WO2014157465A1 - 放射状共役ジエン系ゴムの製造方法 - Google Patents

放射状共役ジエン系ゴムの製造方法 Download PDF

Info

Publication number
WO2014157465A1
WO2014157465A1 PCT/JP2014/058761 JP2014058761W WO2014157465A1 WO 2014157465 A1 WO2014157465 A1 WO 2014157465A1 JP 2014058761 W JP2014058761 W JP 2014058761W WO 2014157465 A1 WO2014157465 A1 WO 2014157465A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
radial
rubber
diene rubber
butadiene
Prior art date
Application number
PCT/JP2014/058761
Other languages
English (en)
French (fr)
Inventor
岳史 杉村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201480017632.7A priority Critical patent/CN105073808B/zh
Priority to EP14776334.6A priority patent/EP2980111B1/en
Priority to US14/780,828 priority patent/US20160053033A1/en
Priority to KR1020157025973A priority patent/KR102121881B1/ko
Priority to JP2015508663A priority patent/JP6384472B2/ja
Publication of WO2014157465A1 publication Critical patent/WO2014157465A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/042Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a polyfunctional initiator
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene

Definitions

  • the present invention relates to a method for producing a radial conjugated diene rubber, and more specifically, to produce a radial conjugated diene rubber capable of providing a rubber cross-linked product having excellent manufacturing stability and processability and excellent wet grip properties. On how to do.
  • the present invention also relates to a radial conjugated diene rubber obtained by this production method, a rubber composition containing the radial conjugated diene rubber, and a rubber cross-linked product thereof.
  • Patent Document 1 includes at least a conjugated diene compound using, as a polymerization initiator, an alkali metalated aromatic compound having 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring in one molecule.
  • a method for producing a radial conjugated diene polymer by polymerizing a monomer mixture is disclosed. According to the technique of Patent Document 1, since the obtained radial conjugated diene rubber has an active end, by reacting the active end with an arbitrary modifier, the affinity for the filler can be increased. Improvement has been realized.
  • an alkali metalated aromatic compound having 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring in one molecule is used as a polymerization initiator.
  • the agent has a low compatibility with the solvent used for the polymerization, and thus there is a problem that the production stability is not sufficient.
  • the present invention has been made in view of such a situation, and manufactures a radial conjugated diene rubber that can give a rubber cross-linked product having excellent manufacturing stability and processability and excellent wet grip properties. Related to the method.
  • an alkali metallized alkyl group having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position is bonded to one aromatic ring.
  • the production stability during polymerization can be improved by polymerizing 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound using the radial isoprene polymer having Furthermore, the radial conjugated diene rubber obtained by polymerization can give a rubber cross-linked product having excellent processability and excellent wet grip properties. Heading the door, which resulted in the completion of the present invention.
  • a second step of polymerizing a monomer containing a conjugated diene rubber isoprene 65 to 500 per 1 mol of the alkali metal in the alkali metalated aromatic compound.
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position.
  • the radial conjugated diene type rubber obtained by said manufacturing method is provided.
  • a modified radial conjugated diene rubber obtained by reacting a modifying agent with the active terminal of the radial conjugated diene rubber is provided.
  • a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of the rubber component containing the radial conjugated diene rubber or the modified radial conjugated diene rubber.
  • the rubber composition of the present invention preferably contains a crosslinking agent.
  • a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
  • a radial conjugated diene rubber that can provide a rubber cross-linked product excellent in production stability and processability and wet grip properties, a rubber composition containing the radial conjugated diene rubber, A rubber cross-linked product excellent in wet grip properties obtained by cross-linking the rubber composition, and a tire containing the rubber cross-linked product can be provided.
  • ⁇ Method for producing radial conjugated diene rubber The method for producing the radial conjugated diene rubber according to the present invention, in the presence of the alkali metalated aromatic compound represented by the general formula (1) described later, with respect to 1 mol of the alkali metal in the alkali metalated aromatic compound. Then, by polymerizing 65 to 500 moles of isoprene, a first step of obtaining a radial isoprene polymer having active ends, and 1,3-butadiene or 1,3-butadiene is added to the active ends of the radial isoprene polymer. And a second step of polymerizing a monomer containing butadiene and an aromatic vinyl compound.
  • R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metal atom in the ⁇ -position (the aromatic group represented by the general formula (1)).
  • M is an integer of 0 to 5, and when m is 2 or more, regardless of the structure represented by the general formula (1), three or more benzene rings are at arbitrary positions with respect to each other. It may be condensed.
  • m is 0, and three of R 1 , R 2 , R 3 , R 4 , R 6 , and R 7 have 1 carbon atom in which an alkali metal atom is bonded to the ⁇ -position. It is preferable that the alkali metalated alkyl group is ⁇ 10, and the remainder of R 1 , R 2 , R 3 , R 4 , R 6 , and R 7 is a hydrogen atom.
  • the alkali metal atom is not particularly limited, but lithium, sodium, or potassium is preferable, and lithium is particularly preferable among these.
  • the alkali metalated aromatic compound represented by the general formula (1) has 3 or more alkali metalated alkyl groups having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position with respect to one aromatic ring.
  • the alkali metal atom is usually present in a cation state in the alkali metalated aromatic compound, and
  • the ⁇ -position carbon atom directly bonded to the alkali metal atom is usually present in an anionic state in order to bond to the alkali metal atom in such a cation state.
  • the alkali metal atom thus present in the cation state and the carbon atom present in the anion state form an ionic bond, thereby directly connecting each other. It is in a combined state.
  • an alkali metalated aromatic compound represented by the above general formula (1) that is, a carbon number of 1 to 10 in which an alkali metal atom is bonded to the ⁇ -position.
  • an alkali metalated aromatic compound in which three or more alkali metalated alkyl groups are bonded to one aromatic ring and reacting it with isoprene the alkali metalated aromatic compound is contained in the alkali metalated aromatic compound.
  • the isoprene chain grows with living polymerizability using each of the ⁇ -position carbon atoms to which three or more alkali metal atoms are directly bonded as polymerization initiation points. Therefore, the isoprene polymer obtained by polymerization can have a radial structure.
  • the method for synthesizing the alkali metalated aromatic compound used as the polymerization initiator in the present invention is not particularly limited, but it was obtained by reacting an aromatic compound represented by the following general formula (2) with an organic alkali metal compound. Those are preferably used.
  • R 9 to R 16 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and three or more of R 9 to R 16 have 1 to 10 carbon atoms. It is an alkyl group.
  • m is an integer of 0 to 5, and when m is 2 or more, three or more benzene rings are condensed with each other at any position regardless of the structure represented by the general formula (2). It may be what you did. For example, when m is 2 or more, there are a plurality of R 13 and R 16, but a plurality of R 13 or R 16 may be the same. , Meaning it may be different.
  • m is 0, three of R 9 , R 10 , R 11 , R 12 , R 14 , and R 15 are alkyl groups having 1 to 10 carbon atoms, and R 9, it is preferable that the remaining of R 10, R 11, R 12 , R 14, and R 15 are hydrogen atoms.
  • aromatic compound represented by the general formula (2) examples include 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, hexamethylbenzene, 1,2,3-triethylbenzene, 1,2,4-triethylbenzene, 1,3,5-triethylbenzene, 1,2,3-tripropylbenzene, 1,2,4-tripropylbenzene, 1,3 Benzenes having three or more alkyl groups such as 1,3,5-tributylbenzene, 1,3,5-tripentylbenzene, 2,3,5-trimethylnaphthalene, And naphthalenes having three or more alkyl groups such as 4,5-trimethylnaphthalene. Among these, benzenes having 3 or more alkyl groups are preferable, and 1,3,5-trimethylbenzene is more preferable.
  • the alkali metal compound which has an alkyl group or an aryl group is used suitably, As the specific example, Methyl lithium, methyl sodium, methyl potassium, ethyl lithium, ethyl sodium, ethyl potassium, n-propyl lithium, isopropyl potassium, n-butyl lithium, s-butyl lithium, t-butyl lithium, n-butyl sodium, n-butyl Examples include potassium, n-pentyl lithium, n-amyl lithium, n-octyl lithium, phenyl lithium, naphthyl lithium, phenyl sodium, and naphthyl sodium. Among these, an alkali metal compound having an alkyl group is preferable, a lithium compound having an alkyl group is more preferable, and n-butyl
  • a lithium compound having an alkyl group or an aryl group When alkyl (or aryl) potassium or alkyl (or aryl) sodium is used to synthesize the alkali metalated aromatic compound represented by the general formula (1), a lithium compound having an alkyl group or an aryl group; Alternatively, the target potassium or sodium compound may be obtained by mixing potassium or sodium compound having an alkoxyl group. Examples of the potassium or sodium compound having an alkoxyl group used at this time include potassium t-butoxy and sodium t-butoxy.
  • the amount of potassium or sodium compound having an alkoxyl group is not particularly limited, but is, for example, 0.1 to 5.0 mol, preferably 0.2 to 0.1 mol with respect to 1 mol of a lithium compound having an alkyl group or an aryl group. The amount is 3.0 mol, more preferably 0.3 to 2.0 mol.
  • the method of reacting the aromatic compound represented by the general formula (2) with the organic alkali metal compound is not particularly limited, but a method of reacting in an inert solvent under an inert atmosphere is preferably used.
  • the inert solvent used is not particularly limited as long as it can dissolve the compound to be reacted, but a hydrocarbon solvent is preferably used. Specific examples include aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; alicyclic hydrocarbons such as cyclohexane, cyclopentane, and methylcyclohexane.
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the amount of the organic alkali metal compound used with respect to the aromatic compound represented by the general formula (2) is not particularly limited, but it is 1 mol of carbon atoms directly bonded to the aromatic ring in the aromatic compound. On the other hand, it is usually 0.1 to 100 mol, preferably 0.2 to 50 mol, more preferably 0.3 to 10 mol, and particularly preferably 0.3 to 1.1 mol.
  • the reaction time and reaction temperature of this reaction are not particularly limited, but the reaction time is usually in the range of 1 minute to 10 days, preferably 1 minute to 5 days, and the reaction temperature is usually in the range of ⁇ 50 ° C. to 100 ° C. It is.
  • a compound having a coordination ability to an alkali metal atom may be allowed to coexist for the purpose of promoting the reaction.
  • a Lewis base compound containing a hetero atom is preferably used, and among these, a Lewis base compound containing a nitrogen atom or an oxygen atom is particularly preferably used.
  • Lewis base compounds containing nitrogen or oxygen atoms include chain ether compounds such as diethyl ether, anisole, diphenyl ether, dimethoxybenzene, dimethoxyethane, diglyme and ethylene glycol dibutyl ether; intramolecular such as trimethylamine and triethylamine Tertiary amine compounds having one nitrogen atom in them; Cyclic ether compounds having one oxygen atom in the molecule such as tetrahydrofuran and tetrahydropyran; Nitrogen-containing heterocyclic compounds such as pyridine, lutidine and 1-methylimidazole; Bistetrahydro Cyclic ether compounds having two or more oxygen atoms in the molecule such as furylpropane; N, N, N ′, N′-tetramethylethylenediamine, dipiperidinoethane, 1,4-diazabicyclo [2.2.2 Tertiary amine compounds having two or more nitrogen atoms in the molecule such as
  • the amount of the compound having the coordination ability to the alkali metal atom is not particularly limited, and may be determined according to the strength of the coordination ability.
  • a compound having a coordination ability to an alkali metal atom a chain ether compound that is a relatively weak coordination ability or a tertiary amine compound having one nitrogen atom in the molecule is used.
  • the amount used is usually 1 to 100 mol, preferably 5 to 50 mol, based on 1 mol of the alkali metal atom in the organic alkali metal compound to be reacted with the aromatic compound represented by the general formula (2).
  • the range is preferably 10 to 25 mol.
  • a cyclic ether compound or nitrogen-containing heterocyclic compound having one oxygen atom in the molecule as a compound having a coordination ability to an alkali metal atom
  • the amount used is usually 1 to 100 mol, preferably 1 to 20 mol, more preferably 1 mol per 1 mol of the alkali metal atom in the organic alkali metal compound to be reacted with the aromatic compound represented by the general formula (2). Is in the range of 2 to 10 moles.
  • a compound having a coordination ability to an alkali metal atom a compound having a relatively strong coordination ability, a cyclic ether compound having two or more oxygen atoms in the molecule, or two or more nitrogen atoms in the molecule
  • the amount used is an organic alkali metal to be reacted with the aromatic compound represented by the general formula (2)
  • the amount is usually in the range of 0.01 to 5 mol, preferably 0.01 to 2 mol, more preferably 0.01 to 1.5 mol with respect to 1 mol of the alkali metal atom in the compound.
  • the reaction may not proceed.
  • the compound which has the coordination ability to these alkali metal atoms may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the order of addition is not particularly limited in the case where a compound having a coordination ability to an alkali metal atom is allowed to coexist.
  • the aromatic compound and the organic alkali metal compound represented by the general formula (2) coexist.
  • the alkali metallized aromatic compound represented by the general formula (1) obtained as described above is used as a polymerization initiator.
  • a radial isoprene polymer having an active end is obtained by polymerizing 65 to 500 moles of isoprene with respect to 1 mole of alkali metal in the aromatic compound.
  • compatibility with a solvent can be improved by polymerizing isoprene to the alkali metalated aromatic compound represented by the general formula (1).
  • the compatibility with the inert solvent used for the polymerization is low, but according to the present invention, the general formula (1)
  • the isoprene polymer chain is polymerized into the alkali metalated aromatic compound represented by the formula (I), thereby introducing the isoprene polymer chain, thereby improving the compatibility with the solvent by the action of the isoprene polymer chain.
  • the radial isoprene polymer having an active terminal thus obtained can be dissolved in an inert solvent used for polymerization.
  • the amount of isoprene used is 65 to 500 mol with respect to 1 mol of the alkali metal in the alkali metalated aromatic compound represented by the general formula (1). Yes, preferably 65 to 400 mol, more preferably 70 to 300 mol. If the amount of isoprene used is too small, the effect of improving the compatibility with the inert solvent used in the polymerization cannot be obtained, and the production stability may be reduced. On the other hand, if the amount of isoprene used is too large, the solution viscosity increases when the resulting radial isoprene polymer having an active terminal is dissolved in a solvent, and the operability may be reduced.
  • the number average molecular weight (Mn) of the obtained radial isoprene polymer having active ends is preferably 1,500 to 100,000, more preferably 3,000 to 75,000, More preferably, it is 4,500 to 60,000. If the number average molecular weight (Mn) is too small, the compatibility improving effect on the inert solvent used for the polymerization may not be obtained. On the other hand, if the number average molecular weight (Mn) is too large, the solution viscosity increases when the obtained radial isoprene polymer having an active terminal is dissolved in a solvent, and the operability may be lowered.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the radial isoprene polymer having active ends is not particularly limited, but preferably 1. It is 0 to 3.0, more preferably 1.0 to 2.0.
  • the polymerization reaction system has a coordination ability to the alkali metal atom as described above.
  • the amount of the compound having the ability to coordinate to these alkali metal atoms is usually 5 mol or less with respect to 1 mol of the alkali metal atom in the alkali metalated aromatic compound represented by the general formula (1). , Preferably 4 mol or less, particularly preferably 2 mol or less. If the amount of the compound having coordination ability to these alkali metal atoms is too large, the polymerization reaction may be inhibited.
  • the solution containing the compound is used as it is. You can also
  • an alkali metal compound having coordination ability to an alkali metal atom a cyclic ether compound having two or more oxygen atoms in the molecule, a tertiary amine compound having two or more nitrogen atoms in the molecule, and nitrogen in the molecule
  • An alkali metal compound in which at least one compound selected from tertiary amide compounds having a heteroatom bond is used as a polymerization initiator (the alkali metal compound here is an alkali represented by the above general formula (1))
  • the range is 0.02 to 3.0 moles per mole of alkali metal atoms in the reaction system, including all alkali metal compounds existing in the reaction system and acting as polymerization initiators. It is preferable to make it exist. By doing in this way, the compatibility with respect to the solvent of the radial isoprene polymer which has an active terminal obtained can be improved.
  • the vinyl bond content in the isoprene unit portion of the obtained radial isoprene polymer having active ends is usually 1 to 90 mol%, preferably 5 to 80 mol%.
  • the inert solvent used in the first step of the production method of the present invention is not particularly limited as long as it is an inert solvent in the polymerization reaction, but a hydrocarbon solvent is preferably used.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane
  • alicyclic carbons such as cyclohexane, cyclopentane, and methylcyclohexane
  • ethers such as tetrahydrofuran, diethyl ether, and cyclopentyl methyl ether
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the concentration of isoprene in the polymerization solution to be subjected to the polymerization reaction is not particularly limited, but is usually selected in the range of 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. If the concentration of isoprene in the solution is too low, the productivity of the radial isoprene polymer having active ends may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high and handling becomes difficult. There is a case.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours. As the polymerization mode, any mode such as batch mode or continuous mode may be adopted.
  • the radial isoprene polymer having an active terminal obtained in the first step described above is preferably obtained by polymerizing only isoprene, but the effect of the present invention is essentially impaired. It is not excluded that other monomers are copolymerized to the extent possible.
  • the second step comprises 1,3-butadiene, or 1,3-butadiene and an aromatic group at the active end of the radial isoprene polymer having the active end obtained in the first step.
  • a monomer containing a vinyl compound is polymerized to obtain a radial conjugated diene rubber. That is, in the second step of the production method of the present invention, 1,3-butadiene or 1,1 is used with the active end of the radial isoprene polymer having the active end obtained in the first step described above as the polymerization start end.
  • a monomer containing 3-butadiene and an aromatic vinyl compound is polymerized to obtain a radial conjugated diene rubber.
  • the polymerization reaction of a monomer containing 1,3-butadiene or 1,3-butadiene and an aromatic vinyl compound proceeds with a living property. Therefore, the radial conjugated diene rubber obtained thereby also has an active end.
  • 1,3-butadiene and aromatic vinyl compounds as monomers used for the polymerization, without using aromatic vinyl compounds, only 1,3-butadiene is used.
  • a polymer chain containing 1,3-butadiene may be introduced at the active end of the radial isoprene polymer, or both 1,3-butadiene and an aromatic vinyl compound are used as monomers for polymerization.
  • a polymer chain containing 1,3-butadiene and an aromatic vinyl compound may be introduced into the active end of the radial isoprene polymer, and may be appropriately selected according to the purpose.
  • other monomers other than 1,3-butadiene and an aromatic vinyl compound may be used in combination to form a copolymer with other monomers.
  • R 1 , R 3 , and R 6 are hydrogen atoms
  • a radial conjugated diene rubber represented by the following general formula (4) is obtained.
  • R 17 to R 19 are a hydrogen atom or an alkyl group having 1 to 9 carbon atoms
  • Pol IP is an isoprene polymer chain
  • Pol Bu is a butadiene polymer chain
  • Pol (Bu—Ar) is a butadiene-aromatic vinyl polymer chain.
  • the polymer chain end has an active end formed by bonding an alkali metal atom.
  • the aromatic compound that has formed the alkali metalated aromatic compound represented by the general formula (1) is mainly used.
  • a butadiene polymer chain is formed radially through the isoprene polymer chain.
  • 1,3-butadiene and an aromatic vinyl compound are used as monomers used for the polymerization, the aromatic compound that has formed the alkali metalated aromatic compound represented by the above general formula (1)
  • the butadiene-aromatic vinyl polymer chain is formed radially through the isoprene polymer chain.
  • the aromatic vinyl compound as a monomer used for polymerization is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3 -Ethylstyrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethyl Examples thereof include aminoethylstyrene.
  • aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of 1,3-butadiene monomer units in the butadiene-aromatic vinyl polymer chain in the conjugated diene rubber having an active end is preferably 50 to 100% by weight, more preferably 55 to 90%. % By weight.
  • the content of the aromatic vinyl compound unit is preferably 0 to 50% by weight, more preferably 10 to 45% by weight.
  • the mode of copolymerization is not particularly limited, and is random, block, or tapered. However, it is preferably a random binding mode. By making it random, the low exothermic property of the rubber cross-linked product obtained can be improved.
  • the second step of the production method of the present invention in addition to 1,3-butadiene and an aromatic vinyl compound, other monomers other than these are optionally added within a range not impairing the object of the present invention. It may be formed by copolymerizing the monomer to be contained. However, the content ratio of these other monomer units at this time is determined in the butadiene polymer chain in the conjugated diene rubber having an active terminal or in the butadiene-aromatic vinyl polymer introduced in the second step. In the combined chain, it is 10% by weight or less, preferably 5% by weight or less.
  • Examples of such other monomers include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3-butadiene, and 2-methyl.
  • Conjugated diene compounds other than 1,3-butadiene such as 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene; ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; acrylic acid, Unsaturated carboxylic acid or acid anhydride such as methacrylic acid, maleic anhydride; unsaturated carboxylic acid ester such as methyl methacrylate, ethyl acrylate, butyl acrylate; 1,5-hexadiene, 1,6-heptadiene, 1, Non-conjugated dienes such as 7-octadiene, dicyclopentadiene, 5-ethylidene
  • the amount of 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound is not particularly limited with respect to 1 mol of the active end of the radial isoprene polymer having an active end.
  • the amount is preferably 300 to 20,000 mol, more preferably 900 to 15,000 mol, and particularly preferably 1,200 to 10,000 mol.
  • the amount used is within the above range, a sufficiently long butadiene polymer chain or butadiene-aromatic vinyl polymer chain can be obtained.
  • 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound is polymerized at the active end of the radial isoprene polymer having an active end.
  • the polymerization is carried out in an inert solvent.
  • the inert solvent the same one as in the first step described above can be used. From the viewpoint of controlling the polymerization, 1,3-butadiene is used.
  • the radial isoprene polymer is preferably used as it is in a state in which it is dissolved in the inert solvent used for the preparation.
  • the radial isoprene polymer having an active terminal used in the present invention is highly compatible with an inert solvent used for polymerization, and can be particularly dissolved in an inert solvent used for polymerization. is there. Therefore, according to the present invention, 1,3-butadiene, or 1,3-butadiene and aromatics in a state in which a radial isoprene polymer having an active end that acts as a polymerization initiation point is dissolved in an inert solvent. It is possible to carry out a polymerization reaction of a monomer containing a vinyl compound, thereby eliminating variations in the production process and thereby improving production stability.
  • the compound having the coordination ability to the alkali metal atom as described above is added to the polymerization reaction system for the purpose of controlling the polymerization rate and the microstructure of the resulting radial conjugated diene rubber. May be.
  • the amount of the compound having the ability to coordinate to these alkali metal atoms is usually 5 mol or less with respect to 1 mol of the alkali metal atom in the alkali metalated aromatic compound represented by the general formula (1). , Preferably 4 mol or less, particularly preferably 2 mol or less. If the amount of the compound having coordination ability to these alkali metal atoms is too large, the polymerization reaction may be inhibited.
  • a compound having a coordination ability to an alkali metal atom is used.
  • a solution containing the compound can be used as it is.
  • an alkali metal compound having coordination ability to an alkali metal atom a cyclic ether compound having two or more oxygen atoms in the molecule, a tertiary amine compound having two or more nitrogen atoms in the molecule, and nitrogen in the molecule
  • An alkali metal compound in which at least one compound selected from tertiary amide compounds having a heteroatom bond is used as a polymerization initiator (the alkali metal compound here is an alkali represented by the above general formula (1))
  • the range is 0.02 to 3.0 moles per mole of alkali metal atoms in the reaction system, including all alkali metal compounds existing in the reaction system and acting as polymerization initiators. It is preferable to make it exist. By doing in this way, the amount of vinyl bonds of the obtained radial conjugated diene rubber can be made into an appropriate range, and as a result, the obtained rubber cross-linked product has excellent low heat build-up.
  • the concentration of the monomer in the polymerization solution used for the polymerization reaction is not particularly limited, but is usually selected in the range of 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight.
  • concentration of the monomer in the solution is too low, the productivity of the radial conjugated diene rubber may be deteriorated.
  • concentration is too high, the viscosity of the solution becomes too high, making it difficult to handle.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours.
  • any of batch mode and continuous mode can be adopted.
  • a 1,3-butadiene unit and an aromatic vinyl monomer are copolymerized, a 1,3-butadiene unit and an aromatic vinyl monomer.
  • the batch method is preferable because the randomness of the bond with the body unit can be easily controlled.
  • the radial isoprene polymer having an active end obtained in the first step 1,3-butadiene, or a single monomer containing 1,3-butadiene and an aromatic vinyl compound is used. By polymerizing the body, a radial conjugated diene rubber can be obtained.
  • the radial conjugated diene rubber obtained in the production method of the present invention has an active end.
  • the radial conjugated diene rubber having an active terminal thus obtained may be reacted with a reaction terminator such as alcohol or water, but it may be modified by reacting with any modifier capable of reacting with this active terminal.
  • Radial conjugated diene rubber may be used.
  • the resulting radial conjugated diene rubber can be modified with a modifier, and for example, the affinity for a filler such as silica can be improved.
  • the modifier used for obtaining the modified radial conjugated diene rubber is not particularly limited as long as it is a modifier capable of reacting with the active end of the rubber, but preferably an atom capable of reacting with the active end of the rubber. Alternatively, it is a silane compound having one reactive group.
  • X 1 is an atom or a reactive group capable of reacting with an active terminal of the radial conjugated diene rubber, or a hydrocarbon group containing any one of the atom or the reactive group.
  • R 20 to R 23 is independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms
  • R 24 to R 29 are each independently alkyl having 1 to 10 carbon atoms.
  • R 24 to R 29 are each a combination of R 24 and R 25 , a combination of R 26 and R 27 , or a combination of R 28 and R 29. It may combine to form a ring structure with the nitrogen atom.
  • the atom or reactive group capable of reacting with the active terminal of the radial conjugated diene rubber is not particularly limited as long as it can react with the active terminal. From the viewpoint of reactivity with respect to the above, a halogen atom, vinyl group, alkoxyl group, amino group or epoxy group is preferred, an epoxy group or halogen atom is more preferred, a halogen atom is further preferred, and a chlorine atom is particularly preferred.
  • the hydrocarbon group containing any one of the atoms or the reactive groups is not particularly limited, but is preferably a hydrocarbon group having 1 to 10 carbon atoms. This carbon number does not include the number of carbons constituting the reactive group.
  • R 20 to R 23 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms, preferably a chemical single bond or carbon number. It is particularly preferably a 1 to 5 alkylene group and a chemical single bond.
  • R 24 to R 29 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. Group, more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group.
  • X 1 is a chlorine atom
  • R 20 to R 23 are all
  • R 24 to R 29 are all methyl groups
  • any one of R 30 and R 39 to R 47 is an atom or a reactive group capable of reacting with an active terminal of the radial conjugated diene rubber, or the atom or the reactive group.
  • any one of R 30 and R 39 to R 47 is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • R 31 to R 38 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • q, r, s, and t are each independently an integer of 0 to 100.
  • R 31 to R 38 are independent of each other” means that, for example, when q, r, s, and t are each 2 or more, a plurality of R 31 to R 38 are present.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , or R 38 may be the same or different.
  • the atom or reactive group capable of reacting with the active terminal of the radial conjugated diene rubber is not particularly limited as long as it can react with the active terminal. From the viewpoint of reactivity with respect to the above, a halogen atom, vinyl group, alkoxyl group, amino group or epoxy group is preferred, an epoxy group or halogen atom is more preferred, a halogen atom is further preferred, and a chlorine atom is particularly preferred.
  • the hydrocarbon group containing any one of the atoms or reactive groups is not particularly limited, but a hydrocarbon group having 1 to 10 carbon atoms is preferable. This carbon number does not include the number of carbons constituting the reactive group.
  • any one of R 30 and R 39 to R 47 is an atom or reactive group capable of reacting with the active terminal of the radial conjugated diene rubber, or the atom or reactive group. Any one of the above may be used, but R 30 may be an atom or a reactive group capable of reacting with the active terminal of the radial conjugated diene rubber, or any one of the above atoms or reactive groups. More preferably, the remaining R 39 to R 47 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms. R 39 to R 47 are more preferably an alkyl group having 1 to 10 carbon atoms, further preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group.
  • q, r, s, and t are each independently an integer of 0 to 100, and q, r, s, and t are An integer of 0 to 10 is preferable, and q, r, s, and t are particularly preferably all 0.
  • the usage-amount of a modifier is not specifically limited,
  • gum per 1 mol of alkali metal atoms in the alkali metalated aromatic compound represented by the said General formula (1) used as a polymerization initiator is used.
  • the amount of atoms or reactive groups that can react with the active terminal is preferably in an amount in the range of 0.05 to 5 mol, more preferably in an amount of 0.1 to 3 mol. It is particularly preferable that the amount be from 5 to 1.5 mol.
  • denaturant may be used individually by 1 type and may be used in combination of 2 or more type.
  • the method of reacting the modifier with the active terminal of the radial conjugated diene rubber obtained in the second step is not particularly limited, but the radial conjugated diene rubber and the modifier can be dissolved.
  • the method of mixing in a solvent is mentioned.
  • the solvent used in this case those exemplified as the inert solvent used in the first step and the second step described above can be used.
  • the method of adding the modifier to the radial conjugated diene rubber obtained in the second step described above in the state of the polymerization solution used for the polymerization is simple and preferable.
  • the reaction temperature in the modification reaction is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the unreacted active end remains without reacting the modifier with the radial conjugated diene rubber, or after reacting the modifier with the radial conjugated diene rubber, the unreacted active end remains.
  • a polymerization terminator such as alcohol such as methanol, ethanol, isopropanol or water to the polymerization solution.
  • An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, and a sulfur-based stabilizer may be added to the radial conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
  • an extension oil may be blended to form an oil-extended rubber. Examples of extender oils include paraffinic, aromatic, and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%.
  • the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the radial conjugated diene rubber.
  • the radial conjugated diene rubber after the polymerization reaction or the modification reaction is, for example, rubber such as reprecipitation, solvent removal under heating, solvent removal under reduced pressure, solvent removal with steam (steam stripping), etc. Can be separated from the reaction mixture by a normal operation in isolating from the solution to obtain a solid radial conjugated diene rubber.
  • the alkali metalated aromatic compound represented by the general formula (1) used as a polymerization initiator is composed of 3 or more alkali metal atoms.
  • Conjugated diene polymer chains (isoprene polymer chain, butadiene polymer chain, butadiene-aromatic vinyl polymer chain) grow with living polymerizability, starting from each directly bonded ⁇ -position carbon atom. Therefore, it is possible to obtain a conjugated diene rubber having a radial structure with good control.
  • the radial conjugated diene polymer and the radial conjugated diene polymer are directly bonded by controlling the degree of alkali metalation of the alkali metalated aromatic compound represented by the general formula (1). It is also possible to obtain a polymer mixture in which a chain conjugated diene polymer is mixed.
  • the proportion of the conjugated diene rubber having 3 or more branches in the radial conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 10 to 100% by weight, preferably 20 to 100% by weight.
  • a conjugated diene rubber having three or more branches at such a ratio, the processability of the radial conjugated diene rubber can be further improved, and the affinity with a filler such as silica can be further increased. Can do.
  • the number average molecular weight (Mn) of the radial conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is a value measured by gel permeation chromatography in terms of polystyrene, for example, 10,000 to 3,000. , Preferably in the range of 50,000 to 2,000,000, more preferably in the range of 100,000 to 1,500,000.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the radial conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.1 to 5.0, particularly preferably 1.2 to 3.0. By setting the molecular weight distribution of the radial conjugated diene rubber within the above range, the resulting rubber cross-linked product has excellent low heat build-up.
  • the Mooney viscosity (ML 1 + 4, 100 ° C.) of the radial conjugated diene rubber obtained by the production method of the present invention is also not particularly limited, but is usually in the range of 20 to 150, preferably 30 to 120. By setting the Mooney viscosity of the radial conjugated diene rubber within the above range, the processability of the rubber composition becomes excellent.
  • the Mooney viscosity of the oil-extended rubber is preferably in the above range.
  • the vinyl bond content in the conjugated diene unit portion of the radial conjugated diene rubber obtained by the production method of the present invention is usually 1 to 90 mol%, preferably 5 to 80 mol%.
  • the radial conjugated diene rubber of the present invention thus obtained is polymerized with 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound as described above.
  • a radial isoprene polymer having an active end is used as a polymerization starting point, and the radial isoprene polymer is highly compatible with an inert solvent used for polymerization. Therefore, 1,3-butadiene, or 1,3-butadiene and aromatics in a state in which a radial isoprene polymer having an active end that acts as a polymerization initiation point is well dissolved in an inert solvent used for polymerization. Polymerization of the monomer containing the vinyl compound can be promoted, whereby the occurrence of variations in the production process can be prevented, and as a result, the production stability can be improved.
  • the radial conjugated diene rubber of the present invention thus obtained contains an isoprene polymer chain in the production process, and a compounding agent such as silica is added to the radial conjugated diene rubber of the present invention.
  • a compounding agent such as silica
  • mixing a part of isoprene polymer chain cut
  • the rubber composition of the present invention contains 10 to 200 parts by weight of silica with respect to 100 parts by weight of the rubber component containing the radial conjugated diene rubber (modified radial conjugated diene rubber) obtained by the production method of the present invention described above. It is the composition formed.
  • silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
  • the pH of the silica is preferably pH 5-10.
  • the compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • the rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of improving low heat build-up.
  • a silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
  • These silane coupling agents can be used alone or in
  • the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
  • the method of adding silica to the rubber component containing the radial conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading the solid rubber component (dry kneading method) or radial conjugated diene.
  • a method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • the crosslinking agent include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
  • sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
  • the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
  • a crosslinking accelerator excluding silica and carbon black
  • a filler excluding silica and carbon black
  • an activator excluding silica and carbon black
  • a process oil in accordance with conventional methods.
  • Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
  • the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
  • the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
  • the rubber composition of the present invention may contain other rubbers other than the radial conjugated diene rubber obtained by the production method of the present invention described above.
  • examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR).
  • copolymer rubbers acrylonitrile-styrene-butadiene copolymer rubbers and the like, it refers to rubbers other than the radial conjugated diene rubber obtained by the production method of the present invention described above.
  • natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
  • the radial conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight, and occupies 50 to 100% by weight of the rubber component in the rubber composition. Is particularly preferred.
  • the radial conjugated diene rubber of the present invention in the rubber component at such a ratio, a crosslinked rubber product having improved wet grip properties can be obtained.
  • each component may be kneaded according to a conventional method.
  • a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a radial conjugated diene rubber are used.
  • a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition.
  • the kneading temperature of the component excluding the thermally unstable component and the radial conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention is obtained using the radial conjugated diene rubber obtained by the production method of the present invention described above, it has excellent wet grip properties.
  • the rubber cross-linked product of the present invention makes use of such characteristics, for example, in tires, materials for each part of the tire such as cap tread, base tread, carcass, sidewall, bead part; hose, belt, mat, anti-proof It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls;
  • the rubber cross-linked product of the present invention is excellent in wet grip properties, and therefore can be suitably used as a tire material and is optimal for tread applications.
  • the molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC). Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8320” manufactured by Tosoh Corporation) Column: A product manufactured by Tosoh Corporation and having two trade names “GMH-HR-H” connected in series was used. Detector: Differential refractometer (trade name “RI-8320” manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran Column temperature: 40 ° C
  • the ratio (molar ratio) of unsubstituted product: 1 substituted product: 2 substituted product: 3 substituted product was determined to be 3: 3: 24: 70, and the methyl group lithio of 1,3,5-trimethylbenzene was obtained.
  • the conversion rate is 87%, and the average number of lithium atoms introduced into one molecule of 1,3,5-trimethylbenzene is 2.40.
  • the polymerization reaction was continued for 60 minutes to confirm that the polymerization conversion was in the range of 95 to 100%, and a solution containing the radial isoprene polymer 1 having active ends was obtained.
  • Mn was 34,100 and molecular weight distribution (Mw / Mn) was 1.63.
  • Mw / Mn molecular weight distribution
  • the content of 1,2 bonds and 3,4 bonds (vinyl bond content) in the isoprene polymer chain of the radial isoprene polymer 1 having the active terminal was 46.6 mol%.
  • Mn 21,200 and molecular weight distribution (Mw / Mn) was 1.60.
  • the polymerization reaction was continued for 60 minutes to confirm that the polymerization conversion was in the range of 95 to 100%, and a solution containing the radial isoprene polymer 3 having active ends was obtained.
  • Mn 31,300 and molecular weight distribution (Mw / Mn) was 1.53.
  • Mw / Mn molecular weight distribution
  • the content of 1,2 bonds and 3,4 bonds (vinyl bond content) in the isoprene polymer chain of the radial isoprene polymer 3 having an active terminal was 65.6 mol%.
  • the polymerization reaction was continued for 60 minutes to confirm that the polymerization conversion was in the range of 95 to 100%, and a solution containing the radial isoprene polymer 4 having active ends was obtained.
  • Mn was 37,400 and molecular weight distribution (Mw / Mn) was 1.50.
  • Mw / Mn molecular weight distribution
  • the content of 1,2 bonds and 3,4 bonds (vinyl bond content) in the isoprene polymer chain of the radial isoprene polymer 4 having the active terminal was 67.0 mol%.
  • the polymerization reaction was continued for 60 minutes, and it was confirmed that the polymerization conversion rate was in the range of 95 to 100%, whereby a solution containing the radial isoprene polymer 5 having active ends was obtained.
  • Mn was 6,800 and molecular weight distribution (Mw / Mn) was 1.65.
  • Mw / Mn molecular weight distribution
  • Mn 16,300 and molecular weight distribution (Mw / Mn) was 1.49.
  • Mw / Mn molecular weight distribution
  • Example 1 [Production of Radial Conjugated Diene Rubber 1] In a nitrogen atmosphere, an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.185 parts of tetramethylethylenediamine, and then the active ends obtained in Production Example 2 were added. 13.712 parts of a solution containing the radial isoprene polymer 1 was added, and polymerization was started at 60 ° C.
  • the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.064 parts of methanol was added as a polymerization terminator to contain the radial conjugated diene rubber 1. A solution was obtained.
  • the obtained radial conjugated diene rubber 1 is an elution component (peak area ratio 38.4%) having an Mn of 260,000, an Mw of 283,000, and a molecular weight distribution (Mw / Mn) of 1.09 in GPC measurement. , Mn of 581,000, Mw of 592,000, molecular weight distribution (Mw / Mn) of 1.02 elution component (peak area ratio 28.9%), and Mn of 945,000, Mw of 979,000, The molecular weight distribution (Mw / Mn) consists of an elution component (peak area ratio 32.7%) having a molecular weight distribution of 1.04.
  • Mn is 43.1,000
  • Mw is 600,000
  • molecular weight distribution (Mw / Mn) was 1.39.
  • the degree of branching of the peak on the polymer side is high.
  • the content of styrene units in the styrene-butadiene polymer chain of the radial conjugated diene rubber 1 was 21.3% by weight, and the content of vinyl bonds in the butadiene units was 61.6 mol%.
  • silica trade name “Zeosil 1165MP” manufactured by Rhodia
  • 3.0 parts of zinc oxide 2.0 of stearic acid And anti-aging agent N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenedian (manufactured by Ouchi Shinsei Chemical Co., Ltd., product) It added "NOCRAC 6C") 2.0 parts, and further 2.5 minutes kneading was discharged kneaded material from the mixer.
  • the temperature of the kneaded product at the end of kneading was 150 ° C.
  • the kneaded product was cooled to room temperature, it was kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product was mixed with 1.60 parts of sulfur and a crosslinking accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, (large After kneading 1.40 parts of Uchisei Chemical Co., Ltd. and 1.44 parts of diphenylguanidine (trade name “Noxeller D”, 1.40 parts of Ouchi Shinsei Chemical Co., Ltd.), the sheet-like rubber composition is taken out. It was.
  • a crosslinking accelerator N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, (large After kneading 1.
  • Example 2 In a nitrogen atmosphere, 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene and 25.2 parts of styrene were charged into an autoclave, and then the radial isoprene polymer 2 having an active terminal obtained in Production Example 3 was contained. 13.604 parts of the solution to be added was added and polymerization was started at 60 ° C. The polymerization reaction is continued for 60 minutes, and after confirming that the polymerization conversion is in the range of 95 to 100%, 0.064 parts of methanol is added as a polymerization terminator to contain the radial conjugated diene rubber 2. A solution was obtained.
  • the obtained radial conjugated diene rubber 2 was an elution component (peak area ratio 45.7%) having an Mn of 209,000, an Mw of 268,000, and a molecular weight distribution (Mw / Mn) of 1.28 in GPC measurement.
  • Mn is 343,000
  • Mw is 560,000
  • molecular weight distribution (Mw / Mn). Was 1.64.
  • the degree of branching of the peak on the polymer side is high.
  • the content of styrene units in the styrene-butadiene polymer chain of the radial conjugated diene rubber 2 was 21.9% by weight, and the vinyl bond content in the butadiene units was 61.1 mol%.
  • the rubber composition was prepared and the rubber cross-linked product (test piece) in the same manner as in Example 1 except that the radial conjugated diene rubber 2 obtained above was used. ) was made and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 Example 2 except that 21.457 parts of the solution containing the radial isoprene polymer 3 having active ends obtained in Production Example 4 was used instead of 13.604 parts of the solution containing the radial isoprene polymer 2 In the same manner as described above, the radial conjugated diene rubber 3 was produced.
  • the obtained radial conjugated diene rubber 3 was an elution component (peak area ratio 47.5%) having an Mn of 203,000, an Mw of 254,000, and a molecular weight distribution (Mw / Mn) of 1.25 in GPC measurement.
  • Mn is 547,000, Mw is 557,000, molecular weight distribution (Mw / Mn) is an elution component (peak area ratio 24.3%), and Mn is 880,000, Mw is 911,000, The molecular weight distribution (Mw / Mn) is composed of an elution component (peak area ratio 28.2%) having a molecular weight distribution of 1.04.
  • Mn is 322,000, Mw is 513,000, and molecular weight distribution (Mw / Mn).
  • Mn is 322,000, Mw is 513,000, and molecular weight distribution (Mw / Mn).
  • the radial conjugated diene rubber 3 had a styrene unit content of 21.3% by weight in the styrene-butadiene polymer chain, and a vinyl bond content in the butadiene unit of 61.8 mol%.
  • Example 4 Example 2 except that 25.960 parts of the solution containing the radial isoprene polymer 4 having active ends obtained in Production Example 5 was used instead of 13.604 parts of the solution containing the radial isoprene polymer 2 In the same manner as described above, the radial conjugated diene rubber 4 was produced.
  • the obtained radial conjugated diene rubber 4 was an elution component (peak area ratio 37.5%) having an Mn of 212,000, an Mw of 268,000, and a molecular weight distribution (Mw / Mn) of 1.26 in GPC measurement.
  • Mn is 381,000, Mw is 592,000, and molecular weight distribution (Mw / Mn).
  • Mn is 381,000, Mw is 592,000, and molecular weight distribution (Mw / Mn).
  • the radial conjugated diene rubber 4 had a styrene unit content in the styrene-butadiene polymer chain of 21.4% by weight and a vinyl bond content in the butadiene unit of 61.9 mol%.
  • Example 5 In a nitrogen atmosphere, 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene and 25.2 parts of styrene are charged in an autoclave, and then the radial isoprene polymer 2 having an active terminal obtained in Production Example 3 is contained. 13.604 parts of a solution was added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.157 part of tris (dimethylamino) chlorosilane was added and reacted for 30 minutes. As a terminator, 0.064 parts of methanol was added to obtain a solution containing the modified radial conjugated diene rubber 1.
  • the obtained modified radial conjugated diene rubber 1 has an elution component (peak area ratio of 43.8%) having an Mn of 219,000, an Mw of 271,000, and a molecular weight distribution (Mw / Mn) of 1.24 in GPC measurement. ), Mn 588,000, Mw 599,000, molecular weight distribution (Mw / Mn) 1.02 elution component (peak area ratio 26.2%), Mn 959,000, Mw 995,000 ,
  • the molecular weight distribution (Mw / Mn) is composed of an elution component (peak area ratio 30.0%) of 1.04, and as a whole, Mn is 362,000, Mw is 574,000, molecular weight distribution (Mw / Mn ) Was 1.56.
  • the modified radial conjugated diene rubber 1 had a styrene unit content in the styrene-butadiene polymer chain of 21.8% by weight and a vinyl bond content in the butadiene unit of 61.3 mol%.
  • the rubber composition was prepared and the rubber cross-linked product (test was conducted in the same manner as in Example 1 except that the modified radial conjugated diene rubber 1 obtained above was used. Piece) was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 1 Example except that 0.812 parts of the solution containing lithiated 1,3,5-trimethylbenzene obtained in Preparation Example 1 was used instead of 13.712 parts of the solution containing the radial isoprene polymer 1.
  • a radial conjugated diene rubber 5 was produced.
  • the obtained radial conjugated diene rubber 5 was an elution component (peak area ratio 37.1%) having an Mn of 233,000, an Mw of 292,000, and a molecular weight distribution (Mw / Mn) of 1.25 in GPC measurement.
  • Mn is 681,000, Mw is 717,000, and the molecular weight distribution (Mw / Mn) is 1.05, which is an elution component (peak area ratio 62.9%).
  • the overall Mn is 398,000, Mw was 559,000 and molecular weight distribution (Mw / Mn) was 1.41.
  • the radial conjugated diene rubber 5 had a styrene unit content in the styrene-butadiene polymer chain of 20.7 wt% and a vinyl bond content in the butadiene unit of 61.6 mol%.
  • Example 2 except that instead of 13.604 parts of the solution containing the radial isoprene polymer 2, 2.828 parts of the solution containing the radial isoprene polymer 5 having an active terminal obtained in Production Example 6 was used. In the same manner as described above, the radial conjugated diene rubber 6 was produced. The obtained radial conjugated diene rubber 6 was an elution component (peak area ratio 41.3%) having an Mn of 215,000, an Mw of 265,000, and a molecular weight distribution (Mw / Mn) of 1.23 in GPC measurement.
  • elution component peak area ratio 41.36% having an Mn of 215,000, an Mw of 265,000, and a molecular weight distribution (Mw / Mn) of 1.23 in GPC measurement.
  • Mn is 364,000, Mw is 553,000, and molecular weight distribution (Mw / Mn).
  • Mn is 364,000, Mw is 553,000, and molecular weight distribution (Mw / Mn).
  • the radial conjugated diene rubber 6 had a styrene unit content in the styrene-butadiene polymer chain of 21.0% by weight and a vinyl bond content in the butadiene unit of 61.0 mol%.
  • the rubber composition was prepared and the rubber cross-linked product (test piece) in the same manner as in Example 1 except that the radial conjugated diene rubber 6 obtained above was used. ) was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 2 except that instead of 13.604 parts of the solution containing the radial isoprene polymer 2, 8.284 parts of the solution containing the radial isoprene polymer 6 having an active terminal obtained in Production Example 7 was used.
  • the radial conjugated diene rubber 7 was produced.
  • the obtained radial conjugated diene rubber 7 was an elution component (peak area ratio 44.0%) having an Mn of 211,000, Mw of 258,000, and a molecular weight distribution (Mw / Mn) of 1.22 in GPC measurement.
  • Mn is 347,000, Mw is 546,000, and molecular weight distribution (Mw / Mn).
  • Mn molecular weight distribution (Mw / Mn).
  • the radial conjugated diene rubber 7 had a styrene unit content in the styrene-butadiene polymer chain of 21.2 wt% and a vinyl bond content in the butadiene unit of 62.2 mol%.
  • lithiated 1,3,5-trimethylbenzene which is an alkali metalated aromatic compound represented by the above general formula (1), is poor in solubility in cyclohexane as an inert solvent used for polymerization.
  • the stability was poor (Comparative Example 1).
  • the resulting radial isoprene polymer having an active terminal is in addition, it has poor solubility in cyclohexane as an inert solvent used for polymerization, and further, when used as a polymerization starting point for copolymerizing 1,3-butadiene and styrene, the resulting rubber cross-linked product is a wet blip. (Comparative Examples 2 and 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 下記一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを重合させることで、活性末端を有する放射状イソプレン重合体を得る第1工程と、前記放射状イソプレン重合体の活性末端に、1,3-ブタジエンを含む単量体を重合させる第2工程と、を備える放射状共役ジエン系ゴムの製造方法を提供する。 (上記一般式(1)中、R~Rは、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表す。mは0~5の整数である。)

Description

放射状共役ジエン系ゴムの製造方法
 本発明は、放射状共役ジエン系ゴムの製造方法に関し、より詳しくは、製造安定性および加工性に優れ、かつ、ウェットグリップ性に優れたゴム架橋物を与えることのできる放射状共役ジエン系ゴムを製造するための方法に関する。また、本発明は、この製造方法により得られる放射状共役ジエン系ゴム、該放射状共役ジエン系ゴムを含有するゴム組成物およびそのゴム架橋物にも関する。
 近年、共役ジエン重合体に放射状の構造を有させることにより、直鎖状の共役ジエン重合体に比して、種々の性質を改良させることが知られている。例えば、タイヤ用のゴム材料として用いられる場合では、共役ジエン重合体を放射状の構造とすることにより、充填剤との親和性が改良されることが知られている。
 たとえば、特許文献1には、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合する、放射状共役ジエン重合体の製造方法が開示されている。この特許文献1の技術によれば、得られる放射状共役ジエン系ゴムは、活性末端を有するものであるため、該活性末端を、任意の変性剤と反応させることにより、充填剤との親和性の向上を実現している。
国際公開第2010/131646号
 この特許文献1においては、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いるものであるが、該重合開始剤は、従来から使用されている重合開始剤に比べ、重合に用いる溶媒に対する相溶性が低く、そのため、製造安定性が十分でないという課題があった。
 本発明は、このような実状に鑑みてなされたものであり、製造安定性および加工性に優れ、かつ、ウェットグリップ性に優れたゴム架橋物を与えることのできる放射状共役ジエン系ゴムを製造するための方法に関する。
 本発明者は、上記目的を達成するために鋭意研究した結果、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基が、1つの芳香環に対して3個以上結合してなるアルカリ金属化芳香族化合物からなる重合開始剤に、所定量のイソプレンを重合させることで、重合に用いる溶媒に対する相溶性を向上させることができ、このようにして得られた活性末端を有する放射状イソプレン重合体を用いて、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合することで、重合時の製造安定性を向上させることができ、さらには、重合により得られる放射状共役ジエン系ゴムを、加工性に優れ、かつ、ウェットグリップ性に優れたゴム架橋物を与えるものとすることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、下記一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを重合させることで、活性末端を有する放射状イソプレン重合体を得る第1工程と、前記放射状イソプレン重合体の活性末端に、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体を重合させる第2工程と、を備える放射状共役ジエン系ゴムの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)中、R~Rは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表し、R~Rの3個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。mは0~5の整数であり、mが2以上である場合、一般式(1)で表される構造に関わらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。)
 また、本発明によれば、上記の製造方法により得られる放射状共役ジエン系ゴムが提供される。
 本発明によれば、上記放射状共役ジエン系ゴムの活性末端に、変性剤を反応させることにより得られる変性放射状共役ジエン系ゴムが提供される。
 さらに、本発明によれば、上記放射状共役ジエン系ゴム、または、上記変性放射状共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
 本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。
 また、本発明によれば、上記ゴム組成物を架橋してなるゴム架橋物、および該ゴム架橋物を含んでなるタイヤが提供される。
 本発明によれば、製造安定性および加工性に優れ、かつ、ウェットグリップ性に優れたゴム架橋物を与えることのできる放射状共役ジエン系ゴム、該放射状共役ジエン系ゴムを含有するゴム組成物、該ゴム組成物を架橋してなる、ウェットグリップ性に優れたゴム架橋物、および該ゴム架橋物を含んでなるタイヤを提供することができる。
<放射状共役ジエン系ゴムの製造方法>
 本発明の放射状共役ジエン系ゴムの製造方法は、後述する一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを重合させることで、活性末端を有する放射状イソプレン重合体を得る第1工程と、前記放射状イソプレン重合体の活性末端に、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合させる第2工程と、を備える。
<第1工程>
 まず、本発明の製造方法における、第1工程について説明する。本発明の製造方法における、第1工程は、下記一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを反応させることで、活性末端を有する放射状イソプレン重合体を得る工程である。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)中、R~Rは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位(一般式(1)中に示される芳香環のα位)に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表し、R~Rの3個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。また、mは0~5の整数であり、mが2以上である場合には、上記一般式(1)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。なお、上記「それぞれ独立して」とは、例えば、mが2以上である場合、RおよびRはそれぞれ複数存在するが、複数あるRおよびRも、それぞれ同一であってもよいし、異なっていてもよいとの意味である。
 上記一般式(1)においては、mは0で、R、R、R、R、R、およびRのうち3個が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基であり、かつ、R、R、R、R、R、およびRのうち残りが水素原子であることが好ましい。また、アルカリ金属原子としては、特に限定されるものではないが、リチウム、ナトリウム、またはカリウムであることが好ましく、これらのなかでも、リチウムが特に好ましい。
 上記一般式(1)で表されるアルカリ金属化芳香族化合物は、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基が、1つの芳香環に対して3個以上結合してなるアルカリ金属化芳香族化合物であり、該アルカリ金属化芳香族化合物においては、前記アルカリ金属原子は、アルカリ金属化芳香族化合物内において、通常、カチオンの状態で存在しており、また、該アルカリ金属原子と直接結合するα位の炭素原子は、このようなカチオンの状態のアルカリ金属原子と結合するために、通常、アニオンの状態で存在している。そして、本発明で用いるアルカリ金属化芳香族化合物中においては、このようにカチオンの状態で存在するアルカリ金属原子と、アニオンの状態で存在する炭素原子とがイオン結合を形成し、これにより互いに直接結合した状態となっている。
 本発明の製造方法の第1工程においては、重合開始剤として、上記一般式(1)で表されるアルカリ金属化芳香族化合物、すなわち、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基が、1つの芳香環に対して3個以上結合してなるアルカリ金属化芳香族化合物を用い、これをイソプレンと反応させることにより、該アルカリ金属化芳香族化合物に含まれる3個以上のアルカリ金属原子が直接結合したα位の炭素原子のそれぞれを重合開始点として、イソプレン鎖がリビング重合性を伴って成長することとなる。そのため、重合により得られるイソプレン重合体を放射状の構造を有するものとすることができる。
 本発明において重合開始剤として用いられるアルカリ金属化芳香族化合物の合成方法は特に限定されないが、下記一般式(2)で表される芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものが好適に用いられる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)中、R~R16は、それぞれ独立して水素原子、または炭素数1~10のアルキル基であり、R~R16のうち3個以上が炭素数1~10のアルキル基である。mは、0~5の整数であり、mが2以上である場合には、上記一般式(2)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。なお、上記「それぞれ独立して」とは、例えば、mが2以上である場合、R13およびR16はそれぞれ複数存在するが、複数あるR13またはR16も、同一であってもよいし、異なっていてもよいとの意味である。
 上記一般式(2)において、mは0で、R、R10、R11、R12、R14、およびR15のうち3個が炭素数1~10のアルキル基であり、かつ、R、R10、R11、R12、R14、およびR15のうち残りが水素原子であることが好ましい。
 上記一般式(2)で表される芳香族化合物の具体例としては、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、ヘキサメチルベンゼン、1,2,3-トリエチルベンゼン、1,2,4-トリエチルベンゼン、1,3,5-トリエチルベンゼン、1,2,3-トリプロピルベンゼン、1,2,4-トリプロピルベンゼン、1,3,5-トリプロピルベンゼン、1,3,5-トリブチルベンゼン、1,3,5-トリペンチルベンゼン、などの3個以上のアルキル基を有するベンゼン類;2,3,5-トリメチルナフタレン、1,4,5-トリメチルナフタレンなどの3個以上のアルキル基を有するナフタレン類;などを挙げることができる。これらのなかでも、3個以上のアルキル基を有するベンゼン類が好ましく、1,3,5-トリメチルベンゼンがより好ましい。
 本発明で用いるアルカリ金属化芳香族化合物を合成するために用いられる有機アルカリ金属化合物としては、特に限定されないが、アルキル基またはアリール基を有するアルカリ金属化合物が好適に用いられ、その具体例としては、メチルリチウム、メチルナトリウム、メチルカリウム、エチルリチウム、エチルナトリウム、エチルカリウム、n-プロピルリチウム、イソプロピルカリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、n-ブチルナトリウム、n-ブチルカリウム、n-ペンチルリチウム、n-アミルリチウム、n-オクチルリチウム、フェニルリチウム、ナフチルリチウム、フェニルナトリウム、ナフチルナトリウムなどが挙げられる。これらのなかでも、アルキル基を有するアルカリ金属化合物が好ましく、アルキル基を有するリチウム化合物がより好ましく、n-ブチルリチウムが特に好ましい。
 上記一般式(1)で表されるアルカリ金属化芳香族化合物を合成するために、アルキル(またはアリール)カリウムやアルキル(またはアリール)ナトリウムを用いる場合は、アルキル基またはアリール基を有するリチウム化合物と、アルコキシル基を有するカリウムまたはナトリウム化合物とを混合することにより、目的とするカリウムまたはナトリウム化合物を得てもよい。このとき用いられるアルコキシル基を有するカリウムまたはナトリウム化合物としては、t-ブトキシカリウムやt-ブトキシナトリウムが例示される。アルコキシル基を有するカリウムまたはナトリウム化合物の使用量は、特に限定されないが、アルキル基またはアリール基を有するリチウム化合物1モルに対して、例えば、0.1~5.0モル、好ましくは0.2~3.0モル、より好ましくは0.3~2.0モルである。
 上記一般式(2)で表される芳香族化合物に、有機アルカリ金属化合物を反応させる方法は特に限定されるものではないが、不活性雰囲気下、不活性溶媒中で反応させる方法が好ましく用いられる。用いられる不活性溶媒は、反応させる化合物を溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒を用いることが好ましい。具体的には、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;などが挙げられる。なお、これらの溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。また、上記一般式(2)で表される芳香族化合物に対する、有機アルカリ金属化合物の使用量も特に限定されるものではないが、芳香族化合物中の芳香環に直接結合した炭素原子1モルに対して、通常0.1~100モル、好ましくは0.2~50モル、より好ましくは0.3~10モル、特に好ましくは0.3~1.1モルである。この反応の反応時間、反応温度も特に限定されないが、反応時間は、通常1分~10日、好ましくは1分~5日の範囲であり、反応温度は、通常-50℃~100℃の範囲である。
 また、上記一般式(2)で表される芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、反応を促進させる目的で、アルカリ金属原子への配位能を有する化合物を共存させてもよい。アルカリ金属原子への配位能を有する化合物としては、ヘテロ原子を含有するルイス塩基化合物が好適に用いられ、これらのなかでも、窒素原子または酸素原子を含有するルイス塩基化合物が特に好適に用いられる。窒素原子または酸素原子を含有するルイス塩基化合物の具体例としては、ジエチルエーテル、アニソール、ジフェニルエーテル、ジメトキシベンゼン、ジメトキシエタン、ジグライム、エチレングリコールジブチルエーテルなどの鎖状エーテル化合物;トリメチルアミン、トリエチルアミンなどの分子内に窒素原子を1つ有する第3級アミン化合物;テトラヒドロフラン、テトラヒドロピランなどの分子内に酸素原子を1つ有する環状エーテル化合物;ピリジン、ルチジン、1-メチルイミダゾールなどの含窒素複素環化合物;ビステトラヒドロフリルプロパンなどの分子内に酸素原子を2つ以上有する環状エーテル化合物;N,N,N’,N’-テトラメチルエチレンジアミン、ジピペリジノエタン、1,4-ジアザビシクロ[2.2.2]オクタン、(-)-スパルテイン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンなどの分子内に窒素原子を2つ以上有する第3級アミン化合物;ヘキサメチルホスホアミドなどの分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物;などが挙げられる。
 アルカリ金属原子への配位能を有する化合物の使用量は、特に限定されず、その配位能の強さに応じて決定すればよい。例えば、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が弱い化合物である、鎖状エーテル化合物や分子内に窒素原子を1つ有する第3級アミン化合物を用いる場合、その使用量は、上記一般式(2)で表される芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは5~50モル、より好ましくは10~25モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、配位能が中程度である化合物である、分子内に酸素原子を1つ有する環状エーテル化合物や含窒素複素環化合物を用いる場合、その使用量は、上記一般式(2)で表される芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは1~20モル、より好ましくは2~10モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が強い化合物である、分子内に酸素原子を2つ以上有する環状エーテル化合物や分子内に窒素原子を2つ以上有する第3級アミン化合物や分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物を用いる場合、その使用量は、上記一般式(2)で表される芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常0.01~5モル、好ましくは0.01~2モル、より好ましくは0.01~1.5モルの範囲である。アルカリ金属原子への配位能を有する化合物の使用量が多すぎると、反応が進行しなくなるおそれがある。なお、これらのアルカリ金属原子への配位能を有する化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記一般式(1)で表されるアルカリ金属化芳香族化合物の生成効率を特に良好とし、イソプレンと反応させた際に、得られるイソプレン重合体中における放射状のイソプレン重合体の割合を高める観点からは、アルカリ金属原子への配位能を有する化合物として、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を用い、その使用量を、上記一般式(2)で表される芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、0.02~0.4モルの範囲とすることが特に好ましい。
 上記一般式(2)で表される芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、アルカリ金属原子への配位能を有する化合物を共存させる場合において、それぞれの添加順序は特に限定されない。ただし、上記一般式(1)で表されるアルカリ金属化芳香族化合物の生成効率を特に良好とする観点からは、上記一般式(2)で表される芳香族化合物および有機アルカリ金属化合物を共存させた後、その系にアルカリ金属原子への配位能を有する化合物を添加する順序、または芳香族化合物およびアルカリ金属原子への配位能を有する化合物を共存させた後、その系に有機アルカリ金属化合物を添加する順序が好適である。このような順序で添加を行うことにより、有機アルカリ金属化合物とアルカリ金属原子への配位能を有する化合物との錯体形成による不溶化が防止され、上記一般式(1)で表されるアルカリ金属化芳香族化合物の生成効率が特に良好となる。
 本発明の製造方法の第1工程においては、たとえば、以上のようにして得られる、上記一般式(1)で表されるアルカリ金属化芳香族化合物を重合開始剤として用いて、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを重合させることで、活性末端を有する放射状イソプレン重合体を得るものである。本発明においては、上記一般式(1)で表されるアルカリ金属化芳香族化合物に、イソプレンを重合させることにより、溶媒に対する相溶性を向上させることができるものである。すなわち、上記一般式(1)で表されるアルカリ金属化芳香族化合物の形態では、重合に用いる不活性溶媒に対する相溶性が低いものである一方で、本発明によれば、上記一般式(1)で表されるアルカリ金属化芳香族化合物に、イソプレンを重合させ、これにより、イソプレン重合体鎖を導入することで、イソプレン重合体鎖の作用により、溶媒に対する相溶性を向上させるものである。特に、本発明によれば、このようにして得られる活性末端を有する放射状イソプレン重合体は、重合に用いる不活性溶媒に溶解させることができる。
 なお、本発明の製造方法の第1工程における、イソプレンの使用量は、上記一般式(1)で表されるアルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、65~500モルであり、好ましくは65~400モル、より好ましくは70~300モルである。イソプレンの使用量が少なすぎると、重合に用いる不活性溶媒に対する相溶性向上効果が得られなくなり、製造安定性が低下してしまうおそれがある。一方、イソプレンの使用量が多すぎると、得られる活性末端を有する放射状イソプレン重合体を溶媒に溶解した際に溶液粘度が高くなってしまい、操作性が低下してしまうおそれがある。
 なお、本発明の第1工程において、得られる活性末端を有する放射状イソプレン重合体の数平均分子量(Mn)は、好ましくは1,500~100,000、より好ましくは3,000~75,000、さらに好ましくは4,500~60,000である。数平均分子量(Mn)が小さすぎると、重合に用いる不活性溶媒に対する相溶性向上効果が得られなくなるおそれがある。一方、数平均分子量(Mn)が大きすぎると、得られる活性末端を有する放射状イソプレン重合体を溶媒に溶解した際に溶液粘度が高くなってしまい、操作性が低下してしまうおそれがある。なお、得られる活性末端を有する放射状イソプレン重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、特に限定されないが、好ましくは1.0~3.0、より好ましくは1.0~2.0である。活性末端を有する放射状イソプレン重合体の分子量分布を上記範囲とすることにより、製造安定性を向上させることができる。
 また、イソプレンの重合反応を行うに際しては、重合速度や得られる活性末端を有する放射状イソプレン重合体のミクロ構造を制御する目的で、重合反応系に、上述したようなアルカリ金属原子への配位能を有する化合物を添加してもよい。これらのアルカリ金属原子への配位能を有する化合物の使用量は、上記一般式(1)で表されるアルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対して、通常、5モル以下、好ましくは4モル以下、特に好ましくは2モル以下である。これらのアルカリ金属原子への配位能を有する化合物の使用量が多すぎると、重合反応を阻害するおそれがある。なお、上記一般式(1)で表されるアルカリ金属化芳香族化合物を調製する際に、アルカリ金属原子への配位能を有する化合物を用いた場合は、その化合物を含有する溶液をそのまま使用することもできる。
 特に、アルカリ金属原子への配位能を有する化合物として、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を、重合開始剤として用いるアルカリ金属化合物(ここでいうアルカリ金属化合物は、上記一般式(1)で表されるアルカリ金属化芳香族化合物に限られず、反応系中に存在し、重合開始剤として働くアルカリ金属化合物全てを含むものである)中のアルカリ金属原子1モルに対して、0.02~3.0モルの範囲で存在させることが好ましい。このようにすることで、得られる活性末端を有する放射状イソプレン重合体の溶媒に対する相溶性を向上させることができる。
 得られる活性末端を有する放射状イソプレン重合体のイソプレン単位部分におけるビニル結合含有量は、通常1~90モル%であり、好ましくは5~80モル%である。
 また、本発明の製造方法の第1工程において用いる不活性溶媒としては、重合反応において不活性な溶媒であれば特に限定されないが、炭化水素系溶媒を用いることが好ましい。具体的には、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルなどのエーテル類;などが挙げられる。これらのなかでも、脂肪族炭化水素や脂環族炭化水素を溶媒として用いると重合活性が高くなるので好ましい。なお、これらの溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 重合反応に供される重合溶液中のイソプレンの濃度は、特に限定されないが、通常1~50重量%、好ましくは2~45重量%、より好ましくは5~40重量%の範囲で選択される。溶液中のイソプレンの濃度が低すぎると、活性末端を有する放射状イソプレン重合体の生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~+200℃、好ましくは0℃~+180℃の範囲である。重合時間にも特に制限は無く、通常1分~100時間の範囲である。重合様式としては、回分式、連続式などいずれの様式を採用してもよい。
 なお、本発明において、上述した第1工程で得られる活性末端を有する放射状イソプレン重合体は、イソプレンのみを重合することにより得られるものであることが好ましいが、本発明の効果を本質的に損なわない範囲で、その他の単量体を共重合することを排除するものではない。
<第2工程>
 次いで、本発明の製造方法における、第2工程について説明する。
 本発明の製造方法における、第2工程は、上述した第1工程で得られた活性末端を有する放射状イソプレン重合体の活性末端に、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合させて、放射状共役ジエン系ゴムを得る工程である。すなわち、本発明の製造方法の第2工程は、上述した第1工程で得られた活性末端を有する放射状イソプレン重合体の活性末端を、重合開始末端として、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合させて、放射状共役ジエン系ゴムを得る工程である。
 なお、本発明の製造方法の第2工程においては、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体の重合反応は、リビング性を伴って進行するので、これにより得られる放射状共役ジエン系ゴムも活性末端を有するものとなる。
 本発明の製造方法の第2工程においては、重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物のうち、芳香族ビニル化合物を用いず、1,3-ブタジエンのみを用いて、放射状イソプレン重合体の活性末端に、1,3-ブタジエンを含む重合体鎖を導入してもよいし、あるいは、重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物の両方を用いて、放射状イソプレン重合体の活性末端に、1,3-ブタジエンおよび芳香族ビニル化合物を含む重合体鎖を導入してもよく、目的に応じて、適宜選択すればよい。なお、いずれの場合においても、1,3-ブタジエンおよび芳香族ビニル化合物以外の他の単量体を併用して、他の単量体との共重合体としてもよい。
 たとえば、上記一般式(1)でアルカリ金属化芳香族化合物として、m=0であり、R、R、Rが、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基であり、R、R、Rが水素原子であるものを用いた場合を例示すると、第2工程における重合に用いる単量体として1,3-ブタジエンのみを用いた場合には、下記一般式(3)で表される放射状共役ジエン系ゴムが得られる。また、第2工程における重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物のみを用いた場合には、下記一般式(4)で表される放射状共役ジエン系ゴムが得られる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 なお、上記一般式(3)、(4)において、R17~R19は、水素原子または炭素数1~9のアルキル基であり、PolIPはイソプレン重合体鎖、PolBuはブタジエン重合体鎖、Pol(Bu-Ar)は、ブタジエン-芳香族ビニル重合体鎖である。なお、PolBuで表されるブタジエン重合体鎖、およびPol(Bu-Ar)で表されるブタジエン-芳香族ビニル重合体鎖は、リビング重合性を伴って成長するため、これら重合体鎖は、通常、重合体鎖末端に、アルカリ金属原子が結合してなる活性末端を有している。
 すなわち、重合に用いる単量体として1,3-ブタジエンのみを用いた場合には、上記一般式(1)で表されるアルカリ金属化芳香族化合物を形成していた芳香族化合物を中心とし、イソプレン重合体鎖を介して、ブタジエン重合体鎖が放射状に形成されることとなる。また、重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物を用いた場合には、上記一般式(1)で表されるアルカリ金属化芳香族化合物を形成していた芳香族化合物を中心とし、イソプレン重合体鎖を介して、ブタジエン-芳香族ビニル重合体鎖が放射状に形成されることとなる。なお、上記一般式(3)、(4)として、重合に用いる単量体として1,3-ブタジエンのみを用いた場合、および、重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物のみを用いた場合を例示したが、いずれの場合においても、1,3-ブタジエンおよび芳香族ビニル化合物以外の他の単量体を併用して、他の単量体との共重合体としてもよい。
 重合に用いる単量体としての芳香族ビニル化合物としては、特に限定されず、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレンなどを挙げることができる。これらのなかでも、スチレン、α-メチルスチレン、または4-メチルスチレンが好ましく、スチレンが特に好ましい。なお、これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。活性末端を有する共役ジエン系ゴム中のブタジエン-芳香族ビニル重合体鎖における、1,3-ブタジエン単量体単位の含有割合は、好ましくは50~100重量%であり、より好ましくは55~90重量%である。また、芳香族ビニル化合物単位の含有割合は、好ましくは0~50重量%、より好ましくは10~45重量%である。
 本発明の製造方法の第2工程において、重合に用いる単量体として1,3-ブタジエンおよび芳香族ビニル化合物を用いる場合の、共重合の様式は特に限定されず、ランダム状、ブロック状、テーパー状などのいずれであってもよいが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物の低発熱性を向上させることができる。
 また、本発明の製造方法の第2工程においては、本発明の目的を損なわない範囲において、所望により、1,3-ブタジエン、および芳香族ビニル化合物に加えてそれら以外の他の単量体を含有する単量体を共重合してなるものであってもよい。ただし、この際における、これらの他の単量体単位の含有割合は、第2工程において導入する、活性末端を有する共役ジエン系ゴム中のブタジエン重合体鎖中、または、ブタジエン-芳香族ビニル重合体鎖中において、10重量%以下、好ましくは5重量%以下とする。このような他の単量体としては、例えば、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエンなどの1,3-ブタジエン以外の共役ジエン化合物;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン;などを挙げることができる。
 なお、活性末端を有する放射状イソプレン重合体の活性末端1モルに対する、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体の使用量は、特に限定されないが、好ましくは300~20,000モル、より好ましくは900~15,000モル、特に好ましくは1,200~10,000モルである。これらの使用量が上記範囲であると、十分な長さのブタジエン重合体鎖、または、ブタジエン-芳香族ビニル重合体鎖が得られる。
 本発明の製造方法の第2工程において、活性末端を有する放射状イソプレン重合体の活性末端に、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合させる際には、該重合は、不活性溶媒中において行うが、不活性溶媒としては、上述した第1工程と同様のものを用いることができ、重合の制御の観点より、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体が溶解している溶液中に、上述した第1工程において得られた活性末端を有する放射状イソプレン重合体を加えることが好ましい。なお、該放射状イソプレン重合体は、調製に用いた不活性溶媒に溶解させたままの状態として、そのまま用いることが好ましい。上述したように、本発明で用いる活性末端を有する放射状イソプレン重合体は、重合に用いる不活性溶媒に対する相溶性が高く、特に、重合に用いる不活性溶媒に溶解した状態とすることができるものである。そのため、本発明によれば、重合開始点として作用する、活性末端を有する放射状イソプレン重合体を不活性溶媒に溶解した状態にて、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体の重合反応を行うことができ、これにより、製造工程におけるバラツキを解消することができ、これにより製造安定性を向上させることができるものである。
 また、重合反応を行うに際しては、重合速度や得られる放射状共役ジエン系ゴムのミクロ構造を制御する目的で、重合反応系に、上述したようなアルカリ金属原子への配位能を有する化合物を添加してもよい。これらのアルカリ金属原子への配位能を有する化合物の使用量は、上記一般式(1)で表されるアルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対して、通常、5モル以下、好ましくは4モル以下、特に好ましくは2モル以下である。これらのアルカリ金属原子への配位能を有する化合物の使用量が多すぎると、重合反応を阻害するおそれがある。なお、上記一般式(1)で表されるアルカリ金属化芳香族化合物および活性末端を有する放射状イソプレン重合体を調製する際に、アルカリ金属原子への配位能を有する化合物を用いた場合は、その化合物を含有する溶液をそのまま使用することもできる。
 特に、アルカリ金属原子への配位能を有する化合物として、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を、重合開始剤として用いるアルカリ金属化合物(ここでいうアルカリ金属化合物は、上記一般式(1)で表されるアルカリ金属化芳香族化合物に限られず、反応系中に存在し、重合開始剤として働くアルカリ金属化合物全てを含むものである)中のアルカリ金属原子1モルに対して、0.02~3.0モルの範囲で存在させることが好ましい。このようにすることで、得られる放射状共役ジエン系ゴムのビニル結合量を適度な範囲とすることでき、その結果として、得られるゴム架橋物は低発熱性に優れたものとなる。
 重合反応に供する重合溶液中の単量体の濃度は、特に限定されないが、通常1~50重量%、好ましくは2~45重量%、より好ましくは5~40重量%の範囲で選択される。溶液中の単量体の濃度が低すぎると、放射状共役ジエン系ゴムの生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~+200℃、好ましくは0℃~+180℃の範囲である。重合時間にも特に制限は無く、通常1分~100時間の範囲である。重合様式としては、回分式、連続式などいずれの様式をも採用できるが、1,3-ブタジエンと芳香族ビニル化合物とを共重合させる場合は、1,3-ブタジエン単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすいという点より、回分式が好ましい。
 以上のようにして、上述した第1工程で得られた活性末端を有する放射状イソプレン重合体を用いて、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合することで、放射状共役ジエン系ゴムを得ることができる。なお、本発明の製造方法においては、通常、上述した重合反応はリビング性を伴って進行するので、本発明の製造方法において得られる放射状共役ジエン系ゴムは、活性末端を有するものとなる。このようにして得られる活性末端を有する放射状共役ジエン系ゴムは、アルコールや水などの反応停止剤を反応させてもよいが、この活性末端と反応しうる任意の変性剤を反応させて、変性放射状共役ジエン系ゴムとしてもよい。このように変性放射状共役ジエン系ゴムを得ることにより、得られる放射状共役ジエン系ゴムを変性剤により改質することができ、例えば、シリカなどの充填剤に対する親和性を向上することができる。
 変性放射状共役ジエン系ゴムを得るために用いる変性剤は、該ゴムの活性末端と反応しうる変性剤であれば、特に限定されないが、好ましくは、該ゴムの活性末端と反応することができる原子または反応基を一つ有しているシラン化合物である。
 このような変性剤としては、たとえば下記一般式(5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(5)において、Xは、前記放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基、または前記原子もしくは前記反応基のいずれか一つを含む炭化水素基であり、R20~R23は、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、R24~R29は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~12のアリール基であり、R24~R29は、R24とR25との組み合わせ、R26とR27との組み合わせ、またはR28とR29との組み合わせにて互いに結合して、窒素原子とともに環構造を形成していてもよい。
 上記一般式(5)において、放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基としては、特に限定されず、該活性末端と反応可能なものであればよいが、活性末端に対する反応性の観点より、ハロゲン原子、ビニル基、アルコキシル基、アミノ基またはエポキシ基が好ましく、エポキシ基またはハロゲン原子がより好ましく、ハロゲン原子がさらに好ましく、塩素原子が特に好ましい。
 上記一般式(5)において、前記原子もしくは前記反応基のいずれか一つを含む炭化水素基としては、特に限定されないが、炭素数1~10の炭化水素基が好ましい。なお、この炭素数には、前記反応基を構成している炭素の数は含まないものとする。
 また、上記一般式(5)において、R20~R23は、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、好ましくは、化学的な単結合または炭素数1~5のアルキレン基であり、化学的な単結合であることが特に好ましい。
 さらに、上記一般式(5)において、R24~R29は、それぞれ独立して、炭素数1~10のアルキル基、または炭素数6~12のアリール基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~5のアルキル基であることがより好ましく、メチル基であることが特に好ましい。
 すなわち、上記一般式(5)で表される化合物のなかでも、その添加効果が特に高いという観点より、上記一般式(5)において、Xが塩素原子であり、R20~R23が全て化学的な単結合であり、R24~R29が全てメチル基である化合物が、特に好適である。
 あるいは、変性剤としては、下記一般式(6)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(6)において、R30、R39~R47のうちいずれか一つは、前記放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基または前記原子もしくは反応基のいずれか一つを含む炭化水素基であり、R30、R39~R47のうち残りは、それぞれ独立して水素原子、炭素数1~10のアルキル基、または炭素数6~12のアリール基である。R31~R38は、それぞれ独立して水素原子、炭素数1~10のアルキル基、または炭素数6~12のアリール基である。q,r,s,tはそれぞれ独立して0~100の整数である。なお、上記「R31~R38は、それぞれ独立して」とは、例えば、q,r,s,tが、それぞれ2以上である場合、R31~R38はそれぞれ複数存在するが、複数あるR31、R32、R33、R34、R35、R36、R37、またはR38も、同一であってもよいし、異なっていてもよいとの意味である。
 上記一般式(6)において、放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基としては、特に限定されず、該活性末端と反応可能なものであればよいが、活性末端に対する反応性の観点より、ハロゲン原子、ビニル基、アルコキシル基、アミノ基またはエポキシ基が好ましく、エポキシ基またはハロゲン原子がより好ましく、ハロゲン原子がさらに好ましく、塩素原子が特に好ましい。
 上記一般式(6)において、前記原子もしくは反応基のいずれか一つを含む炭化水素基としては、特に限定されないが、炭素数1~10の炭化水素基が好ましい。なお、この炭素数には、前記反応基を構成している炭素の数は含まないものとする。
 また、上記一般式(6)においては、R30、R39~R47のうちいずれか一つが、放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基または前記原子もしくは反応基のいずれか一つを含む炭化水素基であればよいが、R30が、放射状共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基または前記原子もしくは反応基のいずれか一つを含む炭化水素基であり、残りのR39~R47が、水素原子、炭素数1~10のアルキル基、または炭素数6~12のアリール基であることがより好ましい。また、R39~R47としては、炭素数1~10のアルキル基であることがより好ましく、炭素数1~5のアルキル基であることがさらに好ましく、メチル基であることが特に好ましい。
 また、上記一般式(6)において、q,r,s,tはそれぞれ独立して0~100の整数であり、変性効果をより高めることができるという点より、q,r,s,tは0~10の整数であることが好ましく、q,r,s,tは全て0であることが特に好ましい。
 すなわち、上記一般式(6)で表される化合物のなかでも、R30が塩素であり、R39~R47が全てメチル基であり、q,r,s,tが全て0である化合物が、好適に使用することができる。
 変性剤の使用量は、特に限定されないが、重合開始剤として使用した上記一般式(1)で表されるアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たりの、放射状共役ジエン系ゴムの活性末端と反応することができる原子または反応基の量が、0.05~5モルの範囲となる量とすることが好ましく、0.1~3モルとなる量とすることがより好ましく、0.5~1.5モルとなる量とすることが特に好ましい。変性剤の使用量を上記範囲とすることにより、その添加効果をより顕著なものとすることができる。なお、変性剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上述した第2工程で得られた放射状共役ジエン系ゴムの活性末端に、変性剤を反応させる方法としては、特に限定されないが、放射状共役ジエン系ゴムと、変性剤とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した第1工程および第2工程に用いる不活性溶媒として例示したものなどを用いることができる。また、この際においては、上述した第2工程で得られた放射状共役ジエン系ゴムを、その重合に用いた重合溶液のままの状態とし、ここに変性剤を添加する方法が簡便であり、好ましい。変性反応における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。
 放射状共役ジエン系ゴムに、変性剤等を反応させずに未反応の活性末端が残存している場合、または放射状共役ジエン系ゴムに、変性剤を反応させた後に、未反応の活性末端が残存している場合、メタノール、エタノール、イソプロパノール等のアルコール又は水等の、重合停止剤を重合溶液に添加して、未反応の活性末端を失活させることが好ましい。
 以上のようにして得られる放射状共役ジエン系ゴムの溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、例えば、パラフィン系、芳香族系、およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、放射状共役ジエン系ゴム100重量部に対して、通常5~100重量部である。また、重合反応後または変性反応後の放射状共役ジエン系ゴムは、例えば、再沈澱、加熱下での溶媒除去、減圧下での溶媒除去、水蒸気による溶媒の除去(スチームストリッピング)等の、ゴムを溶液から単離する際の通常の操作によって、反応混合物から分離し、固形状の放射状共役ジエン系ゴムを取得することができる。
 以上のような本発明の放射状共役ジエン系ゴムの製造方法によれば、重合開始剤として用いる上記一般式(1)で表されるアルカリ金属化芳香族化合物が、3個以上のアルカリ金属原子が直接結合したα位の炭素原子のそれぞれを重合開始点として、共役ジエン重合体鎖(イソプレン重合体鎖、ブタジエン重合体鎖、ブタジエン-芳香族ビニル重合体鎖)がリビング重合性を伴って成長するので、制御良く放射状の構造を有する共役ジエン系ゴムを得ることが可能となる。ただし、本発明の放射状共役ジエン系ゴムの製造方法では、上記一般式(1)で表されるアルカリ金属化芳香族化合物のアルカリ金属化の度合いを制御することにより、放射状共役ジエン重合体と直鎖状共役ジエン重合体とが混在する重合体混合物を得ることも可能である。
 なお、本発明の製造方法により得られる放射状共役ジエン系ゴム中における、3分岐以上の共役ジエン系ゴムの割合は、特に限定されないが、通常、10~100重量%であり、好ましくは、20~100重量%である。このような割合で3分岐以上の共役ジエン系ゴム含有することにより、放射状共役ジエン系ゴムの加工性をより向上させることができ、しかも、シリカなどの充填剤などとの親和性をより高めることができる。
 本発明の製造方法により得られる放射状共役ジエン系ゴムの数平均分子量(Mn)は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、例えば、10,000~3,000,000、好ましくは50,000~2,000,000、より好ましくは100,000~1,500,000の範囲である。放射状共役ジエン系ゴムの数平均分子量を上記範囲とすることにより、放射状共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物の加工性が優れたものとなる。
 また、本発明の製造方法により得られる放射状共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.1~5.0、特に好ましくは1.2~3.0である。放射状共役ジエン系ゴムの分子量分布を上記範囲とすることにより、得られるゴム架橋物の低発熱性が優れたものとなる。
 また、本発明の製造方法により得られる放射状共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)も、特に限定されないが、通常、20~150、好ましくは30~120の範囲である。放射状共役ジエン系ゴムのムーニー粘度を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなる。なお、放射状共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
 また、本発明の製造方法により得られる放射状共役ジエン系ゴムの共役ジエン単位部分におけるビニル結合含有量は、通常1~90モル%であり、好ましくは5~80モル%である。ビニル結合量を上記範囲とすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。
 このようにして得られる本発明の放射状共役ジエン系ゴムは、上述したように、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体を重合する際に、重合開始点として、活性末端を有する放射状イソプレン重合体を用いるものであり、該放射状イソプレン重合体は、重合に用いる不活性溶媒に対する相溶性が高いものである。そのため、重合開始点として作用する活性末端を有する放射状イソプレン重合体を、重合に用いる不活性溶媒に良好に溶解させた状態にて、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含有する単量体の重合を進行させることができ、これにより、製造工程におけるバラツキの発生を防止することができ、結果として、製造安定性の向上が可能となる。
 加えて、このようにして得られる本発明の放射状共役ジエン系ゴムは、その製造工程上、イソプレン重合体鎖を含有するものであり、本発明の放射状共役ジエン系ゴムに、シリカなどの配合剤を配合し混練した際に、イソプレン重合体鎖のうち一部において切断が起こり、配合物粘度(コンパウンド・ムーニー粘度)が低下し、これにより優れた加工性を実現するものである。さらには、このように切断したイソプレン重合体鎖の末端が、シリカなどの配合剤と相互作用することで、シリカなどの配合剤に対する親和性が向上するという効果を奏することもできる。
<ゴム組成物>
 本発明のゴム組成物は、上述した本発明の製造方法により得られる放射状共役ジエン系ゴム(変性放射状共役ジエン系ゴム)を含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。
 本発明で用いるシリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/g、より好ましくは80~220m/g、特に好ましくは100~170m/gである。また、シリカのpHは、pH5~10であることが好ましい。
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部、より好ましくは50~100重量部である。シリカの配合量を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物のウェットグリップ性が優れたものとなる。
 本発明のゴム組成物には、低発熱性を向上させるという観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、例えば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~15重量部である。
 また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。
 なお、本発明の放射状共役ジエン系ゴムを含むゴム成分に、シリカを添加する方法としては特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)や放射状共役ジエン系ゴムを含む溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。
 また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。
 さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、例えば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。
 架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部、特に好ましくは0.5~15重量部である。
 また、本発明のゴム組成物には、上述した本発明の製造方法によって得られる放射状共役ジエン系ゴム以外のその他のゴムを配合してもよい。その他のゴムとしては、例えば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(高シス-BR、低シスBRであってもよい。また、1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-スチレン-ブタジエン共重合ゴムなどのうち、上述した本発明の製造方法によって得られる放射状共役ジエン系ゴム以外のものをいう。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明のゴム組成物において、本発明の製造方法により得られる放射状共役ジエン系ゴムは、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、50~100重量%を占めることが特に好ましい。このような割合で、本発明の放射状共役ジエン系ゴムをゴム成分中に含めることにより、ウェットグリップ性が向上されたゴム架橋物を得ることができる。
 本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、例えば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分と放射状共役ジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分と放射状共役ジエン系ゴムとの混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
 このようにして得られる本発明のゴム架橋物は、上述した本発明の製造方法により得られる放射状共役ジエン系ゴムを用いて得られるものであるため、ウェットグリップ性に優れるものである。そして、本発明のゴム架橋物は、このような特性を活かし、例えば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、ウェットグリップ性に優れることから、タイヤの材料として好適に用いることができ、トレッド用途に最適である。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「%」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。
〔ゴムの分子量〕
 ゴムの分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
 測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8320」)
 カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結したものを用いた。
 検出器:示差屈折計(東ソー社製、商品名「RI-8320」)
 溶離液:テトラヒドロフラン
 カラム温度:40℃
〔ゴムの分岐度〕
 ゴムの分岐度は、多角度光散乱光度計により測定した。具体的な測定条件は、以下のとおりとした。
 ポンプ:Waters社製、商品名「MODEL515」
 カラム:東ソー社製、商品名「GMH-HR-M」を三本直列に連結したものを用いた。
 検出器:示差屈折計(Waters社製、商品名「RI-2414」)
 検出器:多角度光散乱光度計(Wyatt Technology社製、商品名「DAWN EOS」)
 溶離液:テトラヒドロフラン
 カラム温度:23℃
〔ゴムのミクロ構造〕
 H-NMRにより測定した。
  測定器:JEOL社製、商品名「JNM-ECA-400WB」
  測定溶媒:重クロロホルム
〔重合開始剤のリチオ化率〕
 GC-MSにより測定した。
 GC:アジレント・テクノロジー社製、商品名「Agilent GC 6890NGC」
 MS:アジレント・テクノロジー社製、商品名「Agilent MS 5973MSD」
 カラム:アジレント・テクノロジー社製、商品名「DB1701」
〔重合開始剤、活性末端を有する放射状イソプレン重合体のシクロヘキサンに対する溶解性〕
 各製造例で製造した重合開始剤、および活性末端を有する放射状イソプレン重合体について、これらを作製した後、得られた重合開始剤または活性末端を有する放射状イソプレン重合体のシクロヘキサン溶液を、1日静置し、重合開始剤または活性末端を有する放射状イソプレン重合体の沈殿が発生するか否かを目視にて確認し、以下の基準で評価した。
  ○:沈殿物が確認できなかった。
  ×:沈殿物が発生していた。
〔配合物粘度(コンパウンド・ムーニー)〕
 ゴム組成物の配合物粘度(ML1+4,100℃)(コンパウンド・ムーニー)は、JIS K6300に従い、ムーニー粘度計(島津製作所社製)を用いて測定した。この特性については、比較例1の測定値を100とする指数で示した。この指数が小さいものほど、ゴム組成物の配合物粘度が低く、加工性に優れる。
〔ウェットグリップ性〕
 ウェットグリップ性については、長さ50mm、幅12.7mm、厚さ2mmの試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。この特性については、比較例1の測定値を100とする指数で示した。この指数が小さいものほど、ゴム架橋物をタイヤに用いた際のウェットグリップ性に優れる。
〔製造例1〕
〔リチオ化1,3,5-トリメチルベンゼンの製造〕
 窒素雰囲気下、ガラス反応容器に、シクロヘキサン16部、1,3,5-トリメチルベンゼン0.841部、およびテトラメチルエチレンジアミン0.813部を加えた。次に攪拌しながら、n-ブチルリチウム1.345部(n-ブチルリチウム1モル当たりテトラメチルエチレンジアミン0.3モルとなる量)を加え、反応温度60℃にて2日間攪拌しながら反応させ、リチオ化1,3,5-トリメチルベンゼンの溶液18.999部を得た。次に、反応により得られたリチオ化1,3,5-トリメチルベンゼンのリチオ化率を測定する目的で、得られた反応液をトリメチルシリルクロライドを過剰量加えたガラス容器に数滴加え、30分間反応させた。水道水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、黄色いオイル状の液体を得た。
 そして、この黄色いオイル状の液体につき、ガスクロマトグラフ質量分析測定(GC-MS)を行った。結果は以下の通りであった。
 EI-MS,m/z=120(M+)(3%),m/z=192(M+)(3%),m/z=264(M+)(24%),m/z=336(M+)(70%)。Mw=120(3%)、Mw=192(3%)、Mw=264(24%)、Mw=336(70%)。
 次に、この黄色いオイル状の液体につきH-NMR測定を行った。結果は以下の通りであった。
 H-NMR(CDCl) 6.83(s,3H,Ph-H),6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),6.39(s,3H,Ph-H),2.30(s,9H,Ph-CH),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe),1.98(s,6H,Ph-CH-SiMe)。
 さらに、H-detected multi-bond heteronuclear multiple quantum coherence spectrum-NMR(HMBC-NMR)測定により、H-NMRにおけるそれぞれのシグナルについて帰属を行った。結果は以下の通りであった。
 無置換体(1,3,5-トリメチルベンゼン)H-NMR(CDCl) 6.83(s,3H,Ph-H),2.30(s,9H,Ph-CH)、1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン)(H-NMR(CDCl) 6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe)、2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン)H-NMR(CDCl) 6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe)、3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)H-NMR(CDCl) 6.39(s,3H,Ph-H),1.98(s,6H,Ph-CH-SiMe)。
 以上のH-,HMBC-NMR測定による帰属に基づいて、GC-MSで得られた分子イオンピークを以下のように帰属した。EI-MS,m/z=120(M+)は無置換体(1,3,5-トリメチルベンゼン)),m/z=192(M+)は1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン),m/z=264(M+)は2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン),m/z=336(M+)は3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)。以上より、無置換体:1置換体:2置換体:3置換体の割合(モル比)は、3:3:24:70と求められ、1,3,5-トリメチルベンゼンのメチル基のリチオ化率は87%であり、1,3,5-トリメチルベンゼン1分子に導入された平均リチウム原子数は2.40である。
〔製造例2〕
〔活性末端を有する放射状イソプレン重合体1の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン2.163部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、73.4モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、104.9モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して、活性末端を有する放射状イソプレン重合体1を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体1について、GPC測定において、Mnが34,100、分子量分布(Mw/Mn)が1.63であった。また、この活性末端を有する放射状イソプレン重合体1のイソプレン重合体鎖中の1,2結合および3,4結合の含有量(ビニル結合含有量)は46.6モル%であった。
〔製造例3〕
〔活性末端を有する放射状イソプレン重合体2の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部、およびテトラメチルエチレンジアミン0.500部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン2.163部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、73.4モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、104.9モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して、活性末端を有する放射状イソプレン重合体2を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体2について、GPC測定において、Mnが21,200、分子量分布(Mw/Mn)が1.60であった。また、この活性末端を有する放射状イソプレン重合体2のイソプレン重合体鎖中の1,2結合および3,4結合の含有量(ビニル結合含有量)は64.5モル%であった。
〔製造例4〕
〔活性末端を有する放射状イソプレン重合体3の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部、およびテトラメチルエチレンジアミン0.314部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン1.370部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、117.4モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、167.7モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して、活性末端を有する放射状イソプレン重合体3を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体3について、GPC測定において、Mnが31,300、分子量分布(Mw/Mn)が1.53であった。また、この活性末端を有する放射状イソプレン重合体3のイソプレン重合体鎖中の1,2結合および3,4結合の含有量(ビニル結合含有量)は65.6モル%であった。
〔製造例5〕
〔活性末端を有する放射状イソプレン重合体4の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部、およびテトラメチルエチレンジアミン0.256部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン1.082部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、146.8モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、209.7モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して、活性末端を有する放射状イソプレン重合体4を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体4について、GPC測定において、Mnが37,400、分子量分布(Mw/Mn)が1.50であった。また、この活性末端を有する放射状イソプレン重合体4のイソプレン重合体鎖中の1,2結合および3,4結合の含有量(ビニル結合含有量)は67.0モル%であった。
〔製造例6〕
〔活性末端を有する放射状イソプレン重合体5の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部、およびテトラメチルエチレンジアミン2.500部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン10.815部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、14.7モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、21.0モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して活性末端を有する放射状イソプレン重合体5を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体5について、GPC測定において、Mnが6,800、分子量分布(Mw/Mn)が1.65であった。また、この活性末端を有する放射状イソプレン重合体5のイソプレン重合体鎖中の1,2結合および3,4結合の含有量は66.9モル%であった。
〔製造例7〕
〔活性末端を有する放射状イソプレン重合体6の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン25部、イソプレン10.900部、およびテトラメチルエチレンジアミン0.837部を仕込んだ後、製造例1にて得られたリチオ化1,3,5-トリメチルベンゼン3.605部(リチオ化1,3,5-トリメチルベンゼン(全置換体)中のリチウム1モルに対する、イソプレンの使用量が、44.0モルとなる量、また、3置換体中のリチウム1モルに対しては、イソプレンの使用量が、62.9モルとなる量)を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認して、活性末端を有する放射状イソプレン重合体6を含有する溶液を得た。
 そして、得られた活性末端を有する放射状イソプレン重合体6について、GPC測定において、Mnが16,300、分子量分布(Mw/Mn)が1.49であった。また、この活性末端を有する放射状イソプレン重合体6のイソプレン重合体鎖中の1,2結合および3,4結合の含有量は70.0モル%であった。
〔実施例1〕
〔放射状共役ジエン系ゴム1の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.185部を仕込んだ後、製造例2で得られた活性末端を有する放射状イソプレン重合体1を含有する溶液 13.712部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、重合停止剤としてメタノール0.064部を添加して放射状共役ジエン系ゴム1を含有する溶液を得た。
 そして、得られた放射状共役ジエン系ゴム1を含有する溶液に、重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の放射状共役ジエン系ゴム1を得た。
 得られた放射状共役ジエン系ゴム1は、GPC測定において、Mnが260,000、Mwが283,000、分子量分布(Mw/Mn)が1.09の溶出成分(ピーク面積比38.4%)、Mnが581,000、Mwが592,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比28.9%)、およびMnが945,000、Mwが979,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比32.7%)からなるものであり、全体としてMnが43.1,000、Mwが600,000、分子量分布(Mw/Mn)が1.39のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム1のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.3重量%、ブタジエン単位中のビニル結合含有量は61.6モル%であった。
〔ゴム組成物、ゴム架橋物の調製〕
 次に、容量250mlのブラベンダータイプミキサー中で、上記にて得られた放射状共役ジエン系ゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)20部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)ジスルフィド(デグッサ社製、商品名「Si75」)6.4部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)30部、酸化亜鉛3.0部、ステアリン酸2.0部および老化防止剤N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアン(大内新興化学工業社製、商品名「ノクラック6C」)2.0部を添加し、さらに2.5分間混練し、ミキサーから混練物を排出させた。混練終了時の混練物の温度は150℃であった。混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.60部および架橋促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ-G」、(大内新興化学工業社製)1.40部とジフェニルグアニジン(商品名「ノクセラーD」、(大内新興化学工業社製)1.40部)とを混練した後、シート状のゴム組成物を取り出した。
 そして、ゴム組成物の一部を取り出し、配合物粘度(コンパウンド・ムーニー)を測定した。また、残りのゴム組成物を、160℃で25分間プレス架橋することでゴム架橋物(試験片)を作製し、この試験片を用いて、ウェットグリップ性の評価を行なった。結果を表1に示す。なお、表1中においては、配合物粘度(コンパウンド・ムーニー)およびウェットグリップ性の評価結果は、後述する比較例1の結果を、それぞれ100とした場合における比率で示した。
〔実施例2〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、およびスチレン25.2部を仕込んだ後、製造例3で得られた活性末端を有する放射状イソプレン重合体2を含有する溶液 13.604部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、重合停止剤としてメタノール0.064部を添加して放射状共役ジエン系ゴム2を含有する溶液を得た。
 そして、得られた放射状共役ジエン系ゴム2を含有する溶液に、重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の放射状共役ジエン系ゴム2を得た。
 得られた放射状共役ジエン系ゴム2は、GPC測定において、Mnが209,000、Mwが268,000、分子量分布(Mw/Mn)が1.28の溶出成分(ピーク面積比45.7%)、Mnが589,000、Mwが599,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比25.4%)、およびMnが955,000、Mwが989,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比28.9%)からなるものであり、全体としてMnが343,000、Mwが560,000、分子量分布(Mw/Mn)が1.64のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム2のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.9重量%、ブタジエン単位中のビニル結合含有量は61.1モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム2を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔実施例3〕
 放射状イソプレン重合体2を含有する溶液 13.604部の代わりに、製造例4で得られた活性末端を有する放射状イソプレン重合体3を含有する溶液 21.457部を使用した以外は、実施例2と同様にして、放射状共役ジエン系ゴム3の製造を行った。得られた放射状共役ジエン系ゴム3は、GPC測定において、Mnが203,000、Mwが254,000、分子量分布(Mw/Mn)が1.25の溶出成分(ピーク面積比47.5%)、Mnが547,000、Mwが557,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比24.3%)、およびMnが880,000、Mwが911,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比28.2%)からなるものであり、全体としてMnが322,000、Mwが513,000、分子量分布(Mw/Mn)が1.59のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム3のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.3重量%、ブタジエン単位中のビニル結合含有量は61.8モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム3を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔実施例4〕
 放射状イソプレン重合体2を含有する溶液 13.604部の代わりに、製造例5で得られた活性末端を有する放射状イソプレン重合体4を含有する溶液 25.960部を使用した以外は、実施例2と同様にして、放射状共役ジエン系ゴム4の製造を行った。得られた放射状共役ジエン系ゴム4は、GPC測定において、Mnが212,000、Mwが268,000、分子量分布(Mw/Mn)が1.26の溶出成分(ピーク面積比37.5%)、Mnが581,000、Mwが591,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比28.0%)、およびMnが915,000、Mwが945,000、分子量分布(Mw/Mn)が1.03の溶出成分(ピーク面積比34.5%)からなるものであり、全体としてMnが381,000、Mwが592,000、分子量分布(Mw/Mn)が1.55のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム4のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.4重量%、ブタジエン単位中のビニル結合含有量は61.9モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム4を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔実施例5〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部およびスチレン25.2部を仕込んだ後、製造例3で得られた活性末端を有する放射状イソプレン重合体2を含有する溶液 13.604部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、トリス(ジメチルアミノ)クロロシラン0.157部を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して変性放射状共役ジエン系ゴム1を含有する溶液を得た。
 そして、得られた変性放射状共役ジエン系ゴム1を含有する溶液に、重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性放射状共役ジエン系ゴム1を得た。
 得られた変性放射状共役ジエン系ゴム1は、GPC測定において、Mnが219,000、Mwが271,000、分子量分布(Mw/Mn)が1.24の溶出成分(ピーク面積比43.8%)、Mnが588,000、Mwが599,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比26.2%)、およびMnが959,000、Mwが995,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比30.0%)からなるものであり、全体としてMnが362,000、Mwが574,000、分子量分布(Mw/Mn)が1.56のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この変性放射状共役ジエン系ゴム1のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.8重量%、ブタジエン単位中のビニル結合含有量は61.3モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた変性放射状共役ジエン系ゴム1を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔比較例1〕
 放射状イソプレン重合体1を含有する溶液 13.712部の代わりに、製造例1で得られたリチオ化1,3,5-トリメチルベンゼンを含有する溶液0.812部を使用した以外は、実施例1と同様にして、放射状共役ジエン系ゴム5の製造を行った。得られた放射状共役ジエン系ゴム5は、GPC測定において、Mnが233,000、Mwが292,000、分子量分布(Mw/Mn)が1.25の溶出成分(ピーク面積比37.1%)、Mnが681,000、Mwが717,000、分子量分布(Mw/Mn)が1.05の溶出成分(ピーク面積比62.9%)からなるものであり、全体としてMnが398,000、Mwが559,000、分子量分布(Mw/Mn)が1.41のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム5のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は20.7重量%、ブタジエン単位中のビニル結合含有量は61.6モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム5を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔比較例2〕
 放射状イソプレン重合体2を含有する溶液 13.604部の代わりに、製造例6で得られた活性末端を有する放射状イソプレン重合体5を含有する溶液 2.828部を使用した以外は、実施例2と同様にして、放射状共役ジエン系ゴム6の製造を行った。得られた放射状共役ジエン系ゴム6は、GPC測定において、Mnが215,000、Mwが265,000、分子量分布(Mw/Mn)が1.23の溶出成分(ピーク面積比41.3%)、Mnが585,000、Mwが596,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比30.5%)、およびMnが904,000、Mwが930,000、分子量分布(Mw/Mn)が1.03の溶出成分(ピーク面積比28.2%)からなるものであり、全体としてMnが364,000、Mwが553,000、分子量分布(Mw/Mn)が1.52のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム6のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.0重量%、ブタジエン単位中のビニル結合含有量は61.0モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム6を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
〔比較例3〕
 放射状イソプレン重合体2を含有する溶液 13.604部の代わりに、製造例7で得られた活性末端を有する放射状イソプレン重合体6を含有する溶液 8.284部を使用した以外は、実施例2と同様にして、放射状共役ジエン系ゴム7の製造を行った。得られた放射状共役ジエン系ゴム7は、GPC測定において、Mnが211,000、Mwが258,000、分子量分布(Mw/Mn)が1.22の溶出成分(ピーク面積比44.0%)、Mnが566,000、Mwが577,000、分子量分布(Mw/Mn)が1.02の溶出成分(ピーク面積比26.7%)、およびMnが915,000、Mwが947,000、分子量分布(Mw/Mn)が1.04の溶出成分(ピーク面積比29.5%)からなるものであり、全体としてMnが347,000、Mwが546,000、分子量分布(Mw/Mn)が1.57のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。また、この放射状共役ジエン系ゴム7のスチレン-ブタジエン重合体鎖中におけるスチレン単位の含有量は21.2重量%、ブタジエン単位中のビニル結合含有量は62.2モル%であった。
 そして、放射状共役ジエン系ゴム1の代わりに、上記にて得られた放射状共役ジエン系ゴム7を用いたこと以外は実施例1と同様にして、ゴム組成物の製造およびゴム架橋物(試験片)の作製を行い、同様に評価を行なった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 表1より、上記一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを反応させることで得られた、活性末端を有する放射状イソプレン重合体は、重合に用いる不活性溶媒としてのシクロヘキサンに対する溶解性に優れ、しかも、1,3-ブタジエンおよびスチレンを共重合するための重合開始点として用いることで、得られるゴム組成物の配合物粘度を低くすることができ、しかも、得られるゴム架橋物は、ウェットブリップ性が良好なものであった(実施例1~5)。
 一方、上記一般式(1)で表されるアルカリ金属化芳香族化合物であるリチオ化1,3,5-トリメチルベンゼンは、重合に用いる不活性溶媒としてのシクロヘキサンに対する溶解性に劣り、そのため、製造安定性に劣るものであった(比較例1)。
 また、上記一般式(1)で表されるアルカリ金属化芳香族化合物のアルカリ金属1モルに対するイソプレンの配合量を、65モル未満とした場合には、得られる活性末端を有する放射状イソプレン重合体は、重合に用いる不活性溶媒としてのシクロヘキサンに対する溶解性に劣り、さらには、1,3-ブタジエンおよびスチレンを共重合するための重合開始点として用いた場合に、得られるゴム架橋物は、ウェットブリップ性に劣るものであった(比較例2,3)。

Claims (7)

  1.  下記一般式(1)で表されるアルカリ金属化芳香族化合物の存在下で、該アルカリ金属化芳香族化合物中のアルカリ金属1モルに対して、イソプレン65~500モルを重合させることで、活性末端を有する放射状イソプレン重合体を得る第1工程と、
     前記放射状イソプレン重合体の活性末端に、1,3-ブタジエン、または、1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体を重合させる第2工程と、を備える放射状共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、R~Rは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択される基を表し、R~Rの3個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。mは0~5の整数であり、mが2以上である場合、一般式(1)で表される構造に関わらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。)
  2.  請求項1に記載の製造方法により得られる放射状共役ジエン系ゴム。
  3.  請求項2に記載の放射状共役ジエン系ゴムの活性末端に、変性剤を反応させることにより得られる変性放射状共役ジエン系ゴム。
  4.  請求項2に記載の放射状共役ジエン系ゴム、または、請求項3に記載の変性放射状共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物。
  5.  架橋剤をさらに含有してなる請求項4に記載のゴム組成物。
  6.  請求項5に記載のゴム組成物を架橋してなるゴム架橋物。
  7.  請求項6に記載のゴム架橋物を含んでなるタイヤ。
PCT/JP2014/058761 2013-03-29 2014-03-27 放射状共役ジエン系ゴムの製造方法 WO2014157465A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480017632.7A CN105073808B (zh) 2013-03-29 2014-03-27 放射状共轭二烯系橡胶的制造方法
EP14776334.6A EP2980111B1 (en) 2013-03-29 2014-03-27 Method for producing radial conjugated diene rubber
US14/780,828 US20160053033A1 (en) 2013-03-29 2014-03-27 Method of production of radial conjugated diene rubber
KR1020157025973A KR102121881B1 (ko) 2013-03-29 2014-03-27 방사상 공액 디엔계 고무의 제조 방법
JP2015508663A JP6384472B2 (ja) 2013-03-29 2014-03-27 放射状共役ジエン系ゴムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073262 2013-03-29
JP2013-073262 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157465A1 true WO2014157465A1 (ja) 2014-10-02

Family

ID=51624427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058761 WO2014157465A1 (ja) 2013-03-29 2014-03-27 放射状共役ジエン系ゴムの製造方法

Country Status (6)

Country Link
US (1) US20160053033A1 (ja)
EP (1) EP2980111B1 (ja)
JP (1) JP6384472B2 (ja)
KR (1) KR102121881B1 (ja)
CN (1) CN105073808B (ja)
WO (1) WO2014157465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120113A (ko) * 2015-02-26 2017-10-30 니폰 제온 가부시키가이샤 변성 공액 디엔계 고무의 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179487B1 (ko) 2017-12-05 2020-11-16 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481811A (en) * 1987-09-24 1989-03-28 Yokohama Rubber Co Ltd Rubber composition for tire tread
WO2008001907A1 (fr) * 2006-06-30 2008-01-03 Zeon Corporation copolymère séquencé, composition pour une modification de résine et composition de résine modifiée
WO2010131646A1 (ja) 2009-05-11 2010-11-18 日本ゼオン株式会社 放射状共役ジエン重合体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889900A (en) * 1989-06-12 1989-12-26 Shell Oil Company Preparation of alkyl methacrylate monomers for anionic polymerization
CN1031796C (zh) * 1992-09-04 1996-05-15 中国石油化工总公司 一种锂系引发剂制备方法
CN1048989C (zh) * 1995-10-17 2000-02-02 中国石油化工总公司 多官能团有机碱金属引发剂及其合成方法
JP5716736B2 (ja) * 2010-02-26 2015-05-13 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481811A (en) * 1987-09-24 1989-03-28 Yokohama Rubber Co Ltd Rubber composition for tire tread
WO2008001907A1 (fr) * 2006-06-30 2008-01-03 Zeon Corporation copolymère séquencé, composition pour une modification de résine et composition de résine modifiée
WO2010131646A1 (ja) 2009-05-11 2010-11-18 日本ゼオン株式会社 放射状共役ジエン重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980111A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120113A (ko) * 2015-02-26 2017-10-30 니폰 제온 가부시키가이샤 변성 공액 디엔계 고무의 제조 방법
EP3263605A4 (en) * 2015-02-26 2018-12-05 Zeon Corporation Method for preparing modified conjugated diene rubber
KR102435190B1 (ko) 2015-02-26 2022-08-22 니폰 제온 가부시키가이샤 변성 공액 디엔계 고무의 제조 방법

Also Published As

Publication number Publication date
KR20150137065A (ko) 2015-12-08
CN105073808B (zh) 2018-06-29
JPWO2014157465A1 (ja) 2017-02-16
CN105073808A (zh) 2015-11-18
KR102121881B1 (ko) 2020-06-11
US20160053033A1 (en) 2016-02-25
EP2980111A4 (en) 2016-11-16
JP6384472B2 (ja) 2018-09-05
EP2980111A1 (en) 2016-02-03
EP2980111B1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6015674B2 (ja) 変性共役ジエン系ゴムの製造方法
JP6468283B2 (ja) 変性共役ジエン系ゴムの製造方法
WO2016208739A1 (ja) 共役ジエン系ゴムの製造方法
WO2015199226A1 (ja) 共役ジエン系ゴムの製造方法
WO2015098264A1 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP6607248B2 (ja) 変性共役ジエン系ゴムの製造方法
JP6187477B2 (ja) 変性共役ジエン系ゴムの製造方法
JP6384472B2 (ja) 放射状共役ジエン系ゴムの製造方法
JP6205788B2 (ja) 変性共役ジエン系ゴムの製造方法
JP2014208805A (ja) 変性共役ジエン系ゴムの製造方法
WO2016199842A1 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP6964027B2 (ja) 変性共役ジエン系ゴムの製造方法
JP7010285B2 (ja) 変性共役ジエン系ゴムの製造方法
WO2018088483A1 (ja) 変性共役ジエン系ゴムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017632.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508663

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157025973

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014776334

Country of ref document: EP