WO2009084736A1 - タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法 - Google Patents

タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法 Download PDF

Info

Publication number
WO2009084736A1
WO2009084736A1 PCT/JP2008/073976 JP2008073976W WO2009084736A1 WO 2009084736 A1 WO2009084736 A1 WO 2009084736A1 JP 2008073976 W JP2008073976 W JP 2008073976W WO 2009084736 A1 WO2009084736 A1 WO 2009084736A1
Authority
WO
WIPO (PCT)
Prior art keywords
tar
catalyst
containing gas
reforming
gas
Prior art date
Application number
PCT/JP2008/073976
Other languages
English (en)
French (fr)
Inventor
Kimihito Suzuki
Ken-Ichiro Fujimoto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CN2008801229114A priority Critical patent/CN101918133B/zh
Priority to EP08866954.4A priority patent/EP2236204B8/en
Priority to BRPI0821811-0A priority patent/BRPI0821811B1/pt
Priority to KR1020107014057A priority patent/KR101203229B1/ko
Publication of WO2009084736A1 publication Critical patent/WO2009084736A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/06Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • a process for producing a catalyst for reforming a tar-containing gas a process for reforming a tar and a method for regenerating a catalyst for reforming a tar-containing gas
  • the present invention relates to a method for producing a reforming catalyst, which reforms high-temperature tar-containing gas generated upon pyrolysis of a carbonaceous raw material and converts it into hydrogen, carbon monoxide, and gas mainly containing methane.
  • the present invention relates to a method for tar gasification using the catalyst, and a method for regenerating catalyst for reforming of a gas containing diesel when the catalyst is deteriorated.
  • the iron and steel industry is an energy-intensive industry that accounts for approximately 10% of Japan's total energy consumption, but approximately 40% of the blast furnace integrated steelmaking process is unused waste heat.
  • the sensible heat of high-temperature unrefined COG (couse furnace gas, hereinafter crude COG) generated from the cox furnace is a heat source that is easily recovered but not conventionally used.
  • crude COG couse furnace gas
  • As a technique for recovering the sensible heat of this crude COG a method mainly based on indirect heat recovery has conventionally been proposed in Japanese Patent Publication No. 59-44346 and Japanese Patent Publication No.
  • a catalyst such as crystalline aluminosilicate or crystalline silica is applied to the outer surface of the heat transfer tube, and deposits such as tar are decomposed into low molecular weight hydrocarbons via the catalyst,
  • a method for stably maintaining the heat transfer efficiency is disclosed in Japanese Patent Application Laid-Open No. 8-134456.
  • this method also does not leave the area of indirect heat recovery technology of crude COG sensible heat, and whether or not the decomposition products of heavy hydrocarbons such as tar become light hydrocarbons that can be easily used as gas fuel etc. Not considered.
  • the influence of deterioration with time of the decomposition activity by catalyst poisoning sulfur compound components such as high concentration hydrogen sulfide contained in crude COG has not been studied.
  • the reforming activity was not necessarily sufficient.
  • energy conversion catalysts are generally produced by a supporting method in which an active metal species is externally supported on a porous ceramic support such as silica or alumina, but it is difficult to increase the dispersibility of the supporting metal component in that method.
  • a method of producing a hydrocarbon reforming catalyst by a spray drying method by mixing silica or alumina as a binder with a nickel magnesia compound as in JP-A 2003-55671 or There is also known a method of producing a hydrocarbon reforming catalyst by physically mixing silica and alumina powder with a nickel magnesia type compound as in JP-A 2004- 00900, but nickel magnesia compound powder and silica powder are also known.
  • the strength of the final product was weak in the method of molding and firing, and it was not at a practically acceptable level.
  • a precipitate (mainly having a high mouth-talcite structure) is formed from an aqueous solution in which each metal component is dissolved, using a precipitating agent, followed by firing.
  • a precipitating agent mainly having a high mouth-talcite structure
  • Materials are disclosed in F. Basile et al., Stud. Surf. Sci. Catal., Vol. 119 (1998), JP-A 50-4001, etc., but their reforming activity is insufficient.
  • the amount of carbon deposition was large, and there were problems for practical use.
  • the present invention focuses on the sensible heat of the crude (unrefined) gas generated during pyrolysis of carbonaceous raw materials such as coal and biomass, and utilizes the high chemical reaction activity of the high temperature tar contained in the crude gas-accompanying.
  • a catalyst In the presence of a catalyst, it is converted to light chemicals, and converted to a fuel composition mainly composed of methane, carbon monoxide, hydrogen, etc. Used in the treatment of crude gas for chemical energy conversion, especially high concentration of crude COG etc.
  • the present invention provides a method for producing a high-performance reforming catalyst for a tar-containing gas containing hydrogen sulfide and a method for producing a high-strength reforming catalyst that can withstand practical use while providing a tar reforming method. And provide a tar reforming method.
  • the present catalyst is used to promote the gasification reaction to a catalyst that has deteriorated.
  • introducing steam or air to an oxidizing atmosphere removing the deposited carbon and adsorbed sulfur on the catalyst to recover the catalytic activity, and a method for regenerating the tar gasification catalyst that enables stable operation.
  • the purpose is to provide.
  • the present inventors have designed the catalyst paying attention to the elements constituting the catalyst and the composition, and studied the production method thoroughly.
  • methane contained in the crude gas at the time of pyrolysis of the carbonaceous raw material As a catalyst to convert to light chemical substances mainly composed of carbon monoxide, hydrogen etc., unlike the conventional supporting method, fine deposition of active species metal is possible and high speed reaction is possible, and the deposited active metal is used as matrix (mother phase) As it bonds firmly, it is possible to suppress the decrease in the activity during crystallization (coarsening), and to make the precipitated active metal re-solidify to the matrix by firing, so that regeneration can be performed so that the quenching ring can be suppressed, etc.
  • the nickel species which is the active species in advance, is compounded with magnesia, alumina, etc. to be a matrix
  • the nickel metal By using fine precipitation of nickel metal in the form of clusters on the oxide surface from the lithium, carbon deposition of heavy hydrocarbons such as tar occurs in an atmosphere with a high concentration of sulfur components that can be poisoned by sulfur.
  • the surface area of the active metal is large, and even if poisoned by sulfur poisoning, the active metal can newly be deposited, so heavy hydrocarbons can be used as methane and carbon monoxide.
  • the dried and calcined product is mixed with an alumina sol, and the product is dried and calcined, or dried, calcined, molded and calcined to produce a high strength product of the final product. It was found that.
  • a precipitation agent is added to a solution of a nickel compound and a magnesium compound to coprecipitate nickel and magnesium to form a precipitate, and the precipitate is dried and fired to form an oxide of nickel and magnesium.
  • Alumina powder and water or (b) Alumina sol is added to the oxide and mixed to form a mixture,
  • a method for producing a catalyst for reforming a tar-containing gas comprising producing the catalyst by at least drying and calcining the mixture. Also,
  • the catalyst for reforming a tar-containing gas according to (1) which comprises (i) drying and calcining the mixture, or (ii) drying, pulverizing, molding and calcining to produce the catalyst. It is a method. Also,
  • the catalyst for reforming the tar-containing gas produced is 1 to 50% by mass in nickel content, 5 to 45% by mass in magnesium content, and 20 to 80% by mass in alumina content It is a method of manufacturing the catalyst for reforming a tar containing gas according to (1) or (2), which comprises manufacturing as described above. Also,
  • the catalyst for reforming the tar-containing gas produced has a nickel content of ⁇ 35% by mass, a magnesium content of 10 to 25% by mass, and an alumina content of 20 to 80% by mass.
  • a tar reforming method according to (5) comprising reforming and gasifying tar in an equine-containing gas. Also,
  • the method includes contacting the tar-containing gas generated during the thermal decomposition with at least one of hydrogen, carbon dioxide and steam from the outside to reform and gasify the tar-containing gas. (5) or (6).
  • the present invention it is possible to convert the water contained in the crude gas generated during the thermal decomposition of the carbonaceous raw material into the light chemical substance in the presence of a catalyst and convert it into a fuel composition such as methane and hydrogen. It is a highly active reforming catalyst and can produce a high strength reforming catalyst.
  • a reforming catalyst having high performance and high carbon deposition resistance can be produced even with a tar-containing gas containing a high concentration of hydrogen sulfide such as a bismuth gasification gas or a crude COG.
  • sensible heat of tar-containing gas can be used to convert tar to light chemicals.
  • Figure 1 shows the area from which coke oven gas is discharged from the coke oven.
  • FIG. 2 is a view for explaining a coal dry distillation process and a process for reforming a tar-containing gas generated there by using a catalyst according to the embodiment.
  • FIG. 3 is a wide-angle X-ray diffraction diagram of a portion corresponding to the N i (200) peak of the catalyst after reaction in Example 2.
  • FIG. 4 is a wide-angle X-ray diffraction pattern of a portion corresponding to the N i (200) peak of the catalyst after the reaction in Comparative Example 5.
  • the catalyst for reforming a tar-containing gas produced by the production method of the present invention is Nickel (N i) functions as a main catalytically active component that promotes the reforming reaction of heavy hydrocarbons in the gas with hydrogen gas or hydrogen introduced into the gas or introduced from the outside. Even when a high concentration of hydrogen sulfide coexists in the tar-containing gas, the nickel metal is finely dispersed in a cluster on the catalyst surface to increase the surface area, and under reducing atmosphere, the active metal particles are poisoned during the reaction. Even if the catalyst is exposed to sulfur, poisoning with sulfur poisoning is considered to be less likely to affect the activity due to fine precipitation of new active metal particles from the matrix.
  • active metal particles can be deposited in the form of fine clusters in a reducing atmosphere.
  • condensed polycyclic aromatic-based tars are also in a highly reactive state at high temperature immediately after dry distillation, and are highly dispersed by contact with highly active nickel metal with high specific surface area. Conversion to light hydrocarbons to efficiency-thought to be decomposition.
  • magnesia is a basic oxide, and by having a function of adsorbing carbon dioxide, it reacts with precipitated carbon on the main active component element by one function.
  • the catalyst surface can be kept clean and the catalyst performance can be stably maintained for a long period of time, in order to play a role of oxidation removal as carbon dioxide.
  • Alumina functions as a binder to keep the compound matrix stable, and is finely divided into crystal phases containing nickel and magnesium, and highly dispersed in the oxide solid phase, etc., from each crystal phase to the surface. It is believed that the function is such that the nickel particles of the active species to be deposited become small and highly dispersed.
  • the carbonaceous raw material is a raw material containing carbon which is pyrolyzed to form tar, and is used for container packaging of coal, biomass and plastic.
  • tar a raw material containing carbon which is pyrolyzed to form tar
  • the carbonaceous raw material refers to a wide range of elements including carbon in component elements such as clothing, biomass is, among others, forest residue, thinning material, unused tree, lumber residue, construction waste material, or wood chips made from them.
  • Woody biomass such as secondary products such as pellet, paper-based biomass such as used paper which can not be reused as recycled paper, herbaceous biomass such as weeds which are cut off in parks, rivers and roads including Sasa-suki Food wastes such as potatoes Waste biomass, agricultural residues such as rice straw, wheat straw, rice husks, sugar resources such as sugar cane and starch resources such as starch resources such as corn, fats and oils such as rapeseed, sludge, livestock excretion Points etc.
  • tar generated during pyrolysis of a carbonaceous feedstock differ greatly depending on the type of feedstock to be pyrolyzed, the composition of the feedstock, the temperature history of pyrolysis, etc., five or more carbons were contained. It is a mixture of chain hydrocarbon and cyclic hydrocarbon, which is a liquid organic compound at normal temperature, and if it is thermal decomposition of coal, it may be condensed polycyclic aromatic such as naphthalene, phenanthrene, pyrene, anthracene etc.
  • pyrolysis of woody biomass for example, in the case of pyrolysis of food waste biomass, such as benzene, toluene, styrene, naphthurea, anthracene, methyl naphthalene, phenol, etc.
  • food waste biomass such as benzene, toluene, styrene, naphthurea, anthracene, methyl naphthalene, phenol, etc.
  • other elements such as nitrogen element in six-membered ring or five-membered ring such as indole and pyrrolyl
  • Pyrolysis tar is present in gaseous form at high temperatures immediately after pyrolysis.
  • the reforming reaction of tar which catalytically decomposes tar and gasifies it, is a reaction that converts tar from mainly heavy hydrocarbons into light chemicals such as methane, carbon monoxide, hydrogen, etc.
  • hydrogenation reaction or steam reaction which may occur with hydrogen, water vapor, carbon dioxide, etc. introduced into tar-containing gas or externally Forming reaction, dry reforming reaction, etc. can be considered. Since these series of reactions are endothermic reactions, when applied to a real machine, the gas with high temperature sensible heat entering the reactor is reformed in the catalyst bed and the temperature decreases at the outlet, but the tar is made more efficient.
  • air or oxygen is introduced into the catalyst layer if necessary, and the temperature of the catalyst layer is increased by the heat of combustion in which the hydrocarbon components are partially burned. It is also possible to advance the reforming reaction while keeping the degree.
  • nickel and magnesium are coprecipitated in a solution of a nickel compound and a magnesium compound using a precipitation agent to form a precipitate, which is once dried and calcined to obtain nickel and the like.
  • Water is evaporated while mixing a mixture of magnesium oxide and (a) alumina powder and water or (b) alumina sol to form a mixture, and the mixture is at least dried and fired. Manufactured.
  • a method of drying and calcining the above mixture at least, a method of drying and calcining, or a method of drying, pulverizing and calcining, or a method of drying, pulverizing, molding and calcining, or drying, calcining, pulverizing, There are methods of molding and baking, or methods of drying, grinding, calcination, powdering, molding and baking, and the like.
  • the precipitate may be dried by a general drying method regardless of the temperature and the drying method.
  • the coprecipitate after drying may be roughly crushed if necessary, and then fired (if the precipitate after drying is kept in powder form by drying of the fluid bed etc., the coarse crushing is not necessary). ).
  • drying of the above-mentioned mixture is particularly Any drying method may be used as long as it is a general drying method.
  • the above-mentioned drying can be carried out in the same step as 'baking' in one step by considering the temperature rising pattern at the time of baking shown below.
  • baking of the said mixture can be performed in air and the temperature should just be the range of 700 degreeC-1 300 degreeC. More preferably, the temperature is 900 ° C to 1150 ° C. If the firing temperature is high, sintering of the mixture proceeds and the strength increases. On the other hand, since the specific surface area decreases and the catalytic activity decreases, it is desirable to determine in consideration of the balance. After calcination, it can also be used as a catalyst as it is, but depending on the form of use of the catalyst thereafter, it may be crushed and used as a powder or as powder or used as a molded product by press molding or the like. it can.
  • a calcination and a forming process can be added between the drying and the baking, and if it is necessary to form a powder and a particle before the forming between the calcination and the forming process, it may be formed after being crushed.
  • calcination may be performed at about 400 to 800 ° C. in air, and molding may be performed by press molding or the like.
  • a reforming catalyst produced by such a production method contains a large amount of hydrogen sulfide generated when the carbonaceous raw material is pyrolyzed, and it is mainly composed of a condensed polycyclic aromatic which causes carbon deposition. Even with tar-containing gases, it is possible to efficiently reform the accompanying heavy hydrocarbons such as tar and convert them to light chemicals mainly composed of hydrogen, carbon monoxide, and methane.
  • this reforming catalyst when this reforming catalyst is used, when the catalyst performance is degraded, the deposited carbon or adsorbed sulfur on the catalyst is removed by contacting at least one of steam or air with the catalyst at high temperature. As a result, the catalyst performance is restored and stable operation can be performed for a long time.
  • the catalyst for reforming a tar-containing gas produced by the production method of the present invention can be obtained by simply forming a precipitate of nickel and magnesium and then calcining the calcined powder.
  • the alumina component can be obtained by wet mixing (a) alumina powder and water or (b) alumina sol with the calcined product of the precipitate of nickel and magnesium, unlike the one obtained by physically mixing lumina powder, and molding and calcining. (I) drying and calcining the mixture, or (ii) because it is possible to form a state in which the moisture containing the nickel is in sufficient contact so as to fill the gaps of the calcined powder of the precipitate of nickel and magnesium.
  • a sintered body in which the compound of nickel and magnesium and alumina are uniformly distributed is formed, the nickel magnesia phase is further refined, and Ni particles precipitated therefrom are formed. Since it is highly finely dispersed, it is considered that a molded product with high activity and a small amount of carbon deposition can be obtained. Furthermore, since the sintered body thus prepared forms a sintered body in which the compound of nickel and magnesium and the alumina are uniformly distributed, it is considered that a molded product with extremely high strength can be obtained. .
  • metal compounds having high solubility in water for example, nitrates, carbonates, sulfates, and chlorides.
  • inorganic salts such as, but also organic salts such as acetate are suitably used.
  • Particularly preferred are nitrates or carbonates or acetates which are considered to be less likely to remain as impurities that can become catalyst poisons after calcination.
  • any agent can be used as long as it changes the pH of the solution to a neutral to basic pH where nickel mainly precipitates as a hydroxide. Forces that can be used, for example, aqueous potassium carbonate solution, aqueous sodium carbonate solution, aqueous ammonia solution, urea solution and the like are suitably used.
  • the content of nickel as the main active component is preferably 1 to 50% by mass. Less than 1% by mass Nickel It is not preferable because the reforming performance of the If it exceeds 50% by mass, the content of magnesium and aluminum forming the matrix is small, and the concentration of nickel metal deposited on the catalyst is high and it tends to be coarse. There is a fear of The magnesium content is preferably 5 to 45% by mass. If it is less than 5% by mass, carbon deposition of hydrocarbons is suppressed utilizing the properties of the basic oxide possessed by magnesia, and it tends to be difficult to stably maintain catalyst performance over a long period of time. preferable.
  • the content of other nickel and aluminum will be small, which may make it impossible to exhibit the reforming activity of the catalyst sufficiently.
  • the content of alumina is preferably 20 to 80% by mass. If it is less than 20% by mass, it becomes a nickel magnesia-based ceramic, and when it is molded, its strength becomes extremely low, which is not preferable. If it exceeds 80% by mass, the proportion of nickel, which is the main active component, and the ratio of magnesia, which suppresses the deposition of carbon, will be low, which may make it impossible to exhibit the reforming activity of the catalyst sufficiently.
  • the reforming catalyst of the present invention may further be produced so that the nickel content is 1 to 35% by mass, the magnesium content is 10 to 25% by mass, and the alumina content is 20 to 80% by mass. preferable.
  • the alumina referred to herein is added to the oxides of nickel and magnesium in the form of alumina powder or alumina sol, and when added as powder, the particle diameter as fine as possible is preferable, for example, the average particle diameter is 100 ⁇ m. It is preferable to use water or less at the time of mixing, and use in the form of a single slurry. In the case of adding alumina sol, it is preferable to use alumina particles having an average particle size of 100 nm or less. Further, in order to adjust the content of each metal species to be in the above range, it is preferable to prepare each starting material in advance after calculation. In addition, once the target component composition of the catalyst, from then on the compounding at that time It may be prepared by
  • it may contain unavoidable impurities mixed in the catalyst production process etc. and other components which do not change the catalyst performance, but it is desirable to prevent impurities as much as possible.
  • the method of measuring the content of each metal species constituting the above-mentioned reforming catalyst was a method called scanning type high frequency inductively coupled plasma method (I CP).
  • an alkaline melting agent eg sodium carbonate, sodium borate etc.
  • heat melting is performed in a platinum crucible, and after cooling, the whole is dissolved in a hydrochloric acid solution under heating.
  • the solution is injected into the I CP analyzer, the sample solution is atomized and thermally excited in the high temperature plasma state in the device, and when this returns to the ground state, the emission spectrum of the wavelength specific to the element is As it occurs, it is possible to qualitatively and quantitatively quantify the contained element species and amount from the emission wavelength and intensity.
  • the reforming catalyst produced in the present invention may be in the form of either powder or molded body, and in the case of a molded body, it may be spherical, cylindrical, ring-shaped, wheel-shaped, granular, etc. Alternatively, any catalyst may be coated on a ceramic honeycomb substrate. In the case of use in a fluidized bed, it is preferable to use one which is formed by spray drying or the like. When used as a fixed bed or moving bed, granulation, extrusion molding, press molding, tableting molding, etc. are suitably used as a method of molding the catalyst, but it is not particularly limited thereto. For the measurement of strength, a Kiya-type hardness tester was used. Specifically, the strength can be evaluated by placing the molded body on the table of the hardness tester, pressing from above, and measuring the strength when the molded body is crushed in N (newton) units.
  • Tar-containing gas using a reforming catalyst obtained by the production method of the present invention According to the reforming method of the present invention, the above-described effects can be obtained.
  • the tar-containing gas generated when the carbonaceous raw material is pyrolyzed in the presence of the catalyst or after the catalyst is reduced is present in the gas or externally Contact the introduced hydrogen, carbon dioxide or steam to reform and gasify the tar in the tar-containing gas.
  • the reforming catalyst is preferably reduced, but may not be reduced since the reduction proceeds during the reaction.
  • the conditions for reducing the catalyst are particularly limited as long as nickel particles as active metal are precipitated in the form of fine clusters from the catalyst of the present invention, so long as a relatively high temperature and reducing atmosphere is used.
  • a gas atmosphere containing at least one of hydrogen, carbon monoxide, and methane or under a gas atmosphere obtained by mixing steam with these reducing gases, or nitrogen such as nitrogen.
  • the atmosphere may be a mixed gas.
  • the reduction temperature is preferably, for example, 600 ° C. to 1000 ° C., and the reduction time depends on the amount of catalyst to be charged, and for example, 30 minutes to 4 hours is preferable. It does not have to be particularly limited to this condition as long as it is the time required to recover.
  • the inlet temperature of the catalyst bed is preferably 600 to 1000C. If the inlet temperature of the catalyst layer is less than 600 ° C., it is not preferable because the catalytic activity at the time of reforming the reactor into light hydrocarbons mainly composed of hydrogen, carbon monoxide and methane is hardly exhibited. On the other hand, when the inlet temperature of the catalyst layer exceeds 1000 ° C, heat resistant structuring is required As the reformer becomes expensive, it is economically disadvantageous. Further, the inlet temperature of the catalyst layer is more preferably 650 to 1000. In addition, it is possible to proceed the reaction at relatively high temperature when the carbonaceous raw material is coal, and at relatively low temperature when it is woody biomass, paper-based biomass or food waste-based biomass.
  • coke ovens are generally used as a method for generating tar-containing gas
  • biomass when biomass is used as the raw material, externally heated rotary kiln furnaces, moving bed furnaces, fluidized bed furnaces, etc. are used.
  • Forces S that can be used are not particularly limited to these.
  • the thermal decomposition or partial oxidation means, in particular, dry distillation or partial oxidation of a carbonaceous material to gasify it to produce a tar-containing gas.
  • the coking furnace gas generated concomitantly is the rising pipe at the top of the furnace.
  • the gas component After being cooled by spraying with anuswater 2 (ammonier water) from a part called 1, it is collected in the collecting pipe Draimain 4.
  • anuswater 2 ammonier water
  • the gas component holds a sensible heat of about 800 ° C. in the riser tube 1 of the cox furnace 3, it is rapidly cooled to 100 ° C. or less after the Azumi 2 spray. If this sensible heat can not be used effectively, and if this sensible heat can be used effectively and heavy hydrocarbon components such as tar can be converted to fuel components such as hydrogen, carbon monoxide, light hydrocarbons such as methane, etc.
  • coke oven furnace gas having sensible heat generated in the coke oven is brought into contact with the reforming catalyst produced by the production method of the present invention, and gas sensible heat is effectively utilized to improve the improvement. It can be converted to fuel components such as hydrogen, carbon monoxide, light hydrocarbons such as methane.
  • the reforming catalyst of the present invention is also effective when hydrogen sulfide is not contained, but is characterized in that the reforming reaction proceeds stably even in a hydrogen sulfide atmosphere, It is more effective when the hydrogen sulfide concentration in the gas is, for example, 20 ppm or more, furthermore 80 ppm or more, especially 500 ppm or more.
  • the reforming catalyst of the present invention stably progresses in a reforming reaction even under a hydrogen sulfide atmosphere, while the lower the concentration of hydrogen sulfide in the gas is, the less poisonous the catalyst is, so it is preferable that the concentration does not exceed 4000 ⁇ 1. Is preferred. Furthermore, a concentration of 3000 ppm or less is more preferable.
  • the catalyst for reforming the tar contained in the catalytic reactor is carbon deposited on the catalyst surface at the time of conversion of tar to light chemical substance mainly composed of hydrogen, carbon monoxide and methane, or
  • the catalyst degrades in performance by the fact that the sulfur component contained in the obtained thermal decomposition gas is adsorbed to the catalyst. Therefore, as a method of regenerating the deteriorated catalyst, steam is introduced into the catalyst reactor, carbon on the catalyst surface is removed by reaction of steam and carbon, or sulfur adsorbed on the catalyst is removed by reaction of steam and sulfur. This makes it possible to regenerate the catalyst.
  • the carbon on the catalyst surface is removed by the combustion reaction between oxygen and carbon in the air, or the sulfur adsorbed to the catalyst by the reaction of oxygen and sulfur. Removal of the catalyst also makes it possible to regenerate the catalyst.
  • Nickel nitrate and magnesium nitrate were purified so that the molar ratio of each metal element would be 1: 9, and the mixed aqueous solution was prepared by heating at 60 ° C. An aqueous solution was added, nickel and magnesium were coprecipitated as hydroxides and sufficiently stirred with a stirrer. After that, while stirring was continued for a fixed time while maintaining the temperature at 60 ° C. for aging, suction filtration was performed, and sufficient washing with pure water at 80 ° C. was performed. The precipitate obtained after the washing is dried at 120 ° C. and roughly crushed, then calcined at 600 ° C.
  • thermocouple was inserted at the center position of the catalyst bed, and these fixed bed reaction tubes were set in place.
  • the product gas discharged from the outlet is removed from naphthalene and water via a room temperature trap and an ice temperature trap, respectively, and then injected into a gas chromatograph (Hewlett Packard HP 6890) for TCD and FID analysis.
  • the Degree of reaction of the reforming reaction (decomposition rate Mechirunafu evening Ren), the methane selectivity, CO selectivity, C0 2 selectivity was determined by carbon deposition rate deposited on the catalyst. They were calculated from the concentration of each component in the outlet gas according to the following equation.
  • CO selectivity (volume of CO) / (C supply of supplied methyl naphthalene) x 100
  • C0 2 selectivity (volume of C 0 2 ) / (C supply of supplied methyl naphthalene) X 100
  • the hydrogen amplification rate also increased with the increase in the decomposition rate of the simulated tar, it is thought that the hydrogen bonded to the carbon constituting methyl naphthalene was converted to molecular hydrogen along with the decomposition by the catalyst. Also, the carbon deposition rate is a relatively low value, and decreases as the temperature rises. In addition, it was found that the entire reforming reaction also proceeded efficiently in the high temperature range of 800 ° C or more, and the decomposition rate increased as the temperature increased.
  • Example 2 The same catalyst as in Example 1 was calcined at 950 ° C., and the catalyst activity was evaluated under the conditions of Table 2 in the same manner as in Example 1 except that 30 cc was used. The results are shown in Table 2. Table 2
  • the evaluation of the size of ⁇ particle from the Ni (200) peak by wide-angle X-ray diffraction of the catalyst after reaction was performed as follows. First, the material is set in a powder sample holder, and CuKa lines are generated at an output of 40 kV and 150 mA using RINT 1500 made by Rigaku, and the monochromator is made to be graphite, and scattering slits and scattering slits are used. The measurement was carried out under the conditions of a sampling width of 0.01 deg and a scan speed of 2 deg / miii, with a light reception slit of 0.15 mm and a light reception slit of 0.8 M.
  • the catalyst used in this test is crushed, and Ni particles obtained from the (200) peak by wide-angle X-ray diffraction shown in FIG. 3 are calculated as ⁇ , and very fine Ni particles are precipitated. It is considered that this is a factor that manifests high modification activity and high resistance to carbon deposition.
  • a catalyst was prepared in the same manner as in Example 1 except that, among the oxides of nickel and magnesium, the weight percentages of nickel, magnesium and alumina were as shown in Table 3.
  • the alumina content is 20% by mass, the strength is 100 to 120N, but when it is 50% by mass, the strength is 160 to 200N, and when 80% by mass, the strength is 180 to 240N.
  • the strength increased with the amount of alumina added, and in each case was evaluated to have a relatively high strength.
  • evaluation was made under the conditions of reaction temperature 800 ° C., H 2 S concentration 2000 ppm, and No. 3 of Example 1 under normal pressure. The results are shown in Tables 3 and 4.
  • the catalyst activity was higher when the alumina content was larger due to the difference in alumina mass even with almost the same Ni mass. This is expected to be due to the fact that the alumina component finely divides the nickel magnesia compound phase and the size of the Ni metal particles deposited during reduction decreases and the reaction surface area increases. Also, in the case of No. 16 in which the carbon deposition rate is lower as the Mg mass is larger and the Mg mass is less than 5% by mass, the carbon deposition amount is higher. Furthermore, when a compound having 10% by mass of alumina was prepared, only a low crushing strength was obtained at 50 to 80 N in any composition.
  • the reaction temperature was 800 ° C.
  • H 2 S concentration 2000 ppm, H 2 0, C 0 2 and 0 2 were introduced under the respective conditions shown in Table 5 at the time of reaction, and the same procedure as in Example 1 was carried out. Preparation and evaluation were conducted. The results are shown in Table 5.
  • H 2 0 / C, C 0 2 / C and 0 2 / C of C indicate the C supply amount (molar ratio) of the supplied methyl naphthalene.
  • a batch furnace capable of simulating a coke oven is charged with 80 kg of charged coal used in an actual coke oven, and the temperature is raised to 800 ° C. according to the actual coke oven, and the actual coke oven gas and the associated actual tar are added. Generated.
  • the tar in the tar-containing gas at that time was about 0.04 g / L.
  • the gas was collected by a suction pump and used for the experiment.
  • a reaction tube was placed inside the electric furnace heated to a reaction temperature of 800 ° C., and 50% by mass of alumina was mixed with Ni D .Mgc. 90 according to the same manufacturing method as in Example 1 at the center.
  • a ring-shaped molded oxide (with a strength of about 200 N) is installed, hydrogen is reduced by lONL / min for 2 hours, and the gas collected from the batch furnace is used as a catalyst layer.
  • the catalyst decomposition activity of actual coke oven gas and accompanying actual tar was continuously evaluated for 5 hours by flowing into the The inlet gas flow rate was about 1 ONL / min, and the catalyst loading was about 1 L.
  • the gas contained 2400 to 2500 ppm of hydrogen sulfide.
  • the tar concentration in the gas was evaluated by the following method.
  • each gas is collected by attaching a 1-L vacuum collection bottle that has been vacuumed in advance to the openable and closable cocks attached to the inlet and outlet of the catalyst layer and opening the cocks. Then, the inside of the collection bottle was washed with dichloromethane, and the mass of the liquid component after the dichloromethane was completely removed at normal temperature was quantified.
  • the tar decomposition rate was determined from the ratio of the mass of the tar component in the gas at the outlet of the catalyst layer to the mass of the tar component in the gas at the inlet of the catalyst layer collected by the above method. As a result, the tar decomposition rate reached 88% at 2 hours after the start of the reaction, and the hydrogen amplification rate reached 2.2 on average for 5 hours.
  • Example 6 after continuing the reaction for 81 liters under the conditions of No. 3 of Example 1, the feed of the raw material was stopped, and N 2 60 c c / min as a carrier gas, air 60 cc / min. Hold the catalyst bed temperature at 800 ° C for 2 hours under the conditions of min. After removing the carbon and sulfur deposited on the catalyst, when the introduction of the raw materials was newly started under the same conditions as in Example 1, it was confirmed that the activity of 90% or more before regeneration was shown. It was also confirmed that the hydrogen concentration in the reformed gas was high in this test, and hydrogen, carbon monoxide, and methane were converted to the main component gas.
  • a metering feeder 6 After raising the temperature to 800 ° C using a dry kiln as shown in Fig. 2 as a dry distillation furnace, use a metering feeder 6 from a hopper 5 filled with coal lumps (classification to 5 cm or less). The coal mass is introduced at a feed rate of 20 kg / h to generate dry distillation gas containing tar, and the flow rate is adjusted so that the gas flow rate is about 10 Nm 3 / li by the induction ventilator 1 1
  • the catalyst decomposition activity of the barrel-containing gas was continuously evaluated for 8 hours by introducing to 8 and contacting with the catalyst. After that, the reformed gas was water-cooled with a scrubber 9 and dust-removed with an oil bubbler 10 and burned out with a flare stack 12. In addition, reduction processing was performed for 30 minutes with hydrogen 5Nm 3 / h before feeding the raw materials.
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst loading was about 15 L.
  • the tar in the tar-containing gas at that time was about 6 O g / Nm 3 .
  • the gas contains 2000 to 2500 ppm of hydrogen sulfide.
  • concentration of tar in the gas is determined by suctioning the gas from the inlet and outlet of the catalyst layer for a certain period of time and collecting the components of the gas in the gas through a quintuple impinger filled with dichloromethane and then removing the dichloromethane. Determine the composition of liquid at room temperature It evaluated by doing.
  • the tar decomposition rate was determined from the ratio of the mass of the tar component in the gas at the outlet of the catalyst layer to the mass of the tar component in the gas at the inlet of the catalyst layer collected by the above method. As a result, the tar decomposition rate reached about 81% 3 hours after the start of the reaction, and the hydrogen amplification rate reached up to 2.3 on an average of 8 hours, and catalyst dry gasification reaction of tar containing gas in bench plant scale Verified that is progressing.
  • the biomass is obtained by dry distillation with a rotary single kiln 7 maintained at 800 ° C.
  • a catalyst containing a tar-containing gas (dry distillation gas) and containing the same molded catalyst as in Example 8 except for the same composition as No. 18 of Example 3 was added to the catalyst tower kept at about 800 ° C.
  • the catalytic decomposition activity of the tar-containing gas was continuously evaluated for 8 hours by introducing it and contacting with the catalyst.
  • reduction processing was performed for 30 minutes with hydrogen 5Nm 3 / h before feeding the raw materials.
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst charge was about 15 L. At that time, the temperature of the biomass-containing gas was about 10 g / Nm 3 .
  • the inlet gas composition is close to the coke oven gas, hydrogen, C0, methane, that it is a composition mainly composed of C0 2 was confirmed by gas chromatography. Also, in the gas, about 16% of the water contained in the construction waste material, which is the raw material, volatilized and was contained as steam. Furthermore, it was confirmed that the gas contains about 25 ppm of hydrogen sulfide.
  • the tar decomposition rate was evaluated by collecting the tar component in the tar-containing gas from the inlet and the outlet of the catalyst layer in the same manner as in Example 8 and quantifying the tar content.
  • the decomposition rate of starch remained stable at 94% after 3 hours from the start of the reaction, and the hydrogen amplification rate remained stable at about 6 over 8 hours, and the catalyst for biomass tar-containing gas at bench plant scale Stable progress of dry gasification reaction Verified.
  • Example 8 Using the same equipment as in Example 8, a dry mass (sorted to 5 cm or less) of food waste collected from a supermarket etc. was supplied at a supply rate of 10 kg / h into it, and the temperature was 800 ° C.
  • the biomass tar-containing gas (dry distillation gas) is generated by dry-distilling with a rotary kiln 7 held in C, and the tar-containing gas is the same as in Example 8 except for the same composition as No. 18 of Example 3.
  • the catalyst decomposition activity of the tar-containing gas was continuously evaluated for 8 hours by introducing it into a catalyst tower packed and kept at about 800 ° C. and contacting with the catalyst. The reduction treatment was performed for 30 minutes with 5 Nm 3 / h of hydrogen before the raw materials were charged.
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst loading was about 15 L.
  • the tar in the biomass-containing gas at that time was about 23 g / Nm 3 .
  • the inlet gas composition is close to the coke oven gas, hydrogen, C0, methane, that it is a composition mainly composed of C 0 2 gas chromatography - was confirmed by.
  • the gas contained about 400 ppm of hydrogen sulfide.
  • the tar decomposition rate was evaluated by collecting tar components in the tar-containing gas from the inlet and outlet of the catalyst layer in the same manner as in Example 8 and quantifying the tar content. As a result, the tar decomposition rate was 88% at 3 hours after the start of the reaction, and the hydrogen amplification rate gradually decreased due to sulfur poisoning from the initial stage of the reaction, but it remained stable around 4 hours after the start of the reaction.
  • Example 8 The same equipment as in Example 8 was used, in which a feed rate of 10 kg / h was applied.
  • a mixture of dry lumps of food waste (classification to 5 cm or less) and building waste chips (classification to 5 cm or less) identical to those of Example 10 at a weight ratio of 1: 2 is supplied at 800 ° C.
  • the biomass tar-containing gas (dry-distilled gas) is generated by dry-distillation with a rotary single kiln 7 held in the same manner as in Example 8 except for the same composition as No. 18 in Example 3.
  • the catalyst decomposition activity of the tar-containing gas was continuously evaluated for 8 hours by charging the catalyst, introducing it into a catalyst tower kept at about 800 ° C., and contacting with the catalyst.
  • the reduction treatment was performed for 30 minutes with 5 Nm 3 / h of hydrogen before the raw materials were charged.
  • the inlet gas flow rate was about 10 Nm 3 / h, and the catalyst loading was about 15 L.
  • the tar in the biomass-containing gas at that time was about 14 g / Nm 3 .
  • the inlet gas composition is close to the coke oven gas, hydrogen, C0, methane, that it is a composition mainly composed of C0 2 was confirmed by gas chromatography.
  • about 20% of the water contained in the mixture of dried food waste and construction waste, which is the raw material was volatilized in the gas and was contained as water vapor.
  • the gas contained about 200 ppm of hydrogen sulfide.
  • the tar decomposition rate was evaluated by collecting the tar component in the tar-containing gas from the inlet and the outlet of the catalyst layer in the same manner as in Example 8 and quantifying the amount of stilts.
  • the decomposition rate of the tubule was 87% at 3 hours after the start of the reaction, and the hydrogen amplification rate gradually decreased due to sulfur poisoning from the initial stage of the reaction, but it became stable at about 4.4 after 4 hours after the start of the reaction. It was verified that the catalytic dry gasification reaction of biomass tar-containing gas at the bench plant scale was progressing stably.
  • Example 9 After reforming for 8 hours in Example 9, the supply of the building waste chips as the raw material was stopped, and after purging the inside of the system with nitrogen in the same manner as in Example 12, a royal kiln which was maintained at 800 ° C. 7 Air is sucked from the gas intake port installed near the inlet, and the air heated by a rotary kiln is introduced into the catalyst tower to introduce about 1 hour to deposit carbon and adsorbed sulfur deposited on the surface of the catalyst after reforming. Were removed by oxidation and regenerated.
  • Example 10 After reforming for 8 hours in Example 10, the supply of the raw material food waste dry mass was stopped, and after purging the inside of the system with nitrogen in the same manner as Example 12, the rotary kiln kept at 800 was used. 7. Air is drawn in from the gas inlet installed near the inlet, and approximately 1 hour of air heated by the rotary kiln is introduced into the catalyst tower to deposit deposited carbon and adsorbed sulfur on the catalyst surface after reforming. It was removed by oxidation and regenerated.
  • Example 1 After reforming for 8 hours in Example 1, stop the supply of the raw material food waste dry lump and the building waste chip mixture and purge the inside of the system with nitrogen in the same manner as in Example 12 and then 800 °. Air is drawn from the gas intake port installed near the entrance of the 1st kiln held at C, and the air heated by the rotary kiln is introduced into the catalyst tower by about 1 Ohr, so that the catalyst surface after reforming The deposited carbon and adsorbed sulfur deposited on it were removed by oxidation and regenerated.
  • the reduction treatment is performed again with hydrogen of 5 Nm 3 / h for 30 minutes, and then the raw material is supplied at the same speed as in Example 1 and contacted with the catalyst.
  • the catalytic decomposition activity of the tar-containing gas was continuously evaluated for 8 hours.
  • the evening after playback The same values as before regeneration were obtained, and it was verified that catalyst regeneration by air combustion was sufficiently performed also in the case of food waste dry lump and building waste chip mixture. .
  • the catalytic decomposition of this biomister-containing gas and subsequent catalyst regeneration were repeated five times, it was found that the hydrogen amplification rate obtained the same stable result as before regeneration, and could be operated for a long time.
  • Example 2 The same experimental procedure as in Example 1 was carried out under the conditions of No. 8 in Example 2 as a catalyst as an industrial catalyst sfd primary made naphtha primary reforming catalyst (SC 11 NK; Ni-20 mass% supported alumina molded goods) (where intensity reforming test was conducted at 500N and have high), the methane selectivity of 2. 5% CO selectivity of 4. 2% C0 2 selectivity of 5.9%, carbon deposition rate There were 32. 8%, decomposition rate 45.4%, hydrogen amplification rate was 1.3.
  • SC 11 NK industrial catalyst sfd primary made naphtha primary reforming catalyst
  • the industrial catalyst has very high strength, the conversion rate of methyl naphthalene to gas component is low (12.6%), but the carbon deposition rate is very high. Since the carbon deposition rate is very high, the catalyst life may be short, and even if regeneration treatment is performed after the reaction, it is necessary to carry out oxidation treatment at a high temperature or for a long time. It is expected that the heat of combustion will cause the catalytically active particles to become stronger, which will further reduce the performance after regeneration.
  • the industrial catalyst (SC 11 NK) used in Comparative Example 1 was installed in a reaction tube under the same conditions as in Example 5 using the same test equipment as in Example 4 for evaluation.
  • the tar decomposition rate remained at 22% after 2 hours from the start of the reaction, and the hydrogen amplification rate was about 1.5 for an average of 5 hours, and the industrial catalyst was evaluated under actual coke oven gas and actual tar.
  • the tar decomposition rate was found to be low.
  • the catalytic activity was very low at a decomposition rate of methyl naphthalene of about 15%, the hydrogen amplification rate was not amplified at all at 1.0, the strength was low, and the catalytic activity was low.
  • a precipitate of nickel and magnesium was prepared in the same manner as in Example 1, filtered, washed, dried, and calcined at 950 ° C. in the air to obtain a compound of nickel and magnesia. Thereafter, the alumina powder was weighed to 50 wt%, and both were physically mixed using a mortar. The mixture was molded and fired according to the same experimental method as in Example 1, and then the strength and activity evaluation were performed under the same conditions as in Example 8-8. As a result, the catalyst activity showed a moderate catalyst activity with a decomposition rate of methyl naphthalene of about 66.7% and a hydrogen amplification rate of 1.6, but the strength was only 40 N, which proved to be difficult to apply practically. did.
  • Example 2 The activity was evaluated under the same conditions as No. 8 in Example 2.
  • the catalytic activity shows that the decomposition rate of methyl naphthalene is about 62.6% (within, the carbon deposition rate is 19.9%), the hydrogen amplification rate shows only a moderate catalytic activity of 1.6, and the carbon deposition amount is very high. It turned out that there were many.
  • the catalyst after reaction was pulverized in the same manner as in Example 2, and Ni particles obtained from the Ni (200) peak by wide-angle X-ray diffraction shown in FIG. Since Ni can not be finely precipitated from these compounds, it is considered that the amount of deposited carbon is large and the reforming activity is also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

炭素質原料の熱分解タールを改質してガス化するタール改質用触媒において、ニッケルとマグネシウムの溶液に沈殿剤を用いて沈殿物を生成し、当該沈殿物を乾燥及び焼成してニッケルとマグネシウムの酸化物を生成したものに、アルミナと水またはアルミナゾルを加えたものを混合し、当該混合物を少なくとも乾燥及び焼成して製造することを特徴とする。

Description

明 細 書 タール含有ガスの改質用触媒の製造方法、 タール改質方法及びター ル含有ガスの改質用触媒の再生方法 関連出願の説明
本願は、 日本国特許庁に 2007年 12月 27日に出願された特願 2007 - 3 3731 1号、 2008年 6月 13日に出願された特願 2008- 155887号、 2008年 9 月 24日に出願された特願 2008- 24485 1号に基づく優先権を主張する 出願であり、 これらの出願の開示内容はここに参照して含めるもの である。 技術分野
本発明は、 炭素質原料を熱分解した際に発生する高温のタール含 有ガスを改質して、 水素、 一酸化炭素、 メタンを中心とするガスへ 変換する改質用触媒の製造方法と、 その触媒を用いたタールガス化 方法、 及び夕一ル含有ガスの改質用触媒が劣化した際の再生方法に 関するものである。 背景技術
鉄鋼業は我が国の総エネルギー消費量の約 1割を占めるエネルギ 一多消費産業であるが、 高炉法一貫製鉄プロセスのうち約 4割が未 利用廃熱である。 その'うち、 回収されやすいが従来は利用されてい ない熱源としてコ一クス炉から発生する高温の未精製 COG (コ一ク ス炉ガス、 以下粗 COG) の顕熱がある。 この粗 COGの顕熱の回収技術 として、 従来から間接熱回収を主体とする方法が特公昭 59-44346号 公報及び特開昭 58- 76487号公報に提案され、 コークス炉上昇管内部 、 又は、 上昇管部と集気管部の間に伝熱管を設け、 この伝熱管内部 に熱媒体を循環流通させて顕熱を回収する方法が開示されている。 しかし、 これらの方法では伝熱管外表面への発生 COGに随伴する夕 ール、 軽油等の付着、 炭化 · 凝集による緻密化が進行し、 経時伝熱 効率の低下 · 熱交換効率低下という問題が不可避である。 これら問 題点を解決する技術として、 伝熱管外表面に結晶性アルミノシリケ —ト、 結晶性シリカ等の触媒を塗布し、 タール等の付着物を触媒を 介して低分子量の炭化水素に分解し、 伝熱効率を安定維持する方法 が特開平 8- 134456号公報に開示されている。 しかし、 この方法も粗 COG顕熱の間接熱回収技術の域を出ず、 また、 タール等の重質炭化 水素の分解生成物がガス燃料等として利用しやすい軽質炭化水素に なるかどうかなど全く考慮されていない。 さらには、 粗 COG中に含 有する高濃度の硫化水素等の触媒被毒性硫黄化合物成分による分解 活性の経時劣化の影響についても検討されていない。
一方、 温度によって質が大きく変化する熱エネルギーを化学エネ ルギ一に転換する、 いわゆる熱エネルギーの化学エネルギー転換技 術に関しては、 ガスタービン複合サイクル発電 (GTCC) と他のブラ ン卜との複合システムが提案されており、 例えば、 高温酸素輸送性 固体電解質を利用した酸素製造との組み合わせ (米国特許第 55 1 635 9号公報) 、 ガスタービン出口排ガス顕熱を利用した天然ガスの水 蒸気改質 · 水素製造とその燃料利用 (特開 2000- 54852号公報) 等が 散見される。 いずれの技術も固体電解質、 触媒という機能材料を媒 介に空気、 天然ガスを作用させ、 酸素、 水素という化学エネルギー に転換するものである。
高温で生成する反応性ガスにその顕熱を利用して、 触媒存在下、 直接化学反応を導入して化学エネルギーに転換する技術は殆どなく 、 従来、 高温ガスの顕熱は間接的に回収されて、 若しくは全く利用 されず、 冷却されたガスを種々処理をして利用するケースが殆どで ある。 ただ、 粗 COGが顕熱を有しているといっても、 硫黄化合物の 含有量が 2000ppmを越え、 タール等重質炭化水素の分解反応に関す る触媒反応設計の観点からは極めて実現が困難と考えられ、 これま で特開 2003- 55671号公報に記載されているように、 N ix Mg, _ x 0-S i 02 噴霧乾燥固溶体触媒、 N i/Al 2 03、 活性 A 12 03、 Fe/Al 2 03などは検討 されていたが、 改質活性は必ずしも十分とは言えなかった。 また、 エネルギー変換触媒は、 一般にシリカ、 アルミナなどの多孔質セラ ミックス担体上に活性金属種を外部から担持する担持法で製造され るが、 その方法では担持金属成分の分散性をあげることが難しく、 また硫黄被毒や炭素析出を受けやすいため、 上記高濃度硫黄化合物 を含んだ雰囲気下、 炭素析出を起こしゃすい縮合多環芳香族主体の タールの分解反応に適する触媒を製造することが困難であった。 ま た一旦反応して性能劣化した後、 再生のため空気燃焼することによ り、 担持金属粒子のシン夕リング (粗大化) が起こりやすく、 再生 による活性の再現を実現することも困難であった。
また、 上述の担持法以外にも、 特開 2003— 55671号公報のように シリカやアルミナをバインダーとしてニッケルマグネシア化合物に 混合して噴霧乾燥法により炭化水素改質用触媒を製造する方法、 又 は特開 2004- 00900号公報のようにニッケルマグネシア系化合物にシ リカやアルミナ粉末を物理混合して炭化水素改質用触媒を製造する 方法も知られているが、 ニッケルマグネシア化合物粉末とシリカ粉 末又はアルミナ粉末を物理的に混合した後、 成型、 焼成する方法で は、 最終製品の強度が弱く、 実用上耐えうるレベルに無かった。 一方、 ニッケルとマグネシウム及びアルミニウムを含んだ酸化物 の製造方法として、 各金属成分を溶かした水溶液から沈殿剤により 沈殿物 (主にハイ ド口タルサイ ト構造を形成) を作成した後、 焼成 した材料について、 F. Basile et al. , Stud. Surf. Sci. Catal. , Vol. 119 (1998)や特開昭 50-4001号公報などで公開されているが、 改 質活性が不十分で且つ炭素析出量が多く、 実用化に向けて課題を有 していた。
さらに、 近年の地球温暖化問題により、 二酸化炭素排出量削減の 有効手段として炭素質原料の一つであるバイオマス利用が注目され ており、 バイオマスの高効率エネルギー転換に関する研究が各所で 行われている。 また昨今のエネルギー資源確保の観点から、 過去精 力的に行われてきた石炭の有効活用に関する研究も実用化に向けて 見直されてきている。 その中でバイオマスの乾留で生成するタール をガス化して、 粗ガス (未精製ガス) を生成し、 その顕熱を利用す る方法については、 特に触媒を用いたタールの触媒改質を中心に、 Rh/Ce02系触媒を用いる特開 2005- 53972号公報などをはじめとして 種々検討されているが、 上記石炭由来タールの分解反応と同様、 触 媒活性、 触媒再生の観点からは必ずしも十分ではない。 発明の開示
本発明は、 石炭やバイオマスなど炭素質原料の熱分解時に発生す る粗 (未精製) ガスが有する顕熱に着目すると共に、 粗ガスに含有 - 随伴する高温タールの高い化学反応活性を利用することにより、 触媒存在下で軽質化学物質へ転換し、 メタン、 一酸化炭素、 水素等 主体の燃料構成に転換する化学エネルギー転換のための粗ガスの処 理に用いる、 特に粗 COG等の高濃度の硫化水素を含有するタール含 有ガスに対しても高性能な改質用触媒の製造方法及びタール改質方 法を提供すると共に実用化に耐え得る高強度な改質用触媒の製造方 法及びタール改質方法を提供することを目的とする。
また、 本触媒を用いてガス化反応を進行させて劣化した触媒に対 し、 水蒸気または空気を導入して酸化性雰囲気にすることにより、 触媒上の析出炭素や吸着硫黄を除去して触媒活性を回復させ、 安定 した運転が可能になるタールガス化用触媒の再生方法を提供するこ とを目的とする。
本発明者らは、 触媒を構成する元素、 組成に着目して触媒設計を 行い、 その製造方法について鋭意検討したところ、 炭素質原料の熱 分解時に粗ガスに含有 , 随伴するタールをメタン、 一酸化炭素、 水 素等主体の軽質化学物質へ転換する触媒として、 従来の担持法とは 異なり、 活性種金属の微細析出が可能で高速反応が可能、 析出した 活性金属がマトリクス (母相) と強固に結合するためシン夕リ ング (粗大化) しにく く活性低下を抑制可能、 並びに析出した活性種金 属を焼成によりマトリクスへ再度固溶できシン夕リングが抑制可能 な再生ができるなどの種々の特徴を有する固相晶析法に着眼し、 予 め活性種であるニッケル元素をマ トリクスとなるマグネシア、 アル ミナなどと化合物化し、 反応前の還元処理で酸化物マトリクスから ニッケル金属が酸化物表面にクラスタ一状に微細析出することを利 用することにより、 硫黄被毒となり得る硫黄成分の高濃度の雰囲気 下、 タール等重質炭化水素などの炭素析出を起こしやすい成分を多 量に含んだ過酷な状況の下でも、 活性金属の表面積が大きく且つ硫 黄被毒を受けても新たに活性金属が析出可能なため、 重質炭化水素 をメタン、 一酸化炭素、 水素等の軽質化学物質へ変換できる製造法 を見出したものである。
また、 ニッケルとマグネシウムの沈殿物を生成後、 乾燥、 焼成し たものにアルミナゾルを混合して、 乾燥及び焼成、 又は乾燥、 か焼 、 成型及び焼成することにより、 最終製品の強度の高い製造法であ ることを見出したものである。
以下に、 その特徴を示す。 ( 1 ) ニッケル化合物とマグネシウム化合物の溶液に沈殿剤を添 加して、 ニッケルとマグネシウムを共沈させて沈殿物を生成し、 当該沈殿物を乾燥及び焼成してニッケルとマグネシウムの酸化物 を生成し、
当該酸化物に、 (a)アルミナ粉末と水、 または、 (b)アルミナゾル を加えて混合して混合物を生成し、
当該混合物を少なく とも乾燥及び焼成して触媒を製造する ことを含むタール含有ガスの改質用触媒の製造方法である。 また、
(2) 前記混合物を(i )乾燥及び焼成、 又は(i i )乾燥、 粉砕、 成型 及び焼成して触媒を製造することを含む、 (1)記載のタール含有ガ スの改質用触媒の製造方法である。 また、
(3) 前記製造されたタール含有ガスの改質用触媒が、 ニッケル 含有量において 1〜50質量%、 マグネシウム含有量において 5〜45質 量%、 アルミナの含有量において 20〜80質量%となるように製造す ることを含む、 (1)または(2)に記載のタール含有ガスの改質用触媒 の製造方法である。 また、
(4) 前記製造されたタール含有ガスの改質用触媒が、 ニッケル 含有量において 〜 35質量%、 マグネシウム含有量において 10〜 25 質量%、 アルミナの含有量において 20〜80質量%となるように製造 することを含む、 (1 )または(2)に記載のタール含有ガスの改質用触 媒の製造方法である。 また、
(5) ( 1)〜(4)のいずれかに記載の製造方法で製造されるタール 含有ガスの改質用触媒を用いたタール含有ガスの改質方法である。 また、
(6) 前記タール含有ガス改質用触媒の存在下又は還元後の前記 触媒の存在下において、 炭素質原料を熱分解した際に発生する夕一 ル含有ガス中の水素、 二酸化炭素、 及び水蒸気を接触させて、 前記 夕一ル含有ガス中のタールを改質してガス化することを含む、 (5) に記載のタール改質方法である。 また、
(7) 前記熱分解した際に発生するタール含有ガスに、 外部から 水素、 二酸化炭素、 水蒸気の少なく ともいずれかを接触させて、 前 記タール含有ガスを改質してガス化することを含む、 (5)または(6) に記載のタール含有ガスの改質方法である。 また、
(8) 前記タール含有ガスが、 硫化水素を 20ppm以上含むタール含 有ガスであることを含む、 (5>〜(7)のいずれかに記載のタール含有 ガスの改質方法である。 また、
(9) 前記水素、 二酸化炭素、 水蒸気の少なく ともいずれかに、 更に酸素含有ガスを加えて、 タール含有ガスに接触させることを含 む、 (7)〜(9)のいずれかに記載のタール含有ガスの改質方法である 。 また、
( 10) 前記タール含有ガスが、 石炭を乾留したときに発生する乾 留ガスであることを含む、 (5)〜(9)に記載のタール含有ガスの改質 方法である。 また、
( 1 1) 前記タール含有ガスがコークス炉から排出されるコークス 炉ガスであることを含む、 (5)〜 (9)のいずれかに記載のタール含 有ガスの改質方法である。 また、
( 12) 前記夕一ル含有ガスが、 木質系バイオマス、 食品廃棄物系 バイオマスの少なく ともいずれかを乾留したときに発生する乾留ガ スであることを含む、 (5)〜(9)のいずれかに記載のタール含有ガス の改質方法である。 また、
( 13) 前記タール含有ガス改質用触媒に前記タール含有ガスを 60 0〜 1000°Cで接触させることを含む、 (5 )〜(12)のいずれかに記載の タール含有ガスの改質方法である。 また、
( 14) (5)〜(13)のいずれかに記載のタール含有ガスの改質方法 の実施により、 前記触媒が、 炭素析出、 硫黄被毒の少なく ともいず れかにより性能劣化した場合に、 前記触媒に水蒸気、 または空気の 少なく ともいずれかを前記触媒に接触させて前記触媒を再生するこ とを含む、 夕一ル含有ガスの改質用触媒の再生方法である。
本発明によれば、 炭素質原料の熱分解時に発生する粗ガスに含有 • 随伴する夕一ルを触媒存在下で軽質化学物質へ転換し、 メタン、 水素等の燃料構成に転換することのできる高活性な改質用触媒であ ると共に、 高強度な改質用触媒を製造することができる。 特に、 バ ィォマスガス化ガスや粗 COG等の高濃度の硫化水素を含有するター ル含有ガスに対しても高性能且つ高い耐炭素析出性を有する改質用 触媒を製造することができる。 さらに、 本発明の一形態によれば、 タール含有ガスの顕熱を用いてタールを軽質化学物質へ転換するこ とができる。 図面の簡単な説明
図 1 はコークス炉からコ一クス炉ガスが排出される部分を示した 図である。
図 2は実施例における石炭乾留プロセスとそこで発生するタール 含有ガスを触媒を用いて改質するプロセスを説明する図である。
図 3は実施例 2で反応した後の触媒の N i ( 200) ピークに相当す る部分の広角 X線回折図である。
図 4は比較例 5で反応した後の触媒の N i ( 200) ピークに相当す る部分の広角 X線回折図である。 発明を実施するための最良の形態
以下、 具体例を示して、 本発明を更に詳細に説明する。
本発明の製造方法で製造されたタール含有ガスの改質用触媒は、 ニッケル (N i ) が、 重質炭化水素をガス中に存在するかまたは外部 より導入される水蒸気、 水素、 二酸化炭素で改質する反応を進行さ せる主触媒活性成分として機能する。 タール含有ガス中に高濃度の 硫化水素が共存した場合でも、 上記ニッケル金属が触媒表面上でク ラスター状に微細分散して表面積が大きく且つ還元雰囲気下では反 応中に活性金属粒子が被毒を受けても新たな活性金属粒子がマ トリ クスから微細析出するために、 硫黄被毒による活性低下の影響を受 けにくいと考えられる。 このマトリクス化合物から、 還元雰囲気下 、 活性金属粒子を微細クラスタ一状に析出させることができる。 ま た、 縮合多環芳香族主体のタールも乾留直後の高温状態で反応性に 富む状態であり、 且つ微細分散して高比表面積を持った高活性な二 ッケル金属と接触することにより、 高効率に軽質炭化水素へ変換 - 分解するものと考えられる。 また、 ニッケル元素と化合物化した成 分のうち、 マグネシアは塩基性酸化物であり、 二酸化炭素を吸着す る機能を保有することにより、 主活性成分元素上での析出炭素と反 応して一酸化炭素として酸化除去する役割を発揮するために、 触媒 表面を清浄に保ち、 触媒性能を長期間安定に保持できると思われる 。 アルミナは、 化合物マトリクスを安定に保つバインダー的機能を 果たすとともに、 ニッケル、 マグネシウムを含む結晶相を細かく分 断して、 酸化物固相中で高度に分散させること等により、 各結晶相 から表面に析出する活性種のニッケル粒が小さく且つ高度な分散状 態になるような機能を果たすものと考えられる。
実際、 反応後の触媒の広角 X線回折による N i ( 200) ピークから求 めた N i粒の大きさを評価したところ、 N i粒の平均粒径が非常に小さ い状態で析出していることが分かつた。
ここでいう炭素質原料とは、 熱分解してタールを生成する炭素を 含む原料のことで、 石炭並びにバイオマスやプラスチックの容器包 装類など構成元素に炭素を含む広範囲なものを指すが、 中でもバイ ォマスとは、 林地残材、 間伐材、 未利用樹、 製材残材、 建設廃材、 または、 それらを原料とした木質チップ、 ペレッ ト等の二次製品等 の木質系バイオマス、 再生紙として再利用できなくなった古紙など の製紙系バイオマス、 ササゃススキをはじめとして公園や河川、 道 路で刈り取られる雑草類などの草本系バイオマス、 厨芥類等の食品 廃棄物系バイオマス、 稲わら、 麦わら、 籾殻などの農業残渣、 さと うきび等の糖質資源やとうもろこし等のでんぷん資源及び菜種等の 油脂などの資源作物、 汚泥、 家畜排泄物など指す。
また炭素質原料を熱分解した際に発生するタールとは、 熱分解さ れる原料の種類、 原料組成や熱分解の温度履歴等により性状や量が 大きく異なるが、 炭素が 5個以上含まれた常温で液体の有機化合物 であって、 鎖式炭化水素や環式炭化水素などからなる混合物を指し 、 石炭の熱分解であれば、 例えばナフタレン、 フエナンスレン、 ピ レン、 アントラセンなど縮合多環芳香族などが主成分であり、 木質 系バイオマスの熱分解であれば、 例えばベンゼン、 トルエン、 スチ レン、 ナフ夕レン、 アントラセン、 メチルナフ夕レン、 フエノール など、 食品廃棄物系バイオマスの熱分解であれば、 例えばトルエン 、 スチレン、 クレゾール、 フエノール以外にインドール、 ピロ一ル などの六員環または五員環に窒素元素など異種元素を含むヘテロ化 合物も含まれるが、 特にそれらに限定されるものではない。 熱分解 タールは、 熱分解直後の高温状態ではガス状で存在する。
また、 タールを接触分解してガス化するタールの改質反応は、 重 質炭化水素主体のタールからメタン、 一酸化炭素、 水素等の軽質化 学物質へ変換する反応であるが、 反応経路が複雑で必ずしも明らか ではないが、 タール含有ガス中若しくは外部より導入する水素や水 蒸気、 二酸化炭素などとの間で起こり うる水素化反応やスチームリ フォーミング反応、 ドライ リフォーミング反応などが考えられる。 これら一連の反応は吸熱反応のため、 実機に適用した場合、 反応器 に入る高温の顕熱を有するガスが触媒層内で改質されて出口では温 度が低下するが、 より高効率にタール等重質炭化水素成分を改質す る場合には、 必要に応じて空気若しくは酸素を触媒層内に導入する ことで、 一部炭化水素成分を燃焼させた燃焼熱で触媒層の温度をあ る程度保ちながらさらに改質反応を進めることも可能である。
本発明の改質用触媒の製造方法は、 二ッケル化合物とマグネシゥ ム化合物の溶液に沈殿剤を用いてニッケルとマグネシウムを共沈さ せて沈殿物を生成し、 一旦乾燥、 焼成してニッケルとマグネシウム の酸化物としたものに、 (a)アルミナ粉末と水、 または、 (b)アルミ ナゾルを加えたものを混合しながら水分を蒸発させて混合物を生成 し、 当該混合物を少なく とも乾燥及び焼成して製造される。
また、 上記混合物を少なく とも乾燥及び焼成する方法としては、 乾燥及び焼成する方法、 又は乾燥、 粉砕及び焼成する方法、 又は乾 燥、 粉砕、 成型及び焼成する方法、 又は乾燥、 か焼、 粉砕、 成型及 び焼成する方法、 又は乾燥、 粉砕、 か焼、 粉碎、 成型及び焼成する 方法等がある。
ここで、 上記沈殿物の乾燥は、 特に温度や乾燥方法を問わず、 一 般的な乾燥方法であればよい。 乾燥後の共沈殿物は必要に応じて粗 粉砕を行った後、 焼成すれば良い (流動層等の乾燥により乾燥後の 沈殿物が粉状を保っている場合は、 粗粉砕は不要である) 。
なお、 沈殿物の乾燥の前には、 ろ過しておく ことが、 乾燥の手間 を少なく且つ乾燥に要するエネルギーを低減することができ、 好ま しい。 更に、 ろ過後の沈殿物は、 純水等で洗浄しておく ことが、 不 純物量を低減できることからより好ましい。
また、 上記混合物の乾燥も、 沈殿物の乾燥と同様に特に温度や乾 燥方法を問わず、 一般的な乾燥方法であればよい。
なお、 上記乾燥については、 下記に示す焼成時の昇温パターンを 考慮することにより、 '焼成と同一の工程で一段で実施することもで きる。
また、 上記混合物の焼成は、 空気中で行うことができ、 温度は 70 0 °C〜 1 300 °Cの範囲であれば良い。 より好ましくは、 900 °C〜1 1 5 0 °C である。 焼成温度が高いと混合物の焼結が進行し、 強度は上昇する が、 一方で比表面積が小さくなるために触媒活性は低下するため、 そのバランスを考慮して決定するのが望ましい。 焼成後は、 そのま ま触媒として使用することもできるが、 その後の触媒の使用形態に 応じて、 粉砕して粉粒状として使用したり、 プレス成型等で成型し て成型物として使用することもできる。 なお、 乾燥と焼成の間に、 か焼及び成型工程を加えることもでき、 さらにか焼と成型工程の間 に、 成型前に粉粒状にする必要があれば、 粉砕後、 成型すればよい 。 その場合、 か焼は空気中で 400〜 800 °C程度で行えば良く、 成型は 、 プレス成型等で行えば良い。
このような製造方法で製造される改質用触媒を用いることにより 、 炭素質原料を熱分解した際に発生する多量の硫化水素を含み、 炭 素析出を起こしゃすい縮合多環芳香族主体のタール含有ガスであつ ても、 随伴するタール等重質炭化水素を高効率に改質して、 水素、 一酸化炭素、 メタンを主体とする軽質化学物質に変換することが可 能である。 また、 この改質用触媒を用いる場合には、 触媒性能が劣 化した際、 水蒸気または空気の少なく ともいずれかを高温下で触媒 に接触させることにより、 触媒上の析出炭素や吸着硫黄を除去して 触媒性能を回復させ長期間安定した運転が可能になる。
本発明の製造方法で製造されたタール含有ガスの改質用触媒は、 単にニッケルとマグネシウムの沈殿物を形成後、 焼成した粉末にァ ルミナ粉末を物理的に混合して成型及び焼成したものとは異なり、 ニッケルとマグネシウムの沈殿物の焼成品に (a)アルミナ粉末と水 あるいは(b)アルミナゾルを湿式混合することにより、 アルミナ成 分を含有した水分がニッケルとマグネシウムの沈殿物の焼成粉末同 士の隙間を埋めるように十分接触した状態を形成することが可能と なるため、 その混合物を (i )乾燥及び焼成、 又は(i i )乾燥、 か焼、 成型及び焼成することで、 ニッケルとマグネシウムの化合物とアル ミナが均質に分布した焼結体を形成し、 ニッケルマグネシア相がよ り一層微細化され、 そこから析出する N i粒が高度に微細分散するこ とから、 高活性で炭素析出量の少ない成型物を得ることができると 考えられる。 さらに、 このようにして調製した焼結体はニッケルと マグネシウムの化合物とアルミナが均質に分布した焼結体を形成す ることから、 非常に強度の高い成型物を得ることができると考えら れる。
より具体的には、 まずニッケル化合物とマグネシウム化合物の溶 液を作成する際、 水に対して溶解度の高い各金属化合物を用いるこ とが適当であり、 例えば硝酸塩、 炭酸塩、 硫酸塩、 塩化物などの無 機塩のみならず、 酢酸塩などの有機塩も好適に用いられる。 特に好 ましくは、 焼成後に触媒被毒になり得る不純物が残りにくいと考え られる硝酸塩または炭酸塩または酢酸塩である。 また、 それらの溶 液から沈殿物を形成する際に用いる沈殿剤は、 上記溶液の pHをニッ ケル、 マグネシウムが主に水酸化物として沈殿する中性〜塩基性へ 変化させるものであれば何でも用いることができる力 例えば炭酸 カリウム水溶液や炭酸ナトリウム水溶液、 アンモニア水溶液や尿素 溶液などが好適に用いられる。
さらに、 本発明の改質用触媒は、 主活性成分であるニッケル含有 量が 1〜50質量%であることが好ましい。 1質量%未満ではニッケル の改質性能が十分発揮されないため好ましくない。 50質量%を超え る場合には、 マトリクスを形成するマグネシウム、 アルミニウムの 含有量が少ないため、 触媒上に析出するニッケル金属の濃度が高く 且つ粗大化しやすいため、 本反応条件下では性能の経時劣化の恐れ がある。 またマグネシウム含有量は 5〜45質量%であることが好ま しい。 5質量%未満ではマグネシアの有する塩基性酸化物の性質を 活かして炭化水素の炭素析出を抑制し、 触媒性能を長期間安定に保 持しにく くなる傾向があるため、 5質量%以上が好ましい。 45質量 %を超える場合は、 他のニッケル、 アルミニウムの含有量が少なく なるため、 触媒の改質活性を十分発揮できなくなる恐れがある。 さ らに、 アルミナの含有量は 20〜 80質量%であることが好ましい。 20 質量%未満では、 ニッケルマグネシア主体のセラミックスとなり、 成型した際、 強度が著しく低くなるため好ましくない。 80質量%を 超える場合には、 主活性成分であるニッケルや炭素析出を抑制する マグネシアの割合が低くなるため、 触媒の改質活性を十分発揮でき なくなる恐れがある。 尚、 本発明の改質用触媒は、 ニッケル含有量 が 1〜35質量%、 マグネシウム含有量が 10〜25質量%、 アルミナ含 有量が 20〜80質量%となるように製造することがさらに好ましい。 また、 ここでいうアルミナはアルミナ粉末.またはアルミナゾルの状 態でニッケルとマグネシウムの酸化物に加えるものであり、 粉末で 加える場合は可能な限り細かい粒径が好ましく、 たとえば平均粒径 が 100マイクロメ一トル以下が好適であり、 混合時には水などを加 えてスラリ一状で用いる。 またアルミナゾルで加える場合は、 アル ミナの粒子が平均で 100ナノメ一トル以下のものを用いるのが好適 である。 また各金属種の含有量を上記範囲になるように調製するた めには、 各出発原料を予め計算の上準備しておく ことが好ましい。 尚、 一度触媒が狙いの成分組成となれば、 それ以降はその時の配合 で調製すればよい。
また、 上記の元素以外に触媒製造工程等で混入する不可避的不純 物や触媒性能が変わらない他成分を含んでも構わないが、 できるだ け不純物が混入しないようにするのが望ましい。
尚、 上記改質用触媒を構成する各金属種の含有量の測定方法は、 走査型高周波誘導結合プラズマ法 (I CP) と呼ばれる方法を用いた
。 具体的には、 試料を粉砕後、 アルカリ融解剤 (例えば炭酸ナトリ ゥム、 ホウ酸ナトリウムなど) を加えて白金坩堝内で加熱融解し、 冷却後に塩酸溶液に加温下で全量溶解させる。 その溶液を I CP分析 装置へインジェクショ ンすると、 装置内の高温プラズマ状態の中で 試料溶液が原子化 · 熱励起し、 これが基底状態に戻る際に元素固有 の波長の発光スぺク トルを生じるため、 その発光波長及び強度から 含有元素種、 量を定性 , 定量することができる。
ここで本発明で製造する改質用触媒は、 粉体、 または成型体のい ずれの形態としてもよく、 成型体の場合には球状、 シリンダー状、 リング状、 ホイール状、 粒状など、 さらに金属またはセラミックス のハニカム状基材へ触媒成分をコーティ ングしたものなどいずれで もよい。 また、 流動床で使用する場合には、 噴霧乾燥などにより成 形したものなどを用いるのが良い。 固定床や移動床で使用する場合 には、 触媒の成型方法として、 造粒、 押出成型、 プレス成型、 打錠 成型等が好適に用いられるが、 特にこれに制限されるものではない 上記成型触媒の強度の測定には、 木屋式硬度計を用いた。 具体的 には成型体を前記硬度計の台上に置き、 上からプレスし、 成型体が 潰れた時点の強度を N (ニュートン) 単位で計測することで、 強度 を評価することができる。
本発明の製造方法で得られる改質用触媒を用いたタール含有ガス の改質方法によれば、 先に述べた作用効果が得られる。 この夕一ル 含有ガスの改質方法では、 前記触媒の存在下、 又は触媒を還元した 後に、 炭素質原料を熱分解した際に発生するタール含有ガスに、 ガ ス中に存在する若しくは外部より導入する水素、 二酸化炭素または 水蒸気を接触させて、 タール含有ガス中のタールを改質してガス化 する。 改質用触媒は還元することが好ましいが、 反応中に還元が進 行するため、 還元しなくても良い。 従って、 前記触媒の存在下、 又 は触媒を還元した後に、 炭素質原料を熱分解した際に発生する夕一 ル含有ガスに、 外部より導入する水蒸気及び空気若しくは酸素を加 えた混合ガスを接触させて、 タール含有ガス中のタールを改質して ガス化する。 ここで、 触媒を還元する場合の条件としては、 本発明 の触媒から活性金属であるニッケル粒子が微細クラスター状に析出 するために、 比較的高温で且つ還元性雰囲気にするのであれば特に 制限されるものではないが、 例えば、 水素、 一酸化炭素、 メタンの 少なく ともいずれかを含むガス雰囲気下、 又はそれら還元性ガスに 水蒸気を混合したガス雰囲気下、 又はそれらのガスに窒素など不活 性ガスを混合した雰囲気下であっても良い。 また還元温度は、 例え ば 600°C〜 1000°Cが好適であり、 還元時間は充填する触媒量にも依 存し、 例えば 30分〜 4時間が好適であるが、 充填した触媒全体が還 元するのに必要な時間であればよく、 特にこの条件に制限されるも のではない。
触媒反応器としては、 固定床形式、 流動床形式、 移動床形式等が 好適に用いられ、 その触媒層の入口温度としては、 600〜 1000 Cで あることが好ましい。 触媒層の入口温度が 600°C未満の場合は、 夕 ールが水素、 一酸化炭素、 メタンを主体とする軽質炭化水素へ改質 する際の触媒活性がほとんど発揮されないため、 好ましくない。 一 方、 触媒層の入口温度が 1000°Cを超える場合は、 耐熱構造化が必要 になるなど改質装置が高価になるため経済的に不利となる。 また、 触媒層の入口温度は、 650〜 1000 であることがより好ましい。 尚 、 炭素質原料が石炭の場合には比較的高温で、 木質系バイオマスや 製紙系バイオマスまたは食品廃棄物系バイオマス等の場合には比較 的低温で反応を進めることも可能である。
また、 タール含有ガスの発生方法としては、 石炭を原料とする場 合には一般にコークス炉が用いられ、 バイオマスを原料とする場合 には外熱式ロータリーキルン炉ゃ移動床炉、 流動床炉などを用いる ことができる力 S、 特にこれらに限定するものではない。
ここで、 炭素質原料を熱分解又は部分酸化して生成されるタール 含有ガス力^ コークス炉から排出される高温のコークス炉ガスのよ うな硫化水素濃度が非常に高い夕一ル含有ガスでも本発明によりガ ス中のタールを改質してガス化することができる。 ここで熱分解又 は部分酸化とは、 具体的には乾留、 又は炭素質原料をガス化するた めに一部のみ酸化させて、 タール含有ガスを製造することを言う。 現在のコークス炉では、 炉内に原料の石炭を充填後、 加熱 · 乾留し てコークスを製造するが、 図 1に示すように、 付随して発生するコ 一クス炉ガスは炉頂部の上昇管 1 と呼ばれる部分から安水 2 (アン モニァ水) を噴霧して冷却後、 集気管である ドライメーン 4に集め られる。 しかしながら、 ガス成分はコ一クス炉 3の上昇管 1で 800 °C程度の顕熱を保有しているにもかかわらず、 安水 2噴霧後には 1 0 0°C以下まで急冷されてしまい、 その顕熱を有効に利用できていな いため、 このガス顕熱を有効に利用し且つタール等重質炭化水素成 分を水素、 一酸化炭素、 メタン等軽質炭化水素などの燃料成分に転 換できれば、 エネルギー増幅に繋がるばかりでなく、 そこで生成さ れる還元性ガス体積が大幅に増幅されることにより、 例えば鉄鉱石 に接触させて還元鉄を製造するプロセスが可能となれば、 現在鉄鉱 石をコークスにより還元する高炉プロセスで発生する二酸化炭素排 出量を大幅に削減できる可能性がある。 本発明によれば、 コークス 炉で発生する顕熱を保有するコ一クス炉ガスを、 本発明の製造方法 で製造した改質用触媒と接触させて、 ガス顕熱を有効に利用して改 質を行い、 水素、 一酸化炭素、 メタン等軽質炭化水素などの燃料成 分に転換させることが可能である。
また、 本発明の改質用触媒は、 硫化水素が含まれない場合にも有 効であるが、 硫化水素雰囲気下でも安定して改質反応が進行するこ とを特徴とするものであり、 ガス中の硫化水素濃度がたとえば 20 pp m以上、 さらには 80 ppm以上、 特に 5 00 ppm以上の場合により有効であ る。 本発明の改質用触媒は、 硫化水素雰囲気下でも安定して改質反 応が進行するが、 一方、 ガス中の硫化水素濃度は低ければ低いほど 被毒されないため好ましいので、 4000ΡΡΠ1以下の濃度が好ましい。 さらに 3000ppm以下の濃度がより好ましい。
一方、 触媒反応器に内蔵されるタール改質用触媒は、 タールから 水素、 一酸化炭素、 メタンを主体とする軽質化学物質への転換時に 触媒表面上に析出する炭素、 もしくは前記熱分解工程で得られた熱 分解ガス中に含まれる硫黄成分が触媒に吸着することで、 触媒が性 能劣化する。 そこで、 劣化した触媒を再生する方法として、 触媒反 応器へ水蒸気を導入し、 水蒸気と炭素の反応により触媒表面の炭素 を除去、 もしくは、 水蒸気と硫黄の反応により触媒に吸着した硫黄 を除去することで、 触媒を再生することが可能となる。 また、 水蒸 気の一部または全部を空気に変えて導入することで、 空気中の酸素 と炭素の燃焼反応により触媒表面の炭素を除去、 もしくは酸素と硫 黄の反応により触媒に吸着した硫黄を除去することで、 触媒を再生 することも可能となる。 実施例
以下、 実施例により本発明をさらに詳細に説明するが、 本発明は これら実施例に限定されない。
(実施例 1 )
硝酸ニッケルと硝酸マグネシウムを各金属元素のモル比が 1 : 9に なるように精枰して、 60°Cの加温で混合水溶液を調製したものに、 60°Cに加温した炭酸力リゥム水溶液を加えて、 ニッケルとマグネシ ゥムを水酸化物として共沈させ、 スターラーで十分に攪拌した。 そ の後、 60°Cに保持したまま一定時間攪拌を続けて熟成を行った後、 吸引ろ過を行い、 80°Cの純水で十分に洗浄を行った。 洗浄後に得ら れた沈殿物を 120°Cで乾燥し粗粉砕した後、 空気中 600°Cで焼成 (か 焼) したものをビーカーに入れ、 アルミナゾルを加えて攪拌羽を取 り付けた混合器で十分混合したものをなすフラスコに移してロータ リーエバポレーターに取り付け、 攪拌しながら吸引することで、 水 分を蒸発させた。 なすフラスコ壁面に付着したニッケルとマグネシ ゥムとアルミナの混合物を蒸発皿に移して 120°Cで乾燥、 600°Cでか 焼後、 粉末を圧縮成形器を用いて 3匪 φ の錠剤状にプレス成型し、 錠剤成型体を得た。 その成型体を空気中 1 100°Cで焼成を行い、 N i 0 . , Mg0 . 9 0にアルミナが 50質量%混合した触媒成型体を調製した。 その 成型体を木屋式硬度計で計測したところ、 180Nの高い強度を保持す ることが分かった。
この触媒を 60cc用い、 SUS製反応管の中央に位置するよう石英ゥ —ルで固定し、 触媒層中央位置に熱電対を挿入し、 これら固定床反 応管を所定の位置にセッ 卜した。
改質反応を始める前に、 まず反応器を窒素雰囲気下で 800°Cまで 昇温した後、 水素ガスを 100cc/m in流しながら 30分間還元処理を行 つた。 その後、 コ一クス炉ガスの模擬ガスとして水素 : 窒素 = 1 : 1 (モル比) 、 H2Sを表 1に示す濃度、 トータルで 125cc/miiiになるよ う各ガスを調整して導入し、 常圧下、 表 1に示す各温度で反応評価 した。 また石炭乾留時発生タールの模擬物質として、 タール中にも 実際に含まれ且つ常温で粘度の低い液体物質である 1 一メチルナフ 夕レンを代表物質として用い、 精密ポンプで 0.025g/miiiの流量で反 応管へ導入した。 また、 (H20モル数) / (上記 1 一メチルナフタレ ンの炭素モル数) =3となるよう、 純水を精密ポンプで 0. lg/minの流 量で反応管へ導入した。 出口から排出された生成ガスを室温トラッ プ、 氷温トラップを経由させて、 各々ナフタレン、 水分を除去した 後、 ガスクロマトグラフィー(ヒューレッ トパッカ一ド製 HP6890)に 注入して TCD, FID分析を行った。 改質反応の反応度合 (メチルナフ 夕レンの分解率) は、 メタン選択率、 CO選択率、 C02選択率、 触媒 上に堆積した炭素析出率で判断した。 それらは出口ガス中の各成分 濃度より、 以下の式で算出した。
メタン選択率は) = (CH4の体積量) Z (供給されたメチルナフタレ ンの C供給量) X 100
CO選択率 ) = (COの体積量) / (供給されたメチルナフタレンの C 供給量) X 100
C02選択率 ) = (C02の体積量) / (供給されたメチルナフタレン の C供給量) X 100
炭素析出率は) - (析出炭素重量)/ (供給されたメチルナフタレン の C供給量) X 100
また、 合わせて入口水素ガス体積に対する出口水素ガス体積の比 (水素増幅率) も併記した。 表 1
Figure imgf000023_0001
表 1の No. 1〜5の結果、 H2 S濃度が 2000ppmという高濃度に含まれる 雰囲気下でも、 模擬タールであるメチルナフ夕レンの分解反応が進 んでおり、 本製造方法で作成した触媒は耐硫黄被毒性に強いことを 示唆している。 また、 特に反応温度の上昇に伴い分解率 (メタン選 択率 + C0選択率 + C02選択率 +炭素析出率) が高く、 硫黄被毒性が 高く炭素析出性の高い過酷な状況下であってもメチルナフ夕レンの 分解反応が進行していることがわかる。 また、 模擬タールの分解率 の上昇に伴い、 水素増幅率も上昇したことから、 メチルナフ夕レン を構成する炭素と結合した水素が触媒による分解に伴って水素分子 に変換されたと考えられる。 また、 炭素析出率は比較的低い数値で あり、 温度が上昇するほど低くなる。 また、 全体の改質反応も 800 °C以上の高温領域で効率的に進行し、 温度が上昇するほど分解率が 上昇することが判明した。
(実施例 2 )
実施例 1 と同一の触媒を、 950°Cで焼成し、 30cc用いる他は全て 実施例 1 と同じ方法とし、 表 2の条件下で触媒活性を評価した。 そ の結果を表 2に示す。 表 2
Figure imgf000024_0001
表 2の No.6〜9の結果、 H2S濃度が 2000ppmの高濃度雰囲気下では 、 900°Cまで温度が上がるほど模擬タールの改質活性が上昇し、 分 解率が向上した。 また、 反応温度が同一で H2S濃度の異なる No.8, 10 , 11の結果を比較すると、 濃度が高くなるほど模擬タールの分解率 は低下する傾向にあるが、 H2S濃度が 2000ΡΡΠ1であつても 800°Cで分 解率が 71%と高い活性を示すことがわかった。
また、 反応後の触媒の広角 X線回折による Ni (200) ピークからの^ 粒の大きさの評価を以下のようにして行った。 まず、 材料を粉末試 料用ホルダ一にセッ トした後、 Rigaku製 RINT1500を用い、 40kV, 150 mAの出力で CuKa線を発生させ、 モノクロメーターを黒鉛とし、 発 散スリ ッ ト及び散乱スリ ッ トを Γ 、 受光スリ ッ トを 0. 15mm, モノ クロ受光スリッ トを 0.8Mとして、 サンプリング幅 0.01deg、 スキヤ ン速度を 2deg/miiiの条件で測定した。 測定プロファイルの中で、 特 に 20が約 52deg近辺に現れる Ni (200)ピークについて、 ピーク トツ プの半分の高さの位置でのピーク幅 (半値幅) を計測し、 その値か ら以下の Scherrerの式を用いて算出した。 ここで、 Dh k lは結晶粒の大きさのため、 Ni ( 200) 回折線で評価 すれば、 Niの結晶粒の大きさを表すことになる。 Kは定数だが下記 に示すように βに半値幅を用いることから 0. 9とした。 λは測定 X線 波長であり、 本測定では 1. 54056 Αであった。 また iSは結晶粒の大 きさによる回折線の広がりであり、 上記半値幅を用いた。 0は N i ( 200) 回折線のブラッグ角である。
本手法により、 本試験に用いた触媒を粉砕し、 図 3 に示す広角 X 線回折による ( 200) ピークから求めた N i粒は Πηπιと算出され、 非常に微細な N i粒が析出していると評価され、 これが高い改質活性 且つ高い耐炭素析出性を発現した要因であると考えられる。
(実施例 3 )
ニッケルとマグネシウムの酸化物のうち、 ニッケルとマグネシゥ ムとアルミナの質量%が表 3になるように調製する他は実施例 1 と 同様に触媒を調製した。 アルミナが 20質量%の場合には、 強度は 10 0〜 120Nであったが、 50質量%の場合には、 強度は 160〜 200N、 80質 量%の場合には、 強度は 180〜240Nとアルミナ添加量に伴い強度が 増加し、 いずれの場合にも比較的高い強度を有すると評価された。 また実験条件としては、 反応温度 800°C、 H2 S濃度 2000ppm、 常圧下 で実施例 1の No. 3の条件で評価した。 その結果を表 3、 4に示す。
表 3
Figure imgf000025_0001
表 4
Figure imgf000026_0001
表 3、 表 4の結果、 主活性成分である N i質量が小さいものほどメチ ルナフタレンの分解率は低く、 水素増幅率も低くなり、 N i質量が 1 質量%を下回る No. 12の場合には、 分解率、 水素増幅率共に低い結 果となった。 一方、 N i質量が大きくなるほど分解率、 水素増幅率も 高くなつた。 しかし、 N i質量が 50質量%を超える No. 24の場合には 、 炭素析出量が多い結果となった。 また No. 13と No. 20や No. 14と No. 2 1を比較すると、 ほぼ同等の N i質量であってもアルミナ質量の違い により、 アルミナ成分が多い方が触媒活性は高かった。 これは、 ァ ルミナ成分がニッケルマグネシア化合物相を微細に分断して還元時 に析出する N i金属粒子のサイズが小さくなり反応表面積が大きくな つたためと予想される。 また Mg質量が大きいものほど炭素析出率が 低く、 Mg質量が 5質量%を下回る No. 16の場合では、 炭素析出量が高 くなつた。 さらに、 アルミナの質量が 10 %の化合物を調製したとこ ろ、 いずれの組成でも 50〜80Nどまりで低い圧壊強度しか得られな 力 つた。
(実施例 4 )
反応温度 800°C、 H2 S濃度 2000ppm、 反応時に H2 0、 C02及び 02を表 5に示した各条件になるように導入したほかは実施例 1 と同様に触 媒調製、 評価を行った。 その結果を表 5に示す。 尚、 ここで H20/C 、 C02/C及び 02/Cの Cは供給されたメチルナフタレンの C供給量(モル 比)を示す。
表 5
Figure imgf000027_0001
表 4の結果、 外部から H20 や C02や 02を導入することにより、 実 施例 1の No.3の結果と比較すると、 改質反応が進むことが確認され た。 尚、 02を導入する場合、 H20によるスチームリフォーミングゃ C 02による ドライ リフォ一ミングの吸熱を燃焼熱で熱補償できるため 、 実際の反応器を想定した場合、 非常に有効な手法である。
(実施例 5 )
コークス炉をシミュレートできるバッチ炉に実際のコークス炉で 使用している装入炭を 80kg充填し、 実コークス炉に合わせて 800°C に昇温して、 実コークス炉ガス及び随伴する実タールを発生させた 。 その際のタール含有ガス中のタールは、 約 0.04g/Lであった。 そ のガスを吸引ポンプで捕集し、 実験に用いた。 反応温度 800°Cにな るよう昇温した電気炉内部に反応管を配置してその中央部に実施例 1と同様の製造方法により NiD. !Mgc.90にアルミナが 50質量%混合し た酸化物をリング状に成型したもの (強度は約 200N) を設置し、 水 素を lONL/minで 2時間還元後、 バッチ炉から捕集したガスを触媒層 へ流すことにより、 実コークス炉ガス及び随伴実タールの触媒分解 活性を 5時間継続して評価した。 入口ガス流量は約 l ONL/m i nで、 触 媒充填量は約 1 Lであった。 尚、 入口ガス組成は実コークス炉ガスと ほぼ同じ組成であることをガスクロマトグラフィーで確認した。 ま た、 そのガス中には硫化水素が 2400〜 2500ppm含まれていることを 確認した。 ガス中のタール濃度は、 以下の方法で評価した。 すなわ ち、 触媒層の入口と出口部に取り付けた開閉可能なコックに、 予め 真空状態にした 1Lの真空捕集瓶を取り付けてコックを開く ことによ り、 各々のガスを捕集する。 そして、 捕集瓶内をジクロロメタンで 洗浄し、 常温でジクロロメタンを完全に除去した後の液体成分の質 量を定量した。 そして、 タール分解率は、 前記手法で捕集した触媒 層入口ガス中タール成分の質量に対する触媒層出口ガス中タール成 分の質量の割合から求めた。 その結果、 タール分解率は反応開始後 2時間経過時で 88 %、 水素増幅率は 5時間平均で 2. 2まで到達した。
(実施例 6 )
実施例 1 の No. 3の条件で 8hr継続して反応を進行させた後、 原料 の投入を停止し、 キャリアガスとして N2 60cc/m i n、 H2 0をガス換算 で 60cc/m i nの状況下で触媒層温度を 800°Cにして 5hr保持して触媒上 に堆積した炭素や硫黄を除去した後、 新たに実施例 1 と同じ条件で 原料の投入を開始したところ、 再生前の 9割以上の活性を示すこと が確認された。 また本試験における改質後のガス中の水素濃度も高 く、 水素、 一酸化炭素、 メタンが主成分のガスに変換されたことが 確認された。
(実施例 7 )
実施例 6 と同様、 実施例 1 の No. 3の条件で 81i r継続して反応を進 行させた後、 原料の投入を停止し、 キャリアガスとして N2 60c c/m i n、 空気 60 cc/m i nの状況下で触媒層温度を 800°Cにして 2h r保持して 触媒上に堆積した炭素や硫黄を除去した後、 新たに実施例 1 と同じ 条件で原料の投入を開始したところ、 再生前の 9割以上の活性を示 すことが確認された。 また本試験における改質後のガス中の水素濃 度も高く、 水素、 一酸化炭素、 メタンが主成分のガスに変換された ことが確認された。
(実施例 8 )
図 2 に示される口一タリーキルン 7 を乾留炉として 800°Cに昇温 した後、 石炭塊 (5 cm以下に分級) を充填したホッパー 5から定量 供給機 6 を用い、 口一タリーキルン 7の中に 20kg/hの供給速度で石 炭塊を導入してタールを含有する乾留ガスを発生させ、 誘引通風機 1 1 によりガス流量約 10Nm3 /liになるように流量を調整した状態で 、 そのタール含有ガス (乾留ガス) を実施例 1 と同じ触媒組成で外 径 1 5 πιπι φ、 内径 5πιπι φ、 高さ 1 5 mmのリ ング状成型触媒を充填、 約 800 °Cに保温した触媒塔 8へ導入し、 触媒と接触させることにより、 夕 ール含有ガスの触媒分解活性を 8時間継続して評価した。 その後、 改質ガスをスクラバ一 9で水冷、 油バブラ一 1 0で除塵した後、 フ レアスタック 1 2で燃焼放散させた。 尚、 原料投入前に水素 5Nm3 /h で 30分間還元処理を行った。 入口ガス流量は約 10Nm3 /hで、 触媒充 填量は約 1 5Lであった。 その際のタール含有ガス中のタールは、 約 6 O g/Nm3であった。 尚、 入口ガス組成は実コ一クス炉ガスとほぼ同じ 組成であることをガスクロマトグラフィーで確認した。 また、 その ガス中には、 原料である石炭に含まれている約 6 %の水分が揮発し 、 水蒸気となって含まれていた。 さらに、 そのガス中には硫化水素 が 2000〜 2500ppm含まれていることを確認した。 ガス中のタール濃 度は、 触媒層の入口と出口からガスを一定時間吸引してジクロロメ タンを充填した五連式インピンジャ一を通してガス中の夕一ル成分 を捕集した後、 ジクロロメタンを除去後の常温で液体の成分を定量 することにより評価した。 そして、 タール分解率は、 前記手法で捕 集した触媒層入口ガス中タール成分の質量に対する触媒層出口ガス 中タール成分の質量の割合から求めた。 その結果、 タール分解率は 反応開始後 3時間経過時で約 8 1 %、 水素増幅率は 8時間平均で 2. 3ま で到達し、 ベンチプラント規模でのタール含有ガスの触媒ドライガ ス化反応が進行していることを検証した。
(実施例 9 )
実施例 8 と同一の設備を用い、 その中に 10kg/hの供給速度で建築 廃材チップ (5 cm以下に分級) を供給して 800°Cに保持したロータリ 一キルン 7で乾留することによりバイオマスタール含有ガス (乾留 ガス) を発生させ、 そのタール含有ガスを実施例 3の No. 18と同じ 組成の他は実施例 8 と同じ成型触媒を充填、 約 800°Cに保温した触 媒塔へ導入し、 触媒と接触させることにより、 タール含有ガスの触 媒分解活性を 8時間継続して評価した。 尚、 原料投入前に水素 5Nm3 / hで 30分間還元処理を行った。 入口ガス流量は約 10Nm3 /hで、 触媒充 填量は約 15Lであった。 その際のバイオマス夕一ル含有ガス中の夕 ールは、 約 10g/Nm3であった。 尚、 入口ガス組成はコークス炉ガス に近く、 水素、 C0、 メタン、 C02を主成分とする組成であることを ガスクロマトグラフィーで確認した。 また、 そのガス中には、 原料 である建築廃材に含まれている約 16 %の水分が揮発し、 水蒸気とな つて含まれていた。 さらに、 そのガス中には硫化水素が約 25ppm含 まれていることを確認した。 尚、 タール分解率は、 実施例 8 と同様 の手法により触媒層の入口と出口からタール含有ガス中タール成分 を捕集し、 タール分を定量することにより評価した。 その結果、 夕 ール分解率は反応開始後 3時間経過時で 94 %、 水素増幅率は 8時間を 通して約 6で安定に推移し、 ベンチプラント規模でのバイオマスタ ール含有ガスの触媒ドライガス化反応が安定して進行していること を検証した。
(実施例 1 0 )
実施例 8 と同一の設備を用い、 その中に 1 0 kg/hの供給速度でスー パーマーケッ ト等から集められた食品廃棄物の乾燥塊 (5 cm以下に 分級) を供給して 8 00 °Cに保持したロータリーキルン 7で乾留する ことによりバイオマスタール含有ガス (乾留ガス) を発生させ、 そ のタール含有ガスを実施例 3の No. 1 8と同じ組成の他は実施例 8 と 同じ成型触媒を充填、 約 800 °Cに保温した触媒塔へ導入し、 触媒と 接触させることにより、 タール含有ガスの触媒分解活性を 8時間継 続して評価した。 尚、 原料投入前に水素 5 Nm3 /hで 30分間還元処理を 行った。 入口ガス流量は約 1 0Nm3 /hで、 触媒充填量は約 1 5 Lであった 。 その際のバイオマス夕一ル含有ガス中のタールは、 約 23 g/Nm3で あった。 尚、 入口ガス組成はコークス炉ガスに近く、 水素、 C0、 メ タン、 C 02を主成分とする組成であることをガスクロマトグラフィ —で確認した。 また、 そのガス中には、 原料である食品廃棄物の乾 燥品及び建築廃材の混合品に含まれている約 30 %の水分が揮発し、 水蒸気となって含まれていた。 さらに、 そのガス中には硫化水素が 約 400ppm含まれていることを確認した。 尚、 タール分解率は、 実施 例 8 と同様の手法により触媒層の入口と出口からタール含有ガス中 タ一ル成分を捕集し、 タール分を定量することにより評価した。 そ の結果、 タール分解率は反応開始後 3時間経過時で 88 %、 水素増幅 率は反応初期から徐々に硫黄被毒により低下したが、 反応開始後 4h r以降約 4強で安定に推移し、 ベンチプラント規模でのバイオマス夕 ール含有ガスの触媒ドライガス化反応が安定して進行していること を検証した。
(実施例 1 1 )
実施例 8 と同一の設備を用い、 その中に 1 0kg/hの供給速度で、 実 施例 1 0 と同一の食品廃棄物の乾燥塊 (5 cm以下に分級) と建築廃 材チップ (5cm以下に分級) を重量比で 1 : 2に混合したものを供 給して 800°Cに保持したロータリ一キルン 7で乾留することにより バイオマスタール含有ガス (乾留ガス) を発生させ、 そのタール含 有ガスを実施例 3の No. 18と同じ組成の他は実施例 8 と同じ成型触 媒を充填、 約 800°Cに保温した触媒塔へ導入し、 触媒と接触させる ことにより、 タール含有ガスの触媒分解活性を 8時間継続して評価 した。 尚、 原料投入前に水素 5Nm3 /hで 30分間還元処理を行った。 入 口ガス流量は約 10Nm3 /hで、 触媒充填量は約 15Lであった。 その際の バイオマス夕一ル含有ガス中のタールは、 約 14g/Nm3であった。 尚 、 入口ガス組成はコークス炉ガスに近く、 水素、 C0、 メタン、 C02 を主成分とする組成であることをガスクロマトグラフィーで確認し た。 また、 そのガス中には、 原料である食品廃棄物の乾燥品及び建 築廃材の混合品に含まれている約 20 %の水分が揮発し、 水蒸気とな つて含まれていた。 さらに、 そのガス中には硫化水素が約 200ppm含 まれていることを確認した。 尚、 タール分解率は、 実施例 8 と同様 の手法により触媒層の入口と出口からタール含有ガス中タール成分 を捕集し、 夕一ル分を定量することにより評価した。 その結果、 夕 —ル分解率は反応開始後 3時間経過時で 87 %、 水素増幅率は反応初 期から徐々に硫黄被毒により低下したが、 反応開始後 4hr以降約 4. 4 で安定に推移し、 ベンチプラント規模でのバイオマスタール含有ガ スの触媒ドライガス化反応が安定して進行していることを検証した
(実施例 1 2 )
実施例 8で 8時間改質した後、 原料である石炭の供給を停止し、 窒素で系内をパージした後、 800°Cで保持されたロータリーキルン 7の入口付近に設置したガス取り込み口より空気を吸い込み、 ロー 夕リ一キルンで加熱された空気を触媒塔へ約 l Oh r導入することで、 改質後の触媒表面上に堆積した析出炭素及び吸着硫黄を酸化除去し 、 再生した。 その後、 酸素分を追い出すために窒素で系内をパージ した後、 再度水素 5 Nm3 /hで 30分間還元処理を行った後、 原料を同一 速度で供給し、 触媒と接触させることにより、 タール含有ガスの触 媒分解活性を 8時間継続して評価した。 その結果、 再生後のタール 分解率、 水素増幅率は再生前と同様の数値が得られ、 空気燃焼によ る触媒の再生が十分行われたことが検証された。 また、 このタール 含有ガスの触媒分解、 その後の触媒再生を 5回繰返し行ったが、 水 素増幅率は再生前と同様の安定した結果が得られ、 長期で運転でき ることがわかった。
(実施例 1 3 )
実施例 9で 8時間改質した後、 原料である建築廃材チップの供給 を停止し、 実施例 1 2 と同様に窒素で系内をパージした後、 800°C で保持されたロー夕リーキルン 7入口付近に設置したガス取り込み 口より空気を吸い込み、 ロータリ一キルンで加熱された空気を触媒 塔へ約 l Oh r導入することで、 改質後の触媒表面上に堆積した析出炭 素及び吸着硫黄を酸化除去し、 再生した。 その後、 酸素分を追い出 すために窒素で系内をパージした後、 再度水素 5 N m 3 / hで 30分間還元 処理を行った後、 原料を実施例 9 と同一速度で供給し、 触媒と接触 させることにより、 タール含有ガスの触媒分解活性を 8時間継続し て評価した。 その結果、 再生後のタール分解率、 水素増幅率は再生 前と同様の数値が得られ、 建築廃材チップの場合にも空気燃焼によ る触媒の再生が十分行われたことが検証された。 また、 このバイオ マスタール含有ガスの触媒分解、 その後の触媒再生を 6回繰返し行 つたが、 水素増幅率は再生前と同様の安定した結果が得られ、 長期 で運転できることがわかった。 (実施例 1 4 )
実施例 1 0で 8時間改質した後、 原料である食品廃棄物乾燥塊の 供給を停止し、 実施例 1 2 と同様に窒素で系内をパージした後、 80 0でで保持されたロータリーキルン 7入口付近に設置したガス取り 込み口より空気を吸い込み、 ロータリーキルンで加熱された空気を 触媒塔へ約 l Ohr導入することで、 改質後の触媒表面上に堆積した析 出炭素及び吸着硫黄を酸化除去し、 再生した。 その後、 酸素分を追 い出すために窒素で系内をパージした後、 再度水素 5Nm3 /hで 30分間 還元処理を行った後、 原料を実施例 1 0 と同一速度で供給し、 触媒 と接触させることにより、 タール含有ガスの触媒分解活性を 8時間 継続して評価した。 その結果、 再生後のタール分解率、 水素増幅率 は再生前と同様の数値が得られ、 食品廃棄物乾燥塊の場合にも空気 燃焼による触媒の再生が十分行われたことが検証された。 また、 こ のバイオマスタール含有ガスの触媒分解、 その後の触媒再生を 5回 繰返し行ったが、 水素増幅率は再生前と同様の安定した結果が得ら れ、 長期で運転できることがわかった。
(実施例 1 5 )
実施例 1 1で 8時間改質した後、 原料である食品廃棄物乾燥塊と 建築廃材チップ混合品の供給を停止し、 実施例 1 2 と同様に窒素で 系内をパージした後、 800°Cで保持された口一タリ一キルン 7入口 付近に設置したガス取り込み口より空気を吸い込み、 ロータリーキ ルンで加熱された空気を触媒塔へ約 l Ohr導入することで、 改質後の 触媒表面上に堆積した析出炭素及び吸着硫黄を酸化除去し、 再生し た。 その後、 酸素分を追い出すために窒素で系内をパージした後、 再度水素 5Nm3 /hで 30分間還元処理を行った後、 原料を実施例 1 1 と 同一速度で供給し、 触媒と接触させることにより、 タール含有ガス の触媒分解活性を 8時間継続して評価した。 その結果、 再生後の夕 ール分解率、 水素増幅率は再生前と同様の数値が得られ、 食品廃棄 物乾燥塊と建築廃材チップ混合品の場合にも空気燃焼による触媒の 再生が十分行われたことが検証された。 また、 このバイオマスター ル含有ガスの触媒分解、 その後の触媒再生を 5回繰返し行ったが、 水素増幅率は再生前と同様の安定した結果が得られ、 長期で運転で きることがわかった。
(比較例 1 )
実施例 1と同じ実験手法で実施例 2の No. 8の条件で、 触媒として 工業触媒の一つであるズードケミ一製ナフサ一次リフォーミング触 媒 (SC 11NK; N i- 20質量%担持アルミナ成型品) (強度は 500Nと高 い) で改質試験を行ったところ、 メタン選択率が 2. 5 %、 CO選択率 が 4. 2 %、 C02選択率が 5. 9 %、 炭素析出率が 32. 8 %、 分解率 45. 4 % 、 水素増幅率が 1. 3となった。
従って、 工業触媒は強度は非常に高いものの、 メチルナフタレン のガス成分への変換率が低い (12. 6 % ) —方、 炭素析出率が非常に 高い結果となった。 炭素析出率が非常に高いため、 触媒寿命が短い 恐れが十分あり、 また例え、 反応後に再生処理を行ったとしても、 高温または長期間酸化処理を行う必要があるために、 その際の大き な燃焼熱により触媒活性粒子がシンタリ ングを引き起こして、 再生 後の性能がさらに低くなると予想される。
(比較例 2 )
実施例 4と同じ試験設備を用い、 実施例 5と同じ条件で比較例 1で 用いた工業触媒 (SC 1 1NK) を反応管に設置して評価を行った。 その 結果、 タール分解率は反応開始後 2時間経過時で 22 %にとどまり、 水素増幅率も 5時間平均で約 1. 5となり、 工業触媒は実コークス炉ガ ス、 実タール下での評価でもタール分解率が低いことが判明した。
(比較例 3 ) 実施例 1 と同様にしてニッケルとマグネシウムの沈殿物を調製し た後、 ろ過、 洗浄、 乾燥した後、 空気中 950°Cで 20時間焼成を行い 、 ニッケルとマグネシアの化合物を得た。 その後、 シリカゾルを触 媒中の Si02が 50質量%の割合になるように添加し、 スラリーを調製 した。 その後平均粒径が約 50 mになるような条件で噴霧乾燥を行 い、 そこで得られた粉末を空気中 950°Cで焼成を行った。 さらに、 得られた固溶体酸化物を実施例 1と同じ実験手法で成型、 焼成した 後、 実施例 2の No.8と同じ条件で活性評価を行った。 その結果、 触 媒活性はメチルナフタレンの分解率が 15%程度どまりで非常に低く 、 水素増幅率も 1.0と全く増幅しない結果となり、 強度が低く、 触 媒活性も低いことが判明した。
(比較例 4)
実施例 1 と同様にしてニッケルとマグネシウムの沈殿物を調製し た後、 ろ過、 洗浄、 乾燥した後、 空気中 950°Cで焼成を行い、 ニッ ケルとマグネシアの化合物を得た。 その後、 アルミナ粉末を 50wt% になるように秤量し、 両者を乳鉢を用いて物理的に混合した。 その 混合物を実施例 1 と同じ実験手法で成型、 焼成した後、 強度及び実 施例 2の No.8と同じ条件で活性評価を行った。 その結果、 触媒活性 はメチルナフタレンの分解率が 66.7%程度、 水素増幅率も 1.6と中 程度の触媒活性を示したが、 強度が 40Nどまりであり、 実用上適用 困難な強度であることが判明した。
(比較例 5 )
F. Basile et al. , Stud. Surf. Sci. Catal. , Vo 1.119 (1998)や 特開昭 50-4001号公報などで公開されているように、 ニッケルとマ グネシゥム及びアルミニウムを含んだ水溶液から沈殿剤により沈殿 物を作成、 焼成する製法で調製した。 即ち、 硝酸ニッケルと硝酸マ グネシゥムと硝酸アルミニウムを、 ニッケルとマグネシウムの金属 元素のモル比が実施例 1 と同じ 1:9になるようにし、 アルミナとし て 50wt%になるように計算して精秤し、 60°Cの純水に混合した混合 溶液を調製したものに、 実施例 1 と同様 60°Cに加温した炭酸力リゥ ム水溶液を加え、 スターラーで十分に攪拌した。 その後、 60 に保 持したまま一定時間攪拌を続けて熟成を行った後、 吸引ろ過を行い 、 80°Cの純水で十分に洗浄した。 その後、 この沈殿物を蒸発皿に移 して 120°Cで乾燥、 乳鉢で粉砕後、 粉末を圧縮成型器を用いて実施 例 1 と同様にプレス成型し、 錠剤成型体を得た。 その成型体を、 空 気中、 1100°Cで焼成を行って触媒成型体を調製した。 これを用いて 実施例 2の No.8と同じ条件で活性評価を行った。 その結果、 触媒活 性はメチルナフタレンの分解率が 62.6%程度 (内、 炭素析出率が 19 .9%) 、 水素増幅率は 1.6と中程度の触媒活性しか示さず、 炭素析 出量が非常に多いことが判明した。
また、 実施例 2 と同様の手法で、 反応後の触媒を粉砕し、 図 4に 示す広角 X線回折による Ni ( 200) ピークから求めた Ni粒は 35nmと算 出され、 本手法で調製された化合物からは Niが微細に析出すること ができないために、 炭素析出量が多く、 また改質活性も低い結果に なったと考えられる。

Claims

請 求 の 範 囲
1 . ニッケル化合物とマグネシウム化合物の溶液に沈殿剤を添加 して、 ニッケルとマグネシウムを共沈させて沈殿物を生成し、 当該沈殿物を乾燥及び焼成してニッケルとマグネシウムの酸化物 を生成し、
当該酸化物に、 (a)アルミナ粉末と水、 または、 (b)アルミナゾル を加えて混合して混合物を生成し、
当該混合物を少なく とも乾燥及び焼成して触媒を製造する ことを含むタール含有ガスの改質用触媒の製造方法。
2 . 前記混合物を、 (i )乾燥及び焼成、 又は(i i )乾燥、 か焼、 粉 砕、 成型及び焼成して、 触媒を製造する、 請求項 1記載のタール含 有ガスの改質用触媒の製造方法。
3 . 前記製造されたタール含有ガスの改質用触媒が、 ニッケル含 有量において 1〜50質量%、 マグネシウム含有量において 5〜45質量 %、 アルミナの含有量において 20〜80質量%となるように製造する 、 請求項 1または 2に記載のタール含有ガスの改質用触媒の製造方 法。
4 . 前記製造されたタール含有ガスの改質用触媒が、 ニッケル含 有量において 1〜35質量%、 マグネシウム含有量において 10〜 25質 量%、 アルミナの含有量において 20〜 80質量%となるように製造す る、 請求項 1または 2に記載のタール含有ガスの改質用触媒の製造 方法。
5 . 請求項 1〜 4のいずれかに 1項に記載の製造方法で製造され るタール含有ガスの改質用触媒を用いたタール含有ガスの改質方法
6 . 前記タール含有ガス改質用触媒の存在下又は還元後の前記触 媒の存在下において、 炭素質原料を熱分解した際に発生するタール 含有ガス中の水素、 二酸化炭素、 及び水蒸気を接触させて、 前記夕 ール含有ガス中のタールを改質してガス化する、 請求項 5に記載の タール含有ガスの改質方法。
7 . 前記熱分解した際に発生するタール含有ガスに、 外部から水 素、 二酸化炭素、 水蒸気の少なく ともいずれかを接触させて、 前記 タール含有ガスを改質してガス化する、 請求項 5 または 6 に記載の 夕一ル含有ガスの改質方法。
8 . 前記タール含有ガスが、 硫化水素を 20ppm以上含むタ一ル含 有ガスである、 請求項 5〜 7のいずれか 1項に記載のタール含有ガ スの改質方法。
9 . 前記改質用ガスに、 更に酸素含有ガスを加えて、 夕一ル含有 ガスに接触させる、 請求項 5〜 8のいずれか 1項に記載のタール含 有ガスの改質方法。
1 0 . 前記タール含有ガスが、 石炭を乾留したときに発生する乾 留ガスである、 請求項 5〜 9 に記載のタール含有ガスの改質方法。
1 1 . 前記タール含有ガスがコークス炉から排出されるコ一クス 炉ガスである、 請求項 5〜 9のいずれか 1項に記載のタール含有ガ スの改質方法。
1 2 . 前記タール含有ガスが、 木質系バイオマス、 食品廃棄物系 バイオマスの少なく ともいずれかを乾留したときに発生する乾留ガ スである、 請求項 5〜 9のいずれか 1項に記載のタール含有ガスの 改質方法。
1 3 . 前記タール含有ガス改質用触媒に前記タール含有ガスを 60 0〜 1000°Cで接触させる、 請求項 5〜 1 2のいずれか 1項に記載の タール含有ガスの改質方法。
1 4 . 請求項 5〜 1 3のいずれか 1項に記載のタール含有ガスの 改質方法の実施により、 前記触媒が、 炭素析出、 硫黄被毒の少なく ともいずれかにより性能劣化した場合に、 前記触媒に水蒸気、 また は空気の少なく ともいずれかを接触させて、 前記触媒を再生する、 タール含有ガスの改質用触媒の再生方法。
PCT/JP2008/073976 2007-12-27 2008-12-26 タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法 WO2009084736A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801229114A CN101918133B (zh) 2007-12-27 2008-12-26 含焦油气体的重整用催化剂的制造方法、焦油重整方法和含焦油气体的重整用催化剂的再生方法
EP08866954.4A EP2236204B8 (en) 2007-12-27 2008-12-26 Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
BRPI0821811-0A BRPI0821811B1 (pt) 2007-12-27 2008-12-26 Method of production of recovery catalyzer of gas containing alcatrão, and method of recovery of gas containing alcatrão
KR1020107014057A KR101203229B1 (ko) 2007-12-27 2008-12-26 타르 함유 가스의 개질용 촉매의 제조 방법, 타르 개질 방법 및 타르 함유 가스의 개질용 촉매의 재생 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-337311 2007-12-27
JP2007337311 2007-12-27
JP2008155887 2008-06-13
JP2008-155887 2008-06-13
JP2008-244851 2008-09-24
JP2008244851A JP4436424B2 (ja) 2007-12-27 2008-09-24 タール含有ガスの改質方法

Publications (1)

Publication Number Publication Date
WO2009084736A1 true WO2009084736A1 (ja) 2009-07-09

Family

ID=40824440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073976 WO2009084736A1 (ja) 2007-12-27 2008-12-26 タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法

Country Status (7)

Country Link
EP (1) EP2236204B8 (ja)
JP (1) JP4436424B2 (ja)
KR (1) KR101203229B1 (ja)
CN (1) CN101918133B (ja)
BR (1) BRPI0821811B1 (ja)
TW (1) TW200938298A (ja)
WO (1) WO2009084736A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134326A1 (ja) * 2009-05-19 2010-11-25 新日本製鐵株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
EP2476484A1 (en) * 2009-09-09 2012-07-18 Toda Kogyo Corporation Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
US9404651B2 (en) 2009-09-03 2016-08-02 Corinna Powell Method and device for using oxygen in the steam reforming of biomass
CN112007625A (zh) * 2019-05-28 2020-12-01 中国石油化工股份有限公司 一种α-氧化铝载体及制备方法和银催化剂与应用
CN113828318A (zh) * 2021-07-29 2021-12-24 同济大学 一种以镁渣为载体的镍基催化剂及其制备方法
CN114073945A (zh) * 2020-08-21 2022-02-22 中国石油天然气股份有限公司 一种复合氧化铝催化剂及其制备方法和应用
WO2024174155A1 (zh) * 2023-02-23 2024-08-29 宁波诺丁汉大学 一种焦油裂解催化剂及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159313A (zh) 2008-09-24 2011-08-17 新日本制铁株式会社 含焦油气体的重整用催化剂的制造方法、焦油重整方法及含焦油气体的重整用催化剂的再生方法
JP5511169B2 (ja) * 2008-09-24 2014-06-04 新日鐵住金株式会社 タール含有ガスの改質方法
JP5659532B2 (ja) * 2010-03-31 2015-01-28 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659534B2 (ja) * 2010-03-31 2015-01-28 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659536B2 (ja) * 2010-03-31 2015-01-28 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659533B2 (ja) * 2010-03-31 2015-01-28 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5494135B2 (ja) * 2010-03-31 2014-05-14 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659537B2 (ja) * 2010-03-31 2015-01-28 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5720107B2 (ja) * 2010-03-31 2015-05-20 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5748562B2 (ja) * 2011-05-25 2015-07-15 新日鐵住金株式会社 水素富化コークス炉ガス製造システム
CN102949994A (zh) * 2011-08-31 2013-03-06 中国石油化工股份有限公司 高活性烃类蒸汽预转化催化剂
US8993477B2 (en) 2011-11-09 2015-03-31 Basf Se Catalyst composition for the steam reforming of methane in fuel cells
EP2776158B1 (de) * 2011-11-09 2017-04-26 Basf Se Katalysatorzusammensetzung für die methandampfreformierung in brennstoffzellen
KR101353220B1 (ko) * 2012-09-04 2014-01-22 재단법인 포항산업과학연구원 고온 원소유황 생성촉진용 촉매 및 이의 제조방법
JP5776737B2 (ja) * 2013-07-22 2015-09-09 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5780271B2 (ja) * 2013-07-22 2015-09-16 新日鐵住金株式会社 タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
CN103877980A (zh) * 2014-03-19 2014-06-25 中国科学院过程工程研究所 一种用于催化热解实现焦油轻质化的催化剂及其制备方法
DK3234069T3 (da) 2014-12-15 2020-11-23 Haldor Topsoe As Katalysatorregenereringsfremgangsmåde for en tjærereformeringskatalysator
KR101660696B1 (ko) * 2015-09-08 2016-09-28 주식회사 포스코 타르 분해 장치, 용철 제조 장치 및 용철 제조 방법
CN105542806A (zh) * 2016-01-27 2016-05-04 华东理工大学 一种生物质连续炭化生产清洁燃气和生物质炭的装置及方法
CN105665418B (zh) * 2016-01-28 2018-01-30 罗红杰 一种垃圾无氧裂解设备
JP7135686B2 (ja) * 2018-10-02 2022-09-13 株式会社Ihi ガス化ガス製造装置、および、ガス化ガスの製造方法
JP7110885B2 (ja) * 2018-10-02 2022-08-02 株式会社Ihi ガス化ガス製造装置、および、ガス化ガスの製造方法
US11311869B2 (en) 2019-12-03 2022-04-26 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11517892B2 (en) 2019-12-03 2022-12-06 Saudi Arabian Oil Company Methods of producing isomerization catalysts
CN111592904B (zh) * 2020-04-29 2021-07-02 中国科学院广州能源研究所 一种利用固废碳基双金属材料去除焦油的方法
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts
CN113955718B (zh) * 2021-10-27 2023-08-01 中冶焦耐(大连)工程技术有限公司 一种高温荒煤气非催化部分氧化直接重整工艺及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504001A (ja) 1972-06-08 1975-01-16
JPS5876487A (ja) 1981-11-02 1983-05-09 Nippon Steel Chem Co Ltd コ−クス炉ガス顕熱の回収方法及びその装置
JPS5944346B2 (ja) 1980-10-17 1984-10-29 新日本製鐵株式会社 コ−クス炉発生ガスの熱回収方法
US5516359A (en) 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
JPH08134456A (ja) 1994-11-07 1996-05-28 Nkk Corp 粗コークス炉ガスの顕熱回収方法
JP2003055671A (ja) 2001-08-20 2003-02-26 Nippon Steel Corp 粗コークス炉ガスの処理方法及び処理システム
JP2004000900A (ja) 2002-03-25 2004-01-08 Nippon Steel Corp 炭化水素の改質用触媒と炭化水素の改質方法
JP2005053972A (ja) 2003-08-06 2005-03-03 Tohoku Univ バイオマスのガス化方法及びガス化装置
JP2007229548A (ja) * 2006-02-27 2007-09-13 Nippon Steel Engineering Co Ltd バイオマス熱分解ガス化過程で使用する改質用触媒とその製造方法、及びその改質用触媒を用いた改質方法とバイオマス熱分解ガス化装置、並びに触媒再生方法
JP2007283209A (ja) * 2006-04-17 2007-11-01 Takuma Co Ltd ガス化触媒とその製造方法およびガス化処理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311893A (en) * 1976-07-20 1978-02-02 Fujimi Kenmazai Kougiyou Kk Catalysts
GB9515300D0 (en) * 1995-07-26 1995-09-20 Ici Plc Catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504001A (ja) 1972-06-08 1975-01-16
JPS5944346B2 (ja) 1980-10-17 1984-10-29 新日本製鐵株式会社 コ−クス炉発生ガスの熱回収方法
JPS5876487A (ja) 1981-11-02 1983-05-09 Nippon Steel Chem Co Ltd コ−クス炉ガス顕熱の回収方法及びその装置
US5516359A (en) 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
JPH08134456A (ja) 1994-11-07 1996-05-28 Nkk Corp 粗コークス炉ガスの顕熱回収方法
JP2003055671A (ja) 2001-08-20 2003-02-26 Nippon Steel Corp 粗コークス炉ガスの処理方法及び処理システム
JP2004000900A (ja) 2002-03-25 2004-01-08 Nippon Steel Corp 炭化水素の改質用触媒と炭化水素の改質方法
JP2005053972A (ja) 2003-08-06 2005-03-03 Tohoku Univ バイオマスのガス化方法及びガス化装置
JP2007229548A (ja) * 2006-02-27 2007-09-13 Nippon Steel Engineering Co Ltd バイオマス熱分解ガス化過程で使用する改質用触媒とその製造方法、及びその改質用触媒を用いた改質方法とバイオマス熱分解ガス化装置、並びに触媒再生方法
JP2007283209A (ja) * 2006-04-17 2007-11-01 Takuma Co Ltd ガス化触媒とその製造方法およびガス化処理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. BASILE ET AL., STUD. SURF. SCI. CATAL., vol. 119, 1998
See also references of EP2236204A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134326A1 (ja) * 2009-05-19 2010-11-25 新日本製鐵株式会社 タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
US9393551B2 (en) 2009-05-19 2016-07-19 Nippon Steel & Sumitomo Metal Corporation Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
US9404651B2 (en) 2009-09-03 2016-08-02 Corinna Powell Method and device for using oxygen in the steam reforming of biomass
EP2476484A1 (en) * 2009-09-09 2012-07-18 Toda Kogyo Corporation Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
EP2476484A4 (en) * 2009-09-09 2014-08-20 Toda Kogyo Corp POROUS CATALYTIC OBJECT FOR HYDROCARBON DECOMPOSITION AND PROCESS FOR PRODUCING THE SAME, PROCESS FOR PRODUCING HYDROGEN-CONTAINING MIXED REFORMED GAS FROM HYDROCARBON, AND FUEL CELL SYSTEM
CN112007625A (zh) * 2019-05-28 2020-12-01 中国石油化工股份有限公司 一种α-氧化铝载体及制备方法和银催化剂与应用
CN112007625B (zh) * 2019-05-28 2023-05-30 中国石油化工股份有限公司 一种α-氧化铝载体及制备方法和银催化剂与应用
CN114073945A (zh) * 2020-08-21 2022-02-22 中国石油天然气股份有限公司 一种复合氧化铝催化剂及其制备方法和应用
CN114073945B (zh) * 2020-08-21 2023-05-26 中国石油天然气股份有限公司 一种复合氧化铝催化剂及其制备方法和应用
CN113828318A (zh) * 2021-07-29 2021-12-24 同济大学 一种以镁渣为载体的镍基催化剂及其制备方法
WO2024174155A1 (zh) * 2023-02-23 2024-08-29 宁波诺丁汉大学 一种焦油裂解催化剂及其制备方法

Also Published As

Publication number Publication date
CN101918133B (zh) 2013-11-20
JP4436424B2 (ja) 2010-03-24
KR101203229B1 (ko) 2012-11-20
CN101918133A (zh) 2010-12-15
TW200938298A (en) 2009-09-16
KR20100087237A (ko) 2010-08-03
BRPI0821811A2 (pt) 2015-06-16
BRPI0821811B1 (pt) 2017-10-24
EP2236204A4 (en) 2012-08-08
EP2236204B1 (en) 2019-05-22
EP2236204B8 (en) 2019-07-24
JP2010017701A (ja) 2010-01-28
EP2236204A1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4436424B2 (ja) タール含有ガスの改質方法
JP5009419B2 (ja) タール含有ガスの改質用触媒の製造方法、タール改質方法及びタール含有ガスの改質用触媒の再生方法
JP4897112B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、タール含有ガス改質用触媒を用いたタール含有ガス改質方法、及びタール含有ガス改質用触媒の再生方法
JP5494135B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659537B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659536B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5780271B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5511169B2 (ja) タール含有ガスの改質方法
JP5659534B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP6460879B2 (ja) タール含有ガス改質用触媒の再生方法
JP7156113B2 (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガスの改質方法
JP5659532B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5720107B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5659533B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP5776737B2 (ja) タール含有ガスの改質用触媒及びその製造方法、並びにタール含有ガスの改質方法
JP2019171287A (ja) タール含有ガス改質用触媒、タール含有ガス改質用触媒の製造方法、及び、タール含有ガス改質用触媒を用いたタール含有ガス改質方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122911.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008866954

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107014057

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0821811

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100629