JP7069946B2 - タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法 - Google Patents

タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法 Download PDF

Info

Publication number
JP7069946B2
JP7069946B2 JP2018062317A JP2018062317A JP7069946B2 JP 7069946 B2 JP7069946 B2 JP 7069946B2 JP 2018062317 A JP2018062317 A JP 2018062317A JP 2018062317 A JP2018062317 A JP 2018062317A JP 7069946 B2 JP7069946 B2 JP 7069946B2
Authority
JP
Japan
Prior art keywords
tar
containing gas
catalyst
reforming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062317A
Other languages
English (en)
Other versions
JP2019171287A (ja
Inventor
憲治 中尾
健治 平
公仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018062317A priority Critical patent/JP7069946B2/ja
Publication of JP2019171287A publication Critical patent/JP2019171287A/ja
Application granted granted Critical
Publication of JP7069946B2 publication Critical patent/JP7069946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭素質原料を熱分解した際に発生する高温のタール含有ガスを改質し、タール含有ガス中のタールを軽質化して、水素、一酸化炭素、メタン等のガスへ変換するためのタール含有ガス改質用触媒、及び、そのタール含有ガス改質用触媒の製造方法、並びに、そのタール含有ガス改質用触媒を用いたタール含有ガス改質方法に関する。
鉄鋼業はエネルギー多消費産業であるが、高炉法一貫製鉄プロセスにおける廃熱のうち約4割が未利用廃熱である。そのうち、回収されやすいが従来は利用されていない熱源としてコークス炉から発生する高温のコークス炉ガス(粗COG)の顕熱がある。
従来、高温のコークス炉ガスの顕熱はほとんど利用されず、冷却後のガスを処理して利用するケースが殆どであった。粗COGは顕熱を有しているが、2000ppmを越える硫黄化合物を含有しており、触媒の被毒物質となることが知られているため、タールのような重質炭化水素の分解反応に関する触媒を設計する観点からは難易度が高いと考えられる。特許文献1に記載されているように、NiMg1-xO-SiO噴霧乾燥固溶体触媒、活性Al触媒、Ni/Al触媒やFe/Al触媒などの担持法による触媒が検討されていたが、これらの触媒の改質活性は不十分であった。また、エネルギー変換触媒は、硫黄被毒や炭素析出を受けやすい。このため、上述のような高濃度硫黄化合物を含んだ雰囲気下、炭素析出を起こしやすい縮合多環芳香族主体のタールの分解反応に適する触媒を見出すことは困難であった。
また、上述の担持法以外にも、特許文献1のようにシリカやアルミナをバインダーとしてニッケルマグネシア化合物に混合して噴霧乾燥法により炭化水素改質用触媒を製造する方法や、ニッケルマグネシア系化合物にシリカ粉末やアルミナ粉末を物理混合して炭化水素改質用触媒を製造する方法も知られている。しかしながら、ニッケルマグネシア化合物粉末に対してシリカ粉末又はアルミナ粉末を物理的に添加して混合した後、成型及び焼成を行う方法では、高い触媒活性や最終製品強度を得られない。
特許文献2には、粗COG中に含まれる不純物(H2S、COS、芳香族炭化水素、タール、ダスト等)を除去することにより、都市ガス等の燃料や化学合成用の原料として使用される精製COGを得る方法が開示されている。COGを用いてメタノール合成プラントを建設する際には、常法により得られる精製COGには低級炭化水素や芳香族炭化水素が残留しているため、それらが改質装置の触媒の被毒を起こす恐れがある。
そこで、例えば特許文献3には、市販の触媒を用いたプレリフォーミングを行った後、改質装置で合成ガスを製造する製造システムが開示されている。しかしながら、後段の合成ガスを製造する改質装置に用いる触媒については言及されていない。
一方、炭化水素の改質用原料として一般に用いられるメタン改質用触媒は古くから数多くの研究がなされている。
例えば非特許文献1においては、メタンの部分酸化触媒として、ニッケルと、マグネシウムと、アルミニウムと、ランタンとを含む溶液からの沈殿物を用いて製造される触媒が提案されている。
特許文献4には、ニッケルと、マグネシウムと、カルシウムとにより構成される酸化物に第3B族元素、第4A族元素、第6B族元素、第7B族元素、第1A族元素およびランタノイド元素の少なくとも一種を混合した触媒が開示されている。
特許文献5には、マグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、アルカリ金属、アルカリ土類金属、Zn、Co、Ce、Cr、Fe、Laから選ばれる1種以上の元素を含有する触媒が開示されている。
非特許文献2においては、メタンと二酸化炭素、スチーム及び酸素とのリフォーミング反応用として、セリア、ジルコニア、及びセリアジルコニア化合物へのニッケル担持触媒と共に、セリアジルコニア化合物へのマグネシア及びニッケル担持触媒が提案されている。
また、プロパン、ブタン、都市ガス等の低級炭化水素からの水素製造触媒としては、特許文献6に開示されているように、マグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、Siを含有する触媒などが提案されている。
しかし、これらの触媒の対象となる炭化水素は低級且つ鎖式の炭化水素に分解しやすい。また、原料中に含まれる触媒毒となり得る硫黄分は、特許文献7に示されているような50ppm以下のものに限られている。
即ち、これら公知の触媒に関しては、タール含有ガスにおいて硫黄分が高濃度に含まれるガス雰囲気下、タール等重質炭化水素を改質することへの検討は全く行われていなかった。
さらに、近年の地球温暖化問題により、二酸化炭素排出量削減の有効手段として炭素質原料の一つであるバイオマス利用が注目されており、バイオマスの高効率エネルギー変換に関する研究が行われている。また、昨今のエネルギー資源確保の観点から、過去精力的に行われてきた石炭の有効活用に関する研究も実用化に向けて見直されてきている。その中で、バイオマスの乾留で生成するタールをガス化して、粗ガス(未精製ガス)を生成し、その顕熱を利用する方法については、特に触媒を用いたタールの触媒改質を中心に、特許文献8や特許文献9などに開示される技術のように種々検討されている。しかしながら、高価な貴金属を使用するために不経済であることや、触媒寿命が短いこと等の課題を有していた。
一方、発明者らは、ニッケル及びマグネシウムに、第3成分として様々な金属成分やアルミナ等を混合した成分からなるタール含有ガス改質用触媒を用いて、硫黄を高濃度含んだタールを含有したCOG等を改質する方法を開示している。
特許文献10には、ニッケル、マグネシウム、セリウム、アルミニウムを含む酸化物からなるタール含有ガス改質用触媒を開示している。
特許文献11には、ニッケル及びマグネシウムに、鉄、銅、クロム、ランタン、プラセオジム、ネオジムから選ばれるいずれか1種類を含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなるタール含有ガスの改質用触媒を開示している。
特許文献12には、ニッケル及びマグネシウムに、リチウム、ナトリウム、カリウムのいずれか1種類を含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなるタール含有ガスの改質用触媒を開示している。
特許文献13には、ニッケル及びマグネシウムに、コバルト、モリブデン、レニウムのいずれか1種類を含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなるタール含有ガスの改質用触媒を開示している。
特許文献14には、ニッケル及びマグネシウムに、チタン、ジルコニウム、カルシウム、タングステン、マンガン、亜鉛、ストロンチウム、バリウム、タンタルから選ばれるいずれか1種類を含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えてなるタール含有ガスの改質用触媒を開示している。いずれの触媒も、活性を向上でき、炭素析出も抑えられてはいるが、水蒸気の少ない条件においては、活性や炭素析出に関しては不十分であった。
特開2003-55671号公報 特開2008-239443号公報 特開2000-248286号公報 特開2000-469号公報 特開2006-61760号公報 特開2008-18414号公報 特開2007-313496号公報 特開2008-132458号公報 特開2007-229548号公報 WO2010/134326 特開2011-212551号公報 特開2011-212552号公報 特開2011-212553号公報 特開2011-212535号公報
J.Zhang et al., Int. J. Hydro. Energ., 35(2010)11776 C.Song et al., Catalysis Today, Vol.98(2004)463
特許文献10~14に記載されたニッケル及びマグネシウムに第3成分を添加し、アルミナ等を混合した触媒は、活性は向上し、炭素析出も抑えられてきていたが、水蒸気の少ない条件では、更なる高活性化と炭素析出の抑制が望まれていた。
本発明は、石炭やバイオマスなどの炭素質原料を熱分解した時に発生し、重質鎖式炭化水素や縮合多環芳香族炭化水素などを主成分とするタールを含むと共に硫化水素を高濃度で含むタール含有ガスであっても、触媒存在下で、水蒸気の少ない条件でも炭素析出をより抑えながら、メタン、一酸化炭素、水素等の軽質化学物質に変換するタール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法を提供することを目的とする。
本発明者らは、石炭やバイオマスを熱分解した際に発生する、硫化水素を高濃度で含むタール含有ガス(粗ガス)を、硫化水素を高濃度で含む粗ガスの状態のままで触媒と接触させて、粗ガス中のタールを、一酸化炭素、水素等の軽質化学物質に安定して変換する方法について鋭意検討した。
その結果、タール含有ガス改質用触媒として、
1)ニッケル及びマグネシウムの少なくともいずれかと、セリウムとを構成元素とし、
2)酸化セリウムにニッケル及びマグネシウムの少なくともいずれかが固溶した金属酸化物を触媒として用いると、
硫化水素を高濃度で含み、且つ縮合多環芳香族炭化水素等を主成分とするタールを多く含む粗COGや精製COGを改質しても、触媒の硫黄被毒による活性低下や炭素析出が生じ難いことを見出した。この触媒は、硫黄被毒による活性低下や炭素析出が生じ難いため、経時劣化が少なく安定的に粗ガス中のタールを改質することができ、一酸化炭素や水素等の軽質化学物質へ変換できることが判った。
上記触媒を製造するに当たって、本発明者らは、従来の含浸担持法や共沈法による触媒の製造方法とは異なり、ニッケル化合物とマグネシウム化合物のいずれかと、セリウム化合物を含む混合溶液から有機酸法によりゲルを生成し、前記ゲルを乾燥及び焼成することで、上記1)及び2)の構成と上記能力を有するタール含有ガス改質用触媒を製造できることを見出した。
有機酸法は、前駆体試薬の溶液に対して、有機酸を溶解させ、金属錯体を形成させることで、金属元素が均一に含まれるゲルを合成し、得られたゲルを焼成して燃焼分解することにより、元素が均一に混合された触媒を合成する方法である。有機酸の中でも、特にクエン酸は、他の有機酸に比べて安価なため、低コストで触媒を合成することが可能であり、クエン酸を用いた場合、クエン酸法と呼ぶ。
この触媒をタール含有ガス中の還元性ガス、又は反応前の還元性ガスに接触させると、ニッケル金属が酸化物表面にクラスター状に微細析出する。この現象を利用して、硫黄被毒となり得る硫黄成分の高濃度の雰囲気下、タール等重質炭化水素などの炭素析出を起こしやすい成分を多量に含んだ過酷な状況においても、活性金属の表面積が大きく且つ硫黄被毒を受けても新たに活性金属が析出可能であり、重質炭化水素を高い効率で軽質炭化水素へ変換できるものと考えられる。
このような製造方法による触媒は、タール含有ガスの改質活性が高く且つ長時間に亘って改質することができる。
本発明者らは、このようにして、本発明を為すに至った。
本発明の要旨は、下記の通りである。
(1)NiMgCeで表される化学組成を有し、
a、b、及び、cはモル比を表し、a+b+c=1、0≦a≦0.5、0≦b≦0.5、かつ、0.4≦c≦0.9を満たし、NiとMgの少なくともいずれかが、CeOの結晶に固溶していることを特徴とする(1)に記載のタール含有ガスの改質用触媒。
(2)0.05≦a≦0.5、0.05≦b≦0.5、かつ、0.4≦c≦0.9を満たし、Ni及びMgがCeOの結晶に固溶していることを特徴とする前記(1)に記載のタール含有ガスの改質用触媒。
(3)NiMgCeで表される化学組成を有するタール含有ガスの改質用触媒の製造方法であって、
a、b、及び、cはモル比を表し、a+b+c=1、0≦a≦0.5、0≦b≦0.5、かつ、0.4≦c≦0.9を満たし、
ニッケル化合物とマグネシウム化合物の少なくともいずれかと、セリウム化合物とを含む混合溶液に、有機酸水溶液を混合してゲルを生成するゲル化工程と、
前記生成したゲルを乾燥、焼成して前記化学組成を有する触媒とする触媒化工程と、
を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
(4)(1)または(2)に記載のタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、炭素質原料を熱分解した際に発生するタール含有ガスを、前記タール含有ガス改質用触媒に接触させて、前記タール含有ガス中の二酸化炭素、水蒸気の少なくともいずれかにより、前記タール含有ガスを改質して、水素及び一酸化炭素に変換することを特徴とするタール含有ガスの改質方法。
(5)(1)または(2)に記載のタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、炭素質原料を熱分解した際に発生するタール含有ガスに、外部から添加する水蒸気を導入して混合ガス化し、前記混合ガスを前記タール含有ガス改質用触媒に接触させて、前記混合ガス中の二酸化炭素、水蒸気の少なくともいずれかにより、前記混合ガスを改質して、水素及び一酸化炭素に変換することを特徴とするタール含有ガスの改質方法。
(6)前記タール含有ガス、又は、前記混合ガスにおける水蒸気/炭素(S/C)のモル比率が、0.5~2.0であることを特徴とする(4)又は(5)に記載のタール含有ガスの改質方法。
(7)前記タール含有ガスが、コークス炉から排出されるコークス炉ガスであることを特徴とする(4)から(6)のいずれか1つに記載のタール含有ガスの改質方法。
(8)前記タール含有ガスが、木質系バイオマス、食品廃棄物系バイオマスの少なくともいずれかを乾留したときに発生する乾留ガスであることを特徴とする(4)から(6)のいずれか1つに記載のタール含有ガスの改質方法。
本発明によれば、石炭やバイオマスを熱分解した際に発生するタール含有ガスを、安定的に炭素析出を抑えて、一酸化炭素、水素等の軽質化学物質へ変換することができる。特に、タール含有ガスが硫化水素を高濃度で含んでいても、脱硫処理せずにそのまま触媒と接触させて、水蒸気の少ない条件でも炭素析出をより抑えながら、ガス中のタールを改質して、タール含有ガスを、メタン、一酸化炭素、水素等の軽質化学物質へ安定的に変換することができる。
以下、具体例を示して、本発明をさらに詳細に説明する。
本発明の第一の実施形態に係るタール含有ガス改質用触媒は、ニッケル、マグネシウム、及びセリウムを含む酸化物であり、CeOの結晶層に、ニッケルとマグネシウムが固溶した酸化物である。従来、ニッケルはMgOの結晶層に固溶した固溶体となることがわかっているが、本発明の触媒は、さらにNiMgO固溶体がCeOの結晶層に固溶して、NiMgCeO固溶体となる。
ニッケルは重質炭化水素を、ガス中に存在又は外部より導入される水蒸気、水素、二酸化炭素との間で改質反応を進行させる主活性成分として機能する。タール含有ガス中に高濃度の硫化水素が共存した場合でも、上記ニッケル金属が触媒表面上でクラスター状に微細分散して表面積が大きくなっているため、そして、還元雰囲気下では反応中に活性金属粒子が被毒を受けても新たな活性金属粒子(ニッケル)が、マトリクス(母相)であるNiMgO相やNiMgCeO相から微細析出するため、硫黄被毒による活性低下の影響を受け難い。
このマトリクスの化合物から、還元雰囲気下、活性金属粒子を微細クラスター状に析出させることができる。また、縮合多環芳香族主体のタールも乾留直後の高温状態で反応性に富む状態であり、且つ微細分散して高比表面積を持った高活性なニッケル金属と接触することにより、高効率に軽質炭化水素へ変換・分解する。また、析出したニッケルがマトリクスの化合物と強固に結合しているために、ニッケル粒子間での凝集(シンタリング)を抑制し、長時間の反応中でも触媒活性が低下し難いという効果がある。
酸化マグネシウムは、ニッケル元素と化合物化した成分中の塩基性酸化物であり、二酸化炭素を吸着する機能を保有することにより、主活性成分元素上での炭化水素由来の析出炭素と反応して、一酸化炭素として酸化除去する役割を発揮するために、触媒表面を清浄に保ち、触媒性能を長期間安定に保持できる。
酸化セリウムは、一般的に酸素吸蔵・放出能を持つ物質として知られているが、触媒上でタールが分解して生じる炭素種への酸素供給を促進することによって、一酸化炭素への変換を促進することができる。
本発明でいう炭素質原料とは、熱分解してタールを生成する炭素を含む原料のことで、石炭並びにバイオマスやプラスチックの容器包装類等の構成元素に炭素を含む広範囲なものを指すが、中でもバイオマスとは、林地残材、間伐材、未利用樹、製材残材、建設廃材、稲わら等の木質系廃棄物、又はそれらを原料とした木質チップ、ペレット等の二次製品や、再生紙として再利用できなくなった古紙等の製紙系廃棄物、農業残渣、厨芥類等の食品廃棄物、活性汚泥等を指す。
また、炭素質原料を熱分解した際に発生するタールとは、熱分解される原料により性状が異なるが、炭素が5個以上含まれた常温で液体の有機化合物であって、鎖式炭化水素や芳香族炭化水素等からなる混合物を指し、石炭の熱分解であれば、例えば、ナフタレン、フェナンスレン、ピレン、アントラセン等の縮合多環芳香族等が主成分であり、バイオマス、特に木質系廃棄物の熱分解であれば、例えば、ベンゼン、トルエン、ナフタレン、インデン、アントラセン、フェノール等、食品廃棄物系バイオマスの熱分解であれば、例えば、上記以外にインドール、ピロール等の六員環又は五員環に窒素等の異種元素を含むヘテロ化合物も含まれるが、特にそれらに限定されるものではない。熱分解タールは、熱分解直後の高温状態ではガス状で存在する。また、ほぼ室温に冷却された精製COG中ではミスト状で存在する。
なお、炭素質原料の熱分解方法としては、石炭を原料とする場合には一般にコークス炉が用いられ、バイオマスを原料とする場合には外熱式ロータリーキルンや移動床炉、流動床炉等を用いることができるが、特にこれらのみに限定するものではない。
また、タール含有ガスを接触してガス化するタール含有ガスの改質反応は、重質炭化水素であるタールからメタン、一酸化炭素、水素等の軽質化学物質へ変換する反応であって、反応経路が複雑で必ずしも明らかではないが、タール含有ガス中の水素や水蒸気、二酸化炭素等との間で起こり得る水素化反応やスチームリフォーミング反応、ドライリフォーミング反応等が考えられる。さらに、外部から水蒸気や二酸化炭素を導入するとより高効率に反応が進行する。これら一連の反応は吸熱反応のため、実機に適用した場合、反応器に入る高温の顕熱を有するガスが触媒層内で改質されて出口では温度が低下するが、より高効率にタール等の重質炭化水素成分を改質する場合には、必要に応じて空気若しくは酸素を触媒層内に導入することで、一部水素や炭化水素成分を燃焼させた燃焼熱で触媒層の温度をある程度保ちながら、さらに改質反応を進めることも可能である。
本発明のタール含有ガス改質方法で用いるタール含有ガス改質用触媒は、NiMgCeの化学組成で表される。主活性成分であるニッケル含有量が、触媒全体の金属元素に対し0~50モル%(0≦a≦0.5)である。ニッケル含有量が0モル%でも、塩基性酸化物である酸化マグネシウムが存在することで、炭素析出を抑制することができる。また、ニッケルが含有されることで、炭化水素の分解や、分解した炭素種と水蒸気由来の酸素の反応が進行しやすいので、水素や一酸化炭素へのガスへの転化が促進される。 しかし、ニッケル含有量が50モル%を超えると、マトリクスを形成する酸化マグネシウムや酸化セリウムの含有量が少ないので、固溶できず、触媒上に析出するニッケル金属の濃度が高く、かつ粗大化しやすくなり、本反応条件下では性能の経時劣化のおそれがある。また、製造コストも高価になる。
マグネシウムの含有量は、触媒全体の金属元素に対し0~50モル%(0≦b≦0.5)である。マグネシウム含有量が0モル%でも、ニッケル上で炭化水素の分解や分解した炭素種と水蒸気由来の酸素の反応が進行するので、水素や一酸化炭素へのガスへの転化が起こる。また、マグネシウムが含有されることで、塩基性酸化物である酸化マグネシウムが炭素析出をより抑制し、触媒性能を長期間安定に保持できる。しかし、マグネシウムの含有量が50モル%を超えると、マトリクスを形成する酸化セリウムに固溶できず、改質活性、炭素析出抑制効果が発揮しにくくなる。
セリウム含有量は、触媒全体の金属元素に対し40~90モル%(0.4≦c≦0.9)である。セリウム含有量が40モル%未満では、ニッケルやマグネシアが固溶できないため、改質活性、炭素析出抑制効果が発揮しにくくなる。セリウム含有量90モル%を超えると、他のニッケル及びマグネシウムの含有量が少なくなるので、触媒の改質活性を十分発揮できなくなるおそれがある。
また、上記方法で製造された触媒は、粉末であってもよいし、成型体であっても良い。粉末であれば粒径や表面積を、また、成型体であれば表面積と強度との兼ね合いで細孔容積、細孔径、形状等を適宜調整することが好ましい。成型体は、球状、シリンダー状、リング状、ホイール状、粒状等いずれでもよく、さらに、金属又はセラミックスのハニカム状基材へ触媒成分をコーティングしたもの等いずれでもよい。また、各金属種の含有量を上記範囲になるように調製するためには、各出発原料を予め計算の上、準備しておくことが好ましい。尚、一度触媒が狙いの成分組成となれば、それ以降はその時の配合で調製すればよい。
また、上記の元素以外に触媒製造工程等で混入する不可避的不純物や触媒性能が変わらない他成分を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。特に、カリウムは1,000ppm以下にすることが望ましい。
触媒の組成分析には、任意の方法が利用可能であるが、本発明を実施する上で必要となる精度で成分分析を行うにあたっては、蛍光X線分析を用いることが簡便である。ただし、周期表の第二周期までの軽元素(水素、ヘリウム、窒素、酸素を除く。)が含まれる場合には、蛍光X線分析では正確な成分分析が困難となる。従って、より正確な濃度を知りたい場合には、ICP発光分析を行ってもよい。
ただし、上記のいずれの測定を実施する場合においても、水分量の測定はできないため、水素及び酸素の含有量は測定することができない。また、窒素の測定(すなわち窒化物の定量)は困難であり、更に、ヘリウムについても測定することができない。
なお、周期表の第二周期までの軽元素(水素、ヘリウム、酸素を除く)が含まれない場合には、いずれの測定法を用いても、測定誤差範囲内で同様の結果が得られる。いずれの測定法でも、各元素の価数や存在状態を決定することはできないため、各元素を酸化物換算した質量比を、各触媒の組成として扱うこととなる。
また、窒素の定量が困難であるため、全窒化物を酸化物に換算して計算することとなる。この際、標準状態で安定な酸化物に換算するものとし、安定な酸化物が複数ある場合には、それらの中で最も酸化数が大きい酸化物に換算するものとする。特に、ランタノイド系列の元素について、セリウムは、酸化セリウム(IV)に換算し、その他の元素は、三価の酸化物に換算した上で、全窒化物の含有量をこれら換算値の和として計算する。
こうして各元素を酸化物換算(ただし上述の通り、一部元素については金属換算)し、更に、日本化学会作成の周期表記載の原子量を用いて質量比に換算することで、触媒の全組成を決定することが可能であり、モル比表示と質量比表示のいずれの組成比についても、計算可能である。
上記の手順で触媒の全組成を決定することによって、実際の組成と、計算される組成との間に一定の乖離が存在しうる。しかしながら、各元素の酸化数も含めて正確な組成を決定することは一般に難しく、本実施形態において利用する全ての触媒に対して適用することは現実的でない。更に、本実施形態に係る水蒸気改質反応で利用する反応温度付近では、水分は離脱しており、ヘリウムの残存も考え難く、多くの窒化物は水蒸気と反応して酸化物に変化すると考えられる。そのため、上記の手順で見積もられた組成と実際の反応条件での組成との間の乖離は小さい。
以上より、本実施形態における触媒の全組成とは、上述の手順で決定した酸化物換算(ただし、上述の通り、一部元素については金属換算とする。)での全組成であるとする。なお、上述の手順については、自動的に計算する機能が多くの市販分析装置に付随しており、簡便に実行可能である。
また、調製した触媒で、ニッケルやマグネシウムが酸化セリウムに固溶しているかを確認するために、触媒の広角X線回折法(XRD)による結晶構造解析が行える。
具体的には、粉末状態の試料をホルダーにセットし、Rigaku製SmartLabを用い、40kV、30mAの出力でCuKα線を発生させ、受光スリットを0.15mmとして、サンプリング幅0.02deg、スキャン速度を2deg/minの条件で測定し、ピーク位置、強度により結晶構造を評価できる。そこで得られた測定プロファイルの中で、本発明の触媒では、CeO(111)のピーク2θが約28.5deg付近に、MgO(200)のピークが約42.8deg付近に、NiMgO(200)のピークが約43.0deg付近に現れる。ニッケルやマグネシウムが酸化セリウムに固溶すると、NiO、MgO、NiMgOの各ピーク強度が小さくなることから、固溶の有無を判断できる。MgO(200)、またはNiMgO(200)、またはNiO(200)の各ピーク強度と、CeO(111)のピーク強度の比(IMgO/ICeO2)、またはINiO/ICeO2)、またはINiMgO/ICeO2)で判断することもでき、この値が0.1以下であれば固溶していると考えられ、INiMgO/ICeO2<0.1であることが好ましい。また、INiMgO/ICeO2<0.08であることが、CeO中にニッケルやマグネシウムがより均一に固溶できているため、より好ましい。ただし、上記強度の閾値は、表1に示すように、Ni及びMgとCeとのモル比によって異なる。
Figure 0007069946000001

次に、本発明のタール含有ガス改質用触媒の製造方法について説明する。
上記触媒を製造するに当たっては、ニッケル化合物、マグネシウム化合物、セリウム化合物を含む混合溶液から有機酸法によりゲルを生成するゲル化工程と、前記ゲルを乾燥及び焼成する触媒化工程によって、上記能力を有するタール含有ガス改質用触媒を製造できる。以下に、有機酸法が好ましい理由について詳細に説明する。
有機酸法は、前駆体試薬の溶液に対して、有機酸を溶解させ、金属錯体を形成させることで、金属元素が均一に含まれるゲルを合成し、得られたゲルを焼成して燃焼分解することにより、元素が均一に混合された触媒を合成する方法である。有機酸には、酢酸、乳酸、リンゴ酸、クエン酸、酒石酸、グリコール酸、グリシン等を用いることが可能であるが、特にクエン酸は、他の有機酸に比べて安価なため、低コストで触媒を合成することが可能となる。
前駆体となるニッケル化合物とマグネシウム化合物、又はセリウム化合物との混合溶液を作成する際、水に対して溶解度の高い各金属化合物を用いることが適当である。例えば、硝酸塩、炭酸塩、硫酸塩、塩化物等の無機塩のみならず、酢酸塩等の有機塩も好適に用いられる。特に好ましくは、焼成後に触媒被毒になり得る不純物が残り難いと考えられる硝酸塩又は炭酸塩又は酢酸塩、あるいは製造過程で廃液処理を行いやすい硫酸塩である。
ここで、有機酸と金属イオンとのモル比は、任意の値を選ぶことができるが、本実施形態においては、有機酸と金属イオンとのモル比を、有機酸:金属イオン=2~5:1とすると、期待通りの触媒が得られやすい。有機酸の量が少なすぎる場合には、金属錯体の形成が不十分となり、触媒が不均一となりやすい。また、有機酸の量が多すぎる場合には、コストが増大するほか、焼成時の有機酸分解反応が過剰に激しくなり、触媒が飛散するなどの問題が生じる。
焼成時の雰囲気は、有機酸を分解するのに十分な量の酸素を含むガスの雰囲気とすればよいが、かかるガスとして空気を用いると簡便である。この際、焼成雰囲気の換気が不十分であると、有機酸の燃焼分解が十分に進行せず、一部に炭化セリウムなどの炭化物が生成してしまう可能性がある。焼成時の最高温度は、実際に触媒反応を行う反応温度以上の温度に設定することが好ましいが、かかる温度まで急速に昇温を行うと、有機酸の分解反応が急速に進行し、触媒が飛散する原因となる。そこで、例えば、有機酸がクエン酸の場合、
(1)焼成温度の上昇速度を、クエン酸の分解が完了する600℃以下の温度までは3℃/分以下とすることや、
(2)300℃、500℃、600℃などの温度で段階的に分解を進めること、
を実施することで、こうした過剰な速度での燃焼分解を防ぐことができる。
上述の製造方法で製造された触媒は、従来の沈殿法や含浸担持法で製造された触媒と比較して、触媒材料中の各成分の均質性を高くすることができる。従来の沈殿法では、沈殿の進行中に溶液中の金属塩濃度が変化することで、生成するゲルの粒度や濃度が不均一になったり、沈殿剤の成分が焼成後にも残留したりする等の問題点がある。
また、含浸担持法でも、担体上で金属の凝集等が起こり、不均一になりやすい。
従って、有機酸法で調製すると、活性成分のニッケルや助触媒となるマグネシウムをCeOの結晶中に固溶させることができる。その結果、タール含有ガスの改質活性が高く、且つ炭素析出を抑え、長期間に亘り安定した活性を維持することができる。
上記の方法で製造されたタール含有ガス改質用触媒を用いることにより、炭素質原料を熱分解した際に発生する、多量の硫化水素を含み、炭素析出を起こし易い縮合多環芳香族主体のタール含有ガスであっても、高い耐炭素析出性を示し、随伴するタール等重質炭化水素を高効率に改質して、水素、一酸化炭素、メタンを主体とする軽質化学物質に経時劣化が少なく安定に変換することができる。
次に、本発明の触媒を用いたタール含有ガス改質方法について説明する。この改質方法では、上述した触媒の存在下、炭素質原料を熱分解した際に発生するタール含有ガスと、水素、二酸化炭素、水蒸気とを接触させて、タール含有ガスを改質する。
上述した水素、二酸化炭素、水蒸気に関しては、タール含有ガスに任意に含まれる水素、二酸化炭素、水蒸気であってもよいし、外部から適宜に加えられる水蒸気であってもよい。
ここで、タール含有ガス中のタールを接触改質してガス化するタールガス化反応は、反応経路が複雑で必ずしも明らかではないが、タール含有ガス中、若しくは外部より導入する水素との間では、例えば、(式1)で表されるような、タール中縮合多環芳香族の水素化分解によるメタンを始めとする軽質炭化水素への転化反応が進行すると考えられる((式1)ではメタンのみが生成される場合を記す)。また、タール含有ガス中の二酸化炭素との間では、(式2)で表されるような、タール中縮合多環芳香族の二酸化炭素によるドライリフォーミングによる水素と一酸化炭素への転化反応が進行する。さらに、タール含有ガス中、若しくは外部より導入する水蒸気との間では、(式3)で表されるようなスチームリフォーミング及び、(式4)で表されるような水性ガスシフト反応が進行する。また、タール含有ガス中タール以外の炭化水素成分についても、同様にして反応が進行する。
+(2n-m/2)H → nCH (式1)
+nCO → 2nCO+m/2H (式2)
2C+2nHO → 2nCO+(m+2n)H (式3)
CO+HO → CO+H (式4)
従って、水素をより多く製造する場合には、外部から水蒸気を加えることが望ましい。尚、タール以外の炭化水素成分も、上記の(式1)~(式4)に従って、反応が進行する。
省COの観点では、外部からの水蒸気添加が少ない条件が、水蒸気生成のエネルギーが少ないことから好ましい。例えば、COGには水蒸気が含まれており、コークス炉に挿入する石炭によって、水蒸気/炭素モル比(S/C)が変化する。ここで、水蒸気モル数は、ガス中に含まれる水蒸気及び、外部から水蒸気を添加した場合は、ガス中に含まれる水蒸気に加えて添加分の水蒸気のモル数も含む。また、炭素のモル数は、ガス中のタールとメタンなどの炭化水素由来の炭素のモル数である。ここで、高温のガス中に含まれる水蒸気量(水分量)やタール量をオンラインで分析できる測定機器はなく、S/Cをオンラインで把握することは難しいので、事前にタール含有ガスをサンプリングの上、水分濃度、タール濃度、ガス濃度を分析することで、水蒸気を添加しない場合のS/Cを把握することができる。水蒸気を添加する場合は、事前に把握したS/Cに、必要な水蒸気分を添加して、S/Cを調節する。
ここで、タール濃度の測定は、液体に捕集して重量を測定することで分析できる。
具体的には、タール類を溶かすことができるジクロロメタン等の有機溶剤をガス吸収瓶に充填し、ポンプでタール含有ガスを吸引サンプリングして、有機溶剤にバブリングさせ、タール類を吸収させる。タールの捕集効率を上げるためには、吸収瓶は複数本を直列に接続することが望ましい。また同時に、サンプリングしたガス吸引量を湿式ガスメーター等で測定する。サンプリング停止後、有機溶剤を粘度が上がらない程度に蒸発、濃縮させた液を、ガスクロマトグラフ-質量分析計で分析することで、含有しているタール成分の定量分析が可能である。また、濃縮させた液を、風袋重量を測ったアルミカップ等に移し、60℃程度に加温して、減圧乾燥させて残った固体の質量を測定して、タール重量とする。ここで得たタール重量を、ガス吸引量で除することで、タール濃度を求めることができる。
一方、水分測定は、シェフィールド-重量測定法によって可能である。
具体的には、水分吸着能が高い塩化カルシウム等の吸収材をシェフィールド型吸湿瓶に充填し、ポンプでタール含有ガスを吸引サンプリングして、吸収材に通ガスし、水分を吸収させる。水分の捕集効率を上げるためには、吸湿瓶は複数本を直列に接続することが望ましい。また同時に、サンプリングしたガス吸引量を湿式ガスメーター等で測定する。吸収材には、高温で気化しているタール類も吸収されるため、吸収材の重量増加分から上記で算出したタール分の重量を差し引いた、水分による吸収材の重量増加分をガス吸引量で除することで、水分濃度を求めることができる。
ガス濃度は、テドラーバッグ等にサンプリングし、ガスクロマトグラフで分析可能である。本発明の実施例に記載のようにオンラインで分析する際には、タール含有ガス中のタール及び水分を冷却等により除去した乾燥ガスを、ガスクロマトグラフに送ガスして、分析することができる。
外部から水蒸気を添加しなければ、湿炭を用いた場合、S/C=0.8、水分調整を行った石炭ではS/C=0.2~0.5となる。低S/C(例えば0.5)の条件では、H増幅率が高く、炭素析出量がより少なければ、目的を達成できると考えられる。また、外部から水蒸気を添加してS/Cを高くすると(例えば3)、H増幅率は必然的に高くなるが、炭素析出量をさらに低く(なるべくゼロに)できれば、触媒寿命をさらに延ばすことが可能である。しかしながら、高S/Cの条件では、外部から水蒸気を添加するため、水蒸気生成のエネルギーが必要で、プロセス全体でCO増加に繋がる短所もある。
したがって、タール含有ガス及びタール含有水蒸気混合ガス中のS/Cは、0.5~2.0が好ましい。
具体的な触媒性能として、各S/C条件での基準は、例えば以下のように考える。
・S/C=0.8のとき:H増幅率>1.6、且つ、炭素析出量<5質量%、
・S/C=2のとき :H増幅率>1.8、且つ、炭素析出量<0.5質量%、
・S/C=3のとき :H増幅率>2.0、且つ、炭素析出量<0.2質量%。
ここで、本発明のタール含有ガス改質用触媒は、本発明の実施条件では改質前に還元しなくても良い。しかしながら、特に、タール含有ガス改質触媒が反応前に還元処理を必要とする場合、還元条件としては、本発明の触媒から活性金属であるニッケル粒子が微細クラスター状に析出するために、比較的高温で、且つ還元性雰囲気にするのであれば、特に制限されるものではない。また、例えば、水素、一酸化炭素、メタンの少なくともいずれかを含むガス雰囲気下、又はそれら還元性ガスに水蒸気を混合したガス雰囲気下、又はそれらのガスに窒素等の不活性ガスを混合した雰囲気下であっても良い。また、還元温度は、例えば600℃~1000℃、又は700℃~900℃が好適であり、還元時間は充填する触媒量にも依存し、例えば、30分~2時間が好適であるが、充填した触媒全体が還元するのに必要な時間であればよく、特にこの条件に制限されるものではない。
触媒反応器としては、触媒が粉末の場合には流動床形式や移動床形式等が、触媒が成型体であれば固定床形式や移動床形式等が好適に用いられる。また、その触媒層の入口温度としては、600~900℃であることが好ましい。触媒層の入口温度が600℃未満の場合は、タール及び炭化水素が水素、一酸化炭素、メタンを主体とする軽質炭化水素へ改質する際の触媒活性がほとんど発揮されないため、好ましくない。一方、触媒層の入口温度が900℃を超える場合は、耐熱構造化が必要になる等、改質装置が高価になるため経済的に不利となる。また、触媒層の入口温度は、650~900℃であることがより好ましい。尚、炭素質原料が石炭の場合には比較的高温で、バイオマスの場合には比較的低温で反応を進めることも可能である。
本発明では、炭素質原料を熱分解又は部分酸化して生成されるタール含有ガスが、コークス炉から排出される粗COGのような硫化水素濃度が非常に高いタール含有ガスでも、ガス中のタールや炭化水素を改質してガス化することができる。ここで、熱分解、又は部分酸化とは、具体的には、乾留、又は炭素質原料をガス化のために一部のみ酸化させてタール含有ガスを製造することをいう。
現在のコークス炉では、炉内に原料の石炭を充填後、加熱・乾留してコークスを製造するが、付随して発生するCOGは炉頂部の上昇管と呼ばれる部分から安水(アンモニア水)を噴霧して冷却後、集気管であるドライメーンに集められる。しかしながら、ガス成分はコークス炉の上昇管で800℃程度の顕熱を保有しているにもかかわらず、安水の噴霧後には100℃以下まで急冷されてしまい、その顕熱を有効に利用できていない。このため、このガス顕熱を有効に利用し且つタール等重質炭化水素成分を水素、メタン等軽質炭化水素などの燃料成分に変換できれば、エネルギー増幅に繋がるばかりでなく、そこで生成される還元性ガス体積が大幅に増幅される。
すなわち、例えば、鉄鉱石に適用して還元鉄を製造するプロセスが可能となれば、現在鉄鉱石をコークスにより還元する高炉プロセスで発生する二酸化炭素排出量を大幅に削減できる可能性がある。
また、この還元性ガスを従来の燃料用途のみに用いるのでなく、有用物に変換可能であり、また、鉄鉱石の直接還元にも適する合成ガスに変換することにより、より高度なエネルギー利用に繋がる可能性がある。因みに、粗COG中に含まれるタールは、コークス炉装炭から窯出しまでの間で経時的に変化し、おおよそ0.1~150g/Nmの範囲で変動する。また、同様に、上記粗COGをコークス炉の上昇管でアンモニア水を噴霧して冷却し、ドライメーンで集められた後、一般的な方法で精製した精製COGは、プライマリークーラー、タール抽出器、電気集塵機等の処理を行って精製しているとはいえ、おおよそ0.01~0.02g/Nm程度のタールが存在し、その後のファイナルクーラーで精製してもナフタレンを約0.2~0.4g/Nm、スクラバー処理をした後でも軽油分を5~10g/Nm程度含んでいる。そのタール含有ガスである精製COGを水素、一酸化炭素等軽質炭化水素等の燃料成分に変換できれば、粗COGの変換と同様、二酸化炭素排出量の削減や、燃料以外の有用物への変換等の可能性が期待できる。
COGのような石炭を乾留して発生するガスの場合、高濃度の硫化水素を含んでいるが、硫化水素を含んでいない天然ガスや、あるいは低濃度の硫黄分を含む都市ガスやLPGのようなガスでも、同様に、炭素析出を抑えて、炭化水素を水素や一酸化炭素に効率よく変換できる。
また、バイオマスやプラスチックの容器包装類等の構成元素に炭素を含む広範囲なもので、熱分解してタールを生成する炭素を含む原料も炭素質原料とするが、中でもバイオマスとは、林地残材、間伐材、未利用樹木、製材残材、建築廃材、稲わら等の木質系廃棄物、又はそれらを原料とした木質チップ、ペレット等の二次製品や、再生紙として再利用できなくなった古紙等の製紙系廃棄物、農業残渣、厨芥類等の食品廃棄物、活性汚泥等を指す。
なお、バイオマス原料を熱分解する方法としては、外熱式ロータリーキルンや移動床炉、流動床炉等を用いることができるが、特にこれらのみに限定するものではない。
以下、実施例により本発明をさらに詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実施例1)
硝酸ニッケル・6水和物(関東化学、純度>99.5%)、硝酸マグネシウム・6水和物(関東化学、純度>99.5%)、硝酸セリウム(III )・6水和物(関東化学、純度>99.5%)の各金属元素のモル比が0.1:0.1:0.8になるように精秤して、純水50mlに溶解させた。得られた水溶液に、クエン酸・1水和物(和光純薬、純度>99.5%)を、ニッケル+マグネシウム+セリウムとクエン酸のモル比が1/2となるように秤量し、更に溶解させ、マグネチックスターラーで15分間攪拌した。溶液が透明となり、溶け残りがないことを確認したうえで、アンモニア水(和光純薬、濃度28質量%)を滴下し、pH=7.0とした。更に1時間攪拌し、得られた溶液をロータリーエバポレーターにかけ、溶液の容積を減らしたうえで、アルミナるつぼへと移した。ホットプレート上で100℃に加熱し、更に2時間かけて水分を蒸発させ、乾固させた。得られた固形物を、メノウ乳鉢上で潰し、粉状としたうえで、アルミナるつぼに戻した。試料を、アルミナるつぼごと電気炉に入れ、空気雰囲気下で焼成処理を行った。室温から30分かけて110℃まで昇温して5時間乾燥させ、3時間かけて950℃まで昇温し、950℃にて5時間焼成処理を行った。その後、室温まで冷却し、Ni0.1Mg0.1Ce0.8触媒(触媒1)を得た。得られた触媒を、圧縮成形器を用いて直径20mmの錠剤状にプレス成型後粉砕して、1.0~2.8mmの篩にかけて、粒度調整した触媒を得た。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.013で、NiとMgは、ほぼ固溶していることを確認した。
この触媒を9.5mL用い、SUS製反応管の中央に位置するよう石英ウールで固定し、触媒層中央位置に熱電対を挿入し、これら固定床反応管を所定の位置にセットした。
改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した。その後、COGの模擬ガスとして水素:窒素=1:1、HSを2,000ppm、S/C=0.8となるよう、純水を精密ポンプで0.014g/minの流量で反応管へ導入した。また、石炭乾留時発生タールの模擬物質として、タール中にも実際に含まれ、且つ常温で粘度の低い液体物質である1-メチルナフタレンを代表物質として用い、精密ポンプで0.0125g/minの流量で反応管へ導入した。トータルで79.2mL/minになるよう各ガス及びポンプを調整して導入し、空間速度(SV)=500h-1、常圧下、800℃で6h反応評価した。出口から排出された生成ガスを室温トラップ、氷温トラップを経由させて、未反応メチルナフタレンや生成した水分を除去した後、ガスクロマトグラフ(Agilent製7890A)に注入してTCD、FID分析を行った。改質反応の活性(メチルナフタレンの分解率)は、水素増幅率、メタン選択率、CO選択率、CO選択率、触媒上に析出した炭素析出率で判断し、水素増幅率、メタン選択率、CO選択率、CO選択率は、6h平均値を用いた。それらは出口ガス中の各成分濃度より、以下の(式4)~(式7)で算出した。また、炭素析出率(質量%)は、6h反応後触媒を空気流通下で昇温する熱重量分析法により、触媒の重量変化から(式8)により算出した。
水素増幅率=(出口水素ガス体積)/(入口水素ガス体積) (式4)
CH選択率(%)=(CHの体積量)/(供給された1-メチルナフタレンのC供給量)×100 (式5)
CO選択率(%)=(COの体積量)/(供給された1-メチルナフタレンのC供給量)×100 (式6)
CO選択率(%)=(COの体積量)/(供給された1-メチルナフタレンのC供給量)×100 (式7)
炭素析出率(質量%)=(分析後触媒重量減少分)/(分析前触媒重量)×100 (式8)
得られた触媒の組成を表2に、反応結果を表3にまとめた。表3の結果より、触媒1の組成では、触媒活性は、水素増幅率は1.65で、炭素析出率は2.0%となることが判明した。
(実施例2)
実施例1において、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.1:0.2:0.7になるようにして調製した、Ni0.1Mg0.2Ce0.7触媒(触媒2)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表3の結果より、触媒2の組成では、水素増幅率が1.72へ向上し、かつ、炭素析出率も2.1%と低い値となることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.013で、NiとMgは、ほぼ固溶していることを確認した。
(実施例3)
実施例1において、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.2:0.1:0.7になるようにして調製した、Ni0.2Mg0.1Ce0.7触媒(触媒3)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表3の結果より、触媒3の組成では、水素増幅率が1.65、かつ、炭素析出率も3.8%と、低い値となることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.023で、NiとMgは、ほぼ固溶していることを確認した。
Figure 0007069946000002

Figure 0007069946000003

(実施例4)
実施例1において、ニッケル、マグネシウム、セリウムの各金属元素で、セリウムのモル比を0.6とし、ニッケルとマグネシウムのモル比が0.1~0.3で変化させて調製した(表2内触媒No.4~6)触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表4の結果より、いずれも水素増幅率が高く、炭素析出率も抑えられるが、特に触媒5は、水素増幅率1.82に向上し、炭素析出率も2.2%にできることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.023~0.047で、NiとMgは、ほぼ固溶していることを確認した。
Figure 0007069946000004

(実施例5)
実施例1において、ニッケル、マグネシウム、セリウムの各金属元素で、セリウムのモル比を0.5とし、ニッケルとマグネシウムのモル比が0.1~0.4で変化させて調製した(表2内触媒No.7~10)触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表5の結果より、いずれも水素増幅率が高く、炭素析出率も抑えられるが、特に触媒9は、水素増幅率1.91に向上し、炭素析出率も0.6%と非常に低くできることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.029~0.070で、NiとMgは、ほぼ固溶していることを確認した。
Figure 0007069946000005

(実施例6)
実施例1において、ニッケル、マグネシウム、セリウムの各金属元素で、セリウムのモル比を0.4とし、ニッケルとマグネシウムのモル比が0.1~0.5で変化させて調製した(表2内触媒No.11~15)触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表6の結果より、いずれも水素増幅率が高く、炭素析出率も抑えられるが、特に触媒14や15は、水素増幅率1.65~1.69に向上し、炭素析出率も1.2%や0%と非常に低くできることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiMgO/ICeO2=0.036~0.1で、NiとMgは、ほぼ固溶していることを確認した。
Figure 0007069946000006

(比較例1)
特許文献10で開示されている、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.1:0.8:0.1で、表7の触媒Aの組成になるように、Ce0.1Ni0.1Mg0.8O触媒を調製した。本組成では、ニッケルは酸化マグネシウムの結晶に固溶したNiMgO固溶体となり、CeOの量が少ないため、NiMgOの表面にCeOが担持された構造となり、CeOと接触しているNiMgOの一部がCeOに固溶している。本触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表8の結果より、クエン酸法で触媒Aの組成では、水素増幅率が1.45、かつ、炭素析出率も8.5%と、水素増幅率は低く、炭素析出率も高いことわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。XRD測定の結果から、NiMgOのピークとCeOのピークが確認された。本発明のCeOを触媒の主体として、NiやMgが固溶していることが重要であるとわかる。
(比較例2)
特許文献10で開示されている共沈法により、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.1:0.8:0.1で、表7の触媒Aの組成になるように、Ce0.1Ni0.1Mg0.8O触媒を調製した。具体的には、以下のように調製した。硝酸ニッケル・6水和物(関東化学、純度>99.5%)、硝酸マグネシウム・6水和物(関東化学、純度>99.5%)、硝酸セリウム(III )・6水和物(関東化学、純度>99.5%)の各金属元素のモル比(セリウム:ニッケル:マグネシウム)が0.1:0.1:0.8になるように精秤して、60℃に加温した純水500mlに溶解させ、混合水溶液を調製した。炭酸カリウム(関東化学、純度>99.5%)を、ニッケル+マグネシウム+セリウムとカリウムのモル比が1/1となるように秤量し、60℃に加温した純粋250mLに溶解させ、炭酸カリウム水溶液を調製し、これを混合水溶液に加えた。これにより、ニッケル、マグネシウム、及び、セリウムを水酸化物として共沈させ、スターラーで十分に攪拌した。水溶液の温度はアルコール温度計を水溶液中に挿入して計測した。その後、60℃に保持したまま一定時間攪拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。洗浄後に得られた沈殿物を蒸発皿に移して空気雰囲気温度120℃で乾燥、空気雰囲気中950℃で焼成を行い、Ce0.1Ni0.1Mg0.8O触媒を調製した。本組成でも、ニッケルは酸化マグネシウムの結晶に固溶したNiMgO固溶体となり、CeOの量が少ないため、NiMgOの表面にCeOが担持された構造となり、CeOと接触しているNiMgOの一部がCeOに固溶している。本触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表8の結果より、共沈法で調製した触媒Aの組成では、水素増幅率が1.44、かつ、炭素析出率も9.1%と、水素増幅率は低く、炭素析出率も高いことわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。XRD測定の結果から、NiMgOのピークとCeOのピークが確認された。本発明のCeOを触媒の主体として、NiやMgが固溶していることが重要であるとわかる。
Figure 0007069946000007

Figure 0007069946000008

(比較例3)
比較例2における共沈法により、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.1:0.1:0.8になる、表1の触媒1の組成になるように、Ni0.1Mg0.1Ce0.8触媒を調製した。本触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表9の結果より、共沈法で調製した触媒1の組成は、水素増幅率が1.49、かつ、炭素析出率も5.1%と、水素増幅率は低く、炭素析出率も高いことわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。しかし、XRD測定の結果から、CeOのピークに加え、NiMgOのピークが確認され、INiMgO/ICeO2=0.12で、NiとMgのCeOへの固溶度が悪いことがわかった。共沈法で調製した触媒は、クエン酸法よりも均一性が悪く、NiとMgがCeOに完全に固溶していないからであると考えられる。
(比較例4)
比較例2における共沈法により、ニッケル、マグネシウム、セリウムの各金属元素のモル比が0.1:0.4:0.5になる、表1の触媒7の組成になるように、Ni0.1Mg0.4Ce0.5触媒を調製した。本触媒を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表9の結果より、共沈法で調製した触媒1の組成は、水素増幅率が1.48、かつ、炭素析出率も5.3%と、水素増幅率は低く、炭素析出率も高いことわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。しかし、XRD測定の結果から、CeOのピークに加え、NiMgOのピークが確認され、INiMgO/ICeO2=0.15で、NiとMgのCeOへの固溶度が悪いことがわかった。共沈法で調製した触媒は、クエン酸法よりも均一性が悪く、NiとMgがCeOに完全に固溶していないからであると考えられる。
Figure 0007069946000009

(実施例7)
実施例1において、ニッケル、セリウムの各金属元素のモル比が0.1:0.9になるようにして調製した、Ni0.1Ce0.9触媒(触媒16)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表10の結果より、触媒16の組成では、水素増幅率が1.72へ向上し、かつ、炭素析出率も0.2%と低い値となることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiO/ICeO2=0.009で、Niは、ほぼ固溶していることを確認した。
(実施例8)
実施例1において、ニッケル、セリウムの各金属元素のモル比が0.2:0.8になるようにして調製した、Ni0.2Ce0.8触媒(触媒17)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表10の結果より、触媒17の組成では、水素増幅率が1.83へ向上し、かつ、炭素析出率も0%と低い値となることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、INiO/ICeO2=0.017で、Niは、ほぼ固溶していることを確認した。
(実施例9)
実施例1において、マグネシウム、セリウムの各金属元素のモル比が0.1:0.9になるようにして調製した、Mg0.1Ce0.9触媒(触媒18)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表10の結果より、触媒18の組成では、水素増幅率が1.83へ向上し、かつ、炭素析出率も1.8%と低い値となることがわかった。マグネシウムは塩基性で、マグネシウム上で炭酸化が進行しやすいため、ニッケルがない本触媒では、実施例7のマグネシウムがない触媒16と比べると、COの選択率が下がり、COの選択率が上がることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、IMgO/ICeO2=0.002で、Mgは、ほぼ固溶していることを確認した。
(実施例10)
実施例1において、マグネシウム、セリウムの各金属元素のモル比が0.2:0.8になるようにして調製した、Mg0.2Ce0.8触媒(触媒19)を用いること以外は、実施例1と同様にして、同一の改質反応を行った。表10の結果より、触媒19の組成では、水素増幅率が1.64、かつ、炭素析出率も1.6%となることがわかった。また、得られた触媒成分を蛍光X線分析で確認した結果、所望の成分であることを確認した。さらに、XRD測定の結果から、IMgO/ICeO2=0.005で、Mgは、ほぼ固溶していることを確認した。
Figure 0007069946000010

(実施例11)
実施例1において調製した触媒を用いて、改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した。その後、COGの模擬ガスとして水素:窒素=1:1、HSを2,000ppm、S/C=1.2となるよう、純水を精密ポンプで0.0189g/minの流量で反応管へ導入した。また、石炭乾留時発生タールの模擬物質として、タール中にも実際に含まれ、且つ常温で粘度の低い液体物質である1-メチルナフタレンを代表物質として用い、精密ポンプで0.0113g/minの流量で反応管へ導入した。トータルで79.2mL/minになるよう各ガス及びポンプを調整して導入し、空間速度(SV)=500h-1、常圧下、800℃で6h反応評価した。表11の結果より、実施例1よりもS/Cを大きくした方が、水素増幅率が向上し、炭素析出を抑えられることがわかった。
(実施例12)
実施例1において調製した触媒を用いて、改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した。その後、COGの模擬ガスとして水素:窒素=1:1、HSを2,000ppm、S/C=1.6となるよう、純水を精密ポンプで0.023g/minの流量で反応管へ導入した。また、石炭乾留時発生タールの模擬物質として、タール中にも実際に含まれ且つ常温で粘度の低い液体物質である1-メチルナフタレンを代表物質として用い、精密ポンプで0.0104g/minの流量で反応管へ導入した。トータルで79.2mL/minになるよう各ガス及びポンプを調整して導入し、空間速度(SV)=500h-1、常圧下、800℃で6h反応評価した。表11の結果より、実施例10よりもS/Cを大きくした方が、さらに水素増幅率が向上し、炭素析出も抑えられることがわかった。
(実施例13)
実施例1において調製した触媒を用いて、改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した。その後、COGの模擬ガスとして水素:窒素=1:1、HSを2,000ppm、S/C=2.0となるよう、純水を精密ポンプで0.026g/minの流量で反応管へ導入した。また、石炭乾留時発生タールの模擬物質として、タール中にも実際に含まれ且つ常温で粘度の低い液体物質である1-メチルナフタレンを代表物質として用い、精密ポンプで0.0095g/minの流量で反応管へ導入した。トータルで79.2mL/minになるよう各ガス及びポンプを調整して導入し、空間速度(SV)=500h-1、常圧下、800℃で6h反応評価した。表11の結果より、実施例11と同程度に水素増幅率が向上し、炭素析出を抑えられることがわかった。
以上の結果から、水蒸気を添加した方が、水素増幅率の向上、炭素析出率の低下につながるが、水蒸気発生のためのエネルギーやコストを勘案すると、S/C=1.6程度が適当であると考えられる。
Figure 0007069946000011

(実施例14)
実施例1で調製した触媒1と同じ組成となるように、硝酸ニッケル・6水和物(関東化学、純度>99.5%)、硝酸マグネシウム・6水和物(関東化学、純度>99.5%)、硝酸セリウム(III )・6水和物(関東化学、純度>99.5%)の各金属元素のモル比が0.1:0.1:0.8になるように精秤して、純水に溶解させた。得られた水溶液に、クエン酸・1水和物(和光純薬、純度>99.5%)を、ニッケル+マグネシウム+セリウムとクエン酸のモル比が1/2となるように秤量し、更に溶解させ、15分間攪拌した。溶液が透明となり、溶け残りがないことを確認したうえで、アンモニア水(和光純薬、濃度28質量%)を滴下し、pH=7.0とした。更に1時間攪拌し、得られた溶液をロータリーエバポレーターにかけ、溶液の容積を減らしたうえで、アルミナるつぼへと移した。ホットプレート上で100℃に加熱し、更に2時間かけて水分を蒸発させ、乾固させた。得られた固形物を、粉状に粉砕し、得られた粉末を打錠成形器を用いて直径15mm、内径5mm、高さ15mmのリング状に成型し、成型体を得た。その成型体を空気中950℃で焼成を行い、試料を、アルミナるつぼごと電気炉に入れ、空気雰囲気下で焼成処理を行った。室温から30分かけて110℃まで昇温して5時間乾燥させ、3時間かけて950℃まで昇温し、950℃にて5時間焼成処理を行った。その後、室温まで冷却し、Ni0.1Mg0.1Ce0.8リング触媒を得た。
ロータリーキルンを乾留炉として使用し、木質バイオマスとして建築廃材チップ(5cm以下に分級)を原料として、10kg/hの速度で供給して、炉内温度を800℃に保持したロータリーキルンで乾留することにより、バイオマスタール含有ガスを発生させた。得られたリング触媒を触媒反応器に45L充填し、触媒層の入口付近、中心付近、出口付近の3ヶ所にK型熱電対を挿入した状態で、電気炉内に設置した。触媒層の各温度を800℃に保持した反応器に、タール含有ガスを10Nm/hになるように供給し、8時間継続して改質反応を行って評価した。なお、触媒反応器入口と出口からタール及びガスをサンプリングし、ガスはオンラインのTCDガスクロマトグラフで定量分析し、タールはオフラインで定量分析を行った。水素増幅率及び炭素析出率は、実施例1と同様に、式(4)及び式(8)で算出した。タール分解率は、以下の式(9)により算出した。なお、触媒入口ガス組成はCOGに近く、水素、CO、CO、CHが主成分であった。また、被毒物質である硫化水素は、約25ppm含まれていることを確認した。さらに、原料の建築廃材中に約16%の水分が含まれており、その水分が揮発して水蒸気となって含まれており、S/C=1.3程度になることがわかった。その結果、表12に示すように、タール分解率は96.7%、水素増幅率は7.2、炭素析出率は3.2%であった。
タール分解率(%)=(1-(触媒出口タール濃度)/(触媒入口タール濃度))
×100 (式9)
Figure 0007069946000012

(比較例5)
比較例2に示した共沈法による同じ組成の触媒を調製する上で、洗浄後に得られた沈殿物を蒸発皿に移して、空気雰囲気温度120℃で乾燥、600℃でか焼後、粉末を打錠成形器を用いて直径15mm、内径5mm、高さ15mmのリング状に成型し、成型体を得た。空気雰囲気中950℃で焼成を行い、調製したCe0.1Ni0.1Mg0.8Oリング触媒を用いて、実施例14と同じ条件で反応させた。その結果、表12に示すように、タール分解率、水素増幅率は、実施例14よりも低く、炭素析出率も大きな値となった。
本発明によれば、石炭やバイオマスを熱分解した際に発生するタール含有ガスを、安定的に炭素析出を抑えて、一酸化炭素、水素等の軽質化学物質へ変換することができる。特に、タール含有ガスが硫化水素を高濃度で含んでいても、脱硫処理せずにそのまま触媒と接触させて、水蒸気の少ない条件でも炭素析出をより抑えながら、ガス中のタールを改質して、タール含有ガスを、メタン、一酸化炭素、水素等の軽質化学物質へ安定的に変換することができる。したがって、特に、鉄鋼業やバイオマス利用産業において、従来は使用されていなかった熱源が利用できるようになり、産業上の利用可能性は大きい。

Claims (6)

  1. NiMgCeで表される化学組成を有するタール含有ガスの改質用触媒の製造方法であって、
    a、b、及び、cはモル比を表し、a+b+c=1、0≦a≦0.5、0≦b≦0.5、かつ、0.4≦c≦0.9を満たし、
    ニッケル化合物とマグネシウム化合物の少なくともいずれかと、セリウム化合物とを含む混合溶液に、有機酸水溶液を混合してゲルを生成するゲル化工程と、
    前記生成したゲルを乾燥、焼成して前記化学組成を有する触媒とする触媒化工程と、
    を備えることを特徴とするタール含有ガス改質用触媒の製造方法。
  2. 請求項1に記載のタール含有ガス改質用触媒の製造方法で製造されたタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、
    炭素質原料を熱分解した際に発生するタール含有ガスを、前記タール含有ガス改質用触媒に接触させて、前記タール含有ガス中の二酸化炭素、水蒸気の少なくともいずれかにより、前記タール含有ガスを改質して、水素及び一酸化炭素に変換することを特徴とするタール含有ガスの改質方法。
  3. 請求項1に記載のタール含有ガス改質用触媒の製造方法で製造されたタール含有ガス改質用触媒を用いたタール含有ガス改質方法であって、
    炭素質原料を熱分解した際に発生するタール含有ガスに、外部から水蒸気を導入して混合ガス化し、前記混合ガスを前記タール含有ガス改質用触媒に接触させて、前記混合ガス中の二酸化炭素、水蒸気の少なくともいずれかにより、前記混合ガスを改質して、水素及び一酸化炭素に変換することを特徴とするタール含有ガスの改質方法。
  4. 前記タール含有ガス、又は、前記混合ガスにおける水蒸気/炭素のモル比率(S/C)が、0.5~2.0であることを特徴とする請求項又はに記載のタール含有ガスの改質方法。
  5. 前記タール含有ガスが、コークス炉から排出されるコークス炉ガスであることを特徴とする請求項のいずれか1項に記載のタール含有ガスの改質方法。
  6. 前記タール含有ガスが、木質系バイオマス、食品廃棄物系バイオマスの少なくともいずれかを乾留したときに発生する乾留ガスであることを特徴とする請求項のいずれか1項に記載のタール含有ガスの改質方法。
JP2018062317A 2018-03-28 2018-03-28 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法 Active JP7069946B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062317A JP7069946B2 (ja) 2018-03-28 2018-03-28 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062317A JP7069946B2 (ja) 2018-03-28 2018-03-28 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法

Publications (2)

Publication Number Publication Date
JP2019171287A JP2019171287A (ja) 2019-10-10
JP7069946B2 true JP7069946B2 (ja) 2022-05-18

Family

ID=68167417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062317A Active JP7069946B2 (ja) 2018-03-28 2018-03-28 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法

Country Status (1)

Country Link
JP (1) JP7069946B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032554A1 (en) 2001-05-18 2003-02-13 Korea Research Institute Of Chemical Technology Modified theta-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
JP2004167485A (ja) 2002-11-15 2004-06-17 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude 天然ガスの部分酸化のためのペロブスカイト触媒
WO2010134326A1 (ja) 2009-05-19 2010-11-25 新日本製鐵株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
JP2010279911A (ja) 2009-06-05 2010-12-16 Nippon Shokubai Co Ltd 水素製造用触媒、その触媒の製造方法およびその触媒を用いた水素の製造方法
US20110251447A1 (en) 2010-04-12 2011-10-13 Chevron Phillips Chemical Company Lp Process for Hydrogenating Highly Unsaturated Hydrocarbons and Catalyst Therefor
JP2012061398A (ja) 2010-09-15 2012-03-29 Nippon Shokubai Co Ltd 水素製造用触媒、その触媒の製造方法およびその触媒を用いた水素の製造方法
JP2016187786A (ja) 2015-03-30 2016-11-04 新日鐵住金株式会社 タール含有ガス改質用触媒の再生方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032554A1 (en) 2001-05-18 2003-02-13 Korea Research Institute Of Chemical Technology Modified theta-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
JP2004167485A (ja) 2002-11-15 2004-06-17 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude 天然ガスの部分酸化のためのペロブスカイト触媒
WO2010134326A1 (ja) 2009-05-19 2010-11-25 新日本製鐵株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
JP2010279911A (ja) 2009-06-05 2010-12-16 Nippon Shokubai Co Ltd 水素製造用触媒、その触媒の製造方法およびその触媒を用いた水素の製造方法
US20110251447A1 (en) 2010-04-12 2011-10-13 Chevron Phillips Chemical Company Lp Process for Hydrogenating Highly Unsaturated Hydrocarbons and Catalyst Therefor
JP2012061398A (ja) 2010-09-15 2012-03-29 Nippon Shokubai Co Ltd 水素製造用触媒、その触媒の製造方法およびその触媒を用いた水素の製造方法
JP2016187786A (ja) 2015-03-30 2016-11-04 新日鐵住金株式会社 タール含有ガス改質用触媒の再生方法

Also Published As

Publication number Publication date
JP2019171287A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4897112B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
JP5494135B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659537B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP4436424B2 (ja) タール含有ガスの改質方法
JP5009419B2 (ja) タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法
Juutilainen et al. Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas
JP5780271B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659536B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
Baidya et al. High performance Ni-Fe-Mg catalyst for tar removal in producer gas
Zhao et al. Sorbent assisted catalyst of Ni-CaO-La2O3 for sorption enhanced steam reforming of bio-oil with acetic acid as the model compound
JP5659534B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP7156113B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP5511169B2 (ja) タール含有ガスの改質方法
JP6460879B2 (ja) タール含有ガス改質用触媒の再生方法
JP6631245B2 (ja) 炭化水素の改質用触媒の製造方法及び軽質炭化水素の改質方法
Cao et al. Carbon deposition properties and regeneration performance of La2NiO4 perovskite oxide for dry reforming of methane
JP5659532B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP7069946B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法
JP5659533B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5720107B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5776737B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP2023011517A (ja) 炭化水素含有ガス改質用触媒、炭化水素含有ガス改質用触媒の製造方法、及び、炭化水素含有ガス改質用触媒を用いた炭化水素含有ガスの改質方法
Sanna et al. Investigating Ruthenium-Sodium Zirconate Interaction for Integrated Co2 Capture and Hydrogenation: An In-Situ Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7069946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151