温度は、例えば500℃~1000℃、又は600℃~1000℃が好適であり、還元時間は充填する触媒量にも依存し、例えば、30分~4時間が好適であるが、充填した触媒全体が還元するのに必要な時間であればよく、特にこの条件に制限されるものではない。
 触媒反応器としては、触媒が粉末の場合には流動床形式や移動床形式等が、触媒が成型体であれば固定床形式や移動床形式等が好適に用いられる。また、その触媒層の入口温度としては、500~1000℃であることが好ましい。触媒層の入口温度が500℃未満の場合は、タール及び炭化水素が水素、一酸化炭素、メタンを主体とする軽質炭化水素へ改質する際の触媒活性がほとんど発揮されないため、好ましくない。一方、触媒層の入口温度が1000℃を超える場合は、耐熱構造化が必要になる等、改質装置が高価になるため経済的に不利となる。また、触媒層の入口温度は、550~1000℃であることがより好ましい。尚、炭素質原料が石炭の場合には比較的高温で、バイオマスの場合には比較的低温で反応を進めることも可能である。
 ここで、炭素質原料を熱分解又は部分酸化して生成されるタール含有ガスが、コークス炉から排出される粗COGのような硫化水素濃度が非常に高いタール含有ガスでも、ガス中のタールや炭化水素を改質してガス化することができる。ここで、熱分解又は部分酸化とは、具体的には、乾留、又は炭素質原料をガス化のために一部のみ酸化させてタール含有ガスを製造することを言う。現在のコークス炉では、炉内に原料の石炭を充填後、加熱・乾留してコークスを製造するが、図1に示すように、付随して発生するコークス炉ガスは炉頂部の上昇管1と呼ばれる部分から安水2(アンモニア水)を噴霧して冷却後、集気管であるドライメーン4に集められる。しかしながら、ガス成分はコークス炉3の上昇管1で800℃程度の顕熱を保有しているにもかかわらず、安水2の噴霧後には100℃以下まで急冷されてしまい、その顕熱を有効に利用できていない。このため、このガス顕熱を有効に利用し且つタール等重質炭化水素成分を水素、メタン等軽質炭化水素などの燃料成分に変換できれば、エネルギー増幅に繋がるばかりでなく、そこで生成される還元性ガス体積が大幅に増幅される。すなわち、例えば、鉄鉱石に適用して還元鉄を製造するプロセスが可能となれば、現在鉄鉱石をコークスにより還元する高炉プロセスで発生する二酸化炭素排出量を大幅に削減できる可能性がある。
 また、それを従来の燃料用途のみに用いるのでなく、有用物に変換可能であり、また、鉄鉱石の直接還元にも適する合成ガスに変換することにより、より高度なエネルギー利用に繋がる可能性がある。因みに、粗COG中に含まれるタールは、コークス炉装炭から窯出しまでの間で経時的に変化し、凡そ0.1~150g/Nmの範囲で変動する。また、同様に、上記粗COGをコークス炉の上昇管で安水2を噴霧して冷却し、ドライメーン4で集められた後、常法で精製した精製COGは、プライマリークーラー、タール抽出器、電気集塵機等の処理を行って精製しているとはいえ、凡そ0.01~0.02g/Nm程度のタールが存在し、その後のファイナルクーラーで精製してもナフタレンを約0.2~0.4g/Nm、スクラバー処理をした後でも軽油分を5~10g/Nm程度含んでいる。そのタール含有ガスである精製COGを水素、一酸化炭素等軽質炭化水素等の燃料成分に変換できれば、粗COGの変換と同様、二酸化炭素排出量の削減や、燃料以外の有用物への変換等の可能性が期待できる。
(第4実施形態)タール含有ガス改質用触媒の再生方法
 触媒反応器に内蔵されるタール改質触媒は、タールから水素、一酸化炭素、メタンを主体とする軽質化学物質への変換時に触媒表面上に析出する炭素、もしくは前記熱分解工程で得られた熱分解ガス中に含まれる硫黄成分が触媒に吸着することで、触媒が性能劣化する。そこで、劣化した触媒を再生する方法として、触媒反応器へ水蒸気を導入し、水蒸気と炭素の反応により触媒表面の炭素を除去、もしくは、水蒸気と硫黄の反応により触媒に吸着した硫黄を除去することで、触媒を再生することが可能となる。また、水蒸気の一部又は全部を空気に変えて導入することで、空気中の酸素と炭素の燃焼反応により触媒表面の炭素を除去、もしくは酸素と硫黄の反応により触媒に吸着した硫黄を除去することで、触媒を再生することも可能となる。再生した触媒は、全量再使用することも可能であるし、また、一部を新触媒に置き換えて使用することも可能である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。
(実施例1)
 硝酸ニッケル、硝酸セリウム、硝酸マグネシウムを各金属元素のモル比が1:1:8になるように精秤して、60℃の加温で混合水溶液を調製したものに、60℃に加温した炭酸カリウム水溶液を加えた。これにより、ニッケル、マグネシウム、及び、セリウムを水酸化物として共沈させ、スターラーで十分に攪拌した。その後、60℃に保持したまま一定時間攪拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。洗浄後に得られた沈殿物を120℃で乾燥し粗粉砕した。そして、空気中600℃で焼成(か焼)したものを解砕した後にビーカーに入れ、アルミナゾルを加えた。次に、攪拌羽を取り付けた混合器で十分混合したものを、ナス型フラスコに移してロータリーエバポレーターに取り付け、攪拌しながら吸引することで、水分を蒸発させた。ナス型フラスコ壁面に付着したニッケルとマグネシウムとセリウムとアルミニウムの化合物を蒸発皿に移して120℃で乾燥、600℃でか焼後、粉末を圧縮成形器を用いて直径3mmの錠剤状にプレス成型し、錠剤成型体を得た。その成型体を空気中950℃で焼成を行い、Ni0.1Ce0.1Mg0.8Oにアルミニウムをアルミナとして50質量%混合した触媒成型体を調製した。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相から構成されることが判明した。得られた触媒にアルミナの単独相は存在していなかった。各々の結晶子の大きさは、29nm、16nm、29nmであった。さらに、その成型体を木屋式硬度計で計測したところ、約100Nの高い強度を保持することが判った。
 この触媒を60cm用い、SUS製反応管の中央に位置するよう石英ウールで固定し、触媒層中央位置に熱電対を挿入し、これら固定床反応管を所定の位置にセットした。
 改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した後、水素ガスを100mL/min流しながら30分間還元処理を行った。その後、コークス炉ガスの模擬ガスとして水素:窒素=1:1、HSを表1に示す濃度、トータルで125mL/minになるよう各ガスを調整して導入し、常圧下、表1に示す各温度で反応評価した。また、石炭乾留時発生タールの模擬物質として、タール中にも実際に含まれ且つ常温で粘度の低い液体物質である1-メチルナフタレンを代表物質として用い、精密ポンプで0.025g/minの流量で反応管へ導入した。また、S/C=3となるよう、純水を精密ポンプで0.1g/minの流量で反応管へ導入した。出口から排出された生成ガスを室温トラップ、氷温トラップを経由させて、各々ナフタレン、水分を除去した後、ガスクロマトグラフィー(ヒューレットパッカード製HP6890)に注入してTCD、FID分析を行った。改質反応の反応度合(メチルナフタレンの分解率)は、メタン選択率、CO選択率、CO選択率、触媒上に堆積した炭素析出率で判断した。それらは出口ガス中の各成分濃度より、以下の(式5)~(式8)で算出した。
  メタン選択率(%)=(CHの体積量)/(供給された1-メチルナフタレンのC供給量)×100  (式5)
  CO選択率(%)=(COの体積量)/(供給された1-メチルナフタレンのC供給量)×100  (式6)
  CO選択率(%)=(COの体積量)/(供給された1-メチルナフタレンのC供給量)×100  (式7)
  炭素析出率(%)=(析出炭素重量)/(供給された1-メチルナフタレンのC供給量)×100  (式8)
 また、合わせて入口水素ガス体積に対する出口水素ガス体積の比(水素増幅率)も併記した。
Figure JPOXMLDOC01-appb-T000001
 表1のNo.1~5の結果、HS濃度が2000ppmという高濃度に含まれる雰囲気下でも、反応温度の上昇に伴い分解率(メタン選択率+CO選択率+CO選択率+炭素析出率)が向上した。また、いずれの反応温度でも炭素析出率は、非常に低く抑えられていることが判明した。このように、硫黄被毒を強く受け易い炭素析出性の高い過酷な状況下であっても、模擬タールである1-メチルナフタレンの分解反応が進行していることが判る。また、模擬タールの分解率の上昇に伴い、水素増幅率も上昇したことから、1-メチルナフタレンを構成する炭素と結合した水素が触媒による改質によって水素分子に変換されたと考えられる。
(実施例2)
 実施例1と同様にして、原料に硝酸ニッケル、硝酸セリウム、硝酸マグネシウムを用い、ニッケル、マグネシウム、及び、セリウムを水酸化物として共沈させた。次に、この沈殿物にアルミナゾルがアルミナとして50質量%になるように加えた。そして、攪拌羽を取り付けた混合器で十分混合したものを、ナス型フラスコに移してロータリーエバポレーターに取り付け、攪拌しながら吸引することで、水分を蒸発させた。ナス型フラスコ壁面に付着したニッケルとセリウムとマグネシウムとアルミニウムの化合物を蒸発皿に移して120℃で乾燥、乳鉢で粉砕後、粉末を圧縮成形器を用いて直径3mmの錠剤状にプレス成型し、錠剤成型体を得た。その成型体を空気中950℃で焼成を行い、Ni0.1Ce0.1Mg0.8Oにアルミナに換算したアルミニウムが50質量%混合した触媒成型体を調製した。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相から構成されることが判明した。得られた触媒にアルミナの単独相は存在していなかった。各々の結晶子の大きさは、18nm、12nm、21nmであった。
 この触媒を実施例1と同様にして、固定床式反応器を用いて、同一条件の還元、反応条件で、模擬タールの改質反応を行った。
Figure JPOXMLDOC01-appb-T000002
 表2のNo.6~8の結果、HS濃度が2000ppmという高濃度に含まれる雰囲気下でも、実施例1と同様、反応温度の上昇に伴い分解率(メタン選択率+CO選択率+CO選択率+炭素析出率)が向上した。また、いずれの反応温度でも炭素析出率は非常に低く抑えられていることが判明した。このように、硫黄被毒を強く受け易く、炭素析出性の高い過酷な状況下であっても、模擬タールである1-メチルナフタレンの分解反応が進行していることが判る。
(実施例3)
 実施例1と同様にして、原料に硝酸ニッケル、硝酸セリウム、硝酸マグネシウムを用い、さらに硝酸アルミニウムを用いて混合水溶液とする他は同様の操作により、ニッケル、セリウム、マグネシウム、及び、アルミニウムを水酸化物として共沈させた後、60℃に保持したまま一定時間攪拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄した。実施例3では、この沈殿物にアルミナゾルを加えることなく、この沈殿物を蒸発皿に移して120℃で乾燥、乳鉢で粉砕後、粉末を圧縮成型器を用いて実施例1と同様にプレス成型し、錠剤成型体を得た。その成型体を、空気中、950℃で焼成を行って、触媒成型体を得た。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相からなることが判明した。得られた触媒にアルミナの単独相は存在しなかった。各々の結晶子の大きさは、14nm、14nm、22nmであった。
 この触媒を実施例1と同様にして固定床式反応器を用いて、同一条件の還元、反応条件で、模擬タールの改質反応を行った。
Figure JPOXMLDOC01-appb-T000003
 表3のNo.9~11の結果、HS濃度が2000ppmという高濃度に含まれる雰囲気下でも、実施例1と同様、反応温度の上昇に伴い分解率(メタン選択率+CO選択率+CO選択率+炭素析出率)が向上した。また、いずれの反応温度でも、炭素析出率は非常に低く抑えられていることが判明した。このように、硫黄被毒を強く受け易く炭素析出性の高い過酷な状況下であっても、模擬タールである1-メチルナフタレンの分解反応が進行していることが判る。但し、実施例1や2と比較して、炭素析出率が若干高かった。
(実施例4)
 実施例1と同様にして、ニッケル、セリウム、及び、マグネシウムを水酸化物として共沈させた後、60℃に保持したまま一定時間攪拌を続けて熟成を行った。その後、吸引ろ過を行い、80℃の純粋で十分に洗浄した。洗浄後に得られた沈殿物を120℃で乾燥し粗粉砕した後、空気中600℃で焼成(か焼)したものを解砕した後にビーカーに入れ、アルミナゾルを加えて攪拌羽を取り付けた混合器で十分混合した。これをナス型フラスコに移して、ロータリーエバポレーターに取り付け、攪拌しながら吸引することで、水分を蒸発させた。ナス型フラスコ壁面に付着したニッケルとマグネシウムとセリウムとアルミナの化合物を蒸発皿に移して120℃で乾燥、乳鉢で粉砕後、空気中、950℃で焼成を行った。そこで得られた焼成粉末を直径20mmの圧縮成型器を用いて実施例1と同様にプレス成型し、錠剤成型体を得た。その後、その成型体を乳鉢で粗粉砕し、1.0~2.8mmの範囲になるよう、篩を用いて整粒した。その整粒品の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相からなることが判明した。得られた触媒にアルミナの単独相は存在しなかった。各々の結晶子の大きさは、28nm、15nm、27nmであった。
 この触媒を実施例1と同様にして、固定床式反応器を用いて、同一条件の還元、No.3の反応条件で、模擬タールの改質反応を行った。その結果、メタン選択率は2.5%、CO選択率は36.6%、CO選択率は34.3%、炭素析出率は4.3%で、分解率は77.7%となり、水素増幅率は2.2倍となった。このように、硫黄被毒を受け易く、炭素析出性の高い過酷な状況下であっても、本調製法で得られた触媒は、模擬タールである1-メチルナフタレンの分解反応が進行していることが判る。
(実施例5)
 ニッケル、セリウム、マグネシウムの質量%を表4に示す割合にする他は、全て実施例1と同様の調製法により触媒成型体を調製した。なお、表4におけるアルミナの質量%は、アルミニウムをアルミナとした場合の質量%である(実施例5で得られた触媒にアルミナの単独相が存在しない)。
 この触媒を実施例1と同様にして、固定床式反応器を用いて、同一条件の還元でNo.2の反応条件で、模擬タールの改質反応を行った。
Figure JPOXMLDOC01-appb-T000004
 表4の結果、主活性成分であるNi質量が小さいものほど、メチルナフタレンの分解率は低く、水素増幅率も低くなり、Ni質量が1質量%を下回るNo.12の場合には、分解率、水素増幅率共に低い結果となった。一方、Ni質量が大きくなるほど、分解率、水素増幅率も高くなった。しかし、Ni質量が50質量%を超えるNo.21の場合には、炭素析出量が多い結果となった。また、No.16とNo.18を比較すると、ほぼ同等のNi質量であっても、アルミナ質量の違いにより、アルミナ成分が多い方が触媒活性は高かった。これは、アルミナ成分がニッケルマグネシア化合物相を微細に分断して、還元時に析出するNi金属粒子のサイズが小さくなり、反応表面積が大きくなったためと予想される。また、Mg質量が大きいものほど炭素析出率が低くなった。さらに、ほぼ同等のNi質量であっても、Ceの質量の違いにより、Ce成分が多い方が触媒活性は高かった。
(実施例6)
 焼成温度を500℃にする他は、全て実施例1と同様の調製法により触媒成型体を調製した。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。一方、本調製品をXRD測定した結果、ほぼブロードな回折曲線となり、NiMgO、MgAl、CeO相の極小さなピークが見られるのみであり(得られた触媒にアルミナの単独相は存在していない)、非晶質な構造であった。その小さくブロードなピークから求めた各々の結晶子の大きさは、0.9nm、0.6nm、0.5nmであった。この触媒成型体を実施例1のNo.3と同じ条件で活性評価を行った。その結果、触媒活性は、1-メチルナフタレンの分解率が8時間の平均で約43%、水素増幅率も約1.7となり、触媒活性が中程度であることが判明した。
(実施例7)
 焼成温度を1500℃にする他は、全て実施例1と同様の調製法により触媒成型体を調製した。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。一方、本調製品をXRD測定した結果、非常にシャープな回折曲線が見られ、NiMgO、MgAl、CeO相からなることが判明した(得られた触媒にアルミナの単独相は存在していない)。その非常に鋭いピークから求めた各々の結晶子の大きさは、76nm、67nm、82nmであった。これは、焼成温度が非常に高いことから、各結晶相の粒成長が進行し易くなったためと解釈できる。この触媒成型体を実施例1のNo.3と同じ条件で活性評価を行った。その結果、触媒活性は、1-メチルナフタレンの分解率が8時間の平均で約66%、その内炭素析出率が9%、水素増幅率は約1.8となった。従って、本触媒は、1-メチルナフタレンのガス成分への変換率が比較的高い一方、炭素析出率が比較的高い結果となった。
(実施例8)
 実施例1と全く同様にして、Ni0.1Ce0.1Mg0.8Oにアルミニウムをアルミナとして50質量%混合した触媒焼成粉末を得(得られた触媒にアルミナの単独相は存在していない)、その粉末を圧縮成型器を用いて直径20mmの錠剤状にプレス成型し、錠剤成型体を調製した。この成型体を乳鉢で粗粉砕した後、篩を用いて1.0~2.8mmとなるよう調整した。
 この触媒を実施例1と同様にして固定床式反応器を用いて、還元を全く行わず、No.3の反応条件で、模擬タールの改質反応を行った。その結果、メタン選択率は3.1%、CO選択率は35.8%、CO選択率は32.7%、炭素析出率は5.6%で、分解率は77.2%となり、水素増幅率は2.2倍となった。このように、硫黄被毒を強く受け易く、炭素析出性の高い過酷な状況下であっても、本調製法で得られた触媒は、事前に還元処理をしなくても、模擬タールである1-メチルナフタレンの分解反応が進行していることが判る。
(実施例9)
 実施例1のNo.3の条件で、8時間継続して反応を進行させた後、原料の投入を停止し、キャリアガスとしてNを60mL/min、HOをガス換算で60mL/minの状況下で触媒層温度を800℃にして5時間保持して触媒上に堆積した炭素や硫黄を除去した後、新たに実施例2と同じ条件で原料の投入を開始したところ、再生前の9割以上の活性を示すことが確認された。また、本試験における改質後のガス中の水素濃度も高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例10)
 実施例9と同様、実施例1のNo.3の条件で8時間継続して反応を進行させた後、原料の投入を停止し、キャリアガスとしてNを60mL/min、空気を60mL/minの状況下で触媒層温度を800℃にして2時間保持して触媒上に堆積した炭素や硫黄を除去した後、新たに実施例1と同じ条件で原料の投入を開始したところ、再生前の9割以上の活性を示すことが確認された。また、本試験における改質後のガス中の水素濃度も高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例11)
 コークス炉をシミュレートできるバッチ炉に実際のコークス炉で使用している装入炭を80kg充填し、実コークス炉に合わせて800℃に昇温して、実コークス炉ガス及び随伴する実タールを発生させた。その際のタール含有ガス中のタールは、約0.04g/Lであった。そのガスを吸引ポンプで捕集し、実験に用いた。実施例1と同様の調製方法により得られたニッケルとマグネシウムとセリウムとアルミナの化合物を600℃でか焼し、粉末をリング打錠機を用いてリング状に成型後、空気中950℃で焼成を行って外径約15mm、内径約5mm、高さ約15mmのリング状成型触媒を調製した。その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相から構成されることが判明した。得られた触媒にアルミナの単独相は存在しなかった。各々の結晶子の大きさは、29nm、16nm、29nmであった。さらに、その成型体を木屋式硬度計で計測したところ、約120Nの高い強度を保持することが判った。反応温度800℃になるよう昇温した電気炉内部に反応管を配置して、その中央部に上記成型触媒を設置し、水素を10NL/minで2時間還元後、バッチ炉から捕集したガスを触媒層へ流すことにより、実コークス炉ガス及び随伴実タールの触媒分解活性を5時間継続して評価した。入口ガス流量は10NL/minで、触媒充填量は約1Lであった。尚、入口ガス組成は、実コークス炉ガスとほぼ同じ組成であることをガスクロマトグラフィーで確認した。また、そのガス中には、硫化水素が2400~2500ppm含まれていることを確認した。ガス中のタール濃度は、以下の方法で評価した。即ち、触媒層の入口と出口部のコックに、予め真空状態にした1Lの真空捕集瓶を取り付けることにより、各々のガスを捕集する。そして、捕集瓶内をジクロロメタンで洗浄し、常温でジクロロメタンを完全に除去した後の液体成分の質量を定量した。そして、タール分解率は、前記手法で捕集した触媒層入口ガス中タール成分の質量に対する触媒層出口ガス中タール成分の質量の割合から求めた。その結果、タール分解率は反応開始後2時間経過時で約90.5%、水素増幅率は5時間平均で2.4まで到達し、コークス炉から排出されるものとほぼ同一の石炭乾留タール含有ガスに対し、触媒ドライガス化反応が進行していることを検証した。
(実施例12)
 図2に示されるロータリーキルン7を乾留炉として、800℃に昇温した後、石炭塊(5cm以下に分級)を充填したホッパー5から定量供給機6を用い、ロータリーキルン7の中に20kg/hの供給速度で石炭塊を導入した。これにより、タールを含有する乾留ガスを発生させた。誘引通風機11によりガス流量約10Nm/hになるように流量を調整した状態で、そのタール含有ガス(乾留ガス)を実施例11と同じリング状成型触媒を充填、約800℃に保温した触媒塔8へ導入し、触媒と接触させることにより、タール含有ガスの触媒分解活性を8時間継続して評価した。その後、改質ガスをスクラバー9で水冷、油バブラー10で除塵した後、フレアスタック12で燃焼放散させた。尚、原料投入前に水素5Nm/hで30分間還元処理を行った。入口ガス流量は約10Nm/hで、触媒充填量は約15Lであった。その際のタール含有ガス中のタールは、約60g/Nmであった。尚、入口ガス組成は、実コークス炉ガスとほぼ同じ組成であることをガスクロマトグラフィーで確認した。また、そのガス中には、原料である石炭に含まれている約6%の水分が揮発し、水蒸気となって含まれていた。さらに、そのガス中には、硫化水素が2000~2500ppm含まれていることを確認した。ガス中のタール濃度は、触媒層の入口と出口からガスを一定時間吸引して、ジクロロメタンを充填した五連式インピンジャーを通してガス中のタール成分を捕集した後、ジクロロメタンを除去後の常温で液体の成分を定量することにより評価した。そして、タール分解率は、前記手法で捕集した触媒層入口ガス中タール成分の質量に対する触媒層出口ガス中タール成分の質量の割合から求めた。その結果、タール分解率は反応開始後3時間経過時で約84%、水素増幅率は8時間平均で2.4まで到達し、ベンチプラント規模でのタール含有ガスの触媒ドライガス化反応が進行していることを検証した。
(実施例13)
 実施例12と同一の設備を用い、その中に10kg/hの供給速度で建築廃材チップ(5cm以下に分級)を供給して、800℃に保持したロータリーキルン7で乾留することにより、バイオマスタール含有ガス(乾留ガス)を発生させた。そのタール含有ガスを実施例9と同じ成型触媒を充填、約800℃に保温した触媒塔へ導入し、触媒と接触させることにより、タール含有ガスの触媒分解活性を8時間継続して評価した。尚、原料投入前に水素5Nm/hで30分間還元処理を行った。入口ガス流量は約10Nm/hで、触媒充填量は約15Lであった。その際のバイオマスタール含有ガス中のタールは、約10g/Nmであった。尚、入口ガス組成はコークス炉ガスに近く、水素、CO、メタン、COを主成分とする組成であることをガスクロマトグラフィーで確認した。また、そのガス中には、原料である建築廃材に含まれている約16%の水分が揮発し、水蒸気となって含まれていた。さらに、そのガス中には、硫化水素が約25ppm含まれていることを確認した。尚、タール分解率は、実施例12と同様の手法により、触媒層の入口と出口からタール含有ガス中タール成分を捕集し、タール分を定量することにより評価した。その結果、タール分解率は反応開始後3時間経過時で95%、水素増幅率は8時間を通して約6.8で安定に推移し、ベンチプラント規模でのバイオマスタール含有ガスの触媒ドライガス化反応が安定して進行していることを検証した。
(実施例14)
 実施例12で8時間改質した後、原料である石炭の供給を停止し、窒素で系内をパージした後、800℃で保持されたロータリーキルン7の入口付近に設置したガス取り込み口より空気を吸い込み、ロータリーキルンで加熱された空気を触媒塔へ約10時間導入することで、改質後の触媒表面上に堆積した析出炭素及び吸着硫黄を酸化除去し、再生した。その後、酸素分を追い出すために窒素で系内をパージした後、再度水素5Nm/hで30分間還元処理を行った後、原料を実施例12と同一速度で供給し、触媒と接触させることにより、タール含有ガスの触媒分解活性を8時間継続して評価した。その結果、再生後のタール分解率、水素増幅率は再生前とほぼ同様の数値が得られ、空気燃焼による触媒の再生が十分行われたことが検証された。また、このタール含有ガスの触媒分解、その後の触媒再生を5回繰返し行ったが、水素増幅率は再生前と同様の安定した結果が得られ、長期で運転できる可能性が示唆された。
(実施例15)
 実施例13で8時間改質した後、原料である建築廃材チップの供給を停止し、実施例14と同様に、窒素で系内をパージした後、800℃で保持されたロータリーキルン7入口付近に設置したガス取り込み口より空気を吸い込み、ロータリーキルンで加熱された空気を触媒塔へ約10時間導入することで、改質後の触媒表面上に堆積した析出炭素及び吸着硫黄を酸化除去し、再生した。その後、酸素分を追い出すために窒素で系内をパージした後、再度水素5Nm/hで30分間還元処理を行った後、原料を実施例13と同一速度で供給し、触媒と接触させることにより、タール含有ガスの触媒分解活性を8時間継続して評価した。その結果、再生後のタール分解率、水素増幅率は再生前とほぼ同様の数値が得られ、建築廃材チップの場合にも空気燃焼による触媒の再生が十分行われたことが検証された。また、このバイオマスタール含有ガスの触媒分解、その後の触媒再生を7回繰返し行ったが、水素増幅率は再生前と同様の安定した結果が得られ、長期で運転できる可能性が示唆された。
(比較例1)
 実施例1と同じ実験手法で、No.3の条件で、触媒として含浸担持法で調製された工業触媒の一つであるズードケミー製ナフサ一次リフォーミング触媒(SC11NK;Ni-20質量%担持アルミナ)(強度は500Nと高い)で改質試験を行ったところ、8時間の平均でメタン選択率が2.5%、CO選択率が4.2%、CO選択率が5.9%、炭素析出率が32.8%、分解率45.4%、水素増幅率が約1.3となった。
 従って、工業触媒は、1-メチルナフタレンのガス成分への変換率が低い(12.6%)一方、炭素析出率が非常に高い結果となった。炭素析出率が非常に高いため、触媒寿命が短い恐れが十分あり、また、例え、反応後に再生処理を行ったとしても、高温又は長期間酸化処理を行う必要があるために、その際の大きな燃焼熱により、触媒活性粒子がシンタリングを引き起こして、再生後の性能がさらに低くなると予想される。
(比較例2)
 実施例12と同じ試験設備を用い、比較例1で用いた工業触媒(SC11NK)を触媒塔へ充填して評価を行った。その結果、タール分解率は8時間の平均で約22%に止まり、水素増幅率も約1.5となり、工業触媒は、実コークス炉ガス、実タール下での評価でもタール分解率が低いことが判明した。
(比較例3)
 実施例1と同様にして、ニッケルとマグネシウムの沈殿物を調製した後、ろ過、洗浄、乾燥した後、空気中950℃で20時間焼成を行い、ニッケルとマグネシアの化合物を得た。その後、シリカゾルを触媒中のSiOが50質量%の割合になるように添加し、スラリーを調製した。その後、平均粒径が約50μmになるような条件で噴霧乾燥を行い、そこで得られた粉末を空気中950℃で焼成を行った。さらに、得られた固溶体酸化物を実施例1と同じ実験手法で成型、焼成した後、実施例1のNo.3と同じ条件で活性評価を行った。その結果、触媒活性は、1-メチルナフタレンの分解率が8時間の平均で約15%止まりで、非常に低く、水素増幅率も約1.0と全く増幅しない結果となり、触媒活性が低いことが判明した。
(比較例4)
 原料として、硝酸ニッケルと硝酸マグネシウムを用いる以外は実施例1と同様にして、ニッケルとマグネシウムの水酸化物を共沈した後、ろ過、洗浄、乾燥し粗粉砕した。その後、空気中600℃で焼成(か焼)したものを解砕した後に、ビーカーに入れ、アルミナゾルを加えて攪拌羽を取り付けた混合器で十分混合したものを、ナス型フラスコに移して、ロータリーエバポレーターに取り付け、攪拌しながら吸引することで、水分を蒸発させた。ナス型フラスコ壁面に付着したニッケルとマグネシウムとアルミナの化合物を蒸発皿に移して、120℃で乾燥、600℃でか焼後、粉末を圧縮成形器を用いて直径3mmの錠剤状にプレス成型し、錠剤成型体を得た。その成型体を空気中950℃で焼成を行い、Ni0.1Mg0.9Oにアルミナが50質量%混合した触媒成型体を調製した。その成型体を木屋式硬度計で計測したところ、約50N弱の強度に止まることが判った。
 その混合物を実施例1と同じ実験手法で成型、焼成した後、実施例1のNo.3と同じ条件で活性評価を行った。その結果、触媒活性は1-メチルナフタレンの分解率が8時間の平均で約62.6%(内、炭素析出率が13.9%)、水素増幅率は約1.7と中程度の触媒活性しか示さず、炭素析出量が非常に多いことが判明した。
(比較例5)
 1200℃で3時間かけて予備焼成したアルミナ(表面積:143m/g)に、硝酸ニッケル、硝酸セリウムアンモニウム、硝酸マグネシウムの混合水溶液をインシピエントウェットネス法により、ニッケル、酸化セリウム、酸化マグネシウムとして各々12質量%、15質量%、2質量%となるように担持し、110℃で12時間かけて乾燥させ、その後500℃で3時間かけて焼成を行って、触媒成型体を調製した。また、その成型体の成分をICP分析で確認した結果、所望の成分であることを確認した。また、本調製品をXRD測定した結果、NiMgO、MgAl、CeO相以外にAl相が存在することが判明し、Alを除く各々の結晶子の大きさは、20nm、68nm、14nmであった。MgAl相の結晶子サイズが大きくなったのは、多量のAl相が存在するために、MgAl相が粒成長し易くなったためと解釈できる。このようにして調製した触媒成型体を実施例1のNo.1と同じ条件で活性評価を行った。その結果、触媒活性は1-メチルナフタレンの分解率が8時間の平均で約20.5%(内、炭素析出率が10.2%)、水素増幅率は約1.4と低い触媒活性しか示さず、炭素析出量が比較的多いことが判明した。
 本発明によれば、石炭やバイオマスを熱分解した際に発生するタール含有ガスを、安定的に一酸化炭素、水素等の軽質化学物質へ変換することができる。このため、本発明は産業上の利用可能性を十分に有する。
 1  上昇管
 2  安水
 3  コークス炉
 4  ドライメーン
 5  原料ホッパー
 6  定量供給機
 7  外熱式ロータリーキルン
 8  触媒塔
 9  水スクラバー
 10  油バブラー
 11  誘引通風機
 12  フレアスタック

Claims (20)

  1.  ニッケル、マグネシウム、セリウム、アルミニウムを含む酸化物であって、少なくとも1種の複合酸化物を含み、単独化合物としてのアルミナ含有量が5質量%以下に制限されていることを特徴とするタール含有ガス改質用触媒。
  2.  前記複合酸化物が、NiMgO、MgAl、CeOの結晶相を有することを特徴とする請求項1に記載のタール含有ガス改質用触媒。
  3.  前記各結晶相の内、X線回折測定により求めたNiMgO結晶相の(200)面の結晶子の大きさが1nm~50nm、MgAl結晶相の(311)面の結晶子の大きさが1nm~50nm、CeO結晶相の(111)面の結晶子の大きさが1nm~50nmであることを特徴とする請求項2に記載のタール含有ガス改質用触媒。
  4.  ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;
     前記沈殿物をか焼する工程と;
     か焼された前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより混合物を生成する工程と;
     前記混合物を焼成する工程と;
    を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
  5.  前記焼成する工程では、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕する、又は、前記混合物を乾燥、か焼、粉砕、及び成型する
    ことを特徴とする請求項4に記載のタール含有ガス改質用触媒の製造方法。
  6.  ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;
     前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより、混合物を生成する工程と;
     前記混合物を焼成する工程と;
    を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
  7.  前記焼成する工程では、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕する、又は、前記混合物を乾燥、か焼、粉砕、及び成型する
    ことを特徴とする請求項6に記載のタール含有ガス改質用触媒の製造方法。
  8.  ニッケル化合物と、マグネシウム化合物と、セリウム化合物とを含む混合溶液から共沈により沈殿物を生成する工程と;
     前記沈殿物にアルミナ粉末と水、又はアルミナゾルを添加することにより、中間混合物を生成する工程と;
     前記中間混合物をか焼する工程と;
     か焼された前記中間混合物にアルミナ粉末と水、又はアルミナゾルを添加することにより混合物を生成する工程と;
     前記混合物を焼成する工程と;
    を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
  9.  前記焼成する工程では、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕する、又は、前記混合物を乾燥、か焼、粉砕、及び成型する
    ことを特徴とする請求項8に記載のタール含有ガス改質用触媒の製造方法。
  10.  ニッケル化合物と、マグネシウム化合物と、セリウム化合物と、アルミニウム化合物とを含む混合溶液から共沈により混合物を生成する工程と;
     前記混合物を焼成する工程と;
    を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
  11.  前記焼成する工程では、前記混合物を焼成する前に、前記混合物を乾燥及び粉砕する、又は、前記混合物を乾燥、か焼、粉砕、及び成型する
    ことを特徴とする請求項10に記載のタール含有ガス改質用触媒の製造方法。
  12.  請求項4~11のいずれか1項に記載の製造方法で製造されるタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、
     炭素質原料を熱分解した際に発生するタール含有ガス中の水素と、二酸化炭素と、水蒸気とを前記タール含有ガス改質用触媒に接触させる工程
    を備えることを特徴とするタール含有ガス改質方法。
  13.  炭素質原料を熱分解した際に発生するタール含有ガス中のタールを凝縮して回収する工程と;
     前記タールを加熱してガス化する工程と;
     外部から導入される、水素と、二酸化炭素と、水蒸気と、の少なくともいずれか1つを前記タール含有ガス改質用触媒に接触させる工程と;
    を備えることを特徴とする請求項12に記載のタール含有ガス改質方法。
  14.  前記タール含有ガス改質用触媒に接触させる工程では、更に、外部から導入される酸素含有ガスを前記タール含有ガス改質用触媒に接触させることを特徴とする請求項13に記載のタール含有ガス改質方法。
  15.  前記タール含有ガスが、硫化水素を20ppm以上4000ppm以下含むことを特徴とする請求項12に記載のタール含有ガス改質方法。
  16.  前記タール含有ガスが、石炭を乾留したときに発生する乾留ガスであることを特徴とする請求項12に記載のタール含有ガス改質方法。
  17.  前記タール含有ガスが、コークス炉から排出されるコークス炉ガスであることを特徴とする請求項12に記載のタール含有ガス改質方法。
  18.  前記タール含有ガスが、バイオマスを乾留したときに発生する乾留ガスであることを特徴とする請求項12に記載のタール含有ガス改質方法。
  19.  前記タール含有ガス改質用触媒に前記タール含有ガスを600~1000℃の雰囲気下で接触させることを特徴とする請求項12に記載のタール含有ガス改質方法。
  20.  請求項12に記載のタール含有ガス改質方法の実施により、前記触媒が、炭素析出、硫黄被毒の少なくともいずれかにより性能劣化した場合に、前記触媒に水蒸気、または空気のいずれかを接触させて、前記触媒を再生することを特徴とするタール含有ガス改質用触媒の再生方法。
PCT/JP2010/003347 2009-05-19 2010-05-18 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法 WO2010134326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011514330A JP4897112B2 (ja) 2009-05-19 2010-05-18 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
BRPI1010991-9A BRPI1010991B1 (pt) 2009-05-19 2010-05-18 "catalisador para reformar gás contendo alcatrão, método para preparar catalisador para reformar um gás contendo alcatrão, e método para regenerar catalisador para reformar um gás contendo alcatrão.
CN201080021561.XA CN102427879B (zh) 2009-05-19 2010-05-18 含焦油气体重整用催化剂、其制造方法、使用了其的含焦油气体重整方法、及其再生方法
US13/320,524 US9393551B2 (en) 2009-05-19 2010-05-18 Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-121045 2009-05-19
JP2009121045 2009-05-19
JP2010-083934 2010-03-31
JP2010083934 2010-03-31

Publications (1)

Publication Number Publication Date
WO2010134326A1 true WO2010134326A1 (ja) 2010-11-25

Family

ID=43126019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003347 WO2010134326A1 (ja) 2009-05-19 2010-05-18 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法

Country Status (5)

Country Link
US (1) US9393551B2 (ja)
JP (1) JP4897112B2 (ja)
CN (1) CN102427879B (ja)
BR (1) BRPI1010991B1 (ja)
WO (1) WO2010134326A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108920A1 (ja) 2012-01-20 2013-07-25 新日鐵住金株式会社 連続式固定床触媒反応装置及びこれを用いた触媒反応方法
JP2013166102A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置及びこれを用いた粒状体処理方法
JP2013166103A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置及びこれを用いた粒状体処理方法
JP2013166105A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置
WO2013128843A1 (ja) * 2012-02-27 2013-09-06 Jfeスチール株式会社 有機物質の低分子化方法
JP2014171942A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumitomo Metal 粒状体処理装置および処理方法
JP2014171939A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumitomo Metal 連続式固定床触媒反応器
JP2014196234A (ja) * 2013-03-07 2014-10-16 新日鐵住金株式会社 石炭乾留ガスからの水素ガス製造装置および水素ガス製造方法
JP2015506265A (ja) * 2011-12-21 2015-03-02 ローディア オペレーションズ 複合酸化物、それの製造方法、および排ガス精製用の触媒
JP2016153368A (ja) * 2015-02-13 2016-08-25 新日鐵住金株式会社 炭化水素の改質による水素の製造方法、水素の製造装置、燃料電池の運転方法、及び燃料電池の運転装置
JP2016187786A (ja) * 2015-03-30 2016-11-04 新日鐵住金株式会社 タール含有ガス改質用触媒の再生方法
JP2017502837A (ja) * 2013-12-23 2017-01-26 ローディア オペレーションズ 無機酸化物材料
AU2012258290B2 (en) * 2011-11-22 2017-03-02 Commonwealth Scientific And Industrial Research Organisation Nickel based catalysts for hydrocarbon reforming
JP2019162619A (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP2019171287A (ja) * 2018-03-28 2019-10-10 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法
JP2020054944A (ja) * 2018-10-01 2020-04-09 日本製鉄株式会社 水素製造用触媒成型物及び水素製造用触媒成型物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190400A1 (pt) * 2013-05-29 2014-12-04 Petróleo Brasileiro S.A. - Petrobras Processo de reforma a vapor para a redução do teor de alcatrão em correntes de gás de síntese
WO2016053182A1 (en) * 2014-09-30 2016-04-07 National University Of Singapore Catalytic membrane system for converting biomass to hydrogen
ES2832742T3 (es) 2014-12-15 2021-06-11 Haldor Topsoe As Proceso y sistema para la regeneración de un catalizador de reformador de alquitrán
US11745169B1 (en) * 2019-05-17 2023-09-05 Unm Rainforest Innovations Single atom metal doped ceria for CO oxidation and HC hydrogenation/oxidation
CN115302833B (zh) * 2022-07-06 2024-05-17 南通富强纸业有限公司 一种废纸回收用压缩装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000900A (ja) * 2002-03-25 2004-01-08 Nippon Steel Corp 炭化水素の改質用触媒と炭化水素の改質方法
JP2008279337A (ja) * 2007-05-09 2008-11-20 Nippon Steel Corp 炭化水素改質用触媒
WO2009084736A1 (ja) * 2007-12-27 2009-07-09 Nippon Steel Corporation タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法
WO2010035430A1 (ja) * 2008-09-24 2010-04-01 新日本製鐵株式会社 タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944346B2 (ja) 1980-10-17 1984-10-29 新日本製鐵株式会社 コ−クス炉発生ガスの熱回収方法
JPS5876487A (ja) 1981-11-02 1983-05-09 Nippon Steel Chem Co Ltd コ−クス炉ガス顕熱の回収方法及びその装置
JP3145175B2 (ja) * 1992-03-31 2001-03-12 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
JP3055405B2 (ja) 1994-11-07 2000-06-26 日本鋼管株式会社 粗コークス炉ガスの顕熱回収方法
JP4335356B2 (ja) 1998-04-14 2009-09-30 石油資源開発株式会社 リホーミング用ニッケル系触媒およびこれを用いた合成ガスの製法
CN1093433C (zh) * 1999-02-10 2002-10-30 石油大学(北京) 天然气自热氧化重整制合成气催化剂及其制备方法
JP2000248286A (ja) 1999-03-02 2000-09-12 Jgc Corp コークス炉ガスの精製プロセス
JP4588268B2 (ja) 2001-08-20 2010-11-24 新日本製鐵株式会社 粗コークス炉ガスの処理方法及び処理システム
JP4332733B2 (ja) 2004-08-24 2009-09-16 戸田工業株式会社 炭化水素分解用触媒及び該炭化水素分解用触媒を用いた水素の製造方法
JP5110249B2 (ja) 2005-08-11 2012-12-26 戸田工業株式会社 炭化水素を分解する触媒、該触媒を用いた炭化水素の分解方法及び水素の製造方法、並びに発電システム
JP5354142B2 (ja) 2006-01-16 2013-11-27 戸田工業株式会社 水蒸気改質用触媒及び反応混合ガスの製造方法
JP2007229548A (ja) 2006-02-27 2007-09-13 Nippon Steel Engineering Co Ltd バイオマス熱分解ガス化過程で使用する改質用触媒とその製造方法、及びその改質用触媒を用いた改質方法とバイオマス熱分解ガス化装置、並びに触媒再生方法
JP5032101B2 (ja) 2006-11-29 2012-09-26 新日本製鐵株式会社 炭素質原料の熱分解タールを改質してガス化するタールガス化用触媒、タールガス化方法、タールガス化ガスの利用方法、及びタールガス化用触媒の再生方法
CN1986049B (zh) * 2006-12-21 2010-12-08 天津大学 用于乙醇水蒸气重整制氢催化剂及制备方法和用途
JP2008239443A (ja) 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp 合成ガス製造方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000900A (ja) * 2002-03-25 2004-01-08 Nippon Steel Corp 炭化水素の改質用触媒と炭化水素の改質方法
JP2008279337A (ja) * 2007-05-09 2008-11-20 Nippon Steel Corp 炭化水素改質用触媒
WO2009084736A1 (ja) * 2007-12-27 2009-07-09 Nippon Steel Corporation タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法
WO2010035430A1 (ja) * 2008-09-24 2010-04-01 新日本製鐵株式会社 タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA, K. ET AL.: "Promoting effect of MgO addition to Pt/Ni/CeO2/A12O3 in the steam gasification of biomass", APPL. CATAL. B ENVIRON., vol. 86, no. 1-2, February 2009 (2009-02-01), pages 36 - 44 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012258290B2 (en) * 2011-11-22 2017-03-02 Commonwealth Scientific And Industrial Research Organisation Nickel based catalysts for hydrocarbon reforming
JP2015506265A (ja) * 2011-12-21 2015-03-02 ローディア オペレーションズ 複合酸化物、それの製造方法、および排ガス精製用の触媒
KR101566650B1 (ko) 2012-01-20 2015-11-05 신닛테츠스미킨 카부시키카이샤 연속식 고정상 촉매 반응 장치 및 이것을 사용한 촉매 반응 방법
WO2013108920A1 (ja) 2012-01-20 2013-07-25 新日鐵住金株式会社 連続式固定床触媒反応装置及びこれを用いた触媒反応方法
US9314760B2 (en) 2012-01-20 2016-04-19 Nippon Steel & Sumitomo Metal Corporation Continuous fixed-bed catalytic reactor and catalytic reaction method using same
JP2013166102A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置及びこれを用いた粒状体処理方法
JP2013166103A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置及びこれを用いた粒状体処理方法
JP2013166105A (ja) * 2012-02-14 2013-08-29 Nippon Steel & Sumitomo Metal Corp 粒状体処理装置
JP5679088B2 (ja) * 2012-02-27 2015-03-04 Jfeスチール株式会社 有機物質の低分子化方法
WO2013128843A1 (ja) * 2012-02-27 2013-09-06 Jfeスチール株式会社 有機物質の低分子化方法
JP2014171939A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumitomo Metal 連続式固定床触媒反応器
JP2014196234A (ja) * 2013-03-07 2014-10-16 新日鐵住金株式会社 石炭乾留ガスからの水素ガス製造装置および水素ガス製造方法
JP2014171942A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumitomo Metal 粒状体処理装置および処理方法
JP2017502837A (ja) * 2013-12-23 2017-01-26 ローディア オペレーションズ 無機酸化物材料
JP2016153368A (ja) * 2015-02-13 2016-08-25 新日鐵住金株式会社 炭化水素の改質による水素の製造方法、水素の製造装置、燃料電池の運転方法、及び燃料電池の運転装置
JP2016187786A (ja) * 2015-03-30 2016-11-04 新日鐵住金株式会社 タール含有ガス改質用触媒の再生方法
JP2019162619A (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP7156113B2 (ja) 2018-03-19 2022-10-19 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP2019171287A (ja) * 2018-03-28 2019-10-10 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法
JP7069946B2 (ja) 2018-03-28 2022-05-18 日本製鉄株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法
JP2020054944A (ja) * 2018-10-01 2020-04-09 日本製鉄株式会社 水素製造用触媒成型物及び水素製造用触媒成型物の製造方法
JP7180256B2 (ja) 2018-10-01 2022-11-30 日本製鉄株式会社 水素製造用触媒成型物及び水素製造用触媒成型物の製造方法

Also Published As

Publication number Publication date
US9393551B2 (en) 2016-07-19
CN102427879B (zh) 2015-05-13
BRPI1010991B1 (pt) 2020-02-11
JPWO2010134326A1 (ja) 2012-11-08
US20120058030A1 (en) 2012-03-08
CN102427879A (zh) 2012-04-25
JP4897112B2 (ja) 2012-03-14
BRPI1010991A2 (ja) 2018-03-13

Similar Documents

Publication Publication Date Title
JP4897112B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
JP5494135B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP4436424B2 (ja) タール含有ガスの改質方法
JP5009419B2 (ja) タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法
JP5659537B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5780271B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659536B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659534B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5511169B2 (ja) タール含有ガスの改質方法
JP6460879B2 (ja) タール含有ガス改質用触媒の再生方法
JP7156113B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP5659532B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5720107B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659533B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP7069946B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法
JP5776737B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP2023011517A (ja) 炭化水素含有ガス改質用触媒、炭化水素含有ガス改質用触媒の製造方法、及び、炭化水素含有ガス改質用触媒を用いた炭化水素含有ガスの改質方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021561.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777564

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011514330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13320524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777564

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010991

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010991

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111117