WO2010122759A1 - 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム - Google Patents

貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム Download PDF

Info

Publication number
WO2010122759A1
WO2010122759A1 PCT/JP2010/002802 JP2010002802W WO2010122759A1 WO 2010122759 A1 WO2010122759 A1 WO 2010122759A1 JP 2010002802 W JP2010002802 W JP 2010002802W WO 2010122759 A1 WO2010122759 A1 WO 2010122759A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
temperature
heating
outlet
unit
Prior art date
Application number
PCT/JP2010/002802
Other languages
English (en)
French (fr)
Inventor
長田映子
林田岳
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080001962.9A priority Critical patent/CN102084190B/zh
Priority to US13/001,626 priority patent/US9170030B2/en
Priority to JP2010545711A priority patent/JP5498959B2/ja
Priority to EP10766821.2A priority patent/EP2423617B1/en
Publication of WO2010122759A1 publication Critical patent/WO2010122759A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • F24H15/457Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible using telephone networks or Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/12Placed outside of
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/26Vertically distributed at fixed positions, e.g. multiple sensors distributed over the height of a tank, or a vertical inlet distribution pipe having a plurality of orifices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the present invention relates to a hot water storage type hot water supply apparatus that boils hot water in a hot water storage tank and supplies hot water using the hot water stored in the hot water storage tank.
  • a hot water storage type hot water supply device when boiling hot water in a hot water storage tank, low temperature water at the bottom of the hot water storage tank is sent from a take-out port to a heating means such as a heat pump with a boiling pump, and heated to high temperature water by the heating means. Supply the water gradually from the top of the hot water storage tank to the hot water.
  • the hot water stored in the hot water storage tank is used for hot water supply, heating, bathing, etc. Especially in heating, bathing, etc., the hot water stored in the hot water tank is used as a radiator or heat exchanger. Heat is absorbed by the vessel to become medium-temperature water and then returned to the hot water storage tank.
  • Hot water in the hot water storage tank is stored in the lower part of the hot water storage tank due to the decrease in temperature due to heat dissipation due to heat dissipation, and the hot water becomes medium hot water, or the increase in intermediate hot water used for heating and chasing. For this reason, in the conventional hot water storage type hot water supply apparatus, hot water that has become medium-temperature water is supplied to the heating means, and is heated again.
  • a subtank is arranged between the hot water storage tank and the heating means, and the medium temperature water is changed to low temperature water by the subtank and then sent to the heating means so that a heating operation by a highly efficient heat pump heat source device is always possible.
  • a hot water storage type hot water supply apparatus has been proposed (see, for example, Patent Document 1).
  • the hot water is taken out from the middle part of the hot water tank and used for hot water supply, and the heating return position is arranged in the middle part of the hot water tank. Therefore, a hot water storage type hot water supply apparatus that keeps the lower part of the hot water storage tank at a low temperature due to the difference in specific gravity of water having different hot water temperatures has also been proposed (see, for example, Patent Document 2).
  • a hot water storage type hot water supply apparatus has been proposed in which hot water is taken out from an intermediate part of a hot water storage tank so that medium-temperature water can be actively used for heating, and boiling control is performed according to the temperature and flow rate required for heating (for example, see Patent Document 3).
  • JP 2006-343012 A Japanese Patent No. 3868924 JP 2007-232345 A
  • the conventional hot-water storage type hot water supply apparatus has a problem that efficient operation may not be performed as described below.
  • the hot water stored in the hot water storage tank dissipates heat over time, and hot water is used from the hot water storage tank to replenish the low temperature water supply due to the generation of hot water supply load and heating and reheating.
  • hot water is used from the hot water in the hot water storage tank and the hot water whose temperature is lowered by that amount is returned to the hot water storage tank, a large amount of intermediate hot water is generated, and the amount of heat stored in the hot water storage tank is reduced.
  • the “power consumption necessary to cover the load” includes power to heat and store hot water in hot water storage tanks with a heat pump. Inefficient boiling due to medium-temperature water leads to deterioration of the efficiency of working equipment.
  • the amount of heat of the hot water itself is positive (> 0), but hot water that cannot be used as a load is also stored.
  • the amount of heat that can be used in the hot water storage tank that is, the effective heat amount, is reduced.
  • the hot water storage tank there is a high possibility that a large amount of hot water that cannot be used as a load is stored.
  • This invention is for solving the said subject, and it aimed at providing the hot water storage type hot water supply apparatus which can perform an efficient driving
  • a hot water storage type hot water supply apparatus is a hot water storage type hot water supply apparatus that supplies heated hot water to a load section where a customer uses hot water.
  • a hot water storage tank in which a plurality of hot water outlets for taking out hot water at different heights are formed, a supply temperature that is the temperature of hot water supplied from the hot water storage tank to the load section, and the hot water outlet Based on the temperature of the hot water to be taken out, out of the plurality of hot water outlets, an outlet selection unit for selecting a hot water outlet from which hot water is taken out, and from the selected hot water outlet, the hot water outlet is taken into the hot water storage tank.
  • a heating unit for heating the returned hot water.
  • the hot water outlet is selected based on the supply temperature and the temperature of the hot water taken out from the hot water outlet, and the hot water taken out from the hot water outlet is heated.
  • the supply temperature is the temperature of hot water supplied to the load section, that is, the temperature of hot water that can be effectively used as a load.
  • hot water having a temperature lower than the supply temperature is hot water having a temperature that cannot be used as a load.
  • the hot water outlet can be selected and heated so that hot water at a temperature that cannot be used as a load in the hot water storage tank is taken out. Therefore, an efficient operation can be performed by suppressing an increase in hot water having a temperature that cannot be used as a load in the hot water storage tank and increasing an increase in the effective heat amount in the hot water storage tank.
  • the outlet selecting unit selects a hot water outlet from which the hot water having a temperature lower than the supply temperature is taken out of the plurality of hot water outlets. Specifically, the outlet selection unit selects a hot water outlet from which hot water having a temperature lower than the supply temperature and closest to the supply temperature is taken out.
  • a hot water outlet for extracting hot water having a temperature lower than the supply temperature and closest to the supply temperature is selected from the plurality of hot water outlets. For this reason, efficient operation is achieved by selecting hot water outlets through simple comparisons, suppressing the increase in hot water that cannot be used as a load in the hot water tank, and increasing the effective heat quantity in the hot water tank. It can be performed.
  • the outlet selection unit is calculated by changing the amount of hot water having a temperature lower than the supply temperature to a heat amount lower than the heat amount from the plurality of hot water outlets, and the heating unit heats the hot water.
  • the hot water outlet with the highest COP indicating the energy efficiency in doing so may be selected. Specifically, the amount of hot water taken out from the hot water outlet when the temperature of the hot water taken out from the hot water outlet is lower than the supply temperature for each of the plurality of hot water outlets.
  • an increased heat amount calculation unit that calculates an increased heat amount of the hot water when the hot water taken out from the hot water outlet is heated by the heating unit, and the increase calculated for each of the plurality of hot water outlets You may decide to provide the COP calculation part which calculates COP corresponding to calorie
  • COP is calculated with the amount of hot water at a temperature lower than the supply temperature as 0, and the hot water outlet with the highest COP is selected. That is, the COP is calculated by setting the effective amount of hot water at a temperature that cannot be used as a load to zero. For this reason, the effective heat amount in the hot water storage tank can be increased most efficiently in accordance with the characteristics of the heat pump by selecting the hot water outlet with the highest efficiency.
  • the present invention can be realized not only as such a hot water storage type hot water supply apparatus, but also as a hot water supply / heating apparatus provided with each processing unit constituting the apparatus, an operation control apparatus that controls the operation of the apparatus, or these apparatuses. It can be realized as a method using each processing unit as a step. Furthermore, the present invention can be realized as a program for causing a computer to execute these steps, as a recording medium such as a computer-readable CD-ROM in which the program is recorded, or as information, data, or a signal indicating the program. It can also be realized. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • hot water that cannot be effectively used in a hot water storage tank is efficiently boiled, the amount of increase in effective heat amount in the hot water storage tank is increased, and the efficiency with respect to load (working equipment efficiency) is improved.
  • a hot water storage type hot water supply apparatus that can be operated can be provided.
  • FIG. 1 is a schematic view of a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the hot water supply unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a functional block diagram showing a functional configuration of the operation control apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a functional block diagram showing details of the functional configuration of the outlet selection unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing an example of the operation of the hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic view of a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the hot water supply unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a functional block diagram showing a functional configuration of the
  • FIG. 6 is a flowchart illustrating an example of processing in which the outlet selection unit according to Embodiment 1 of the present invention selects a heating outlet.
  • FIG. 7 is a diagram illustrating a process in which the outlet selection unit according to Embodiment 1 of the present invention selects a heating outlet.
  • FIG. 8 is a diagram illustrating the COP of the heating unit with respect to the temperature of hot water entering the heating unit.
  • FIG. 9 is a diagram showing the COP with respect to the incoming water temperature for each outside air temperature.
  • FIG. 10 is a functional block diagram showing a functional configuration of the operation control apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a functional block diagram showing details of the functional configuration of the outlet selection unit according to Embodiment 2 of the present invention.
  • FIG. 12 is a flowchart illustrating an example of a process in which the outlet selection unit according to Embodiment 2 of the present invention selects a heating outlet.
  • FIG. 13 is a flowchart which shows an example of operation
  • Embodiment 1 a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic diagram of a hot water storage type hot water supply apparatus 1 according to Embodiment 1 of the present invention.
  • the hot water storage type hot water supply device 1 is a device that supplies heated hot water in order for a consumer to use hot water. As shown in FIG. 1, the hot water storage type hot water supply device 1 includes an operation control device 10 and a hot water supply unit 20.
  • the operation control device 10 is a device that controls the operation of the hot water storage type hot water supply device 1. Specifically, the operation control device 10 controls the operation of the hot water storage type hot water supply device 1 so that an efficient operation can be performed by increasing the amount of increase in the effective heat amount in the hot water storage tank. Details of the operation control device 10 will be described later.
  • the hot water supply unit 20 heats the hot water according to the control of the operation control device 10 and supplies the heated hot water for the customer to use the hot water.
  • the hot water supply unit 20 includes a heating unit 100, a tank unit 200, and a load circuit 300.
  • the heating unit 100 includes a heating device such as a heat pump, and heats hot water.
  • the tank unit 200 includes a hot water storage tank and stores hot water. Specifically, the hot water stored in the tank unit 200 is heated by the heating unit 100, and the heated hot water is returned to the tank unit 200 and stored. Further, when the amount of hot water used is reduced so that the amount of hot water stored in the tank unit 200 is maintained at a predetermined level, the tank unit 200 is replenished with water.
  • the load circuit 300 is a circuit for a consumer to use hot water. Specifically, the load circuit 300 includes a device for a consumer to supply hot water, and a device for a consumer to perform heating and bathing. Then, the hot water stored in the tank unit 200 is supplied to the load circuit 300 in accordance with a customer instruction, and a part of the used hot water is returned to the tank unit 200.
  • the load circuit 300 corresponds to a “load unit” described in the claims.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the hot water supply unit 20 according to Embodiment 1 of the present invention.
  • the heating unit 100 includes a compressor 110, a water heat exchanger 120, an expansion valve 130, an air heat exchanger 140, and a boiling pump 123.
  • the heating unit 100 heats hot water taken out from the tank unit 200 and returned to the tank unit 200 to high-temperature water using the water heat exchanger 120.
  • the heating unit 100 includes an outside air temperature detector 150 that detects the outside air temperature, and an incoming water temperature detector 122 that extends from the hot water outlet of the tank unit 200 to the inlet of the water heat exchanger 120, It is assumed that a hot water temperature detector 121 is provided on the outlet side of the exchanger 120.
  • the tank unit 200 includes a hot water storage tank 210 that is a tank in which hot water is stored, three-way valves 271 to 274, and mixing valves 281 and 282.
  • the tank unit 200 supplies hot water stored in the hot water storage tank 210 to the heating unit 100 and the load circuit 300, and stores hot water returned from the heating unit 100 and the load circuit 300 in the hot water storage tank 210.
  • the hot water storage tank 210 includes a plurality of heating outlets 231 to 233 (here, heating outlets 1 to 3 respectively), a heating return port 211, a hot water supply load outlet 241, a water inlet 261, hot water It has a circulation outlet 242 and a plurality of hot water circulation return ports 251 to 253 (here, they are referred to as hot water circulation return ports 1 to 3, respectively).
  • the heating return port 211 is disposed at a position higher than the plurality of heating extraction ports 1 to 3.
  • the hot water supply load outlet 241 is disposed at a position higher than the plurality of hot water circulation return ports 1 to 3, and the water supply port 261 is disposed at a position lower than the hot water circulation return ports 1 to 3. Yes.
  • the hot water storage tank 210 it is easy to generate a temperature stratification in which the temperature of the hot water in the upper part increases.
  • the plurality of heating outlets 1 to 3 are outlets for taking out hot water formed at positions where the height of the hot water storage tank 210 is different.
  • three heating outlets 1 to 3 are formed in the hot water storage tank 210, but the number of heating outlets may be any number as long as it is plural.
  • the heating outlets 1 to 3 correspond to the “hot water outlet” recited in the claims.
  • the plurality of hot water circulation return ports 1 to 3 are also return ports for returning hot water formed at different positions of the hot water storage tank 210.
  • three hot water circulation return ports 1 to 3 are formed in the hot water storage tank 210, but the number of hot water circulation return ports may be any number.
  • the hot water storage tank 210 includes a plurality of temperature detectors that detect the temperature of the hot water from the lower part of the hot water storage tank 210 to the upper part thereof.
  • the hot water storage tank 210 is provided with five temperature detectors 221 to 225.
  • the temperature detectors 223 to 225 are devices for detecting the temperatures of hot water taken out from the heating outlets 1 to 3, respectively.
  • the temperature detectors 223 to 225 are included in the “hot water temperature detection unit” recited in the claims.
  • a refrigerant circuit is formed by the compressor 110, the water heat exchanger 120, the expansion valve 130, and the air heat exchanger 140.
  • a heating circulation path is formed by the heating outlets 1 to 3 (heating outlets 231 to 233) of the hot water storage tank 210, the water heat exchanger 120, and the heating return port 211 of the hot water storage tank 210.
  • the hot water in the boiling circuit is circulated by the boiling pump 123, so that the hot water taken out from the heating outlets 1 to 3 of the hot water storage tank 210 exchanges heat with the refrigerant in the water heat exchanger 120, resulting in a high temperature.
  • the hot water is returned to the heating return port 211 of the hot water storage tank 210.
  • the three-way valves 271 and 272 in the boiling circuit change the heating path by selecting the heating outlets 1 to 3 of the hot water storage tank 210.
  • the three-way valves 271 and 272 cause the hot water from the heating outlet 1 (heating outlet 231) of the hot water storage tank 210 to boil up and circulate.
  • the heating path is switched so that it flows through
  • the three-way valves 271 and 272 heat the hot water from the heating outlet 2 (heating outlet 232) of the hot water storage tank 210 through the heating circuit. Switch the boiling path as indicated.
  • hot water is taken out from the selected heating outlets 1 to 3, and the hot water taken out is heated by the heating unit 100 and returned to the hot water storage tank 210.
  • the hot water storage water is stored in order to secure the amount of hot water in the hot water storage tank 210. Water is supplied to the tank 210 by water supply.
  • the load circuit 300 includes a hot water supply device 310 to which hot water is supplied, a hot water circulation heat exchanger 320 that performs heat exchange with the circulating water for heating and the circulating water for bathtubs used for heating and bathing, and the heating and bath
  • the apparatus has a heating bath tracking device 330 that performs reheating, a hot water circulation pump 321, and a heating bath pump 331.
  • Hot water to be supplied to the hot water supply device 310 (hereinafter referred to as hot water for hot water supply) is a high temperature water supplied from the hot water supply load outlet 241 of the hot water storage tank 210 by a mixing valve 281 and water supplied by the hot water. After being mixed, the water is discharged.
  • the predetermined temperature of the hot water for hot water supply is a set temperature set by a user's remote control operation.
  • high temperature water is taken out from the hot water supply load outlet 241, the high temperature water and hot water having a temperature lower than the high temperature water are mixed by the mixing valve 281, and the hot water mixed by the mixing valve 281 is loaded into the load circuit. It is supplied to 300 hot water supply devices 310.
  • the hot water supplied from the hot water circulation outlet 242 of the hot water storage tank 210 is heated by the hot water circulation pump 321 through the hot water circulation heat exchanger 320 with a predetermined circulation amount. It is performed by exchanging heat with circulating water for heating or circulating water for bathtubs circulated by the bath pump 331.
  • the hot water circulation outlet 242 of the hot water storage tank 210, the hot water circulation heat exchanger 320, and the hot water circulation return ports 1 to 3 form a hot water circulation path.
  • Hot water in the hot water circulation path is circulated by a circulation pump 321.
  • the hot water after heat exchange in the hot water circulation heat exchanger 320 is partly mixed with the high temperature water supplied from the hot water circulation outlet 242 of the hot water storage tank 210 through the bypass circuit. It adjusts so that the temperature of the hot water (henceforth heating hot water) sent to the heat exchanger 320 for circulation may become predetermined temperature.
  • the predetermined temperature of the hot water for heating is such a temperature that the temperature supplied to the heating bath memorial device 330 becomes a set level indicating a set temperature or a level set by a user's remote control operation. .
  • hot water that does not flow into the bypass circuit is returned to the hot water storage tank 210.
  • a return port close to the temperature of the hot water returning to the hot water storage tank 210 is selected from the return ports for hot water circulation 1 to 3 and returned according to the temperature detected by the temperature detectors 221 to 225 in the hot water storage tank 210. .
  • the hot water circulation path three-way valves 273 and 274 are valves for changing the hot water circulation path according to selection of the hot water circulation return ports 1 to 3 of the hot water storage tank 210.
  • the hot water circulation path is switched so that the hot water in the hot water circulation path returns to the hot water circulation return port 1 of the hot water storage tank 210.
  • the hot water circulation path is switched so that the hot water in the hot water circulation path returns to the hot water circulation return port 2 of the hot water storage tank 210.
  • the amount of heat of the hot water supply load is detected. Calculated. Further, by detecting the flow rate of the hot water flowing through the hot water circulation path and the hot water temperature before and after the hot water circulation heat exchanger 320, the amount of heat used for heating and reheating is calculated. .
  • the heat exchanger 320 for circulating hot water and the heating bath memorial device 330 may be a radiator that performs heating or the like.
  • the boiling pump 123 and the compressor 110 are controlled by the operation control device 10 during a boiling operation that is an operation of heating hot water by the heating unit 100.
  • the operation control device 10 adjusts the boiling pump 123 to an appropriate flow rate so that the temperature of the tapping temperature detector 121 becomes 90 ° C.
  • the temperature of the hot water can be controlled by controlling the rotational speed of the compressor 110, the opening degree of the expansion valve 130, and the like. With the above operation, 90 ° C.
  • the hot water is stored in the hot water storage tank 210 in order from the top, and when the incoming water temperature detector 122 detects a predetermined temperature, for example, 60 ° C., the operation control device 10 indicates that the 90 ° C. hot water is stored in the hot water storage tank 210. It is judged that it reached to the lower part of this, the boiling pump 123 and the compressor 110 are stopped, and a boiling operation is complete
  • a predetermined temperature for example, 60 ° C.
  • FIG. 3 is a functional block diagram showing a functional configuration of the operation control apparatus 10 according to the first embodiment of the present invention.
  • the operation control apparatus 10 includes a hot water tank temperature detection unit 410, a heating operation determination unit 420, an outlet selection unit 430, a heating temperature detection unit 440, a heating temperature capability setting unit 450, and a heating instruction unit 460. It has.
  • the hot water storage tank hot water temperature detection unit 410 detects the temperature of the hot water in the hot water storage tank 210. Specifically, the hot water storage tank hot water temperature detection unit 410 obtains the hot water temperature at each position in the hot water storage tank 210 by using a plurality of temperature detectors 221 to 225 provided in the hot water storage tank 210.
  • the heating temperature detector 440 detects the temperature of hot and cold water before and after being heated by the heating unit 100. Specifically, the heating temperature detector 440 acquires and holds the temperatures detected from the incoming water temperature detector 122, the hot water temperature detector 121, and the outside air temperature detector 150 in the heating unit 100.
  • the take-out port selection unit 430 has a plurality of heating outlets 1 to 4 based on the supply temperature, which is the temperature of hot water supplied from the hot water storage tank 210 to the load circuit 300, and the temperature of hot water taken out from the heating outlet. 3. Select a heating outlet from which hot water is taken out of 3. That is, the outlet selection unit 430 selects one of the plurality of heating outlets 1 to 3 provided in the hot water storage tank 210 in order to take out hot water heated by the heating unit 100. The details of the outlet selection unit 430 will be described later.
  • the supply temperature is specifically a set temperature of hot water for hot water supplied to the load circuit 300 or a set temperature of hot water for heating. That is, the supply temperature is a lower limit value of the temperature of hot water that can be effectively used as a load. That is, hot water having a temperature lower than the supply temperature cannot be effectively used as a load.
  • the heating operation determination unit 420 determines the start and stop of the operation in which the heating unit 100 heats the hot water from the temperature detected by the hot water tank hot water temperature detection unit 410. Specifically, the heating operation determination unit 420 determines, based on the hot water temperature detected by the hot water tank hot water temperature detection unit 410, how much heating operation is required by starting the heating unit 100. In addition, during the heating operation by the heating unit 100, the end of the boiling operation is determined based on the hot water temperature detected by the hot water storage tank hot water temperature detection unit 410.
  • the heating temperature capacity setting unit 450 selects the temperature detected by the hot water storage tank hot water temperature detection unit 410, the temperature detected by the heating temperature detection unit 440, the result determined by the heating operation determination unit 420, and the outlet selection unit 430.
  • the heating temperature at which the heating unit 100 heats the hot water and the heating capability of the heating unit 100 are set from the heating outlet.
  • the heating temperature capacity setting unit 450 is determined by the hot water temperature detected by the hot water tank hot water temperature detection unit 410, the heating outlet selected by the outlet selection unit 430, and the heating operation determination unit 420. From the information and the temperature information detected by the heating temperature detection unit 440, the setting of the boiling water temperature and the capacity setting of the boiling pump 123 and the compressor 110 are performed.
  • the heating instruction unit 460 gives a heating instruction to the heating unit 100 to heat the hot water taken out from the selected heating outlet and returned to the hot water storage tank 210.
  • the heating unit 100 heats the hot water with the set heating temperature and heating capacity according to the heating instruction. That is, the heating unit 100 performs boiling with the boiling water temperature set by the heating temperature capability setting unit 450 and the capabilities of the boiling pump 123 and the compressor 110.
  • FIG. 4 is a functional block diagram showing details of the functional configuration of the outlet selection unit 430 according to Embodiment 1 of the present invention.
  • the outlet selection unit 430 includes an outlet hot water temperature acquisition unit 431, a supply temperature acquisition unit 432, and a selection unit 433.
  • the hot water temperature acquisition unit 431 takes hot water in the vicinity of the heating outlets 1 to 3 from the temperature detected by the hot water tank hot water temperature detection unit 410 and the arrangement of the heating outlets 1 to 3 in the hot water storage tank 210. Calculate and obtain the temperature of. That is, the outlet hot water temperature acquisition unit 431 acquires the temperature of hot water taken out from the heating outlets 1 to 3.
  • the supply temperature acquisition unit 432 acquires the supply temperature.
  • the supply temperature is the set temperature of hot water for hot water or hot water for heating, and when the set temperature for hot water for hot water is different from that for hot water for heating, for example, the set temperature for hot water for hot water and the set temperature for hot water for heating are used. Of these, it is the lowest temperature.
  • the supply temperature acquisition unit 432 acquires the supply temperature when the user inputs a set temperature or a set level of hot water for hot water supply or hot water for heating to the hot water storage type hot water supply apparatus 1 with the remote controller 30.
  • the remote controller 30 is a device that acquires a set temperature of hot water for hot water supply or a set temperature of hot water for heating, and sets the acquired set temperature as a supply temperature.
  • the remote controller 30 is included in the “supply temperature setting unit” recited in the claims.
  • the temperature detectors 223 to 225 can estimate the temperature in the hot water storage tank 210, and the remote controller 30 can acquire the supply temperature from the temperature actually used by the consumer. Hot water that cannot be effectively used as a load in 210 can be taken out more accurately.
  • the selection unit 433 selects a heating outlet from which hot water is taken out based on the temperature of hot water taken out from the heating outlets 1 to 3 and the supply temperature. Specifically, the selection unit 433 selects a heating outlet from which the hot water having a temperature lower than the supply temperature is taken out of the plurality of heating outlets 1 to 3. Further, specifically, the outlet selection unit 430 performs heating for extracting hot water having a temperature lower than the supply temperature and closest to the supply temperature from a heating outlet for extracting hot water having a temperature lower than the supply temperature. Select the outlet for use.
  • FIG. 5 is a flowchart showing an example of the operation of the hot water storage type hot water supply apparatus 1 according to Embodiment 1 of the present invention.
  • the hot water storage tank hot water temperature detection unit 410 detects the temperature of the hot water in the hot water storage tank 210 (S102).
  • the heating temperature detection part 440 detects the temperature detected from the incoming water temperature detector 122, the hot water temperature detector 121, and the external temperature detector 150 (S104).
  • the outlet selection unit 430 selects the heating outlet from which the hot water is taken out of the plurality of heating outlets 1 to 3 based on the supply temperature and the temperature of the hot water taken out from the heating outlet. (S106). The details of the process of selecting the heating outlet by the outlet selector 430 will be described later.
  • the heating operation determination unit 420 determines whether to start and stop the operation in which the heating unit 100 heats hot water from the temperature detected by the hot water storage tank hot water temperature detection unit 410 (S108).
  • the heating temperature capacity setting unit 450 includes a temperature detected by the hot water tank hot water temperature detection unit 410, a temperature detected by the heating temperature detection unit 440, a result determined by the heating operation determination unit 420, and an outlet selection unit 430.
  • the heating temperature at which the heating unit 100 heats the hot water and the heating capacity of the heating unit 100 are set from the heating outlet selected by (S110).
  • the heating instruction unit 460 gives a heating instruction to the heating unit 100 to heat the hot water taken out from the selected heating outlet and returned to the hot water storage tank 210 (S112). And the heating part 100 heats hot water with the set heating temperature and heating capability according to a heating instruction
  • FIG. 6 is a flowchart illustrating an example of processing (S106 in FIG. 5) in which the outlet selection unit 430 according to Embodiment 1 of the present invention selects a heating outlet.
  • FIG. 7 is a diagram illustrating a process in which the outlet selection unit 430 selects a heating outlet.
  • the supply temperature acquisition unit 432 acquires the supply temperature tu (S202).
  • the outlet hot water temperature acquisition unit 431 acquires the hot water temperature for each heating outlet from the hot water temperature detected by the hot water storage tank hot water temperature detection unit 410 (S204). That is, the outlet hot water temperature acquisition unit 431 acquires the temperature (t1 to t3) of hot water taken out from the heating outlets 1 to 3.
  • the outlet hot water temperature acquisition unit 431 may acquire the temperature detected by the temperature detectors 221 to 225 closest to the heating outlet as the hot water temperature for each heating outlet, or temperature detection.
  • the temperature of the heating outlet may be calculated and acquired from the temperature detected by the devices 221 to 225 and the position in the hot water storage tank 210 where the temperature detectors 221 to 225 are installed.
  • the selection unit 433 selects the heating outlet from which the hot water is taken out of the plurality of heating outlets 1 to 3. That is, the selection unit 433 selects a heating outlet from which the hot water having a temperature lower than the supply temperature and closest to the supply temperature is taken out of the plurality of heating outlets 1 to 3.
  • the selector 433 compares the temperature t3 of hot water taken out from the heating outlet 3 with the supply temperature tu (S206).
  • the selector 433 selects the heating outlet 3 (S208). For example, as shown in FIG. 7, when the supply temperature tu is the supply temperature tu3 shown in FIG. 7, the hot water temperature t3 of the heating outlet 3 is lower than the supply temperature tu3. Therefore, the selection unit 433 determines that the hot water temperature t3 of the heating outlet 3 is lower than the supply temperature tu3, and selects the heating outlet 3 (heating outlet 233).
  • the selection unit 433 determines that the hot water temperature t3 of the heating outlet 3 is equal to or higher than the supply temperature tu (NO in S206), the temperature t2 of the hot water taken out from the heating outlet 2 And the supply temperature tu are compared (S210).
  • the selection unit 433 determines that the hot water temperature t2 of the heating outlet 2 is lower than the supply temperature tu (YES in S210).
  • the selection unit 433 selects the heating outlet 2 (S212). For example, as shown in FIG. 7, when the supply temperature tu is the supply temperature tu2 shown in FIG. 7, the hot water temperature t3 of the heating outlet 3 is equal to or higher than the supply temperature tu2, and the hot water temperature t2 of the heating outlet 2 Is less than the supply temperature tu2. For this reason, the selection unit 433 determines that the hot water temperature t2 of the heating outlet 2 is lower than the supply temperature tu2, and selects the heating outlet 2 (heating outlet 232).
  • the selector 433 selects the heating outlet 1 (S214). For example, as shown in FIG. 7, when the supply temperature tu is the supply temperature tu1 shown in the figure, the hot water temperature t2 of the heating outlet 2 is equal to or higher than the supply temperature tu1. For this reason, the selection unit 433 determines that the hot water temperature t2 of the heating outlet 2 is equal to or higher than the supply temperature tu1, and selects the heating outlet 1 (heating outlet 231).
  • the selection unit 433 selects a heating outlet from which the hot water having a temperature lower than the supply temperature and closest to the supply temperature is taken out from the plurality of heating outlets 1 to 3.
  • the temperature comparison is performed from the heating outlet 3 at the upper part in the vertical direction of the hot water storage tank 210 on the assumption that the temperature stratification in the hot water storage tank 210 has not collapsed. However, there is a possibility that the temperature stratification may be disturbed. It is desirable to select a heating outlet that is less than the supply temperature and has the smallest difference from the supply temperature.
  • the state in which the temperature stratification is not collapsed indicates a state in which the detection values of the temperature detectors 223 to 225 are sequentially increased from the top (a state in which the temperature detected by the temperature detector 223 is the highest),
  • the state in which the temperature stratification is disturbed is a state in which the detected value is reversed.
  • FIG. 8 is a diagram showing the COP of the heating unit 100 with respect to the temperature of hot water entering the heating unit 100 in the case of a certain outside air temperature and a certain boiling temperature. That is, the figure shows a graph in which the horizontal axis is the temperature of the hot water entering the heating unit 100 (incoming water temperature) and the vertical axis is the COP of the heating unit 100.
  • the temperature of hot water entering the heating unit 100 is the same as the temperature of hot water taken out from the heating outlets 1 to 3 of the hot water storage tank 210.
  • the supply temperature is 42 ° C. That is, this figure shows COP by the heating unit 100 with respect to the temperature in the hot water storage tank 210 when the supply temperature is 42 ° C.
  • the amount of hot water stored in the hot water storage tank 210 can be calculated from the hot water temperature detected by the hot water storage tank hot water temperature detection unit 410 and the position where the temperature detectors 221 to 225 are installed.
  • the hot water temperature detected by the temperature detector close to the selected heating outlet, and the temperature that is heated by the heating part 100, are the increased heat quantity that is the amount of increase in the quantity of hot water heated by the heating part 100. Calculate from the flow rate. At this time, the amount of heat increased by heating the hot water is the heat amount of the temperature difference between the boiling hot water temperature and the hot water temperature in the hot water storage tank 210.
  • the COP is calculated by dividing the increased heat amount per unit time by the power consumed by the heating unit 100. This electric power is calculated from the temperature of water entering the heating unit 100, the boiling water temperature, the outside air temperature, and the like. Note that the power may be measured by a power meter or the like.
  • the graph showing the COP (hereinafter referred to as “rated COP”) with respect to the amount of generated heat calculated in this way is graph A shown in FIG.
  • the hot water is supplied to the load circuit 300 at the supply temperature and is used with a load such as hot water supply or heating, the hot water with a temperature lower than the supply temperature cannot be used with a load such as hot water supply or heating. For this reason, the amount of heat of hot water below the supply temperature is set to 0, and the effective amount of heat that is the amount of hot water in the hot water storage tank 210 is calculated. In other words, the effective heat amount is the amount of hot water that can be used with a load such as hot water supply or heating.
  • the increased effective heat amount which is an increase in the effective heat amount by heating the hot water below the supply temperature by the heating unit 100, becomes the heat amount of the boiling hot water heated by the heating unit 100, and heats the hot water close to the supply temperature.
  • the more effective heat is increased as heating is performed by the section 100.
  • the smaller the temperature difference the smaller the power required for boiling, and when boiling with the same capacity, the smaller the temperature difference, the more The amount of hot water tends to be generated. That is, the higher the incoming water temperature to the heating unit 100, the smaller the electric power required for boiling and the greater the effective heat quantity.
  • the COP for the increased effective heat quantity (hereinafter referred to as “actual COP”) becomes higher as the supply temperature is closer.
  • the actual COP heats the increased effective heat quantity of the hot water at the effective temperature, assuming that only hot water at a temperature equal to or higher than the supply temperature (hereinafter referred to as “effective temperature”) can be used with a load such as hot water supply or heating. It is a value calculated by dividing by the power consumed by the unit 100.
  • the graph showing the actual COP calculated in this way is a graph B shown in FIG.
  • the actual COP is not necessarily high. If the incoming water temperature is lower than the supply temperature (42 ° C.), the actual COP is high even if the rated COP is low. Specifically, the actual COP increases when the incoming water temperature is lower than the supply temperature, and the actual COP increases as the incoming water temperature approaches the supply temperature.
  • the outlet selection unit 430 selects a heating outlet whose temperature detected by the hot water storage tank hot water temperature detection unit 410 is lower than the supply temperature and closest to the supply temperature, the heating unit 100 has the actual COP selected. It can be heated to be the highest. That is, the outlet selection unit 430 can efficiently select the heating outlet by simple comparison.
  • the heating outlet is selected based on the supply temperature and the temperature of the hot water taken out from the heating outlet, and the hot water taken out from the heating outlet is heated.
  • hot water having a temperature lower than the supply temperature is hot water having a temperature that cannot be used as a load.
  • the heating outlet can be selected and heated so that hot water having a temperature that cannot be used as a load in the hot water storage tank 210 is efficiently taken out. Therefore, an increase in the amount of effective heat in the hot water storage tank 210 is suppressed by suppressing an increase in hot water having a temperature that cannot be used as a load in the hot water storage tank 210, and an efficient operation can be performed.
  • the “temperature of hot water taken out from the heating outlet” is the temperature detected by the temperature detectors 223 to 225 in the vicinity of the heating outlets 1 to 3, but from the vicinity of the heating outlets 1 to 3.
  • the temperature may be any temperature of hot water immediately before entering the heating unit 100.
  • the heat loss from the temperature detector in the vicinity of the heating outlet to just before entering the heating unit 100 Minutes may be subtracted from the temperature detected by the temperature detector near the heating outlet and compared to the supply temperature.
  • a predetermined value corresponding to the season may be set in advance, or temperature detection near the heating outlet may be detected for each season. You may obtain
  • the temperature difference due to the heat loss is expected to be 1 ° C. to 5 ° C., although it varies depending on the installation state of the hot water supply unit 20, the season, and the surrounding conditions.
  • the heating outlet for extracting hot water at a temperature lower than the supply temperature and closest to the supply temperature is selected from the plurality of heating outlets 1 to 3.
  • a heating outlet having the highest actual COP is selected by calculating the actual COP.
  • the characteristic of the heat pump is that its performance varies depending on the outside air temperature, incoming water temperature, boiling water temperature, and the like.
  • FIG. 9 is a diagram showing the COP with respect to the incoming water temperature for each outside air temperature. That is, this figure shows a graph in which the horizontal axis represents the temperature of the hot water entering the heating unit 100 (incoming water temperature) and the vertical axis represents the COP of the heating unit 100 when the boiling water temperature is constant.
  • a graph C shown in the figure shows a graph in summer
  • a graph D shows a graph in an intermediate period (spring or autumn)
  • a graph E shows a graph in winter. That is, as shown in the figure, even when the boiling water temperature and the incoming water temperature are the same, the performance (COP) differs due to the different seasons (outside air temperature). Therefore, Embodiment 2 in which the heating outlet is selected so that the actual COP becomes the highest according to the characteristics of the heat pump such as the outside air temperature, the incoming water temperature, and the boiling water temperature will be described below.
  • FIG. 10 is a functional block diagram showing a functional configuration of the operation control apparatus 10 according to the second embodiment of the present invention.
  • the operation control device 10 includes a hot water tank temperature detection unit 510, an effective heat amount calculation unit 520, a load heat amount calculation unit 530, a heating operation determination unit 540, an outlet selection unit 550, and a heating temperature detection unit 560.
  • the heating temperature capability setting unit 570 and the heating instruction unit 580 are provided.
  • Hot water storage tank hot water temperature detection unit 510 detects the temperature of hot water in hot water storage tank 210. Specifically, hot water storage tank hot water temperature detection unit 510 acquires and holds the hot water temperature detected by temperature detectors 221 to 225 of hot water storage tank 210.
  • the load heat quantity calculation unit 530 acquires information related to hot water supply, heating, and reheating loads used in the load circuit 300, and calculates and holds the load heat quantity.
  • the heating temperature detector 560 detects the temperature of hot and cold water before and after being heated by the heating unit 100. Specifically, the heating temperature detector 560 acquires and holds the temperatures detected from the incoming water temperature detector 122, the hot water temperature detector 121, and the outside air temperature detector 150 in the heating unit 100.
  • the effective heat amount calculation unit 520 calculates the effective heat amount stored in the hot water storage tank 210 based on the hot water temperature detected by the hot water storage tank hot water temperature detection unit 510.
  • the heating operation determination unit 540 determines whether to start and stop the operation in which the heating unit 100 heats the hot water from the temperature detected by the hot water storage tank hot water temperature detection unit 510. Specifically, the heating operation determination unit 540 starts the heating unit 100 based on the effective heat amount calculated by the effective heat amount calculation unit 520 and the load heat amount calculated by the load heat amount calculation unit 530, and how much. It is determined whether it is necessary to perform a boiling operation, or during the boiling operation by the heating unit 100, it is determined whether the boiling operation is finished based on the hot water temperature detected by the hot water storage tank hot water temperature detecting unit 510.
  • the outlet selection unit 550 selects a heating outlet from which the hot water is taken out of the plurality of heating outlets 1 to 3 based on the supply temperature and the temperature of the hot water taken out from the heating outlet. That is, the outlet selection unit 550 calculates the amount of hot water at a temperature lower than the supply temperature from the plurality of heating outlets 1 to 3 by changing the amount of heat to a lower heat amount than the heat amount.
  • the outlet selection unit 550 selects the heating outlet having the highest actual COP from the plurality of heating outlets 1 to 3 by setting the heat quantity of hot water lower than the supply temperature to 0. . More specifically, the outlet selection unit 550 selects a heating outlet from the result determined by the heating operation determination unit 540 and the hot water temperature detected by the hot water tank hot water temperature detection unit 510. Details of the outlet selection unit 550 will be described later.
  • the heating temperature capability setting unit 570 includes the hot water temperature detected by the hot water storage tank hot water temperature detection unit 510, the heating outlet selected by the outlet selection unit 550, the information determined by the heating operation determination unit 540, and the heating From the temperature information detected by the temperature detection unit 560, the setting of the boiling water temperature, which is the heating temperature at which the heating unit 100 heats the hot water, and the capacity settings of the boiling pump 123 and the compressor 110 are performed.
  • the heating instruction unit 580 gives the heating unit 100 a heating instruction for heating the hot water taken out from the selected heating outlet and returned to the hot water storage tank 210.
  • the heating unit 100 heats the hot water with the set heating temperature and heating capacity according to the heating instruction. That is, the heating unit 100 performs boiling with the boiling water temperature set by the heating temperature capability setting unit 570 and the capabilities of the boiling pump 123 and the compressor 110.
  • FIG. 11 is a functional block diagram showing details of the functional configuration of the outlet selection unit 550 according to Embodiment 2 of the present invention.
  • the outlet selection unit 550 includes a supply temperature acquisition unit 551, an increased heat amount calculation unit 552, a COP calculation unit 553, and a selection unit 554.
  • the supply temperature acquisition unit 551 acquires the supply temperature.
  • the supply temperature acquisition unit 551 here has the same function as the supply temperature acquisition unit 432 in the first embodiment.
  • the increased heat quantity calculation unit 552 sets the amount of hot water taken out from the heating outlet to 0. As above, the increased effective heat quantity of the hot water when the hot water taken out from the heating outlet is heated by the heating unit 100 is calculated.
  • the increased heat amount calculation unit 552 determines the hot water temperature of each of the heating outlets 1 to 3 based on the temperature detected by the hot water storage tank hot water temperature detection unit 510 by the heating operation determination unit 540. The increased effective heat amount when the boiling operation is performed so as to reach a temperature is calculated.
  • the COP calculation unit 553 calculates an actual COP that is a COP corresponding to the increased effective heat amount calculated by the increased heat amount calculation unit 552 for each of the plurality of heating outlets 1 to 3.
  • the selection unit 554 selects the heating outlet having the highest actual COP calculated by the COP calculation unit 553. Specifically, the selection unit 554 compares the actual COP calculated for each of the heating extraction ports 1 to 3 by the COP calculation unit 553, and performs heating of the heating extraction port with the highest actual COP. It is selected as a heating outlet from which hot water from the hot water storage tank 210 to the heating unit 100 is taken out.
  • FIG. 12 is a flowchart showing an example of the operation of the hot water storage type hot water supply apparatus 1 according to Embodiment 2 of the present invention.
  • the hot water storage tank hot water temperature detection unit 410 detects the temperature of the hot water in the hot water storage tank 210 (S302).
  • the effective heat amount calculation unit 520 calculates the effective heat amount stored in the hot water storage tank 210 based on the hot water temperature detected by the hot water storage tank hot water temperature detection unit 510 (S304).
  • the load heat quantity calculation unit 530 calculates and holds the load heat quantity used in the load circuit 300 (S306).
  • the heating operation determination unit 540 performs heating from the temperature detected by the hot water storage tank hot water temperature detection unit 510, the effective heat amount calculated by the effective heat amount calculation unit 520, and the load heat amount calculated by the load heat amount calculation unit 530.
  • the part 100 determines whether to start and stop the operation for heating the hot water (S308).
  • the outlet selection unit 550 selects a heating outlet from which the hot water is taken out of the plurality of heating outlets 1 to 3 based on the supply temperature and the temperature of the hot water taken out from the heating outlet. Select (S310). The details of the process in which the outlet selection unit 550 selects the heating outlet will be described later.
  • the heating temperature detection part 560 detects the temperature of the hot and cold water before and after being heated by the heating part 100 (S312).
  • the heating temperature capacity setting unit 570 includes a hot water temperature detected by the hot water tank hot water temperature detection unit 510, a heating outlet selected by the outlet selection unit 550, a result determined by the heating operation determination unit 540, and a heating temperature. From the temperature detected by the detection unit 560, the heating temperature at which the heating unit 100 heats the hot water and the heating capacity of the heating unit 100 are set (S314).
  • the heating instruction unit 580 gives a heating instruction for heating the hot water taken out from the selected heating outlet and returned to the hot water storage tank 210 to the heating unit 100 (S316). And the heating part 100 heats hot water with the set heating temperature and heating capability according to a heating instruction
  • FIG. 13 is a flowchart illustrating an example of processing (S310 in FIG. 12) in which the outlet selection unit 550 according to Embodiment 2 of the present invention selects a heating outlet.
  • the supply temperature acquisition unit 551 acquires the supply temperature tu (S402).
  • the increased heat quantity calculation unit 552 has a heat quantity of the hot water taken out from the heating take-out port. Is set to 0, and the increased effective heat quantity of the hot water when the hot water taken out from the heating outlet is heated by the heating unit 100 is calculated (S404).
  • the increased heat amount calculation unit 552 calculates the supply temperature acquired by the supply temperature acquisition unit 551, the boiling water temperature determined by the supply temperature heating operation determination unit 540, and the hot water tank temperature detection unit 510.
  • the increased effective heat amount is calculated for each of the heating outlets 1 to 3 from the hot water temperature in the vicinity of the heating outlets 1 to 3.
  • the calculation of the increased effective heat quantity is the same as the calculation method of the increased effective heat quantity in the graph B in the description of FIG. That is, assuming that hot water below the supply temperature in the hot water storage tank 210 cannot be effectively used, the original effective heat amount in the hot water storage tank 210 is 0, and the increased effective heat amount when heating using the hot water is the heating unit 100.
  • the increased heat quantity calculation unit 552 boils the hot water having an effective heat quantity of 0, and the temperature of the hot water is the supply temperature.
  • the increased effective heat amount is calculated by boiling hot water at the temperature.
  • the COP calculating unit 553 calculates an actual COP for each of the plurality of heating outlets 1 to 3 (S406).
  • the calculation of the actual COP is the same as the COP calculation method in the description of FIG. That is, for example, in the case of the heating outlet 1, the effective heat amount that increases per unit time when the hot water temperature near the heating outlet 1 is heated to the boiling hot water temperature, and the consumption required for heating per unit time It is assumed that the actual COP is calculated from the electric energy.
  • the actual COP is effective not increasing per unit time but increasing when the hot water temperature of the heating outlet 1 is heated to the unit boiling water temperature, assuming that the hot water of the unit amount is heated. It may be calculated from the amount of heat and the amount of power consumption required for the heating.
  • the selection unit 554 selects a heating outlet having the highest actual COP calculated by the COP calculation unit 553. That is, the selection unit 554 compares the actual COP calculated for each of the heating extraction ports 1 to 3 by the COP calculation unit 553, and selects the heating extraction port with the highest actual COP.
  • the selection unit 554 compares the actual COP of the heating outlets 1 and 2 with the actual COP of the heating outlet 3 (S408).
  • the selection unit 554 has an actual COP (COP3) of the heating outlet 3 larger than the actual COP (COP1) of the heating outlet 1, and the heating outlet 3 than the actual COP (COP2) of the heating outlet 2. If it is determined that the actual COP (COP3) is large (YES in S408), the heating outlet 3 is selected (S410).
  • COP3 actual COP
  • COP1 actual COP
  • COP2 actual COP
  • the selection unit 554 determines that COP1 is equal to or greater than COP3, or COP2 is equal to or greater than COP3 (NO in S408), the active COP and the heat extraction port 2 of the heating outlets 1 and 3 are selected. The actual COP is compared (S412).
  • the selection unit 554 determines that COP2 is larger than COP1 and COP2 is larger than COP3 (YES in S412), the selection unit 554 selects the heating outlet 2 (S414).
  • the selection unit 554 determines that COP1 is equal to or greater than COP2 or COP3 is equal to or greater than COP2 (NO in S412), the selection unit 554 selects the heating outlet 1 (S416).
  • the selection unit 554 selects the heating outlet from which the actual COP is the highest among the plurality of heating outlets 1 to 3.
  • the supply temperature which is a temperature that cannot be used effectively, may be determined in advance from a standard load or the like, or in the process of acquiring and accumulating the load heat amount, it is updated by performing correction, etc. It can also be set to a value more suitable for the use situation of the user.
  • the actual COP is calculated by setting the heat quantity of hot water lower than the supply temperature to 0, and the heating outlet having the highest actual COP is selected. That is, the actual COP is calculated by setting the effective amount of hot water at a temperature that cannot be used as a load to zero. For this reason, the effective heat amount in the hot water storage tank 210 can be increased most efficiently in accordance with the characteristics of the heat pump by selecting the most efficient heating outlet.
  • the hot water storage type hot water supply apparatus 1 As described above, according to the hot water storage type hot water supply apparatus 1 according to the present invention, it is possible to perform efficient operation by increasing the amount of increase in the effective heat amount in the hot water storage tank 210.
  • the hot water storage type hot water supply apparatus 1 has been described using the above embodiment, the present invention is not limited to this.
  • the supply temperature acquisition unit 432 acquires the supply temperature when the user inputs a set temperature or a set level of hot water or hot water to the hot water storage hot water supply device 1 with the remote controller 30. It was decided. However, the supply temperature acquisition unit 432 may acquire the supply temperature by directly inputting the supply temperature to the hot water storage type hot water supply device 1 without the user via the remote controller 30. The supply temperature acquisition unit 432 may acquire the supply temperature by detecting the temperature of hot water for hot water supply or hot water for heating using a temperature detection sensor or the like.
  • the supply temperature is the lowest temperature among the set temperature of hot water for hot water supply and the set temperature of hot water for heating.
  • the supply temperature is not limited to this.
  • the supply temperature may be arbitrarily determined by the user regardless of the set temperature of hot water for hot water supply or hot water for heating.
  • the outlet selection unit 550 selects the heating outlet having the highest actual COP from the plurality of heating outlets 1 to 3. However, the outlet selection unit 550 selects a heating outlet from which the hot water having a temperature lower than the supply temperature is taken out of the plurality of heating outlets 1 to 3, and supplies hot water having a temperature lower than the supply temperature. The heating outlet having the highest actual COP may be selected from the heating outlet to be taken out.
  • the outlet selection unit 550 calculates the actual COP by setting the heat quantity of hot water having a temperature lower than the supply temperature to zero.
  • the outlet selection unit 550 may calculate the actual COP by changing the amount of hot water having a temperature lower than the supply temperature to a predetermined amount of heat that is lower than the amount of heat instead of setting it to zero.
  • the present invention can be realized not only as such a hot water storage type hot water supply apparatus 1 but also as a hot water supply and heating apparatus including each processing unit constituting the apparatus, an operation control apparatus 10 that controls the operation of the apparatus, or an apparatus thereof. Can be realized as a method in which each processing unit constituting the step is used as a step.
  • the present invention can be realized as a program for causing a computer to execute these steps, as a recording medium such as a computer-readable CD-ROM in which the program is recorded, or as information, data, or a signal indicating the program. It can also be realized.
  • These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • the hot water storage type hot water supply apparatus of the present invention can be applied to a hot water storage type hot water supply apparatus regardless of the type and presence of heating such as floor heating and a radiator, and whether or not a bath is cooked. It is useful for the heat pump type hot water heater / heater used. Further, the present invention can be applied to a hot water storage type hot water supply apparatus using other refrigerants.
  • Hot water storage type hot water supply apparatus 10
  • Operation control apparatus 20
  • Hot water supply part 30
  • Remote control 100
  • Heating part 110 Compressor 120
  • Hydrothermal exchanger 121
  • Hot water temperature detector 122
  • Incoming water temperature detector 123
  • Boiling pump 130
  • Expansion valve 140
  • Air heat exchanger 150 Outside temperature Detector 200
  • Tank unit 210
  • Hot water storage tank 211
  • Temperature detector 231 to 233 Heating outlet 241 Hot water load outlet 242
  • Hot water circulation return port 261 Water inlet 271 274
  • Three-way valve 281 282 Mixing valve 300
  • Load circuit 310
  • Hot water supply equipment 320
  • Heat exchanger for hot water circulation 321
  • Pump for hot water circulation 330
  • Heating bath memorial equipment 331
  • Heating bath pump 410
  • Hot water bath temperature detection Unit 420
  • heating operation determination unit 430
  • outlet selection unit 431 outlet hot water temperature acquisition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

 貯湯タンク内の有効熱量の増加量を大きくすることで、効率的な運転を行うことができる貯湯式給湯装置を提供する。 需要家が湯水を利用する負荷回路(300)に、加熱された湯水を供給する貯湯式給湯装置(1)であって、湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の加熱用取り出し口(231~233)が形成された貯湯タンク(210)と、貯湯タンク(210)から負荷回路(300)に供給される湯水の温度である供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて、複数の加熱用取り出し口(231~233)の中から、湯水を取り出す加熱用取り出し口を選択する取出口選択部(430)と、選択された加熱用取り出し口から取り出され、貯湯タンク(210)に戻される湯水を加熱する加熱部(100)とを備える。

Description

貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
 本発明は、貯湯タンク内の湯水を沸き上げ、貯湯タンクに貯められた湯水を用いて給湯などを行う貯湯式給湯装置に関する。
 従来、貯湯式給湯装置では、貯湯タンクの湯水沸き上げ時には、貯湯タンク下部の低温水を取り出し口より、沸き上げポンプでヒートポンプなどによる加熱手段に送り、加熱手段で高温水にして貯湯タンク上部に供給し、貯湯タンクの上部から徐々にタンク全体を高温水にする。
 そして、貯湯タンクに貯められた高温水を用いて、給湯や暖房、風呂追い焚き等に利用し、特に、暖房や風呂追い焚きなどでは、貯湯タンクに貯められた高温水が放熱器や熱交換器で熱を吸熱されて中温水となり、貯湯タンクに戻るようになっている。
 貯湯タンク内の湯水は、時間の経過とともに放熱による温度低下で高温水が中温水になったり、暖房や追い焚きなどに利用された中温水の増加により、貯湯タンク下部に中温水が貯まる。このため、従来の貯湯式給湯装置では、中温水になった湯水を加熱手段へ供給し、再び沸き上げを行っている。
 一般的に、ヒートポンプによる加熱手段の特性として、貯湯タンクから比較的温度の高い中温水がヒートポンプ熱源機に供給されると、エネルギー効率(COP(Coefficient Of Performance))が悪くなる。
 そこで、貯湯タンクと加熱手段との間にサブタンクを配置し、サブタンクにより中温水を低温水にした後に、加熱手段に送ることで、常に高効率なヒートポンプ熱源機による加熱運転が可能とするようにした貯湯式給湯装置が提案されている(例えば、特許文献1参照)。
 また、中温水の増加を抑えて高効率の沸き上げ運転を行うために、貯湯タンクの中間部から湯水を取り出して給湯に利用し、暖房の戻り位置を貯湯タンク中間部に配置する構成にすることで、湯温の異なる水の比重差により貯湯タンク下部を低温に保つようにする貯湯式給湯装置も提案されている(例えば、特許文献2参照)。
 さらに、貯湯タンクの中間部から湯水を取り出して中温水を積極的に暖房に使用できる構成にし、暖房に必要な温度や流量にあわせて沸き上げ制御を行う貯湯式給湯装置も提案されている(例えば、特許文献3参照)。
特開2006-343012号公報 特許第3868924号公報 特開2007-232345号公報
 しかし、上記従来の貯湯式給湯装置では、以下の通り、効率的な運転が行われていない場合があるという課題がある。
 従来より、向上を図ろうとしているエネルギー効率(COP)は、ヒートポンプの成績効率(=ヒートポンプの能力(作られた熱量)/ヒートポンプが消費した熱量)により導出されるものや、需要家の使用実態を考慮に入れた給湯効率を示すための年間給湯効率(APF(Annual Performance Factor))(=1年で使用する給湯熱量/1年間で必要な消費電力量)が一般的である。さらに、給湯だけではなく暖房などに使われる熱量も考慮した実働機器効率(=負荷として使われた熱量/負荷をまかなうために必要な消費電力量)などによってもエネルギー効率の評価が行われている。
 貯湯タンクに蓄えられた高温の湯は時間の経過とともに放熱し、給湯負荷の発生や暖房や追い焚き等の負荷の発生によって、貯湯タンクから高温水が使用されて低温の給水が補充されたり、貯湯タンクの高温水から熱が使用されてその分温度が低くなった湯水が貯湯タンクに戻されることによって、中温水が多く生成されることになり、貯湯タンクに蓄えられた熱量が少なくなる。
 実働機器効率を求めるにあたって、「負荷をまかなうために必要な消費電力量」には、ヒートポンプによって貯湯タンクの湯水を高温に加熱して蓄えるための電力も含まれるので、無駄な沸き上げや沸かしすぎ、中温水による効率の悪い沸き上げは、実働機器効率の悪化につながる。
 一方、貯湯タンク内には、湯そのものの持つ熱量は正(>0)であるが、負荷として使えない温度の湯も貯められている。このような負荷として使えない温度の湯が貯湯タンクに多く貯められると、貯湯タンク内の使える熱量、すなわち有効熱量が少なくなる。また、貯湯タンクに中温水が多く貯められると、負荷として使えない温度の湯も多く貯められている可能性が高い。
 そこで、貯湯タンク内の負荷として使えない温度の湯水の増加を抑えながら効率よく沸き上げ、有効熱量の増加量を大きくすることが重要となる。そして、上記従来の貯湯式給湯装置では、貯湯タンク内に負荷として使えない温度の湯水が多く貯められて有効熱量が少なくなるというように、効率的な運転が行われていない場合があるという課題がある。
 本発明は、上記課題を解決するためのもので、貯湯タンク内の有効熱量の増加量を大きくすることで、効率的な運転を行うことができる貯湯式給湯装置を提供することを目的としたものである。
 前記従来の課題を解決するために、本発明に係る貯湯式給湯装置は、需要家が湯水を利用する負荷部に、加熱された湯水を供給する貯湯式給湯装置であって、湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択部と、選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部とを備える。
 上記発明によれば、供給温度と湯水取出口から取り出される湯水の温度とに基づいて湯水取出口が選択され、湯水取出口から取り出された湯水が加熱される。ここで、供給温度とは、負荷部に供給される湯水の温度、つまり、負荷として有効に利用できる湯水の温度である。そして、例えば、この供給温度より低い温度の湯水は、負荷として使えない温度の湯水である。このため、当該供給温度に基づいて、貯湯タンク内の負荷として使えない温度の湯が取り出されるように、湯水取出口を選択して加熱することができる。したがって、貯湯タンク内の負荷として使えない温度の湯水の増加を抑制し、貯湯タンク内の有効熱量の増加量を大きくすることで効率的な運転を行うことができる。
 また、好ましくは、前記取出口選択部は、前記複数の湯水取出口の中から、前記供給温度よりも低い温度の湯水を取り出す湯水取出口を選択する。具体的には、前記取出口選択部は、前記供給温度よりも低く、かつ前記供給温度に最も近い温度の湯水を取り出す湯水取出口を選択する。
 これによれば、複数の湯水取出口の中から、供給温度よりも低く、かつ供給温度に最も近い温度の湯水を取り出す湯水取出口を選択する。このため、簡単な比較で効率よく湯水取出口を選択して、貯湯タンク内の負荷として使えない温度の湯水の増加を抑制し、貯湯タンク内の有効熱量を増加させることにより、効率的な運転を行うことができる。
 また、前記取出口選択部は、前記複数の湯水取出口の中から、前記供給温度より低い温度の湯水の熱量を当該熱量より低い熱量に変更して算出される、前記加熱部が湯水を加熱する場合のエネルギー効率を示すCOPが最も高い湯水取出口を選択することにしてもよい。具体的には、前記取出口選択部は、前記複数の湯水取出口ごとに、前記湯水取出口から取り出される湯水の温度が前記供給温度より低い場合に、前記湯水取出口から取り出される湯水の熱量を0として、前記湯水取出口から取り出される湯水が前記加熱部に加熱される場合の当該湯水の増加熱量を算出する増加熱量算出部と、前記複数の湯水取出口ごとに、算出された前記増加熱量に対応するCOPを算出するCOP算出部と、算出された前記COPが最も高い湯水取出口を選択する選択部とを備えることにしてもよい。
 これによれば、供給温度より低い温度の湯水の熱量を0としてCOPを算出し、COPが最も高い湯水取出口を選択する。つまり、負荷として使えない温度の湯水の有効熱量を0としてCOPを算出する。このため、最も効率のよくなる湯水取出口を選択することで、ヒートポンプの特性に応じて、最も効率よく貯湯タンク内の有効熱量を増加させることができる。
 また、本発明は、このような貯湯式給湯装置として実現できるだけでなく、その装置を構成する各処理部を備える給湯暖房装置、その装置の運転を制御する運転制御装置、またはそれらの装置を構成する各処理部をステップとする方法として実現したりすることができる。さらに、本発明は、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明によれば、貯湯タンクの有効利用できない湯を効率よく沸き上げて、貯湯タンク内の有効熱量の増加量を大きくし、負荷に対する効率(実働機器効率)を向上させることで、効率的な運転を行うことができる貯湯式給湯装置を提供することができる。
図1は、本発明の実施の形態1に係る貯湯式給湯装置の模式図である。 図2は、本発明の実施の形態1に係る給湯部の概略構成を示す構成図である。 図3は、本発明の実施の形態1に係る運転制御装置の機能構成を示す機能ブロック図である。 図4は、本発明の実施の形態1に係る取出口選択部の機能構成の詳細を示す機能ブロック図である。 図5は、本発明の実施の形態1に係る貯湯式給湯装置の動作の一例を示すフローチャートである。 図6は、本発明の実施の形態1に係る取出口選択部が加熱用取り出し口を選択する処理の一例を示すフローチャートである。 図7は、本発明の実施の形態1に係る取出口選択部が加熱用取り出し口を選択する処理を説明する図である。 図8は、加熱部に入水する湯水の温度に対する加熱部のCOPを示す図である。 図9は、外気温ごとの入水温に対するCOPを示す図である。 図10は、本発明の実施の形態2に係る運転制御装置の機能構成を示す機能ブロック図である。 図11は、本発明の実施の形態2に係る取出口選択部の機能構成の詳細を示す機能ブロック図である。 図12は、本発明の実施の形態2に係る取出口選択部が加熱用取り出し口を選択する処理の一例を示すフローチャートである。 図13は、本発明の実施の形態2に係る貯湯式給湯装置の動作の一例を示すフローチャートである。
 (実施の形態1)
 以下、本発明の実施の形態1における貯湯式給湯装置について、図面を参照しながら説明する。
 図1は、本発明の実施の形態1に係る貯湯式給湯装置1の模式図である。
 貯湯式給湯装置1は、需要家が湯水を利用するために、加熱された湯水を供給する装置である。同図に示すように、貯湯式給湯装置1は、運転制御装置10及び給湯部20を備えている。
 運転制御装置10は、貯湯式給湯装置1の運転を制御する装置である。具体的には、運転制御装置10は、貯湯タンク内の有効熱量の増加量を大きくすることで効率的な運転を行うことができるように、貯湯式給湯装置1の運転を制御する。この運転制御装置10の詳細については、後述する。
 給湯部20は、運転制御装置10の制御に従って、湯水を加熱し、加熱された湯水を需要家が湯水を利用するために供給する。給湯部20は、加熱部100、タンクユニット200及び負荷回路300を備えている。
 ここで、加熱部100は、ヒートポンプなどの加熱装置を備えており、湯水を加熱する。
 タンクユニット200は、貯湯タンクを備えており、湯水を貯めている。具体的には、タンクユニット200内に貯められた湯水は、加熱部100によって加熱され、加熱された湯水は、タンクユニット200に戻されて、貯められる。また、タンクユニット200に貯められている湯水の量が所定のレベルを維持するように、当該湯水が使用されて量が減少すれば、タンクユニット200に給水が補充される。
 負荷回路300は、需要家が湯水を利用するための回路である。具体的には、負荷回路300は、需要家が給湯を行うための機器や、需要家が暖房や風呂追い焚きを行うための機器を備えている。そして、タンクユニット200に貯められている湯水は、需要家の指示に従い負荷回路300に供給され、利用された湯水の一部は、タンクユニット200に戻される。なお、負荷回路300は、請求の範囲に記載の「負荷部」に相当する。
 次に、この給湯部20の詳細について、説明する。
 図2は、本発明の実施の形態1に係る給湯部20の概略構成を示す構成図である。
 同図に示すように、加熱部100は、圧縮機110、水熱交換器120、膨張弁130、空気熱交換器140及び沸き上げポンプ123を有している。この加熱部100は、タンクユニット200から取り出され、タンクユニット200に戻される湯水を水熱交換器120で高温水に加熱する。
 また、加熱部100は、外気温度を検出する外気温検出器150と、タンクユニット200の湯水の取り出し口から水熱交換器120の入口に至るまでに入水温検出器122が設けられ、水熱交換器120の出口側には、出湯温検出器121を備えているものとする。
 タンクユニット200は、湯水が貯められているタンクである貯湯タンク210、三方弁271~274、及び混合弁281、282を備えている。このタンクユニット200は、加熱部100及び負荷回路300に貯湯タンク210内に貯められている湯水を供給し、加熱部100及び負荷回路300から戻される湯水を貯湯タンク210に貯める。
 また、貯湯タンク210は、複数の加熱用取り出し口231~233(ここでは、それぞれ加熱用取り出し口1~3とする)、加熱用戻り口211、給湯負荷用取り出し口241、給水口261、温水循環用取り出し口242、複数の温水循環用戻り口251~253(ここでは、それぞれ温水循環用戻り口1~3とする)を有している。
 ここでは、加熱用戻り口211は、複数の加熱用取り出し口1~3よりも高い位置に配置されている。また、給湯負荷用取り出し口241は、複数の温水循環用戻り口1~3よりも高い位置に配置され、給水口261は、当該温水循環用戻り口1~3よりも低い位置に配置されている。これらにより、貯湯タンク210内で、上部の湯水ほど温度が高くなる温度成層を生成し易い。なお、これらの位置関係は上記に限定されず、上記と異なる位置関係であってもよい。
 ここで、複数の加熱用取り出し口1~3は、貯湯タンク210の高さが異なる位置に形成されている湯水を取り出すための取り出し口である。なお、ここでは、貯湯タンク210に3つの加熱用取り出し口1~3が形成されているが、加熱用取り出し口の個数は複数であれば、いくつであってもよい。また、加熱用取り出し口1~3は、請求の範囲に記載の「湯水取出口」に相当する。
 また、複数の温水循環用戻り口1~3についても、同様に、貯湯タンク210の高さが異なる位置に形成されている湯水が戻るための戻り口である。そして、ここでは、貯湯タンク210に3つの温水循環用戻り口1~3が形成されているが、温水循環用戻り口の個数は、いくつであってもよい。
 また、貯湯タンク210は、貯湯タンク210の下部から上部それぞれの湯温を検出する複数の温度検出器を備える。ここでは、貯湯タンク210には、5つの温度検出器221~225が設けられているものとする。ここで、温度検出器223~225は、加熱用取り出し口1~3から取り出される湯水の温度をそれぞれ検出するための機器である。なお、温度検出器223~225は、請求の範囲に記載の「湯温検知部」に包含される。
 このような構成において、圧縮機110、水熱交換器120、膨張弁130、及び空気熱交換器140で冷媒回路が形成される。また、貯湯タンク210の加熱用取り出し口1~3(加熱用取り出し口231~233)、水熱交換器120、貯湯タンク210の加熱用戻り口211で沸き上げ循環路が形成される。そして、沸き上げポンプ123で沸き上げ循環路の湯水が循環することで、貯湯タンク210の加熱用取り出し口1~3から取り出された湯水が、水熱交換器120において冷媒と熱交換して高温の湯として貯湯タンク210の加熱用戻り口211に戻される。
 沸き上げ循環路の三方弁271、272は、貯湯タンク210の加熱用取り出し口1~3の選択によって、沸き上げ経路を変更するものである。
 具体的には、例えば、加熱用取り出し口1が選択された場合は、三方弁271、272は、貯湯タンク210の加熱用取り出し口1(加熱用取り出し口231)からの湯水が沸き上げ循環路を流れて加熱されるように、沸き上げ経路を切り換える。また、加熱用取り出し口2が選択されている場合は、三方弁271、272は、貯湯タンク210の加熱用取り出し口2(加熱用取り出し口232)からの湯水が沸き上げ循環路を流れて加熱されるように、沸き上げ経路を切り換える。
 このように、選択された加熱用取り出し口1~3から湯水が取り出され、取り出された湯水は、加熱部100で加熱されて、貯湯タンク210に戻される。
 また、貯湯タンク210内に貯められている湯水は、負荷回路300に供給され、負荷回路300で一部の湯水が消費されるため、貯湯タンク210内の湯水の量を確保するために、貯湯タンク210には、給水により水が補給される。
 負荷回路300は、給湯が供給される給湯用機器310、暖房や風呂追い焚き等に使用される暖房用循環水や浴槽用循環水と熱交換を行う温水循環用熱交換器320、暖房や風呂追い焚きを行う暖房風呂追焚機器330、温水循環用ポンプ321、及び暖房風呂用ポンプ331を有している。
 給湯用機器310に給湯される湯水(以下、給湯用湯水という)は、貯湯タンク210の給湯負荷用取り出し口241より供給される高温水が、給水により供給される水と混合弁281により所定温度に混合された後、出湯される。ここでは、この給湯用湯水の所定温度は、ユーザのリモコン操作により設定される設定温度である。
 つまり、給湯負荷用取り出し口241から高温水が取り出され、混合弁281で、当該高温水と、当該高温水よりも低い温度の湯水とが混合され、混合弁281によって混合された湯水が負荷回路300の給湯用機器310に供給される。
 また、暖房や風呂追い焚きは、貯湯タンク210の温水循環用取り出し口242より供給される高温水が、温水循環用ポンプ321により所定の循環量で温水循環用熱交換器320を介して、暖房風呂用ポンプ331で循環される暖房用循環水や浴槽用循環水と熱交換することで行われる。
 ここで、貯湯タンク210の温水循環用取り出し口242、温水循環用熱交換器320、及び温水循環用戻り口1~3(温水循環用戻り口251~253)で温水循環路を形成し、温水循環用ポンプ321で温水循環路の湯水を循環させる。
 また、温水循環用熱交換器320で熱交換された後の温水は、一部、バイパス回路を通り貯湯タンク210の温水循環用取り出し口242より供給される高温水とミキシングされることで、温水循環用熱交換器320へ流す温水(以下、暖房用湯水という)の温度が所定温度になるように調整される。ここでは、この暖房用湯水の所定温度は、暖房風呂追焚機器330に供給される温度がユーザのリモコン操作により設定される設定温度や強弱などのレベルを示す設定レベルとなるような温度である。
 一方、バイパス回路に流れない温水は、貯湯タンク210に戻される。その際、貯湯タンク210内の温度検出器221~225によって検出される温度により、温水循環用戻り口1~3の中から貯湯タンク210に戻る温水の温度と近い戻り口が選択されて戻される。
 温水循環路の三方弁273、274は、貯湯タンク210の温水循環用戻り口1~3の選択によって、温水循環経路を変更するための弁である。
 具体的には、例えば、温水循環用戻り口1が選択された場合は、貯湯タンク210の温水循環用戻り口1に温水循環路の湯水が戻るように、温水循環経路を切り換える。また、温水循環用戻り口2が選択されている場合は、貯湯タンク210の温水循環用戻り口2に温水循環路の湯水が戻るように、温水循環経路を切り換える。
 また、給湯用機器310に出湯される給湯用湯水の流量と、貯湯タンク210からの高温水と給水とを混合した後の給湯用湯水の湯温とを検出することで、給湯負荷の熱量が算出される。また、温水循環路を流れる暖房用湯水の流量と、温水循環用熱交換器320の前後の暖房用湯水の湯温とを検出することで、暖房や追い焚きで使用される熱量が算出される。
 なお、温水循環用熱交換器320と暖房風呂追焚機器330は、暖房等を行う放熱器であってもよい。
 上記構成において、加熱部100による湯水を加熱する運転である沸き上げ運転時には、沸き上げポンプ123及び圧縮機110が、運転制御装置10によって制御される。例えば、湯水を加熱する温度である沸き上げ湯温が90℃の場合は、運転制御装置10は、出湯温検出器121の温度が90℃になるように沸き上げポンプ123を適切な流量に調節する。また、出湯温度の制御は、圧縮機110の回転数や膨張弁130の開度などの制御によって行うこともできる。上記動作により貯湯タンク210には、上部から順に90℃の湯が貯留され、入水温検出器122が所定温度、例えば60℃を検出すると、運転制御装置10は、90℃の湯が貯湯タンク210の下部まで達したと判断し、沸き上げポンプ123及び圧縮機110を停止し、沸き上げ運転を終了する。
 次に、本実施の形態1における貯湯式給湯装置1の運転制御装置10の機能構成を説明する。
 図3は、本発明の実施の形態1に係る運転制御装置10の機能構成を示す機能ブロック図である。
 同図に示すように、運転制御装置10は、貯湯タンク湯温検出部410、加熱運転判断部420、取出口選択部430、加熱温度検出部440、加熱温度能力設定部450及び加熱指示部460を備えている。
 貯湯タンク湯温検出部410は、貯湯タンク210内の湯水の温度を検出する。具体的には、貯湯タンク湯温検出部410は、貯湯タンク210に設けられた複数の温度検出器221~225により、貯湯タンク210内での各位置における湯温を求める。
 加熱温度検出部440は、加熱部100によって加熱される前後の湯水の温度を検出する。具体的には、加熱温度検出部440は、加熱部100における入水温検出器122、出湯温検出器121、及び外気温検出器150から検出される温度を取得し、保持する。
 取出口選択部430は、貯湯タンク210から負荷回路300に供給される湯水の温度である供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて、複数の加熱用取り出し口1~3の中から、湯水を取り出す加熱用取り出し口を選択する。つまり、取出口選択部430は、加熱部100で加熱する湯水を取り出すために貯湯タンク210に設けられた複数の加熱用取り出し口1~3のいずれかを選択する。なお、この取出口選択部430の詳細については、後述する。
 ここで、供給温度とは、具体的には、負荷回路300に供給される給湯用湯水の設定温度又は暖房用湯水の設定温度である。つまり、供給温度は、負荷として有効利用できる湯水の温度の下限値である。つまり、供給温度以下の温度の湯水は、負荷として有効利用できない。
 加熱運転判断部420は、貯湯タンク湯温検出部410が検出した温度から、加熱部100が湯水を加熱する運転の起動及び停止の判断を行う。具体的には、加熱運転判断部420は、貯湯タンク湯温検出部410で検出される湯温をもとに、加熱部100を起動してどのくらい沸き上げ運転を行う必要があるかを判断したり、加熱部100による沸き上げ運転中は貯湯タンク湯温検出部410で検出される湯温をもとに沸き上げ運転終了を判断する。
 加熱温度能力設定部450は、貯湯タンク湯温検出部410が検出した温度と、加熱温度検出部440が検出した温度と、加熱運転判断部420が判断した結果と、取出口選択部430が選択した加熱用取り出し口とから、加熱部100が湯水を加熱する加熱温度と加熱部100の加熱能力とを設定する。具体的には、加熱温度能力設定部450は、貯湯タンク湯温検出部410で検出される湯温、取出口選択部430で選択された加熱用取り出し口、加熱運転判断部420で判定された情報、および、加熱温度検出部440で検出される温度情報から、沸き上げ湯温の設定や、沸き上げポンプ123及び圧縮機110の能力設定を行う。
 加熱指示部460は、選択された加熱用取り出し口から取り出され、貯湯タンク210に戻される湯水を加熱する加熱指示を加熱部100に与える。
 そして、加熱部100は、加熱指示に従って、設定された加熱温度及び加熱能力で湯水を加熱する。つまり、加熱部100は、加熱温度能力設定部450で設定された沸き上げ湯温や沸き上げポンプ123及び圧縮機110の能力で沸き上げを行う。
 次に、取出口選択部430の詳細について、説明する。
 図4は、本発明の実施の形態1に係る取出口選択部430の機能構成の詳細を示す機能ブロック図である。
 同図に示すように、取出口選択部430は、取出口湯温取得部431、供給温度取得部432、及び選択部433を備えている。
 取出口湯温取得部431は、貯湯タンク湯温検出部410が検出した温度と、貯湯タンク210内での加熱用取り出し口1~3の配置とから、加熱用取り出し口1~3付近の湯水の温度を算出し、取得する。つまり、取出口湯温取得部431は、加熱用取り出し口1~3から取り出される湯水の温度を取得する。
 供給温度取得部432は、供給温度を取得する。ここで、供給温度は、給湯用湯水又は暖房用湯水の設定温度であり、給湯用湯水と暖房用湯水の設定温度が異なる場合は、例えば、給湯用湯水の設定温度及び暖房用湯水の設定温度のうち、最も低い温度である。また、供給温度取得部432は、ユーザがリモコン30で貯湯式給湯装置1に給湯用湯水又は暖房用湯水の設定温度や設定レベルを入力することにより、供給温度を取得する。
 つまり、リモコン30は、給湯用湯水の設定温度又は暖房用湯水の設定温度を取得し、取得した設定温度を供給温度として設定する装置である。なお、リモコン30は、請求の範囲に記載の「供給温度設定部」に包含される。
 このように、温度検出器223~225により貯湯タンク210内の温度を推定することができ、また、リモコン30により需要家が実際に使用する温度から供給温度を取得することができるため、貯湯タンク210内の負荷として有効利用できない湯をより正確に取り出すことができる。
 選択部433は、加熱用取り出し口1~3から取り出される湯水の温度と、供給温度とから、湯水を取り出す加熱用取り出し口を選択する。具体的には、選択部433は、複数の加熱用取り出し口1~3の中から、供給温度よりも低い温度の湯水を取り出す加熱用取り出し口を選択する。さらに、具体的には、取出口選択部430は、供給温度よりも低い温度の湯水を取り出す加熱用取り出し口の中から、供給温度よりも低く、かつ供給温度に最も近い温度の湯水を取り出す加熱用取り出し口を選択する。
 次に、貯湯式給湯装置1の運転制御装置10が行う動作の一例について説明する。
 図5は、本発明の実施の形態1に係る貯湯式給湯装置1の動作の一例を示すフローチャートである。
 まず、同図に示すように、貯湯タンク湯温検出部410は、貯湯タンク210内の湯水の温度を検出する(S102)。
 そして、加熱温度検出部440は、入水温検出器122、出湯温検出器121、及び外気温検出器150から検出される温度を検出する(S104)。
 そして、取出口選択部430は、供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて、複数の加熱用取り出し口1~3の中から、湯水を取り出す加熱用取り出し口を選択する(S106)。なお、この取出口選択部430が加熱用取り出し口を選択する処理の詳細については、後述する。
 次に、加熱運転判断部420は、貯湯タンク湯温検出部410が検出した温度から、加熱部100が湯水を加熱する運転の起動及び停止の判断を行う(S108)。
 そして、加熱温度能力設定部450は、貯湯タンク湯温検出部410が検出した温度と、加熱温度検出部440が検出した温度と、加熱運転判断部420が判断した結果と、取出口選択部430が選択した加熱用取り出し口とから、加熱部100が湯水を加熱する加熱温度と加熱部100の加熱能力とを設定する(S110)。
 そして、加熱指示部460は、選択された加熱用取り出し口から取り出され、貯湯タンク210に戻される湯水を加熱する加熱指示を加熱部100に与える(S112)。そして、加熱部100は、加熱指示に従って、設定された加熱温度及び加熱能力で湯水を加熱する。
 以上により、貯湯式給湯装置1の運転制御装置10が行う動作は、終了する。
 次に、取出口選択部430が加熱用取り出し口を選択する処理(図5のS106)の詳細について、説明する。
 図6は、本発明の実施の形態1に係る取出口選択部430が加熱用取り出し口を選択する処理(図5のS106)の一例を示すフローチャートである。
 図7は、取出口選択部430が加熱用取り出し口を選択する処理を説明する図である。
 まず、図6に示すように、供給温度取得部432は、供給温度tuを取得する(S202)。
 そして、取出口湯温取得部431は、貯湯タンク湯温検出部410で検出される湯温から、加熱用取り出し口ごとの湯温を取得する(S204)。つまり、取出口湯温取得部431は、加熱用取り出し口1~3から取り出される湯水の温度(t1~t3)を取得する。
 ここで、取出口湯温取得部431は、加熱用取り出し口ごとの湯温として、加熱用取り出し口に最も近い温度検出器221~225で検出される温度を取得してもよいし、温度検出器221~225で検出される温度と温度検出器221~225が設置されている貯湯タンク210内の位置とから、加熱用取り出し口の温度を算出して取得してもよい。
 次に、選択部433は、複数の加熱用取り出し口1~3の中から、湯水を取り出す加熱用取り出し口を選択する。つまり、選択部433は、複数の加熱用取り出し口1~3の中から、供給温度よりも低く、かつ、供給温度に最も近い温度の湯水を取り出す加熱用取り出し口を選択する。
 具体的には、選択部433は、加熱用取り出し口3から取り出される湯水の温度t3と供給温度tuとを比較する(S206)。
 選択部433は、加熱用取り出し口3の湯温t3が供給温度tu未満であると判断した場合(S206でYES)、加熱用取り出し口3を選択する(S208)。例えば、図7に示すように、供給温度tuが同図に示す供給温度tu3の場合に、加熱用取り出し口3の湯温t3は供給温度tu3未満である。このため、選択部433は、加熱用取り出し口3の湯温t3が供給温度tu3未満であると判断し、加熱用取り出し口3(加熱用取り出し口233)を選択する。
 また、図6に戻り、選択部433は、加熱用取り出し口3の湯温t3が供給温度tu以上であると判断した場合(S206でNO)、加熱用取り出し口2から取り出される湯水の温度t2と供給温度tuとを比較する(S210)。
 選択部433は、加熱用取り出し口2の湯温t2が供給温度tu未満であると判断した場合(S210でYES)、加熱用取り出し口2を選択する(S212)。例えば、図7に示すように、供給温度tuが同図に示す供給温度tu2の場合に、加熱用取り出し口3の湯温t3は供給温度tu2以上であり、加熱用取り出し口2の湯温t2は供給温度tu2未満である。このため、選択部433は、加熱用取り出し口2の湯温t2が供給温度tu2未満であると判断し、加熱用取り出し口2(加熱用取り出し口232)を選択する。
 また、図6に戻り、選択部433は、加熱用取り出し口2の湯温t2が供給温度tu以上であると判断した場合(S210でNO)、加熱用取り出し口1を選択する(S214)。例えば、図7に示すように、供給温度tuが同図に示す供給温度tu1の場合に、加熱用取り出し口2の湯温t2は供給温度tu1以上である。このため、選択部433は、加熱用取り出し口2の湯温t2が供給温度tu1以上であると判断し、加熱用取り出し口1(加熱用取り出し口231)を選択する。
 このようにして、選択部433は、複数の加熱用取り出し口1~3の中から、供給温度よりも低く、かつ、供給温度に最も近い温度の湯水を取り出す加熱用取り出し口を選択する。
 なお、ここでは、貯湯タンク210内の温度成層が崩れていない前提で、貯湯タンク210の鉛直方向上部の加熱用取り出し口3から温度比較を行っているが、温度成層が乱れる可能性のある場合は、供給温度未満で供給温度との差が最も小さい加熱用取り出し口を選ぶようにすることが望ましい。
 なお、温度成層が崩れていない状態とは、温度検出器223~225の検出値が上から順に高くなっている状態(温度検出器223で検出される温度が最も高い状態)を示しており、温度成層が乱れている状態とは、当該検出値の高低が逆転した状態である。
 以上により、取出口選択部430が加熱用取り出し口を選択する処理(図5のS106)が終了する。
 次に、このように取出口選択部430が加熱用取り出し口を選択することによる効果について、説明する。
 図8は、ある外気温、ある沸き上げ温度の場合の加熱部100に入水する湯水の温度に対する加熱部100のCOPを示す図である。つまり、同図は、横軸が加熱部100に入水する湯水の温度(入水温)で、縦軸が加熱部100のCOPであるグラフを示している。
 ここで、加熱部100に入水する湯水の温度は、貯湯タンク210の加熱用取り出し口1~3から取り出される湯水の温度と同じとする。また、供給温度は42℃であることとする。つまり、同図は、供給温度を42℃としたときの貯湯タンク210内の温度に対する加熱部100によるCOPを示したものである。
 以下に、このCOPの算出方法について、説明する。
 貯湯タンク湯温検出部410によって検出された湯温と温度検出器221~225が設置されている位置とから、貯湯タンク210に貯湯されている湯水の熱量を算出することができる。
 そして、加熱部100によって加熱されることによる湯水の熱量の増加量である増加熱量を、選択された加熱用取り出し口に近い温度検出器から検出される湯温と、加熱部100で沸き上げる温度、流量とから算出する。このとき、湯水を加熱することによる増加熱量は、沸き上げ湯温と貯湯タンク210の湯温の温度差分の熱量となる。
 そして、COPは、単位時間当たりの増加熱量を加熱部100が消費する電力で除して、算出される。この電力は、加熱部100への入水温、沸き上げ湯温、及び外気温などから算出される。なお、当該電力は、電力計などによって計測されてもよい。
 このようにして算出された、生成熱量に対するCOP(以下、「定格COP」という)を示したグラフが、同図に示されるグラフAである。
 次に、同図に示されるグラフBについて説明する。
 湯水は供給温度で負荷回路300に供給されて、給湯や暖房などの負荷で使用されるため、供給温度未満の湯水については、給湯や暖房などの負荷で使用することのできない湯水である。このため、供給温度未満の湯水の熱量を0として、貯湯タンク210内の湯水の熱量である有効熱量を算出する。つまり、有効熱量とは、給湯や暖房などの負荷で使用することができる湯水の熱量である。
 つまり、供給温度未満の湯水を加熱部100で加熱することによる有効熱量の増加量である増加有効熱量は、加熱部100により加熱される沸き上げ湯温の熱量となり、供給温度に近い湯を加熱部100で加熱するほど、増加する有効熱量は大きくなる。
 また、ヒートポンプの特性として、同じ沸き上げ湯温の同じ量の湯を作る場合、温度差が小さいほど沸き上げに必要な電力は小さくなり、同じ能力で沸き上げる場合、温度差が小さいほど多くの量の湯が生成される傾向にある。つまり、加熱部100への入水温が高いほど、沸き上げに必要な電力は小さくなり、また、増加有効熱量は大きくなる。
 以上のことから、増加有効熱量に対するCOP(以下、「実働COP」という)は、供給温度に近いほど高くなる。つまり、実働COPは、供給温度以上の温度(以下、「有効温度」という)の湯水についてのみ、給湯や暖房などの負荷で使用することができるとして、有効温度の湯水の増加有効熱量を、加熱部100が消費する電力で除して算出される値である。
 このようにして算出された、実働COPを示したグラフが、同図に示されるグラフBである。
 そして、同図に示すように、定格COPが高ければ実働COPが高いとは限らず、入水温が供給温度(42℃)よりも低い場合は、定格COPが低くても実働COPは高くなる。具体的には、入水温が供給温度未満の場合に実働COPが高くなり、入水温が供給温度に近付くほど実働COPが高くなる。
 したがって、取出口選択部430が、貯湯タンク湯温検出部410が検出した温度が供給温度未満で、かつ最も供給温度に近い加熱用取り出し口を選択することで、加熱部100は、実働COPが最も高くなるように加熱することができる。つまり、取出口選択部430は、簡単な比較で効率よく加熱用取り出し口を選択することができる。
 以上のように、供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて加熱用取り出し口が選択され、加熱用取り出し口から取り出された湯水が加熱される。そして、例えば、この供給温度より低い温度の湯水は、負荷として使えない温度の湯水である。このため、当該供給温度に基づいて、貯湯タンク210内の負荷として使えない温度の湯が効率よく取り出されるように、加熱用取り出し口を選択して加熱することができる。したがって、貯湯タンク210内の負荷として使えない温度の湯水の増加を抑制し、貯湯タンク210内の有効熱量の増加量を大きくすることで効率的な運転を行うことができる。
 なお、「加熱用取り出し口から取り出される湯水の温度」とは、加熱用取り出し口1~3近傍の温度検出器223~225によって検出された温度としたが、加熱用取り出し口1~3近傍から加熱部100に入水される直前の湯水のうちのいずれのところの温度でも良い。
 ここで、加熱部100に入水される直前の温度を加熱用取り出し口から取り出される湯水の温度とする場合、加熱用取り出し口近傍の温度検出器から加熱部100に入水される直前までの熱ロス分を加熱用取り出し口近傍の温度検出器で検出される温度から減算し、供給温度と比較しても良い。
 また、加熱部100に入水される直前の熱ロスは、季節や周辺条件によって異なるので、あらかじめ季節に応じた所定の値を設定しても良いし、季節ごとに加熱用取り出し口近傍の温度検出器で検出される温度と入水温検出器122で検出される温度との差によって求めてもよい。
 例えば、当該熱ロスによる温度の差は、給湯部20の設置状態や、季節、周辺条件によって異なるが、1℃~5℃が見込まれる。
 (実施の形態2)
 次に、本発明の実施の形態2における貯湯式給湯装置について、説明する。
 上記実施の形態1では、複数の加熱用取り出し口1~3の中から、供給温度よりも低く、かつ、供給温度に最も近い温度の湯水を取り出す加熱用取り出し口を選択することとした。しかし、本実施の形態2では、実働COPを算出することで、実働COPが最も高い加熱用取り出し口を選択する。
 ここで、ヒートポンプの特性として、外気温や、入水温、沸き上げ湯温などによって性能が異なるという特徴がある。
 図9は、外気温ごとの入水温に対するCOPを示す図である。つまり、同図は、横軸が加熱部100に入水する湯水の温度(入水温)で、縦軸が沸き上げ湯温を一定にした場合の加熱部100のCOPであるグラフを示している。
 具体的には、同図に示すグラフCは、夏期におけるグラフを示し、グラフDは、中間期(春期又は秋期)におけるグラフを示し、グラフEは、冬期におけるグラフを示している。すなわち、同図に示すように、沸き上げ湯温と入水温が同じでも、季節(外気温)が異なることで、性能(COP)が異なる。 そこで、外気温や、入水温、沸き上げ湯温などによるヒートポンプの特性に応じて、実働COPが最も高くなるように、加熱用取り出し口を選択する実施の形態2について、以下に説明する。
 図10は、本発明の実施の形態2に係る運転制御装置10の機能構成を示す機能ブロック図である。
 同図に示すように、運転制御装置10は、貯湯タンク湯温検出部510、有効熱量算出部520、負荷熱量算出部530、加熱運転判断部540、取出口選択部550、加熱温度検出部560、加熱温度能力設定部570及び加熱指示部580を備えている。
 貯湯タンク湯温検出部510は、貯湯タンク210内の湯水の温度を検出する。具体的には、貯湯タンク湯温検出部510は、貯湯タンク210の温度検出器221~225で検出される湯温を取得し、保持する。
 負荷熱量算出部530は、負荷回路300で使用される給湯や暖房、追い焚きの負荷に関する情報を取得し、負荷熱量の算出と保持とを行う。
 加熱温度検出部560は、加熱部100によって加熱される前後の湯水の温度を検出する。具体的には、加熱温度検出部560は、加熱部100における入水温検出器122、出湯温検出器121、及び外気温検出器150から検出される温度を取得し、保持する。
 有効熱量算出部520は、貯湯タンク湯温検出部510で検出される湯温をもとに、貯湯タンク210に蓄えられている有効熱量を算出する。
 加熱運転判断部540は、貯湯タンク湯温検出部510が検出した温度から、加熱部100が湯水を加熱する運転の起動及び停止の判断を行う。具体的には、加熱運転判断部540は、有効熱量算出部520で算出される有効熱量と負荷熱量算出部530で算出される負荷熱量とをもとに、加熱部100を起動して、どのくらい沸き上げ運転を行う必要があるかを判断したり、加熱部100による沸き上げ運転中は貯湯タンク湯温検出部510で検出される湯温をもとに沸き上げ運転終了を判断する。
 取出口選択部550は、供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて、複数の加熱用取り出し口1~3の中から、湯水を取り出す加熱用取り出し口を選択する。つまり、取出口選択部550は、複数の加熱用取り出し口1~3の中から、供給温度より低い温度の湯水の熱量を当該熱量より低い熱量に変更して算出される、加熱部100が湯水を加熱する場合のエネルギー効率を示すCOPが最も高い加熱用取り出し口を選択する。
 具体的には、取出口選択部550は、供給温度より低い温度の湯水の熱量を0として、複数の加熱用取り出し口1~3の中から、実働COPが最も高い加熱用取り出し口を選択する。さらに、具体的には、取出口選択部550は、加熱運転判断部540が判断した結果と貯湯タンク湯温検出部510が検出した湯温とから、加熱用取り出し口を選択する。なお、この取出口選択部550の詳細については、後述する。
 加熱温度能力設定部570は、貯湯タンク湯温検出部510で検出される湯温、取出口選択部550で選択された加熱用取り出し口、加熱運転判断部540で判定された情報、および、加熱温度検出部560で検出される温度情報から、加熱部100が湯水を加熱する加熱温度である沸き上げ湯温の設定や、沸き上げポンプ123及び圧縮機110の能力設定を行う。
 加熱指示部580は、選択された加熱用取り出し口から取り出され、貯湯タンク210に戻される湯水を加熱する加熱指示を加熱部100に与える。
 そして、加熱部100は、加熱指示に従って、設定された加熱温度及び加熱能力で湯水を加熱する。つまり、加熱部100は、加熱温度能力設定部570で設定された沸き上げ湯温や沸き上げポンプ123及び圧縮機110の能力で沸き上げを行う。
 次に、取出口選択部550の詳細について、説明する。
 図11は、本発明の実施の形態2に係る取出口選択部550の機能構成の詳細を示す機能ブロック図である。
 同図に示すように、取出口選択部550は、供給温度取得部551、増加熱量算出部552、COP算出部553、及び選択部554を備えている。
 供給温度取得部551は、供給温度を取得する。ここでの供給温度取得部551は、実施の形態1における供給温度取得部432と同様の機能を有する。
 増加熱量算出部552は、複数の加熱用取り出し口1~3ごとに、加熱用取り出し口から取り出される湯水の温度が供給温度より低い場合に、当該加熱用取り出し口から取り出される湯水の熱量を0として、当該加熱用取り出し口から取り出される湯水が加熱部100に加熱される場合の当該湯水の増加有効熱量を算出する。
 具体的には、増加熱量算出部552は、貯湯タンク湯温検出部510が検出した温度から、加熱用取り出し口1~3それぞれの湯温を、加熱運転判断部540で判定された沸き上げ湯温になるように沸き上げ運転を行った場合の増加有効熱量を算出する。
 COP算出部553は、複数の加熱用取り出し口1~3ごとに、増加熱量算出部552が算出した増加有効熱量に対応するCOPである実働COPを算出する。
 選択部554は、COP算出部553が算出した実働COPが最も高い加熱用取り出し口を選択する。具体的には、選択部554は、COP算出部553で加熱用取り出し口1~3ごとに算出された実働COPを比較し、実働COPが最も高くなる加熱用取り出し口を、加熱を行うために貯湯タンク210から加熱部100への湯水を取り出す加熱用取り出し口として選択する。
 次に、本実施の形態2に係る貯湯式給湯装置1の運転制御装置10が行う動作の一例について説明する。
 図12は、本発明の実施の形態2に係る貯湯式給湯装置1の動作の一例を示すフローチャートである。
 まず、同図に示すように、貯湯タンク湯温検出部410は、貯湯タンク210内の湯水の温度を検出する(S302)。
 そして、有効熱量算出部520は、貯湯タンク湯温検出部510で検出された湯温をもとに、貯湯タンク210に蓄えられている有効熱量を算出する(S304)。
 そして、負荷熱量算出部530は、負荷回路300で使用される負荷熱量の算出と保持とを行う(S306)。
 そして、加熱運転判断部540は、貯湯タンク湯温検出部510が検出した温度と、有効熱量算出部520で算出される有効熱量と、負荷熱量算出部530で算出される負荷熱量とから、加熱部100が湯水を加熱する運転の起動及び停止の判断を行う(S308)。
 次に、取出口選択部550は、供給温度と、加熱用取り出し口から取り出される湯水の温度とに基づいて、複数の加熱用取り出し口1~3の中から、湯水を取り出す加熱用取り出し口を選択する(S310)。なお、この取出口選択部550が加熱用取り出し口を選択する処理の詳細については、後述する。
 そして、加熱温度検出部560は、加熱部100によって加熱される前後の湯水の温度を検出する(S312)。
 そして、加熱温度能力設定部570は、貯湯タンク湯温検出部510が検出した湯温、取出口選択部550が選択した加熱用取り出し口、加熱運転判断部540が判断した結果、および、加熱温度検出部560が検出した温度から、加熱部100が湯水を加熱する加熱温度と加熱部100の加熱能力とを設定する(S314)。
 そして、加熱指示部580は、選択された加熱用取り出し口から取り出され、貯湯タンク210に戻される湯水を加熱する加熱指示を加熱部100に与える(S316)。そして、加熱部100は、加熱指示に従って、設定された加熱温度及び加熱能力で湯水を加熱する。
 以上により、本実施の形態2に係る貯湯式給湯装置1の運転制御装置10が行う動作は、終了する。
 次に、取出口選択部550が加熱用取り出し口を選択する処理(図12のS310)の詳細について、説明する。
 図13は、本発明の実施の形態2に係る取出口選択部550が加熱用取り出し口を選択する処理(図12のS310)の一例を示すフローチャートである。
 まず、同図に示すように、供給温度取得部551は、供給温度tuを取得する(S402)。
 そして、増加熱量算出部552は、複数の加熱用取り出し口1~3ごとに、加熱用取り出し口から取り出される湯水の温度が供給温度より低い場合に、当該加熱用取り出し口から取り出される湯水の熱量を0として、当該加熱用取り出し口から取り出される湯水が加熱部100に加熱される場合の当該湯水の増加有効熱量を算出する(S404)。
 具体的には、増加熱量算出部552は、供給温度取得部551が取得した供給温度と、供給温度加熱運転判断部540で判定された沸き上げ湯温と、貯湯タンク湯温検出部510で算出される加熱用取り出し口1~3近辺の湯温とから、加熱用取り出し口1~3ごとに、増加有効熱量を算出する。
 ここで、増加有効熱量の算出は、図8の説明におけるグラフBでの増加有効熱量の算出方法と同様である。つまり、貯湯タンク210内の供給温度未満の湯水は有効利用できないものとして、貯湯タンク210内での元の有効熱量は0とし、その湯水を使って加熱する場合の増加有効熱量は、加熱部100で沸き上げる温度及び流量から算出した熱量とする。また、供給温度以上の湯を加熱することによる増加有効熱量は、沸き上げ湯温と貯湯タンク210の湯温の温度差分の熱量とする。
 つまり、増加熱量算出部552は、加熱用取り出し口1~3から取り出される湯水の温度が供給温度よりも低い場合は、有効熱量が0の湯水を沸き上げることとし、当該湯水の温度が供給温度以上の場合は、当該温度の湯水を沸き上げることとして、増加有効熱量を算出する。
 次に、COP算出部553は、複数の加熱用取り出し口1~3ごとに、実働COPを算出する(S406)。
 ここで、実働COPの算出は、図8の説明におけるCOPの算出方法と同様である。つまり、例えば、加熱用取り出し口1の場合、加熱用取り出し口1近辺の湯温を沸き上げ湯温に加熱するとしたときの単位時間あたりに増加する有効熱量と、単位時間あたりの加熱に要する消費電力量とから、実働COPを算出するものとする。
 なお、実働COPは、単位時間あたりではなく、単位量の湯水の沸き上げを行う場合を想定して、加熱用取り出し口1の湯温を単位量沸き上げ湯温に加熱した場合に増加する有効熱量と、その加熱に要する消費電力量とから算出されてもよい。
 次に、選択部554は、COP算出部553が算出した実働COPが最も高い加熱用取り出し口を選択する。つまり、選択部554は、COP算出部553で加熱用取り出し口1~3ごとに算出された実働COPを比較し、実働COPが最も高くなる加熱用取り出し口を選択する。
 具体的には、選択部554は、加熱用取り出し口1、2の実働COPと加熱用取り出し口3の実働COPとの比較を行う(S408)。
 選択部554は、加熱用取り出し口1の実働COP(COP1)より加熱用取り出し口3の実働COP(COP3)が大きく、かつ、加熱用取り出し口2の実働COP(COP2)より加熱用取り出し口3の実働COP(COP3)が大きいと判断した場合は(S408でYES)、加熱用取り出し口3を選択する(S410)。
 また、選択部554は、COP1がCOP3以上であるか、又は、COP2がCOP3以上であると判断した場合は(S408でNO)、加熱用取り出し口1、3の実働COPと加熱用取り出し口2の実働COPとの比較を行う(S412)。
 そして、選択部554は、COP1よりCOP2が大きく、かつ、COP3よりCOP2が大きいと判断した場合は(S412でYES)、加熱用取り出し口2を選択する(S414)。
 また、選択部554は、COP1がCOP2以上であるか、又は、COP3がCOP2以上であると判断した場合は(S412でNO)、加熱用取り出し口1を選択する(S416)。
 このようにして、選択部554は、複数の加熱用取り出し口1~3の中から、実働COPが最も高くなる加熱用取り出し口を選択する。
 このように実働COPを算出して比較することで、外気温や入水温度、沸き上げ湯温によるヒートポンプの特性による差異を吸収することができ、実働COPが最も高くなる加熱用取り出し口を選択して沸き上げに使用することができる。
 なお、有効利用できない温度である供給温度は、標準的な負荷などから予め決めておいてもよいし、負荷熱量を取得し蓄積していく過程において、補正を行うなどして更新することで、よりユーザの使用状況に適した値にすることもできる。
 以上により、取出口選択部550が加熱用取り出し口を選択する処理(図12のS310)が終了する。
 本実施の形態2によれば、供給温度より低い温度の湯水の熱量を0として実働COPを算出し、実働COPが最も高い加熱用取り出し口を選択する。つまり、負荷として使えない温度の湯水の有効熱量を0として実働COPを算出する。このため、最も効率のよくなる加熱用取り出し口を選択することで、ヒートポンプの特性に応じて、最も効率よく貯湯タンク210内の有効熱量を増加させることができる。
 これらのように、本発明に係る貯湯式給湯装置1によれば、貯湯タンク210内の有効熱量の増加量を大きくすることで、効率的な運転を行うことができる。
 以上、本発明に係る貯湯式給湯装置1について、上記実施の形態を用いて説明したが、本発明は、これに限定されるものではない。
 つまり、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 例えば、本実施の形態では、供給温度取得部432は、ユーザがリモコン30で貯湯式給湯装置1に給湯用湯水又は暖房用湯水の設定温度や設定レベルを入力することにより、供給温度を取得することとした。しかし、供給温度取得部432は、ユーザがリモコン30を介することなく、直接貯湯式給湯装置1に供給温度を入力することにより、供給温度を取得することにしてもよい。また、供給温度取得部432は、給湯用湯水又は暖房用湯水の温度を温度検出センサなどで検出することにより、供給温度を取得することにしてもよい。
 また、本実施の形態では、供給温度は、給湯用湯水の設定温度及び暖房用湯水の設定温度のうち、最も低い温度であることとした。しかし、供給温度はこれに限定されず、例えば、給湯用湯水の設定温度及び暖房用湯水の設定温度のうち最も高い温度や、給湯用湯水の設定温度及び暖房用湯水の設定温度の平均温度などであってもよい。また、供給温度は、給湯用湯水や暖房用湯水の設定温度とは関係なく、ユーザが任意に決定することにしてもよい。
 また、本実施の形態2では、取出口選択部550は、複数の加熱用取り出し口1~3の中から、実働COPが最も高い加熱用取り出し口を選択することとした。しかし、取出口選択部550は、複数の加熱用取り出し口1~3の中から、供給温度よりも低い温度の湯水を取り出す加熱用取り出し口を選択し、当該供給温度よりも低い温度の湯水を取り出す加熱用取り出し口の中から、実働COPが最も高い加熱用取り出し口を選択することにしてもよい。
 また、本実施の形態2では、取出口選択部550は、供給温度より低い温度の湯水の熱量を0として、実働COPを算出することとした。しかし、取出口選択部550は、供給温度より低い温度の湯水の熱量を、0にするのではなく当該熱量より低い所定の熱量に変更して、実働COPを算出することにしてもよい。
 また、本発明は、このような貯湯式給湯装置1として実現できるだけでなく、その装置を構成する各処理部を備える給湯暖房装置、その装置の運転を制御する運転制御装置10、またはそれらの装置を構成する各処理部をステップとする方法として実現したりすることができる。さらに、本発明は、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明の貯湯式給湯装置によれば、床暖房やラジエタ等の暖房の種類や有無、風呂追い炊きの有無に関係無く貯湯式給湯装置に適用でき、特に冷媒として二酸化炭素を用いたヒートポンプサイクルを利用したヒートポンプ式給湯暖房装置に有用である。また、その他の冷媒を用いた貯湯式給湯装置にも適用できる。
   1   貯湯式給湯装置
   10  運転制御装置
   20  給湯部
   30  リモコン
   100 加熱部
   110 圧縮機
   120 水熱交換器
   121 出湯温検出器
   122 入水温検出器
   123 沸き上げポンプ
   130 膨張弁
   140 空気熱交換器
   150 外気温検出器
   200 タンクユニット
   210 貯湯タンク
   211 加熱用戻り口
   221~225 温度検出器
   231~233 加熱用取り出し口
   241 給湯負荷用取り出し口
   242 温水循環用取り出し口
   251~253 温水循環用戻り口
   261 給水口
   271~274 三方弁
   281、282 混合弁
   300 負荷回路
   310 給湯用機器
   320 温水循環用熱交換器
   321 温水循環用ポンプ
   330 暖房風呂追焚機器
   331 暖房風呂用ポンプ
   410 貯湯タンク湯温検出部
   420 加熱運転判断部
   430 取出口選択部
   431 取出口湯温取得部
   432 供給温度取得部
   433 選択部
   440 加熱温度検出部
   450 加熱温度能力設定部
   460 加熱指示部
   510 貯湯タンク湯温検出部
   520 有効熱量算出部
   530 負荷熱量算出部
   540 加熱運転判断部
   550 取出口選択部
   551 供給温度取得部
   552 増加熱量算出部
   553 COP算出部
   554 選択部
   560 加熱温度検出部
   570 加熱温度能力設定部
   580 加熱指示部

Claims (17)

  1.  需要家が湯水を利用する負荷部に、加熱された湯水を供給する貯湯式給湯装置であって、
     湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、
     前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択部と、
     選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部と
     を備える貯湯式給湯装置。
  2.  前記取出口選択部は、前記複数の湯水取出口の中から、前記供給温度よりも低い温度の湯水を取り出す湯水取出口を選択する
     請求項1に記載の貯湯式給湯装置。
  3.  前記取出口選択部は、前記供給温度よりも低く、かつ前記供給温度に最も近い温度の湯水を取り出す湯水取出口を選択する
     請求項2に記載の貯湯式給湯装置。
  4.  さらに、
     前記貯湯タンクに形成され、前記貯湯タンクから高温水を取り出すための給湯負荷用取り出し口と、
     前記給湯負荷用取り出し口から取り出された高温水と前記高温水よりも低い温度の湯水とを混合する混合弁とを有し、
     前記混合弁によって混合された湯水を前記負荷部に供給する
     請求項1~3のいずれか1項に記載の貯湯式給湯装置。
  5.  さらに、
     前記複数の湯水取出口ごとに、前記湯水取出口から取り出される湯水の温度を求めるための湯温検知部を備える
     請求項1~4のいずれか1項に記載の貯湯式給湯装置。
  6.  前記負荷部には、前記需要家に給湯される湯水である給湯用湯水、又は、暖房若しくは風呂追い焚きのための機器に供給される湯水である暖房用湯水が供給され、
     前記貯湯式給湯装置は、さらに、
     前記給湯用湯水の設定温度又は前記暖房用湯水の設定温度を取得し、取得した前記設定温度を前記供給温度として設定する供給温度設定部を有する
     請求項1~5のいずれか1項に記載の貯湯式給湯装置。
  7.  さらに、
     前記貯湯タンクに形成され、いずれかの前記湯水取出口から取り出され前記加熱部で加熱された湯水を前記貯湯タンクに戻すための加熱用戻り口を有し、
     前記加熱用戻り口は、前記複数の湯水取出口よりも高い位置に配置される
     請求項1~6のいずれか1項に記載の貯湯式給湯装置。
  8.  前記加熱部は、湯水を加熱するヒートポンプを備える
     請求項1~7のいずれか1項に記載の貯湯式給湯装置。
  9.  前記取出口選択部は、前記複数の湯水取出口の中から、前記供給温度より低い温度の湯水の熱量を当該熱量より低い熱量に変更して算出される、前記加熱部が湯水を加熱する場合のエネルギー効率を示すCOPが最も高い湯水取出口を選択する
     請求項1、2、及び4~8のいずれか1項に記載の貯湯式給湯装置。
  10.  前記取出口選択部は、
     前記複数の湯水取出口ごとに、前記湯水取出口から取り出される湯水の温度が前記供給温度より低い場合に、前記湯水取出口から取り出される湯水の熱量を0として、前記湯水取出口から取り出される湯水が前記加熱部に加熱される場合の当該湯水の増加熱量を算出する増加熱量算出部と、
     前記複数の湯水取出口ごとに、算出された前記増加熱量に対応するCOPを算出するCOP算出部と、
     算出された前記COPが最も高い湯水取出口を選択する選択部とを備える
     請求項4に記載の貯湯式給湯装置。
  11.  前記負荷部には、前記需要家に給湯される湯水である給湯用湯水、又は、暖房又は風呂追い焚きのための機器に供給される湯水である暖房用湯水が供給され、
     前記取出口選択部は、前記給湯用湯水の設定温度又は前記暖房用湯水の設定温度である前記供給温度に基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する
     請求項1~10のいずれか1項に記載の貯湯式給湯装置。
  12.  前記取出口選択部は、前記給湯用湯水の設定温度及び前記暖房用湯水の設定温度のうち、最も低い温度である前記供給温度に基づいて、前記湯水取出口を選択する
     請求項11に記載の貯湯式給湯装置。
  13.  さらに、
     前記貯湯タンク内の湯水の温度を検出する貯湯タンク湯温検出部と、
     前記加熱部によって加熱される前後の湯水の温度を検出する加熱温度検出部と、
     前記貯湯タンク湯温検出部が検出した温度から、前記加熱部が湯水を加熱する運転の起動及び停止の判断を行う加熱運転判断部と、
     前記貯湯タンク湯温検出部が検出した温度と前記加熱温度検出部が検出した温度と前記加熱運転判断部が判断した結果と前記取出口選択部が選択した湯水取出口とから、前記加熱部が湯水を加熱する加熱温度と前記加熱部の加熱能力とを設定する加熱温度能力設定部とを備え、
     前記加熱部は、設定された前記加熱温度及び前記加熱能力で湯水を加熱する
     請求項1~12のいずれか1項に記載の貯湯式給湯装置。
  14.  需要家が湯水を利用する負荷部に、加熱された湯水を供給し、給湯及び暖房を行う給湯暖房装置であって、
     湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、
     前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択部と、
     選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部と
     を備える給湯暖房装置。
  15.  需要家が湯水を利用する負荷部に、加熱された湯水を供給する貯湯式給湯装置の運転を制御する運転制御装置であって、
     前記貯湯式給湯装置は、
     湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、
     前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部とを備え、
     前記運転制御装置は、
     前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択部と、
     選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱指示を前記加熱部に与える加熱指示部と
     を備える運転制御装置。
  16.  需要家が湯水を利用する負荷部に、加熱された湯水を供給する貯湯式給湯装置の運転を制御する運転制御方法であって、
     前記貯湯式給湯装置は、
     湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、
     前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部とを備え、
     前記運転制御方法は、
     前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択ステップと、
     選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱指示を前記加熱部に与える加熱指示ステップと
     を含む運転制御方法。
  17.  需要家が湯水を利用する負荷部に、加熱された湯水を供給する貯湯式給湯装置の運転を制御するためのプログラムであって、
     前記貯湯式給湯装置は、
     湯水が貯められ、高さが異なる位置に湯水を取り出すための複数の湯水取出口が形成された貯湯タンクと、
     前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱部とを備え、
     前記プログラムは、
     前記貯湯タンクから前記負荷部に供給される湯水の温度である供給温度と、前記湯水取出口から取り出される湯水の温度とに基づいて、前記複数の湯水取出口の中から、湯水を取り出す湯水取出口を選択する取出口選択ステップと、
     選択された前記湯水取出口から取り出され、前記貯湯タンクに戻される湯水を加熱する加熱指示を前記加熱部に与える加熱指示ステップと
     をコンピュータに実行させるプログラム。
PCT/JP2010/002802 2009-04-21 2010-04-19 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム WO2010122759A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080001962.9A CN102084190B (zh) 2009-04-21 2010-04-19 储热式热水供给装置、热水供给供暖装置、运转控制装置及运转控制方法
US13/001,626 US9170030B2 (en) 2009-04-21 2010-04-19 Storage hot water supplying apparatus, hot water supplying and space heating apparatus, operation control apparatus, operation control method, and operation control program
JP2010545711A JP5498959B2 (ja) 2009-04-21 2010-04-19 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
EP10766821.2A EP2423617B1 (en) 2009-04-21 2010-04-19 Storage hot water supplying apparatus, hot water supplying and space heating apparatus, operation control apparatus, operation control method and operation control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103455 2009-04-21
JP2009-103455 2009-04-21

Publications (1)

Publication Number Publication Date
WO2010122759A1 true WO2010122759A1 (ja) 2010-10-28

Family

ID=43010886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002802 WO2010122759A1 (ja) 2009-04-21 2010-04-19 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム

Country Status (5)

Country Link
US (1) US9170030B2 (ja)
EP (1) EP2423617B1 (ja)
JP (1) JP5498959B2 (ja)
CN (1) CN102084190B (ja)
WO (1) WO2010122759A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447613A3 (de) * 2010-10-29 2016-06-29 Robert Bosch GmbH Verfahren zum Regeln einer Wärmepumpenanlage
WO2018116466A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 貯湯式給湯機
WO2018158827A1 (ja) * 2017-02-28 2018-09-07 三菱電機株式会社 熱媒体システム
JP2021025668A (ja) * 2019-07-31 2021-02-22 矢崎エナジーシステム株式会社 蓄熱槽および熱供給システム
JP7037094B1 (ja) 2020-09-30 2022-03-16 ダイキン工業株式会社 給湯装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110282499A1 (en) * 2010-05-12 2011-11-17 Sowani Chetan A Control for indicating available hot fluid supply
CN102959339A (zh) * 2011-06-06 2013-03-06 松下电器产业株式会社 热泵的运转方法及热泵系统
CN102506519B (zh) * 2011-10-23 2013-12-11 重庆市电力公司电力科学研究院 热电联产机组与风力发电联合供热系统及调度方法
KR101379766B1 (ko) * 2012-05-03 2014-04-01 주식회사 경동나비엔 난방효율을 향상시킨 난방 및 온수의 동시 사용이 가능한 보일러
JP5699120B2 (ja) * 2012-12-04 2015-04-08 リンナイ株式会社 給湯システム
JP5669902B1 (ja) * 2013-08-30 2015-02-18 三菱電機株式会社 空調機制御システム、センサ機器制御方法及びプログラム
CN104515176B (zh) * 2013-10-01 2018-10-30 黑龙江省金永科技开发有限公司 热水循环转换器
GB2520978A (en) * 2013-12-05 2015-06-10 Zonealone Ltd A domestic hot water installation
KR101948002B1 (ko) * 2014-04-11 2019-02-15 코웨이 주식회사 물저장탱크 및 이의 만수위 조정방법
FR3020666A1 (fr) * 2014-04-30 2015-11-06 Suez Environnement Procede de gestion de flux d'eau chaude et de stockage de chaleur dans une usine, et station d'epuration d'eaux usees mettant en oeuvre ce procede
KR101827199B1 (ko) * 2014-06-30 2018-02-07 미쓰비시덴키 가부시키가이샤 난방 급탕 시스템
US20160047558A1 (en) * 2014-08-18 2016-02-18 Rinnai Corporation Hot water supply and heating system
US9475210B2 (en) * 2015-03-24 2016-10-25 Thomas Robert Koski Apparatus and related methods for wet sawing
US10604399B2 (en) * 2015-05-20 2020-03-31 Coway Co., Ltd Hot water supply method, hot water supply device, and water purifier using same
CN105466034B (zh) * 2015-12-24 2019-04-26 珠海格力电器股份有限公司 热泵热水器的水箱的控制方法及装置
US10976060B2 (en) * 2016-01-14 2021-04-13 Mitsubishi Electric Corporation Heat pump hot water supply apparatus
WO2018207047A2 (en) * 2017-05-09 2018-11-15 Active Home Ltd. Method and system for heating water
JP6939190B2 (ja) * 2017-07-26 2021-09-22 株式会社ノーリツ 暖房給湯装置
CN108302765B (zh) * 2018-02-26 2021-04-06 合肥美的暖通设备有限公司 热泵热水器及其启停控制方法和控制装置
WO2019198006A1 (en) * 2018-04-11 2019-10-17 Savi Jessica Heating group
AU2019445991B2 (en) * 2019-05-10 2023-03-30 Mitsubishi Electric Corporation Heat Storage System
US11287144B2 (en) 2019-07-31 2022-03-29 Rheem Manufacturing Company Water heaters with real-time hot water supply determination
MX2022013754A (es) * 2020-05-05 2022-11-30 Stemy Energy S L Sistema controlador de cilindros de agua caliente.
DE102023105152A1 (de) * 2023-03-02 2024-09-05 Hans-Alfred Balg Heizsystem für eine Wohnanlage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046803A (ja) * 2004-08-04 2006-02-16 Corona Corp 貯湯式ヒートポンプ給湯暖房装置
JP2006343012A (ja) 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP3868924B2 (ja) 2003-05-20 2007-01-17 株式会社デンソー 貯湯式給湯装置
JP2007046879A (ja) * 2005-08-12 2007-02-22 Daikin Ind Ltd ヒートポンプ式給湯機
JP2007232345A (ja) 2006-02-02 2007-09-13 Denso Corp 貯湯式給湯暖房装置
JP2008281282A (ja) * 2007-05-11 2008-11-20 Toshiba Electric Appliance Co Ltd 給湯装置
JP2009186065A (ja) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp 貯湯式給湯装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462187A (en) * 1973-09-29 1977-01-19 Horne Eng Co Ltd Fluid supply systems
US4245501A (en) * 1978-11-08 1981-01-20 Wilgood Corporation Selective heating and cooling energy meter
US4258668A (en) * 1978-12-26 1981-03-31 Martin Bekedam Closed pressurized feed water system supplying flash steam to a lower pressure process
US4397294A (en) * 1981-08-10 1983-08-09 Mancebo Ronald A Solar water heating system
JPS60202252A (ja) 1984-03-26 1985-10-12 Matsushita Electric Ind Co Ltd 二温度貯湯装置
US4832259A (en) * 1988-05-13 1989-05-23 Fluidmaster, Inc. Hot water heater controller
US5908560A (en) * 1992-01-13 1999-06-01 Elliott, Jr.; Robert H. Treatment of hazardous wastewater
US5626287A (en) * 1995-06-07 1997-05-06 Tdk Limited System and method for controlling a water heater
US5690061A (en) * 1996-02-26 1997-11-25 Lopez; Juan A. Water heater with expansion tank
DE19628818A1 (de) 1996-07-17 1998-01-22 Alois Sauter Heizungsanlage
JP3758627B2 (ja) * 2001-11-13 2006-03-22 ダイキン工業株式会社 ヒートポンプ式給湯装置
JP3888962B2 (ja) * 2002-11-29 2007-03-07 株式会社デンソー 貯湯式給湯装置
US7804047B2 (en) * 2003-03-05 2010-09-28 Honeywell International Inc. Temperature sensor diagnostic for determining water heater health status
US20050019631A1 (en) * 2003-07-23 2005-01-27 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system
JP3918786B2 (ja) * 2003-07-30 2007-05-23 株式会社デンソー 貯湯式ヒートポンプ給湯装置
US20050284949A1 (en) * 2004-06-23 2005-12-29 Giuseppe Minnella Compact steam-fed heat exchange system
US7167813B2 (en) * 2005-01-31 2007-01-23 Honeywell International Inc. Water heater performance monitoring system
US8176881B2 (en) * 2005-02-07 2012-05-15 Emerson Electric Co. Systems and methods for controlling a water heater
US20060230772A1 (en) * 2005-04-15 2006-10-19 Wacknov Joel B System and method for efficient and expedient delivery of hot water
CN1932405A (zh) * 2005-09-14 2007-03-21 海尔集团公司 热水设备以及热水的方法
US7331312B2 (en) * 2005-10-31 2008-02-19 Boiler Clinic, Inc. Waste heat recovery apparatus and method for boiler system
US7360506B2 (en) * 2006-02-13 2008-04-22 American Water Heater Company Low CO water heater
EP2009431A1 (en) * 2006-03-28 2008-12-31 Mitsui Mining and Smelting Co., Ltd Fluid identifying device and fluid identifying method
JP4818780B2 (ja) 2006-04-04 2011-11-16 東芝キヤリア株式会社 給湯装置
CN101101147A (zh) * 2006-07-04 2008-01-09 莲品厨业股份有限公司 储水式加热系统的水温控制方法
JP4234738B2 (ja) * 2006-07-26 2009-03-04 リンナイ株式会社 連結給湯システム
US8322312B2 (en) * 2007-06-19 2012-12-04 Honeywell International Inc. Water heater stacking detection and control
US8549868B2 (en) * 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus
US8191513B2 (en) * 2008-10-09 2012-06-05 Tdk Family Limited Partnership System and method for controlling a pump in a recirculating hot water system
NZ601602A (en) * 2008-12-09 2012-11-30 Dux Mfg Ltd Water heating system with flow directable between starage tank, solar heater and instantaneous heater using pump and diverter valve
JP5310431B2 (ja) * 2009-09-17 2013-10-09 パナソニック株式会社 ヒートポンプ式温水暖房装置
US8461493B1 (en) * 2009-12-16 2013-06-11 Christopher Cantolino Energy conservation system
US8997511B2 (en) * 2010-09-21 2015-04-07 Denering Berrio Heating or cooling system featuring a split buffer tank
US8554377B2 (en) * 2010-11-12 2013-10-08 Terrafore, Inc. Thermal energy storage system comprising optimal thermocline management
WO2012114391A1 (ja) * 2011-02-24 2012-08-30 パナソニック株式会社 燃料電池システム及びその運転方法
EP2719972B1 (en) * 2011-06-06 2017-02-15 Panasonic Intellectual Property Management Co., Ltd. Operating method for heat pump, and heat pump system
US9494373B2 (en) * 2011-06-06 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Heat pump operation method and heat pump system
CN102959339A (zh) * 2011-06-06 2013-03-06 松下电器产业株式会社 热泵的运转方法及热泵系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868924B2 (ja) 2003-05-20 2007-01-17 株式会社デンソー 貯湯式給湯装置
JP2006046803A (ja) * 2004-08-04 2006-02-16 Corona Corp 貯湯式ヒートポンプ給湯暖房装置
JP2006343012A (ja) 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2007046879A (ja) * 2005-08-12 2007-02-22 Daikin Ind Ltd ヒートポンプ式給湯機
JP2007232345A (ja) 2006-02-02 2007-09-13 Denso Corp 貯湯式給湯暖房装置
JP2008281282A (ja) * 2007-05-11 2008-11-20 Toshiba Electric Appliance Co Ltd 給湯装置
JP2009186065A (ja) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp 貯湯式給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423617A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447613A3 (de) * 2010-10-29 2016-06-29 Robert Bosch GmbH Verfahren zum Regeln einer Wärmepumpenanlage
WO2018116466A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 貯湯式給湯機
WO2018158827A1 (ja) * 2017-02-28 2018-09-07 三菱電機株式会社 熱媒体システム
JPWO2018158827A1 (ja) * 2017-02-28 2019-06-27 三菱電機株式会社 熱媒体システム
JP2021025668A (ja) * 2019-07-31 2021-02-22 矢崎エナジーシステム株式会社 蓄熱槽および熱供給システム
JP7305267B2 (ja) 2019-07-31 2023-07-10 矢崎エナジーシステム株式会社 蓄熱槽および熱供給システム
JP7037094B1 (ja) 2020-09-30 2022-03-16 ダイキン工業株式会社 給湯装置
WO2022071207A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 給湯装置
JP2022057004A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 給湯装置

Also Published As

Publication number Publication date
EP2423617A1 (en) 2012-02-29
US9170030B2 (en) 2015-10-27
JP5498959B2 (ja) 2014-05-21
EP2423617A4 (en) 2014-06-04
EP2423617B1 (en) 2016-08-24
CN102084190B (zh) 2014-04-02
JPWO2010122759A1 (ja) 2012-10-25
CN102084190A (zh) 2011-06-01
US20110139259A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5498959B2 (ja) 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
CN102893097B (zh) 热水供给系统控制装置及热水供给系统控制程序及热水供给系统运转方法
WO2014002133A1 (ja) ヒートポンプ式給湯暖房システム
JP5109300B2 (ja) 貯湯式給湯暖房装置
JP2010091181A (ja) 貯湯式給湯暖房装置およびヒートポンプ給湯装置
KR101621168B1 (ko) 온수공급시스템
WO2019026801A1 (ja) 給湯システム
JP5571609B2 (ja) ヒートポンプ式風呂給湯装置
JP5481942B2 (ja) 暖房システム
JP2010065930A (ja) 暖房システム及び暖房給湯システム
JP2007327728A (ja) ヒートポンプ給湯システム
JP5329245B2 (ja) 給湯装置
JP2017083045A (ja) ヒートポンプ給湯装置
JP2019039577A (ja) 貯湯式給湯機、ホームシステム、及び、制御方法
JP6716333B2 (ja) 給湯システム
JP2014137200A (ja) 貯湯式給湯装置
JP5678634B2 (ja) 給湯機
JP5023607B2 (ja) 給湯装置およびその制御方法
JP6890014B2 (ja) 給湯システム
JP2006071176A (ja) 貯湯式ヒートポンプ給湯装置
JP2009287872A (ja) 暖房システム及び暖房給湯システム
JP6913785B2 (ja) 給湯システム
JP3987015B2 (ja) 貯湯式給湯装置
JP7268583B2 (ja) 貯湯式給湯機
JP2004257650A (ja) 給湯機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001962.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010545711

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766821

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010766821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010766821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13001626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE