WO2010131646A1 - 放射状共役ジエン重合体の製造方法 - Google Patents

放射状共役ジエン重合体の製造方法 Download PDF

Info

Publication number
WO2010131646A1
WO2010131646A1 PCT/JP2010/057945 JP2010057945W WO2010131646A1 WO 2010131646 A1 WO2010131646 A1 WO 2010131646A1 JP 2010057945 W JP2010057945 W JP 2010057945W WO 2010131646 A1 WO2010131646 A1 WO 2010131646A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
conjugated diene
diene polymer
alkali metal
parts
Prior art date
Application number
PCT/JP2010/057945
Other languages
English (en)
French (fr)
Inventor
重孝 早野
岳史 杉村
安久 塚原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011513343A priority Critical patent/JP5692067B2/ja
Priority to EP10774903.8A priority patent/EP2431395B1/en
Priority to US13/319,975 priority patent/US8993675B2/en
Publication of WO2010131646A1 publication Critical patent/WO2010131646A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • C08F4/486Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium at least two metal atoms in the same molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/10Isomerisation; Cyclisation

Definitions

  • the present invention relates to a method for producing a radial conjugated diene polymer, and more specifically, it is easy to introduce an arbitrary functional group at a terminal, and the degree of freedom in polymer design is high.
  • the present invention relates to a method for producing a radial conjugated diene polymer that can be controlled to a high degree.
  • the present invention also relates to a conjugated diene polymer composition suitably used as a tire material or the like, comprising a radial conjugated diene polymer obtainable by this production method and a filler.
  • conjugated diene polymer have a radial structure as compared with a linear conjugated diene polymer.
  • processability and affinity with a filler are improved by forming a conjugated diene polymer into a radial structure.
  • Patent Document 1 as a method for obtaining a radial conjugated diene polymer, a conjugated diene is polymerized using a lithium amide compound as a polymerization initiator, and the resulting polymer is subjected to a coupling reaction with tin tetrachloride, whereby a terminal amide is obtained. It is described to obtain radial conjugated diene polymers having groups. According to this method, after making the conjugated diene polymer into a radial structure, an amide group can be introduced at the terminal, so that a conjugated diene polymer having excellent affinity with the filler can be obtained. Is possible.
  • this method has a problem that the functional group that can be introduced at the terminal is limited to the amide group, and a functional group that has a higher effect of improving the affinity with the filler cannot be introduced, that is, the degree of freedom in designing the polymer. There was a problem of low.
  • Patent Document 2 describes a method of polymerizing a conjugated diene using a polyvalent polymerization initiator obtained by polymerizing a small amount of divinylbenzene with an organolithium initiator.
  • this method it is difficult to control the branched structure, and when the polymer is used as a tire material, there is a problem that the divinylbenzene crosslinked product at the starting end adversely affects the performance of the tire. .
  • Non-Patent Document 1 an anion transfer reaction between p-methylstyrene oligomer and s-butyllithium described in Non-Patent Document 1 is used.
  • An example of polymerizing styrene using the obtained polyvalent lithium compound as a polymerization initiator is known.
  • an example in which this method is applied to the production of a conjugated diene polymer is not known.
  • the present invention has a high degree of freedom in designing a polymer, such as easy introduction of an arbitrary functional group at the end, and a radial conjugated diene polymer having a high degree of control over the structure of the polymer. It aims at providing the manufacturing method of unification.
  • Another object of the present invention is to provide a polymer composition excellent in wear resistance and low heat build-up, comprising a radial conjugated diene polymer obtainable by this production method and a filler. .
  • the present inventors have obtained by reacting an organic alkali metal compound with an aromatic compound having three or more carbon atoms directly bonded to an aromatic ring in one molecule. It has been found that a radial conjugated diene polymer having a highly controlled structure can be obtained by polymerizing a conjugated diene compound using the obtained alkali metalated aromatic compound as a polymerization initiator. Moreover, it discovered that arbitrary modifier
  • an alkali metalated aromatic compound having 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring in one molecule is used as a polymerization initiator, and at least a conjugated diene compound is contained.
  • a method of producing a radial conjugated diene polymer is provided that polymerizes a monomer mixture.
  • the monomer mixture preferably further comprises an aromatic vinyl compound.
  • the alkali metalated aromatic compound is reacted with an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms bonded directly to the aromatic ring in one molecule. It is preferable that it is obtained.
  • At least a conjugated diene compound is contained using, as a polymerization initiator, an alkali metalated aromatic compound having 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring in one molecule.
  • a method for producing a terminal-modified radial conjugated diene polymer is provided, in which a monomer mixture is polymerized and a modifying agent capable of reacting with the active terminal is reacted with an active terminal of the resulting polymer having an active terminal.
  • a polymer composition comprising a polymer obtained by the method for producing the radial conjugated diene polymer or the method for producing the terminal-modified radial conjugated diene polymer, and a filler.
  • the method for producing a radial conjugated diene polymer of the present invention it is possible to obtain a conjugated diene polymer having a radial structure with good control. Therefore, it is possible to almost completely make all the polymers have a radial structure. In addition, impurities that may adversely affect the performance of the conjugated diene polymer as a material are not included. Moreover, since the modifier which can react with this active terminal can be easily made to react with the active terminal of the polymer which has an active terminal obtained by this method, it can be said that the freedom degree of design of a polymer is high.
  • the polymer composition of the present invention is excellent in wear resistance and low heat build-up, and can be suitably used as a tire material.
  • the method for producing a radial conjugated diene polymer of the present invention comprises at least a conjugated diene using an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule as a polymerization initiator.
  • a monomer mixture containing a compound is polymerized.
  • the polymerization initiator used in the present invention is an alkali metalated aromatic compound having three or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule.
  • the alkali metal atom of the alkali metalated aromatic compound used as the polymerization initiator in the present invention is not particularly limited, but is preferably lithium, sodium, or potassium, and lithium is particularly preferable.
  • the aromatic ring of the alkali metalated aromatic compound is not particularly limited as long as it is a conjugated ring having aromaticity, and specific examples include electrically neutral such as a benzene ring, a naphthalene ring, and an anthracene ring.
  • Aromatic hydrocarbon rings aromatic hydrocarbon rings having negative charges such as cyclopentadienyl anion ring, indenyl anion ring, fluorenyl anion ring; aromatic rings containing heteroatoms such as furan ring and thiophene ring Can be mentioned.
  • aromatic hydrocarbon rings having negative charges such as cyclopentadienyl anion ring, indenyl anion ring, fluorenyl anion ring
  • aromatic rings containing heteroatoms such as furan ring and thiophene ring
  • an alkali metalated aromatic compound having an electrically neutral aromatic hydrocarbon ring is preferably used from the viewpoint of its stability and polymerization activity.
  • the alkali metalated aromatic compound used as a polymerization initiator in the present invention has a structure as long as it has three or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule. Is not particularly limited. For example, even if three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, one carbon atom directly bonded to the alkali metal atom is one. Three or more aromatic rings directly bonded as described above may be bonded via a bonding group.
  • an alkali metalated aromatic compound in which three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring a compound represented by the following general formula (1) is preferably used. It is done.
  • R 1 to R 8 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalated alkyl group having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position.
  • M is an integer of 0 to 5.
  • m is 2 or more, regardless of the structure represented by the general formula (1), three or more benzene rings may be condensed with each other at an arbitrary position.
  • An alkali metalated aromatic compound in which three or more aromatic rings in which one or more carbon atoms directly bonded to an alkali metal atom are bonded directly via a bonding group is represented by the following general formula (2):
  • the compounds represented are preferably used.
  • R 9 to R 13 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalated alkyl group having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position.
  • X represents an arbitrary linking group, and n is an integer of 3 to 100.
  • the method for synthesizing an alkali metalated aromatic compound used as a polymerization initiator in the present invention is not particularly limited, but an organic alkali metal compound is added to an aromatic compound having three or more carbon atoms directly bonded to an aromatic ring in one molecule. Those obtained by reacting are preferably used.
  • the organic alkali metal compound used for synthesizing the alkali metalated aromatic compound is not particularly limited, but an alkali metal compound having an alkyl group or an aryl group is preferably used. Specific examples thereof include methyl lithium, methyl Sodium, methyl potassium, ethyl lithium, ethyl sodium, ethyl potassium, n-propyl lithium, isopropyl potassium, n-butyl lithium, s-butyl lithium, t-butyl lithium, n-butyl sodium, n-butyl potassium, pentyl lithium, Examples thereof include n-amyl lithium, octyl lithium, phenyl lithium, naphthyl lithium, phenyl sodium, and naphthyl sodium.
  • alkyl (or aryl) potassium or alkyl (or aryl) sodium is used to synthesize an alkali metalated aromatic compound, a lithium compound having an alkyl group or an aryl group, a potassium or sodium compound having an alkoxy group,
  • the desired potassium or sodium compound may be obtained by mixing.
  • Examples of the potassium or sodium compound having an alkoxy group used at this time include t-butoxy potassium and t-butoxy sodium.
  • the amount of the potassium or sodium compound having an alkoxy group is not particularly limited, but is usually 0.1 to 5.0 mol, preferably 0.2 to 3.0 mol based on the lithium compound having an alkyl group or an aryl group. Mol, more preferably 0.3 to 2.0 mol.
  • An aromatic compound having three or more carbon atoms directly bonded to an aromatic ring that can be used in the synthesis of an alkali metalated aromatic compound in one molecule is an alkali metalated fragrance represented by the general formula (1).
  • An aromatic compound represented by the following general formula (4) can be exemplified.
  • R 14 to R 21 each represents a hydrogen atom and a group selected from an alkyl group having 1 to 10 carbon atoms, and three or more of R 14 to R 21 each have 1 to 10 carbon atoms. 10 alkyl groups. M is an integer of 0 to 5. However, when m is 2 or more, regardless of the structure represented by the general formula (3), three or more benzene rings may be condensed with each other at an arbitrary position.
  • R 22 to R 26 each represents a hydrogen atom and a group selected from an alkyl group having 1 to 10 carbon atoms, wherein one or more of R 22 to R 26 have 1 to 10 alkyl groups.
  • X represents an arbitrary linking group, and n is an integer of 3 to 100.
  • aromatic compound represented by the general formula (3) examples include 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, hexamethylbenzene and the like.
  • aromatic compound represented by the general formula (3) examples include benzenes having 3 or more alkyl groups; naphthalenes having 3 or more alkyl groups such as 2,3,5-trimethylnaphthalene and 1,4,5-trimethylnaphthalene.
  • aromatic compound represented by the general formula (4) examples include an alkyl group on a benzene ring such as o-methylstyrene oligomer, m-methylstyrene oligomer, p-methylstyrene oligomer, and p-ethylstyrene oligomer. And a styrene polymer having a group.
  • a method of reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms directly bonded to an aromatic ring in the molecule is not particularly limited, but in an inert solvent under an inert atmosphere.
  • a reaction method is preferably used.
  • the inert solvent used is not particularly limited as long as it can dissolve the compound to be reacted, but a hydrocarbon solvent is preferably used. Specific examples include aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; alicyclic hydrocarbons such as cyclohexane, cyclopentane, and methylcyclohexane.
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the amount of the organic alkali metal compound used for the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in the molecule is not particularly limited, but it is directly on the aromatic ring in the aromatic compound.
  • the amount is usually 0.1 to 100 mol, preferably 0.2 to 50 mol, more preferably 0.3 to 10 mol, most preferably 0.3 to 1.1 mol, per 1 mol of bonded carbon atoms. .
  • reaction time and reaction temperature of this reaction are not particularly limited, but the reaction time is usually in the range of 1 minute to 10 days, preferably 1 minute to 5 days, and the reaction temperature is usually in the range of ⁇ 50 ° C. to 100 ° C. It is.
  • an organic alkali metal compound when reacted with an aromatic compound having 3 or more carbon atoms bonded directly to an aromatic ring in one molecule, it has a coordination ability to an alkali metal atom for the purpose of accelerating the reaction.
  • a compound may coexist.
  • a Lewis base compound containing a hetero atom is preferably used, and a Lewis base compound containing a nitrogen atom or an oxygen atom is particularly preferably used.
  • Lewis base compounds containing nitrogen or oxygen atoms include chain ether compounds such as diethyl ether, anisole, diphenyl ether, dimethoxybenzene, dimethoxyethane, diglyme and ethylene glycol dibutyl ether; intramolecular such as trimethylamine and triethylamine Tertiary amine compounds having one nitrogen atom in them; Cyclic ether compounds having one oxygen atom in the molecule such as tetrahydrofuran and tetrahydropyran; Nitrogen-containing heterocyclic compounds such as pyridine, lutidine and 1-methylimidazole; Bistetrahydro Cyclic ether compounds having two or more oxygen atoms in the molecule such as furylpropane; N, N, N ′, N′-tetramethylethylenediamine, dipiperidinoethane, 1,4-diazabicyclo [2.2.2 Tertiary amine compounds having two or more nitrogen atoms in the molecule such as
  • the amount of the compound having the coordination ability to the alkali metal atom is not particularly limited, and may be determined according to the strength of the coordination ability.
  • a compound having a coordination ability to an alkali metal atom a chain ether compound that is a relatively weak coordination ability or a tertiary amine compound having one nitrogen atom in the molecule is used.
  • the amount used is usually in the range of 1 to 100 mol, preferably 5 to 50 mol, more preferably 10 to 25 mol, per mol of the alkali metal atom in the organic alkali metal compound to be reacted with the aromatic compound. .
  • a cyclic ether compound or nitrogen-containing heterocyclic compound having one oxygen atom in the molecule as a compound having a coordination ability to an alkali metal atom
  • the amount used is usually in the range of 1 to 100 moles, preferably 1 to 20 moles, more preferably 2 to 10 moles per mole of alkali metal atoms in the organic alkali metal compound to be reacted with the aromatic compound.
  • a compound having a coordination ability to an alkali metal atom a compound having a relatively strong coordination ability, a cyclic ether compound having two or more oxygen atoms in the molecule, or two or more nitrogen atoms in the molecule
  • the amount used is 1 mol of an alkali metal atom in an organic alkali metal compound to be reacted with an aromatic compound. In general, the range is 0.01 to 5 mol, preferably 0.01 to 2 mol, more preferably 0.01 to 1.5 mol. If the amount of the compound having the coordination ability to the alkali metal atom is too large, the reaction may not proceed.
  • an alkali metal atom As a compound having the ability to coordinate to a cyclic ether compound having two or more oxygen atoms in the molecule, a tertiary amine compound having two or more nitrogen atoms in the molecule, and a nitrogen-heteroatom bond in the molecule, and at least one compound selected from tertiary amide compounds having an amount of 0.02 to 0.000 based on 1 mol of an alkali metal atom in an organic alkali metal compound to be reacted with an aromatic compound.
  • the range of 4 mol is particularly preferable.
  • the order of addition is not particularly limited.
  • a compound capable of coordinating to the alkali metal atom is added to the system.
  • the order in which the organic alkali metal compound is added to the system after the coexistence of the aromatic compound and the compound having the ability to coordinate to the alkali metal atom is preferred.
  • an alkali metalated aromatic compound obtained in the above manner and having three or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule Is used as a polymerization initiator to polymerize a monomer mixture comprising at least a conjugated diene compound.
  • the term “monomer mixture” is a concept that includes only one conjugated diene compound.
  • the conjugated diene compound used as a monomer in the present invention is not particularly limited.
  • examples include -3-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, and the like.
  • 1,3-butadiene, isoprene or 1,3-pentadiene is particularly preferably used.
  • these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a copolymer may be obtained using a monomer mixture containing other monomers in addition to the conjugated diene compound.
  • examples of compounds other than the conjugated diene compound that can be used as a monomer in the present invention include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, p-methylstyrene, vinylnaphthalene, and vinylpyridine; methyl methacrylate, methyl Acrylic ester compounds such as acrylate can be used.
  • the content of monomers other than the conjugated diene compound in the monomer mixture to be used is not particularly limited, but is usually 50 mol% or less, preferably 45 mol% or less. When there is too much content of monomers other than the conjugated diene compound in a monomer mixture, there exists a possibility that the conjugated diene polymer obtained may be inferior to the characteristic as a conjugated diene polymer.
  • the mode of copolymerization is not particularly limited in the case of obtaining a copolymer using a monomer mixture containing two or more monomers, and is random, Any of block shape, taper shape, etc. may be sufficient.
  • the use ratio of the alkali metalated aromatic compound and monomer mixture used as the polymerization initiator is the purpose.
  • the amount of the alkali metal in the alkali metalated aromatic compound is usually 0.000001 to 0.1 mol, preferably 1 mol per 1 mol of the monomer mixture. Is selected in the range of 0.00001 to 0.05 mol. If the amount of the alkali metalated aromatic compound used is too small, the molecular weight of the resulting radial conjugated diene polymer may be too high, making it difficult to handle, or the polymerization reaction may not proceed sufficiently. On the other hand, if the amount of the alkali metalated aromatic compound used is too large, the molecular weight of the resulting radial conjugated diene polymer will be too low, and the rubber material may be inferior in properties.
  • the compound having the coordination ability to the alkali metal atom as described above is used in the polymerization reaction system for the purpose of controlling the polymerization rate and the microstructure of the resulting radial conjugated diene polymer. May be added.
  • the amount of these compounds capable of coordinating to alkali metal atoms is usually 0 to 5 mol, preferably 0 to 1 mol per mol of alkali metal atom in the alkali metalated aromatic compound used as the polymerization initiator. The range is 4 moles, more preferably 0 to 2 moles. If the amount of the compound having coordination ability to these alkali metal atoms is too large, the polymerization reaction may be inhibited.
  • the solution containing the compound can also be used as it is.
  • a conjugated diene polymer composition excellent in low exothermic property a cyclic ether compound having two or more oxygen atoms in the molecule, a tertiary amine compound having two or more nitrogen atoms in the molecule, and a molecule
  • An alkali metal compound using at least one compound selected from tertiary amide compounds having a nitrogen-heteroatom bond therein as a polymerization initiator (the alkali metal compound here is limited to alkali metalated aromatic compounds)
  • it is preferably present in the range of 0.02 to 0.4 mol with respect to 1 mol of the alkali metal atom in the reaction system and contains all of the alkali metal compound that acts as a polymerization initiator.
  • the polymerization mode in the method for producing the radial conjugated diene polymer of the present invention is not particularly limited, and for example, a gas phase polymerization method, a solution polymerization method, a slurry polymerization method and the like can be adopted, and among these, the solution polymerization method is used. It is preferable.
  • the solvent used is not particularly limited as long as it is inert in the polymerization reaction and can dissolve the monomer mixture and the polymerization catalyst, but it is preferable to use a hydrocarbon solvent.
  • a hydrocarbon solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; alicyclic rings such as cyclohexane, cyclopentane, and methylcyclohexane Group hydrocarbons; ethers such as tetrahydrofuran, diethyl ether, cyclopentyl methyl ether, and the like.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • aliphatic hydrocarbons such as n-hexane, n-hept
  • the concentration of the monomer mixture in the polymerization solution is not particularly limited, but is usually 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. Selected. If the concentration of the monomer mixture in the solution is too low, the productivity of the radial conjugated diene polymer may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high and the handling becomes difficult. There is a case.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to 200 ° C., preferably 0 ° C. to 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours.
  • a polymer having an active end exists in the polymerization reaction system.
  • the polymer having an active terminal may be reacted with a reaction terminator such as alcohol or water, but an arbitrary modifier capable of reacting with the active terminal is reacted with the terminal-modified radial conjugated diene polymer. It is preferable to do.
  • the resulting radial conjugated diene polymer can be modified with a modifier, for example, improving the affinity for fillers such as silica and carbon black. Can do.
  • the modifier used for obtaining the terminal-modified radial conjugated diene polymer is not particularly limited as long as it is a modifier capable of reacting with the active terminal of the polymer.
  • a coupling reaction can be performed using a modifier (coupling agent) having a plurality of reaction points capable of reacting with the active terminal of the polymer in one molecule.
  • Examples of the modifying agent that can be used in the present invention include (a) an isocyanate compound and an isothiocyanate compound (hereinafter referred to as “component (a)”), (b) an isocyanuric acid derivative and a thiocarbonyl-containing compound corresponding to the derivative.
  • component (b) (c) urea compound (hereinafter referred to as “component (c)”), (d) amide compound and / or imide compound (hereinafter referred to as “component (d)”), ( e) N-alkyl-substituted oxazolidinone compounds (hereinafter referred to as “component (e)”), (f) pyridyl-substituted ketone compounds and / or pyridyl-substituted vinyl compounds (hereinafter referred to as “component (f)”), (g) lactam compounds ( Hereinafter referred to as “(g) component”), (h) silicon compound (hereinafter referred to as “(h) component”), (i) ester compound (hereinafter referred to as “(i) component”), j) a ketone compound (hereinafter referred to as "(j) component”), and the like that (k)
  • isocyanate compound or isothiocyanate compound as component (a) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, Polymeric type diphenylmethane diisocyanate (C-MDI), phenyl isocyanate, isophorone diisocyanate, hexamethylene diisocyanate, butyl isocyanate, 1,3,5-benzenetriisocyanate, phenyl isothiocyanate, phenyl- Examples include 1,4-diisothiocyanate.
  • component (b) isocyanuric acid derivatives and thiocarbonyl-containing compounds corresponding to the derivatives include carbamate derivatives such as methyl carbamate and methyl N, N-diethylcarbamate, isocyanuric acid, N, N ′, Examples thereof include isocyanuric acid derivatives such as N′-trimethylisocyanuric acid and thiocarbonyl-containing compounds corresponding to these derivatives.
  • urea compound as component (c) examples include N, N′-dimethylurea, N, N′-diethylurea, N, N, N ′, N′-tetramethylurea, N, N-dimethyl- N ′, N′-diphenylurea and the like can be mentioned.
  • Specific examples of the amide compound or imide compound as component (d) include N, N-dimethylformamide, acetamide, N, N-diethylacetamide, aminoacetamide, N, N-dimethyl-N ′, N′-dimethylamino.
  • N-alkyl-substituted oxazolidinone compound as component (e) include 1,3-diethyl-2-imidazolidinone, 1,3-dimethyl-2-imidazolidinone, 1,1-dipropyl-2- Imidazolidinone, 1-methyl-3-ethyl-2-imidazolidinone, 1-methyl-3-propyl-2-imidazolidinone, 1-methyl-3-butyl-2-imidazolidinone, 1-methyl- 3- (2-methoxyethyl) -2-imidazolidinone, 1-methyl-3- (2-ethoxyethyl) -2-imidazolidinone, 1,3-di- (2-ethoxyethyl) -2-imidazo Lysinone and the like can be mentioned.
  • pyridyl-substituted ketone compound or pyridyl-substituted vinyl compound as component (f) include methyl-2-pyridyl ketone, methyl-4-pyridyl ketone, propyl-2-pyridyl ketone, di-4-pyridyl ketone, and propyl. -3-Pyridyl ketone, 2-benzoylpyridine, 2-vinylpyridine, 4-vinylpyridine and the like.
  • lactam compound as component (g) include N-methyl-2-pyrrolidone, 2-piperidone, N-methyl-2-piperidone, 2-quinolone, N-methyl-quinolone and the like.
  • the amount used when these modifiers are used is not particularly limited, but the isocyanate group, isothiocyanate in the modifier per mole of alkali metal atom in the alkali metalated aromatic compound used as the polymerization initiator.
  • the amount of the functional group such as nate group, carbonyl group, vinyl group, aldehyde group is usually in the range of 0.2 to 10 mol, preferably 0.5 to 5.0 mol. If the amount of modifier used is too small, the effect of terminal modification may not be sufficiently obtained. On the other hand, if the amount of modifier used is too large, a large amount of unreacted modifier remains in the resulting polymer. As a result, the polymer may be adversely affected such as odor and physical properties.
  • the silicon compound as the component (h) that can be used as a modifier include dibutyldichlorosilane, methyltrichlorosilane, dimethyldichlorosilane, methyldichlorosilane, trimethylchlorosilane, tetrachlorosilane, triphenoxymethylsilane, tetra Examples thereof include methoxysilane and polyorganosiloxane represented by the following general formula (5).
  • the amount of the silicon compound used is a group (halogen atom, alkoxy group) capable of reacting with the active terminal of the polymer in the silicon compound per mole of alkali metal atom in the alkali metalated aromatic compound used as the polymerization initiator.
  • Aryloxy group or epoxy group is usually in the range of 0.05 to 5 mol, preferably 0.1 to 1.5 mol.
  • R 27 to R 34 each represents a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms.
  • Y 1 and Y 4 are each an alkoxyl group having 1 to 5 carbon atoms, an aryloxy group having 6 to 14 carbon atoms or a group having 4 to 12 carbon atoms containing an epoxy group, an alkyl group having 1 to 6 carbon atoms, and Represents a group selected from aryl groups having 6 to 12 carbon atoms.
  • Y 2 represents a group selected from a group having 4 to 12 carbon atoms including an alkoxyl group having 1 to 5 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, and an epoxy group.
  • Y 3 is a group containing 2 to 20 alkylene glycol repeating units. p is an integer of 2 to 200, q is an integer of 0 to 200, and r is an integer of 0 to 200.
  • ester compound as component (i) that can be used as a modifier examples include diethyl adipate, diethyl malonate, diethyl phthalate, diethyl glutarate, diethyl maleate, and the like.
  • the amount of these ester compounds used is usually in the range of 0.05 to 1.5 moles per mole of alkali metal atoms in the alkali metalated aromatic compound used as the polymerization initiator.
  • Specific examples of the ketone compound as component (j) that can be used as a modifier include N-methyl-2-pyrrolidone, N, N-dimethylformamide, nicotinamide, 4,4′-bis (diethylamino) benzophenone, and the like.
  • the amount used thereof is usually in the range of 0.05 to 5 moles per mole of alkali metal atoms in the alkali metalated aromatic compound used as the polymerization initiator.
  • Specific examples of the tin compound that can be used as a modifier (k) include tetrachlorotin, tetrabromotin, trichlorobutyltin, trichloromethyltin, trichlorooctyltin, dibromodimethyltin, dichlorodimethyltin, dichlorodibutyltin.
  • the amount of these used is usually in the range of 0.05 to 5 moles per mole of alkali metal atoms in the alkali metalated aromatic compound used as the polymerization initiator.
  • the modifier used for obtaining the terminal-modified radial conjugated diene polymer one type may be used alone, or two or more types may be used in combination.
  • a conjugated diene compound is further added to the polymerization reaction system in the alkali metalated aromatic compound using the polymerization initiator.
  • the terminal modification reaction may be carried out after adding 0.5 to 500 mol, preferably 1 to 200 mol, per mol of alkali metal atom.
  • the temperature of the modification reaction is not particularly limited, but is usually in the range of 0 to 120 ° C.
  • an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the solution of the radial conjugated diene polymer obtained as described above. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, you may mix
  • the polymer after the polymerization reaction or the modification reaction may be obtained by removing the polymer from the solution by, for example, reprecipitation, removal of the solvent under heating, removal of the solvent under reduced pressure, or removal of the solvent with steam (steam stripping). It can be separated and obtained from the reaction mixture by a normal operation during separation.
  • a conjugated diene heavy polymer is obtained using each of the alkali metal atoms having 3 or more alkali metalated aromatic compounds used as a polymerization initiator as a polymerization start point. Since the polymer chain grows with living polymerizability, it is possible to obtain a conjugated diene polymer having a radial structure with good control, and it is possible to almost completely make all polymers into a branched structure. .
  • the polymer mixture in which the radial conjugated diene polymer and the linear conjugated diene polymer are mixed by controlling the degree of alkali metalation of the aromatic compound. It is also possible to obtain
  • the ratio of the radial conjugated diene polymer (that is, the conjugated diene polymer having 3 or more branches) in the polymer mixture is not particularly limited, but is based on the total amount of the radial conjugated diene polymer and the linear conjugated diene polymer.
  • the ratio of the amount of the radial conjugated diene polymer is usually 20 to 100% by weight, and preferably 30 to 100% by weight.
  • the workability of the conjugated diene polymer and the affinity with the filler are particularly good.
  • the molecular weight of the polymer mixture is not particularly limited and may be determined according to the use, but the number average molecular weight (Mn) obtained as a polystyrene conversion value by gel permeation chromatography is usually 500 to It is selected in the range of 1,000,000.
  • the microstructure of the radial conjugated diene polymer is not particularly limited, and the vinyl bond content in the conjugated diene unit portion of the radial conjugated diene polymer is usually 1.0 to 80 mol%, preferably 3.0 to 75 mol%.
  • the vinyl bond content in the conjugated diene unit portion of the radial conjugated diene polymer is particularly preferably 5.0 to 30 mol%. .
  • the radial conjugated diene polymer obtained by the present invention has a multi-branched structure and may contain a terminal-modified polymer in some cases. Therefore, fillers such as silica and carbon black, natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR) and other rubbers can be easily mixed, and a conjugated diene polymer composition can be easily produced. Furthermore, it is possible to easily add necessary amounts of compounding agents such as a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, and a lubricant.
  • fillers such as silica and carbon black, natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR) and other rubbers can be easily mixed, and
  • the radial conjugated diene polymer obtained by the present invention can be used for a wide range of applications.
  • adhesives such as sealants, sealants, adhesives, and pressure-sensitive adhesives
  • thermoplastic elastomers use for thermoplastic elastomers
  • tire parts such as treads, carcass, sidewalls, and bead parts
  • rubber products such as hoses, window frames, belts, shoe soles, anti-vibration rubber and automobile parts
  • resin-reinforced rubber such as impact-resistant polystyrene and ABS resin.
  • the radial conjugated diene polymer obtained by the present invention can be made into a polymer composition having particularly excellent wear resistance and low heat buildup by using it as a composition containing a filler. That is, the polymer composition of the present invention comprises a radial conjugated diene polymer obtained by the method for producing a radial conjugated diene polymer of the present invention and a filler.
  • the filler to be used is not particularly limited, but at least one filler selected from silica and carbon black is suitable.
  • silica examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferably used.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
  • the pH of silica is preferably less than pH 7, more preferably pH 5 to 6.9.
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, and graphite. When carbon black is used, it is preferable to use furnace black. Specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, T-HS, T-NS, MAF, FEF and the like can be mentioned. These carbon blacks can be used alone or in combination of two or more.
  • the blending amount of the filler in the polymer composition of the present invention is not particularly limited, but is usually 5 to 200 parts by weight, preferably 20 to 200 parts by weight with respect to 100 parts by weight of the polymer component in the polymer composition. 150 parts by weight.
  • the polymer composition of the present invention may contain other polymers other than the radial conjugated diene polymer obtained by the present invention.
  • examples of other polymers include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber, and polybutadiene rubber (including crystal fibers made of 1,2-polybutadiene polymer).
  • Polybutadiene rubber may be used), styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc. Quality polymer.
  • natural rubber, polyisoprene rubber, polybutadiene rubber, and styrene-butadiene copolymer rubber are preferably used. These polymers can be used alone or in combination of two or more.
  • the method of adding a filler to the polymer is not particularly limited, and a method of adding and kneading a solid polymer (dry kneading method) or a method of adding to a polymer solution and solidifying and drying (wet kneading). Law) and the like can be applied.
  • the polymer composition of the present invention includes a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, a lubricant, a tackifier, A necessary amount of compounding agents such as a silane coupling agent and aluminum hydroxide can be blended.
  • crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyamine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 1.6 to 5.0 parts by weight, more preferably 1.7 to 4.0 parts by weight, particularly preferably 100 parts by weight of the polymer component of the polymer composition. 1.9 to 3.0 parts by weight.
  • crosslinking accelerator examples include N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxy Sulfenamide crosslinking accelerators such as ethylene-2-benzothiazole sulfenamide and N, N′-diisopropyl-2-benzothiazole sulfenamide; Guanidine types such as diphenylguanidine, diortolylguanidine, orthotolylbiguanidine Crosslinking accelerators; thiourea crosslinking accelerators; thiazole crosslinking accelerators; thiuram crosslinking accelerators; dithiocarbamic acid crosslinking accelerators; xanthogenic acid crosslinking accelerators; Of these, those containing a sulfenamide-based crosslinking accelerator are particularly preferred.
  • crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1.0 to 100 parts by weight of the polymer component of the polymer composition. To 4.0 parts by weight.
  • crosslinking activator for example, higher fatty acids such as stearic acid or zinc oxide can be used.
  • the blending amount of the crosslinking activator is appropriately selected, but the blending amount of the higher fatty acid is preferably 0.05 to 15 parts by weight, more preferably 0 with respect to 100 parts by weight of the polymer component of the polymer composition.
  • the blending amount of zinc oxide is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the rubber component.
  • each component may be kneaded according to a conventional method.
  • the kneaded product is mixed with the crosslinking agent.
  • a crosslinking accelerator can be mixed to obtain the desired composition.
  • the kneading temperature of the compounding agent excluding the crosslinking agent and the crosslinking accelerator and the polymer component is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. .
  • Mixing of the kneaded material with the crosslinking agent and the crosslinking accelerator is usually performed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the polymer composition of the present invention can be used, for example, in tires such as cap treads, base treads, carcass, sidewalls, bead parts, and other parts of the tire, hoses, belts, mats, anti-vibration rubbers, and other various industrial products. It can be used as a material, adhesive, resin impact resistance improver, resin film buffer, shoe sole, rubber shoe, golf ball, toy. Especially, since the polymer composition of this invention is excellent in abrasion resistance and low heat build-up, it can be used especially suitably as a material of a fuel-efficient tire.
  • the method of crosslinking and molding in the case of constituting a rubber product (crosslinked product) such as a tire using the polymer composition of the present invention is not particularly limited, and may be selected according to the shape, size, etc. of the crosslinked product. .
  • a polymer composition containing a crosslinking agent in a mold may be filled and heated to crosslink at the same time as molding, and after pre-molding a polymer composition containing a crosslinking agent, It may be cross-linked.
  • the crosslinking temperature is preferably 120 to 200 ° C., more preferably 140 to 180 ° C., and the crosslinking time is usually about 1 to 120 minutes.
  • the oligomer of the obtained p-methylstyrene had an Mn of 1,280, an Mw of 1,440, a molecular weight distribution (Mw / Mn) of 1.13, and an average degree of polymerization determined from the value of Mn of 10.8. .
  • Example 1 Lithiation of p-methylstyrene oligomer and polymerization of isoprene with lithiated p-methylstyrene oligomer
  • 2.81 parts of cyclohexane, 0.284 parts of the oligomer of p-methylstyrene obtained in Reference Example 1 and 0.279 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.154 parts of sec-butyllithium 1.0 mol of tetramethylethylenediamine per mol of sec-butyllithium was added with stirring, and the reaction was carried out with stirring at a reaction temperature of 20 ° C. for 40 minutes.
  • the obtained polyisoprene had an Mn of 14,800, an Mw of 18,600, a molecular weight distribution (Mw / Mn) of 1.26, and a vinyl bond content of 77 mol%.
  • the ratio (molar ratio) of unsubstituted product: 1 substituted product: 2 substituted product: 3 substituted product was determined to be 2: 13: 57: 28, and the methyl group lithio of 1,3,5-trimethylbenzene was obtained.
  • the conversion rate is 70%, and the average number of lithium atoms introduced into one molecule of 1,3,5-trimethylbenzene is 2.11.
  • Example 2 Polymerization of isoprene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 1
  • 12 parts of cyclohexane, 0.144 parts of 1,3,5-trimethylbenzene and 0.460 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.230 parts of n-butyllithium 1.1 mole of tetramethylethylenediamine per mole of n-butyllithium was added, stirred at a reaction temperature of 20 ° C. for 3 hours, and allowed to stand for 3 days. did.
  • Example 3 Polymerization of isoprene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 2)] Under a nitrogen atmosphere, 0.138 parts of normal hexane, 0.014 parts of 1,3,5-trimethylbenzene, and 0.460 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar. Next, 0.230 parts of n-butyllithium (1.1 mol of tetramethylethylenediamine per mol of n-butyllithium) was added, and the reaction was allowed to stand at a reaction temperature of 20 ° C. for 4 days.
  • n-butyllithium 1.1 mol of tetramethylethylenediamine per mol of n-butyllithium
  • Mn 39,000, an Mw of 40,500, a molecular weight distribution (Mw / Mn) of 1.04, and an elution component (peak area ratio of 42.6%).
  • Mw was 29,000 and molecular weight distribution (Mw / Mn) was 1.26.
  • the vinyl bond content of the terminally modified polyisoprene was 68 mol%. Further, when 1 H-NMR was measured for this terminal-modified polyisoprene, it was confirmed that a trimethylsilyl group was introduced.
  • Example 4 Polymerization of isoprene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 3)] Under a nitrogen atmosphere, in a glass reaction vessel containing a magnetic stir bar, 0.028 parts of normal hexane, 2.88 ⁇ 10 ⁇ 3 parts of 1,3,5-trimethylbenzene, and 9.20 ⁇ 10 ⁇ 3 of tetramethylethylenediamine. Part was added. Next, 4.60 ⁇ 10 ⁇ 3 parts of n-butyllithium (1.1 mol of tetramethylethylenediamine per mol of n-butyllithium) was added, and the reaction was allowed to stand at a reaction temperature of 20 ° C. for 4 days.
  • n-butyllithium 1.1 mol of tetramethylethylenediamine per mol of n-butyllithium
  • the terminal-modified polyisoprene obtained was an elution component having a Mn of 89,500, an Mw of 97,800, and a molecular weight distribution (Mw / Mn) of 1.09 as measured by GPC (peak area ratio 70.8%) , And an Mn of 188,400, an Mw of 195,100, and a molecular weight distribution (Mw / Mn) of 1.04, and an overall Mn of 105,800.
  • Mw was 126,200
  • molecular weight distribution (Mw / Mn) was 1.19.
  • the vinyl bond content of this terminal-modified polyisoprene was 70 mol%.
  • 1 H-NMR was measured for this terminal-modified polyisoprene, it was confirmed that a trimethylsilyl group was introduced.
  • Example 5 Polymerization of isoprene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 4
  • a glass reaction vessel containing a magnetic stir bar Under a nitrogen atmosphere, in a glass reaction vessel containing a magnetic stir bar, 0.014 parts of normal hexane, 1.44 ⁇ 10 ⁇ 3 parts of 1,3,5-trimethylbenzene, and 9.20 ⁇ 10 ⁇ 3 of tetramethylethylenediamine. Part was added.
  • 2.30 ⁇ 10 ⁇ 3 parts of n-butyllithium 1.1 mol of tetramethylethylenediamine per mol of n-butyllithium was added, and the reaction was allowed to stand at a reaction temperature of 20 ° C. for 4 days.
  • Example 6 Polymerization of butadiene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 1.
  • 0.55 parts of normal hexane, 0.056 parts of 1,3,5-trimethylbenzene and 0.184 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.092 parts of n-butyllithium 1.1 mol of tetramethylethylenediamine per mol of n-butyllithium was added, stirred at a reaction temperature of 20 ° C. for 3 hours, and allowed to stand for 4 days. did.
  • the terminal-modified polybutadiene thus obtained had an elution component (peak area ratio of 51.000) having an Mn of 1,300,000, an Mw of 1,350,000, and a molecular weight distribution (Mw / Mn) of 1.04 in GPC measurement.
  • Example 7 Polymerization of butadiene by lithiated 1,3,5-trimethylbenzene and terminal modification reaction 2
  • 0.55 parts of normal hexane, 0.056 parts of 1,3,5-trimethylbenzene and 0.055 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.092 parts of n-butyllithium (0.33 mol of tetramethylethylenediamine per mol of n-butyllithium) was added with stirring, and the mixture was stirred at a reaction temperature of 20 ° C. for 3 hours and then allowed to stand for 4 days. did.
  • the terminal-modified polybutadiene thus obtained had an elution component (peak area ratio of 63.000) having an Mn of 1,760,000, an Mw of 1,840,000, and a molecular weight distribution (Mw / Mn) of 1.04 in GPC measurement.
  • Example 8 Polymerization of butadiene with lithiated 1,3,5-trimethylbenzene and terminal modification reaction 3
  • 0.138 parts of normal hexane, 0.014 parts of 1,3,5-trimethylbenzene and 0.0021 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.023 parts of sec-butyllithium 0.05 mol of tetramethylethylenediamine per mol of sec-butyllithium
  • the terminal-modified polybutadiene obtained was an elution component (peak area ratio 55.3%) having an Mn of 16,200, an Mw of 19,400, and a molecular weight distribution (Mw / Mn) of 1.19 in GPC measurement. And an Mn of 43,600, Mw of 45,800, and a molecular weight distribution (Mw / Mn) of 1.05, an elution component (peak area ratio 44.7%).
  • the Mw was 31,200, and the molecular weight distribution (Mw / Mn) was 1.39.
  • the vinyl bond content of this terminal-modified polybutadiene was 10 mol%. Furthermore, when 1 H-NMR was measured for this terminal-modified polybutadiene, it was confirmed that a trimethylsilyl group was introduced.
  • Example 9 potiation of p-methylstyrene oligomer, and polymerization of isoprene with potated p-methylstyrene oligomer
  • 2.81 parts of cyclohexane, 0.284 parts of the oligomer of p-methylstyrene obtained in Reference Example 1 and 0.402 part of potassium tertiary riboxide were added to a glass reaction vessel containing a magnetic stir bar.
  • 0.230 parts of sec-butyllithium was added with stirring, and the reaction was carried out with stirring at a reaction temperature of 20 ° C. for 30 minutes.
  • the p-methylstyrene oligomer that had been potatized and hardly solubilized was recovered by filtration and separated from the dissolved unreacted components.
  • the recovered potatized p-methylstyrene oligomer was dissolved in 18.7 parts of benzene in a glass reaction vessel containing a magnetic stirrer under a nitrogen atmosphere, and 3.354 parts of isoprene was further added to polymerize. Polymerization was carried out for 12 hours while stirring at a temperature of 20 ° C. The polymerization reaction was stopped with a small amount of methanol, the catalyst residue was extracted and washed with pure water, and the solvent was distilled off to obtain 3.62 parts of the desired polyisoprene.
  • the obtained polyisoprene had an Mn of 25,500, an Mw of 44,900, a molecular weight distribution (Mw / Mn) of 1.76, and a vinyl bond content of 32 mol%.
  • Example 10 Synthesis of terminal-modified radial polybutadiene and production of polymer composition 1
  • 48 parts of cyclohexane, 0.722 parts of 1,3,5-trimethylbenzene and 2.302 parts of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar.
  • 1.152 parts of n-butyllithium 1.1 mol of tetramethylethylenediamine per mol of n-butyllithium
  • the reaction yielded 52.176 parts of a lithiated 1,3,5-trimethylbenzene solution.
  • 800 parts of cyclohexane, 200 parts of 1,3-butadiene, and 0.835 part of tetramethylethylenediamine were charged into an autoclave under a nitrogen atmosphere, and then the lithiated 1,3,5-trimethylbenzene solution was added.
  • 52.176 parts were added (the amount of tetramethylethylenediamine present in the reaction system is 1.5 moles per mole of n-butyllithium used for lithiation of 1,3,5-trimethylbenzene) Polymerization was started at 60 ° C.
  • the polymerization reaction was continued for 120 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, 0.610 part of tetramethoxysilane was added and reacted for 30 minutes. As a result, 0.128 parts of methanol was added to obtain a solution containing terminal-modified radial polybutadiene.
  • 0.15 part of 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals Co., Ltd.) as an anti-aging agent was added to the solution. After the addition, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C.
  • the obtained terminal-modified radial polybutadiene (A) is an elution component (peak area ratio: 18.6%) having an Mn of 190,000, an Mw of 210,000, and a molecular weight distribution (Mw / Mn) of 1.10 in GPC measurement.
  • terminal-modified radial polybutadiene (A) 100 parts is masticated for 30 seconds in a Brabender type mixer having a capacity of 250 ml, and then 40 parts of silica (trade name “Zeosil 1165MP” manufactured by Rhodia) and a silane coupling agent: Add 4.3 parts of bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa), knead at 80 ° C.
  • silica trade name “Zeosil 1165MP” manufactured by Rhodia
  • silane coupling agent Add 4.3 parts of bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa), knead at 80 ° C.
  • process oil new Nippon Petroleum Corporation, trade name “Fukkor Eramik 30” 10 parts, silica (Rhodia, trade name “Zeosil 1165MP”) 14 parts, carbon black (Tokai Carbon Co., trade name “Seast 6”) 6 parts, oxidation 3 parts of zinc, 2 parts of stearic acid and anti-aging agent N-phenyl-N ′-(1,3-dimethylbutyl) p- phenylenediamine Ann was added (Ouchi Shinko Co., Ltd., trade name "Nocrac 6C”) 2 parts, and kneaded further 2.5 minutes and drained a kneaded material from the mixer.
  • process oil new Nippon Petroleum Corporation, trade name “Fukkor Eramik 30” 10 parts, silica (Rhodia, trade name “Zeosil 1165MP”) 14 parts, carbon black (Tokai Carbon Co., trade name “Seast 6”) 6 parts, oxidation 3 parts of zinc, 2 parts of stearic
  • the temperature of the kneaded product at the end of kneading was 150 ° C. After the kneaded product was cooled to room temperature, it was kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer. Subsequently, the resulting kneaded product was mixed with 1.6 parts of sulfur and a crosslinking accelerator (1.4 parts of N-tert-butyl-2-benzothiazolylsulfenamide and 1.4 parts of diphenylguanidine with an open roll at 50 ° C. The mixture was then kneaded and the sheet-like polymer composition was taken out.
  • a crosslinking accelerator 1.4 parts of N-tert-butyl-2-benzothiazolylsulfenamide and 1.4 parts of diphenylguanidine
  • This polymer composition was press-crosslinked at 160 ° C. for 30 minutes to prepare a test piece.
  • the test piece was evaluated for wear resistance and low heat build-up.
  • Table 2 shows the results.
  • these evaluation is shown by the index
  • Example 11 (Synthesis of terminal-modified radial polybutadiene and production of polymer composition 2) Under a nitrogen atmosphere, 48 parts of cyclohexane, 0.722 part of 1,3,5-trimethylbenzene and 0.105 part of tetramethylethylenediamine were added to a glass reaction vessel containing a magnetic stir bar. Next, 1.152 parts of sec-butyllithium (0.05 mol of tetramethylethylenediamine per mol of sec-butyllithium) was added with stirring, and the mixture was stirred at a reaction temperature of 20 ° C. for 3 hours, and then allowed to stand for 1 day. By reacting, 49.979 parts of a lithiated 1,3,5-trimethylbenzene solution was obtained.
  • sec-butyllithium 0.05 mol of tetramethylethylenediamine per mol of sec-butyllithium
  • an autoclave was charged with 800 parts of cyclohexane and 5.56 parts of the lithiated 1,3,5-trimethylbenzene solution, the temperature of the system was adjusted to 60 ° C., and 1,3-butadiene was added. 5 parts were added over 1 hour. Next, 195 parts of 1,3-butadiene was further added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 120 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, 0.610 part of tetramethoxysilane was added and reacted for 30 minutes.
  • the obtained terminal-modified radial polybutadiene (B) was an elution component (peak area ratio 20.6%) having an Mn of 178,000, an Mw of 233,000, and a molecular weight distribution (Mw / Mn) of 1.31 in GPC measurement. ), Mn of 338,000, Mw of 359,000, molecular weight distribution (Mw / Mn) of 1.06, eluted component (peak area ratio 28.5%), and Mn of 624,000, Mw of 676,000 , The molecular weight distribution (Mw / Mn) is composed of an elution component (peak area ratio 50.9%) of 1.08.
  • the polymerization reaction was continued for another 10 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, a small amount of the polymerization solution was sampled. A small amount of the sampled polymerization solution was added with excess methanol to stop the reaction, and then air-dried to perform GPC measurement and 1 H-NMR measurement.
  • Mn of the obtained polymer (polybutadiene) was 286,000
  • Mw was 306,000
  • molecular weight distribution (Mw / Mn) was 1.07
  • vinyl bond content was 77.3 mol%.
  • the radial conjugated diene polymer obtained by the method for producing the radial conjugated diene polymer of the present invention has wear resistance and low heat generation as compared with the conjugated diene polymer terminal-modified by the conventional method. Excellent in properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

 アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合することにより、放射状共役ジエン重合体を製造する。また、この方法で得られる活性末端を有する重合体の活性末端に、該活性末端と反応しうる変性剤を反応させることにより、末端変性放射状共役ジエン重合体を製造する。本発明によれば、重合体の設計の自由度が高く、重合体の構造の制御が容易な、放射状共役ジエン重合体の製造方法を提供することができる。

Description

放射状共役ジエン重合体の製造方法
 本発明は、放射状共役ジエン重合体の製造方法に関し、より詳しくは、末端に任意の官能基を導入することが容易であるなど、重合体の設計の自由度が高く、また、重合体の構造を高度に制御することが容易な、放射状共役ジエン重合体の製造方法に関する。また、本発明は、この製造方法によって得ることができる放射状共役ジエン重合体と、充填剤とを含んでなる、タイヤの材料などとして好適に用いられる共役ジエン重合体組成物に関する。
 共役ジエン重合体に放射状の構造を有させることにより、直鎖状の共役ジエン重合体に比して、種々の性質を改良させることが知られている。例えば、タイヤ用のゴム材料として用いられる場合では、共役ジエン重合体を放射状の構造とすることにより、加工性や充填剤との親和性が改良されることが知られている。
 特許文献1には、放射状の共役ジエン重合体を得る手法として、リチウムアミド化合物を重合開始剤として共役ジエンを重合し、得られる重合体を四塩化スズとカップリング反応させることにより、末端にアミド基を有する放射状の共役ジエン重合体を得ることが記載されている。この方法によれば、共役ジエン重合体を放射状の構造とした上で、さらに、末端にアミド基を導入させることができるので、特に充填剤との親和性に優れた共役ジエン重合体を得ることが可能となる。しかし、この方法では、末端に導入できる官能基がアミド基に限られ、より充填剤との親和性改良効果が高い官能基を導入させることができないという問題、すなわち、重合体の設計の自由度が低いという問題があった。
 共役ジエン重合体を、末端に自由に官能基を導入可能な放射状の構造とする手法としては、重合開始点を複数有する多価重合開始剤を用いる手法が知られている。例えば、特許文献2には、有機リチウム開始剤で少量のジビニルベンゼンを重合して得られる多価重合開始剤を用いて共役ジエンを重合する方法が記載されている。しかしながら、この方法では、分岐構造の制御が困難である上に、重合体をタイヤの材料として用いた場合に、開始末端のジビニルベンゼン架橋物が、タイヤの性能に悪影響を及ぼすという問題があった。
 また、多価重合開始剤を用いる他の手法としては、特許文献3に記載されている、アレン化合物と有機リチウムを反応させて得られる多価開始剤を用いる方法や、特許文献4に記載されている、ナフタレンリチウムにより少量のブタジエンを重合した後、得られる重合体を部分的にカップリングして得た多価重合開始剤を用いる方法が挙げられる。しかしながら、これらの方法でも、分岐構造の制御が困難であり、また、得られる共役ジエン重合体が架橋構造を形成するおそれがあるという問題があった。また、これらの方法では、直鎖状の共役ジエン重合体が相当量含有されることが避けられず、放射状の共役ジエン重合体の割合を高めることが困難であるという問題もあった。
 一方、多価重合開始剤を用いて共役ジエン重合体以外の重合体を得る例としては、非特許文献1に記載されている、p-メチルスチレンオリゴマーとs-ブチルリチウムとのアニオン移動反応により得られる多価リチウム化合物を重合開始剤として、スチレンを重合する例が知られている。しかしながら、この方法を共役ジエン重合体の製造に適用する例は知られていない。
特開平6-279515号公報 特開平2-229809号公報 特開平10-226708号公報 特表平11-513715号公報
"Polymer Preprints,Japan"2008年、第57巻、No.1、p.538
 本発明は、末端に任意の官能基を導入することが容易であるなど、重合体の設計の自由度が高く、また、重合体の構造を高度に制御することが容易な、放射状共役ジエン重合体の製造方法を提供することを目的とする。また、本発明は、この製造方法によって得ることができる放射状共役ジエン重合体と、充填剤とを含んでなる、耐摩耗性や低発熱性に優れる重合体組成物を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意研究した結果、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させることにより得られるアルカリ金属化芳香族化合物を重合開始剤として、共役ジエン化合物を重合することにより、構造が高度に制御された放射状の共役ジエン重合体が得られることを見出した。また、この方法で得られる活性末端を有する重合体には、任意の変性剤を容易に反応させうることを見出した。本発明は、これらの知見に基づいて完成するに至ったものである。
 かくして、本発明によれば、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合する、放射状共役ジエン重合体の製造方法が提供される。
 前記の放射状共役ジエン重合体の製造方法では、前記単量体混合物が、さらに芳香族ビニル化合物を含んでなるものであることが好ましい。
 前記の放射状共役ジエン重合体の製造方法では、前記アルカリ金属化芳香族化合物が、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものであることが好ましい。
 また、本発明によれば、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合し、得られる活性末端を有する重合体の活性末端に、該活性末端と反応しうる変性剤を反応させる、末端変性放射状共役ジエン重合体の製造方法が提供される。
 さらに、本発明によれば、前記の放射状共役ジエン重合体の製造方法または前記の末端変性放射状共役ジエン重合体の製造方法によって得られる重合体と、充填剤とを含んでなる重合体組成物が提供される。
 本発明の放射状共役ジエン重合体の製造方法によれば、制御良く放射状の構造を有する共役ジエン重合体を得ることができるので、ほぼ完全に全ての重合体を放射状の構造とすることも可能であり、また、共役ジエン重合体の材料としての性能に悪影響を及ぼしうる不純物が含まれることも無い。また、この方法で得られる活性末端を有する重合体の活性末端には、該活性末端と反応しうる変性剤を容易に反応させることができるので、重合体の設計の自由度が高いといえる。また、本発明の重合体組成物は、耐摩耗性や低発熱性に優れ、タイヤの材料などとして好適に用いることができる。
 本発明の放射状共役ジエン重合体の製造方法は、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合するものである。
 本発明において用いられる重合開始剤は、アルカリ金属原子と芳香環とのそれぞれに直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物である。本発明で重合開始剤として用いられるアルカリ金属化芳香族化合物が有するアルカリ金属原子は、特に限定されるものではないが、リチウム、ナトリウム、またはカリウムであることが好ましく、なかでも、リチウムが特に好ましい。また、アルカリ金属化芳香族化合物が有する芳香環も、芳香族性を有する共役環であれば特に限定されず、具体例としては、ベンゼン環、ナフタレン環、アントラセン環などの電気的に中性な芳香族炭化水素環;シクロペンタジエニルアニオン環、インデニルアニオン環、フルオレニルアニオン環などの負電荷を有する芳香族炭化水素環;フラン環、チオフェン環などのヘテロ原子を含有する芳香環など挙げることができる。これらのなかでも、電気的に中性な芳香族炭化水素環を有するアルカリ金属化芳香族化合物が、その安定性や重合活性の観点から好ましく用いられる。
 また、本発明において重合開始剤として用いられるアルカリ金属化芳香族化合物は、アルカリ金属原子と芳香環とのそれぞれに直接結合した炭素原子を1分子中に3個以上有するものであれば、その構造は特に限定されず、例えば、1つの芳香環に対して、アルカリ金属原子と直接結合した炭素原子が3個以上直接結合したものであっても、アルカリ金属原子と直接結合した炭素原子が1個以上直接結合した芳香環が、結合基を介して、3個以上結合したものであってもよい。
 1つの芳香環に対して、アルカリ金属原子と直接結合した炭素原子が3個以上直接結合してなるアルカリ金属化芳香族化合物としては、下記の一般式(1)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R~Rは、それぞれ、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表し、R~Rの3個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。また、mは0~5の整数である。但し、mが2以上であるとき、一般式(1)で表される構造に関わらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってよい。
 アルカリ金属原子と直接結合した炭素原子が1個以上直接結合した芳香環が、結合基を介して、3個以上結合してなるアルカリ金属化芳香族化合物としては、下記の一般式(2)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R~R13は、それぞれ、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表し、R~R13の1個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。また、Xは任意の結合基を表し、nは3~100の整数である。
 本発明において重合開始剤として用いられるアルカリ金属化芳香族化合物の合成方法は特に限定されないが、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものが好適に用いられる。
 アルカリ金属化芳香族化合物を合成するために用いられる有機アルカリ金属化合物は、特に限定されないが、アルキル基またはアリール基を有するアルカリ金属化合物が好適に用いられ、その具体例としては、メチルリチウム、メチルナトリウム、メチルカリウム、エチルリチウム、エチルナトリウム、エチルカリウム、n-プロピルリチウム、イソプロピルカリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、n-ブチルナトリウム、n-ブチルカリウム、ペンチルリチウム、n-アミルリチウム、オクチルリチウム、フェニルリチウム、ナフチルリチウム、フェニルナトリウム、ナフチルナトリウムが挙げられる。
 アルカリ金属化芳香族化合物を合成するために、アルキル(またはアリール)カリウムやアルキル(またはアリール)ナトリウムを用いる場合は、アルキル基またはアリール基を有するリチウム化合物と、アルコキシ基を有するカリウムまたはナトリウム化合物とを混合することにより、目的とするカリウムまたはナトリウム化合物を得ても良い。このとき用いられるアルコキシ基を有するカリウムまたはナトリウム化合物としては、t-ブトキシカリウムやt-ブトキシナトリウムが例示される。アルコキシ基を有するカリウムまたはナトリウム化合物の使用量は、特に限定されないが、アルキル基またはアリール基を有するリチウム化合物に対して、通常0.1~5.0モル、好ましくは0.2~3.0モル、より好ましくは0.3~2.0モルである。
 アルカリ金属化芳香族化合物の合成に用いられ得る芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物としては、前述の一般式(1)で表されるアルカリ金属化芳香族化合物を得るために用いられ得る、下記の一般式(3)で表される芳香族化合物や、前述の一般式(2)で表されるアルカリ金属化芳香族化合物を得るために用いられ得る、下記の一般式(4)で表される芳香族化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R14~R21は、それぞれ、水素原子、および炭素数1~10のアルキル基から選択される基を表し、R14~R21の3個以上が炭素数1~10のアルキル基である。また、mは、0~5の整数である。但し、mが2以上であるとき、一般式(3)で表される構造に関わらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってよい。
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、R22~R26は、それぞれ、水素原子、および炭素数1~10のアルキル基から選択される基を表し、R22~R26の1個以上が炭素数1~10のアルキル基である。また、Xは任意の結合基を表し、nは、3~100の整数である。
 一般式(3)で表される芳香族化合物の具体例としては、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、ヘキサメチルベンゼンなどの3個以上のアルキル基を有するベンゼン類;2,3,5-トリメチルナフタレン、1,4,5-トリメチルナフタレンなどの3個以上のアルキル基を有するナフタレン類などを挙げることができる。
 また、一般式(4)で表される芳香族化合物の具体例としては、o-メチルスチレンオリゴマー、m-メチルスチレンオリゴマー、p-メチルスチレンオリゴマー、p-エチルスチレンオリゴマーなどのベンゼン環上にアルキル基を有するスチレンの重合体などを挙げることができる。
 芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させる方法は特に限定されるものではないが、不活性雰囲気下、不活性溶媒中で反応させる方法が好ましく用いられる。用いられる不活性溶媒は、反応させる化合物を溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒を用いることが好ましい。具体的には、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素などが挙げられる。なお、これらの溶媒は、1種を単独で用いても良いし、2種以上を混合して用いても良い。また、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に対する、有機アルカリ金属化合物の使用量も特に限定されるものではないが、芳香族化合物中の芳香環に直接結合した炭素原子1モルに対して、通常0.1~100モル、好ましくは0.2~50モル、より好ましくは0.3~10モル、最も好ましくは0.3~1.1モルである。この反応の反応時間、反応温度も特に限定されないが、反応時間は、通常1分~10日、好ましくは1分~5日の範囲であり、反応温度は、通常-50℃~100℃の範囲である。
 また、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、反応を促進させる目的で、アルカリ金属原子への配位能を有する化合物を共存させてもよい。アルカリ金属原子への配位能を有する化合物としては、ヘテロ原子を含有するルイス塩基化合物が好適に用いられ、なかでも、窒素原子または酸素原子を含有するルイス塩基化合物が特に好適に用いられる。窒素原子または酸素原子を含有するルイス塩基化合物の具体例としては、ジエチルエーテル、アニソール、ジフェニルエーテル、ジメトキシベンゼン、ジメトキシエタン、ジグライム、エチレングリコールジブチルエーテルなどの鎖状エーテル化合物;トリメチルアミン、トリエチルアミンなどの分子内に窒素原子を1つ有する第3級アミン化合物;テトラヒドロフラン、テトラヒドロピランなどの分子内に酸素原子を1つ有する環状エーテル化合物;ピリジン、ルチジン、1-メチルイミダゾールなどの含窒素複素環化合物;ビステトラヒドロフリルプロパンなどの分子内に酸素原子を2つ以上有する環状エーテル化合物;N,N,N’,N’-テトラメチルエチレンジアミン、ジピペリジノエタン、1,4-ジアザビシクロ[2.2.2]オクタン、(-)-スパルテイン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンなどの分子内に窒素原子を2つ以上有する第3級アミン化合物;ヘキサメチルホスホアミドなどの分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物;などが挙げられる。
 アルカリ金属原子への配位能を有する化合物の使用量は、特に限定されず、その配位能の強さに応じて決定すれば良い。例えば、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が弱い化合物である、鎖状エーテル化合物や分子内に窒素原子を1つ有する第3級アミン化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは5~50モル、より好ましくは10~25モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、配位能が中程度である化合物である、分子内に酸素原子を1つ有する環状エーテル化合物や含窒素複素環化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは1~20モル、より好ましくは2~10モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が強い化合物である、分子内に酸素原子を2つ以上有する環状エーテル化合物や分子内に窒素原子を2つ以上有する第3級アミン化合物や分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常0.01~5モル、好ましくは0.01~2モル、より好ましくは0.01~1.5モルの範囲である。アルカリ金属原子への配位能を有する化合物の使用量が多すぎると、反応が進行しなくなるおそれがある。
 芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物の生成効率を特に良好とし、共役ジエン重合体中における放射状共役ジエン重合体の割合を高める観点からは、アルカリ金属原子への配位能を有する化合物として、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を用い、その使用量を、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、0.02~0.4モルの範囲とすることが特に好ましい。
 芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、アルカリ金属原子への配位能を有する化合物を共存させる場合において、それぞれの添加順序は特に限定されない。但し、アルカリ金属化芳香族化合物の生成効率を特に良好とする観点からは、芳香族化合物および有機アルカリ金属化合物を共存させた後、その系にアルカリ金属原子への配位能を有する化合物を添加する順序、または芳香族化合物およびアルカリ金属原子への配位能を有する化合物を共存させた後、その系に有機アルカリ金属化合物を添加する順序が好適である。このような順序で添加を行うことにより、有機アルカリ金属化合物とアルカリ金属原子への配位能を有する化合物との錯体形成による不溶化が防止され、アルカリ金属化芳香族化合物の生成効率が特に良好となる。
 本発明の放射状共役ジエン重合体の製造方法では、例えば以上のようにして得られる、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として用いて、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合する。なお、用語「単量体混合物」は、1種の共役ジエン化合物のみからなるものを含む概念である。本発明で単量体として用いられる共役ジエン化合物は、特に限定されず、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエンなどを挙げることができる。本発明の放射状共役ジエン重合体の製造方法では、これらの共役ジエン化合物のなかでも、1,3-ブタジエン、イソプレンまたは1,3-ペンタジエンが特に好ましく用いられる。なお、これらの共役ジエン化合物は、1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
 本発明の放射状共役ジエン重合体の製造方法では、共役ジエン化合物に加えて、他の単量体を含む単量体混合物を用いて、共重合体を得ても良い。本発明で単量体として使用し得る、共役ジエン化合物以外の化合物としては、例えば、スチレン、α‐メチルスチレン、p-メチルスチレン、ビニルナフタレン、ビニルピリジンなどの芳香族ビニル化合物;メチルメタクリレート、メチルアクリレートなどのアクリル酸エステル化合物などを挙げることができる。用いる単量体混合物における、共役ジエン化合物以外の単量体の含有量は、特に限定されるものではないが、通常50モル%以下であり、好ましくは45モル%以下である。単量体混合物中における共役ジエン化合物以外の単量体の含有量が多すぎると、得られる共役ジエン重合体が、共役ジエン重合体としての特性に劣るものとなるおそれがある。
 本発明の放射状共役ジエン重合体の製造方法において、2種以上の単量体を含む単量体混合物を用いて共重合体を得る場合の、共重合の様式は特に限定されず、ランダム状、ブロック状、テーパー状などのいずれであっても良い。
 本発明の放射状共役ジエン重合体の製造方法では、通常、重合反応がリビング性を伴って進行するので、重合開始剤として用いるアルカリ金属化芳香族化合物と単量体混合物との使用割合は、目的とする重合体の分子量に応じて決定すれば良いが、単量体混合物1モルに対して、アルカリ金属化芳香族化合物中のアルカリ金属の量が、通常0.000001~0.1モル、好ましくは0.00001~0.05モルとなる範囲で選択される。アルカリ金属化芳香族化合物の使用量が少なすぎると、得られる放射状共役ジエン重合体の分子量が高くなりすぎて取り扱いが困難となったり、重合反応が十分に進行しなかったりするおそれがある。一方、アルカリ金属化芳香族化合物の使用量が多すぎると、得られる放射状共役ジエン重合体の分子量が低くなりすぎて、ゴム材料として特性に劣るものとなるおそれがある。
 また、重合反応を行うに当っては、重合速度や得られる放射状共役ジエン重合体のミクロ構造を制御する目的で、重合反応系に、前述したようなアルカリ金属原子への配位能を有する化合物を添加してもよい。これらのアルカリ金属原子への配位能を有する化合物の使用量は、重合開始剤として用いるアルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対して、通常0~5モル、好ましくは0~4モル、より好ましくは0~2モルの範囲である。これらのアルカリ金属原子への配位能を有する化合物の使用量が多すぎると、重合反応を阻害するおそれがある。なお、重合開始剤として用いるアルカリ金属化芳香族化合物を調製する際に、アルカリ金属原子への配位能を有する化合物を用いた場合は、その化合物を含有する溶液をそのまま使用することもできる。
 特に低発熱性に優れる共役ジエン重合体組成物を得る観点からは、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を、重合開始剤として用いるアルカリ金属化合物(ここでいうアルカリ金属化合物は、アルカリ金属化芳香族化合物に限られず、反応系中に存在し、重合開始剤として働くアルカリ金属化合物全てを含むものである)中のアルカリ金属原子1モルに対して、0.02~0.4モルの範囲で存在させることが好ましい。このようにすることで、適度なビニル結合含有量を有する放射状共役ジエン重合体が得られ、その結果として、特に低発熱性に優れる共役ジエン重合体組成物を得ることができる。
 本発明の放射状共役ジエン重合体の製造方法における重合様式は特に限定されず、例えば気相重合法、溶液重合法、スラリー重合法などを採用することができ、これらのなかでも溶液重合法を用いることが好ましい。
 溶液重合法を用いる場合、用いる溶媒は、重合反応において不活性であり、単量体混合物や重合触媒を溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒を用いることが好ましい。具体的には、たとえば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルなどのエーテル類などが挙げられる。なかでも、脂肪族炭化水素や脂環族炭化水素を溶媒として用いると重合活性が高くなるので好ましい。なお、これらの溶媒は、1種を単独で用いても良いし、2種以上を混合して用いても良い。
 溶液重合法を用いる場合、重合溶液中の単量体混合物の濃度は、特に限定されないが、通常1~50重量%、好ましくは2~45重量%、より好ましくは5~40重量%の範囲で選択される。溶液中の単量体混合物の濃度が低すぎると、放射状共役ジエン重合体の生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~200℃、好ましくは0℃~180℃の範囲である。重合時間にも特に制限は無く、通常1分間~100時間の範囲である。
 本発明の放射状共役ジエン重合体の製造方法では、通常、重合反応がリビング性を伴って進行するので、重合反応系には、活性末端を有する重合体が存在することとなる。この活性末端を有する重合体には、アルコールや水などの反応停止剤を反応させても良いが、この活性末端と反応しうる任意の変性剤を反応させて、末端変性放射状共役ジエン重合体とすることが好ましい。このように末端変性放射状共役ジエン重合体を得ることにより、得られる放射状共役ジエン重合体を変性剤により改質することができ、例えば、シリカやカーボンブラックなどの充填剤に対する親和性を改良することができる。
 末端変性放射状共役ジエン重合体を得るために用いる変性剤は、重合体の活性末端と反応しうる変性剤であれば、特に限定されない。また、1分子中に、重合体の活性末端と反応しうる反応点を複数有する変性剤(カップリング剤)を用いて、カップリング反応を行うこともできる。
 本発明で用いられ得る変性剤としては、例えば、(a)イソシアナート化合物やイソチオシアナート化合物(以下「(a)成分」という)、(b)イソシアヌル酸誘導体や該誘導体対応のチオカルボニル含有化合物(以下「(b)成分」という)、(c)尿素化合物(以下「(c)成分」という)、(d)アミド化合物やおよび/またはイミド化合物(以下「(d)成分」という)、(e)N-アルキル置換オキサゾリジノン化合物(以下「(e)成分」という)、(f)ピリジル置換ケトン化合物および/またはピリジル置換ビニル化合物(以下「(f)成分」という)、(g)ラクタム化合物(以下「(g)成分」という)、(h)ケイ素化合物(以下「(h)成分」という)、(i)エステル化合物(以下「(i)成分」という)、(j)ケトン化合物(以下「(j)成分」という)、(k)スズ化合物(以下「(k)成分」という)などを挙げることができる。
 これらの変性剤のうち、(a)成分であるイソシアナート化合物またはイソチオシアナート化合物の具体例としては、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート(C-MDI)、フェニルイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、ブチルイソシアナート、1,3,5-ベンゼントリイソシアナート、フェニルイソチオシアナート、フェニル-1,4-ジイソチオシアナートなどを挙げることができる。(b)成分であるイソシアヌル酸誘導体、該誘導体対応のチオカルボニル含有化合物の具体例としては、カルバミン酸メチル、N,N-ジエチルカルバミン酸メチルなどのカルバミン酸誘導体、イソシアヌル酸、N,N’,N’-トリメチルイソシアヌル酸などのイソシアヌル酸誘導体およびこれら誘導体に対応するチオカルボニル含有化合物などを挙げることができる。(c)成分である尿素化合物の具体例としては、N,N’-ジメチル尿素、N,N’-ジエチル尿素、N,N,N’,N’-テトラメチル尿素、N,N-ジメチル-N’,N’-ジフェニル尿素などを挙げることができる。(d)成分であるアミド化合物あるいはイミド化合物の具体例としては、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジエチルアセトアミド、アミノアセトアミド、N,N-ジメチル-N’,N’-ジメチルアミノアセトアミド、N,N-ジメチルアミノアセトアミド、N,N-エチルアミノアセトアミド、N,N-ジメチル-N’-エチルアミノアセトアミド、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、ニコチンアミド、イソニコチンアミド、ピコリン酸アミド、N,N-ジメチルイソニコチンアミド、コハク酸アミド、フタル酸アミド、N,N,N’,N’-テトラメチルフタル酸アミド、オキサミド、N,N,N’,N’-テトラメチルオキサミド、2-フランカルボン酸アミド、N,N-ジメチル-2-フランカルボン酸アミド、キノリン-2-カルボン酸アミド、N-エチル-N-メチル-キノリンカルボン酸アミドなどのアミド化合物、コハク酸イミド、N-メチルコハクイミド、マレイミド、N-メチルマレイミド、フタルイミド、N-メチルフタルイミドなどのイミド化合物などを挙げることができる。(e)成分であるN-アルキル置換オキサゾリジノン化合物の具体例としては、1,3-ジエチル-2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノン、1,1-ジプロピル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-プロピル-2-イミダゾリジノン、1-メチル-3-ブチル-2-イミダゾリジノン、1-メチル-3-(2-メトキシエチル)-2-イミダゾリジノン、1-メチル-3-(2-エトキシエチル)-2-イミダゾリジノン、1,3-ジ-(2-エトキシエチル)-2-イミダゾリジノンなどを挙げることができる。(f)成分であるピリジル置換ケトン化合物あるいはピリジル置換ビニル化合物の具体例としては、メチル-2-ピリジルケトン、メチル-4-ピリジルケトン、プロピル-2-ピリジルケトン、ジ-4-ピリジルケトン、プロピル-3-ピリジルケトン、2-ベンゾイルピリジン、2-ビニルピリジン、4-ビニルピリジンなどを挙げることができる。(g)成分であるラクタム化合物の具体例としては、N-メチル-2-ピロリドン、2-ピペリドン、N-メチル-2-ピペリドン、2-キノロン、N-メチル-キノロンなどを挙げることができる。
 これらの変性剤を使用する場合の使用量は、特に限定されないが、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、変性剤中の、イソシアナート基、イソチオシアナート基、カルボニル基、ビニル基、アルデヒド基などの官能基の量が、通常0.2~10モル、好ましくは0.5~5.0モルとなる範囲である。変性剤の使用量が少なすぎると、末端変性の効果が十分に得られないおそれがあり、一方、変性剤の使用量が多すぎると、得られる重合体中に未反応の変性剤が多く残留する結果、重合体に、臭気や物性低下などの悪影響を及ぼすおそれがある。
 また、変性剤として用いられ得る(h)成分であるケイ素化合物の具体例としては、ジブチルジクロロシラン、メチルトリクロロシラン、ジメチルジクロロシラン、メチルジクロロシラン、トリメチルクロロシラン、テトラクロロシラン、トリフェノキシメチルシラン、テトラメトキシシラン、下記一般式(5)で表されるポリオルガノシロキサンなどを挙げることができる。このケイ素化合物の使用量は、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、ケイ素化合物中の、重合体の活性末端と反応しうる基(ハロゲン原子、アルコキシ基、アリールオキシ基、またはエポキシ基)の量が、通常0.05~5モル、好ましくは0.1~1.5モルとなる範囲である。
Figure JPOXMLDOC01-appb-C000005
 一般式(5)中、R27~R34は、それぞれ、炭素数1~6のアルキル基および炭素数6~12のアリール基から選択される基を表す。YおよびYは、それぞれ、炭素数1~5のアルコキシル基、炭素数6~14のアリールオキシ基またはエポキシ基を含有する炭素数4~12の基、炭素数1~6のアルキル基および炭素数6~12のアリール基から選択される基を表す。Yは、炭素数1~5のアルコキシル基、炭素数6~14のアリールオキシ基およびエポキシ基を含有する炭素数4~12の基から選択される基を表す。Yは、2~20のアルキレングリコールの繰返し単位を含有する基である。pは2~200の整数、qは0~200の整数、rは0~200の整数である。
 変性剤として用いられ得る(i)成分であるエステル化合物の具体例としては、アジピン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、グルタル酸ジエチル、マレイン酸ジエチルなどが挙げられる。これらのエステル化合物の使用量は、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、通常0.05~1.5モルの範囲である。変性剤として用いられ得る(j)成分であるケトン化合物の具体例としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ニコチンアミド、4,4’-ビス(ジエチルアミノ)ベンゾフェノンなどが挙げられ、これらの使用量は、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、通常0.05~5モルの範囲である。変性剤として用いられ得る(k)成分であるスズ化合物の具体例としては、テトラクロロスズ、テトラブロムスズ、トリクロロブチルスズ、トリクロロメチルスズ、トリクロロオクチルスズ、ジブロムジメチルスズ、ジクロロジメチルスズ、ジクロロジブチルスズ、ジクロロジオクチルスズ、1,2-ビス(トリクロロスタニル)エタン、1,2-ビス(メチルジクロロスタニルエタン)、1,4-ビス(トリクロロスタニル)ブタン、1,4ビス(メチルジクロロスタニル)ブタン、エチルスズトリステアレート、ブチルスズトリスオクタノエート、ブチルスズトリスステアレート、ブチルスズトリスラウレート、ジブチルスズビスオクタノエート、ジブチルスズビスステアレート、ジブチルスズビスラウレートなどを挙げることができる。これらの使用量は、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、通常0.05~5モルの範囲である。
 末端変性放射状共役ジエン重合体を得るために用いる変性剤は、1種を単独で用いても良いし、2種以上を併用することもできる。また、重合体の活性末端と、変性剤との反応効率を高める目的で、重合反応終了後、重合反応系にさらに、共役ジエン化合物を、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たり、0.5~500モル、好ましくは1~200モル添加してから末端変性反応を行なってもよい。また、変性反応の温度は特に限定されないが、通常0~120℃の範囲である。
 以上のようにして得られる放射状共役ジエン重合体の溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合してもよい。重合反応後または変性反応後の重合体は、例えば、再沈澱、加熱下での溶媒除去、減圧下での溶媒除去、水蒸気による溶媒の除去(スチームストリッピング)等の、重合体を溶液から単離する際の通常の操作によって、反応混合物から分離、取得することができる。
 以上のような本発明の放射状共役ジエン重合体の製造方法によれば、重合開始剤として用いるアルカリ金属化芳香族化合物が、3個以上有するアルカリ金属原子のそれぞれを重合開始点として、共役ジエン重合体鎖がリビング重合性を伴って成長するので、制御良く放射状の構造を有する共役ジエン重合体を得ることが可能となり、ほぼ完全に全ての重合体を分岐状の構造とすることも可能である。但し、本発明の放射状共役ジエン重合体の製造方法では、芳香族化合物のアルカリ金属化の度合いを制御することにより、放射状共役ジエン重合体と直鎖状共役ジエン重合体とが混在する重合体混合物を得ることも可能である。この重合体混合物における、放射状共役ジエン重合体(すなわち、3分岐以上の共役ジエン重合体)の割合は、特に限定されないが、放射状共役ジエン重合体と直鎖状共役ジエン重合体との合計量に対する、放射状共役ジエン重合体量の割合として、通常、20~100重量%であり、好ましくは、30~100重量%である。このような割合で放射状共役ジエン重合体が存在することにより、共役ジエン重合体の加工性や充填剤などとの親和性が特に良好となる。また、この重合体混合物の分子量も特に限定されず、用途に応じて決定すれば良いが、ゲル・パーミエーション・クロマトグラフィーによりポリスチレン換算値として求められる数平均分子量(Mn)として、通常、500~1,000,000の範囲で選択される。また、放射状共役ジエン重合体のミクロ構造も特に限定されず、放射状共役ジエン重合体の共役ジエン単位部分におけるビニル結合含有量は、通常1.0~80モル%であり、好ましくは3.0~75モル%である。但し、特に低発熱性に優れる共役ジエン重合体組成物を得る観点からは、放射状共役ジエン重合体の共役ジエン単位部分におけるビニル結合含有量は、5.0~30モル%であることが特に好ましい。
 本発明によって得られる放射状共役ジエン重合体は、多分岐構造を有し、場合によっては末端変性重合体を含むので、シリカやカーボンブラックなどの充填剤や、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)などのその他のゴムと混合しやすく、共役ジエン重合体組成物を容易に製造できる。さらには、架橋剤、架橋促進剤、架橋活性化剤、老化防止剤、活性剤、プロセス油、可塑剤、滑剤などの配合剤をそれぞれ必要量配合することも容易にできる。
 本発明によって得られる放射状共役ジエン重合体は、広範な用途に使用することができる。例えば、シール剤、封止材、接着剤、粘着剤などの粘接着剤用途への利用;熱可塑性エラストマー用途への利用;トレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位への利用;ホース、窓枠、ベルト、靴底、防振ゴム、自動車部品などのゴム製品への利用;耐衝撃性ポリスチレン、ABS樹脂などの樹脂強化ゴムとして利用などが可能になる。
 本発明によって得られる放射状共役ジエン重合体は、充填剤を配合した組成物として用いることにより、特に耐摩耗性や低発熱性に優れた重合体組成物とすることができる。すなわち、本発明の重合体組成物は、本発明の放射状共役ジエン重合体の製造方法によって得られる放射状共役ジエン重合体と、充填剤とを含んでなるものである。用いる充填剤は、特に限定されないが、シリカおよびカーボンブラックから選択される少なくとも1種の充填剤が好適である。
 シリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましく用いられる。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/g、より好ましくは80~220m/g、特に好ましくは100~170m/gである。また、シリカのpHは、pH7未満であることが好ましく、pH5~6.9であることがより好ましい。
 カーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられる。カーボンブラックを用いる場合、ファーネスブラックを用いることが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、T-HS、T-NS、MAF、FEFなどが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明の重合体組成物における充填剤の配合量は、特に限定されないが、重合体組成物中の重合体成分100重量部に対して、通常5~200重量部であり、好ましくは、20~150重量部である。
 本発明の重合体組成物には、本発明によって得られる放射状共役ジエン重合体以外のその他の重合体を配合してもよい。その他の重合体としては、例えば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-スチレン-ブタジエン共重合ゴムなどのゴム質重合体が挙げられる。なかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエン共重合ゴムが好ましく用いられる。これらの重合体は、それぞれ単独で、または2種以上を組み合わせて使用することができる。
 重合体に充填剤を添加する方法は特に限定されず、固形の重合体に対して添加して混練する方法(乾式混練法)や重合体の溶液に添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。
 本発明の重合体組成物には、上記成分以外に、常法に従って、架橋剤、架橋促進剤、架橋活性化剤、老化防止剤、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤、シランカップリング剤、水酸化アルミニウムなどの配合剤をそれぞれ必要量配合できる。
 架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。中でも、硫黄が好ましく使用される。架橋剤の配合量は、重合体組成物の重合体成分100重量部に対して、好ましくは1.6~5.0重量部、より好ましくは1.7~4.0重量部、特に好ましくは1.9~3.0重量部である。
 架橋促進剤としては、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系架橋促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。なかでも、スルフェンアミド系架橋促進剤を含むものが特に好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、重合体組成物の重合体成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1.0~4.0重量部である。
 架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸や酸化亜鉛などを用いることができる。架橋活性化剤の配合量は適宜選択されるが、高級脂肪酸の配合量は、重合体組成物の重合体成分100重量部に対して、好ましくは0.05~15重量部、より好ましくは0.5~5重量部であり、酸化亜鉛の配合量は、ゴム成分100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.5~3重量部である。
 本発明の重合体組成物を得るためには、常法に従って各成分を混練すればよく、例えば、架橋剤および架橋促進剤を除く配合剤と重合体成分を混練後、その混練物に架橋剤および架橋促進剤を混合して目的の組成物を得ることができる。架橋剤および架橋促進剤を除く配合剤と重合体成分の混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。混練物と架橋剤および架橋促進剤との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。
 本発明の重合体組成物は、例えばタイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料や、ホース、ベルト、マット、防振ゴムその他の各種工業用品の材料、また、接着剤、樹脂の耐衝撃性改良剤、樹脂フィルム緩衝剤、靴底、ゴム靴、ゴルフボール、玩具として用いることができる。なかでも、本発明の重合体組成物は耐摩耗性と低発熱性に優れることから、低燃費タイヤの材料として特に好適に用いることができる。
  本発明の重合体組成物を用いてタイヤなどのゴム製品(架橋物)を構成する場合の架橋および成形方法は、特に限定されず、架橋物の形状、大きさなどに応じて選択すればよい。金型中に架橋剤を配合した重合体組成物を充填して加熱することにより成形と同時に架橋してもよく、架橋剤を配合した重合体組成物を予め成形した後、それを加熱して架橋してもよい。架橋温度は、好ましくは120~200℃、より好ましくは140~180℃であり、架橋時間は、通常、1~120分程度である。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、各例中の部および%は、特に断りのない限り、重量基準である。
 各種の測定については、以下の方法で行った。
〔重合体の分子量〕
 ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的には、以下の条件で測定した。
 測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
 カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した。
 検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
 溶離液:テトラヒドロフラン
 カラム温度:40℃
〔重合体のミクロ構造〕
 H-NMRにより測定した。
〔低発熱性〕
 粘弾性測定装置(レオメトリックス社製、商品名「ARES」)を用い、2.5%ねじれ、10Hzの条件で60℃におけるtanδを測定した。この特性については、基準サンプルを100とする指数で示した。この指数が小さいものほど、低発熱性に優れる。
〔耐摩耗性〕
 上島製作所社製FPS摩耗試験機を用い、荷重1kgf、スリップ率15%で測定した。この特性については、基準サンプルを100とする指数で示した。この指数が大きいものほど、耐摩耗性に優れる。
〔参考例1(p-メチルスチレンオリゴマーの合成)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン48.0部とp-メチルスチレン1.13部を加えた。次に攪拌しながら、sec-ブチルリチウム0.0615部を加え、重合温度40℃にて攪拌しながら1時間重合した。少量のメタノールにて重合反応を停止し、純水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、目的のp-メチルスチレンのオリゴマー1.12部を得た。得られたp-メチルスチレンのオリゴマーのMnは1,280、Mwは1,440、分子量分布(Mw/Mn)は1.13、Mnの値から求めた平均重合度は10.8であった。
〔実施例1(p-メチルスチレンオリゴマーのリチオ化、およびリチオ化されたp-メチルスチレンオリゴマーによるイソプレンの重合)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン2.81部、参考例1で得たp-メチルスチレンのオリゴマー0.284部、およびテトラメチルエチレンジアミン0.279部を加えた。次に攪拌しながら、sec-ブチルリチウム0.154部(sec-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.0モル)を加え、反応温度20℃にて40分間攪拌しながら反応した。次に、ベンゼン18.7部とイソプレン3.00部とを加え、重合温度40℃にて攪拌しながら2時間重合した。少量のメタノールにて重合反応を停止し、純水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、目的のポリイソプレン3.26部を得た。得られたポリイソプレンのMnは14,800、Mwは18,600、分子量分布(Mw/Mn)は1.26、ビニル結合含有量は77モル%であった。用いたsec-ブチルリチウムの量と実測したMnに基づいて計算される、p-メチルスチレンのオリゴマー1分子からのポリイソプレンの平均の分岐数は10.8(分枝1本当りのMn=1,300)であることから、得られたポリイソプレンのほぼ100%が3分岐体以上の放射状重合体であると推定される。
〔参考例2(1,3,5-トリメチルベンゼンのリチオ化とリチオ化率の測定1)〕
 窒素雰囲気下、ガラス反応容器に、シクロヘキサン12部、1,3,5-トリメチルベンゼン0.144部、およびテトラメチルエチレンジアミン0.460部を加えた。次に攪拌しながら、n-ブチルリチウム0.230部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて3日間放置させ反応した。次に、反応により得られたリチオ化された1,3,5-トリメチルベンゼンのリチオ化率を測定する目的で、得られた反応液をトリメチルシリルクロライドを過剰量加えたガラス容器に数滴加え、30分間反応させた。水道水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、黄色いオイル状の液体を得た。この黄色いオイル状の液体につき、ガスクロマトグラフ質量分析測定(GC-MS)を行った。結果は以下の通りであった。EI-MS,m/z=120(M+)(2%),m/z=192(M+)(13%),m/z=264(M+)(57%),m/z=336(M+)(28%)。Mw=120(2%)、Mw=192(13%)、Mw=264(57%)、Mw=336(28%)。次に、この黄色いオイル状の液体につきH-NMR測定を行った。結果は以下の通りであった。H-NMR(CDCl) 6.83(s,3H,Ph-H),6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),6.39(s,3H,Ph-H),2.30(s,9H,Ph-CH),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe),1.98(s,6H,Ph-CH-SiMe)。さらに、H-detected multi-bond heteronuclear multiple quantum coherence spectrum-NMR(HMBC-NMR)測定により、H-NMRにおけるそれぞれのシグナルについて帰属を行った。結果は以下の通りであった。無置換体(1,3,5-トリメチルベンゼン)H-NMR(CDCl) 6.83(s,3H,Ph-H),2.30(s,9H,Ph-CH)、1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン)(H-NMR(CDCl) 6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe)、2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン)H-NMR(CDCl) 6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe)、3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)H-NMR(CDCl) 6.39(s,3H,Ph-H),1.98(s,6H,Ph-CH-SiMe)。以上のH-,HMBC-NMR測定による帰属に基づいて、GC-MSで得られた分子イオンピークを以下のように帰属した。EI-MS,m/z=120(M+)は無置換体(1,3,5-トリメチルベンゼン)),m/z=192(M+)は1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン),m/z=264(M+)は2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン),m/z=336(M+)は3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)。以上より、無置換体:1置換体:2置換体:3置換体の割合(モル比)は、2:13:57:28と求められ、1,3,5-トリメチルベンゼンのメチル基のリチオ化率は70%であり、1,3,5-トリメチルベンゼン1分子に導入された平均リチウム原子数は2.11である。
〔実施例2(リチオ化された1,3,5-トリメチルベンゼンによるイソプレンの重合、および末端変性反応1)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン12部、1,3,5-トリメチルベンゼン0.144部、およびテトラメチルエチレンジアミン0.460部を加えた。次に攪拌しながら、n-ブチルリチウム0.230部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて3時間撹拌した後、3日間放置させ反応した。次に、イソプレン3.68部を加え、重合温度40℃にて攪拌しながら4時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリイソプレン4.00部を得た。得られた末端変性されたポリイソプレンは、GPC測定において、Mnが2,100、Mwが2,500、分子量分布(Mw/Mn)が1.19、の溶出成分(ピーク面積比35.2%)、およびMnが5,900、Mwが6,300、分子量分布(Mw/Mn)が1.07の溶出成分(ピーク面積比64.8%)からなるものであり、全体としてMnが3,600、Mwが5,000、分子量分布(Mw/Mn)が1.39のものであった。また、この末端変性されたポリイソプレンのビニル結合含有量は70モル%であった。さらに、この末端変性されたポリイソプレンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認され、1,3,5-トリメチルベンゼン由来のピークと導入されたトリメチルシリル基由来のピークから計算されるポリイソプレンの末端官能化数(すなわち分岐数)は1,3,5-トリメチルベンゼン1分子あたり2.03個であった。この値は、参考例2の1,3,5-トリメチルベンゼン1分子に導入された平均リチウム原子数2.11とよく一致していることから、得られた末端変性されたポリイソプレンにおける3分岐体の割合は28モル%であると推定される。
〔実施例3(リチオ化された1,3,5-トリメチルベンゼンによるイソプレンの重合、および末端変性反応2)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.138部、1,3,5-トリメチルベンゼン0.014部、およびテトラメチルエチレンジアミン0.460部を加えた。次に、n-ブチルリチウム0.230部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて4日間放置させ反応した。次に、シクロヘキサン12部とイソプレン3.68部を加え、重合温度40℃にて攪拌しながら4時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリイソプレン3.46部を得た。得られた末端変性されたポリイソプレンは、GPC測定において、Mnが17,500、Mwが20,200、分子量分布(Mw/Mn)が1.16の溶出成分(ピーク面積比57.4%)、およびMnが39,000、Mwが40,500、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比42.6%)からなるものであり、全体としてMnが22,900、Mwが29,000、分子量分布(Mw/Mn)が1.26のものであった。また、この末端変性されたポリイソプレンのビニル結合含有量は68モル%であった。さらに、この末端変性されたポリイソプレンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔実施例4(リチオ化された1,3,5-トリメチルベンゼンによるイソプレンの重合、および末端変性反応3)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.028部、1,3,5-トリメチルベンゼン2.88×10-3部、およびテトラメチルエチレンジアミン9.20×10-3部を加えた。次に、n-ブチルリチウム4.60×10-3部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて4日間放置させ反応した。次に、シクロヘキサン12部とイソプレン3.68部を加え、重合温度40℃にて攪拌しながら4時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリイソプレン3.52部を得た。得られた末端変性されたポリイソプレンは、GPC測定において、Mnが89,500、Mwが97,800、分子量分布(Mw/Mn)が1.09の溶出成分(ピーク面積比70.8%)、およびMnが188,400、Mwが195,100、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比29.2%)からなるものであり、全体としてMnが105,800、Mwが126,200、分子量分布(Mw/Mn)が1.19のものであった。また、この末端変性されたポリイソプレンのビニル結合含有量は70モル%であった。さらに、この末端変性されたポリイソプレンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔実施例5(リチオ化された1,3,5-トリメチルベンゼンによるイソプレンの重合、および末端変性反応4)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.014部、1,3,5-トリメチルベンゼン1.44×10-3部、およびテトラメチルエチレンジアミン9.20×10-3部を加えた。次に、n-ブチルリチウム2.30×10-3部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて4日間放置させ反応した。次に、シクロヘキサン12部とイソプレン3.68部を加え、重合温度40℃にて攪拌しながら4時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリイソプレン3.56部を得た。得られた末端変性されたポリイソプレンは、GPC測定において、Mnが156,800、Mwが177,400、分子量分布(Mw/Mn)が1.13の溶出成分(ピーク面積比77.7%)、およびMnが359,800、Mwが371,000、分子量分布(Mw/Mn)が1.03の溶出成分(ピーク面積比22.3%)からなるものであり、全体としてMnが179,400、Mwが220,500、分子量分布(Mw/Mn)が1.23のものであった。また、この末端変性されたポリイソプレンのビニル結合含有量は72モル%であった。さらに、この末端変性されたポリイソプレンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔参考例3~16(1,3,5-トリメチルベンゼンのリチオ化とリチオ化率の測定)〕
 テトラメチルエチレンジアミンの使用量、およびn-ブチルリチウムとテトラメチルエチレンジアミンとの反応時間を表1に示すように変更したこと以外は、参考例2と同様にして、1,3,5-トリメチルベンゼンのリチオ化を行い、無置換体~3置換体の割合を測定した。但し、参考例10および11については、テトラメチルエチレンジアミンに代えてビステトラヒドロフリルプロパンを表1に示す割合で用いた。また、参考例12~16については、n-ブチルリチウムに代えてsec-ブチルリチウムを表1に示す割合で用いた。それぞれの例において測定した無置換体~3置換体の割合は、表1に示した。表1から分かるように、有機アルカリ金属化合物(n-ブチルリチウムまたはsec-ブチルリチウム)中のアルカリ金属原子1モルに対して、テトラメチルエチレンジアミンまたはビステトラヒドロフリルプロパン0.33モルを用いた場合に、3置換体の割合が最も高くなることが分かる。
Figure JPOXMLDOC01-appb-T000006
〔実施例6(リチオ化された1,3,5-トリメチルベンゼンによるブタジエンの重合、および末端変性反応1)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.55部、1,3,5-トリメチルベンゼン0.056部およびテトラメチルエチレンジアミン0.184部を加えた。次に攪拌しながら、n-ブチルリチウム0.092部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて3時間撹拌した後、4日間放置させ反応した。次に、シクロヘキサン900部とブタジエン100部を加え、重合温度60℃にて攪拌しながら3時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリブタジエン100部を得た。得られた末端変性されたポリブタジエンは、GPC測定において、Mnが1,300,000、Mwが1,350,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比51.3%)、およびMnが627,000、Mwが681,000、分子量分布(Mw/Mn)が1.07の溶出成分(ピーク面積比48.7%)からなるものであり、全体としてMnが855,000、Mwが1,020,000、分子量分布(Mw/Mn)が1.20のものであった。また、この末端変性されたポリブタジエンのビニル結合含有量は53モル%であった。さらに、この末端変性されたポリブタジエンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔実施例7(リチオ化された1,3,5-トリメチルベンゼンによるブタジエンの重合、および末端変性反応2)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.55部、1,3,5-トリメチルベンゼン0.056部およびテトラメチルエチレンジアミン0.055部を加えた。次に攪拌しながら、n-ブチルリチウム0.092部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン0.33モル)を加え、反応温度20℃にて3時間撹拌した後、4日間放置させ反応した。次に、シクロヘキサン900部とブタジエン100部を加え、重合温度60℃にて攪拌しながら3時間重合した。次に、n-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリブタジエン100部を得た。得られた末端変性されたポリブタジエンは、GPC測定において、Mnが1,760,000、Mwが1,840,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比63.9%)、およびMnが918,000、Mwが986,000、分子量分布(Mw/Mn)が1.07の溶出成分(ピーク面積比36.1%)からなるものであり、全体としてMnが1,321,000、Mwが1,530,000、分子量分布(Mw/Mn)が1.16のものであった。また、この末端変性されたポリブタジエンのビニル結合含有量は25モル%であった。さらに、この末端変性されたポリブタジエンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔実施例8(リチオ化された1,3,5-トリメチルベンゼンによるブタジエンの重合、および末端変性反応3))〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、ノルマルヘキサン0.138部、1,3,5-トリメチルベンゼン0.014部およびテトラメチルエチレンジアミン0.0021部を加えた。次に攪拌しながら、sec-ブチルリチウム0.023部(sec-ブチルリチウム1モル当たりテトラメチルエチレンジアミン0.05モル)を加え、反応温度20℃にて3時間撹拌した後、1日間放置させ反応した。次に、シクロヘキサン12部を加え、その後、ブタジエン0.1部を3時間かけて添加しながら、重合温度60℃にて攪拌しながら重合を行った。そして、さらに、ブタジエン3.58部を添加して、重合温度60℃にて攪拌しながら1時間重合した。次に、sec-ブチルリチウムに対して過剰量のトリメチルクロロシランを添加することにより、末端変性反応を行った。溶媒を留去することで、目的の末端変性されたポリブタジエン3.58部を得た。得られた末端変性されたポリブタジエンは、GPC測定において、Mnが16,200、Mwが19,400、分子量分布(Mw/Mn)が1.19の溶出成分(ピーク面積比55.3%)、およびMnが43,600、Mwが45,800、分子量分布(Mw/Mn)が1.05の溶出成分(ピーク面積比44.7%)からなるものであり、全体としてMnが22,500、Mwが31,200、分子量分布(Mw/Mn)が1.39のものであった。また、この末端変性されたポリブタジエンのビニル結合含有量は10モル%であった。さらに、この末端変性されたポリブタジエンについて、H-NMRを測定したところ、トリメチルシリル基が導入されていることが確認された。
〔実施例9(p-メチルスチレンオリゴマーのポタジエーション、およびポタジエーションされたp-メチルスチレンオリゴマーによるイソプレンの重合)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン2.81部と参考例1で得たp-メチルスチレンのオリゴマー0.284部とカリウムターシャリブトキシド0.402部を加えた。次に攪拌しながら、sec-ブチルリチウム0.230部を加え、反応温度20℃にて30分間攪拌しながら反応した。次に、ポタジエーションされて難溶化したp-メチルスチレンオリゴマーを、濾過により回収し、溶存している未反応成分と分離した。回収したポタジエーションされたp-メチルスチレンオリゴマーは、窒素雰囲気下、磁気攪拌子を入れたガラス反応容器中で、ベンゼン18.7部に溶解して、さらにイソプレン3.354部を加え、重合温度20℃にて攪拌しながら12時間重合した。少量のメタノールにて重合反応を停止し、純水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、目的のポリイソプレン3.62部を得た。得られたポリイソプレンのMnは25,500、Mwは44,900、分子量分布(Mw/Mn)は1.76、ビニル結合含有量は32モル%であった。用いたsec-ブチルリチウムの量と実測したMnに基づいて計算される、ポリイソプレンの平均の分岐数は27.3(分枝1本当りのMn=935)であることから、得られたポリイソプレンのほぼ100%が3分岐体以上の放射状重合体であると推定される。
〔実施例10(末端変性放射状ポリブタジエンの合成、および重合体組成物の製造1)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン48部、1,3,5-トリメチルベンゼン0.722部およびテトラメチルエチレンジアミン2.302部を加えた。次に攪拌しながら、n-ブチルリチウム1.152部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン1.1モル)を加え、反応温度20℃にて3時間攪拌した後、4日間放置して反応させることにより、リチオ化された1,3,5-トリメチルベンゼンの溶液52.176部を得た。次いで、窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン200部、およびテトラメチルエチレンジアミン0.835部とを仕込んだ後、前記リチオ化された1,3,5-トリメチルベンゼンの溶液52.176部を添加し(反応系中に存在するテトラメチルエチレンジアミンの量は、1,3,5-トリメチルベンゼンのリチオ化に用いたn-ブチルリチウム1モル当たり1.5モルである)、60℃で重合を開始した。120分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、テトラメトキシシラン0.610部を添加し、30分間反応させた後、重合停止剤としてメタノール0.128部を添加して末端変性放射状ポリブタジエンを含有する溶液を得た。重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の末端変性放射状ポリブタジエン(A)を得た。得られた末端変性放射状ポリブタジエン(A)は、GPC測定において、Mnが190,000、Mwが210,000、分子量分布(Mw/Mn)が1.10の溶出成分(ピーク面積比18.6%)、Mnが349,000、Mwが353,000、分子量分布(Mw/Mn)が1.01の溶出成分(ピーク面積比25.4%)、およびMnが636,000、Mwが664,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比56.0%)からなるものであり、全体としてMnが288,000、Mwが479,000、分子量分布(Mw/Mn)が1.67のものであった。また、この末端変性放射状ポリブタジエン(A)のビニル結合含有量は72.4モル%であった。さらに、この末端変性放射状ポリブタジエン(A)について、H-NMRを測定したところ、トリメトキシシリル基が導入されていることが確認された。
 次に、容量250mlのブラベンダータイプミキサー中で、末端変性放射状ポリブタジエン(A)100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)40部とシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)4.3部を添加して、80℃を開始温度として1.5分間混練後、プロセスオイル(新日本石油社製、商品名「フッコール エラミック30」)10部、シリカ(ローディア社製、商品名「Zeosil1165MP」)14部、カーボンブラック(東海カーボン社製、商品名「シースト6」)6部、酸化亜鉛3部、ステアリン酸2部および老化防止剤N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアン(大内新興社製、商品名「ノクラック6C」)2部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.6部および架橋促進剤(N-ターシャリブチル-2-ベンゾチアゾリルスルフェンアミド1.4部とジフェニルグアニジン1.4部との混合物)とを混練した後、シート状の重合体組成物を取り出した。この重合体組成物を、160℃で30分間プレス架橋して試験片を作製し、この試験片について、耐摩耗性および低発熱性の評価を行なった。表2にその結果を示す。なお、これらの評価は、後述する比較例の重合体組成物を基準サンプル(指数100)とする指数で示す。
〔実施例11(末端変性放射状ポリブタジエンの合成、および重合体組成物の製造2)〕
 窒素雰囲気下、磁気攪拌子を入れたガラス反応容器に、シクロヘキサン48部、1,3,5-トリメチルベンゼン0.722部およびテトラメチルエチレンジアミン0.105部を加えた。次に攪拌しながら、sec-ブチルリチウム1.152部(sec-ブチルリチウム1モル当たりテトラメチルエチレンジアミン0.05モル)を加え、反応温度20℃にて3時間撹拌した後、1日間放置して反応させることにより、リチオ化された1,3,5-トリメチルベンゼンの溶液49.979部を得た。次いで、窒素雰囲気下、オートクレーブに、シクロヘキサン800部および前記リチオ化された1,3,5-トリメチルベンゼンの溶液5.56部を仕込み、系の温度を60℃とした後、1,3-ブタジエン5部を1時間かけて添加した。次いで、1,3-ブタジエン195部をさらに添加して、60℃で重合を開始した。120分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、テトラメトキシシラン0.610部を添加し、30分間反応させた後、重合停止剤としてメタノール0.128部を添加して末端変性放射状ポリブタジエンを含有する溶液を得た。重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の末端変性放射状ポリブタジエン(B)を得た。得られた末端変性放射状ポリブタジエン(B)は、GPC測定において、Mnが178,000、Mwが233,000、分子量分布(Mw/Mn)が1.31の溶出成分(ピーク面積比20.6%)、Mnが338,000、Mwが359,000、分子量分布(Mw/Mn)が1.06の溶出成分(ピーク面積比28.5%)、およびMnが624,000、Mwが676,000、分子量分布(Mw/Mn)が1.08の溶出成分(ピーク面積比50.9%)からなるものであり、全体としてMnが345,000、Mwが494,000、分子量分布(Mw/Mn)が1.43のものであった。また、この末端変性放射状ポリブタジエン(B)のビニル結合含有量は9.8モル%であった。さらに、この末端変性放射状ポリブタジエン(B)について、H-NMRを測定したところ、トリメトキシシリル基が導入されていることが確認された。
 次に、末端変性放射状ポリブタジエン(A)に代えて、末端変性放射状ポリブタジエン(B)を用いたこと以外は実施例10と同様にして、重合体組成物の製造と試験片の作製・評価を行った。表2にその結果を示す。なお、これらの評価は、後述する比較例の重合体組成物を基準サンプル(指数100)とする指数で示す。
 〔比較例〕
 攪拌機付きオートクレーブに、シクロヘキサン4,000部、1,3-ブタジエン500部、およびテトラメチルエチレンジアミン0.968部とを仕込んだ後、n-ブチルリチウムをシクロヘキサンと1,3-ブタジエンとに含まれる重合を阻害する不純物の中和に必要な量を加え、次にn-ブチルリチウム0.355部を添加し、40℃で重合を開始した。重合を開始してから15分経過後、1,3-ブタジエン500部を60分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに10分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、少量の重合溶液をサンプリングした。サンプリングした少量の重合溶液は、過剰のメタノールを添加して反応停止した後、風乾して、GPC測定およびH-NMR測定を行った。その結果、得られた重合体(ポリブタジエン)のMnは286,000、Mwは306,000、分子量分布(Mw/Mn)は1.07、ビニル結合含有量は77.3モル%であった。残りの重合溶液には、式(6)で表される(但し、式(6)における繰り返し数は全分子における平均値であり、共重合様式はランダムである)ポリオルガノシロキサン1.217部を濃度20%のキシレン溶液の状態で添加し、30分間反応させた後、重合停止剤としてメタノール0.356部を添加して、末端変性ポリブタジエン(C)を含有する溶液を得た。重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の末端変性ポリブタジエン(C)を得た。
Figure JPOXMLDOC01-appb-C000007
 次に、末端変性放射状ポリブタジエン(A)に代えて、末端変性ポリブタジエン(C)を用いたこと以外は実施例10と同様にして、重合体組成物の製造と試験片の作製・評価を行った。この重合体組成物についての耐摩耗性および低発熱性の評価結果は、表2に示す通り、指数評価の基準(指数100)とした。
Figure JPOXMLDOC01-appb-T000008
 表2から分かるように、本発明の放射状共役ジエン重合体の製造方法によって得られる放射状共役ジエン重合体は、従来の手法により末端変性した共役ジエン重合体に比して、耐摩耗性と低発熱性に優れる。

Claims (11)

  1.  アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合する、放射状共役ジエン重合体の製造方法。
  2.  前記アルカリ金属化芳香族化合物が、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に有機アルカリ金属化合物を反応させて得られたものである請求項1に記載の放射状共役ジエン重合体の製造方法。
  3.  前記アルカリ金属化芳香族化合物が、アルカリ金属原子への配位能を有する化合物の存在下で、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に有機アルカリ金属化合物を反応させて得られたものである請求項2に記載の放射状共役ジエン重合体の製造方法。
  4.  前記アルカリ金属原子への配位能を有する化合物が、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物である請求項3に記載の放射状共役ジエン重合体の製造方法。
  5.  前記アルカリ金属原子への配位能を有する化合物の存在量が、前記芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に反応させる、前記有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、0.01~5モルである請求項4に記載の放射状共役ジエン重合体の製造方法。
  6.  前記アルカリ金属原子への配位能を有する化合物の存在量が、前記芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に反応させる、前記有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、0.02~0.4モルである請求項4に記載の放射状共役ジエン重合体の製造方法。
  7.  請求項1~6のいずれかに記載の放射状共役ジエン重合体の製造方法によって得られる放射状共役ジエン重合体。
  8.  請求項7に記載の放射状共役ジエン重合体と、充填剤とを含んでなる重合体組成物。
  9.  アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合し、得られる活性末端を有する重合体の活性末端に、該活性末端と反応しうる変性剤を反応させる、末端変性放射状共役ジエン重合体の製造方法。
  10.  請求項9に記載の末端変性放射状共役ジエン重合体の製造方法によって得られる末端変性放射状共役ジエン重合体。
  11.  請求項10に記載の末端変性放射状共役ジエン重合体と、充填剤とを含んでなる重合体組成物。
PCT/JP2010/057945 2009-05-11 2010-05-11 放射状共役ジエン重合体の製造方法 WO2010131646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011513343A JP5692067B2 (ja) 2009-05-11 2010-05-11 末端変性放射状共役ジエン重合体の製造方法
EP10774903.8A EP2431395B1 (en) 2009-05-11 2010-05-11 Method for producing radial conjugated diene polymer
US13/319,975 US8993675B2 (en) 2009-05-11 2010-05-11 Method of production of radial conjugated diene polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009114521 2009-05-11
JP2009-114521 2009-05-11

Publications (1)

Publication Number Publication Date
WO2010131646A1 true WO2010131646A1 (ja) 2010-11-18

Family

ID=43085018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057945 WO2010131646A1 (ja) 2009-05-11 2010-05-11 放射状共役ジエン重合体の製造方法

Country Status (4)

Country Link
US (1) US8993675B2 (ja)
EP (1) EP2431395B1 (ja)
JP (2) JP5692067B2 (ja)
WO (1) WO2010131646A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105362A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
CN102807679A (zh) * 2011-06-01 2012-12-05 住友化学株式会社 制造橡胶组合物的方法
CN102964520A (zh) * 2011-08-31 2013-03-13 台橡股份有限公司 共轭二烯橡胶的制造方法及其组合物
WO2013100022A1 (ja) 2011-12-28 2013-07-04 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JP2014506950A (ja) * 2011-03-04 2014-03-20 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング 高スチレン高ビニルスチレン−ブタジエンゴムおよびその調製方法
WO2014104169A1 (ja) * 2012-12-26 2014-07-03 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JP2014129525A (ja) * 2012-12-28 2014-07-10 Chi Mei Corp 変性共役ジエン−ビニル芳香族炭化水素共重合体およびその重合方法
WO2014157465A1 (ja) 2013-03-29 2014-10-02 日本ゼオン株式会社 放射状共役ジエン系ゴムの製造方法
JP2016060837A (ja) * 2014-09-18 2016-04-25 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
WO2016136889A1 (ja) * 2015-02-26 2016-09-01 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JPWO2014087924A1 (ja) * 2012-12-07 2017-01-05 株式会社クラレ 多官能性アニオン重合開始剤およびその製造方法
JP2017508859A (ja) * 2014-12-19 2017-03-30 エルジー・ケム・リミテッド 新規陰イオン重合開始剤およびこれを用いた共役ジエン系共重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845867B1 (en) * 2012-09-28 2017-04-05 Zeon Corporation Method for producing conjugated diene rubber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555729A (en) * 1976-06-17 1979-11-14 Charbonnages Ste Chimique Bifunctional and trifunctional organo-lithium initiators and their use
JPH02229809A (ja) 1989-03-03 1990-09-12 Nippon Erasutomaa Kk 改良されたポリブタジエンゴム
JPH06279515A (ja) 1993-01-29 1994-10-04 Japan Synthetic Rubber Co Ltd ジオレフィン系重合体の製造方法
JPH10226708A (ja) 1997-01-03 1998-08-25 Bridgestone Corp 多金属化組成物を製造するための方法
JPH11513715A (ja) 1995-10-17 1999-11-24 チャイナ ペトロ ケミカル コーポレイション 多官能価有機アルカリ金属開始剤およびその合成、アニオン重合された星形重合体およびそれらの調製
JP2005272643A (ja) * 2004-03-24 2005-10-06 Jsr Corp スズ含有重合体及びその製造方法並びに加工助剤としての使用
JP2006306962A (ja) * 2005-04-27 2006-11-09 Asahi Kasei Chemicals Corp 変性重合体組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609010B1 (en) 1993-01-29 2000-03-15 Bridgestone Corporation A process for producing a diolefin polymer or copolymer and a rubber composition containing such a diolefin polymer or copolymer
JP2000080116A (ja) * 1998-09-02 2000-03-21 Asahi Chem Ind Co Ltd 共役ジエンポリマーの製造方法
EP1783143B1 (en) 2004-08-06 2014-10-15 JSR Corporation Process for producing conjugated diene copolymer rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555729A (en) * 1976-06-17 1979-11-14 Charbonnages Ste Chimique Bifunctional and trifunctional organo-lithium initiators and their use
JPH02229809A (ja) 1989-03-03 1990-09-12 Nippon Erasutomaa Kk 改良されたポリブタジエンゴム
JPH06279515A (ja) 1993-01-29 1994-10-04 Japan Synthetic Rubber Co Ltd ジオレフィン系重合体の製造方法
JPH11513715A (ja) 1995-10-17 1999-11-24 チャイナ ペトロ ケミカル コーポレイション 多官能価有機アルカリ金属開始剤およびその合成、アニオン重合された星形重合体およびそれらの調製
JPH10226708A (ja) 1997-01-03 1998-08-25 Bridgestone Corp 多金属化組成物を製造するための方法
JP2005272643A (ja) * 2004-03-24 2005-10-06 Jsr Corp スズ含有重合体及びその製造方法並びに加工助剤としての使用
JP2006306962A (ja) * 2005-04-27 2006-11-09 Asahi Kasei Chemicals Corp 変性重合体組成物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LEE, JAE S. ET AL.: "Synthesis and Characterization of Well-Defined, Regularly Branched Polystyrenes Utilizing Multifunctional Initiators", MACROMOLECULES, vol. 38, no. 13, 2005, pages 5381 - 5392, XP008155228 *
POLYMER PREPRINTS, JAPAN, vol. 57, no. 1, 2008, pages 538
RODERIC P. ET AL.: "Applications of 1,1-Diphenylethylene Chemistry in Anionic Synthesis of Polymers with Controlled Structures", ADVANCES IN POLYMER SCIENCE, vol. 153, 2000, pages 67 - 162, XP009032580 *
RYOTA UEMURA ET AL.: "Anion Ido o Tomonau Living Anion Jugo ni yoru Tabunki Polymer no Seisei no Kento", POLYMER PREPRINTS, JAPAN, vol. 57, no. 1, 8 May 2008 (2008-05-08), pages 538, XP008154648 *
RYOTA UEMURA ET AL.: "Lithiation ni yoru p- Methylstyrene Oligomer no Macroinitiator-ka to Tabunki Polymer no Gosei", POLYMER PREPRINTS, JAPAN, vol. 57, no. 2, 9 September 2008 (2008-09-09), pages 2428 - 2429, XP008154647 *
See also references of EP2431395A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011105362A1 (ja) * 2010-02-26 2013-06-20 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
JP5716736B2 (ja) * 2010-02-26 2015-05-13 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
WO2011105362A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
US8952101B2 (en) 2010-02-26 2015-02-10 Zeon Corporation Conjugated diene rubber, rubber composition, crosslinked rubber, tire, and process for production of conjugated diene rubber
JP2014506950A (ja) * 2011-03-04 2014-03-20 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング 高スチレン高ビニルスチレン−ブタジエンゴムおよびその調製方法
CN102807679A (zh) * 2011-06-01 2012-12-05 住友化学株式会社 制造橡胶组合物的方法
US20120309894A1 (en) * 2011-06-01 2012-12-06 Sumitomo Chemical Company, Limited Method for producing a rubber composition
US9023937B2 (en) * 2011-06-01 2015-05-05 Sumitomo Chemical Company, Limited Method for producing a rubber composition
TWI466898B (zh) * 2011-08-31 2015-01-01 Tsrc Corp 共軛二烯橡膠的製造方法及其組成物
CN102964520A (zh) * 2011-08-31 2013-03-13 台橡股份有限公司 共轭二烯橡胶的制造方法及其组合物
EP2565208A3 (en) * 2011-08-31 2013-10-02 TSRC Corporation Process for producing conjugated diene rubber and composition of the same rubber
KR101948024B1 (ko) 2011-12-28 2019-02-14 제온 코포레이션 변성 공액 디엔계 고무의 제조 방법
US20140364559A1 (en) * 2011-12-28 2014-12-11 Zeon Corporation Method of production of modified conjugated diene-based rubber
US9428596B2 (en) 2011-12-28 2016-08-30 Zeon Corporation Method of production of modified conjugated diene-based rubber
CN104011081A (zh) * 2011-12-28 2014-08-27 日本瑞翁株式会社 改性共轭二烯类橡胶的制备方法
CN104011081B (zh) * 2011-12-28 2016-01-20 日本瑞翁株式会社 改性共轭二烯类橡胶的制备方法
JPWO2013100022A1 (ja) * 2011-12-28 2015-05-11 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
WO2013100022A1 (ja) 2011-12-28 2013-07-04 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JPWO2014087924A1 (ja) * 2012-12-07 2017-01-05 株式会社クラレ 多官能性アニオン重合開始剤およびその製造方法
WO2014104169A1 (ja) * 2012-12-26 2014-07-03 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JPWO2014104169A1 (ja) * 2012-12-26 2017-01-12 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
JP2014129525A (ja) * 2012-12-28 2014-07-10 Chi Mei Corp 変性共役ジエン−ビニル芳香族炭化水素共重合体およびその重合方法
US9056526B2 (en) 2012-12-28 2015-06-16 Chi Mei Corporation Modified copolymer of conjugated diene and vinyl aromatic hydrocarbon and polymerization method thereof
WO2014157465A1 (ja) 2013-03-29 2014-10-02 日本ゼオン株式会社 放射状共役ジエン系ゴムの製造方法
KR20150137065A (ko) 2013-03-29 2015-12-08 제온 코포레이션 방사상 공액 디엔계 고무의 제조 방법
JPWO2014157465A1 (ja) * 2013-03-29 2017-02-16 日本ゼオン株式会社 放射状共役ジエン系ゴムの製造方法
KR102121881B1 (ko) * 2013-03-29 2020-06-11 제온 코포레이션 방사상 공액 디엔계 고무의 제조 방법
JP2016060837A (ja) * 2014-09-18 2016-04-25 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP2017508859A (ja) * 2014-12-19 2017-03-30 エルジー・ケム・リミテッド 新規陰イオン重合開始剤およびこれを用いた共役ジエン系共重合体の製造方法
WO2016136889A1 (ja) * 2015-02-26 2016-09-01 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法
KR20170120113A (ko) 2015-02-26 2017-10-30 니폰 제온 가부시키가이샤 변성 공액 디엔계 고무의 제조 방법
US10414835B2 (en) 2015-02-26 2019-09-17 Zeon Corporation Method of production of modified conjugated diene rubber

Also Published As

Publication number Publication date
JP5842983B2 (ja) 2016-01-13
EP2431395B1 (en) 2018-03-21
JP2015071777A (ja) 2015-04-16
EP2431395A1 (en) 2012-03-21
JPWO2010131646A1 (ja) 2012-11-01
US8993675B2 (en) 2015-03-31
JP5692067B2 (ja) 2015-04-01
US20120071603A1 (en) 2012-03-22
EP2431395A4 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5842983B2 (ja) 放射状共役ジエン重合体の製造方法
EP2799454B1 (en) Method for producing modified conjugated diene rubber
JP5845883B2 (ja) 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
JP6303732B2 (ja) 変性共役ジエン系重合体の製造方法
JPWO2012086496A1 (ja) 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ
JPWO2015098264A1 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP6354493B2 (ja) 変性共役ジエン系重合体の製造方法
JP6607248B2 (ja) 変性共役ジエン系ゴムの製造方法
JP6187477B2 (ja) 変性共役ジエン系ゴムの製造方法
JP6384472B2 (ja) 放射状共役ジエン系ゴムの製造方法
JP6338044B2 (ja) 反応性重合体およびそれを用いた共役ジエン重合体の製造方法
JP2019167396A (ja) 変性共役ジエン系ゴムの製造方法
WO2018181161A1 (ja) 変性共役ジエン系ゴムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011513343

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13319975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010774903

Country of ref document: EP