WO2012114391A1 - 燃料電池システム及びその運転方法 - Google Patents

燃料電池システム及びその運転方法 Download PDF

Info

Publication number
WO2012114391A1
WO2012114391A1 PCT/JP2011/004015 JP2011004015W WO2012114391A1 WO 2012114391 A1 WO2012114391 A1 WO 2012114391A1 JP 2011004015 W JP2011004015 W JP 2011004015W WO 2012114391 A1 WO2012114391 A1 WO 2012114391A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
unit
special mode
time
cell system
Prior art date
Application number
PCT/JP2011/004015
Other languages
English (en)
French (fr)
Inventor
宮内 伸二
加藤 玄道
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/884,466 priority Critical patent/US9219284B2/en
Priority to JP2013500676A priority patent/JP5236842B2/ja
Priority to EP11859057.9A priority patent/EP2626940B1/en
Publication of WO2012114391A1 publication Critical patent/WO2012114391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes

Definitions

  • the present invention relates to a fuel cell system including a fuel cell that generates power using fuel gas and oxidant gas and a controller.
  • the present invention relates to control of trial operation, operation during maintenance, and the like in a fuel cell system that operates based on the allowable operation time per unit time or the allowable operation frequency obtained from the total durable operation time or the total durable operation number.
  • the system is operated based on an established operation plan in order to reliably drive the fuel cell during the service life expected by the user.
  • an established operation plan in order to reliably drive the fuel cell during the service life expected by the user.
  • the total operation time of the fuel cell for example, about 40,000 hours
  • an allowable operation time per predetermined period is planned in advance, and operation is performed based on this operation plan (see, for example, Patent Document 1).
  • FIG. 11 is a schematic diagram showing a configuration of a conventional fuel cell system described in Patent Document 1.
  • the control device 50 creates an operation plan for the fuel cell 15 by setting an allowable operation time for the fuel cell 15 based on the past operation results stored in the data holding means. Then, the operation of the fuel cell 15 according to this operation plan is started. Thereafter, when a predetermined unit period elapses, the actual operation time is compared with the allowable operation time, and if the actual operation time is less than the allowable operation time, a difference value between the two is obtained. Then, the operation plan that has already been created is updated to a new operation plan that includes the next allowable operation time plus the difference value.
  • the present invention solves the above-described conventional problems, and can perform a test operation after the construction of the fuel cell system or after the completion of the maintenance, regardless of the operation time of the power generation operation that is a user's usage mode.
  • a fuel cell system includes a fuel cell that generates power using a fuel gas and an oxidant gas, a controller that controls at least activation and deactivation of the fuel cell, and at least activation and deactivation controlled by the controller.
  • An auxiliary machine wherein the controller determines an operation time per unit period of the fuel cell as a total durable operation time of at least one of the fuel cell and the auxiliary machine.
  • a first operating condition that is less than or equal to a unit permissible operating time determined on the basis of the number of operations, and the number of operations per unit period of the fuel cell is based on the total number of durable operations of at least one of the fuel cell and the auxiliary device
  • a normal mode in which the fuel cell is operated so as to satisfy at least one of the second operating conditions set to be equal to or less than the unit allowable operating number The a special mode for operating the fuel cell without being constrained by at least one of the conditions of the first operating condition and the second operating condition, thereby operating the fuel cell is switched between.
  • normal operation in addition to the steady operation in which the fuel cell generates power, the operation during start-up operation for setting the fuel cell in the stopped state to the power generation state, and the fuel cell in the power generation state for stopping Including operation during stop operation.
  • special operation an operation that is distinguished from the “normal operation” such as a test operation performed by an operator during construction or maintenance.
  • the use of the fuel cell over the service life is ensured by operating in the normal mode according to the first operation condition and / or the second operation condition.
  • the operation can be continued as much as necessary by operating in a special mode that is not subject to the restrictions of the above conditions, so that an appropriate trial operation can be performed.
  • the condition is not restricted while the special mode is continued after the trial operation, the user can drive the fuel cell system and perform a normal operation such as a power generation operation.
  • the controller can execute the operation in the special mode by switching to the normal mode during the same unit period as the operation in the normal mode for the fuel cell.
  • the operation may be performed by switching from the special mode to the normal mode in the next unit period.
  • the special operation can be performed regardless of the normal operation time until then. Even after the special operation is finished, the special mode is continued until the next day (the next unit period), so that the normal operation by the user is possible. Furthermore, since the next mode automatically switches from the special mode to the normal mode, the next day, the operation time is limited based on the first condition or the second condition, and an appropriate operation plan that takes into consideration the service life of the fuel cell. Can be executed.
  • the power supply further includes a main power switch that switches supply and interruption of power from a commercial power source to at least the fuel cell and the auxiliary machine, and the controller switches the main power switch from off to on.
  • the fuel cell may be configured to permit operation in the special mode until the end of the unit period to which the time point when the main power switch is turned on belongs. .
  • an operator operation unit operated by an operator when starting the operation in the special mode is further provided, and the controller is operated when the operation in the special mode is started by operating the operator operation unit.
  • the fuel cell may be configured to be allowed to operate in the special mode until the end of the unit period to which the operation point of the operator operation unit belongs.
  • the controller further includes a user operation unit having a plurality of switches including a switch operated by a user to specify an operation condition of the fuel cell, and the controller includes a predetermined switch included in the user operation unit for a predetermined time.
  • a user operation unit having a plurality of switches including a switch operated by a user to specify an operation condition of the fuel cell
  • the controller includes a predetermined switch included in the user operation unit for a predetermined time.
  • the fuel cell system when performing special operation, can be switched to the special mode by long pressing a predetermined switch or simultaneously pressing a plurality of predetermined switches. it can.
  • the unit allowable operation time from the start of the special mode to the elapse of the special mode allowable time set shorter than the unit period.
  • the operation of the fuel cell exceeding the unit permissible number of operations is permitted from the start of the special mode until the predetermined number of special mode permissible times is exhausted. It may be configured to.
  • the operation is not limited by the unit permissible operation time or the unit permissible number of times of operation. be able to. Therefore, until this time, the special operation by the operator can be executed, and the normal operation by the user can be continuously executed after the special operation is completed.
  • the controller is configured to accumulate an excess unit time during which the fuel cell is operated over the unit permissible operation time during one unit period by the operation in the special mode for an elapsed unit period. , And an excess cumulative number of times that the unit excess number of times that the fuel cell has been operated exceeding the unit allowable number of operations in one unit period is accumulated for the unit period that has passed, and the excess cumulative time is predetermined.
  • the special mode is forcibly switched to the normal mode in at least one of the case where the excess upper limit cumulative time is reached and the excess cumulative number reaches a predetermined excess upper limit cumulative number. It may be configured.
  • the constant threshold (excess upper limit cumulative time or excess upper limit cumulative number) is maintained.
  • the mode is forcibly switched from the special mode to the normal mode. Thereby, long-term continuous operation can be suppressed and the use of the fuel cell over the service life can be guaranteed.
  • the apparatus further includes a user operation unit having a plurality of switches including a switch operated by a user for designating an operation condition of the fuel cell, the user operation unit including the controller, wherein the controller has a predetermined excess accumulated time.
  • the controller has a predetermined excess accumulated time.
  • the unit allowable operation time may be set to be shorter as the heat demand is lower in one year.
  • the unit allowable operation time is set shorter in the summer than in the winter. Therefore, while the fuel cell system can be operated for a long time according to the user's demand in winter, the service life can be guaranteed by suppressing the use time of the fuel cell system in summer.
  • An operating method of a fuel cell system is an operating method of a fuel cell system including a fuel cell that generates power using fuel gas and an oxidant gas, and an auxiliary machine, wherein the fuel cell system per unit period of the fuel cell A first operating condition in which an operating time is equal to or less than a unit allowable operating time determined based on a total serviceable operating time of at least one of the fuel cell and the auxiliary device, and the number of times of operation per unit period of the fuel cell. So as to satisfy at least one of the second operating conditions that is less than or equal to the unit allowable number of operations determined based on the total number of durable operations of at least one of the fuel cell and the auxiliary device.
  • the step of operating the fuel cell in a normal mode without being restricted by at least one of the first operating condition and the second operating condition.
  • the fuel cell system of the present invention is operated under the normal mode that is limited to the unit allowable operation time or the unit allowable operation frequency determined based on the total allowable operation time or the total allowable operation frequency.
  • the normal operation of is executed.
  • special operation different from normal operation, it is allowed to operate in a special mode that is not restricted by the unit allowable operation time or the unit allowable operation frequency.
  • the service life of the fuel cell system can be guaranteed by restricting the operation time or the number of operations.
  • a special operation such as an appropriate test operation can be performed without being restricted by the operation time or the number of operations.
  • the normal operation can be performed until a predetermined timing, and therefore it is possible to prevent the subsequent normal operation from being performed by a trial operation or the like. That is, even immediately after a special operation such as a test operation, it is possible to ensure execution of a normal operation by the user.
  • FIG. 1 It is a schematic diagram which shows the structure of the fuel cell system which concerns on Embodiment 1 of this invention. It is a functional block diagram which shows the structure of the controller with which the fuel cell system of FIG. 1 is provided. 3 is a graph for explaining an example of an operation plan of the fuel cell system of FIG. 1. It is a flowchart which shows the operation mode switching operation
  • the power generation system 2 includes a fuel cell 60, a fuel gas supply means 61, an oxidant gas supply means 62, an inverter 63, a heat exchanger 66, and the like. More specifically, a fuel gas supply means 61 is connected to the fuel cell 60 via a fuel gas supply pipe, and the fuel gas supply means 61 is connected to a raw material supply source such as a city gas infrastructure. A raw material supplier 61a and a reformer 61b are provided. The fuel gas supplied from the raw material supplier 61 a is reformed into a reformed gas that is a hydrogen-containing gas by the reformer 61 b, and this reformed gas is supplied to the fuel cell 60.
  • the cooling water in the exhaust heat recovery pipe 67 heated by the heat accompanying the power generation in the fuel cell 60 is recovered to the upper layer of the hot water storage tank 69 through the pipe 71 if it is equal to or greater than the threshold, and is less than the threshold. If so, it is collected in the lower layer of the hot water storage tank 69 through the pipe 72. Since the cooling water in the hot water storage tank 69 is directed to the upper layer as the temperature is relatively high, as described above, the recovery position is divided up and down according to the temperature of the cooling water, so The low temperature water can be held in the lower layer.
  • the heat exchanger 66 can be supplied with relatively low-temperature cooling water below the hot water storage tank 69 through the exhaust heat recovery pipe 67.
  • a cooling water discharge port is provided at the upper part of the hot water storage tank 69, and the upstream end of the pipe 73 is connected to the discharge port, and the downstream end of the pipe 73 is connected to an input port of the mixing valve 75.
  • a pipe for guiding tap water is connected to the lower part of the hot water storage tank 69, and the downstream end of the pipe 74 branched from the pipe is connected to another input port of the mixing valve 75.
  • a pipe 76 is extended from the output port of the mixing valve 75, the downstream end of the pipe 76 is connected to the heating means 77, and the pipe 79 extended from the heating means 77 is a hot water supply curan (faucet). It is configured to reach.
  • hot water having an arbitrary temperature can be taken out from the hot water supply curan. it can.
  • hot water at a desired temperature can be discharged by heating with the heating means 77.
  • a plurality of temperature sensors 69a to 69f are arranged in the vertical direction.
  • the mixing temperature detection means 76a is provided on the piping 76 located in the downstream of the mixing valve 75, and heat demand (namely, use per unit time with a heat load) is provided on the piping 79 connected to the hot water supply curan.
  • a heat load detecting means 80 for detecting the amount of heat is provided, and further, on the commercial power system 82, a power load detecting means 84 for measuring the power at the power receiving point corresponding to the power load 83 is provided.
  • the signals detected by these detection means 76a, 80, 84 and the signals detected by the temperature sensors 69a to 69f are sent to the controller 81.
  • Such a controller 81 and the main power switch 81a are generally not assumed to be operated by a user who uses the fuel cell system 1A, and a maintenance worker such as a manufacturer or an installer of the system 1A It is assumed to operate.
  • the user operation device 78 is generally referred to as a remote controller, and is assumed to be operated by a general user, and is provided on, for example, a wall surface in a house.
  • the user operation device 78 includes an operation unit 78a including a plurality of switches, a display unit (output unit) 78b including a liquid crystal display, and a notification unit (output unit) 78c including a speaker. Are connected so that they can communicate with each other.
  • the operation unit 78a can perform various settings such as start and stop of power generation by the fuel cell 60, hot water supply temperature, reservation of time for hot water bathing, and the like, when operated by the user. For example, when the start of power generation is instructed by operating the operation unit 78a, the controller 81 that has received the instruction activates the power generation system 2 to start power generation. In addition, when the hot water supply temperature is set by operating the operation unit 78a and hot water is discharged from the hot water supply curan, the controller 81 sets the detected hot water temperature at the mixed temperature detecting means 76a and the set hot water supply temperature. Based on the difference, the mixing valve 75 and the heating means 77 are appropriately controlled.
  • the mixing valve 75 is controlled so that the ratio of tap water from the pipe 74 is increased, and the detected value of the hot water temperature is higher than the set hot water temperature.
  • the mixing valve 75 is controlled so that the proportion of tap water from the pipe 74 is small. Furthermore, even if the ratio of tap water from the pipe 74 is zero, if the detected value of the hot water temperature is still lower than the set hot water supply temperature, the heating means 77 is driven to raise the hot water to the set temperature.
  • the display unit 78b can display various information such as the amount of power generated by the fuel cell 60, error information, and the amount of remaining hot water using characters, symbols, illustrations, and the like. Furthermore, the accumulated operation time of the day, the accumulated operation time for the most recent one week, one month, and one year, or the accumulated operation time after the system 1A has been installed can be appropriately switched and displayed.
  • the notification unit 78c can output a voice, an alarm sound, and the like, for example, can output to the user that a bath has been completed by voice or the like.
  • various types of information can be reported to the user, such as a voice report of the state of the fuel cell system 1A.
  • the output by the notification unit 78c and the display by the display unit 78b are executed according to the operation of the operation unit 78a by the user or based on an instruction from the controller 81.
  • FIG. 2 is a functional block diagram showing the configuration of the controller 81 described above.
  • the controller 81 includes, as its functions, an operation plan formulation unit 85, a load state detection unit 86, an operation information input / output unit 87, a load history storage unit 88, and an operation control unit 89.
  • the operation plan formulation means 85 is for formulating an operation plan for the fuel cell system 1A.
  • the operation plan formulation means 85 is a service life set as a specification of the fuel cell 60 or other auxiliary equipment (for example, the reformer 61b). Based on the total operation time or the total number of useful operations, for example, a time during which operation can be performed per day for each season is set (see FIG. 3).
  • the load state detection unit 86 acquires detection values from the thermal load detection unit 80 and the power load detection unit 84 and outputs the detection values to the operation plan formulation unit 85.
  • the operation plan formulation means 85 updates the already-developed operation plan by appropriately correcting it based on the acquired detection value regarding the load.
  • the operation information input / output means 87 accepts input of various operation information input by the user to the user operation device 78, or should be displayed or notified by the display unit 78b or the notification unit 78c of the user operation device 78.
  • the information is output to the user operation device 78.
  • the load history storage unit 88 stores information indicating the relationship between the power demand amount and the heat demand amount acquired via the load state detection unit 86 and the time when each demand occurred. This information is appropriately referred to by the operation plan formulation means 85. That is, the operation plan formulation unit 85 updates the operation plan by predicting a future change in power demand and heat demand over time based on information indicating the relationship between past demand and time stored in the load history storage unit 88. To do.
  • the operation control unit 89 controls the operation of the power generation system 2 including the fuel gas supply unit 61, the oxidant gas supply unit 62, and the inverter 63 based on the operation plan formulated by the operation plan formulation unit 85 and the exhaust heat recovery system. 3 operations are controlled.
  • FIG. 3 is a graph for explaining an example of an operation plan of the fuel cell system 1A.
  • the horizontal axis represents each month from January to December, and the vertical axis represents the unit allowable operation time.
  • the “unit allowable operation time” will be described.
  • the components of the fuel cell system 1A are different from so-called “consumables” that have a short service life and are expected to be replaced during regular maintenance or for a relatively short period of use. And those that are predicated on long-term use (at least as perceived by users).
  • the latter also includes a fuel cell 60 and a reformer 61b, which can withstand continuous use for at least about 10 years, for example, guarantee a service life of about 10 years, in order to match the user's perception. Is desired.
  • the fuel cell 60 there is a limit of, for example, 40,000 hours as the total durable operation time
  • the reformer 61b there is a limit of, for example, 4,000 times as the total durable operation time. Therefore, if the usage mode is such that the fuel cell system 1A is operated for a long time every day, the total service life is reached without waiting for 10 years, and the life of the fuel cell 60 is exhausted and the desired performance cannot be exhibited. There is a possibility.
  • the fuel cell system 1A is used in such a manner that it repeatedly generates and stops a number of times a day, it reaches the total number of usable operations without waiting for 10 years, and the life of the reformer 61b is exhausted. There is a possibility that the desired performance cannot be exhibited.
  • an “operation plan” is set in which an operation time or the number of operations allowed per unit period (eg, one day) is set.
  • the operation time or the number of operations allowed per unit period is referred to as “unit allowable operation time” or “unit allowable operation number”.
  • unit allowable operation time or “unit allowable operation number”.
  • the present invention is not limited to this, and it is optional as needed, such as 2 days, 3 days, 1 week, 10 days, 1 month, etc. The period can be adopted.
  • the unit allowable operation time is set longer in winter when the heat demand is large, and is set to a value in the range of about 17 to 20 [hour / day] depending on the month.
  • the unit allowable operation time is shortened and set to a value in the range of about 10 to 13 [hour / day]. In other periods, it is about 13 to 17 [hour / day]. Is set to a value in the range.
  • the set value of the unit permissible operation time described above is an example, and the set value of the unit permissible operation time at each time is appropriately set according to, for example, the climatic environment of the area where the fuel cell system 1A is installed and the use mode of the user Can be changed and set.
  • an operation condition in which the operation time per unit period as described above is equal to or less than the unit allowable operation time is referred to as a “first operation condition”.
  • the unit allowable number of operations is set to 1 [times / day], for example, regardless of heat demand or power demand, and an operation plan is formulated.
  • an operation plan is formulated.
  • the user uses the fuel cell system 1A, based on this operation plan, only the operation within the unit allowable number of operations set on that day is permitted, and the operation exceeding this is not permitted.
  • This prevents the total number of operations of the reformer 61b from reaching the total number of usable operations (eg, 4,000 times) before the end of its useful life (eg, 10 years) and guarantees a useful life of 10 years. is doing.
  • the total number of service lifespan of the reformer 61b is 4,000 times, even if it is operated once a day, about 350 times are generated in 10 years, but the remainder is used as a margin.
  • the set value of the number of unit-permitted operations described above is also an example, and can be changed and set as appropriate according to the climate environment in the area where the fuel cell system 1A is installed and the usage mode of the user.
  • an operation condition in which the number of operations per unit period as described above is equal to or less than the unit allowable number of operations is referred to as a “second operation condition”.
  • the fuel cell system 1 ⁇ / b> A satisfies at least one of the first operating condition and the second operating condition during an operation that is used by a general user (hereinafter, “normal operation”).
  • normal operation By controlling the fuel cell 60 as described above, the service life of the fuel cell 60 and the reformer 61b is guaranteed.
  • a special mode of operation hereinafter referred to as “special operation”
  • special operation is expected to continue for 2 to 3 hours. For example, when special operation is performed after 10 hours of normal operation in July in summer, sufficient operation is allowed within the unit allowable operation time. Time cannot be secured (see FIG. 3).
  • the special operation is performed for 3 hours after the normal operation of 8 hours, the unit allowable operation time is reached only by that, and the user cannot perform the normal operation on that day.
  • an operation mode in which the fuel cell 60 is controlled so as to satisfy at least one of the first operation condition and the second operation condition.
  • an operation mode hereinafter referred to as “special mode” for controlling the fuel cell 60 so as not to be restricted by at least one of these operation conditions is provided.
  • special mode for controlling the fuel cell 60 so as not to be restricted by at least one of these operation conditions is provided.
  • FIG. 4 is a flowchart showing an operation mode switching operation in the fuel cell system 1A.
  • the fuel cell system 1A performs mode switching by satisfying a predetermined condition while executing one of the normal mode and the special mode (step S1) (step S1).
  • S2: YES) the other operation mode is executed (step S3). If the mode is not switched, the current operation mode is maintained (step S2: NO).
  • FIG. 5 is a flowchart showing another example of the operation mode switching operation in the fuel cell system 1A. More specifically, this flowchart shows the operation when the operation mode is switched during one unit period by applying the switching process shown in FIG.
  • the fuel cell system 1A is in the normal mode at the beginning of the unit period (here, one day) (step S10). Then, the operation time and the number of operations on the same day of the fuel cell 60 are monitored, and whether the operation time is less than the unit allowable operation time (step S11) or whether the operation number is less than the unit allowable operation number (step S12). to decide.
  • step S11: NO when it is determined that the operation time exceeds the unit allowable operation time (step S11: NO), or when it is determined that the number of operations exceeds the unit allowable operation number (step S12: NO), the fuel cell.
  • the operation of 60 is not permitted and is stopped (step 13), and this state is maintained until the next day (that is, until the next unit period starts) (step S14: NO). If it is determined that the next day has come (step S14: YES), the monitored operation time and the number of operations are initialized (to zero) (step S20), and this flow ends. In the next unit period (next day) after that, the operation from step S10 is executed again.
  • step S15 it is determined whether or not the mode is switched. The determination of whether or not the mode is switched will be described later (see FIG. 6). If it is determined that there is no mode switching (step S15: NO), the processing from step S10 is executed again. If it is determined that there is a mode switching (step S15: YES), the current normal mode is selected. Is switched to the special mode (step S16).
  • step S17 After shifting to this special mode, it is possible to execute an operation (special operation and normal operation) that is not restricted by the first operation condition and / or the second operation condition (step S17). (Ie, until the next unit period starts) (step S18: NO). If it is determined that the next day has come (step S18: YES), the special mode is terminated (step S19), and the monitored operation time and operation count are initialized (zero) (step S20). ) End this flow. In the next unit period (next day) after that, the operation from step S10, that is, the control in the normal mode is executed.
  • the normal mode is switched to the special mode during the same day (same unit period), so that the special operation can be performed regardless of the normal operation time and the number of operations until then. Even after the special operation is finished, the special mode is continued until the next day (the next unit period), so that the normal operation by the user is possible. Furthermore, even if the special mode is maintained until the end of the day, the special mode is automatically switched to the normal mode on the next day. Therefore, on the next day, the operation time can be limited based on the first condition or the second condition, and an appropriate operation plan can be executed in consideration of the service life of the fuel cell.
  • FIG. 6 is a flowchart showing processing for determining whether or not to switch the operation mode from the normal mode to the special mode. Although three examples are shown in FIG. 6, these do not have to be adopted exclusively. That is, the fuel cell system 1A according to the present embodiment may employ only the processing shown in any one of these three examples, or may employ two or three examples in duplicate. Good.
  • step S30-B it is determined whether or not a predetermined switch among the plurality of switches provided in the operation unit 78a of the user operation device 78 has been pressed.
  • step S31-B it is determined that there is no switching of the operation mode
  • step S32-B it is determined that the operation mode is switched
  • switch S32-B the normal mode is switched to the special mode.
  • “Long press” refers to an operation mode in which the pressure is continuously pressed for a predetermined time. In the case of this example 2, the signal input to the controller 81 at the time of the “long press” operation is “mode switching is possible”. It plays a role of a command signal indicating ".”
  • the operator can switch the fuel cell system 1A to the special mode by long pressing a predetermined switch of the user operation device 78.
  • step S30-B instead of an operation of pressing and holding a predetermined switch, whether or not a mode is switched is determined based on the presence or absence of an operation of simultaneously pressing a plurality of predetermined switches. May be. Further, Example 3 in FIG. 6 will be described later.
  • the display unit 78b and / or the notification unit 78c of the user operation device 78 may output that the mode switching has been performed.
  • a message 90 consisting of a character string such as “in maintenance” is switched to the special mode on the display unit 78b of the user operation device 78. It may be displayed at the same time.
  • the voice guidance 91 such as “being maintained” may be issued from the notification unit 78c simultaneously with switching to the special mode. These may be executed together. Further, such display or audio output may be continuously performed for a certain period from the time of switching the mode, or may be continuously performed during the special mode.
  • FIG. 8 is a schematic diagram showing the configuration of the fuel cell system according to Embodiment 2 of the present invention.
  • the fuel cell system 1B shown in FIG. 8 has a configuration in which a maintenance operation unit (operator operation unit) 101 is added to the fuel cell system 1A shown in FIG.
  • the maintenance operation unit 101 is operated only when a special operation is performed by an operator or the like, and is connected to the controller 81 via a communication line.
  • Such a fuel cell system 1B can perform the same operation as described with reference to FIGS. 4 and 5 in the first embodiment, and has been described with reference to Examples 1 and 2 in FIG. It is also possible to make a mode switching determination similar to. Furthermore, in the case of this fuel cell system 1B, the mode switching determination shown in Example 3 of FIG. 6 can be performed.
  • the controller 81 determines whether or not the maintenance operation unit 101 has been operated (step S30-C). As a result, when the maintenance operation unit 101 is not operated, it is determined that the operation mode has not been switched (step S31-C), and the normal mode is maintained. On the other hand, when the maintenance operation unit 101 is operated, it is determined that the operation mode is switched (switch S32-C), and the normal mode is switched to the special mode. That is, in the case of Example 3, the signal input to the controller 81 by the operation of the maintenance operation unit 101 serves as a command signal indicating “mode switching is present”.
  • the operating time of the fuel cell 60 is equal to or shorter than the unit allowable operating time (step S11), and the operating frequency is equal to or lower than the unit allowable operating frequency (step S12).
  • the mode switching determination is performed to shift to the special mode.
  • the mode is shifted to the special mode only when the command signal indicating “mode switching” as described in FIG. It is good.
  • the mode can be shifted to the special mode during the same unit period, Special operation such as trial operation can be executed as required.
  • Special operation such as trial operation can be executed as required.
  • the possibility of the remaining unit allowable operation time and the number of unit allowable operation times being less likely to have decreased due to the use of the user so far. Can be performed reliably and is highly convenient.
  • an upper limit time during which the special mode can be continued during one unit period may be set, and the special mode may be terminated when the upper limit time elapses after shifting to the special mode.
  • an upper limit is set for the number of times that the fuel cell 60 can be operated during a series of special modes (that is, the number of transitions from the stopped state to the power generation state), and the upper limit is set after the transition to the special mode.
  • the special mode may be terminated when the number of times is exhausted.
  • the upper limit time is set as a period shorter than the unit period, and this is referred to as “special mode allowable time”.
  • the upper limit number is set as a number equal to or less than the unit allowable operation number, and this is referred to as “special mode allowable number”.
  • special mode allowable number an operation for terminating the special mode based on such a determination criterion will be described.
  • FIG. 9 is a flowchart showing the operation of the fuel cell system when the special mode is terminated.
  • the fuel cell system 1A will be described as an example, but the present invention can of course be applied to the fuel cell system 1B.
  • step S40 when the fuel cell system 1A enters the special mode (step S40), it is determined at a predetermined cycle whether or not the special mode allowable time has passed (step S41). That is, the controller 81 measures the elapsed time simultaneously with the transition to the special mode, and compares this with the predetermined special mode allowable time.
  • step S41: YES If it is determined that the elapsed time has reached the special mode allowable time (step S41: YES), the special mode is terminated (step S45). On the other hand, if it is determined that the elapsed time has not reached the special mode allowable time (step S41: NO), subsequently, a command signal for switching the fuel cell 60 from the stop state to the power generation state is input to the controller 81. It is determined whether or not it has been done (step S42). Such a command signal is input to the controller 81 when, for example, a user or an operator inputs a start of power generation using the operation unit 78a of the user operation device 78.
  • step S43 determines whether or not the number of operations of the fuel cell 60 has reached the allowable number of special modes. That is, if the operation of the fuel cell 60 is started in accordance with the command signal, it is determined whether or not the cumulative number of operations since the shift to the special mode has reached the special mode allowable number. As a result, when it is determined that the allowable number of special modes has not been reached (step S43: NO), the current special mode is maintained (step S44). Moreover, also when it determines with there being no input of the power generation start command signal in step S42 (step S42: NO), the present special mode is maintained (step S44). On the other hand, when it is determined in step S43 that the special mode allowable number has been reached (step S43: YES), the special mode is terminated (step S45).
  • the fuel cell 60 is operated for a long time by maintaining the special mode all the time. Can be prevented.
  • the time from the switching to the special mode to the end of the unit period is a short time, there is a possibility that power generation and stoppage may be repeated many times during that time, but such an increase in the number of operations is prevented. be able to.
  • operation for a fixed time (special mode allowable time) or a fixed number of times (special mode allowable number) is guaranteed from the time of switching to the special mode. Normal operation can be performed without any problems.
  • the display unit 78b or the notification unit 78c of the user operation device 78 It is preferable to output that fact. This allows the user to easily understand that the operating time or frequency of operation of the fuel cell is limited based on the service life, so that the user understands when operating the fuel cell system based on the operation plan. Can be obtained.
  • the special mode may be terminated when the operation time exceeding the unit allowable operation time is calculated for each unit period and added, and when the total value reaches a predetermined threshold value.
  • the time spent exceeding the unit permissible operating time during one unit period (unit excess time) is accumulated for the unit period that has elapsed after the installation of the system, and the time (excess cumulative time) is acquired. To do. Then, when this excess cumulative time reaches a predetermined upper limit value (excess upper limit cumulative time), the special mode may be terminated and switched to the normal mode.
  • FIG. 10 is a flowchart showing another operation of the fuel cell system when the special mode is terminated.
  • the fuel cell system 1A is described as an example, but the present invention can of course be applied to the fuel cell system 1B.
  • the controller 81 operates in the unit period to which the unit mode belongs at the time when the special mode is entered. (Excess time) is measured and combined with the unit excess time measured in the past unit period to acquire the excess accumulated time (step S51). Then, it is determined whether or not the excess accumulated time has reached an excess upper limit accumulated time that is a threshold value stored in advance in the internal memory of the controller 81 (step S52). As a result, when it is determined that the excess upper limit cumulative time has been reached (step S52: YES), the special mode is terminated (step S57).
  • step S52 when it is determined that the excess upper limit cumulative time has not been reached (step S52: NO), it is determined whether or not a command signal for switching the fuel cell 60 from the stop state to the power generation state is input to the controller 81. (Step S53). If the controller 81 determines that this command signal has been input (step S53: YES), the current operation may exceed the unit allowable number of operations during the unit period to which the special mode is entered. For example, this is counted as the number of unit excesses and is added to the number of unit excesses counted in the past unit period to obtain the excess cumulative number of times (step S54).
  • step S55 it is determined whether or not the excess cumulative number has reached the upper limit cumulative number which is a threshold value stored in advance in the internal memory of the controller 81 (step S55).
  • step S55: YES it is determined that the excess upper limit cumulative number has been reached
  • step S57 it is determined that the excess upper limit cumulative number has not been reached (step S55: NO) or when it is determined that no operation start command signal is input (step S53: NO)
  • the current special mode is maintained (step S53: NO). Step S56).
  • the controller 81 described in each embodiment cooperates with hardware resources such as a CPU (or microcomputer), a RAM, a ROM, a storage / recording device, an electrical / information device including an I / O, a computer, a server, and the like. You may implement in the form of the program to work. In the case of a program, the program can be easily distributed / updated or installed by recording it on a recording medium such as a magnetic medium or an optical medium or by distributing it using a communication line such as the Internet.
  • a recording medium such as a magnetic medium or an optical medium
  • the fuel cell system of the present invention can be applied not only to home use but also to business use in offices and factories.
  • Fuel cell system 2 Power generation system 3 Waste heat recovery system 60
  • Fuel cell 61 Fuel gas supply means 61b Reformer 62 Oxidant gas supply means 66 Heat exchanger 69 Hot water storage tank 78

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システム(1A)が備える制御器(81)は、燃料電池(60)の単位期間あたりの運転時間を単位許容運転時間以下とする第1運転条件と、燃料電池の単位期間あたりの運転回数を単位許容運転回数以下とする第2運転条件と、のうち少なくとも一方の運転条件を満たすように燃料電池(60)を運転させる通常モードと、第1運転条件及び前記第2運転条件のうち少なくとも一方の条件による制約を受けずに燃料電池(60)を運転させる特殊モードと、の間で切り換えて燃料電池(60)を運転させる。

Description

燃料電池システム及びその運転方法
 本発明は、燃料ガス及び酸化剤ガスを用いて発電を行う燃料電池と制御器とを備える燃料電池システムに関する。特に、耐用総運転時間又は耐用総運転回数から求められる単位時間当たりの許容運転時間又は許容運転回数に基づいて運転する燃料電池システムにおける、試運転やメンテナンス時の運転等の制御に関するものである。
 従来の燃料電池システムには、ユーザーが期待する耐用年数の間、確実に燃料電池を駆動させるために、策定した運転計画に基づいてシステムを運転するようにしたものがある。例えば特許文献1には、ユーザーが期待する燃料電池の耐用年数(例えば、10年)を超えて発電運転を可能とするために、燃料電池の耐用総運転時間(例えば、約4万時間)に基づき、予め所定期間当たりの許容運転時間を計画し、この運転計画に基づいて運転するようになっている(例えば、特許文献1参照)。
 図11は、この特許文献1に記載された従来の燃料電池システムの構成を示す模式図である。この燃料電池システムでは、制御装置50が、データ保持手段にて記憶している過去の運転実績に基づいて、燃料電池15の許容運転時間を設定して燃料電池15の運転計画を作成する。そして、この運転計画による燃料電池15の運転を開始する。その後、所定の単位期間が経過すると、実運転時間を許容運転時間と比較し、実運転時間が許容運転時間未満であれば両者の差分値を求める。そして、既に作成していた運転計画を、次回の許容運転時間に上記差分値を加えたものを内容とする新たな運転計画に更新する。
特開2007-323843号公報
 しかしながら、上記従来の燃料電池システムの構成では、例えば燃料電池システムの施工時やメンテナンス時の試運転においても、ユーザーが使用する通常の発電運転を対象に設定された許容運転時間内での運転に制限されてしまう。このために、例えば、ユーザーの使用による発電運転によって、その日に割り当てられた許容運転時間の残時間が少なくなっている場合には、燃料電池システムの試運転を十分に行えない可能性がある。他方、試運転によってその日に割り当てられた許容運転時間を使い切ってしまった場合には、その後、燃料電池システムを引き渡されたユーザーは次の日までシステムを発電運転できない、といった事態になる可能性もある。
 本発明は、上記従来の課題を解決するもので、ユーザーの使用形態である発電運転の運転時間に拘わらず、燃料電池システムの施工後やメンテナンス終了後の試運転を実行できると共に、試運転後であってもユーザーによる発電運転時間を確保することができる燃料電池システムを提供することを目的とする。
 本発明に係る燃料電池システムは、燃料ガス及び酸化剤ガスを用いて発電を行う燃料電池と、少なくとも該燃料電池の起動及び停止を制御する制御器と、該制御器によって少なくとも起動及び停止が制御される補機と、を備える燃料電池システムであって、前記制御器は、前記燃料電池の単位期間あたりの運転時間を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転時間に基づいて定められる単位許容運転時間以下とする第1運転条件と、前記燃料電池の単位期間あたりの運転回数を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転回数に基づいて定められる単位許容運転回数以下とする第2運転条件と、のうち、少なくとも一方の運転条件を満たすように前記燃料電池を運転させる通常モードと、前記第1運転条件及び前記第2運転条件のうち少なくとも一方の条件による制約を受けずに前記燃料電池を運転させる特殊モードと、の間で切り換えて前記燃料電池を運転させる。
 ここで、本明細書の以下の説明では説明の便宜上から、ユーザーが通常使用する場合の運転を「通常運転」と称する。この「通常運転」には、燃料電池が発電を行う定常運転の他、停止状態の燃料電池を発電状態とするための起動動作中の運転や、発電状態の燃料電池を停止状態とするための停止動作中の運転も含む。また、例えばオペレータが施工時やメンテナンス時に行う試運転など、上記「通常運転」とは区別される運転を「特殊運転」と称する。
 上述したような構成とすることにより、ユーザーが使用する場合の通常運転時には、第1運転条件及び/又は第2運転条件に従う通常モードで運転することにより、耐用年数にわたる燃料電池の使用を確保する。一方でオペレータが試運転する場合のような特殊運転時には、前記条件の制約を受けない特殊モードで運転することにより、必要なだけ運転を継続することができ、適切な試運転を行うことができるようになる。また、試運転後も特殊モードが継続されている間は前記条件の制約を受けないため、ユーザーは燃料電池システムを駆動して発電運転等の通常運転を行うことができる。
 また、前記制御器は、前記燃料電池に対して前記通常モードでの運転を実行しているのと同じ単位期間中に、該通常モードに切り換えて前記特殊モードでの運転を実行可能であり、且つ、前記特殊モードでの運転を実行している単位期間が終了すると、次の単位期間では前記特殊モードから前記通常モードに切り換えて運転するよう構成されていてもよい。
 このような構成とすることにより、例えば同日(同じ単位期間)中に通常モードから特殊モードに切り換わることにより、それまでの通常運転時間にかかわらず特殊運転を行うことができる。そして、特殊運転を終了した後も、翌日(次の単位期間)までは特殊モードが継続されるため、ユーザーによる通常運転が可能である。更に、翌日になると特殊モードから通常モードへと自動的に切り換わるため、翌日においては第1条件又は第2条件に基づいて運転時間を制限し、燃料電池の耐用年数を考慮した適切な運転計画を実行することができる。
 また、少なくとも前記燃料電池及び前記補機への商用電源からの電力の供給及び遮断を切り換える主電源スイッチを更に備え、前記制御器は、前記主電源スイッチがオフからオンに切り換わって前記商用電源からの電力供給が開始された場合に、前記主電源スイッチがオンになった時点が属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可するように構成されていてもよい。
 このような構成とすることにより、燃料電池システムの施工時やメンテナンス時の試運転を行う場合に、オペレータが燃料電池システムの主電源をオフからオンに切り換えることにより、燃料電池システムは特殊モードとなる。従って、試運転等の特殊運転を、通常モードでの時間の制約にかかわらず実行することができる。
 また、前記特殊モードでの運転を開始する場合にオペレータに操作されるオペレータ操作部を更に備え、前記制御器は、前記オペレータ操作部が操作されて前記特殊モードでの運転が開始された場合に、前記オペレータ操作部の操作時点が属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可するように構成されていてもよい。
 このような構成とすることにより、燃料電池システムの施工時やメンテナンス時に特殊運転を行う際に、オペレータ操作部を操作することによって、燃料電池システムを特殊モードに切り換えることができる。
 また、前記燃料電池の運転条件を指定するためにユーザーが操作するスイッチを含む複数のスイッチを有するユーザー操作部を更に備え、前記制御器は、前記ユーザー操作部が有する所定のスイッチが所定時間だけ長押し操作された場合、又は、前記ユーザー操作部が有する所定の複数のスイッチが同時押し操作された場合に、当該操作時点の属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可するように構成されていてもよい。
 このような構成とすることにより、特殊運転を行う場合には、所定のスイッチを長押しするか、又は、所定の複数のスイッチを同時押しすることで、燃料電池システムを特殊モードに切り換えることができる。
 また、前記制御器は、前記特殊モードでの運転を実行する場合、該特殊モードを開始してから、前記単位期間より短く設定された特殊モード許容時間を経過するまでは、前記単位許容運転時間を超えた前記燃料電池の運転を許可し、又は、前記特殊モードを開始してから、所定の特殊モード許容回数を消化するまでは、前記単位許容運転回数を超えた前記燃料電池の運転を許可するように構成されていてもよい。
 このような構成とすることにより、特殊モードに切り換わった後、特殊モード許容時間又は特殊モード許容回数によって定められた時点までは、単位許容運転時間又は単位許容運転回数に制約されずに運転することができる。従って、この時点までは、オペレータによる特殊運転を実行することができ、特殊運転が終了した後も引き続きユーザーによる通常運転を実行することができる。
 また、前記制御器は、前記特殊モードでの運転により1の単位期間中に前記単位許容運転時間を超えて前記燃料電池を運転した単位超過時間を、経過した単位期間分だけ累積した超過累積時間、及び、1の単位期間中に前記単位許容運転回数を超えて前記燃料電池を運転した単位超過回数を、経過した単位期間分だけ累積した超過累積回数、を記憶し、前記超過累積時間が所定の超過上限累積時間に達した場合、及び、前記超過累積回数が所定の超過上限累積回数に達した場合、のうち少なくとも一方の場合に、前記特殊モードを前記通常モードに強制的に切り換えるように構成されていてもよい。
 このような構成とすることにより、仮に、特殊モードでの運転が多発したことによって超過累積時間又は超過累積回数が増加した場合においても、一定の閾値(超過上限累積時間又は超過上限累積回数)に達した場合に、特殊モードから通常モードへと強制的に切り換える。これにより、長期間の継続運転を抑制し、耐用年数にわたる燃料電池の使用を保証することができる。
 また、前記燃料電池の運転条件を指定するためにユーザーが操作するスイッチを含む複数のスイッチを有するユーザー操作部を更に備え、該ユーザー操作部は、前記制御器が、前記超過累積時間が所定の超過上限累積時間に達した場合、及び、前記超過累積回数が所定の超過上限累積回数に達した場合、のうち少なくとも一方の場合であって、前記特殊モードを前記通常モードに強制的に切り換える際に、前記制御器からの指示に基づいて、前記特殊モードから前記通常モードへの切り換えを、音声出力又は表示出力する出力部を有していてもよい。
 このような構成とすることにより、特殊モードでの運転の多発によって特殊モードから通常モードへと強制的に切り換えられた場合に、これをユーザーが認識可能なように報知することができる。また、ユーザーに対して報知することにより、耐用年数に基づいて燃料電池の運転時間又は運転回数が制限されていることを、ユーザーに容易に理解してもらえるため、燃料電池システムを運転計画に基づいて運転するにあたり、ユーザーの理解を得ることができる。
 また、前記単位許容運転時間は、1年間のうち熱需要が低い時期ほど短くなるように設定されていてもよい。
 例えば、一般的に冬季に比べて夏期の方が熱需要は低いので、冬季に比べて夏期の方が単位許容運転時間を短く設定する。これにより、冬季においてはユーザーの需要に応じて燃料電池システムの長時間運転を可能とする一方、夏期においては燃料電池システムの使用時間を抑制することで、耐用年数を保証することができる。
 また、前記補機は、前記燃料電池に供給する燃料ガスを生成するための水素生成器を含んでいてもよい。
 水素生成器は、発電状態と停止状態とで温度差が比較的大きいため、運転回数が増すにつれて熱膨縮による筐体の疲労が蓄積される。従って、水素生成器を補機として扱うことにより、その運転回数を運転計画に基づいてコントロールできるため、水素生成器の耐用年数を保証することができる。
 また、本発明に係る燃料電池システムの運転方法は、燃料ガス及び酸化剤ガスを用いて発電する燃料電池及び補機を備える燃料電池システムの運転方法であって、前記燃料電池の単位期間あたりの運転時間を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転時間に基づいて定められる単位許容運転時間以下とする第1運転条件と、前記燃料電池の単位期間あたりの運転回数を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転回数に基づいて定められる単位許容運転回数以下とする第2運転条件と、のうち、少なくとも一方の運転条件を満たすように、前記燃料電池を通常モードで運転させるステップ、前記第1運転条件及び前記第2運転条件のうち少なくとも一方の条件による制約を受けずに前記燃料電池を特殊モードで運転させるステップ、及び前記通常モードと前記特殊モードとの間で運転を切り換えるステップ、を備える。
 本発明に係る燃料電池システムによれば、耐用総運転時間又は耐用総運転回数に基づいて定められる単位許容運転時間内又は単位許容運転回数内での運転に制限する通常モード下で、燃料電池システムの通常運転を実行させる。他方で、通常運転とは異なる特殊運転の場合には、単位許容運転時間又は単位許容運転回数の制約を受けない特殊モード下で運転することが許容される。
 従って、通常モードでは運転時間又は運転回数を制約することで燃料電池システムの耐用年数を保証することができる。他方で、特殊モードにおいては、運転時間又は運転回数の制約を受けず、適切な試運転等の特殊運転を行うことができる。更に、特殊モードにおいて特殊運転を終了した後は、所定のタイミングまで通常運転を行うことができるため、試運転等によってその後の通常運転が実行できなくなるのを防止できる。即ち、試運転等の特殊運転の直後であっても、ユーザーによる通常運転の実行を確保することができる。
本発明の実施の形態1に係る燃料電池システムの構成を示す模式図である。 図1の燃料電池システムが備える制御器の構成を示す機能ブロック図である。 図1の燃料電池システムの運転計画の一例を説明するためのグラフである。 燃料電池システムでの運転モードの切り換え動作を示すフローチャートである。 燃料電池システムでの運転モードお切り換え動作の他の例を示すフローチャートである。 燃料電池システムにおいて、通常モードから特殊モードへ運転モードを切り換えるか否かを判定する処理を示すフローチャートである。 燃料電池システムが備えるユーザー操作器の拡大図である。 本発明の実施の形態2に係る燃料電池システムの構成を示す模式図である。 特殊モードを終了させる場合の燃料電池システムの動作を示すフローチャートである。 特殊モードを終了させる場合の燃料電池システムの他の動作を示すフローチャートである。 従来の燃料電池システムの構成を示す模式図である。
 以下に、本発明の実施の形態について、図面を参照しつつ説明する。なお、本発明は、これらの実施の形態によって限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る燃料電池システムの構成を示す模式図である。この図1に示すように、本実施の形態に係る燃料電池システム1Aは、燃料電池60を有して主として発電を行うための発電システム2、及び、該発電システム2の発電の際に生じた熱を回収する排熱回収システム3を備えている。
 このうち発電システム2は、燃料電池60の他、燃料ガス供給手段61,酸化剤ガス供給手段62,インバータ63,熱交換器66等を備えている。より詳しく説明すると、燃料電池60には、燃料ガス供給配管を介して燃料ガス供給手段61が接続されており、この燃料ガス供給手段61は、例えば都市ガスインフラ等の原料供給源に接続された原料供給器61aと、改質器61bとを備えている。そして、原料供給器61aから供給された燃料ガスは、改質器61bにて水素含有ガスである改質ガスへと改質され、この改質ガスが燃料電池60へ供給される。
 また、燃料電池60には、酸化剤ガス供給配管を介して酸化剤ガス供給手段62が接続されている。この酸化剤ガス供給手段62は、例えばブロア等で構成され、外部から取り込んだ空気(酸化剤ガス)を燃料電池60へと供給する。燃料電池60では、このようにして供給された燃料ガス及び酸化剤ガスを用い、電気化学的な反応によって電気を発生させることができ、その電力はインバータ63へ送られる。インバータ63の出力は、ユーザーが使用する電力負荷83に接続された商用電力系統82に対し、系統連係するように接続されている。従って、燃料電池60で発生した直流電力は、このインバータ63にて交流電力に変換された後、ユーザーの需要に応じて電力負荷83での消費に供される。
 一方、燃料電池60には、閉回路を成して冷却水が循環する冷却水経路64が接続されており、該冷却水経路64上には冷却水循環ポンプ65と熱交換器66とが設けられている。また、この熱交換器66には、冷却水が通流する排熱回収配管67が上記冷却水経路64とは独立して通され、該排熱回収配管67上には貯湯ポンプ68が設けられている。従って、冷却水循環ポンプ65を駆動することにより、燃料電池60の発電によって生じた熱は冷却水経路64内の冷却水に回収され、更に、熱交換器66において排熱回収配管67内の冷却水へと伝達されるようになっている。
 次に、排熱回収システム3について説明する。排熱回収システム3は、上下方向に所定の寸法を有する貯湯タンク69を備えており、その内部は冷却水でほぼ満たされた状態になっている。貯湯タンク69の上部及び下部には冷却水の回収口が設けられており、上部の回収口には配管71の下流端が接続され、下部の回収口には配管72の下流端が接続されている。また、これらの配管71,72の上流端は、三方弁70を介して上記排熱回収配管67の下流端に接続されている。この三方弁70は、排熱回収配管67に対して配管71,72の何れか一方を択一的に連通させるものであり、排熱回収配管67を通じて送られてきた冷却水の温度が所定の閾値以上であれば上側の配管71に連通し、閾値未満であれば下側の配管72に連通するようになっている。なお、排熱回収配管67の上流端は、貯湯タンク69の下部に設けられた冷却水の送出口に接続されている。
 このような構成により、燃料電池60での発電に伴う熱により昇温された排熱回収配管67内の冷却水は、閾値以上であれば配管71を通じて貯湯タンク69の上層に回収され、閾値未満であれば配管72を通じて貯湯タンク69の下層に回収される。貯湯タンク69内の冷却水は、相対的に高温であるほど上層に向かうため、上記のように冷却水の温度に応じて回収位置を上下に振り分けることにより、貯湯タンク69内の上層に高温水を保持し、下層に低温水を保持することができる。そして、熱交換器66へは、貯湯タンク69の下層の比較的低温の冷却水を、排熱回収配管67を通じて供給することができる。
 また、貯湯タンク69の上部には冷却水の排出口が設けられており、該排出口には配管73の上流端が接続され、配管73の下流端は混合弁75が有する入力ポートに接続されている。また、貯湯タンク69の下部には水道水を導く配管が接続され、該配管から分岐した配管74の下流端は、上記混合弁75が有するもう1つの入力ポートに接続されている。そして、混合弁75の出力ポートからは配管76が延設され、該配管76の下流端は加熱手段77に接続されており、該加熱手段77から延設された配管79は給湯カラン(faucet)に至るように構成されている。
 従って、貯湯タンク69の上層に貯まった相対的に高温の湯と低温の水道水とを、混合弁75にて適宜の割合で混合することにより、任意の温度の湯を給湯カランから出すことができる。また、貯湯タンク69の上層の湯温度以上の湯を出す必要がある場合には、加熱手段77にて加熱することにより、所望の温度の湯を出すことができる。なお、貯湯タンク69には、複数の温度センサ69a~69fが上下方向に配設されている。従って、この温度センサ69a~69fが検出する温度に基づき、貯湯タンク69内の上層のどの位置まで高温の湯が貯まっているかを把握できるため、それに基づいて残湯量を取得できるようになっている。また、給湯カランから湯が出された場合には、貯湯タンク69の下部から水道水が冷却水として補充されるようになっている。
 このような燃料電池システム1Aは、更に制御器81及びユーザー操作器78を備えている。制御器81は、主電源スイッチ81aを介して電源に接続されており、この主電源スイッチ81aがオンのときに、上述した発電システム2及び排熱回収システム3を含む燃料電池システム1A全体の動作を制御する。例えば、制御器81は、燃料ガス供給手段61による燃料ガスの供給量、及び酸化剤ガス供給手段62による酸化剤ガスの供給量を調整することで、燃料電池60での発電量を制御する。また、冷却水循環ポンプ65,貯湯ポンプ68,三方弁70,混合弁75,加熱手段77等の動作を制御する。
 なお、混合弁75の下流側に位置する配管76上には混合温度検出手段76aが設けられ、給湯カランへ繋がる配管79上には、熱需要量(即ち、熱負荷での単位時間あたりの使用熱量)を検出する熱負荷検出手段80が設けられ、更に、商用電力系統82上には、電力負荷83に対応する受電点の電力を測定するために電力負荷検出手段84が設けられている。そして、これらの検出手段76a,80,84が検出した信号や、上述した温度センサ69a~69fが検出した信号は、制御器81へ送られるようになっている。
 このような制御器81及び主電源スイッチ81aは、一般的に、燃料電池システム1Aを利用するユーザーが操作することは想定されておらず、メーカ等のメンテナンス作業員や、システム1Aの施工者が操作することが想定される。
 一方、ユーザー操作器78は一般的にはリモコンと称されるものであり、一般ユーザーによって操作されることを想定しており、例えば家屋内の壁面などに設けられている。このユーザー操作器78は、複数のスイッチ等から成る操作部78a,液晶ディスプレイ等から成る表示部(出力部)78b,及びスピーカ等から成る報知部(出力部)78cを備え、制御器81との間で通信可能に接続されている。
 操作部78aは、ユーザーが操作することにより、燃料電池60による発電の開始や停止、給湯温度、風呂に湯をはる時間の予約、などの各種の設定を行うことができる。例えば操作部78aの操作により発電開始が指示された場合、その指示を受けた制御器81が発電システム2を起動して発電を開始させる。また、操作部78aの操作により給湯温度が設定され、給湯カランから湯が出される場合には、制御器81が、混合温度検出手段76aでの湯温の検出値と設定された給湯温度との差に基づき、混合弁75及び加熱手段77を適宜制御する。
 即ち、湯温の検出値が設定された給湯温度より高い場合は、配管74からの水道水の割合が大きくなるように混合弁75を制御し、湯温の検出値が設定された給湯温度より低い場合は、配管74からの水道水の割合が小さくなるように混合弁75を制御する。更に、配管74からの水道水の割合をゼロにしても、依然として湯温の検出値が設定された給湯温度より低い場合は、加熱手段77を駆動して湯を設定温度まで昇温する。
 表示部78bは、燃料電池60による発電電力量、エラー情報、残湯量などの各種の情報を、文字,記号,イラスト等を用いて表示することができる。更に、その日の運転累積時間、直近1週間,1ヶ月,1年間の運転累積時間、あるいは、システム1Aの施工後からの運転累積時間などを、適宜切り換えて表示することができる。
 また、報知部78cは、音声やアラーム音などを出力することができ、例えば、風呂の湯はりが完了した旨を音声等により出力し、ユーザーに報せることができる。その他、燃料電池システム1Aの状態を音声で報せるなど、各種の情報をユーザー等へ報せることができる。このような、報知部78cによる出力や、上記表示部78bによる表示は、ユーザーによる操作部78aの操作に応じて、あるいは、制御器81からの指示に基づいて実行される。
 図2は、上述した制御器81の構成を示す機能ブロック図である。図2に示すように制御器81は、その機能として、運転計画策定手段85,負荷状態検出手段86,操作情報入出力手段87,負荷履歴記憶手段88,及び運転制御手段89を備えている。
 運転計画策定手段85は、燃料電池システム1Aの運転計画を策定するものであり、後述するように、燃料電池60又は他の補機(例えば、改質器61bなど)のスペックとして設定された耐用総運転時間又は耐用総運転回数に基づき、例えば季節毎の1日あたりの運転可能な時間を設定する(図3参照)。負荷状態検出手段86は、熱負荷検出手段80及び電力負荷検出手段84からの検出値を取得し、これを運転計画策定手段85へ出力する。運転計画策定手段85は、取得した負荷に関する検出値に基づき、既に策定した運転計画を適宜修正するなどして更新する。
 操作情報入出力手段87は、ユーザー操作器78に対してユーザーが操作入力した各種の操作情報の入力を受け付け、あるいは、ユーザー操作器78の表示部78b又は報知部78cにて表示又は報知すべき情報を、ユーザー操作器78に対して出力するものである。負荷履歴記憶手段88は、負荷状態検出手段86を介して取得した電力需要量及び熱需要量と、各需要のあった時刻との関係を示す情報を記憶する。この情報は運転計画策定手段85により適宜参照される。即ち、運転計画策定手段85は、負荷履歴記憶手段88に記憶された過去の需要及び時刻の関係示す情報に基づき、将来における電力需要量及び熱需要量の経時変化を予測し、運転計画を更新する。
 運転制御手段89は、運転計画策定手段85が策定した運転計画に基づき、燃料ガス供給手段61,酸化剤ガス供給手段62,インバータ63を含む発電システム2の動作を制御すると共に、排熱回収システム3の動作を制御する。
 [運転計画について]
 図3は、燃料電池システム1Aの運転計画の一例を説明するためのグラフである。このグラフでは、横軸は1~12月の各月を表し、縦軸は単位許容運転時間を表している。ここで、「単位許容運転時間」について説明する。燃料電池システム1Aの構成物には、定期的なメンテナンス時や比較的短期間の使用により交換することが想定されている耐用年数の短い所謂「消耗品」と、このような消耗品とは違って長期使用が前提とされているもの(少なくともユーザーからはそのように認識されているもの)とが存在する。後者には燃料電池60や改質器61bも含まれ、これらはユーザーの認識と一致させるために、例えば少なくとも10年程度の継続使用に耐えること、即ち、10年程度の耐用年数を保証することが望まれる。
 しかしながら実際には、燃料電池60の場合であれば耐用総運転時間として例えば4万時間といった制限があり、改質器61bの場合であれば耐用総運転回数として例えば4千回といった制限がある。そのため、燃料電池システム1Aを毎日長時間運転するような使用形態であると、10年を待たずして耐用総運転時間に達し、燃料電池60の寿命が尽きて所望の性能を発揮できなくなってしまう可能性がある。同様に、燃料電池システム1Aを1日に何度も発電及び停止を繰り返すような使用形態であると、10年を待たずして耐用総運転回数に達し、改質器61bの寿命が尽きて所望の性能を発揮できなくなってしまう可能性がある。
 そのために、本実施の形態に係る燃料電池システム1Aでは、単位期間(例:1日)あたりに許容する運転時間又は運転回数を設定した「運転計画」を策定する。そして、本明細書では、このような単位期間あたりに許容する運転時間又は運転回数を、「単位許容運転時間」又は「単位許容運転回数」と称する。なお、本実施の形態では単位期間として「1日」を採用した場合を説明するが、これに限定されず、2日,3日,1週間,10日,1ヶ月など、必要に応じて任意の期間を採用することができる。
 例えば、図3に示すように、熱需要量が大きい冬季では単位許容運転時間を長く設定し、月によって異なるが約17~20[時間/日]の範囲の値に設定している。また、熱需要量が小さい夏期では単位許容運転時間を短くして、約10~13[時間/日]の範囲の値に設定し、これら以外の時期では、約13~17[時間/日]の範囲の値に設定している。そして、ユーザーが燃料電池システム1Aを使用する場合には、この運転計画に基づき、その日に設定された単位許容運転時間以下での運転のみを許可し、これを超える運転を許可しないようにする。これにより、燃料電池60の総運転時間が耐用年数(例:10年)の経過前に耐用総運転時間に到達するのを回避し、10年間の耐用年数を保証している。
 なお、上述した単位許容運転時間の設定値は一例であり、各時期における単位許容運転時間の設定値は、例えば燃料電池システム1Aを設置する地域の気候環境や、ユーザーの使用態様に応じて適宜変更設定することができる。また、以下では、上述したような単位期間あたりの運転時間を単位許容運転時間以下とする運転条件を、「第1運転条件」と称する。
 単位許容運転回数については、熱需要量や電力需要量にかかわらず、例えば1[回/日]と設定し、運転計画を策定することとしている。そして、ユーザーが燃料電池システム1Aを使用する場合には、この運転計画に基づき、その日に設定された単位許容運転回数以下での運転のみを許可し、これを超える運転を許可しないようにする。これにより、改質器61bの総運転回数が耐用年数(例:10年)の経過前に耐用総運転回数(例:4千回)に到達するのを回避し、10年間の耐用年数を保証している。ここで、改質器61bの耐用総運転回数を4千回とした場合、毎日1回運転しても10年間で約350回の余りが生じるが、この余りの回数分はマージンとしている。
 なお、上述した単位許可運転回数の設定値も一例であり、燃料電池システム1Aを設置する地域の気候環境やユーザーの使用態様に応じて適宜変更設定することができる。また、以下では、上述したような単位期間あたりの運転回数を単位許容運転回数以下とする運転条件を、「第2運転条件」と称する。
 また、以上の説明では燃料電池60及び改質器61bを例にしたが、このうち改質器61bに換えて、消耗品ではない他の補機の耐用総運転時間又は耐用総運転回数に基づき、運転計画を策定することとしてもよい。
 上述したように、燃料電池システム1Aは、一般のユーザーが使用するような運転時(以下、「通常運転」)には、第1運転条件及び第2運転条件のうち少なくとも一方の運転条件を満たすように燃料電池60を制御することで、燃料電池60及び改質器61bの耐用年数を保証している。しかしながら、燃料電池60を運転する態様としては、上記通常運転の他、例えば燃料電池システム1Aの施工時やメンテナンス時の試運転など、特殊な運転態様(以下、「特殊運転」)も行われる。このような特殊運転では、2~3時間の継続運転が見込まれるため、例えば夏期の7月に10時間の通常運転が行われた後に特殊運転を行う場合、単位許容運転時間内では十分な運転時間を確保できない(図3参照)。あるいは、8時間の通常運転の後に特殊運転を3時間行った場合、それだけで単位許容運転時間に達してしまうため、その日にユーザーは通常運転を行えなくなってしまう。
 そこで本実施の形態に係る燃料電池システム1Aでは、第1運転条件及び第2運転条件のうち少なくとも一方の運転条件を満たすように燃料電池60を制御する運転モード(以下、「通常モード」)の他、これらの運転条件のうち少なくとも一方の制約を受けないように燃料電池60を制御する運転モード(以下、「特殊モード」)を備えている。以下、このような通常モード及び特殊モードを切り換えて燃料電池60を運転する制御態様について詳述する。
 [燃料電池システムの制御態様について]
 図4は、燃料電池システム1Aでの運転モードの切り換え動作を示すフローチャートである。この図4に示すように、燃料電池システム1Aは、通常モード及び特殊モードのうち何れか一方を実行(ステップS1)している間に、所定の条件を満たすことによりモードの切り換えを行い(ステップS2:YES)、他方の運転モードを実行する(ステップS3)。そして、モードの切り換えがない場合は、現状の運転モードを維持する(ステップS2:NO)。
 図5は、燃料電池システム1Aでの運転モードの切り換え動作の他の例を示すフローチャートである。より具体的には、このフローチャートでは、図4に示した切換処理を応用し、1つの単位期間中において運転モードを切り換える場合の動作を示している。図5に示すように、燃料電池システム1Aは、単位期間(ここでは、1日)のはじめは通常モードになっている(ステップS10)。そして、燃料電池60の同日中の運転時間及び運転回数を監視し、運転時間が単位許容運転時間以下であるか(ステップS11)、運転回数が単位許容運転回数以下であるか(ステップS12)を判断する。
 ここで、運転時間が単位許容運転時間を超過したと判定した場合(ステップS11:NO)、又は、運転回数が単位許容運転回数を超過したと判定した場合(ステップS12:NO)は、燃料電池60の運転を許可せず、これを停止させ(ステップ13)、この状態を次の日になるまで(即ち、次の単位期間が開始するまで)維持する(ステップS14:NO)。そして、次の日になったと判定した場合(ステップS14:YES)は、監視していた運転時間及び運転回数を初期化(ゼロに)して(ステップS20)本フローを終了する。なお、その後である次の単位期間(翌日)では、ステップS10からの動作を再び実行する。
 これにより、通常モードにおいては、燃料電池60と改質器61b等の補機との耐用年数を保証した燃料電池システム1Aの運転を行うことができる。
 一方、ステップS11,S12において、通常モードでの運転時間及び運転回数が、何れも単位許容運転時間以下且つ単位許容運転回数以下であると判定した場合は、モードの切り換えの有無を判定する(ステップS15)。なお、このモードの切り換え有無の判定については後述する(図6参照)。そして、モードの切り換えがないと判定した場合(ステップS15:NO)は、再びステップS10からの処理を実行し、モードの切り換えがあると判定した場合(ステップS15:YES)は、現状の通常モードから特殊モードへと切り換える(ステップS16)。
 この特殊モードに移行した後は、第1運転条件及び/又は第2運転条件の制約を受けない運転(特殊運転及び通常運転)を実行することができ(ステップS17)、この状態を次の日になるまで(即ち、次の単位期間が開始するまで)維持する(ステップS18:NO)。そして、次の日になったと判定した場合(ステップS18:YES)は、特殊モードを終了し(ステップS19)、監視していた運転時間及び運転回数を初期化(ゼロに)して(ステップS20)本フローを終了する。なお、その後である次の単位期間(翌日)では、ステップS10からの動作、即ち、通常モードでの制御を実行する。
 以上に説明した動作を実行することにより、例えば同日(同じ単位期間)中に通常モードから特殊モードに切り換わるので、それまでの通常運転時間や運転回数にかかわらず特殊運転を行うことができる。そして、特殊運転を終了した後も、翌日(次の単位期間)までは特殊モードが継続されるため、ユーザーによる通常運転が可能である。更に、一日の終了時まで特殊モードが維持されても、翌日になると特殊モードから通常モードへと自動的に切り換わる。従って、翌日においては第1条件又は第2条件に基づいて運転時間を制限し、燃料電池の耐用年数を考慮した適切な運転計画を実行することができる。
 [運転モードの切り換え判定について]
 次に、上記ステップS15に示したモード切り換え判定の具体例について説明する。図6は、通常モードから特殊モードへ運転モードを切り換えるか否かを判定する処理を示すフローチャートである。図6では3つの例を示しているが、これらは排他的に採用されなければならないものではない。即ち、本実施の形態に係る燃料電池システム1Aは、これらの3つの例うち何れか1の例に示す処理だけを採用してもよいし、2又は3の例を重複して採用してもよい。
 図6の例1について説明すると、ここでは、主電源スイッチ81a(図1参照)がオフからオンに切り換わったか否かを判定する(ステップS30-A)。その結果、主電源スイッチ81aが切り換わっていない場合には、運転モードの切り換えがないと判定して(ステップS31-A)、通常モードを維持する。一方、主電源スイッチ81aが切り換わった場合には、運転モードの切り換えがあると判定して(スイッチS32-A)、通常モードから特殊モードへと切り換える。即ち、この例1の場合、電力供給が遮断されている制御器81に対する通電が、「モード切り換えあり」を示す指令信号の役割を担うこととなる。
 このような態様とすることにより、メンテナンス作業員等のオペレータが試運転等の特殊運転を行う際に、主電源スイッチ81aを操作してオフからオンへと切り換えることにより、燃料電池システム1Aを特殊モードへと切り換えることができ、その後は、第1運転条件及び/又は第2運転条件による制約を受けず、特殊運転を実行することができる。
 図6の例2について説明すると、ここでは、ユーザー操作器78の操作部78aが具備する複数のスイッチのうち、所定のスイッチが長押しされたか否かを判定する(ステップS30-B)。その結果、長押しされていない場合には、運転モードの切り換えがないと判定して(ステップS31-B)、通常モードを維持する。一方、所定のスイッチが長押しされた場合には、運転モードの切り換えがあると判定して(スイッチS32-B)、通常モードから特殊モードへと切り換える。なお、「長押し」とは、所定時間だけ継続して押圧する操作態様のことであり、この例2の場合、「長押し」操作時に制御器81へ入力される信号が、「モード切り換えあり」を示す指令信号の役割を担うこととなる。
 このような態様とすることにより、オペレータは、ユーザー操作器78の所定のスイッチを長押しすることによって、燃料電池システム1Aを特殊モードへと切り換えることができる。なお、ステップS30-Bに付記したように、所定のスイッチを長押しする操作に換えて、所定の複数のスイッチを同時押しする操作の有無に基づいて、モードの切り換えの有無を判定するようにしてもよい。また、図6の例3については後述する。
 ところで、モードの切り換えと同時に、ユーザー操作器78の表示部78b及び/又は報知部78cにおいて、モードの切り換えが行われたことを出力してもよい。ユーザー操作器78の拡大図である図7を参照して具体的に説明すると、ユーザー操作器78の表示部78bにおいて、例えば「メンテナンス中」といった文字列から成るメッセージ90を、特殊モードへの切り換えと同時に表示してもよい。あるいは、「メンテナンス中です」といった音声案内91を、特殊モードへの切り換えと同時に報知部78cから発してもよい。また、これらを共に実行するようにしてもよい。更に、このような表示又は音声の出力は、モードの切り換え時点から一定時間だけ継続して行うようにしてもよいし、特殊モードになっている期間中ずっと継続して行うようにしてもよい。
 (実施の形態2)
 図8は、本発明の実施の形態2に係る燃料電池システムの構成を示す模式図である。この図8に示す燃料電池システム1Bは、図1に示した燃料電池システム1Aに対し、メンテナンス操作部(オペレータ操作部)101が付加された構成となっている。このメンテナンス操作部101は、オペレータ等によって特殊運転が行われる場合にのみ操作されるものであり、制御器81との間で通信線を介して接続されている。
 このような燃料電池システム1Bは、実施の形態1において図4及び図5を参照して説明したのと同様の動作を実行可能であり、図6の例1,2を参照して説明したのと同様のモード切り換え判定を行うことも可能である。更に、この燃料電池システム1Bの場合、図6の例3に示すモード切り換え判定を行うことができる。
 即ち、図6の例3を参照して説明すると、燃料電池システム1Bでは、制御器81において、メンテナンス操作部101が操作されたか否かを判定する(ステップS30-C)。その結果、メンテナンス操作部101が操作されていない場合には、運転モードの切り換えがないと判定して(ステップS31-C)、通常モードを維持する。一方、メンテナンス操作部101が操作された場合には、運転モードの切り換えがあると判定して(スイッチS32-C)、通常モードから特殊モードへと切り換える。即ち、この例3の場合、メンテナンス操作部101の操作により制御器81に入力される信号が、「モード切り換えあり」を示す指令信号の役割を担うこととなる。
 このような態様とすることにより、メンテナンス作業員等のオペレータが試運転等の特殊運転を行う際に、メンテナンス操作部101を操作することにより、燃料電池システム1Bを特殊モードへと切り換えることができ、その後は、第1運転条件及び/又は第2運転条件による制約を受けず、特殊運転を実行することができる。なお、この場合のモード切り換え時においても、図7を参照して説明したのと同様に、ユーザー操作部78の表示部78b及び/又は報知部78cにより、モードが切り換わったことを出力してもよい。
 また、上記実施の形態1,2では、図5に示すように、燃料電池60の運転時間が単位許容運転時間以下(ステップS11)、且つ、運転回数が単位許容運転回数以下(ステップS12)の場合にのみ、モード切換判定(ステップS15,図6参照)を行って特殊モードへ移行する態様を示した。しかしながら、例えば燃料電池60の運転時間及び運転回数にかかわらず、図6で説明したような「モード切り換えあり」を示す指令信号が制御器81へ入力されたことのみをもって、特殊モードへ移行することとしてもよい。
 このような態様とすることにより、仮に、ある単位期間中に単位許容運転時間及び単位許容運転回数を消費してしまっていた場合であっても、それと同じ単位期間中に特殊モードへ移行でき、試運転等の特殊運転を必要に応じて実行することができる。特に、単位期間の後半においては、それまでのユーザーの使用により、単位許容運転時間及び単位許容運転回数の残りが少なくなっている可能性が高くなるが、そのような状況においてもメンテナンスによる試運転等を確実に行えて利便性が高い。
 (実施の形態3)
 ところで、上述した説明では、特殊モードへ移行した後は当該移行時の属する単位期間の終了時点まで(即ち、次の単位期間が開始されるまで)、その運転モードが維持される態様を示した。しかしながら、このような態様に限られず、特殊モードへの移行時の属する単位期間が終了する前であっても、所定の条件に基づいて特殊モードを終了させてもよい。
 例えば、1つの単位期間中に特殊モードを継続することのできる上限時間を設定しておき、特殊モードへ移行してからこの上限時間を経過した時点で特殊モードを終了させることとしてもよい。あるいは、一続きの特殊モードの期間中に、燃料電池60を運転できる回数(即ち、停止状態から発電状態への移行回数)に上限回数を設定しておき、特殊モードへ移行してからこの上限回数を消化した時点で特殊モードを終了させることとしてもよい。本実施の形態では、この上限時間を単位期間より短い期間として設定すると共に、これを「特殊モード許容時間」と称する。また、上限回数を単位許容運転回数以下の回数として設定すると共に、これを「特殊モード許容回数」を称する。以下、このような判定基準に基づいて特殊モードを終了させる動作について説明する。
 図9は、特殊モードを終了させる場合の燃料電池システムの動作を示すフローチャートである。なお、ここでは燃料電池システム1Aを例に説明するが、もちろん燃料電池システム1Bにも適用可能である。図9に示すように、燃料電池システム1Aが特殊モードになると(ステップS40)、特殊モード許容時間が経過したか否かを所定の周期で判定する(ステップS41)。即ち、制御器81は、特殊モードへの移行と同時に経過時間を計測し、これと所定の特殊モード許容時間とを対比する。
 そして、経過時間が特殊モード許容時間に達したと判定した場合(ステップS41:YES)は、特殊モードを終了する(ステップS45)。一方、経過時間が特殊モード許容時間に達していないと判定した場合(ステップS41:NO)は、続いて、燃料電池60が停止状態から発電状態へと切り換わるべき指令信号が制御器81に入力されたか否かを判定する(ステップS42)。このような指令信号は、例えばユーザー又はオペレータが、ユーザー操作器78の操作部78aを用いて発電開始を操作入力することにより、制御器81へ入力される。
 制御器81は、この指令信号の入力があると判定した場合(ステップS42:YES)は、燃料電池60の運転回数が特殊モード許容回数に達したか否かを判定する(ステップS43)。即ち、仮に指令信号に従って燃料電池60の運転を開始した場合に、特殊モードへ移行してからの累積の運転回数が、特殊モード許容回数に達したか否かを判定する。その結果、特殊モード許容回数に達していないと判定した場合(ステップS43:NO)は現状の特殊モードを維持する(ステップS44)。また、ステップS42にて発電開始の指令信号の入力がないと判定した場合(ステップS42:NO)も、現状の特殊モードを維持する(ステップS44)。一方、ステップS43にて、特殊モード許容回数に達したと判定した場合(ステップS43:YES)は、特殊モードを終了する(ステップS45)。
 なお、このような一連のフローは、例えば図5のステップS16に示す特殊モードの状態において実行される。そして、図9のステップS45に示すように特殊モードを終了した場合には、図5のステップS10へ移行して通常モードでの制御を開始する。
 このような態様とすることにより、特殊モードへの切り換え時点から単位期間の終了時点まで長時間ある場合に、その間ずっと特殊モードが維持されることによって燃料電池60が長時間にわたって運転されるのを防止することができる。あるいは、特殊モードへの切り換え時点から単位期間の終了時点までが短時間であっても、その間に何度も発電及び停止が繰り返される可能性があるが、そのような運転回数の増加を防止することができる。但し、この場合であっても、特殊モードへの切り換え時点から一定時間(特殊モード許容時間)の運転、又は、一定回数(特殊モード許容回数)の運転は保証されるため、特殊運転やその後の通常運転を支障なく行える。
 また、上記のように特殊モード許容時間又は特殊モード許容回数に達することで、特殊モードを強制的に終了させる場合(ステップS45)には、ユーザー操作器78の表示部78b又は報知部78cにより、その旨を出力することが好ましい。これにより、耐用年数に基づいて燃料電池の運転時間又は運転回数が制限されていることを、ユーザーに容易に理解してもらえるため、燃料電池システムを運転計画に基づいて運転するにあたり、ユーザーの理解を得ることができる。
 (実施の形態4)
 上述した実施の形態3では、単位期間毎に、特殊モードの継続時間の上限値と特殊モードでの運転回数の上限値とを設定した場合を説明したが、特殊モードを終了するか否かの判定基準はこれに限られない。例えば、単位許容運転時間を超えて運転した時間を単位期間毎に算出して合算し、その合算値が所定の閾値に達した場合には、特殊モードを終了させることとしてもよい。換言すれば、1つの単位期間中に単位許容運転時間を超えて運転した時間(単位超過時間)を、システムの施工後に経過した単位期間分だけ全て累積してその時間(超過累積時間)を取得する。そして、この超過累積時間が所定の上限値(超過上限累積時間)に達した場合に、特殊モードを終了して通常モードへ切り換えるようにしてもよい。
 運転回数についても同様のことが言える。即ち、1つの単位期間中に単位許容運転回数を超えて運転した回数(単位超過回数)を、システムの施工後に経過した単位期間分だけ全て累積した回数(超過累積回数)を取得する。そして、この超過累積回数が所定の上限値(超過上限累積回数)に達した場合に、特殊モードを終了して通常モードへ切り換えるようにしてもよい。
 図10は、特殊モードを終了させる場合の燃料電池システムの他の動作を示すフローチャートである。なお、ここでは燃料電池システム1Aを例に説明するが、もちろん燃料電池システム1Bにも適用可能である。図10に示すように、燃料電池システム1Aが特殊モードとなると(ステップS50)、制御器81は、特殊モードになった時点の属する単位期間中において、単位許容運転時間を超えた運転時間(単位超過時間)を計測すると共に、過去の単位期間にて計測した単位超過時間と合算して超過累積時間を取得する(ステップS51)。そして、この超過累積時間が、予め制御器81の内部メモリ等に記憶された閾値である超過上限累積時間に達したか否かを判定する(ステップS52)。その結果、超過上限累積時間に達したと判定した場合(ステップS52:YES)は、特殊モードを終了する(ステップS57)。
 一方、超過上限累積時間に達していないと判定した場合(ステップS52:NO)は、燃料電池60が停止状態から発電状態へと切り換わるべき指令信号が制御器81に入力されたか否かを判定する(ステップS53)。制御器81は、この指令信号の入力があると判定した場合(ステップS53:YES)は、特殊モードになった時点の属する単位期間中において、今回の運転が単位許容運転回数を超えるものであれば、これを単位超過回数としてカウントすると共に、過去の単位期間にてカウントした単位超過回数と合算して超過累積回数を取得する(ステップS54)。そして、この超過累積回数が、予め制御器81の内部メモリ等に記憶された閾値である超過上限累積回数に達したか否かを判定する(ステップS55)。その結果、超過上限累積回数に達したと判定した場合(ステップS55:YES)は、特殊モードを終了する(ステップS57)。一方、超過上限累積回数に達していないと判定した場合(ステップS55:NO)又は運転開始の指令信号の入力がないと判定した場合(ステップS53:NO)は、現状の特殊モードを維持する(ステップS56)。
 このような態様とすることにより、仮に特殊モードでの運転が多発したことにより、超過累積時間又は超過累積回数が増加した場合であっても、一定の閾値(超過上限累積時間又は超過上限累積回数)に達した場合に、特殊モードから通常モードへと強制的に切り換えることができる。そのため、長時間の継続運転を抑制し、耐用年数にわたる燃料電池の使用を保証することができる。
 なお、各実施の形態で説明した制御器81は、CPU(又はマイコン)、RAM、ROM、記憶・記録装置、I/O等を備えた電気・情報機器、コンピュータ、サーバー等のハードリソースを協働させるプログラムの形態で実施してもよい。プログラムであれば、磁気メディアや光メディア等の記録媒体に記録したりインターネット等の通信回線を用いて配信したりすることでプログラムの配布・更新やインストール作業が簡単にできる。
 本発明の燃料電池システムは、家庭用に限らずオフィスや工場等の業務用にも適用することができる。
  1A,1B 燃料電池システム
  2     発電システム
  3     排熱回収システム
  60    燃料電池
  61    燃料ガス供給手段
  61b   改質器
  62    酸化剤ガス供給手段
  66    熱交換器
  69    貯湯タンク
  78    ユーザー操作器
  78a   操作部
  78b   表示部(出力部)
  78c   報知部(出力部)
  81    制御器
  81a   主電源スイッチ
  101   メンテナンス操作部(オペレータ操作部)

Claims (11)

  1.  燃料ガス及び酸化剤ガスを用いて発電を行う燃料電池と、
     少なくとも該燃料電池の起動及び停止を制御する制御器と、
     該制御器によって少なくとも起動及び停止が制御される補機と、
     を備える燃料電池システムであって、
     前記制御器は、
     前記燃料電池の単位期間あたりの運転時間を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転時間に基づいて定められる単位許容運転時間以下とする第1運転条件と、前記燃料電池の単位期間あたりの運転回数を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転回数に基づいて定められる単位許容運転回数以下とする第2運転条件と、のうち、少なくとも一方の運転条件を満たすように前記燃料電池を運転させる通常モードと、
     前記第1運転条件及び前記第2運転条件のうち少なくとも一方の条件による制約を受けずに前記燃料電池を運転させる特殊モードと、
     の間で切り換えて前記燃料電池を運転させる、燃料電池システム。
  2.  前記制御器は、前記燃料電池に対して前記通常モードでの運転を実行しているのと同じ単位期間中に、該通常モードに切り換えて前記特殊モードでの運転を実行可能であり、且つ、前記特殊モードでの運転を実行している単位期間が終了すると、次の単位期間では前記特殊モードから前記通常モードに切り換えて運転するよう構成されている、請求項1に記載の燃料電池システム。
  3.  少なくとも前記燃料電池及び前記補機への商用電源からの電力の供給及び遮断を切り換える主電源スイッチを更に備え、
     前記制御器は、前記主電源スイッチがオフからオンに切り換わって前記商用電源からの電力供給が開始された場合に、前記主電源スイッチがオンになった時点が属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可する、請求項1又は2に記載の燃料電池システム。
  4.  前記特殊モードでの運転を開始する場合にオペレータに操作されるオペレータ操作部を更に備え、
     前記制御器は、前記オペレータ操作部が操作されて前記特殊モードでの運転が開始された場合に、前記オペレータ操作部の操作時点が属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可する、請求項1乃至3の何れかに記載の燃料電池システム。
  5.  前記燃料電池の運転条件を指定するためにユーザーが操作するスイッチを含む複数のスイッチを有するユーザー操作部を更に備え、
     前記制御器は、前記ユーザー操作部が有する所定のスイッチが所定時間だけ長押し操作された場合、又は、前記ユーザー操作部が有する所定の複数のスイッチが同時押し操作された場合に、当該操作時点の属する単位期間の終了まで、前記燃料電池における前記特殊モードでの運転を許可する、請求項1乃至4の何れかに記載の燃料電池システム。
  6.  前記制御器は、前記特殊モードでの運転を実行する場合、
     該特殊モードを開始してから、前記単位期間より短く設定された特殊モード許容時間を経過するまでは、前記単位許容運転時間を超えた前記燃料電池の運転を許可し、又は、
     前記特殊モードを開始してから、所定の特殊モード許容回数を消化するまでは、前記単位許容運転回数を超えた前記燃料電池の運転を許可する、請求項1乃至5の何れかに記載の燃料電池システム。
  7.  前記制御器は、
     前記特殊モードでの運転により1の単位期間中に前記単位許容運転時間を超えて前記燃料電池を運転した単位超過時間を、経過した単位期間分だけ累積した超過累積時間、及び、1の単位期間中に前記単位許容運転回数を超えて前記燃料電池を運転した単位超過回数を、経過した単位期間分だけ累積した超過累積回数、を記憶し、
     前記超過累積時間が所定の超過上限累積時間に達した場合、及び、前記超過累積回数が所定の超過上限累積回数に達した場合、のうち少なくとも一方の場合に、前記特殊モードを前記通常モードに強制的に切り換える、請求項1乃至6の何れかに記載の燃料電池システム。
  8.  前記燃料電池の運転条件を指定するためにユーザーが操作するスイッチを含む複数のスイッチを有するユーザー操作部を更に備え、
     該ユーザー操作部は、
     前記制御器が、前記超過累積時間が所定の超過上限累積時間に達した場合、及び、前記超過累積回数が所定の超過上限累積回数に達した場合、のうち少なくとも一方の場合であって、前記特殊モードを前記通常モードに強制的に切り換える際に、
     前記制御器からの指示に基づいて、前記特殊モードから前記通常モードへの切り換えを、音声出力又は表示出力する出力部を有する、請求項7に記載の燃料電池システム。
  9.  前記単位許容運転時間は、1年間のうち熱需要が低い時期ほど短くなるように設定されている、請求項1乃至8の何れかに記載の燃料電池システム。
  10.  前記補機は、前記燃料電池に供給する燃料ガスを生成するための水素生成器を含む、請求項1乃至9の何れかに記載の燃料電池システム。
  11.  燃料ガス及び酸化剤ガスを用いて発電する燃料電池及び補機を備える燃料電池システムの運転方法であって、
     前記燃料電池の単位期間あたりの運転時間を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転時間に基づいて定められる単位許容運転時間以下とする第1運転条件と、前記燃料電池の単位期間あたりの運転回数を、前記燃料電池及び前記補機のうち少なくとも一方の機器の耐用総運転回数に基づいて定められる単位許容運転回数以下とする第2運転条件と、のうち、少なくとも一方の運転条件を満たすように、前記燃料電池を通常モードで運転させるステップ、
     前記第1運転条件及び前記第2運転条件のうち少なくとも一方の条件による制約を受けずに前記燃料電池を特殊モードで運転させるステップ、及び
     前記通常モードと前記特殊モードとの間で運転を切り換えるステップ、
     を備える燃料電池システムの運転方法。
     
PCT/JP2011/004015 2011-02-24 2011-07-13 燃料電池システム及びその運転方法 WO2012114391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/884,466 US9219284B2 (en) 2011-02-24 2011-07-13 Fuel cell system and operation method thereof which ensures the system will perform normal operation after operating in a special operation mode
JP2013500676A JP5236842B2 (ja) 2011-02-24 2011-07-13 燃料電池システム及びその運転方法
EP11859057.9A EP2626940B1 (en) 2011-02-24 2011-07-13 Fuel cell system and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011037833 2011-02-24
JP2011-037833 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012114391A1 true WO2012114391A1 (ja) 2012-08-30

Family

ID=46720214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004015 WO2012114391A1 (ja) 2011-02-24 2011-07-13 燃料電池システム及びその運転方法

Country Status (4)

Country Link
US (1) US9219284B2 (ja)
EP (1) EP2626940B1 (ja)
JP (1) JP5236842B2 (ja)
WO (1) WO2012114391A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120314A (ja) * 2012-12-17 2014-06-30 Panasonic Corp 燃料電池システム
JP2015185352A (ja) * 2014-03-24 2015-10-22 大阪瓦斯株式会社 燃料電池システム
JP2017130431A (ja) * 2016-01-22 2017-07-27 京セラ株式会社 燃料電池システム
JP2019193321A (ja) * 2018-04-18 2019-10-31 株式会社豊田自動織機 燃料電池式産業車両
JP2021072165A (ja) * 2019-10-29 2021-05-06 京セラ株式会社 コージェネレーションシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122759A1 (ja) * 2009-04-21 2010-10-28 パナソニック株式会社 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
JP5914799B2 (ja) * 2011-04-28 2016-05-11 パナソニックIpマネジメント株式会社 発電システム
JP6109119B2 (ja) * 2014-07-10 2017-04-05 三菱電機株式会社 ヒートポンプ給湯システム
JP7050618B2 (ja) 2018-08-02 2022-04-08 積水化学工業株式会社 雨水排水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063903A (ja) * 2003-08-19 2005-03-10 Ebara Ballard Corp 燃料電池システム
JP2007280650A (ja) * 2006-04-03 2007-10-25 Ebara Ballard Corp 燃料電池システムの運転方法及び燃料電池システム
JP2007323843A (ja) 2006-05-30 2007-12-13 Ebara Ballard Corp 燃料電池の運転方法及び燃料電池システム
JP2010067553A (ja) * 2008-09-12 2010-03-25 Panasonic Corp 燃料電池システム、およびそのプログラム
WO2011102147A1 (ja) * 2010-02-22 2011-08-25 パナソニック株式会社 燃料電池の運転方法と燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628536U (ja) 1992-08-21 1994-04-15 株式会社長府製作所 空気調和機
JPH06236202A (ja) * 1993-02-10 1994-08-23 Hitachi Ltd プラントの運転方法及び装置
JPH09318136A (ja) 1996-05-30 1997-12-12 Funai Electric Co Ltd 空気調和機
JP4662132B2 (ja) 2005-03-31 2011-03-30 株式会社長府製作所 コージェネレーションシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063903A (ja) * 2003-08-19 2005-03-10 Ebara Ballard Corp 燃料電池システム
JP2007280650A (ja) * 2006-04-03 2007-10-25 Ebara Ballard Corp 燃料電池システムの運転方法及び燃料電池システム
JP2007323843A (ja) 2006-05-30 2007-12-13 Ebara Ballard Corp 燃料電池の運転方法及び燃料電池システム
JP2010067553A (ja) * 2008-09-12 2010-03-25 Panasonic Corp 燃料電池システム、およびそのプログラム
WO2011102147A1 (ja) * 2010-02-22 2011-08-25 パナソニック株式会社 燃料電池の運転方法と燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626940A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120314A (ja) * 2012-12-17 2014-06-30 Panasonic Corp 燃料電池システム
JP2015185352A (ja) * 2014-03-24 2015-10-22 大阪瓦斯株式会社 燃料電池システム
JP2017130431A (ja) * 2016-01-22 2017-07-27 京セラ株式会社 燃料電池システム
JP2019193321A (ja) * 2018-04-18 2019-10-31 株式会社豊田自動織機 燃料電池式産業車両
JP7012589B2 (ja) 2018-04-18 2022-02-14 株式会社豊田自動織機 燃料電池式産業車両
JP2021072165A (ja) * 2019-10-29 2021-05-06 京セラ株式会社 コージェネレーションシステム
JP7431012B2 (ja) 2019-10-29 2024-02-14 京セラ株式会社 コージェネレーションシステム

Also Published As

Publication number Publication date
JPWO2012114391A1 (ja) 2014-07-07
JP5236842B2 (ja) 2013-07-17
EP2626940B1 (en) 2016-09-28
US20130337352A1 (en) 2013-12-19
US9219284B2 (en) 2015-12-22
EP2626940A1 (en) 2013-08-14
EP2626940A4 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5236842B2 (ja) 燃料電池システム及びその運転方法
JP5373939B2 (ja) コジェネレーションシステム及び運転方法
JP5191636B2 (ja) コージェネレーションシステム
KR20050021906A (ko) 코제너레이션 시스템, 코제너레이션 설비의 운전 제어장치 및 코제너레이션 설비의 운전 제어 프로그램을기록한 컴퓨터 판독 가능한 기록 매체
JP5107480B2 (ja) 燃料電池の運転方法と燃料電池システム
JP2011003483A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP6719098B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2016192269A (ja) 燃料電池システム及びその運転方法
JP5723814B2 (ja) 燃料電池発電システムの制御装置および運転方法
JPWO2011108266A1 (ja) 燃料電池システムおよびその運転方法
JP2009252677A (ja) 燃料電池システムおよびプログラム
JP7461977B2 (ja) 燃料電池システム及び設備管理方法
JP5312693B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2016094328A (ja) 水素生成装置及びその運転方法並びに燃料電池システム
JP2010071493A (ja) コージェネレーションシステム、運転制御装置、コージェネレーションシステムの運転方法及びプログラム
JP6750113B2 (ja) 設備管理方法及び設備管理装置
JP4984418B2 (ja) 燃料電池発電システムおよびその運転方法
JP6759151B2 (ja) 燃料電池装置及び制御方法
WO2012147269A1 (ja) 発電システム
JP2011170985A (ja) 燃料電池発電装置
JP2021164197A (ja) 運転計画情報管理システム
JP2006294399A (ja) 燃料電池発電システムおよびそのプログラム
JP2006250380A (ja) コージェネレーションシステムの暖房負荷予測装置
JP2013207955A (ja) 発電システムおよび発電システムの運転方法
JP6618788B2 (ja) 燃料電池装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013500676

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011859057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011859057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13884466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE