WO2010130206A1 - 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途 - Google Patents

聚合物/无机纳米粒子复合纳米颗粒及其制备和用途 Download PDF

Info

Publication number
WO2010130206A1
WO2010130206A1 PCT/CN2010/072657 CN2010072657W WO2010130206A1 WO 2010130206 A1 WO2010130206 A1 WO 2010130206A1 CN 2010072657 W CN2010072657 W CN 2010072657W WO 2010130206 A1 WO2010130206 A1 WO 2010130206A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nanoparticle
composite
inorganic
nanoparticles
Prior art date
Application number
PCT/CN2010/072657
Other languages
English (en)
French (fr)
Inventor
钱素平
徐宇虹
范振天
侯永泰
Original Assignee
无锡纳奥新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡纳奥新材料科技有限公司 filed Critical 无锡纳奥新材料科技有限公司
Priority to US13/320,371 priority Critical patent/US9139430B2/en
Priority to EP10774547A priority patent/EP2431413A4/en
Priority to JP2012510100A priority patent/JP5634505B2/ja
Publication of WO2010130206A1 publication Critical patent/WO2010130206A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Definitions

  • the present invention relates to a polymer/inorganic nanoparticle composite nanoparticle, and more particularly to a primary composite nanoparticle formed from a first polymer and an inorganic nanoparticle, which is obtained by forming a second polymer at the primary composite nanoparticle.
  • the invention further relates to a composition comprising any of the above composite nanoparticles.
  • the invention further relates to a coating comprising any of the composite nanoparticles described above.
  • the invention also relates to the preparation, modification and use of the various nanoparticles described above. Background technique
  • Polymer/inorganic nanoparticle composite nanoparticles are one of the research hotspots in the field of nanotechnology due to their remarkable mechanical properties, thermal properties, optical properties, electrical properties and magnetic properties, and are expected to be Plastics, rubber, paints, electronics, catalysts, pharmaceuticals, pesticides and many other fields are widely used.
  • Chinese Patent Application Publication No. CN1530397A discloses a lactic acid mixed polymer having a plurality of hydroxyl groups and a plurality of carboxyl groups, which can be used for nano-encapsulation of pharmaceutical compounds, encapsulation or solubilization of Chinese herbal extracts,
  • the active ingredients of foods and cosmetics are solubilized and dispersed, and the pesticide ingredients are solubilized to achieve borneiation of the pesticide, and it is also mentioned that the polymer can be used for preparing Ti0 2 , Zn0, Fe 3 0 4 , Fe 2 0 3 , CaC0. 3 inorganic nanoparticles.
  • Chinese Patent Application Publication No. CN1530327A discloses a method for preparing titanium dioxide nanocomposite particles, wherein the titanium dioxide nanocomposite particles are prepared by a TiCl 4 base neutralization method using a polymer chelating agent obtained by polymerizing a carboxylic acid and an alcohol, The particles have modifying groups such as a hydroxyl group, a carboxyl group and a hydrocarbon group, and have good dispersibility in water.
  • Chinese Patent Application Publication No. CN1583575A mentions the preparation of superparamagnetic nanocomposite particles a preparation method in which the superparamagnetic nanoparticle is prepared by mixing a polymer chelating agent obtained by polymerizing a carboxylic acid with an alcohol with iron ions, and then adding a base, and the particles have a modifying group such as a hydroxyl group, a carboxyl group, and a hydrocarbon group.
  • Functionalized superparamagnetic nanoparticles can be obtained by further modification, and these superparamagnetic nanoparticles can be used for loading drugs.
  • Dispersion in another case the silica particles are completely encapsulated in the polymer particles to form a dispersion in the form of a so-called "raspberry".
  • the resulting dispersion has various uses such as scratch resistance in aqueous coatings. Agents, etc.
  • QI Dong-mi ng (Anchor of Polyacrylate onto silica and formation of polyacrylate/si 1 ica nanocomposite particles via in situ emulsion polymerization, Colloid Polym. Sci., 2008 (286): 233-241) discloses a poly Acrylate/silica nanocomposite latex particles obtained by in-situ emulsion polymerization of an acrylate monomer adsorbed on silicon oxide nanoparticles, wherein the polyacrylate is bonded by physical adsorption and chemical grafting reaction A "raspberry" shaped polyacrylate/silica nanocomposite latex particle is formed on the silica particles.
  • the present invention provides a polymer/inorganic nanoparticle composite nanoparticle comprising at least one inorganic nanoparticle and a first polymer, wherein the first polymerization
  • the particles are present in the form of nanoparticles, the inorganic nanoparticles are encapsulated in the first polymer, and the inorganic nanoparticles are inorganic nanoparticles containing doping elements, such as silicon oxide, titanium oxide, aluminum oxide, oxidation , iron oxide, cadmium selenide, zirconium oxide, etc., wherein the doping element is selected from the group consisting of iron, aluminum, silicon, lithium, sodium, potassium, barium, magnesium, calcium, barium, strontium, boron, gallium, indium, germanium , selenium, lead, nitrogen, phosphorus, arsenic, cobalt, nickel, copper, zinc, vanadium, titanium, manganese or any combination thereof.
  • doping elements such as silicon oxide, titanium oxide, aluminum oxide, oxidation , iron
  • the polymer/inorganic nanoparticle composite nanoparticles have an average particle diameter of from 1 to 1000 nm, for example, from 1 to 10 nm, from 10 to 50 nm, from 50 to 100 nm, from 100 to 200. Nano, 200-500 nm, 500-1000 nm, etc.
  • the first polymer contains a hydrophilic group such as a carboxyl group, a hydroxyl group, a sulfonic acid group, an amino group, or the like, or a combination thereof.
  • the first polymer is at least partially branched or crosslinked polylactic acid or lactic acid and (2--27 fatty acids, copolymerizable C 2 _ 27 fatty alcohols, saccharides and / or amino acids Things.
  • the saccharide comprises sucrose, lactose, trehalose, chitosan, mannose, glucose, galactose, maltose, etc.;
  • the amino acid comprises glycine, lysine, leucine, Arginine, cystine, cysteine, histidine, tryptophan, isoleucine, alanine, phenylalanine, serine, threonine, methionine, proline, tyrosine , aspartic acid or any combination thereof.
  • the first polymer contains from 1 to 50% by weight of linear polymer, from 5 to 60 wt%. Branched polymer, and 5-60wt ° /. Crosslinked polymer.
  • the present invention provides a polymer/inorganic nanoparticle composite nanoparticle comprising at least one inorganic nanoparticle, a first polymer, a second polymer, and optionally a third polymer to N polymer, wherein N is an integer from 3 to 20, wherein the at least one inorganic nanoparticle is encapsulated in the first polymer and/or attached to the first polymer to form a primary composite nanoparticle,
  • the second polymer is in the primary composite nanoparticle or attached to the primary composite nanoparticle to form a second a composite nanoparticle, the third polymer being in the secondary composite nanoparticle or attached to the secondary composite nanoparticle to form a tertiary composite nanoparticle, and in turn, the second polymer is in the N - One time composite nanoparticle or attached to the N-1 secondary composite nanoparticle to form a ruthenium composite nanoparticle.
  • the polymer/inorganic nanoparticle composite nanoparticles have an average particle diameter of from 1 to 1000 nm, for example, from 1 to 10 nm, from 10 to 50 nm, from 50 to 100 nm, from 100 to 200. Nano, 200-500 nm, 500-1000 nm, 1000-5000 nm, 5000-10000 nm, etc.
  • the first polymer contains a hydrophilic group such as a carboxyl group, a hydroxyl group, a sulfonic acid group, an amino group, or the like, or a combination thereof.
  • the first polymer is at least partially branched or crosslinked polylactic acid or lactic acid with a C 2 -27 fatty acid, (: 2 -27 fatty alcohol, saccharide and/or amino acid Copolymer.
  • the saccharide comprises sucrose, lactose, trehalose, chitosan, mannose, glucose, galactose, maltose, etc.;
  • the amino acid comprises glycine, lysine, leucine, Arginine, cystine, cysteine, histidine, tryptophan, isoleucine, alanine, phenylalanine, serine, threonine, methionine, proline, caseinate , aspartic acid, etc. and any combination thereof.
  • the first polymer contains from 1 to 50 wt. /. Linear polymer, 5-60wt°/. Branched polymer, and 5-60wt ° /. Crosslinked polymer.
  • the inorganic nanoparticles may be any of which may be in aqueous meso, such as silica, titania, alumina, oxidized, iron oxide, cadmium selenide, zirconia, and the like, and any combination thereof.
  • the inorganic nanoparticles further contain a doping element selected from the group consisting of iron, aluminum, silicon, lithium, sodium, potassium, cesium, magnesium, calcium, strontium, barium, and boron. , gallium, indium, antimony, selenium, lead, nitrogen, phosphorus, arsenic, cobalt, nickel, copper, zinc, vanadium, titanium, manganese or any Combination of meanings.
  • a doping element selected from the group consisting of iron, aluminum, silicon, lithium, sodium, potassium, cesium, magnesium, calcium, strontium, barium, and boron.
  • the second polymer can be any polymer that can be formed in or on the primary composite nanoparticles.
  • the first polymer forms a graft copolymer, a crosslinked copolymer, an island structure, an interpenetrating network or a semi-interpenetrating network, and the like with the second polymer.
  • the third polymer is the same or different than the second polymer.
  • the third polymer may be any polymer that can be formed in or on the secondary composite nanoparticles.
  • the Nth polymer is the same as or different from the second to N-1 polymers.
  • the Nth polymer may be any polymer that can be formed in or on the N-1 secondary composite nanoparticles.
  • the first polymer, the second polymer, and the third polymer to an optional N-th polymer form a graft copolymer, a cross-linked copolymer, an island structure, an interpenetrating network, or a semi-interpenetrating network .
  • the weight ratio of the first polymer to the inorganic nanoparticles is from 100:1 to 1:100, and the weight ratio of the second to N-th polymer to the inorganic nanoparticles is 1000: 1 to 1: 1000.
  • the weight ratio of the first polymer to the inorganic nanoparticles is 100:1 to 50:1, 50:1 to 1:1, 1:1 to 1:50, 1:50 to 1:100, and 0. 5-5: 100, 1.
  • the weight ratio of the second polymer to the inorganic nanoparticles is 1000:1 to 1:1000, for example, 500: 1 to 300: 1 , 300: 1 to 50 : 1, 50: 1 to 1: 1, 1: 50 to 1: 300, 1: 300 to 1: 500, 1: 500 to 1: 1000, and 50-300: 1, 100: 1, etc.
  • Examples of the above second to N-th polymer may include a homopolymer or a copolymer formed of a vinyl monomer.
  • the ethenyl monomer may be selected from the group consisting of: ex-olefin, vinyl chloride, acrylonitrile, vinylidene fluoride, tetrafluoroethylene, chlorotrifluoroethylene, d- 2 of (meth)acrylic acid.
  • Alkyl esters such as methyl (meth) acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, octadecyl acrylate, etc.
  • ethylene propylene, isobutylene, butadiene, isova Diene, isocyanate compound, styrene, vinyl benzoate, isooctyl ester, 2-chloro-2-fluoroethylene, methyl cinnamate, maleate, 2, 4-dichlorostyrene , Dimercapto propylene ether, methacrylic acid, maleic anhydride, vinyl alkyl ether, vinylidene chloride, chloro acrylate, 4-hydrazine, hydrazine-dimethylamino-2-chlorostyrene , 4-chlorostyrene, methyl glycol, methacrylamide dimethylamine, vinyl octadecylate, 2-methylpentylethylene,
  • the polymer/inorganic nanoparticle composite nanoparticle further comprises an organic small molecule compound.
  • the organic small molecule compound may be a compound for use in medicines, cosmetics, foods, agricultural chemicals, catalysts, paints, plastics, rubbers, composite materials, and the like, such as active materials, solvents, auxiliaries, additives, and the like.
  • the present invention provides a method of preparing a polymer/inorganic nanoparticle composite nanoparticle, comprising:
  • the present invention provides a method of preparing a polymer/inorganic nanoparticle composite nanoparticle, comprising:
  • an N-th polymer is formed sequentially at the N-1 sub-composite nanoparticles to form N-time composite nanoparticles, wherein N is an integer from 3 to 20.
  • the present invention provides a composition comprising any of the above polymer/inorganic nanoparticle composite nanoparticles.
  • the present invention provides a dispersion stabilized by the above polymer/inorganic nanoparticle composite nanoparticle, comprising a dispersed phase and an aqueous continuous phase stabilized by the polymer/inorganic nanoparticle composite nanoparticle.
  • the dispersed phase is an oil phase and the continuous phase is an aqueous phase.
  • the dispersed phase contains a pesticidal active ingredient, a pharmaceutically active ingredient, a cosmetic active ingredient, a polymerizable monomer component, and the like.
  • the present invention provides an aqueous coating comprising any of the above polymer/inorganic nanoparticle composite nanoparticles.
  • the aqueous coating further contains other film forming materials.
  • the aqueous coating further contains an additive for the coating.
  • the additive may be any suitable aqueous coating additive such as a film forming aid, a curing agent, a filler, a pigment, a diluent, and/or a crosslinking agent.
  • aqueous coating according to the present invention wherein the aqueous coating is used as a waterproof coating, a wood coating or an anticorrosive coating.
  • aqueous coating according to the present invention wherein the aqueous coating is used as a water repellent coating, and the polymer/inorganic nanoparticle composite nanoparticle is a secondary composite nanoparticle Granules wherein the second polymer is formed by polymerization of a monomer composition comprising styrene, butyl acrylate and methyl methacrylate in a weight ratio of 5-20: 20-70: 5-25.
  • the polymer/inorganic nanoparticle composite nanoparticle is a cubic composite nanoparticle, wherein the second polymer Forming a monomer composition comprising styrene, butyl acrylate, decyl methacrylate and diacetone acrylamide in a weight ratio of 20-40: 20-40: 20-40: 1-5, said The tripolymer is formed by polymerizing a monomer composition comprising styrene, butyl acrylate, methyl methacrylate and diacetone acrylamide in a weight ratio of 20-40: 20-40: 30-70: 1-5.
  • aqueous coating material wherein the aqueous coating material is used as a metal anticorrosive coating, and the polymer/inorganic nanoparticle composite nanoparticle is a cubic composite nanoparticle, wherein the second polymer is composed of A monomer composition comprising styrene, butyl acrylate, decyl methacrylate and diacetone acrylamide in a weight ratio of 30-50: 30-50: 10-40: 1-10 is formed by polymerization, the third The polymer is formed by polymerizing a monomer composition comprising styrene, butyl acrylate, methyl methacrylate and diacetone acrylamide in a weight ratio of 30-90: 30-90: 10-40: 1-10.
  • the invention also provides the use of any of the above polymer/inorganic nanoparticle composite nanoparticles to disperse a hydrophobic liquid and/or a solid in a hydrophilic phase.
  • the present invention also provides the use of any of the above polymer/inorganic nanoparticle composite nanoparticles to stabilize a hydrophobic liquid and/or a solid dispersed phase in a hydrophilic phase.
  • the present invention also provides the use of any of the above polymer/inorganic nanoparticle composite nanoparticles for dispersion polymerization as a template in a hydrophilic phase.
  • the present invention also provides the use of any of the above polymer/inorganic nanoparticle composite nanoparticles for emulsion polymerization as an emulsifier in a hydrophilic phase.
  • the present invention also provides a method of dispersing a hydrophobic liquid and/or solid in an aqueous medium, comprising: 1) providing an aqueous medium; 2) providing one or more hydrophobic a liquid and/or a solid; 3) picking up the one or more hydrophobic liquids and/or solids and any of the above polymer/inorganic nanoparticle composite nanoparticles in the aqueous medium.
  • Fig. 1 is a TEM (TEM) photograph showing the polymer/inorganic nanoparticle composite nanoparticles of Example 2.
  • Fig. 2 is a TEM (TEM) photograph showing the polymer/inorganic nanoparticle composite nanoparticles of Example 13.
  • Figure 3 is a TEM (TEM) photograph showing the polymer/inorganic nanoparticle composite nanoparticles of Example 17.
  • the first polymer may be any suitable at least partially crosslinked and/or branched polymer.
  • the first polymer is provided in the form of a dry powder or a dispersion suspended in a liquid medium.
  • the liquid medium may be an aqueous medium or an organic solvent such as an alcohol, a ketone, an ether, a halogenated hydrocarbon or the like or a mixture thereof.
  • the first polymer may be a nanoparticle having an average particle size of from 1 to 500 nanometers, such as from 1 to 20 nanometers, from 20 to 50 nanometers, from 50 to 100 nanometers, from 100 to 200 nanometers, and from 200 to 200 nanometers.
  • the first polymer When the first polymer is suspended in an aqueous medium, its average particle diameter may be different from the average particle diameter in the dry state, for example, it may become large due to swelling. In some cases, the nanoparticles of the first polymer may be spherical.
  • the first polymer may be obtained by irradiating, for example, photopolymerization, one or more small molecule compounds containing one or more hydrophilic groups in a solvent, wherein the hydrophilic group includes a hydroxyl group and/or Or a carboxyl group and/or an amino group and/or a sulfonic acid group or the like, and the small molecule compound includes lactic acid, itaconic acid, malic acid, maleic acid, an amino acid, and the like.
  • the photopolymerization can be carried out under illumination conditions provided by a krypton chloride excimer laser, a xenon lamp, a mercury lamp or the like.
  • a photoactive radical initiator such as benzophenone or the like can be used in the photopolymerization.
  • Other small hydrophilic compound-containing compounds may be mixed in the small molecule compound, for example, (: 2 _ 27 fatty acids, (: 2 _ 27 fatty alcohols, sugar alcohols, saccharides, and/or amino acids, etc.).
  • the C 2 -27 fatty acid comprises a c 2 _ 18 dibasic fatty acid and a hydroxy carboxylic acid.
  • the c 2 _ 27 fatty alcohol comprises a c 2 -18 dibasic fatty alcohol.
  • the saccharide comprises sucrose, lactose, trehalose, Chitosan, mannose, glucose, galactose, maltose, etc.
  • the gas-based acid includes glycine, lysine, leucine, arginine, cystine, cysteine, histidine, color ammonia Acid, isoleucine, alanine, phenylalanine, serine, threonine, methionine, valine, tyrosine, aspartic acid, and the like.
  • the nanoparticles of the first polymer can be prepared by any suitable method, such as the method described in CN1530397A.
  • the entire text of CN1530397A is incorporated herein by reference.
  • the particles of the first polymer of the present invention can also be obtained by other methods.
  • the inorganic nanoparticle may be any inorganic nanoparticle suitable for preparation in an aqueous medium, such as silicon oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide. , cadmium selenide, zirconia, etc.
  • the inorganic nanoparticles may also be doped with other elements such as iron, aluminum, silicon, lithium, sodium, potassium, barium, magnesium, calcium, barium, strontium, boron, gallium, indium, antimony, selenium, lead, nitrogen, phosphorus. , arsenic, cobalt, nickel, copper, zinc, vanadium, titanium, manganese or a combination thereof.
  • the inorganic nanoparticles may have an average particle diameter of from 1 to 100 nm, for example, from 1 to 5 nm, from 5 to 10 nm, from 10 to 20 nm, from 20 to 50 nm, from 50 to 100 nm, and the like.
  • the inorganic nanoparticles may be formed in situ in the aqueous medium by using the first polymer as a template, or may deposit, encapsulate or adsorb the sol of the formed inorganic nanoparticles, such as inorganic nanoparticles, on the first polymer. Thereby forming a composite nanoparticle. If the inorganic nanoparticles contain the above doping elements, the primary composite nanoparticles may also be used as the polymer/inorganic nanoparticle composite nanoparticles provided by the first aspect of the invention. 3. Polymer/inorganic nanoparticle composite nanoparticles
  • the inorganic nanoparticle may be at least partially wrapped or completely encapsulated by the first polymer. In some cases, inorganic nanoparticles may also adhere to the surface of the first polymer. One or more inorganic nanoparticles may be contained in the nanoparticles of each of the first polymers. In some cases, 1 to 10, 10 to 50, 50 to 100, 100 to 1000 or more inorganic nanoparticles may be contained in a first polymer nanoparticle.
  • the polymer/inorganic nanoparticle composite nanoparticles may have a spherical shape, a "raspberry” shape, a "bead” shape, and/or a "grape bunch” shape.
  • a first polymer in a lower alcohol solution e.g., an aqueous solution
  • the lower alcohol may be methanol, ethanol, propanol, isopropanol, butanol, butanol or the like;
  • silicate aqueous solution sica sol aqueous dispersion
  • silicate or silica sol
  • a doping element donor aqueous solution and an acid or alkali solution for adjusting the pH to the mixed solution obtained in the step 2), wherein the doping element donor is titanate, titanate , at least one of TiCl 4 , aluminum salt (aluminum, aluminum phosphate, aluminum sulfate, etc.), zinc salt (ZnCl 2 , ZnS0 4 , etc.), iron salt (FeCl 3 , FeS0 4 , FeCl 2 , etc.);
  • step 2) Heat the mixture of step 2) or 3) to 50 ⁇ 110 ° C under stirring. 0.5 to 5 hours, thereby obtaining a dispersion of the polymer/inorganic nanoparticle composite nanoparticle;
  • the solvent in the mixed solution after the reaction is removed, thereby obtaining a dry powder of the polymer/inorganic nanoparticle composite nanoparticles.
  • the polymer/inorganic nanoparticle composite nanoparticles obtained above, in particular, the polymer/inorganic nanoparticle composite nanoparticles obtained by doping other silicon oxide particles of other elements can greatly improve the dispersibility of the oily substance and It can be effectively applied to the fields of water-based and solubilization of oily substances.
  • the primary composite nanoparticles can be directly used as the polymer/inorganic nanoparticle composite nanoparticles provided by the first aspect of the invention.
  • a second polymer may be further formed in the primary composite nanoparticles to form secondary composite nanoparticles.
  • the secondary composite nanoparticles can be used as the polymer/inorganic nanoparticle composite nanoparticles provided in the second aspect of the invention.
  • a third polymer may be further formed in the secondary composite nanoparticles to form tertiary composite nanoparticles.
  • the tertiary composite nanoparticles may also be used as the polymer/inorganic nanoparticle composite nanoparticles provided in the second aspect of the invention.
  • the N-th polymer can be further formed in the N-1 sub-composite nanoparticles to form N-time composite nanoparticles, wherein N can be selected according to needs, and is not particularly limited.
  • N can be 3-20.
  • the integers include 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
  • the N-time composite nanoparticles can also be used as the polymer/inorganic nanoparticle composite nanoparticles provided in the second aspect of the invention.
  • the second polymer to the N-th polymer may each be the same or different. These polymerizations can usually be selected based on the performance requirements of the desired polymer/inorganic nanoparticle composite nanoparticles. Things.
  • the second polymer to the N-th polymer may be respectively formed by polymerization of one or more of the following monomers: ⁇ -olefin, vinyl chloride, acrylonitrile, vinylidene fluoride, tetrafluoroethylene, trifluoro D- 2 of vinyl chloride, (fluorenyl) acrylic acid.
  • Alkyl esters eg (decyl) decyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, octadecyl acrylate, etc.
  • ethylene propylene, isobutylene, butadiene, isoprene, isocyanate
  • styrene vinyl benzoate, isooctyl ester, 2-chloro-2-fluoroethylene, methyl cinnamate, maleate, 2,4-dichlorostyrene, dimethyl Propylene ether, methacrylic acid, maleic anhydride, vinyl alkyl ether, vinylidene chloride, methyl chloroacrylate, 4-N, N-dithiophene-2-chlorostyrene, 4- Chlorostyrene, methyl glycol, mercapto acrylamide dimethylamine, vinyl octadecylate, 2-methylpentamethylene ethylene,
  • the second polymer to the N-th polymer may be formed under any suitable conditions.
  • at least a portion of the monomer can be mixed with the initiator and optionally the solvent at a temperature below the initiation temperature, and then mixed with the primary composite nanoparticles, followed by heating above the initiation temperature to form a second polymer in the primary particles, Thereby obtaining secondary composite nanoparticles; or mixing the primary composite nanoparticles with water, an initiator and an optional solvent, and then heating to above the initiation temperature while dropping the monomer and the optional solvent, thereby in the primary particles A second polymer is formed, thereby obtaining secondary composite nanoparticles.
  • the third polymer to the Nth polymer may be formed in a similar manner from the same or different monomers selected from the above monomers, and thereby three times of composite nanoparticles to N times of composite nanoparticles.
  • the primary composite nanoparticles are mixed with water, an initiator, and an optional solvent into a reactor equipped with a reflux device, and stirred under heating to control the reaction temperature between 80 and 95 degrees. , add the monomer, and then keep it for a while after the addition. Filtration and discharge of finished products.
  • the secondary composite nanoparticles thus obtained have a particle diameter of 1-1000 nm, such as 1-10 nm, 10-100 nm, 100-500 nm, 500-1000 nm, and the solid content can reach up to 70%, product storage Stable, stable water dilution, stable ionic strength.
  • the third to N-th polymer may be further formed by the similar method at the above secondary composite nanoparticles, and the obtained cubic to N-time composite nanoparticles may have a particle diameter of 1 to 10,000 nm, for example, 1 to 1. 10 nm, 10-100 nm, 100-500 nm, 500-1000 nm, 1000-10000 nm, etc.
  • a part of the example of the monomer forming the above second polymer to the N-th polymer may be a combination of the monomers in which the percentage is a weight percentage based on the total weight of the monomer combination.
  • the initiator used to initiate polymerization of the monomer may be an aqueous initiator and/or an oily initiator such as ammonium persulfate, potassium persulfate, diacyl peroxide, tertiary alkyl hydroperoxide, di-tertiary alkyl peroxide, Oxidized dicarbonate, azobisisobutyronitrile, benzoyl peroxide, and the like.
  • Solvent stabilization The emulsion is mixed with ethanol in any proportion, not demulsification
  • the polymer/inorganic nanoparticle composite nanoparticles of the present invention generally have a narrow particle size distribution.
  • the electron micrographs of some of the above polymer/inorganic nanoparticle composite nanoparticles were counted, and it was found that the particle size distribution of the particles having a particle size distribution of more than 90% was within ⁇ 10% of the average particle diameter. Therefore, the above polymer/inorganic nanoparticle composite nanoparticle can be considered as a monodisperse particle system and thus has a wide range of applications in fields requiring a narrow particle size distribution particle system, such as biomedicine.
  • the surface of the polymer/inorganic nanoparticle composite nanoparticle of the present invention may have various A group such as a carboxyl group, a hydroxyl group, and/or the like, and thus various desired functional groups can be easily attached by a chemical reaction, such as a photosensitive crosslinking group used in the coating field, a pharmaceutically active group for biomedicine, and the like. .
  • the polymer/inorganic nanoparticle composite nanoparticle of the invention can efficiently disperse oily substances which are insoluble or poorly soluble in alcohol or water. In water and alcohol to form a stable dispersion.
  • the insoluble or poorly soluble oily substance may be an agrochemical active ingredient, a pharmaceutically active ingredient, a cosmetic active ingredient, a polymerizable monomer component, or the like.
  • pesticide insecticide/herbicide triazophos for example, pesticide insecticide/herbicide triazophos, di-Qin brick, chlorpyrifos, cypermethrin, acetochlor, fipronil, bioactive components extracted from plants, paclitaxel, astragaloside, oryzae.
  • the performance of the polymer/inorganic nanoparticle composite nanoparticles of the present invention in improving the dispersibility and stability of oily substances can be characterized by the following oil loading rate parameters for olive oil.
  • the polymer/inorganic nanoparticle composite nanoparticle of the invention can be added as an auxiliary agent Various coatings and/or adhesives are used to improve their properties and can also be used as the primary film-forming material in coatings and/or adhesives.
  • the polymer/inorganic nanoparticle composite nanoparticles of the present invention are particularly suitable for use in aqueous coatings and adhesives due to their superior water dispersibility and stability.
  • Example 1 Prepared in the following Examples 1 to 7 are polymer/SiO 2 nanoparticle composite nanoparticles and polymer/doped SiO 2 nanoparticle composite nanoparticles, wherein the first polymer used is according to the example in CN1530397A
  • Example 2 Polymer/Si0 2 -Ti nanoparticle composite nanoparticles
  • Example 3 Polymer/SiO 2 -Zn Nanoparticle Composite Nanoparticles
  • Example 3 differs from Example 2 in that 50 ml of a 5% TiC14 aqueous solution was changed to 50 ml of a 5% ZnCl 2 aqueous solution, and the other conditions were the same. Finally, polymer/SiO 2 -Zn nanoparticle composite nanoparticles were obtained. After drying, the composite particles lg were weighed, and 5 g of olive oil was stably dispersed in 10 ml of water, and the oil loading rate was 5.
  • Example 4 Polymer/SiO 2 -Ti nanoparticle composite nanoparticles
  • Example 4 differs from Example 2 in that 10 g of the first polymer in Example 2 was increased to 100 g, and the other conditions were the same. The polymer/SiO plant Ti nanoparticle composite nanoparticles were finally obtained. After drying, the composite particles lg are weighed, and in 10 ml of water, the olive oil can be stably dispersed up to 30 g, and the oil loading rate is 30.
  • Example 5 Polymer/SiO 2 -FeZn Nanoparticle Composite Nanoparticles
  • Example 5 differs from Example 2 in that 50 ml of a 5% TiCl 4 aqueous solution of Example 2 was changed to 25 ml of 4% Fe 2 (S0 4 ) 3 ice and 25 ml of 1% ZnCl 2 ice solution, other conditions. the same. Finally, polymer/SiO 2 -FeZn nanoparticle composite nanoparticles were obtained. After drying, the composite particles lg were weighed, and 6 g of olive oil was stably dispersed in 10 ml of water, and the oil loading rate was 6.
  • Example 6 differs from Example 2 in that 50 ml of a 5% TiCl 4 aqueous solution of Example 1 was changed to 25 ml of a 5% TiCl 4 7j solution and 25 ml of a 1% A1 C1 3 aqueous solution, and the other conditions were the same.
  • the polymer/SiO 2 -TiAl nanoparticle composite nanoparticles were finally obtained. After drying, the composite particles lg were weighed, and up to 15 g of olive oil was stably dispersed in 10 ml of water, and the oil loading rate was 15.
  • Example 7 Polymer/SiO 2 -Ti nanoparticle composite nanoparticles
  • Example ⁇ is different from Example 2 in that 800 ml of a 30% aqueous solution of silicate acid in Example 2 was changed to 800 ml of a 30% silica sol, and the pH was adjusted with a 10% KOH solution. The value is 3 ⁇ 4, and the other conditions are the same. Finally, polymer/SiO 2 -Ti nanoparticle composite nanoparticles were obtained. After drying, the composite particles lg were weighed, and up to 8 g of olive oil was stably dispersed in 10 ml of water, and the oil loading rate was 8.
  • Example 8 Secondary composite nanoparticles [99] 100 g of the primary composite nanoparticles prepared in Example 1 were weighed, dispersed in 100 g of water, 15 g of 10% ammonium perchlorate was added, 30 g of vinyl acetate, 30 g of acrylic acid was added. Ethyl ester and 30 g of chitobutyl methacrylate were stirred at high speed and heated to 90 in a water bath. C, the reaction was carried out for 1 hour, and a secondary composite nanoparticle having a solid content of 20% was obtained.
  • Example 11 of the present invention Using the polymer/inorganic nanoparticle secondary composite nanoparticles obtained in Example 11 of the present invention as a main film-forming material, a coating product was obtained according to the following ratio.
  • Formulation 100g of nanocomposite particles, 60g of titanium dioxide, 20g of silica micropowder, 10g of mica powder, 30g of alcohol, and appropriate amount of pigment.
  • the coating product can be used for waterproof coating treatment on river banks and dams, and the substrate is cement. Due to the rapid construction of dams and river banks in a short period of ebb tide, the coating should be dried in a short period of time, that is, it has excellent water resistance and can withstand up to 20 hours of soaking and scouring after high tide. After testing, the technical specifications of the coating product are as follows:
  • Example 16 Application of wood lacquer [109]
  • the polymer/inorganic nanoparticle cubic composite nanoparticle obtained in Example 13 of the present invention was used as a main film-forming material, and a water-based wood lacquer was obtained according to the following ratio.
  • the waterborne wood lacquer has strong adhesion, strong wettability to pigments, high powder encapsulation rate, high color fullness, high gloss and yellowing resistance.
  • Example 17 Drug dispersion
  • Film-forming matrix emulsion 100 parts by weight
  • the water resistance test result of the coating film formed from the obtained waterproof coating is unchanged after 1392 hours (according to the standard, the water resistance standard of the waterproof coating superior product is 92 hours without abnormality)
  • the weather resistance test result is unchanged for 2435 hours (according to the standard, the weather resistance standard of the waterproof coating superior product is 600 hours without gunning, no peeling, no crack, no powdering, no discoloration).
  • the waterproof coating does not need to add a large amount of surfactant, thereby avoiding surface defects caused by the loss of surfactant in a humidity or water seepage environment, and has excellent water resistance and weather resistance. Sex.
  • Example 19 Waterborne Acrylic Wood Coating
  • composition of the monomer mixture (1) is: Styrene 30% butyl acrylate 33%
  • the composition of the monomer mixture (2) is: styrene 26% butyl acrylate 23% methyl methacrylate 47% diacetone acrylamide 4% [120]
  • the drying time is less than 30 minutes
  • the drying time is less than 6 hours
  • the gloss can be as high as 87
  • the hardness is F
  • the resistance is above 70 degrees.
  • Dry heat, anti-blocking temperature is higher than 75 degrees.
  • waterborne wood coating resins currently on the market such as polyacrylic resins, polyurethane-modified acrylic resins, and polyurethanes, are not in terms of mechanical strength, hardness, and anti-blocking properties of the coating. It is ideal, and due to the presence of the surfactant, the gloss of the coating is not high, and the water repellency and corrosion resistance are also poor.
  • Example 20 Waterborne acrylic resin metal coating with superior rust prevention effect
  • composition of the monomer mixture (1) is: Styrene
  • composition of the monomer mixture (2) is:
  • the surface of the steel plate is directly coated with the above-mentioned emulsion back cover 6 times, each time interval of 10 minutes; the emulsion and titanium dioxide are mixed in a ratio of 4:1, and the surface of the primer is painted with 3 layers, each layer is separated by 12 hours, and maintained for 7 days;
  • Current waterborne rust-proof coating materials include waterborne epoxy resins, waterborne acrylic trees Lipid, water-based polyaniline resin, etc., in which acrylic polymer has been a hot spot for rust-proof coating base resin because of its high density, flexibility, corrosion resistance, and resistance to ultraviolet radiation.
  • acrylic resin emulsion can achieve excellent rust prevention effect without adding any metal substance in practical application, and at the same time achieves super waterproof effect by isolating air.
  • the coating formed by the emulsion also has excellent properties such as high adhesion to the metal substrate, water immersion, acid, alkali and organic solvents, such as immersion, corrosion resistance and ultraviolet radiation resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Graft Or Block Polymers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

聚合物 /无机纳米粒子复合纳米颗粒及其制备和用途 技术领域
[01]本发明涉及聚合物 /无机纳米粒子复合纳米颗粒, 特别涉及由第 一聚合物与无机纳米粒子形成的一次复合纳米颗粒,通过在所述一次 复合纳米颗粒处形成第二聚合物而得到的二次复合纳米颗粒,通过在 所述二次复合纳米颗粒处形成第三聚合物而得到的三次复合纳米颗 粒,以及通过类似方式在 N-1次复合纳米颗粒处形成第 N聚合物而得 到的 N次复合纳米颗粒。本发明还涉及含有上述任何一种复合纳米颗 粒的组合物。 本发明还涉及含有上述任何一种复合纳米颗粒的涂料。 本发明还涉及以上各种纳米颗粒的制备、 改性和用途。 背景技术
[02]聚合物 /无机纳米粒子复合纳米颗粒由于其令人瞩目的机械性 能、 热性能、 光学性能、 电学性能和磁性能等, 是目前纳米技术领域 中的研究热点之一, 并且有望在诸如塑料、 橡胶、 涂料、 电子、催化 剂、 医药、 农药等众多领域得到广泛应用。
[03]中国专利申请公开 CN1530397A提到一种乳酸混合聚合物, 该聚 合物具有多个羟基和多个羧基, 可用于对药物化合物进行纳米化包 裹,对中药提取物进行包裹或增溶,对食品和化妆品有效成分进行增 溶分散, 以及对农药成分增溶从而实现农药的氷剂化,并且还提到该 聚合物可用于制备 Ti02、 Zn0、 Fe304、 Fe203、 CaC03等无机纳米粒子。
[04]中国专利申请公开 CN1530327A提到二氧化钛纳米复合颗粒的制 备方法, 其中使用由羧酸与醇聚合得到的聚合物螯合剂通过 TiCl4碱 中和法制备了所述二氧化钛纳米复合颗粒,所述颗粒具有羟基、羧基 和烃基等修饰基团, 在水中具有很好的分散性。
[05]中国专利申请公开 CN1583575A提到制备超顺磁纳米复合颗粒的 制备方法,其中使用由羧酸与醇聚合得到的聚合物螯合剂与铁离子混 合,然后加碱的方式制备了所述超顺磁纳米颗粒,所述颗粒具有羟基、 羧基和烃基等修饰基团,可通过进一步修饰得到功能化的超顺磁纳米 颗粒, 这些超顺磁纳米颗粒可用于装载药物。
[06】 Franca Tiarks等 (Silica Nanoparticles as surfactants and fillers for latexes made by miniemuls ion polymerization , Langwuir, 2001 ( 17 ): 5775-5789 告了通过细乳液聚合方法 (Miniemuls ion Polymerization)由各种单体制备的聚合物分散体, 其中通过使用偶联共聚单体、氧化硅纳米颗粒和疏水成分得到了不同 形态的分散体,在一种情形中氧化硅颗粒附着在聚合物乳胶颗粒上形 成所谓 "刺猬"形态的分散体,在另一种情形中氧化硅颗粒被完全包 裹在聚合物颗粒中形成所谓 "树莓"形态的分散体。得到的分散体具 有多种用途例如在水性涂料中用作抗划伤剂等。
[07] QI Dong-mi ng ( Anchoring of polyacrylate onto silica and formation of polyacrylate/s i 1 ica nanocomposite particles via in situ emulsion polymerization, Colloid Polym. Sci. , 2008 (286): 233-241 )公开了一种聚丙烯酸酯 /氧化硅纳米复合胶乳颗粒, 该胶乳颗粒是通过对吸附在氧化硅纳米颗粒上的丙烯酸酯单体进行 原位乳液聚合得到的,其中聚丙烯酸酯通过物理吸附和化学接枝反应 连接在氧化硅颗粒上形成 "树莓" 形的聚丙烯酸酯 /氧化硅纳米复合 胶乳颗粒。
[08]尽管已经进行了许多研究 ,但是仍然需要更多具有不同结构和性 能的聚合物 /无机纳米粒子复合纳米颗粒以满足各种需求。
发明内容 [09】在第一个方面, 本发明提供一种聚合物 /无机纳米粒子复合纳米 颗粒, 包含至少一个无机纳米粒子和第一聚合物,其中所述第一聚合 物以纳米颗粒形式存在,所述无机纳米粒子被包裹在所述第一聚合物 中,并且所述无机纳米粒子是含有掺杂元素的无机纳米粒子,例如氧 化硅、 氧化钛、 氧化铝、 氧化辞、 氧化铁、 硒化镉、 氧化锆等, 其中 所述掺杂元素选自铁、 铝、 硅、 锂、 钠、 钾、 铍、 镁、 钙、 锶、 钡、 硼、 镓、 铟、 锗、 硒、 铅、 氮、 磷、 砷、 钴、 镍、 铜、 锌、 钒、 钛、 锰或其任意组合。
[10]在一个实施方案中, 所述聚合物 /无机纳米粒子复合纳米颗粒的 平均粒径为 1-1000纳米, 例如, 1-10纳米, 10-50纳米、 50-100纳 米、 100-200纳米, 200-500纳米, 500-1000纳米等。 [11]在一个实施方案中,所述第一聚合物含有亲水性基团,例如羧基、 羟基、 磺酸基、 氨基等或其组合。
[12]在一个实施方案中,所述第一聚合物是至少部分枝化或交联的聚 乳酸或乳酸与(2-27脂肪酸、 C2_27脂肪醇、 糖类和 /或氨基酸的共聚物。
[13]在一个实施方案中,所述糖类包括蔗糖、乳糖、海藻糖、壳聚糖、 甘露糖、 葡萄糖、 半乳糖、 麦芽糖等; 所述氨基酸包括甘氨酸、 赖氨 酸、 亮氨酸、 精氨酸、 胱氨酸、 半胱氨酸、 组氨酸、 色氨酸、 异亮氨 酸、 丙氨酸、苯丙氨酸、丝氨酸、 苏氨酸、蛋氨酸、 缬氨酸、酪氨酸、 天冬氨酸或其任意组合等。
[14】在一个实施方案中, 所述第一聚合物含有 l-50wt%的线性聚合 物, 5-60wt°/。的支链化聚合物, 以及 5-60wt°/。的交联聚合物。
[15]在第二个方面, 本发明提供一种聚合物 /无机纳米粒子复合纳米 颗粒, 包含至少一个无机纳米粒子、 第一聚合物、第二聚合物和任选 的第三聚合物至第 N聚合物, 其中 N为 3至 20的整数, 其中所述至 少一个无机纳米粒子被包裹在所述第一聚合物中和 /或附着在所述第 一聚合物上从而形成一次复合纳米颗粒,所述第二聚合物处于所述一 次复合纳米颗粒中或附着在所述一次复合纳米颗粒上从而形成二次 复合纳米颗粒 ,所述第三聚合物处于所述二次复合纳米颗粒中或附着 在所述二次复合纳米颗粒上从而形成三次复合纳米颗粒,依次地,所 述第 Ν聚合物处于所述 N-1次复合纳米颗粒中或附着在所述 N-1次复 合纳米颗粒上从而形成 Ν次复合纳米颗粒。 [16】在一个实施方案中, 所述聚合物 /无机纳米粒子复合纳米颗粒的 平均粒径为 1-1000纳米, 例如, 1-10纳米, 10-50纳米、 50-100纳 米、 100-200纳米, 200-500纳米, 500-1000纳米, 1000-5000纳米, 5000-10000纳米等。
[17]在一个实施方案中,所述第一聚合物含有亲水性基团,例如羧基、 羟基、 磺酸基、 氨基等或其组合。
[18]在一个实施方案中,所述第一聚合物是至少部分枝化或交联的聚 乳酸或乳酸与 C2-27脂肪酸、 (:2_27脂肪醇、 糖类和 /或氨基酸的共聚物。
[19]在一个实施方案中,所述糖类包括蔗糖、乳糖、海藻糖、壳聚糖、 甘露糖、 葡萄糖、 半乳糖、 麦芽糖等; 所述氨基酸包括甘氨酸、 赖氨 酸、 亮氨酸、 精氨酸、 胱氨酸、 半胱氨酸、 组氨酸、 色氨酸、 异亮氨 酸、 丙氨酸、苯丙氨酸、丝氨酸、 苏氨酸、蛋氨酸、 缬氨酸、酪氣酸、 天冬氨酸等和其任意组合。
[20】在一个实施方案中, 所述第一聚合物含有 l-50wt。/。的线性聚合 物, 5-60wt°/。的支链化聚合物, 以及 5-60wt°/。的交联聚合物。 [21]在一个实施方案中,所述无机纳米粒子可以是任何可以在水性介 子, 例如氧化硅、 氧化钛、 氧化铝、 氧化辞、 氧化铁、 硒化镉、 氧化 锆等和其任意组合。
[22】在一个实施方案中,所述无机纳米粒子还含有掺杂元素,所述掺 杂元素选自铁、 铝、硅、锂、 钠、 钾、 铍、 镁、钙、 锶、钡、硼、镓、 铟、 锗、 硒、 铅、 氮、 磷、 砷、 钴、 镍、 铜、 锌、 钒、 钛、 锰或其任 意组合。
[23]在一个实施方案中,所述第二聚合物可以是任何可在所述一次复 合纳米颗粒之中或之上形成的聚合物。
[24]在一个实施方案中,所述第一聚合物与所述第二聚合物形成接枝 共聚物、 交联共聚物、 海岛结构、 互穿网络或半互穿网络等。
[25]在一个实施方案中,所述第三聚合物与所述第二聚合物相同或不 同。所述第三聚合物可以是任何可在所述二次复合纳米颗粒之中或之 上形成的聚合物。
[26]在一个实施方案中,所述第 N聚合物与所述第二至第 N-1聚合物 相同或不同。所述第 N聚合物可以是任何可在所述 N-1次复合纳米颗 粒之中或之上形成的聚合物。所述第一聚合物、所述第二聚合物和所 述第三聚合物至任选的第 N聚合物形成接枝共聚物、交联共聚物、海 岛结构、 互穿网络或半互穿网络。
[27]在一个实施方案中, 所述第一聚合物与无机纳米粒子重量比为 100: 1至 1: 100, 所述第二至第 N聚合物与无机纳米粒子的重量比各 自为 1000: 1至 1: 1000。 例如, 所述第一聚合物与无机纳米粒子的重 量比为 100: 1至 50: 1 , 50: 1至 1: 1 , 1: 1至 1: 50, 1: 50至 1: 100,以 及 0. 5-5: 100, 1. 5: 100等, 所述第二聚合物与无机纳米粒子的重量 比为 1000: 1至 1: 1000,例如 500: 1至 300: 1 , 300: 1至 50: 1, 50: 1至 1: 1, 1: 50至 1: 300, 1: 300至 1: 500, 1: 500至 1: 1000,以及 50-300: 1 , 100: 1等。
[28】可以作为上述第二至第 N聚合物的例子包括由乙烯基单体形成 的均聚物或共聚物。 所述乙婦基单体可以选自: ex -烯烃、 氯乙烯、 丙烯腈、 偏氟乙烯、 四氟乙烯、 三氟氯乙烯、 (甲基) 丙烯酸的 d-2。 烷基酯(如(甲基)丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸 辛酯、 丙浠酸十八烷基酯等)、 乙烯、 丙烯、 异丁烯、 丁二烯、 异戊 二烯、异氰酸酯化合物、苯乙烯、苯甲酸乙烯酯、异辛酯、 2-氯代 -2- 氟代乙烯、 肉桂酸甲酯、 顺丁烯二酸酯、 2 , 4-二氯代苯乙烯、 二曱 基丙烯醚、甲基丙烯酸、顺丁烯二酸酐、 乙烯基烷基醚、偏二氯乙烯、 氯代丙烯酸曱酯、 4-Ν, Ν-二甲氨基 -2-氯代苯乙烯、 4-氯代苯乙烯、 甲基乙二醇、 甲基丙烯酰胺二甲胺、十八酸乙烯酯、 2-甲基代戊基乙 烯、 甲基丙烯酰胺间-甲苯胺、 三氟代甲基乙烯、 异丙烯基甲基酮、 3-氟代 -4-三氟代甲基乙烯、 二甲基丙烯基胺、 二乙烯硫醚、 苯亚甲 基 -噻吟乙酮、异丙基甲基酮、 醋酸乙烯酯、二环戊二烯、苯亚甲基- 苯乙酮、糠基丙酮、辛酸乙烯酯、 甲基丙烯酸羟乙酯等化合物和其任 意组合。
[29]在一个实施方案中, 所述聚合物 /无机纳米粒子复合纳米颗粒还 包含有机小分子化合物。所述有机小分子化合物可以是用于药物、化 妆品、 食品、 农药、 催化剂、 涂料、 塑料、 橡胶、 复合材料等的化合 物, 例如活性物质、 溶剂、 助剂、 添加剂等。 [30】在第三个方面, 本发明提供一种制备聚合物 /无机纳米粒子复合 纳米颗粒的方法, 包括:
1) 提供第一聚合物;
2) 在所述第一聚合物之中或之上形成无机纳米粒子或者将已经 形成的无机纳米粒子沉积、 包裹和 /或吸附在所述第一聚合物处。 [31】在第四个方面, 本发明提供一种制备聚合物 /无机纳米粒子复合 纳米颗粒的方法, 包括:
1) 提供第一聚合物;
2) 在以所述第一聚合物之中或之上形成无机纳米粒子或者将已 经形成的无机纳米粒子沉积、 包裹和 /或吸附在所述第一聚合物处; 3) 在所述一次复合纳米颗粒处形成第二聚合物从而形成二次复 合纳米颗粒; 和
4) 任选地,依次在 N-1次复合纳米颗粒处形成第 N聚合物从而形 成 N次复合纳米颗粒, 其中 N为 3-20的整数。
[32]在第五个方面, 本发明提供含有上述任何一种聚合物 /无机纳米 粒子复合纳米颗粒的组合物。
在第六个方面,本发明提供一种由上述聚合物 /无机纳米粒子复合 纳米颗粒稳定的分散体, 包含由所述聚合物 /无机纳米粒子复合纳米 颗粒稳定的分散相和水性连续相。
[33】在一个实施方案中, 所述分散相是油相, 所述连续相是水相。
[34】在一个实施方案中,所述分散相中含有农药活性成分、医药活性 成分、 化妆品活性成分、 可聚合单体成分等。
[35】在另一方面, 本发明提供一种水性涂料, 包含上述任何一种 聚合物 /无机纳米粒子复合纳米颗粒。
[36]根据本发明的水性涂料的一个实施方案, 其中所述聚合物 / 无机纳米粒子复合纳米颗粒为所述水性涂料的主要成膜物盾。
[37]根据本发明的水性涂料的一个实施方案, 其中所述聚合物 / 无机纳米粒子复合纳米颗粒处于分散相。
[38]在一个实施方案中, 所述水性涂料还含有其它成膜物质。
[39]在一个实施方案中,所述水性涂料还含有用于涂料的添加剂。所 述添加剂可以是任何合适的水性涂料添加剂,例如成膜助剂、固化剂、 填料、 颜料、 稀释剂和 /或交联剂。
[40]才艮据本发明的水性涂料的一个实施方案,其中所述水性涂料用作 防水涂料、 木器涂料或防腐涂料。
[41]根据本发明的水性涂料的一个实施方案,其中所述水性涂料用作 防水涂料, 所述聚合物 /无机纳米粒子复合纳米颗粒是二次复合纳米 颗粒,其中所述第二聚合物由包含重量比为 5-20: 20-70: 5-25的苯乙 烯、 丙烯酸丁酯和甲基丙烯酸甲酯的单体组合物经聚合形成。
[42]才艮据本发明的水性涂料的一个实施方案,其中所述水性涂料用作 木器涂料, 所述聚合物 /无机纳米粒子复合纳米颗粒是三次复合纳米 颗粒,其中所述第二聚合物由包含重量比为 20-40: 20-40: 20-40: 1-5 的苯乙烯、丙烯酸丁酯、 甲基丙烯酸曱酯和双丙酮丙烯酰胺的单体组 合物经聚合形成, 所述第三聚合物由 包含重量比为 20-40: 20-40: 30-70: 1-5的苯乙烯、 丙烯酸丁酯、 甲基丙烯酸甲酯和 双丙酮丙烯酰胺的单体组合物经聚合形成。 [43]根据本发明的水性涂料的一个实施方案,其中所述水性涂料用作 金属防腐涂料, 所述聚合物 /无机纳米粒子复合纳米颗粒是三次复合 纳米颗粒 , 其 中 所述第二聚合物 由 包含重量比为 30-50: 30-50: 10-40: 1-10 的苯乙烯、 丙烯酸丁酯、 甲基丙烯酸曱酯 和双丙酮丙烯酰胺的单体组合物经聚合形成,所述第三聚合物由包含 重量比为 30-90: 30-90: 10-40: 1-10的苯乙烯、 丙烯酸丁酯、 曱基丙 烯酸甲酯和双丙酮丙烯酰胺的单体组合物经聚合形成。
[44]在另一方面, 本发明还提供上述任何一种聚合物 /无机纳米粒子 复合纳米颗粒在亲水相中分散疏水液体和 /或固体的用途。
[45]在另一方面, 本发明还提供上述任何一种聚合物 /无机纳米粒子 复合纳米颗粒在亲水相中稳定疏水液体和 /或固体分散相的用途。
[46]在另一方面, 本发明还提供上述任何一种聚合物 /无机纳米粒子 复合纳米颗粒在亲水相中作为模板进行分散聚合的用途。
[47]在另一方面, 本发明还提供上述任何一种聚合物 /无机纳米粒子 复合纳米颗粒在亲水相中作为乳化剂进行乳液聚合的用途。
[48]在另一方面,本发明还提供一种在水性介质中分散疏水性液体和 /或固体的方法, 包括: 1 )提供水性介质; 2 )提供一种或多种疏水 性液体和 /或固体; 3 )在所述水性介质中勾化所述一种或多种疏水性 液体和 /或固体和上述任何一种聚合物 /无机纳米粒子复合纳米颗粒。 附图说明
[49]图 1是 TEM (透射电镜)照片, 表示实施例 2的聚合物 /无机纳 米粒子复合纳米颗粒。
[50]图 2是 TEM (透射电镜)照片, 表示实施例 13的聚合物 /无机纳 米粒子复合纳米颗粒。
[51]图 3是 TEM (透射电镜)照片, 表示实施例 17的聚合物 /无 机纳米粒子复合纳米颗粒。
具体实施方式 1、 第一聚合物
[52]在本发明的聚合物 /无机纳米粒子复合纳米颗粒中, 第一聚合物 可以是任何合适的至少部分交联和 /或支链化的聚合物。 通常第一聚 合物以干粉形式或悬浮于液体介质中的分散体形式提供。所述液体介 质可以是水性介质或有机溶剂例如醇、酮、醚和卤代烃等或其混合物。 在一个例子中,所述第一聚合物可以是纳米颗粒,其平均粒径可以是 1-500纳米, 例如 1-20纳米、 20-50纳米、 50-100纳米、 100-200 纳米、 200-500纳米等。 当第一聚合物悬浮于水性介质时, 其平均粒 径可能与干态时的平均粒径不同,例如可能因溶胀而变大。在一些情 况下, 第一聚合物的纳米颗粒可以是球形的。
[53]第一聚合物可以是将含有一个或多个亲水基团的一种或多种小 分子化合物在溶剂中通过辐射聚合例如光照聚合得到,其中所述亲水 基团包括羟基和 /或羧基和 /或氨基和 /或磺酸基等, 所述小分子化合 物包括乳酸、 衣糠酸、 苹果酸、 马来酸、 氨基酸等。 光照聚合可以在 氯化氙准分子激光器、 氙灯、汞灯等光源提供的光照条件下进行。在 光照聚合中可以使用光敏自由基引发剂例如二苯甲酮等。
[54]在所述小分子化合物中还可以混有其它含有亲水基团的化合物, 例如(:2_27脂肪酸、 (:2_27脂肪醇、 糖醇、 糖类和 /或氨基酸等。 所述 C2-27 脂肪酸包括 c2_18二元脂肪酸和羟基羧酸。 所述 c2_27脂肪醇包括 c2_18二 元脂肪醇。 所述糖类包括蔗糖、 乳糖、 海藻糖、 壳聚糖、 甘露糖、 葡 萄糖、半乳糖、麦芽糖等。所述氣基酸包括甘氨酸、赖氨酸、亮氨酸、 精氨酸、 胱氨酸、 半胱氨酸、 组氨酸、 色氨酸、 异亮氨酸、 丙氨酸、 苯丙氨酸、丝氨酸、苏氨酸、蛋氨酸、 缬氨酸、酪氨酸、天冬氨酸等。
[55]第一聚合物的纳米颗粒可以通过任何合适的方法制备, 例如 CN1530397A中描述的方法。在此通过引用将 CN1530397A的全文并入 本文。 除了 CN1530397A中描述的那些聚合物和方法之外, 本发明第 一聚合物的颗粒还可以通过其它方法得到。
1、 无机纳米粒子
[56]在本发明上述聚合物 /无机纳米粒子复合纳米颗粒中, 无机纳米 粒子可以是任何适合在水性介质中制备的无机纳米粒子, 例如氧化 硅、 氧化钛、 氧化铝、 氧化锌、 氧化铁、 硒化镉、 氧化锆等。 所述无 机纳米粒子还可以掺杂其它元素, 例如铁、铝、硅、锂、钠、钾、铍、 镁、 钙、 锶、 钡、 硼、 镓、 铟、 锗、 硒、 铅、 氮、 磷、 砷、 钴、 镍、 铜、锌、钒、钛、锰或其组合。无机纳米颗粒的平均粒径可以是 1-100 纳米, 例如 1-5纳米、 5-10纳米、 10-20纳米、 20-50纳米、 50-100 纳米等。
[57]无机纳米粒子可以在水性介质中以上述第一聚合物为模板原位 形成,也可以将已经形成的无机纳米粒子例如无机纳米粒子的溶胶沉 积、 包裹或吸附在第一聚合物上, 从而形成一次复合纳米颗粒。如果 无机纳米粒子中含有上述掺杂元素,那么所述一次复合纳米颗粒也可 作为本发明第一个方面提供的聚合物 /无机纳米粒子复合纳米颗粒。 3、 聚合物 /无机纳米粒子复合纳米颗粒
[58]在聚合物 /无机纳米粒子复合纳米颗粒中, 无机纳米粒子可以被 第一聚合物至少部分包裹或完全包裹。在一些情况下,无机纳米粒子 也可以附着在第一聚合物的表面。在每个第一聚合物的纳米颗粒中可 以含有一个或多个无机纳米粒子。在一些情况下,在一个第一聚合物 的纳米颗粒中可以含有 1 ~ 10个、 10 ~ 50个、 50 ~ 100个、 100 ~ 1000 个或更多个无机纳米粒子。
[59]在一些情况下, 聚合物 /无机纳米粒子复合纳米颗粒可以具有球 形、 "树莓" 形、 "念珠" 形和 /或 "葡萄串" 形等形态。 [60]以下给出本发明第一个方面提供的聚合物 /无机纳米粒子复合纳 米颗粒及其制备方法的一个具体实施方式, 其中所述聚合物 /无机纳 米粒子复合纳米颗粒包含作为第一聚合物的由乳酸经光照聚合得到 的聚合物纳米颗粒和作为无机纳米粒子的在所述第一聚合物处原位 形成的纳米氧化硅 (或掺杂纳米氧化硅 )粒子, 所述制备方法包括以 下步骤:
1) 提供分散在 。低级醇溶液(如水溶液)中的第一聚合物, 其 中所述低级醇可以是甲醇、 乙醇、 丙醇、 异丙醇、 丁醇、 特丁醇等;
2) 将硅酸盐水溶液(硅溶胶水分散液)与所述第一聚合物在反应 器中搅拌混合, 从而得到均匀分散的混合液, 其中以质量百分比计, 硅酸盐(或硅溶胶)、 第一聚合物、 水和醇的含量分别为 5 % - 50 % , 0. 3 % - 30 %、 50 % ~ 90 %和 1 % ~ 10 %;
3) 任选地, 向步骤 2)得到的混合液中加入掺杂元素供体水溶液 和用于调节 pH值的酸或碱溶液, 其中所述掺杂元素供体是钛酸盐、 钛酸酯、 TiCl4、 铝盐( 化铝, 磷酸铝, 硫酸铝等)、 锌盐(ZnCl2、 ZnS04等)、 铁盐 ( FeCl3, FeS04, FeCl2等) 中的至少一种;
4) 在搅拌条件下, 将步驟 2)或 3)的混合液加热至 50 ~ 110°C反 应 0. 5 ~ 5小时,从而得到所述聚合物 /无机纳米粒子复合纳米颗粒的 分散体; 和
5) 任选地,去除反应后混合溶液中的溶剂,从而得到所述聚合物 /无机纳米粒子复合纳米颗粒的干粉。 [61】以上得到的聚合物 /无机纳米粒子复合纳米颗粒, 特别是由掺杂 其它元素的纳米氧化硅粒子得到的聚合物 /无机纳米粒子复合纳米颗 粒,可以极大地提高油性物质的分散性和稳定性,从而可以有效应用 于油性物质水性化和增溶等领域。
[62]如上所述,如果所述无机纳米粒子中含有上述掺杂元素, 那么所 述一次复合纳米颗粒可以直接用作本发明第一个方面提供的聚合物 / 无机纳米粒子复合纳米颗粒。
[63]然而, 无论所述无机纳米粒子中是否含有上述掺杂元素,在所述 一次复合纳米颗粒中都可以进一步形成第二聚合物从而形成二次复 合纳米颗粒。所述二次复合纳米颗粒可以作为本发明第二个方面提供 的聚合物 /无机纳米粒子复合纳米颗粒。
[64]同样,在所述二次复合纳米颗粒中可以进一步形成第三聚合物从 而形成三次复合纳米颗粒。所述三次复合纳米颗粒也可以作为本发明 第二个方面提供的聚合物 /无机纳米粒子复合纳米颗粒。
[65]依次地,在所述 N-1次复合纳米颗粒中可以进一步形成第 N聚合 物从而形成 N次复合纳米颗粒,其中 N可以根据需要选择并无特别限 制, 例如 N可以为 3-20的整数,包括 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20。 所述 N次复合纳米颗粒也可 以作为本发明第二个方面提供的聚合物 /无机纳米粒子复合纳米颗 粒。 [66]第二聚合物至第 N聚合物可以各自相同或不同。通常可以依据所 需聚合物 /无机纳米粒子复合纳米颗粒的性能要求来选择这些聚合 物。例如,第二聚合物至第 N聚合物可以分别由下列单体中的一种或 多种单体通过聚合形成: α -烯烃、 氯乙烯、 丙烯腈、 偏氟乙烯、 四 氟乙烯、 三氟氯乙烯、 (曱基) 丙烯酸的 d-2。烷基酯(如(曱基) 丙 烯酸曱酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸辛酯、 丙烯酸十八烷基 酯等)、 乙烯、 丙烯、 异丁烯、 丁二烯、 异戊二烯、 异氰酸酯化合物、 苯乙烯、苯甲酸乙烯酯、异辛酯、 2-氯代 -2-氟代乙烯、 肉桂酸甲酯、 顺丁烯二酸酯、 2, 4-二氯代苯乙烯、 二甲基丙烯醚、 甲基丙烯酸、 顺丁烯二酸酐、乙烯基烷基醚、偏二氯乙烯、氯代丙烯酸甲酯、 4-N, N- 二曱氛基 -2-氯代苯乙烯、 4-氯代苯乙烯、 甲基乙二醇、 曱基丙烯酰 胺二甲胺、 十八酸乙烯酯、 2-甲基代戊基乙烯、 甲基丙烯酰胺间-甲 苯胺、 三氟代甲基乙烯、 异丙烯基甲基酮、 3-氟代 -4-三氟代甲基乙 烯、 二曱基丙烯基胺、 二乙烯硫醚、 苯亚曱基 -噻哈乙酮、 异丙基曱 基酮、 醋酸乙烯酯、 二环戊二烯、 苯亚曱基-苯乙酮、 糠基丙酮、 辛 酸乙烯酯、 甲基丙烯酸羟乙酯等化合物和其任意组合。
[67]第二聚合物至第 N聚合物可以在任何合适的条件下形成。 例如, 可以将至少部分单体与引发剂以及任选的溶剂在低于引发温度下混 合, 然后与一次复合纳米颗粒混合,接着加热至引发温度以上, 从而 在一次颗粒中形成第二聚合物, 由此得到二次复合纳米颗粒;或者将 一次复合纳米颗粒与水、引发剂和任选的溶剂混合,然后加热至引发 温度以上, 同时滴加单体和任选的溶剂,从而在一次颗粒中形成第二 聚合物, 由此得到二次复合纳米颗粒。
[68】第三聚合物至第 N 聚合物可以采用类似的方法由选自上述单体 的相同或不同单体形成,并由此得到三次复合纳米颗粒至 N次复合纳 米颗粒。
[69]在一个具体实施方式中,将一次复合纳米颗粒与水、引发剂和任 选的溶剂加入带回流装置的反应器中,在加热条件下搅拌,控制反应 温度在 80 ~ 95度之间, 滴加单体, 滴加完毕后再保温一段时间, 过 滤、 出料得成品。 由此获得的二次复合纳米颗粒的粒径为 1-1000纳 米, 例如 1-10纳米, 10- 100纳米, 100-500纳米, 500-1000纳米, 其固体含量最高可以达到 70%, 产品储存稳定, 水稀释稳定, 离子 强度稳定。
[70]在上述二次复合纳米颗粒处还可以通过类似方法进一步形成第 三至第 N聚合物,由此获得的三次至 N次复合纳米颗粒的粒径可以为 1-10000 纳米, 例如 1-10纳米, 10-100 纳米, 100-500纳米, 500-1000纳米, 1000-10000纳米等。
[71]形成上述第二聚合物至第 N聚合物的单体的部分例子可以是以 下单体组合,其中的百分比为基于单体组合总重的重量百分比。用于 引发单体聚合的引发剂可以是水性引发剂和 /或油性引发剂, 例如过 硫酸铵、过硫酸钾、过氧化二酰、叔烷基过氧化氢、过氧化二叔烷基、 过氧化二碳酸酯、 偶氮二异丁腈、 过氧化苯曱酰等。
[72]单体组合 1
苯乙烯 15~20%
丙浠酸丁酯 70~80%
异辛酯 5~7%
苯曱酸乙烯酯 1~2%
2, 4-二氯代苯乙烯 1~2 顺丁烯二酸酐 0.5~1%
[73]单体组合 2
苯乙烯 15~20%
丙烯酸丁酯 60~70%
正辛酯 15~20% 乙烯基烷基醚
氯代苯乙烯甲酯
[74]单体组合 3
丙烯酸丁酯 60 - 70%
曱基丙烯酸甲酯 30 - 35 %
苯乙烯 1 ~ 2 %
曱基丙烯酸 0.5-1 %
2-氯代苯乙烯 0.5~1 %
4-氯代苯乙烯 0.5-1 %
曱基丙烯酰胺二甲胺 0.1 ~ 0.5 %
[75]单体组合 4
苯乙烯 30 - 35 %
丙烯酸丁酯 30 - 35 %
曱基丙烯酸甲酯 30 - 35 %
丙浠酸 0.5-1 %
醋酸乙烯酯 0.5-1 %
曱基丙烯酸羟乙酯 0.5-1 %
3-氟代 -4-三氟代曱基 0.2 ~ 0.5 %
[76]单体组合 5
苯乙烯
丙烯酸丁酯 甲基丙烯酸甲酯 30 - 35 % 二曱基丙烯基胺 0.5 ~ 1 % 十八酸乙烯酯 1~5%
4-N, N-二甲氨基乙烯 0.5 ~ 1 % 甲基乙二醇 0.5~1%
[77]单体组合 6
苯乙烯 40~45% 丙烯酸丁酯 40~45% 曱基丙烯酸甲酯 10~15% 顺丁烯二酸酯 0.5~1% 肉桂酸甲酯 0.5~1% 二乙烯石克醚 0.5~1% 异丙烯基曱基酮 0.5~1%
[78]单体组合 7
苯乙烯 35 - 40% 丙浠酸丁酯 45~50% 曱基丙烯酸甲酯 10~25% 二环戊二烯 0.5 ~ 1 % 辛酸乙烯酯 1~2% 偏二氯乙烯 1~5% 曱基丙烯酰胺间-曱苯胺 0.5-1 %
[79]单体组合 8 苯乙烯 10-15% 丙烯酸丁酯 40 - 45 % 甲基丙烯酸甲酯 40 - 45 % 三氟代甲基乙烯 0.5-1 % 苯亚甲基-苯乙酮 0.5-1 %
[80]单体组合 9
苯乙烯 10-15% 丙烯酸丁酯 50 - 60% 曱基丙烯酸甲酯 30 - 35 % 醋酸乙烯酯 0.5 ~ 1 % 曱基丙烯酸羟乙酯 0.5 ~ 1 % 乙烯基烷基醚 0.1 ~ 0.5 %
[81]单体组合 10
苯乙烯 5-10% 丙烯酸丁酯 60 - 65 % 正辛酯 25 - 30%
2 -曱基代成基乙婦基 0.1 ~ 0.5 % 糠基丙酮 0.2 ~ 0.5 % 苯亚曱基-噻吩乙酮 0.1 ~ 0.5 %
[82]单体组合 11
苯乙烯 35 - 40% 丙烯酸丁酯 35-40 甲基丙烯酸甲西 I 20 - 25 %
顺丁烯二酸 0. 1 ~ 1 %
二甲基丙烯醚 0. 5 - 1 %
曱基乙二醇 0. 1 ~ 0. 5 % 异丙基甲基嗣 0. 1 ~ 0. 3 %
4、 聚合物 /无机纳米粒子复合纳米颗粒水性分散体的稳定性
[83]由于上述聚合物 /无机纳米粒子复合纳米颗粒具有独特的结构, 其在水性介质中的分散体具有十分优异的稳定性。 对上述聚合物 /无 机纳米粒子复合纳米颗粒进行的稳定性测试结果如下:
1. 热稳定: 在 102 °C下煮半小时, 无异常
2. 冷稳定: 在 - 20°C下冻半小时, 融化后无异常
3. 减稳定: 乳液加强碱, 无异常
4. 离子稳定: 乳液加高浓度盐, 无异常
5. 溶剂稳定: 乳液任意比例与乙醇混合, 不破乳
6. 酸稳定: 加入 2 %的醋酸, 无异常
5、 聚合物 /无机纳米粒子复合纳米颗粒的粒径分布
[84]本发明聚合物 /无机纳米粒子复合纳米颗粒通常具有较窄的粒径 分布。 对一些上述聚合物 /无机纳米粒子复合纳米颗粒的电镜照片进 行统计,发现其粒径分布通常为大于 90%的颗粒的粒径分布在粒径均 值的 ± 10 %以内。 因此, 上述聚合物 /无机纳米粒子复合纳米颗粒可 以认为是一种单分散颗粒体系,因而在需要窄粒径分布颗粒体系的场 合, 例如生物医药领域中具有广泛的应用。
6、 聚合物 /无机纳米粒子复合纳米颗粒的表面化学修饰
[85]本发明聚合物 /无机纳米粒子复合纳米颗粒的表面可以具有各种 基团例如羧基、 羟基和 /或 等, 因而可以容易地通过化学反应接 上各种期望的官能基团,例如用于涂料领域的光敏交联基团、用于生 物医药的药物活性基团等。
7、 聚合物 /无机纳米粒子复合纳米颗粒分散 /稳定水不溶或难溶物质 [86]本发明聚合物 /无机纳米粒子复合纳米颗粒可以将在醇或水中不 溶或难溶的油性物质高效地分散于水及醇中从而形成稳定的分散体。 所述不溶或难溶的油性物质可以是农药活性成分、 医药活性成分、化 妆品活性成分、可聚合单体成分等。例如,农药杀虫 /除草剂三唑磷, 二-秦磚, 毒死蜱, 氯氰菊酯, 乙草胺, 氟虫腈, 植物中提取的生物活 性成分紫杉醇、 黄芪甲苷、 冬凌草曱素等。
[87]本发明聚合物 /无机纳米粒子复合纳米颗粒在提高油性物质的分 散性和稳定性方面的性能可以通过下述针对橄榄油的载油率参数来 表征。
[88】载油率的测定方法如下: 将单位质量(m) 的复合纳米颗粒分散 在 10ml水溶液中,加入不同质量的的橄榄油(0) , 高速分散均匀后, 放置 24小时,取 1ml 液加入 50ml的去离子水中, 肉眼观察, 如 果溶液表面没有油花漂浮即表明乳液稳定。取稳定的最高油量(精确 到 lg)计算载油率。 载油率 = 0/m。
[89】例如: 取 10ml 聚合物 /无机纳米粒子复合纳米颗粒的水分散液 (含 2g复合颗粒), 分别加入 10, 11 , 12 , 13, 14 , 15 , 16 , 17, 18, 19 , 20, 21 , 22g橄榄油, 高速分散均匀后, 放置 24小时, 取 lml 液加入 50ml去离子水中。 观察结果表明, 含 20g以下橄榄 油的样品均很稳定,加入 21g和 22g橄榄油的样品表面发现少量油花 漂浮。 因此, 载油率为 20 / 2 = 10。 8、 含有聚合物 /无机纳米粒子复合纳米颗粒的涂料和 /或粘合剂
[90]本发明的聚合物 /无机纳米粒子复合纳米颗粒可以作为助剂加入 各种涂料和 /或粘合剂以改善其性能,也可以在涂料和 /或粘合剂中作 为主要的成膜物质。 由于具有优越的水分散性和稳定性,本发明的聚 合物 /无机纳米粒子复合纳米颗粒尤其适合用于水性涂料和粘合剂。 实施例
[91】以下实施例 1 ~ 7 中制备的是聚合物 /Si02纳米粒子复合纳米颗 粒和聚合物 /掺杂 Si02纳米粒子复合纳米颗粒, 其中使用的第一聚合 物是根据 CN1530397A中实施例 1的方法制备的聚合物。 具体而言, 第一聚合物的制备过程包括: 将 20%乳酸和 0.1%二苯甲酮加入乙酸 乙酯溶剂中,采用氯化氙准分子激光器(波长为 308纳米)作为光源, 在室温条件下光照并搅拌 30分钟得到的聚合物作为第一聚合物。 冷 冻干燥获得聚合物干粉, 干燥保存。
实施例 1: 聚合物 /Si02纳米粒子复合纳米颗粒
[92]将 10克第一聚合物干粉分散到 100毫升的水中, 加入 800毫升 30%硅酸钾水溶液搅拌混合后,滴加 10%的盐酸溶液到 pH值为 3.5, 加热至 100°C搅拌 40分钟,得到聚合物 /Si02纳米粒子复合纳米颗粒。 冷冻干燥后称取该复合纳米颗粒 lg,在 10ml的水中最多可稳定分散 2g的橄榄油, 载油率为 2。
实施例 2: 聚合物 /Si02-Ti纳米粒子复合纳米颗粒
[93】将 10克第一聚合物干粉^ t到 100毫升的乙醇 /水溶液(1: 1 体积比) 中; 在搅拌条件下加入 800毫升 30%硅酸钾水溶液, 然后 在 50°C下加热搅拌 1小时, 从而得到稳定的第一聚合物修饰的硅水 溶胶体系; 加入 5%的 TiCl4水溶液(50ml ), 以 10%盐酸溶液调节 pH值致 3~4, 并在 100°C左右加热搅拌 40分钟, 最终得到聚合物 /Si02-Ti纳米粒子复合纳米颗粒,粒径为 18纳米(见图 1)。 干燥后 称取复合颗粒 lg, 在 10ml的水中可以稳定分散高达 10g的橄榄油, 载油率为 10。 实施例 3: 聚合物 /Si02-Zn纳米粒子复合纳米颗粒
[94]实施例 3与实施例 2的不同之处在于,将 50ml 5%TiC14水溶液 改为 50ml 5%ZnCl2水溶液,其他条件相同。最终得到聚合物 /Si02-Zn 纳米粒子复合纳米颗粒。 干燥后称取复合颗粒 lg, 在 10ml的水中可 以稳定分散 5g的橄榄油, 载油率为 5。
实施例 4: 聚合物 /Si02-Ti纳米粒子复合纳米颗粒
[95]实施例 4与实施例 2的不同之处在于, 将实例 2中 10克第一聚 合物增加到 100克, 其他条件相同。 最终得到聚合物 / SiO厂 Ti纳米 粒子复合纳米颗粒。 干燥后称取复合颗粒 lg, 在 10ml的水中可以稳 定分散高达 30g的橄榄油, 载油率为 30。
实施例 5: 聚合物 /Si02-FeZn纳米粒子复合纳米颗粒
[96]实施例 5与实施例 2的不同之处在于,将实例 2中 50ml 5%TiCl4 水溶液改为 25ml 4%Fe2(S04)3氷和 25ml l%ZnCl2氷溶液, 其他条件 相同。最终得到聚合物 /Si02-FeZn纳米粒子复合纳米颗粒。干燥后称 取复合颗粒 lg, 在 10ml的水中可以稳定分散 6g的橄榄油, 载油率 为 6。
实施例 6: 聚合物 /Si02-TiAl纳米粒子复合纳米颗粒
[97]实施例 6与实施例 2的不同之处在于,将实例 1中 50ml 5%TiCl4 水溶液改为 25ml 5%TiCl47j溶液和 25ml 1%A1C13水溶液, 其它条 件相同。 最终得到聚合物 / Si02-TiAl纳米粒子复合纳米颗粒。 干燥 后称取复合颗粒 lg,在 10ml的水中可以稳定分散高达 15g的橄榄油, 载油率为 15。
实施例 7: 聚合物 /Si02-Ti纳米粒子复合纳米颗粒
[98]实施例 Ί与实施例 2的不同之处在于, 将实例 2中 800毫升 30 %硅酸钟水溶液,改为 800毫升 30%硅溶胶,以 10%KOH溶液调节 pH 值致 3 ~ 4 , 其它条件相同。 最终得到聚合物 / Si02-Ti纳米粒子复合 纳米颗粒。 干燥后称取复合颗粒 lg, 在 10ml的水中可以稳定分散高 达 8g的橄榄油, 载油率为 8。
实施例 8 : 二次复合纳米颗粒 [99]称取 100g实施例 1制得的一次复合纳米颗粒, 分散在 100g 水 中, 加入 15g 的 10 %过石克酸铵, 加入 30g醋酸乙烯酯, 30g丙烯酸 乙酯和 30g甲基丙烯酸幾丁酯, 高速搅拌, 于水浴锅中加热到 90。C, 反应 1小时, 得固体含量为 20 %的二次复合纳米颗粒成品。
实施例 9 : 二次复合纳米颗粒
[100] 称取 20g实施例三制得的一次复合纳米颗粒, 分散在 100g水 中, 加入 lg过氧化苯甲酰, 5g甲基丙烯酸, 30g醋酸乙烯, 20g曱 基丙烯酸曱酯, 10g丙烯酸异辛酯, 高速搅拌, 于水浴锅中加热到 90 。C, 反应 1小时, 得固体含量为 30°/»的二次复合纳米颗粒成品。
实施例 10: 二次复合纳米颗粒
[101] 称取 20g实施例二制得的一次复合纳米颗粒, 分散在 100g水 中, 加入 13g 的 10 %过硫酸铵, 倒入 500mL四口烧瓶, 于 90。C水浴 锅中搅拌, 同时加入以下单体的混合物: 40g丙烯酸丁酯、 40g曱基 丙烯酸曱酯和 10g甲基丙烯酸, 保持 90°C反应 1小时, 得到固含量 为 40 %的二次复合纳米颗粒成品, 粒径为 20纳米。 实施例 11 : 二次复合纳米颗粒
[102] 称取 12g实施例 2制得的一次复合纳米颗粒,分散在 100g 水 中, 加入 13g 10 %过硫酸铵 (引发剂), 倒入 5 OOmL四口烧瓶, 于 90 °(;氷浴锅中搅拌,温度升至 86。C后开始滴加以下单体的混合物: 50g 苯乙烯、 120g丙烯酸丁酯、 120g甲基丙烯酸甲酯和 10g甲基丙烯酸 羟乙酯, 滴加过程中温度控制在 90°C左右, 滴加时间在 2小时左右, 滴加完成后保温 1 小时, 得固体含量为 55 %的二次复合纳米颗粒成 口 实施例 12: 二次复合纳米颗粒
[103] 称取 12g实施例 5制得的一次复合纳米颗粒, 分散在 100g 水 中, 加入 13g 的 10 % 过硫酸钟, 倒入 500mL四口烧瓶, 于 90。C水 浴锅中搅拌, 温度升至 86。C后开始滴加以下单体的混合物: 50g苯 乙烯、 120g丙烯酸丁酯、 120g甲基丙烯酸甲酯和 10g甲基丙烯酸羟 乙酯, 滴加过程中温度控制在 90°C左右, 滴加时间在 2小时左右, 滴加完成后保温 1 小时, 得固体含量为 69 %的二次复合纳米颗粒成 品。 实施例 13: 三次复合纳米颗粒
[104] 称取 20g实施例 5制得的一次复合纳米颗粒, 分散在 200g 水 中, 加入 12g 的 10 % 过硫酸氨, 倒入 500mL四口烧瓶, 于 90。C水 浴锅中搅拌, 温度升至 86。C后开始滴加以下单体的混合物: 50g苯 乙烯, 80g丙烯酸丁酯, 20g曱基丙烯酸甲酯; 滴加在 1小时内完成, 继续搅拌 20分钟后, 重新在水浴锅中搅拌加热到 90°C后, 滴加以下 单体的混合物: 50g苯乙烯, 20g丙烯酸丁酯, 20g曱基丙烯酸甲酯, 滴加时间在 40分钟左右, 然后保温 2小时, 冷却, 得到固含为 50 % 的三次复合纳米颗粒, 粒径为 92纳米(见图 2 )。 实施例 14 : 四次复合粒子
[105] 称取 20g实施例 2制得的一次复合纳米颗粒, 分散在 100g水 中, 加入 8g 的 10 % 过硫酸氨, 倒入 500mL四口烧瓶, 于 90。C水浴 锅中搅拌, 温度升至 86°C后开始滴加以下单体的混合物: 5g顺丁二 烯, 20g甲基丙烯酸甲酯, 50g丙烯酸丁酯, 20g醋酸乙烯酯, 滴加 时间为 1小时左右, 继续搅拌 20分钟后, 补加 100g水, 5g 的 10 % 过破酸氨, 于 90°C水浴锅中加热, 带温度升回 90。C后开始滴加 以下单体的混合物: 5g二乙烯苯, 20g苯乙烯, 50g甲基丙烯酸丁酯, 20g甲基丙烯酸甲酯, 在 1小时内滴完, 保温搅拌 20分钟后, 再一 次加入 100g水和 5g 的 10% 过硫酸氨, 重新加热到 90°C , 滴加以 下单体的混合物: 50g苯乙烯, 20g甲基丙烯酸曱酯, 20g丙烯酸乙 酯, 在 1小时内滴完, 保温 1小时, 冷却获得固含为 60%的四次复 合粒子, 平均粒径为 5微米。 实施例 15:
[106] 采用本发明实施例 11 中获得的聚合物 /无机纳米粒子二次复 合纳米颗粒作为主要成膜物质, 根据以下配比得到了涂料产品。
[107] 配方: 纳米复合颗粒 100g 、 钛白粉 60克、 硅微粉 20克、 云 母粉 10克、 酒精 30克、 颜料适量。
[108] 该涂料产品可用于河岸、堤坝进行防水涂层处理,基材为水泥。 由于要在落潮的短时间内对堤坝、河岸进行快速施工,涂层要在短时 间内干燥, 即具有超强的耐水性, 耐受涨潮后长达 20小时的浸泡和 冲刷。 经过测试, 该涂料产品的技术指标如下:
(1) 易施工。
(2) 干燥快。 70%湿度时, 5°C ~15°C,表干时间小于 40min; 15°C - 30°C, 表干时间小于 25min; 30°C以上, 表干时间小于 20min。 (3) 具有超强的耐水性。 涂料表干后立即具备超强的耐水 性。用 100kg的高压水枪冲洗 2min, 涂层冲刷不掉, 涂层经过 30 天的浸泡和水的冲刷后, 无变色、 龟裂、 气泡、 剥落、 侵蚀等不 良现象。和水泥有超强的附着力。用 04号砂纸打磨,涂层擦不掉。 沸水中煮 15min, 涂层不受任何影响。 实施例 16: 木器漆的应用 [109] 采用本发明实施例 13 中获得的聚合物 /无机纳米粒子三次复 合纳米颗粒作为主要成膜物质, 根据以下配比得到了水性木器漆产
[110] 配方:复合颗粒 100g , 润湿剂 lg , DEE成膜助剂 4g , 39235S 蜡 3g , 51AD抗划痕剂 0. 5g, 少量消泡剂, 410流平剂 0. lg。
[111] 该水性木器漆具有附着力强, 对颜料的湿润性强, 包粉率高, 色彩丰满度高, 光泽度高, 耐黄变等特点 实施例 17: 药物分散液
[112] 取实施例 10制得的二次复合纳米粒子 0. 3g,分散在 lml水中, 然后加入植物提取化合物黄芪甲苷粉末 40mg,大豆油 lml ,混合均匀, 再加入纯水至总体积 10ml , 用高压匀质机分散 30分钟, 得黄芪曱 苷的分散液(见图 3 )。
[113] 将得到的黄芪甲苷的分散液给小鼠灌胃给药,给药后不同时间 点采血测量血药浓度,最后计算药物的口服生物利用度。令人惊奇的 是, 分散液制剂比药物粉末混悬制剂的生物利用度提高了 8倍。 实施例 18: 具有防水效果的水性丙烯酸树脂涂料
[114] 成膜基质乳液的制备:在 800千克水中加入 120千克根据实施 例 2的方法制备的一次复合纳米粒子和 5. 3千克过硫酸铵, 升温到 85 °C , 在搅拌下滴加 900千克单体混合物。 10分钟后, 同时滴加含 有 40千克一次复合纳米粒子和 15千克丙烯酸的水溶液。滴加时间为 2小时。滴加后保温 1小时得到二次复合纳米颗粒作为成膜基质乳液。 所述单体混合物的组成如下: 苯乙烯 15 % 丙烯酸丁酯 67 % 甲基丙烯酸甲酯 17 % 双丙酮丙烯酰胺 1%
[115] 所得成膜基质乳液按以下配方与其它成分混合, 搅拌 1小时, 即得防水涂料:
成膜基质乳液 100重量份
氨水 适量至 PH « 8. 5
DEE (罗迪亚公司的成膜助剂) 1. 5重量份
R996金红石型钛白粉 35重量份
沉淀硫酸钡( 1250目) 12重量份 硅微粉( 1500目) 10重量份
[116] 按照 GB/T 9755 - 2001标准, 由所得防水涂料形成的涂膜的耐 水性测试结果为 1392小时后无变化(根据该标准, 防水涂料优等品 的耐水性标准是 92小时无异常), 耐候性测试结果为 2435小时无变 化(根据该标准, 防水涂料优等品的耐候性标准是 600小时不起炮、 不剥落、 无裂纹、 不粉化、 不变色)。 相对于通常的水性丙烯酸树脂 乳液涂料,该防水涂料无需加入大量的表面活性剂, 因此避免了表面 活性剂在湿度大或者渗水的环境下流失而造成的表面缺陷,具有非常 好的耐水性和耐候性。 实施例 19: 水性丙烯酸树脂木器涂料
[117] 成膜基质乳液的制备: 在 140千克水中加入 27千克根据实施 例 2的方法制备的一次复合纳米粒子和 1千克过^ <酸铵, 升温到 86 °C , 在搅拌下在滴加 90千克单体混合物(1 ), 60分钟后滴加完毕。 然后, 在搅拌下滴加 130千克单体混合物(2 ), 90分钟后滴加完毕。 降温到 50°C加入 10 %己二酰肼 16克, 继续降温, 过滤出料得到三 次复合纳米颗粒作为成膜基质乳液。
[118] 所述单体混合物(1 )的组成为: 苯乙烯 30% 丙烯酸丁酯 33%
甲基丙烯酸甲酯 32% 双丙酮丙烯酰胺 5% [119] 所述单体混合物(2 )的组成为: 苯乙烯 26% 丙烯酸丁酯 23% 曱基丙烯酸甲酯 47% 双丙酮丙烯酰胺 4% [120] 按照 HG/T3828-2006室内用水性木器涂料(B类)检测标准检 测, 表干时间小于 30分钟,实干时间小于 6小时, 光泽度可高达 87, 硬度为 F, 而且耐 70度以上干热, 抗粘连温度高于 75度.
[121] 相比之下, 目前市场上的水性木器涂料树脂,例如聚丙烯酸树 脂、聚氨脂改性丙烯酸树脂以及聚氨脂等,在涂层的机械强度、硬度 以及抗粘连等方面都不甚理想, 而且由于表面活性剂的存在,涂层的 光泽度不高, 防水性和防腐蚀性也不好。
实施例 20: 具有优越防锈效果的水性丙烯酸树脂金属涂料
[122] 成膜基盾乳液的制备:在 140千克水中加入 7千克根据实施例 3的方法制备的一次复合纳米粒子, 5千克醇酯十二和 1. 2千克过^ 酸铵, 升温到 85 °C , 在搅拌下在滴加 170千克单体混合物(1 ), 60 分钟后滴加完毕。 然后, 在搅拌下滴加 200千克单体混合物(2 ), 90 分钟后滴加完毕。 90°C保温 1小时。降温后出料得到三次复合纳米颗 粒作为成膜基质乳液。
[123] 单体混合物(1 )的组成为: 苯乙烯
丙烯酸丁酯
甲基丙烯酸甲酯 双丙酮丙烯酰胺
Figure imgf000030_0001
[124] 单体混合物(2)的组成为:
苯乙烯
丙烯酸丁酯
曱基丙烯酸甲
Figure imgf000030_0002
双丙酮丙婦醜
[125] 性能评估: 5
%
钢板表面直接涂刷上述乳液封底 6遍, 每遍间隔 10分钟; 将乳液与钛白粉以 4: 1的比例混合, 在封底漆表面涂刷 3层, 每层间隔 12小时, 养护 7天;
. 防腐蚀浸泡实验结果:
1 ) 在强碱溶液(5°/。Na0H溶液)中浸泡 7天,钢板表面不起泡不 生锈;
2 ) 在强酸溶液( 5 %硫酸)中浸泡 7天, 钢板表面不起泡不生 锈;
3) 在高盐(3%NaCL)溶液中浸泡 7天,钢板表面不起泡不生 锈;
4 ) 在有机溶剂 (石油醚 /甲苯: 8/2)中浸泡 48小时, 钢板 表面不起泡不生锈, 涂层完好。
目前的水性防锈涂层材料包括水性环氧树脂、 水性丙烯酸树 脂、水性聚苯胺树脂等,其中丙烯酸聚合物由于具有高密度、柔韧性、 抗腐蚀性、抗紫外线辐射等优良性能,一直为防锈涂料基料树脂研究 的热点。 但为了提高其防腐效果, 在使用时还需要添加大量的锌粉, 以保证涂层和钢底材之间的导电性和屏蔽性,起到阴极保护作用,但 金属锌以及其中含有的重金属对于环境的污染不容忽视。 相比之下, 上述丙烯酸树脂乳液在实际应用中可以在不添加任何金属物质的情 况下实现优异的防锈效果,同时通过隔离空气的作用实现了超强防水 效果。而且,该乳液形成的涂模还具有对金属基底的高附着力、耐水、 酸、 碱和有机溶剂等的浸泡、 耐腐蚀以及耐紫外辐射等优良性能。
[127] 以上通过举例说明的方式描述了本发明。但是, 应当理解, 本 发明绝不仅仅限于这些具体实施方式。普通技术人员可以对本发明进 行各种修改或变动, 而不背离本发明的精神和范围。

Claims

权利要求
1、 一种聚合物 /无机纳米粒子复合纳米颗粒, 包含至少一个无机纳 米粒子和第一聚合物,其中所述无机纳米粒子被包裹在所述第一聚合 物中和 /或附着在所述第一聚合物上, 并且所述无机纳米粒子是含有 掺杂元素的氧化硅纳米粒子,其中所述掺杂元素选自铁、铝、硅、锂、 钠、 钾、 铍、 镁、 钙、 锶、 钡、 硼、 镓、 铟、 锗、 硒、 铅、 氮、 磷、 砷、 钴、 镍、 铜、 锌、 钒、 钛、 锰和其任意组合, 优选铁、 铝、 锌、 钛和其任意组合。
2、 根据权利要求 1的聚合物 /无机纳米粒子复合纳米颗粒, 其中所 述聚合物 /无机纳米粒子复合纳米颗粒的平均粒径为 1-1000纳米。
3、 根据权利要求 1或 2的聚合物 /无机纳米粒子复合纳米颗粒, 其 中所述第一聚合物含有选自羧基、羟基、磺酸基、氨基中一种或多种 的亲水性基团。
4、 根据权利要求 1 ~ 3中任何一项的聚合物 /无机纳米粒子复合纳 米颗粒,其中所述第一聚合物是至少部分枝化或交联的聚乳酸或乳酸 与 C2_27脂肪酸、 C2-27脂肪醇、 糖类和 /或氨基酸的共聚物。
5、 根据权利要求 1 ~ 4中任何一项的聚合物 /无机纳米粒子复合纳 米颗粒, 其中所述糖类选自蔗糖、 乳糖、 海藻糖、 壳聚糖、 甘露糖、 葡萄糖、半乳糖、麦芽糖; 所述氨基酸选自甘氨酸、赖氨酸、亮氨酸、 精氨酸、 胱氨酸、 半胱氨酸、 组氨酸、 色氨酸、 异亮氨酸、 丙氨酸、 苯丙氨酸、 丝氨酸、 苏氨酸、 蛋氨酸、 缬氨酸、 酪氨酸、 天冬氨酸和 其任意组合。
6、 根据权利要求 1 ~ 5中任何一项的聚合物 /无机纳米粒子复合纳 米颗粒, 其中所述第一聚合物含有 l_50wt%的线性聚合物, 5-60wt 的支链化聚合物, 以及 5-60wt°/。的交联聚合物。
7、 一种聚合物 /无机纳米粒子复合纳米颗粒, 包含至少一个无机纳 米粒子、第一聚合物、第二聚合物和任选的第三聚合物至第 N聚合物, 其中 N为 3至 20的整数,其中所述至少一个无机纳米粒子被包裹在所 述第一聚合物中和 /或附着在所述第一聚合物上从而形成一次复合纳 米颗粒, 所述第二聚合物处于所述一次复合纳米颗粒中和 /或附着在 所述一次复合纳米颗粒上从而形成二次复合纳米颗粒,所述第三聚合 物处于所述二次复合纳米颗粒中和 /或附着在所述二次复合纳米颗粒 上从而形成三次复合纳米颗粒, 依次地, 所述第 N聚合物处于所述 N-1次复合纳米颗粒中和 /或附着在所述 N-1次复合纳米颗粒上从而 形成 N次复合纳米颗粒。
8、 根据权利要求 7的聚合物 /无机纳米粒子复合纳米颗粒, 其中所 述聚合物 /无机纳米粒子复合纳米颗粒的平均粒径为 1-1000纳米。
9、 根据权利要求 7或 8的聚合物 /无机纳米粒子复合纳米颗粒, 其 中所述第一聚合物是含有选自 、羟基、磺 、 的亲水基团 或其组合的聚合物。
10、 根据权利要求 7 ~ 9中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述第一聚合物是至少部分枝化或交联的聚乳酸或乳 酸与 C2_27脂肪酸、 (;227脂肪醇、 糖类和 /或氨基酸的共聚物。
11、 根据权利要求 7 ~ 10中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述糖类选自蔗糖、乳糖、海藻糖、壳聚糖、甘露糖、 葡萄糖、半乳糖、麦芽糖; 所述氨基酸选自甘氨酸、赖氨酸、亮氨酸、 精氨酸、 胱氨酸、 半胱氨酸、 组氨酸、 色氨酸、 异亮氨酸、 丙氨酸、 苯丙氨酸、 丝氨酸、 苏氨酸、 蛋氨酸、 缬氨酸、 酪氨酸、 天冬氨酸和 其任意组合。
12、 根据权利要求 7 ~ 11中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述第一聚合物含有 1-50\^%的线性聚合物, 5-60wt% 的支链化聚合物 , 以及 5-6 Owt。/。的交联聚合物。
13、 根据权利要求 7 ~ 12中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒, 其中所述无机纳米粒子选自氧化硅、 氧化钛、 氧化铝、 氧 化锌、 氧化铁、 硒化镉、 氧化锆和其任意组合。
14、 根据权利要求 7 ~ 13中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述无机纳米粒子还含有掺杂元素,所述掺杂元素选 自铁、 铝、 硅、 锂、 钠、 钾、 铍、 镁、 钙、 锶、钡、 硼、 镓、铟、 锗、 硒、 铅、 氮、 磷、 砷、 钴、 镍、 铜、 锌、 钒、 钛、 锰和其任意组合。
15、 根据权利要求 7 ~ 14中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述第二聚合物至第 N聚合物相同或不同,各自独立 地为由乙烯基单体形成的均聚物或共聚物。
16、 根据权利要求 15的聚合物 /无机纳米粒子复合纳米颗粒,其中 所述乙烯基单体选自 α -烯烃、 氯乙烯、 丙烯腈、 偏氟乙烯、 四氟乙 烯、 三氟氯乙烯、 (甲基) 丙烯酸的^-2。烷基酯(如(甲基) 丙烯酸 甲酯、丙浠酸乙酯、丙烯酸丁酯、丙浠酸辛酯、丙烯酸十八烷基酯等)、 乙烯、 丙烯、异丁烯、 丁二烯、异戊二烯、异氰酸酯化合物、苯乙烯、 苯甲酸乙烯酯、 异辛酯、 2-氯代 -2-氟代乙烯、 肉桂酸甲酯、 顺丁烯 二酸酯、 2 , 4-二氯代苯乙烯、 二甲基丙烯醚、 甲基丙烯酸、 顺丁烯 二酸酐、 乙烯基烷基醚、偏二氯乙烯、 氯代丙烯酸甲酯、 4-Ν, Ν-二曱 氨基 -2-氯代苯乙烯、 4-氯代苯乙烯、 甲基乙二醇、 甲基丙烯酰胺二 甲胺、十八酸乙烯酯、 2-甲基代戊基乙浠、 甲基丙烯酰胺间-甲苯胺、 三氟代曱基乙烯、 异丙烯基甲基酮、 3-氟代 -三氟代曱基乙烯、 二 甲基丙烯基胺、 二乙烯硫醚、 苯亚甲基 -瘗哈乙酮、 异丙基甲基酮、 醋酸乙烯酯、 二环戊二烯、 苯亚甲基-苯乙酮、 糠基丙酮、 辛酸乙烯 酯、 曱基丙烯酸羟乙酯和其任意组合。
17、 根据权利要求 7 ~ 16中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒, 其中所述第一聚合物与所述第二聚合物形成接枝共聚物、 交联共聚物、 海岛结构、 互穿网络或半互穿网络。
18、 根据权利要求 7 ~ 17中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒,其中所述第一聚合物、所述第二聚合物和所述第三聚合物 至任选的第 N聚合物形成接枝共聚物、 交联共聚物、海岛结构、互穿 网络或半互穿网络。
19、 根据权利要求 7 ~ 18中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒, 其中所述第一聚合物与无机纳米粒子重量比为 100: 1至 1: 100, 所述第二至第 N聚合物与无机纳米粒子的重量比各自为 1000: 1至 1: 1000。
20、 一种制备根据权利要求 1 ~ 6中任何一项的聚合物 /无机纳米 粒子复合纳米颗粒的方法, 包括:
1)提供第一聚合物;
2)在所述第一聚合物处形成无机纳米粒子或者将已经形成的无 机纳米粒子包裹、 沉积和 /或吸附在所述第一聚合物的纳米颗 粒处。
21、 一种制备根据权利要求 7 ~ 19中任何一项的聚合物 /无机纳米 粒子复合纳米颗粒的方法, 包括:
1)提供第一聚合物;
2)在所述第一聚合物处形成无机纳米粒子或者将已经形成的无 机纳米粒子包裹、 沉积和 /或吸附在所述第一聚合物处, 从而 形成一次复合纳米颗粒;
3)在所述一次复合纳米颗粒处形成第二聚合物从而形成二次复 合纳米颗粒; 和
4)任选地,依次在 N-1次复合纳米颗粒处形成第 N聚合物从而形 成 N次复合纳米颗粒, 其中 N为 3-20的整数。
22、 一种含有根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米 粒子复合纳米颗粒的组合物。
23、 一种由根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒 子复合纳米颗粒稳定的分散体, 包含由所述聚合物 /无机纳米粒子复 合纳米颗粒稳定的疏水性分散相和水性连续相。
24、 根据权利要求 23的分散体, 其中所述分散相中含有农药活性 成分、 医药活性成分、化妆品活性成分、 可聚合单体成分、 聚合物成 分或其组合。
25、 根据权利要求 24的分散体, 其中所述农药活性成分选自三唑 磷、 二嗪碑、 毒死蜱、 氯氰菊酯、 乙草胺和氟虫腈。
26、 根据权利要求 24的分散体, 其中所述医药活性成分选自紫杉 醇、 黄芪曱苷和冬凌草甲素。
27、 一种水性涂料,包含根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复合纳米颗粒。
28、 根据权利要求 27的水性涂料,其中所述聚合物 /无机纳米粒子 复合纳米颗粒为所述水性涂料的主要成膜物质。
29、 根据权利要求 27或 28的水性涂料, 其中所述聚合物 /无机纳 米粒子复合纳米颗粒处于分散相。
30、 根据权利要求 27 ~ 29中任何一项的水性涂料, 其中所述水性 涂料用作防水涂料、 木器涂料或金属防腐涂料。
31、 根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒在亲水相中分散疏水液体和 /或固体的用途。
32、 根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒在亲水相中稳定疏水液体和 /或固体分散相的用途。
33、 根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒在亲水相中作为模板进行分散聚合的用途。
34、 根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复合 纳米颗粒在亲水相中作为乳化剂进行乳液聚合的用途。
35、 一种在水性介质中分散疏水性液体和 /或固体的方法, 包括:
1) 提供水性介质;
2) 提供一种或多种疏水性液体和 /或固体;
3) 在所述水性介质中勾化所述一种或多种疏水性液体和 /或固体 和根据权利要求 1 ~ 19中任何一项的聚合物 /无机纳米粒子复 合纳米颗粒。
PCT/CN2010/072657 2009-05-12 2010-05-12 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途 WO2010130206A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/320,371 US9139430B2 (en) 2009-05-12 2010-05-12 Composite nanogranules from polymer/inorganic nanoparticles, preparation method thereof and use of the same
EP10774547A EP2431413A4 (en) 2009-05-12 2010-05-12 COMPOSITE NANOGRANULES FORMED FROM POLYMER / INORGANIC MATERIAL NANOPARTICLES, PREPARATION METHOD AND USE THEREOF
JP2012510100A JP5634505B2 (ja) 2009-05-12 2010-05-12 ポリマー/無機ナノ粒子からのコンポジットナノ顆粒、その調製方法およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910135275.5 2009-05-12
CN2009101352755A CN101885905B (zh) 2009-05-12 2009-05-12 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途

Publications (1)

Publication Number Publication Date
WO2010130206A1 true WO2010130206A1 (zh) 2010-11-18

Family

ID=43072012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072657 WO2010130206A1 (zh) 2009-05-12 2010-05-12 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途

Country Status (5)

Country Link
US (1) US9139430B2 (zh)
EP (1) EP2431413A4 (zh)
JP (1) JP5634505B2 (zh)
CN (1) CN101885905B (zh)
WO (1) WO2010130206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168125A1 (en) * 2022-03-04 2023-09-07 The Regents Of The University Of California Compositions and methods for targeted delivery of chemicals and biomolecules to plants and fungi

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2626388T (pt) * 2012-02-09 2016-08-17 Omya Int Ag Uma composição e método para o controlo da molhabilidade de superfícies
BR112014024559A2 (pt) * 2012-04-20 2017-09-19 Valspar Sourcing Inc método para preparar uma dispersão de trituração de pigmento de partículas de compósito de polímero de pigmento de dióxido de titânio, dispersão de trituração de pigmento, e, composição de revestimento.
US9102576B1 (en) 2012-05-31 2015-08-11 The United States Of America As Represented By The Secretary Of The Air Force Particulate-based reactive nanocomposites and methods of making and using the same
CN103254470B (zh) * 2013-06-03 2016-01-20 史莹华 一种海藻糖—蒙脱石纳米复合物及其制备方法
CN103665697B (zh) * 2013-11-11 2016-07-06 上海交通大学 纳米粒子及聚合物的复合颗粒及其应用
CN103665269B (zh) * 2013-11-12 2015-12-30 江南大学 一种双亲性丙烯酸酯共聚物表面接枝改性纳米二氧化硅的制备方法
CA3005458C (en) * 2015-11-19 2022-09-20 Syracuse University Compositions of nanoparticles with radial gradients and methods of use thereof
WO2017085636A1 (en) * 2015-11-20 2017-05-26 Tata Chemicals Limited A crop protection formulation and method of preparation thereof
CN105363041B (zh) * 2015-12-10 2019-01-11 澳门科技大学 Ge11多肽修饰的冬凌草甲素-纳米硒复合物及其制备方法和应用
CN105802283A (zh) * 2016-04-06 2016-07-27 温州市鹿城区中津先进科技研究院 用于高遮盖力白色颜料的核壳结构纳米二氧化钛及其制备方法
CN106629580B (zh) * 2016-11-08 2018-07-20 华南理工大学 一种氧化石墨/二氧化硅/碳纳米管多维度复合纳米材料的制备方法
CN106727691A (zh) * 2016-12-21 2017-05-31 湖北工程学院 用于抗肿瘤的药物组合物及其制备方法、注射液
CN106833184B (zh) * 2016-12-23 2018-11-13 句容亿格纳米材料厂 一种纳米改性抗污乳胶漆及其制备方法和应用
CN107134587B (zh) * 2017-04-26 2019-06-18 华中科技大学 一种固态电解质用无机纳米粒子填料及其制备方法
CN107574498A (zh) * 2017-09-25 2018-01-12 安徽华祺汽车装饰有限公司 一种耐油污汽车坐垫的制备方法
CN110240671B (zh) * 2018-03-09 2021-11-19 浙江省化工研究院有限公司 一种氟树脂及其制备方法
CN109896805A (zh) * 2018-06-27 2019-06-18 湖北工业大学 一种纳米氧化铝改性浆锚连接用灌浆料的制备方法
CN108896676B (zh) * 2018-07-12 2020-11-06 吉林化工学院 一种磁性纳米微球及其对水体中五种痕量氟喹诺酮类抗生素萃取及分析的方法
CN111675887A (zh) * 2018-08-22 2020-09-18 嵊州市仲明新材料科技有限公司 可降解环保塑料薄膜及其制备方法
CN111346674A (zh) * 2018-12-24 2020-06-30 上海萃励电子科技有限公司 一种CdSe负载聚1,4-萘二胺的合成方法
CN109750258A (zh) * 2018-12-26 2019-05-14 北京工业大学 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法
US11466210B2 (en) * 2019-02-13 2022-10-11 King Fahd University Of Petroleum And Minerals Biomediated-titanium nanocomposite for corrosion protection
CN109897353B (zh) * 2019-03-19 2021-04-20 安徽倍健特生物科技有限公司 高强度可生物降解纳米塑料及其制备方法
CN111763276B (zh) * 2019-04-02 2022-04-29 中国科学院青岛生物能源与过程研究所 一种液态金属/高分子复合介电材料及其制备方法
CN111117297B (zh) * 2019-09-18 2021-04-13 江苏华力索菲新材料有限公司 亚微米级高纯二氧化钛的表面包覆工艺
CN111334265A (zh) * 2020-04-13 2020-06-26 西南石油大学 一种粘土矿物纳米水凝胶封堵剂及水基钻井液
AU2020465258A1 (en) * 2020-08-31 2023-04-06 Dow Global Technologies Llc Aqueous composition
CN112608415B (zh) * 2020-11-25 2022-11-08 万华化学集团股份有限公司 一种纳米氧化锌/乙烯基聚合物复合微球及其制备方法和应用
CN112812675B (zh) * 2021-01-12 2023-04-04 广州市宝裕新型材料有限公司 一种汽车玻璃透光隔热膜及其制备方法
CN112940206B (zh) * 2021-03-03 2023-01-17 广东惠和硅制品有限公司 一种改性的硅溶胶与丙烯酸酯复合乳液及涂料
CN113694822B (zh) * 2021-08-13 2022-11-04 江南大学 一类无表面活性剂成分的高效复合乳化剂及其应用
CN114634738B (zh) * 2022-03-18 2023-01-17 常州大学 一锅法同时制备不同粘附性超疏水表面的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369511A (zh) * 2001-02-12 2002-09-18 上海绿纳化工材料技术有限公司 一种“有机高分子和无机纳米材料构成的核-壳结构杂化体”的制备
CN1530327A (zh) 2003-03-12 2004-09-22 上海拜坡生物科技有限公司 一种晶型和大小可控的纳米二氧化钛材料的制备方法
CN1530397A (zh) 2003-03-12 2004-09-22 上海拜坡生物科技有限公司 一种乳酸混合聚合物及其制备方法
CN1583575A (zh) 2004-06-03 2005-02-23 上海交通大学 水中易分散的超顺磁纳米粒子的制备方法
CN1679579A (zh) * 2005-01-26 2005-10-12 上海大学 氟尿嘧啶载药微球及其制备方法
CN101016403A (zh) * 2007-02-02 2007-08-15 浙江大学 用酸性硅溶胶制备聚乳酸/二氧化硅纳米复合材料的方法
CN101245126A (zh) * 2008-02-28 2008-08-20 复旦大学 一种氧化锌-聚合物核壳型发光纳米粒子及其制备方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2967512D1 (en) * 1978-05-30 1985-10-17 Wellcome Found Synergistic pyrethroid formulations and their preparation
JP3818689B2 (ja) * 1996-01-16 2006-09-06 富士写真フイルム株式会社 コロイド状シリカをコアとし、有機ポリマーをシェルとするコア/シェル状複合粒子の水性分散物及びその製造方法
WO2000044507A1 (en) * 1999-01-28 2000-08-03 The Board Of Regents For Oklahoma State University Thin films of core-shell nanoparticles
JP4970678B2 (ja) * 1999-06-10 2012-07-11 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 多層コーティングによる結晶のカプセル化
FR2808704B1 (fr) * 2000-05-10 2002-08-16 Rhodia Chimie Sa Agents tensioactifs formes par des particules minerales de dimension nanometrique de surface modifiee
US7189767B2 (en) * 2001-03-30 2007-03-13 Rohm And Haas Company Colorants, dispersants, dispersions, and inks
US7081489B2 (en) * 2001-08-09 2006-07-25 Florida State University Research Foundation Polymeric encapsulation of nanoparticles
DE60324225D1 (de) * 2002-06-14 2008-12-04 Rohm & Haas Farbmittel, Dispergiermittel und Dispersionen enthaltend polymere Nanopartikel
DE10331439B3 (de) * 2003-07-10 2005-02-03 Micromod Partikeltechnologie Gmbh Magnetische Nanopartikel mit verbesserten Magneteigenschaften
US20050065238A1 (en) 2003-09-23 2005-03-24 Lark John C. Encapsulated nanoparticles, products containing the same, and methods for using the same
FR2867180B1 (fr) * 2004-03-02 2006-06-16 Univ Claude Bernard Lyon Nanoparticules hybrides comprenant un coeur de ln203 porteuses de ligands biologiques et leur procede de preparation
KR100572400B1 (ko) 2004-05-11 2006-04-24 재단법인서울대학교산학협력재단 반도체 나노입자 캡슐형 비닐계 중합체 입자를 이용한 플라스틱 성형체 및 그 제조방법
EP1773511A4 (en) 2004-05-27 2008-02-20 Nanophase Tech Corp IMPROVING SCRATCH STRENGTH FOR ARTICLES CONTAINING A COMBINATION OF NANO-CRYSTALLINE METAL OXIDE PARTICLES, POLYMER DISPERSING AGENTS, AND ACTIVE SURFACE MATERIALS
ES2317278T3 (es) * 2004-07-16 2009-04-16 Alberdingk Boley Gmbh Dispersion acuosa de aglutinante con nanoparticulas, procedimiento para su preparacion y su uso.
EP1866155A2 (en) 2005-04-05 2007-12-19 Bar-Ilan University New core and core-shell nanoparticles containing iodine for x-ray imaging
DE102005039579B4 (de) 2005-08-19 2022-06-30 Magforce Ag Verfahren zur Einschleusung von therapeutischen Substanzen in Zellen
US20090053512A1 (en) 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
JP5241492B2 (ja) * 2006-06-16 2013-07-17 株式会社日本触媒 ポリマー被覆金属酸化物微粒子およびその応用
GB0617480D0 (en) 2006-09-06 2006-10-18 Univ Sheffield Novel nanoparticles
ES2308901B1 (es) 2006-09-22 2009-10-30 Consejo Superior De Investigaciones Cientificas Sistemas que contienen nanoparticulas magneticas y polimeros, como nanocomposites y ferrofluidos, y sus aplicaciones.
CA2667641A1 (en) 2006-10-27 2008-05-02 The University Of Akron Organic-inorganic hybrid nanomaterials and method for synthesizing same
JP2009079106A (ja) 2007-09-26 2009-04-16 Sanyo Chem Ind Ltd 多層構造粒子の製造方法
CN102105175A (zh) * 2008-05-27 2011-06-22 香港中文大学 纳米颗粒、制备纳米颗粒和使用纳米颗粒进行细胞标记的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369511A (zh) * 2001-02-12 2002-09-18 上海绿纳化工材料技术有限公司 一种“有机高分子和无机纳米材料构成的核-壳结构杂化体”的制备
CN1530327A (zh) 2003-03-12 2004-09-22 上海拜坡生物科技有限公司 一种晶型和大小可控的纳米二氧化钛材料的制备方法
CN1530397A (zh) 2003-03-12 2004-09-22 上海拜坡生物科技有限公司 一种乳酸混合聚合物及其制备方法
CN1583575A (zh) 2004-06-03 2005-02-23 上海交通大学 水中易分散的超顺磁纳米粒子的制备方法
CN1679579A (zh) * 2005-01-26 2005-10-12 上海大学 氟尿嘧啶载药微球及其制备方法
CN101016403A (zh) * 2007-02-02 2007-08-15 浙江大学 用酸性硅溶胶制备聚乳酸/二氧化硅纳米复合材料的方法
CN101245126A (zh) * 2008-02-28 2008-08-20 复旦大学 一种氧化锌-聚合物核壳型发光纳米粒子及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Silica Nanoparticles as surfactants and fillers for latexes made by microemulsion polymerization", LANGMUIR, 2001, pages 5775 - 5789
LI XIAOMING ET AL: "Preparation and characterization of TiO2/PBA/PMMA core-shell particles", JOURNAL OF DALIAN INSTITUTE OF LIGHT INDUSTRY, vol. 25, no. 4, December 2006 (2006-12-01), pages 258, 261, XP008148601 *
QI DONG-MING ET AL.: "Anchoring of polyacrylate onto silica and formation of polyacrylate/silica nanocomposite particles via in situ emulsion polymerization", COLLOID POLYM. SCI., 2008, pages 233 - 241
See also references of EP2431413A4
XU PENG: "The study on preparation and properties of polymers and composite nanoparticles", CHINESE DOCTORAL DISSERTATION FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I, 15 August 2007 (2007-08-15), pages 13 - 14, XP008161422 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168125A1 (en) * 2022-03-04 2023-09-07 The Regents Of The University Of California Compositions and methods for targeted delivery of chemicals and biomolecules to plants and fungi
WO2023168122A1 (en) * 2022-03-04 2023-09-07 The Regents Of The University Of California Compositions and methods for targeted delivery of chemicals and biomolecules to plants and fungi

Also Published As

Publication number Publication date
JP5634505B2 (ja) 2014-12-03
EP2431413A4 (en) 2012-12-12
JP2012526863A (ja) 2012-11-01
EP2431413A1 (en) 2012-03-21
US20120064140A1 (en) 2012-03-15
CN101885905B (zh) 2013-08-21
CN101885905A (zh) 2010-11-17
US9139430B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
WO2010130206A1 (zh) 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途
JP6583645B2 (ja) 有機無機ハイブリッドナノ粒子
TWI424015B (zh) 核殼型奈米顆粒
Nguyen et al. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers
TWI307343B (en) Organocopolymers containing nanoparticles
EP2729002B1 (en) Micelle-coated organic crystalline particles
US20070154709A1 (en) Nanoparticles
TWI513777B (zh) 成膜色料及包括其之塗覆系統
EP2729531B1 (en) Formulation
MX2007004130A (es) Proceso de polimerizacion superficial y producto polimerico, utilizando agente raft.
TW201124480A (en) Polymer encapsulated aluminum particulates
JP4046451B2 (ja) 水性分散体およびその製造方法並びに塗料組成物
JP2008138218A (ja) 水性樹脂分散体、水性樹脂組成物および水性樹脂組成物の製造方法
Chan et al. Block copolymer nanoparticles are effective dispersants for micrometer-sized organic crystalline particles
Sun et al. Zwitterionic nanocapsules with salt-and thermo-responsiveness for controlled encapsulation and release
WO2010092191A2 (en) Liquid composite materials
JP2009526096A (ja) 徐放性被覆をつくるためのコーティング方法
JP2015067803A (ja) 多孔質樹脂粒子
JP3465031B2 (ja) 被覆顔料および化粧料
JP2007246913A (ja) 水性分散体およびその製造方法並びに塗料組成物
Ji et al. Revisit to the self-assembled hybrid acrylate/silica core-shell structured particles in the presence of unmodified silica particles
Hwang et al. Fabrication of hollow silica particles using copolymeric spheres prepared in supercritical carbon dioxide
JP2014111728A (ja) 多孔質樹脂粒子の製造方法
US11198106B2 (en) Method for producing microcapsules or beads
Zhao Silica/polymer composite materials: synthesis, characterization and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510100

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13320371

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010774547

Country of ref document: EP