CN109750258A - 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 - Google Patents
一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 Download PDFInfo
- Publication number
- CN109750258A CN109750258A CN201811605457.XA CN201811605457A CN109750258A CN 109750258 A CN109750258 A CN 109750258A CN 201811605457 A CN201811605457 A CN 201811605457A CN 109750258 A CN109750258 A CN 109750258A
- Authority
- CN
- China
- Prior art keywords
- target
- film
- doped
- powder
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法,所制备的材料以纯钴、三氧化二镓以及硫化锌硒化锌粉末原料通过循环致密固相烧结法,得到Ga2O3:Co:ZnS/Se陶瓷材料。以此为基础,采用脉冲激光沉积的方法制备了同样成分的纳米薄膜材料。本发明实现了过渡金属元素与透明半导体氧化元素共同掺杂硫系复合材料的制备,所制得材料集中了多种掺杂元素的特性,包括铁磁性质、半导体性质及其红外光学特性。极大地拓宽了材料的应用范围,为下一步研究创造了良好的前提条件。
Description
技术领域
本发明涉及一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法。
背景技术
0.8-25μm的红外波段既包括“分子指纹区”,又包括“大气窗口区”,具有许多重要的分子特征谱线,因此在很多领域都具有重要的研究价值。通过对它们的深入探索和分析能够使其应用于遥感探测、光电对抗定位系统、卫星通讯、激光定向红外干扰、空气污染控制、毒害气体检测、无损伤激光医疗等,贯穿着从国家国防安全到人们的日常生活,故而研发中红外波段的相关技术、材料制备等对于国家安全和国民经济建设具有十分重要的意义。
硫系材料中,以S基和Se基为主的材料由于具有较长波长的红外透光截止波段,具有较高的线性折射率和高非线性系数,较低的光学损耗、较低的声子能、较高的线性和非线性折射率、较好的化学稳定性、独特的光敏特性等特点,是产生中红外超连续谱激光的理想非线性介质材料,也成为当下用于发光辐射基质材料的最佳选择。
在众多致改性的掺杂元素中,过渡金属元素(Transition metal,TM)由于在红外波段具有丰富的发射能级使其成为制备红外激光最具有潜力的激活离子。成为了新的中红外激光发展方向。相比Fe,Ni,Cu,Cr,Mn,Co元素具有丰富的吸收及发射能级和已经报道的稀磁性质,它的掺杂可以加强和扩展硫系材料的在中红外方面的光学特性及相关改性。
此外,在红外材料受到日益重视的同时,可见光光谱范围内诸多材料的重要性也不容忽视,尤其是半导体材料,越来越受到广大光电企业、厂商和研究者的青睐。它们已经在太阳能电池、显示器、触摸平板和热功能窗的透明电极等领域得到了广泛应用,其重要的经济价值和国防用途是显而易见的。Ga2O3是一种宽禁带半导体(4.9eV)材料,其导电性能和发光性能长期以来一直引起人们的注意。它是一种标准的透明氧化物半导体材料,在光电子器件方面有着广泛的应用,包括Ga基半导体材料的绝缘层、紫外线滤光片以及氧气化学探测器。但目前并没有一种掺杂方式能结合过渡金属与透明半导体材料的优势,极大的限制了材料的应用范围和进一步研究的方向。
发明内容
本发明的目的是提供一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法。
本发明的目的通过如下技术方案实现:采用循环致密固相烧结法制备Ga2O3: Co:ZnS/Se陶瓷材料,将所制备好的陶瓷材料作为靶材使用脉冲激光沉积法制备Ga2O3:Co:ZnS/Se纳米薄膜材料,具体步骤如下:
S1在陶瓷靶材制备过程中,首先根据设计比例进行理论材料需求量的计算,得出各掺杂物质的实际用量。然后将各成分粉末原料依次放入电子天平秤中进行准确称量,电子天平秤的精确度为0.1mg,当所有原料均满足配比要求时,将原料进行混合。
S2研磨是为了让不同粉末充分混合,初步细化晶粒。将混合后的粉末原料放入人造玛瑙制成的研钵中,然后使用球磨仪进行机械研磨,进一步细化原材料粉末。随后将充分混合好的粉末放入烧结容器中,在高温管式炉中进行预烧结,预烧结的目的是进行固相反应,并且减少压靶成型后再烧结的靶材收缩率。
S3将预烧结后的粉末进行二次研磨,目的是为了深度细化粉末,以利于后续的成型,保证烧结靶材的均匀性,通过在微小粉体颗粒中金属离子的扩散而产生相变,粉体颗粒越小,形状越规则,相变越容易进行,所以通过适当延长原材料研磨时间与增加研磨强度的方法可以减少较大颗粒的存在,同时增加了靶材的致密度。
S4研磨后采用粉末压片机对初次研磨的粉末进行压制成型。将压制成表准模具圆柱体的靶材进行最终的高温烧结,采用的设备是高温管式气氛炉,使用刚玉舟作为靶材的烧结承载容器,采用固相法烧结的温度取组成成分最低熔点的1/2到2/3之间。
S5最后进行薄膜实验,实验将所选择衬底分别依次放入丙酮、酒精和去离子水中,通过超声波清洗机各清洗5-10分钟。将制备好的靶材安装与靶材固定位置。进而通过机械泵抽至真空低于10.0Pa,然后开通分子泵抽至本底真空小于5.0×10-4Pa。选择制备条件,即温度(RT-800℃)、压强(2-50pa)、及激光功率(100-600mW)等因素的变化。接着利用脉冲Nd:YAG激光器发射的三次谐波,通过一焦距为60cm的透镜以45度角聚焦在靶上,设定激光功率待稳定。当上述步骤全部完成后,开始薄膜的沉积,沉积时间30-50min,保证薄膜的厚度和载流子浓度。
制备参数为:手动研磨2-4h小时,机械研磨3h,烧结温度分别为600℃、 800℃和1000℃,预烧时间为6小时,冷却至室温,使用球磨仪再次进行机械研磨3h,液压压靶机压力12MPa,保持时间5分钟。在原有烧结温度上提200℃,保温时间11小时。最终得到99.99%的Ga2O3:Co:ZnS/Se陶瓷材料。
制备的Ga2O3:Co:ZnS/Se陶瓷材料为激光轰击靶材,以Al2O3和SiO2为衬底,采用脉冲激光沉积法制备共掺硫系复合纳米薄膜,参数包括:机械泵抽至 10.0Pa,分子泵抽至5.0×10-4Pa,制备条件选择改变衬底温度的变化,将衬底温度分别从室温升高至800℃。利用调Q的Nd:YAG脉冲激光器,激光波长355nm,重复频率10Hz,脉宽10ns,通过一焦距为60cm的透镜以45角聚焦在靶材上,调节靶基距为4.5cm,激光功率调节至400mw,沉积时间为30min。
除制备条件改为真空腔内压强变化,变化范围(2-10Pa)。
本发明具有的有益效果:
本发明采用循环致密固相烧结法制备的复合陶瓷材料,在不破换原有 ZnS/Se结构的基础上,让Co原子取代Zn的位置,让Ga2O3形成一种半导体包覆层。不仅制备出具有铁磁性、半导体性、红外光学特性等诸多性质的复合材料,同时极大地拓展了材料的应用方向。
附图说明
图1是实施例1制备的Ga2O3:Co:ZnS/Se陶瓷材料的X射线衍射谱(XRD)。可以看出ZnS和ZnSe的结构并未被破坏,Co成功替代部分Zn原子,Ga2O3形成保护层结构;
图2是实施例1制备的Ga2O3:Co:ZnS/Se陶瓷材料的X射线光电子能谱 (XPS)。可以看出,Co和Ga元素均被成功引入,证明掺杂是有效的;
图3是实施例1制备的Ga2O3:Co:ZnS/Se纳米薄膜材料的透射图谱。可以看出,材料结合了两种掺杂物的特性,极大地拓宽了光谱透射范围;
图4是实施例1制备的Ga2O3:Co:ZnS/Se纳米薄膜材料的原子力显微镜 (AFM)测得的表面形貌图。图中薄膜表征在2×2微米范围内,最高峰高度不到40nm,表面粗糙度为2.03nm,说明表面光滑平整,材料掺杂彻底。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步说明,但本发明不限于以下实施例。
实施例1
1)制备Ga2O3:Co:ZnS/Se陶瓷材料
将粉末态原材料(纯度为4N)手动研磨2-4h小时,机械研磨3h后,放入烧结船中进行预烧结,烧结温度分别为600℃、800℃和1000℃,预烧时间为6 小时,冷却至室温,然后进行二次研磨,使用球磨仪再次进行机械研磨3h,进一步的细化原材料粉末。液压压靶机压力设置为12MPa,保持时间为5分钟。在原有烧结温度上提200℃,进行最终的高温烧结,保温时间设置为11小时。最终得到99.99%的Ga2O3:Co:ZnS/Se陶瓷材料。
2)制备Ga2O3:Co:ZnS/Se纳米薄膜
以步骤1中制备的Ga2O3:Co:ZnS/Se陶瓷材料为激光轰击靶材,以Al2O3 和SiO2为衬底,采用脉冲激光沉积法制备共掺硫系复合纳米薄膜,将真空腔通过机械泵抽至10.0Pa,分子泵抽至5.0×10-4Pa,制备条件选择改变衬底温度的变化,将衬底温度分别从室温升高至800℃。利用调Q的Nd:YAG脉冲激光器,激光波长355nm,重复频率10Hz,脉宽10ns,通过一焦距为60cm的透镜以45 角聚焦在靶材上,调节靶基距为4.5cm,激光功率调节至400mw,沉积时间为 30min。
实施例2
1)同实施例1中的步骤1);
2)除将制备条件选择为改变腔内压强(2Pa-10Pa),其他操作均同实施例1 中的步骤2)。
Claims (4)
1.一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法,其特征在于:采用循环致密固相烧结法制备Ga2O3:Co:ZnS/Se陶瓷材料,将所制备好的陶瓷材料作为靶材使用脉冲激光沉积法制备Ga2O3:Co:ZnS/Se纳米薄膜材料,具体步骤如下:
S1在陶瓷靶材制备过程中,首先根据设计比例进行理论材料需求量的计算,得出各掺杂物质的实际用量;然后将各成分粉末原料依次放入电子天平秤中进行准确称量,电子天平秤的精确度为0.1mg,当所有原料均满足配比要求时,将原料进行混合;
S2研磨是为了让不同粉末充分混合,初步细化晶粒;将混合后的粉末原料放入人造玛瑙制成的研钵中,然后使用球磨仪进行机械研磨,进一步细化原材料粉末;随后将充分混合好的粉末放入烧结容器中,在高温管式炉中进行预烧结,预烧结的目的是进行固相反应,并且减少压靶成型后再烧结的靶材收缩率;
S3将预烧结后的粉末进行二次研磨,目的是为了深度细化粉末,以利于后续的成型,保证烧结靶材的均匀性,通过在微小粉体颗粒中金属离子的扩散而产生相变,粉体颗粒越小,形状越规则,相变越容易进行,所以通过适当延长原材料研磨时间与增加研磨强度的方法可以减少较大颗粒的存在,同时增加了靶材的致密度;
S4研磨后采用粉末压片机对初次研磨的粉末进行压制成型;将压制成表准模具圆柱体的靶材进行最终的高温烧结,采用的设备是高温管式气氛炉,使用刚玉舟作为靶材的烧结承载容器,采用固相法烧结的温度取组成成分最低熔点的1/2到2/3之间;
S5最后进行薄膜实验,实验将所选择衬底分别依次放入丙酮、酒精和去离子水中,通过超声波清洗机各清洗5-10分钟;将制备好的靶材安装与靶材固定位置;进而通过机械泵抽至真空低于10.0Pa,然后开通分子泵抽至本底真空小于5.0×10-4Pa;选择制备条件,即温度RT-800℃、压强2-50pa、及激光功率100-600mW的变化;接着利用脉冲Nd:YAG激光器发射的三次谐波,通过一焦距为60cm的透镜以45度角聚焦在靶上,设定激光功率待稳定;当上述步骤全部完成后,开始薄膜的沉积,沉积时间30-50min,保证薄膜的厚度和载流子浓度。
2.根据权利要求1所述的一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法,其特征在于:制备参数为:手动研磨2-4h小时,机械研磨3h,烧结温度分别为600℃、800℃和1000℃,预烧时间为6小时,冷却至室温,使用球磨仪再次进行机械研磨3h,液压压靶机压力12MPa,保持时间5分钟;在原有烧结温度上提200℃,保温时间11小时;最终得到99.99%的Ga2O3:Co:ZnS/Se陶瓷材料。
3.根据权利要求1所述的一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法,其特征在于:制备的Ga2O3:Co:ZnS/Se陶瓷材料为激光轰击靶材,以Al2O3和SiO2为衬底,采用脉冲激光沉积法制备共掺硫系复合纳米薄膜,参数包括:机械泵抽至10.0Pa,分子泵抽至5.0×10-4Pa,制备条件选择改变衬底温度的变化,将衬底温度分别从室温升高至800℃;利用调Q的Nd:YAG脉冲激光器,激光波长355nm,重复频率10Hz,脉宽10ns,通过一焦距为60cm的透镜以45角聚焦在靶材上,调节靶基距为4.5cm,激光功率调节至400mw,沉积时间为30min。
4.根据权利要求3所述的一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法,其特征在于:除制备条件改为真空腔内压强变化,变化范围2-10Pa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811605457.XA CN109750258A (zh) | 2018-12-26 | 2018-12-26 | 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811605457.XA CN109750258A (zh) | 2018-12-26 | 2018-12-26 | 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109750258A true CN109750258A (zh) | 2019-05-14 |
Family
ID=66403067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811605457.XA Pending CN109750258A (zh) | 2018-12-26 | 2018-12-26 | 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109750258A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112851351A (zh) * | 2020-08-29 | 2021-05-28 | 中国科学院地球化学研究所 | 一种固相反应直接合成铁掺杂硫化锌块材的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101876059A (zh) * | 2009-11-27 | 2010-11-03 | 北京工业大学 | 一种透明氧化物半导体InGaZn4O7薄膜的制备方法 |
CN101885905A (zh) * | 2009-05-12 | 2010-11-17 | 无锡纳奥新材料科技有限公司 | 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途 |
CN104726825A (zh) * | 2015-02-27 | 2015-06-24 | 河北大学 | 一种p型透明导电钴氧化物金属纳米复合薄膜的制备方法 |
-
2018
- 2018-12-26 CN CN201811605457.XA patent/CN109750258A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101885905A (zh) * | 2009-05-12 | 2010-11-17 | 无锡纳奥新材料科技有限公司 | 聚合物/无机纳米粒子复合纳米颗粒及其制备和用途 |
CN101876059A (zh) * | 2009-11-27 | 2010-11-03 | 北京工业大学 | 一种透明氧化物半导体InGaZn4O7薄膜的制备方法 |
CN104726825A (zh) * | 2015-02-27 | 2015-06-24 | 河北大学 | 一种p型透明导电钴氧化物金属纳米复合薄膜的制备方法 |
Non-Patent Citations (2)
Title |
---|
PANYONG.ET.AL: "Investigation into Co and Ga2O3 co-doped ZnSe chalcogenide composite semiconductor thin films fabricated using PLD", 《RSC ADVANCES》 * |
PANYONG.ET.AL: "Preparation and characterization of Co and Ga2O3-codoped ZnS and ZnSe bulk ceramics", 《RSC ADVANCES》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112851351A (zh) * | 2020-08-29 | 2021-05-28 | 中国科学院地球化学研究所 | 一种固相反应直接合成铁掺杂硫化锌块材的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rubio et al. | Electronic structure and optical quality of nanocrystalline Y2O3 film surfaces and interfaces on silicon | |
Sakthivel et al. | Different rare earth (Sm, La, Nd) doped magnetron sputtered CdO thin films for optoelectronic applications | |
Yang et al. | Linear and nonlinear optical properties of Ag nanocluster/BaTiO 3 composite films | |
Fakhri et al. | Thermal oxidation effects on physical properties of CuO2 thin films for optoelectronic application | |
Allabergenov et al. | Effective control over near band-edge emission in ZnO/CuO multilayered films | |
Korzenski et al. | PLD-grown Y2O3 thin films from Y metal: An advantageous alternative to films deposited from yttria | |
Khalfallah et al. | Hydrophilic nickel doped porous SnO2 thin films prepared by spray pyrolysis | |
Shestakov et al. | Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host | |
Khan et al. | Structural and optical properties of broccoli-based nanostructured ZnS films synthesized by powder vapor transport technique | |
Nekvindova et al. | Er implantation into various cuts of ZnO–experimental study and DFT modelling | |
US11242262B2 (en) | Self-propagating low-temperature synthesis and pre-treatment of chalcogenides for spark plasma sintering | |
Boyer et al. | Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics | |
Ramadan et al. | Silver-enriched ZnO: Ag thin films deposited by magnetron co-sputtering: Post annealing effects on structural and physical properties | |
Zampiva et al. | Luminescent anti-reflection coatings based on Er3+ doped forsterite for commercial silicon solar cells applications | |
Guo et al. | Pulsed laser deposition of ZnGa2O4 thin films on Al2O3 and Si substrates for deep optoelectronic devices applications | |
Al-Kuhaili et al. | Optical constants of hydrogenated zinc oxide thin films | |
Wu et al. | Effect of Ho addition on the optical and electrical properties of 0.98 KNN-0.02 SYT ceramics | |
Kozlovskiy et al. | Study of the effect of low-energy irradiation with O 2+ ions on radiation hardening and modification of the properties of thin TiO 2 films | |
CN109750258A (zh) | 一种制备钴和三氧化二镓共掺硫化锌硒化锌陶瓷与薄膜的方法 | |
Maneeshya et al. | Europium incorporated barium titanate thin films for optical applications | |
Khan et al. | Synthesis of flower like microstructured CdZnS films for optoelectronic applications by powder vapor transport technique | |
Mohammadigharehbagh et al. | The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique | |
Li et al. | Effect of temperature fields on optical properties of La2Ti2O7 thin films | |
Irankhah et al. | Optical and mechanical properties of transparent YAG ceramic produced by reactive spark plasma sintering (RSPS) | |
Morimoto et al. | Effects of Cu addition on rapid solid-state crystal growth of (K, Na) NbO3 single crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190514 |