WO2018116466A1 - 貯湯式給湯機 - Google Patents

貯湯式給湯機 Download PDF

Info

Publication number
WO2018116466A1
WO2018116466A1 PCT/JP2016/088512 JP2016088512W WO2018116466A1 WO 2018116466 A1 WO2018116466 A1 WO 2018116466A1 JP 2016088512 W JP2016088512 W JP 2016088512W WO 2018116466 A1 WO2018116466 A1 WO 2018116466A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
temperature
water
pump
flow rate
Prior art date
Application number
PCT/JP2016/088512
Other languages
English (en)
French (fr)
Inventor
修平 内藤
直紀 柴崎
▲泰▼成 松村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/088512 priority Critical patent/WO2018116466A1/ja
Publication of WO2018116466A1 publication Critical patent/WO2018116466A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters

Definitions

  • the present invention relates to a hot water storage type water heater.
  • Patent Document 1 describes a hot water utilization system.
  • This hot water utilization system includes a hot water storage tank and a heat exchanger. Hot water is supplied from the hot water storage tank to the primary side of the heat exchanger. Water passing through the secondary side of the heat exchanger is heated by this hot water passing through the primary side.
  • the hot water utilization system described in Patent Document 1 is a system that can heat water in this way and supply the heated water.
  • the water supplied from the hot water storage tank to the heat exchanger includes a scale component such as calcium.
  • the scale component contained in water becomes supersaturated at a high temperature above a certain level. If the scale component is supersaturated in water, it will precipitate as scale.
  • Patent Document 1 excessively high temperature water is supplied from the hot water storage tank to the heat exchanger. For this reason, in the said patent document 1, precipitation of the scale in a heat exchanger will be promoted.
  • An object of the present invention is to provide a hot water storage type hot water heater capable of suppressing the precipitation of scale in a heat exchanger for heating a heat medium with high-temperature water.
  • a hot water storage type hot water heater includes a heating means for heating water, a tank for storing water heated by the heating means, and a heat exchanger for heating a heat medium flowing on the secondary side by water flowing on the primary side.
  • a pump for taking out the water stored in the tank from the outlet formed in the tank and returning it to the tank from the return port formed in the tank through the primary side of the heat exchanger;
  • Mixing means for mixing the water taken out from the outlet of the heat exchanger and the water flowing out from the outlet on the primary side of the heat exchanger into the inlet of the primary side of the heat exchanger.
  • the hot water storage type hot water supply apparatus can suppress the deposition of scale in the heat exchanger for heating the heat medium with high-temperature water.
  • FIG. 1 is a schematic diagram showing a hot water storage type water heater according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a control configuration of the hot water storage type hot water supply apparatus according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a configuration of a processing circuit for realizing the function of the control device according to the first embodiment. It is a figure which shows the temperature rising operation of the hot water storage type water heater of Embodiment 1.
  • FIG. It is a figure which shows the high temperature water supply operation
  • FIG. 3 is a flowchart showing a high temperature water supply operation of the hot water storage type hot water supply apparatus of the first embodiment. 6 is a diagram showing a modification of the first embodiment.
  • FIG. 3 is a block diagram illustrating a control configuration of the hot water storage type hot water supply apparatus according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a configuration of a processing
  • FIG. 1 is a schematic diagram showing a hot water storage type water heater 100 according to the first embodiment.
  • the hot water storage type water heater 100 includes a heat pump unit 1 and a tank unit 10.
  • the heat pump unit 1 and the tank unit 10 are connected by, for example, piping and electric wiring (not shown).
  • the low-temperature water is led from the tank unit 10 to the heat pump unit 1.
  • the heat pump unit 1 is a device that heats low-temperature water led from the tank unit 10.
  • the heat pump unit 1 is a device that heats water by using a heat pump cycle.
  • the heat pump unit 1 includes a compressor 2, a heat pump heat exchanger 3, an expansion valve 4, and an air heat exchanger 5.
  • the compressor 2, the primary side of the heat pump heat exchanger 3, the expansion valve 4, and the air heat exchanger 5 are sequentially connected in an annular shape by a heat medium circulation pipe 6.
  • Compressor 2, heat pump heat exchanger 3, expansion valve 4, air heat exchanger 5 and heat medium circulation pipe 6 constitute a heat pump cycle.
  • a heat medium such as carbon dioxide circulates in the heat medium circulation pipe 6.
  • the temperature of the heat medium circulating through the heat medium circulation pipe 6 is raised by the compressor 2, the expansion valve 4 and the air heat exchanger 5.
  • the heat medium whose temperature has risen is supplied to the primary side of the heat pump heat exchanger 3.
  • the heat pump heat exchanger 3 is a device for performing heat exchange between the heat medium flowing on the primary side and the heat medium flowing on the secondary side.
  • low temperature water is led from the tank unit 10 to the secondary side of the heat pump heat exchanger 3.
  • the water flowing on the secondary side of the heat pump heat exchanger 3 is heated by the heat medium flowing on the primary side.
  • the heat pump unit 1 including the compressor 2, the heat pump heat exchanger 3, the expansion valve 4, the air heat exchanger 5, and the heat medium circulation pipe 6 is an example of a heating unit that heats water.
  • the tank unit 10 of the present embodiment includes, for example, a tank 11, a heat exchanger 12, a mixing valve 13, a first pump 14, and a second pump 15.
  • the tank 11 is for storing high-temperature water and low-temperature water.
  • the heat exchanger 12 is a device for performing heat exchange between the heat medium flowing on the primary side and the heat medium flowing on the secondary side.
  • the mixing valve 13 is a device having two inlets and one outlet.
  • the two inlets are referred to as a first inlet 13a and a second inlet 13b.
  • the outflow port of the mixing valve 13 be the exit 13c.
  • the water flowing into the mixing valve 13 is mixed inside the mixing valve 13 and flows out from the outlet 13c.
  • the first pump 14 and the second pump 15 are devices that cause water to flow through a flow path formed inside a pipe or the like.
  • water is stored so that a temperature difference occurs between the upper part and the lower part.
  • high temperature water is stored in the upper part of the tank 11.
  • 60 ° C. water is stored in the upper part of the inside of the tank 11.
  • Low temperature water is stored in the lower part of the inside of the tank 11.
  • the tank 11 may be connected to a water source such as a water tap (not shown) by a pipe (not shown). Water may be supplied into the tank 11 from a water source such as a water supply.
  • a first connection port 11a, a second connection port 11b, a third connection port 11c, and a fourth connection port 11d are formed.
  • the first connection port 11 a is formed in the upper part of the tank 11.
  • the second connection port 11 b and the third connection port 11 c are formed in the lower part of the tank 11.
  • the second connection port 11b is formed at a position different from the third connection port 11c.
  • the second connection port 11b is formed above the third connection port.
  • the fourth connection port 11d is formed in the upper part of the tank 11 at a position different from the first connection port 11a.
  • one end of the first pipe 16a is connected to the primary inlet of the heat exchanger 12.
  • the other end of the first pipe 16 a is connected to the outlet 13 c of the mixing valve 13. That is, the outlet 13c communicates with the primary inlet of the heat exchanger 12 through the first pipe 16a.
  • one end of the second pipe 16 b is connected to the first inlet 13 a of the mixing valve 13.
  • the other end of the second pipe 16 b is connected to the first connection port 11 a of the tank 11. In other words, the first inlet 13a communicates with the first connection port 11a via the second pipe 16b.
  • One end of the third pipe 16 c is connected to the primary outlet of the heat exchanger 12.
  • One end of a fourth pipe 16d is connected to the other end of the third pipe 16c.
  • the connecting portion between the other end of the third pipe 16c and one end of the fourth pipe 16d is referred to as a pipe connecting portion 17 in the present embodiment.
  • the other end of the fourth pipe 16 d is connected to the second connection port 11 b of the tank 11.
  • one end of a fifth pipe 16e is connected to the second inlet 13b of the mixing valve 13.
  • the other end of the fifth pipe 16e is connected to the other end of the third pipe 16c and one end of the fourth pipe 16d at the pipe connecting portion 17.
  • the second inlet 13b communicates with the outlet on the primary side of the heat exchanger 12 via the third pipe 16c and the fifth pipe 16e.
  • 1st pump 14 with which tank unit 10 is provided is provided in the 3rd piping 16c, for example, as shown in FIG.
  • the first connection port 11a, the mixing valve 13, the primary side of the heat exchanger 12, the first pump 14 and the second connection port 11b are constituted by a first pipe 16a, a second pipe 16b, a third pipe 16c and a fourth pipe 16d.
  • the 1st connection port 11a, the mixing valve 13, the primary side of the heat exchanger 12, the 1st pump 14, and the 2nd connection port 11b are connected cyclically in order.
  • the tank 11, the heat exchanger 12, the mixing valve 13, the first pump 14, the first pipe 16a, the second pipe 16b, the third pipe 16c, and the fourth pipe 16d constitute a heat source circuit.
  • the heat source circuit is for heating the heat medium flowing on the secondary side of the heat exchanger 12.
  • the first pump 14 is a device for circulating water through the heat source circuit.
  • the first pump 14 of the present embodiment is an example of a pump for taking out water stored in the tank 11 and returning it to the tank 11 via the primary side of the heat exchanger 12.
  • the first pump 14 is driven, for example, water stored in the tank 11 is taken out from the first connection port 11a.
  • water is returned to the tank 11 from the second connection port 11b.
  • the first connection port 11 a in the present embodiment is an example of an extraction port for taking out water from the tank 11.
  • the second connection port 11 b is an example of a return port for returning water to the tank 11.
  • the fourth pipe 16 d is an example of a pipe for returning water to the tank 11.
  • the position of the first pump 14 is not limited to the present embodiment.
  • the first pump 14 may be provided at an arbitrary position in the heat source circuit.
  • the first pump 14 may be provided, for example, in the first pipe 16a, the second pipe 16b, or the fourth pipe 16d.
  • the mixing valve 13 and the fifth pipe 16e described above are mixed for mixing the water taken out from the tank 11 with the water flowing out from the primary outlet of the heat exchanger 12 and flowing it into the primary inlet. It is an example of a means.
  • the first pump 14 when the first pump 14 is driven, for example, high-temperature water flows from the first connection port 11a to the first inlet 13a. Further, when the first pump 14 is driven, for example, water flows from the outlet of the heat exchanger 12 to the second inlet 13b.
  • the mixing valve 13 has a function of adjusting the ratio of the flow rate of water flowing from the first connection port 11a to the first inlet 13a with respect to the flow rate of water flowing from the primary outlet port of the heat exchanger 12 to the second inlet 13b. It is a device that has. Hereinafter, this ratio is also simply referred to as “mixing ratio” in the present embodiment.
  • the mixing valve 13 of the present embodiment is an example of a mixing device that can adjust the mixing ratio.
  • the fifth pipe 16e is an example of a pipe for guiding water after passing through the primary side of the heat exchanger 12 to the second inlet 13b.
  • the fifth pipe 16e constitutes a low temperature water path.
  • the low temperature water path is a path that guides the water after passing through the primary side of the heat exchanger 12 to the mixing valve 13.
  • a water supply pipe 18 a is connected to the secondary side inlet of the heat exchanger 12.
  • the other end of the water supply pipe 18a is connected to a water source such as a water tap (not shown).
  • the water supply pipe 18 a is a pipe for supplying water from a water source to the secondary side of the heat exchanger 12.
  • water flows as an example of a heat medium on the secondary side of the heat exchanger 12. The water flowing on the secondary side of the heat exchanger 12 is heated by the heat source circuit described above.
  • a high-temperature water supply pipe 18b is connected to the outlet on the secondary side of the heat exchanger 12.
  • the other end of the high-temperature water supply pipe 18b is connected to, for example, a hot water supply terminal such as a faucet (not shown).
  • High temperature water heated by passing through the secondary side of the heat exchanger 12 flows through the high temperature water supply pipe 18b.
  • a user of the hot water storage type hot water heater 100 can take out and use high temperature water flowing through the high temperature water supply pipe 18b through a hot water supply terminal such as a faucet.
  • the water supply pipe 18a, the secondary side of the heat exchanger 12, and the high temperature water supply pipe 18b form a flow path for supplying high temperature water to the user.
  • one end of the heat pump inlet pipe 19a is connected to the secondary inlet of the heat pump heat exchanger 3.
  • the other end of the heat pump water inlet pipe 19 a is connected to the third connection port 11 c of the tank 11.
  • one end of the heat pump outlet pipe 19 b is connected to the outlet on the secondary side of the heat pump heat exchanger 3.
  • the other end of the heat pump outlet pipe 19 b is connected to the fourth connection port 11 d of the tank 11.
  • the heat pump unit 1 and the tank unit 10 are connected by a heat pump inlet pipe 19a and a heat pump outlet pipe 19b.
  • the heat pump water inlet pipe 19 a is a pipe that guides low-temperature water stored in the lower part inside the tank 11 to the heat pump unit 1.
  • the heat pump water discharge pipe 19 b is a pipe that guides the high-temperature water heated by the heat pump unit 1 to the upper part inside the tank 11.
  • the second pump 15 is provided, for example, in the heat pump inlet pipe 19a.
  • the tank 11, the heat pump inlet pipe 19a, the secondary side of the heat pump heat exchanger 3, and the heat pump outlet pipe 19b form a temperature rising circuit.
  • the temperature raising circuit is for raising the temperature of the water stored in the tank 11.
  • the second pump 15 is a pump for circulating water through the temperature raising circuit.
  • the 2nd pump 15 may be provided in the heat pump outlet piping 19b etc. other than this Embodiment, for example.
  • the hot water storage type water heater 100 of the present embodiment includes a control device 50.
  • the control device 50 is electrically connected to each device provided in the hot water storage type hot water heater 100.
  • the control device 50 controls each device connected to the control device 50.
  • the control device 50 is provided inside the tank unit 10 as shown in FIG. Note that the control device 50 may be provided outside the tank unit 10, for example.
  • FIG. 2 is a block diagram showing a control configuration of hot water storage type water heater 100 of the first embodiment.
  • the control device 50 is electrically connected to, for example, the heat pump unit 1, the mixing valve 13, the first pump 14, and the second pump 15.
  • the control device 50 according to the present embodiment controls the heat pump unit 1, the mixing valve 13, the first pump 14 and the second pump 15.
  • the hot water storage type water heater 100 includes a remote controller 51.
  • the remote controller 51 is connected to the control device 50.
  • the control device 50 and the remote controller 51 can communicate with each other.
  • the remote controller 51 includes a display unit and an operation unit (not shown), for example.
  • the display unit displays information such as the operating state of the hot water storage type water heater 100.
  • the operation unit is a part operated by the user.
  • the operation unit is, for example, a switch.
  • the remote controller 51 may include, for example, a speaker and a microphone.
  • the remote controller 51 transmits an operation command corresponding to the operation from the user to the control device 50.
  • the operation command is for operating the hot water storage type water heater 100.
  • the control device 50 controls the heat pump unit 1, the mixing valve 13, the first pump 14, and the second pump 15 based on the received operation command, for example.
  • the remote controller 51 transmits, for example, a set value change command according to an operation from the user to the control device 50.
  • Various setting values are preset in the control device 50.
  • the control device 50 changes various set values in accordance with the received set value change command.
  • the various set values include a target temperature.
  • the user sets the temperature of the water desired to be obtained from the hot water storage type hot water heater 100 via a hot water supply terminal or the like as the target temperature.
  • the user can set the target temperature by operating the remote controller 51.
  • the remote controller 51 is an example of a setting unit that sets a target temperature.
  • the control device 50 controls the mixing valve 13 and the first pump 14 according to the target temperature set by the remote controller 51.
  • the hot water storage type water heater 100 may include, for example, various sensors.
  • a plurality of thermistors are attached to the surface of the tank 11.
  • the plurality of thermistors detect the temperature distribution of the water stored in the tank 11.
  • the plurality of thermistors transmit the detected temperature distribution information to the control device 50, for example.
  • the control device 50 calculates the heat storage amount of water in the tank 11 based on information received from a plurality of thermistors. In this way, the control device 50 monitors the heat storage amount of the water in the tank 11.
  • the control device 50 controls the heat pump unit 1 and the second pump 15 based on the calculated heat storage amount.
  • a first thermistor 20a may be provided on the upper portion of the tank 11.
  • the first thermistor 20 a is a sensor that detects the temperature of hot water stored in the upper part of the tank 11.
  • the 1st thermistor 20a is an example of the high temperature water temperature detection part which detects the temperature of the water taken out from the 1st connection port 11a.
  • the second thermistor 20b may be provided in the high temperature water supply pipe 18b.
  • the second thermistor 20 b is a sensor that detects the temperature of the heat medium flowing out from the secondary side of the heat exchanger 12.
  • the second thermistor 20b of the present embodiment is an example of a supply temperature detection unit.
  • the 3rd thermistor 20c may be provided in the 1st piping 16a.
  • the third thermistor 20c is a sensor that detects the temperature of water flowing from the outlet 13c to the primary inlet of the heat exchanger 12.
  • the second thermistor 20b is an example of a mixing temperature detection unit.
  • the fourth thermistor 20d may be provided in the third pipe 16c.
  • the fourth thermistor 20d is an example of a low-temperature water temperature detection unit that detects the temperature of water flowing from the primary outlet to the second inlet 13b.
  • the 1st flow sensor 30a may be provided in the water supply piping 18a.
  • the first flow rate sensor 30a detects the flow rate of water supplied from the water source to the secondary side of the heat exchanger 12, for example.
  • the first flow rate sensor 30 a is an example of a first flow rate detection unit that detects the flow rate of the heat medium flowing on the secondary side of the heat exchanger 12.
  • the 2nd flow sensor 30b may be provided in the 1st piping 16a.
  • the second flow rate sensor 30b is an example of a second flow rate detection unit that detects the temperature of water flowing from the outlet 13c to the primary inlet of the heat exchanger 12.
  • the first thermistor 20a, the second thermistor 20b, the third thermistor 20c and the fourth thermistor 20d, the first flow sensor 30a and the second flow sensor 30b are connected to the control device 50 as shown in FIG.
  • the control device 50 operates based on the detection results of the first thermistor 20a, the second thermistor 20b, the third thermistor 20c and the fourth thermistor 20d, the first flow sensor 30a and the second flow sensor 30b.
  • the control apparatus 50 has the calculation part 52, the flow determination part 53, and the control part 54 as an example.
  • the calculation unit 52 is, for example, a part having a function of calculating an appropriate mixing ratio.
  • the flow determination unit 53 is an example of a determination unit that determines whether a heat medium is flowing on the secondary side of the heat exchanger 12. For example, the flow determination unit 53 determines the presence or absence of a flow based on the detection result of the first flow sensor.
  • the control unit 54 has a function of controlling the heat pump unit 1, the mixing valve 13, the first pump 14, and the second pump 15.
  • the control unit 54 is an example of a control unit for controlling the operation of the hot water storage type hot water heater 100.
  • FIG. 3 is a diagram illustrating an example of a configuration of a processing circuit for realizing the function of the control device 50 according to the first embodiment.
  • the functions of the calculation unit 52, the flow determination unit 53, and the control unit 54 of the control device 50 are realized by a processing circuit, for example, as shown in FIG.
  • the processing circuit may be dedicated hardware 50a.
  • the processing circuit may include a processor 50b and a memory 50c. A part of the processing circuit is formed as dedicated hardware 50a, and may further include a processor 50b and a memory 50c.
  • FIG. 3 shows an example in which the processing circuit is partly formed as dedicated hardware 50a and further includes a processor 50b and a memory 50c.
  • the processing circuit includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. .
  • the function of the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 50c.
  • the processor 50b implements each function by reading and executing a program stored in the memory 50c.
  • the processor 50b is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the memory 50c corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the processing circuit can realize the functions of the calculation unit 52, the flow determination unit 53, and the control unit 54 of the control device 50 by hardware, software, firmware, or a combination thereof.
  • the operation of the hot water storage type water heater 100 is controlled by a single control device 50 as an example.
  • the hot water storage type hot water heater 100 may include a plurality of devices serving as control means.
  • the operation of the hot water storage type water heater 100 may be controlled by, for example, a plurality of linked devices.
  • the hot water storage type water heater 100 may include a plurality of processing circuits for realizing the function of the control device 50.
  • FIG. 4 is a diagram illustrating a temperature increasing operation of the hot water storage system 100 according to the first embodiment.
  • the thick line in FIG. 4 shows the flow of water in the temperature raising operation.
  • the control device 50 monitors the heat storage amount of water in the tank 11 as described above.
  • the control device 50 operates the heat pump unit 1 and the second pump 15 when, for example, the amount of heat stored in the water in the tank 11 falls below a preset reference.
  • the control device 50 operates the heat pump unit 1 and the second pump 15 by the control unit 54, for example. Thereby, the temperature raising operation is started.
  • the time point at which the temperature raising operation starts is not limited to this example.
  • the temperature raising operation may be started, for example, when the control device 50 receives an operation command for starting the temperature raising operation from the remote controller 51.
  • the control device 50 stops the heat pump unit 1 and the second pump 15 when, for example, the heat storage amount of water in the tank 11 exceeds a preset reference.
  • the heat pump unit 1 and the second pump 15 are stopped by the control unit 54, for example.
  • the temperature raising operation ends. Note that the time point at which the temperature raising operation ends is not limited to this example.
  • the temperature raising operation may be terminated when the control device 50 receives an operation command for ending the temperature raising operation from the remote controller 51, for example.
  • FIG. 5 is a diagram illustrating a high temperature water supply operation of the hot water storage type hot water heater 100 according to the first embodiment.
  • the thick line in FIG. 5 shows the flow of water in the high temperature water supply operation.
  • FIG. 6 is a flowchart showing a high-temperature water supply operation of hot water storage type hot water heater 100 of the first embodiment.
  • the user operates the remote controller 51 to set a target temperature (step S1).
  • the target temperature is 40 ° C., for example.
  • the target temperature set by the remote controller 51 is stored in the control unit 54 of the control device 50, for example.
  • the user operates the hot water supply terminal such as a faucet after setting the target temperature. Thereby, water flows from the water source toward the hot water supply terminal.
  • water flows through the water supply pipe 18a, the secondary side of the heat exchanger 12, and the high-temperature water supply pipe 18b. That is, a flow is generated on the secondary side of the heat exchanger 12 (step S2).
  • the flow determination unit 53 of the control device 50 determines that there is a flow on the secondary side of the heat exchanger 12 based on the detection result of the first flow sensor 30a, for example.
  • the control unit 54 drives the first pump 14 (step S3). Thereby, the high temperature water supply operation shown in FIG. 5 is started.
  • control device 50 may have a function of detecting the operation of the hot water supply terminal by the user.
  • the control device 50 may drive the first pump 14 when detecting that the hot water supply terminal is operated.
  • the detection of the operation of the hot water supply terminal and the control of the first pump 14 after the detection are performed by the control unit 54, for example.
  • the water flowing into the primary side of the heat exchanger 12 is a mixture of hot water taken out from the first connection port 11a and water flowing out from the primary side of the heat exchanger 12. This mixture has a temperature higher than that of low-temperature water flowing from the water source to the secondary side of the heat exchanger 12 through the water supply pipe 18a.
  • the water flowing on the secondary side of the heat exchanger 12 is heated by the water flowing on the primary side of the heat exchanger 12.
  • the water heated through the secondary side of the heat exchanger 12 is supplied to the user through a hot water supply terminal such as a faucet.
  • the user can obtain water heated by the high-temperature water stored in the tank 11.
  • the hot water storage type water heater 100 includes a mixing valve 13 and a fifth pipe 16e as an example of a mixing unit. Thereby, when the high temperature water supply operation is performed, the water that has passed through the secondary side of the heat exchanger 12 is mixed with the high temperature water extracted from the upper part of the tank 11 on the primary side of the heat exchanger 12. Things are supplied.
  • the water that has passed through the secondary side of the heat exchanger 12 is at a lower temperature than the water stored in the upper part of the tank 11. Further, the water that has passed through the secondary side of the heat exchanger 12 is at a lower temperature than the water before passing through the secondary side of the heat exchanger 12, that is, the water flowing through the first pipe 16a. For this reason, at the time of high temperature water supply operation, excessively high temperature water is not supplied to the primary side of the heat exchanger 12.
  • Hot water storage type hot water heater 100 of the present embodiment can suppress the precipitation of scale in heat exchanger 12 for heating the heat medium with high-temperature water. Thereby, the heat exchanger 12 can be used for a longer period of time.
  • control part 54 which is an example of a control means controls the 1st pump 14 and the mixing valve 13 according to the set target temperature during a high temperature water supply operation (step S4).
  • control unit 54 controls the first pump 14 and the mixing valve 13 so that water at the target temperature is supplied from the hot water supply terminal based on a preset program or the like.
  • step S4 the control unit 54 controls the first pump 14 and the mixing valve 13 so that the temperature detected by the second thermistor 20b becomes the target temperature.
  • the control unit 54 controls the first pump 14 and the mixing valve 13 so that the temperature detected by the second thermistor 20b matches the target temperature.
  • the control unit 54 may control the first pump 14 and the mixing valve 13 so that the temperature detected by the second thermistor 20b is within a certain error range from the target temperature.
  • the error range is, for example, about plus or minus 3 ° C.
  • the first pump 14 and the mixing valve 13 operate more appropriately.
  • the control unit 54 causes the mixing valve 13 to adjust the above-described mixing ratio so that the temperature detected by the second thermistor 20b becomes the target temperature, for example. Thereby, the user can obtain the water of target temperature more reliably.
  • the control unit 54 may control the mixing valve 13 and the first pump 14 so that the temperature of the water supplied from the hot water supply terminal to the user reaches the target temperature faster after the hot water supply terminal is operated. .
  • the controller 54 may control the first pump 14 immediately after the start of step S4 so that a larger flow rate of water flows through the heat source circuit described above.
  • the controller 54 may control the mixing valve 13 immediately after the start of step S4 so that the above-described mixing ratio becomes larger.
  • the controller 54 may increase the mixing ratio of the water in the upper part of the tank 11 with the mixing valve 13. Thereby, the user can obtain water of target temperature faster after operating a hot-water supply terminal.
  • the control unit 54 causes the mixing valve 13 to increase the mixing ratio until the temperature detected by the second thermistor 20b reaches the target temperature. Then, the control unit 54 may cause the mixing valve 13 to adjust the mixing ratio so that the temperature detected by the second thermistor 20b is maintained at the target temperature. Thereby, it is prevented that water with a temperature higher than the target temperature is provided to the user.
  • control unit 54 may cause the mixing valve 13 to adjust the mixing ratio so that the temperature detected by the third thermistor 20c is equal to or higher than the target temperature. Thereby, the user can obtain water of target temperature faster after operating a hot-water supply terminal.
  • control unit 54 of the present embodiment may control the first pump 14 in step S4 so that the flow rate of water flowing through the heat source circuit becomes the target flow rate.
  • the target flow rate is set in advance as a flow rate suitable for high-temperature water supply operation, for example.
  • the control unit 54 may control the first pump 14 so that the flow rate detected by the second flow rate sensor 30b becomes the target flow rate. Thereby, the water of the target flow rate circulates more reliably in the heat exchanger.
  • the target flow rate may be a flow rate detected by the first flow rate sensor 30a, for example. That is, the control unit 54 may control the first pump 14 so that the flow rate flowing through the heat source circuit becomes the flow rate detected by the first flow rate sensor 30a. Thereby, for example, it is easier to construct a program necessary for the control unit 54 to control each device.
  • the target flow rate may be larger than the flow rate detected by the first flow rate sensor 30a, for example. That is, the control unit 54 may control the first pump 14 so that the flow rate flowing through the heat source circuit is larger than the flow rate detected by the first flow rate sensor 30a. Thereby, the user can obtain water of target temperature faster after operating a hot-water supply terminal.
  • the calculation unit 52 of the control device 50 may calculate an appropriate mixing ratio according to the temperature detected by the first thermistor 20a and the temperature detected by the fourth thermistor 20d.
  • the control unit 54 may control the mixing valve 13 so that the mixing ratio is calculated by the calculation unit 52.
  • control unit 54 calculates the mixing ratio based on the following equation (1).
  • F1: F2 (T1-T2): (T3-T1)
  • F1 is the flow rate of water flowing into the first inlet.
  • F2 is the flow rate of water flowing into the second inlet.
  • T1 is the target mixing temperature.
  • the target mixing temperature is set in advance.
  • the control unit 54 controls the mixing valve 13 so that the temperature detected by, for example, the third thermistor 20c becomes the target mixing temperature.
  • T2 is a temperature detected by the fourth thermistor 20d.
  • T3 is a temperature detected by the first thermistor 20a.
  • the target mixing temperature T1 is set, for example, 5 ° C. higher than the target temperature described above.
  • T 1 is 45 ° C.
  • T 2 is 20 ° C.
  • T 3 is 40 ° C.
  • F1: F2 is calculated as 5: 3.
  • the user operates a hot water supply terminal such as a faucet after obtaining the necessary hot water.
  • the flow of the secondary side of the heat exchanger 12 stops (step S5). That is, the flow rate in the water supply pipe 18a becomes zero.
  • the flow determination unit 53 determines that the heat medium does not flow to the secondary side of the heat exchanger 12 based on the detection result of the first flow sensor 30a.
  • the control unit 54 stops the first pump 14 (step S6). Thereby, the high-temperature water supply operation ends.
  • control unit 54 may control the mixing valve 13 after step S6 so that water does not flow into the first inlet 13a (step S7).
  • step S7 may be performed before step S6.
  • Step S7 may be performed simultaneously with step S6.
  • Step S7 may be performed immediately after step S6.
  • Step S7 may be performed after a predetermined time has elapsed since step S6 was performed. That is, when the control unit 54 drives the first pump 14 and then stops the first pump 14, the mixing valve prevents the water from flowing from the first connection port 11 a into the first inlet 13 a after a predetermined time has elapsed. 13 may be controlled.
  • the fixed time is, for example, a time between 3 minutes and 5 minutes.
  • the number of operations of the mixing valve 13 when the start and stop of the high-temperature water supply operation are continuously repeated is reduced. Thereby, the lifetime of the mixing valve 13 becomes longer.
  • the high-temperature water supply operation is restarted immediately after being stopped, the user can obtain water at the target temperature faster.
  • FIG. 7 is a diagram showing a modification of the first embodiment.
  • the secondary side of the heat exchanger 12 provided in the hot water storage type hot water heater 100 may be connected to the heating device 60.
  • the first heating pipe 61 a may be connected to the outlet on the secondary side of the heat exchanger 12.
  • the other end of the 1st heating piping 61a is connected to one end of the 2nd heating piping 61b via the 1st adapter 62a, for example.
  • the other end of the second heating pipe 61 b is connected to the inlet of the heating device 60.
  • One end of the third heating pipe 61 c is connected to the outlet of the heating device 60.
  • the other end of the third heating pipe 61c is connected to one end of the fourth heating pipe 61d via the second adapter 62b.
  • the other end of the fourth heating pipe 61d is connected to the secondary inlet of the heat exchanger 12.
  • the heat medium flowing through the heating device 60 circulates in the first heating pipe 61a, the second heating pipe 61b, the third heating pipe 61c, and the fourth heating pipe 61d.
  • the present invention can be used for various devices that heat a heat medium with high-temperature water.
  • the present invention can be used, for example, in a hot water storage type hot water heater that stores high-temperature water and heats a heat medium with the water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

貯湯式給湯機(100)は、ヒートポンプユニット(1)によって加熱された水が貯められるタンク(11)と、一次側を流れる水によって二次側を流れる熱媒体を加熱する熱交換器(12)と、タンク(11)に貯められた水を、第1接続口(11a)から取り出し、熱交換器(12)の一次側を経由させて第2接続口(11b)へ戻すための第1ポンプ(14)と、第1接続口(11a)から取り出された水に熱交換器(12)の一次側の流出口から流出した水を混合させて熱交換器(12)の一次側の流入口へ流入させるための混合弁(13)および第5配管(16)と、を備える。

Description

貯湯式給湯機
 本発明は、貯湯式給湯機に関するものである。
 特許文献1に、温水利用システムが記載されている。この温水利用システムは、貯湯タンクおよび熱交換器を備える。熱交換器の一次側には、貯湯タンクから高温の水が供給される。熱交換器の二次側を通る水は、一次側を通るこの高温の水によって加熱される。特許文献1に記載された温水利用システムは、このようにして水を加熱し、加熱した水を供給することができるシステムである。
日本特開2004-264004号公報
 貯湯タンクから熱交換器に供給される水には、例えばカルシウム等のスケール成分が含まれる。水に含まれるスケール成分は、一定以上の高温になると過飽和状態になる。水にスケール成分は過飽和状態になると、スケールとして析出してしまう。上記特許文献1においては、貯湯タンクから熱交換器へ、過度に高温な水が供給されてしまう。このため、上記特許文献1においては、熱交換器内でのスケールの析出が促されてしまう。
 本発明は、上記のような課題を解決するためになされたものである。本発明の目的は、高温の水によって熱媒体を加熱するための熱交換器内でのスケールの析出を抑制することができる貯湯式給湯機を提供することである。
 本発明に係る貯湯式給湯機は、水を加熱する加熱手段と、加熱手段によって加熱された水が貯められるタンクと、一次側を流れる水によって二次側を流れる熱媒体を加熱する熱交換器と、タンクに貯められた水を、このタンクに形成された取出し口から取り出し、熱交換器の一次側を経由させてこのタンクに形成された戻し口からこのタンクへ戻すためのポンプと、タンクの取出し口から取り出された水に熱交換器の一次側の流出口から流出した水を混合させてこの熱交換器の一次側の流入口へ流入させるための混合手段と、を備える。
 本発明に係る貯湯式給湯機であれば、高温の水によって熱媒体を加熱するための熱交換器内でのスケールの析出を抑制することができる。
実施の形態1の貯湯式給湯機を示す概略図である。 実施の形態1の貯湯式給湯機の制御構成を示すブロック図である。 実施の形態1の制御装置の機能を実現するための処理回路の構成の例を示す図である。 実施の形態1の貯湯式給湯機の昇温運転を示す図である。 実施の形態1の貯湯式給湯機の高温水供給運転を示す図である。 実施の形態1の貯湯式給湯機の高温水供給運転を示すフローチャートである。 実施の形態1の変形例を示す図である。
 以下、添付の図面を参照して、本発明に係る貯湯式給湯機の実施の形態について説明する。各図における同一の符号は、同一の部分または相当する部分を示す。本開示では、重複する説明については適宜に簡略化または省略する。なお、本発明に係る貯湯式給湯機は、以下の実施の形態に示すものに限定されるものではない。また、本開示は、以下の実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得るものである。
実施の形態1.
 図1は、実施の形態1の貯湯式給湯機100を示す概略図である。貯湯式給湯機100は、ヒートポンプユニット1およびタンクユニット10を備える。ヒートポンプユニット1とタンクユニット10とは、例えば、配管および図示しない電気配線によって接続される。
 ヒートポンプユニット1には、タンクユニット10から低温の水が導かれる。ヒートポンプユニット1は、タンクユニット10から導かれた低温の水を加熱する装置である。ヒートポンプユニット1は、ヒートポンプサイクルを利用することによって水を加熱する装置である。
 ヒートポンプユニット1は、圧縮機2、ヒートポンプ熱交換器3、膨張弁4および空気熱交換器5を有する。圧縮機2、ヒートポンプ熱交換器3の一次側、膨張弁4および空気熱交換器5は、熱媒体循環配管6によって順に環状に接続される。
 圧縮機2、ヒートポンプ熱交換器3、膨張弁4、空気熱交換器5および熱媒体循環配管6は、ヒートポンプサイクルを構成している。熱媒体循環配管6には、例えば二酸化炭素等の熱媒体が循環する。熱媒体循環配管6を循環する熱媒体は、圧縮機2、膨張弁4および空気熱交換器5によって温度が上昇させられる。温度が上昇した熱媒体は、ヒートポンプ熱交換器3の一次側へ供給される。
 ヒートポンプ熱交換器3は、一次側を流れる熱媒体と二次側を流れる熱媒体との間での熱交換を行うための装置である。本実施の形態において、ヒートポンプ熱交換器3の二次側には、タンクユニット10から低温の水が導かれる。ヒートポンプ熱交換器3の二次側を流れる水は、一次側を流れる熱媒体によって加熱される。圧縮機2、ヒートポンプ熱交換器3、膨張弁4、空気熱交換器5および熱媒体循環配管6を備えるヒートポンプユニット1は、水を加熱する加熱手段の一例である。
 また、本実施の形態のタンクユニット10は、例えば、タンク11、熱交換器12、混合弁13、第1ポンプ14および第2ポンプ15を備える。タンク11は、高温の水および低温の水を貯めるためのものである。熱交換器12は、一次側を流れる熱媒体と二次側を流れる熱媒体との間での熱交換を行うための装置である。
 混合弁13は、2つの流入口と1つの流出口を有する装置である。この、2つの流入口を第1入口13aおよび第2入口13bとする。また、混合弁13の流出口を、出口13cとする。混合弁13には、例えば、第1入口13aおよび第2入口13bから水が流入する。混合弁13に流入した水は、当該混合弁13の内部で混合され、出口13cから流出する。第1ポンプ14および第2ポンプ15は、配管等の内部に形成された流路に水を流させる装置である。
 タンク11の内部には、例えば、上部と下部とで温度差が生じるように水が貯められる。本実施の形態において、タンク11の内部の上部には、高温の水が貯められる。一例として、タンク11の内部の上部には、60℃の水が貯められる。タンク11の内部の下部には、低温の水が貯められる。なお、タンク11は、例えば、図示しない水道等の水源に、図示しない配管等によって接続されてもよい。タンク11の内部には、水道等の水源から水が供給されてもよい。
 また、タンク11には、例えば、第1接続口11a、第2接続口11b、第3接続口11cおよび第4接続口11dが形成される。第1接続口11aは、タンク11の上部に形成される。第2接続口11bおよび第3接続口11cは、タンク11の下部に形成される。第2接続口11bは、第3接続口11cと異なる位置に形成される。第2接続口11bは、例えば、第3接続口よりも上方に形成される。また、第4接続口11dは、第1接続口11aと異なる位置で、タンク11の上部に形成される。
 本実施の形態において、熱交換器12の一次側の流入口には、第1配管16aの一端が接続される。第1配管16aの他端は、混合弁13の出口13cに接続される。すなわち出口13cは、第1配管16aを介し、熱交換器12の一次側の流入口に通じている。また、混合弁13の第1入口13aには、第2配管16bの一端が接続されている。第2配管16bの他端は、タンク11の第1接続口11aに接続される。すなわち、第1入口13aは、第2配管16bを介し、第1接続口11aに通じている。
 熱交換器12の一次側の流出口には、第3配管16cの一端が接続される。第3配管16cの他端には、第4配管16dの一端が接続される。ここで、第3配管16cの他端と第4配管16dの一端との接続部分を、本実施の形態では、配管接続部17と称することとする。第4配管16dの他端は、タンク11の第2接続口11bに接続される。
 また、混合弁13の第2入口13bには、第5配管16eの一端が接続されている。この第5配管16eの他端は、配管接続部17で、第3配管16cの他端および第4配管16dの一端に接続される。本実施の形態において、第2入口13bは、第3配管16cおよび第5配管16eを介し、熱交換器12の一次側の流出口に通じている。
 タンクユニット10が備える第1ポンプ14は、例えば、図1に示すように、第3配管16cに設けられる。第1接続口11a、混合弁13、熱交換器12の一次側、第1ポンプ14および第2接続口11bは、第1配管16a、第2配管16b、第3配管16cおよび第4配管16dによって接続される。第1接続口11a、混合弁13、熱交換器12の一次側、第1ポンプ14および第2接続口11bは、順に環状に接続される。
 本実施の形態において、タンク11、熱交換器12、混合弁13、第1ポンプ14、第1配管16a、第2配管16b、第3配管16cおよび第4配管16dは、熱源回路を構成している。熱源回路とは、熱交換器12の二次側を流れる熱媒体を加熱するためのものである。第1ポンプ14は、この熱源回路に水を循環させるための装置である。
 本実施の形態の第1ポンプ14は、タンク11に貯められた水を、タンク11から取り出して熱交換器12の一次側を経由させてタンク11に戻すためのポンプの一例である。第1ポンプ14が駆動すると、例えば、タンク11に貯められた水が、第1接続口11aから取り出される。また、第1ポンプ14が駆動すると、水が、第2接続口11bからタンク11へ戻される。本実施の形態における第1接続口11aは、タンク11から水を取り出すための取出し口の一例である。第2接続口11bは、タンク11へ水を戻すための戻し口の一例である。また、第4配管16dは、タンク11へ水を戻すための配管の一例である。
 なお、第1ポンプ14の位置は、本実施の形態に限定されるものではない。第1ポンプ14は、熱源回路中の任意の位置に設けられてよい。第1ポンプ14は、例えば、第1配管16a、第2配管16bまたは第4配管16d等に設けられてもよい。
 上述した混合弁13および第5配管16eは、タンク11から取り出された水に熱交換器12の一次側の流出口から流出した水を混合させて当該一次側の流入口へ流入させるための混合手段の一例である。本実施の形態では、第1ポンプ14が駆動すると、例えば、第1接続口11aから第1入口13aへ高温の水が流入する。また、第1ポンプ14が駆動すると、例えば、熱交換器12の流出口から第2入口13bへ水が流入する。
 混合弁13は、熱交換器12の一次側の流出口から第2入口13bへ流入する水の流量に対する第1接続口11aから第1入口13aへ流入する水の流量の比率を調節する機能を有する装置である。以下、この比率を、本実施の形態では単に「混合比率」とも称する。本実施の形態の混合弁13は、混合比率を調節可能な混合装置の一例である。また、第5配管16eは、熱交換器12の一次側を通過した後の水を第2入口13bへ導くための配管の一例である。この第5配管16eは、低温水経路を構成する。低温水経路とは、熱交換器12の一次側を通過した後の水を、混合弁13へ導く経路である。
 熱交換器12の二次側の流入口には、例えば、図1に示すように、給水配管18aの一端が接続される。給水配管18aの他端は、図示しない水道等の水源に接続されている。給水配管18aは、水源から熱交換器12の二次側へ水を供給するための配管である。本実施の形態において熱交換器12の二次側には、熱媒体の一例として水が流れる。熱交換器12の二次側を流れる水は、上述した熱源回路によって加熱される。
 熱交換器12の二次側の流出口には、例えば、高温水供給配管18bの一端が接続される。高温水供給配管18bの他端は、例えば、図示しない蛇口等の給湯端末等に接続される。熱交換器12の二次側を通過することによって加熱された高温の水は、この高温水供給配管18bを流れる。貯湯式給湯機100の使用者は、高温水供給配管18bを流れる高温の水を、例えば、蛇口等の給湯端末を介して取り出して使用することができる。本実施の形態において、給水配管18a、熱交換器12の二次側および高温水供給配管18bは、使用者に対して高温の水を供給するための流路を形成している。
 また、ヒートポンプ熱交換器3の二次側の流入口には、ヒートポンプ入水配管19aの一端が接続される。このヒートポンプ入水配管19aの他端は、タンク11の第3接続口11cに接続される。また、ヒートポンプ熱交換器3の二次側の流出口には、ヒートポンプ出水配管19bの一端が接続される。ヒートポンプ出水配管19bの他端は、タンク11の第4接続口11dに接続される。
 本実施の形態において、ヒートポンプユニット1とタンクユニット10とは、ヒートポンプ入水配管19aおよびヒートポンプ出水配管19bによって接続されている。ヒートポンプ入水配管19aは、タンク11の内部の下部に貯められた低温の水を、ヒートポンプユニット1へ導く配管である。ヒートポンプ出水配管19bは、ヒートポンプユニット1によって加熱された後の高温の水を、タンク11の内部の上部へ導く配管である。
 第2ポンプ15は、例えば、ヒートポンプ入水配管19aに設けられる。本実施の形態において、タンク11、ヒートポンプ入水配管19a、ヒートポンプ熱交換器3の二次側およびヒートポンプ出水配管19bは、昇温回路を形成している。昇温回路とは、タンク11に貯められた水の温度を上昇させるためのものである。第2ポンプ15は、この昇温回路に水を循環させるためのポンプである。なお、第2ポンプ15は、本実施の形態以外にも、例えば、ヒートポンプ出水配管19b等に設けられてもよい。
 また、本実施の形態の貯湯式給湯機100は、制御装置50を備える。制御装置50は、貯湯式給湯機100に備えられた各機器に電気的に接続される。制御装置50は、当該制御装置50に接続された各機器を制御する。一例として、制御装置50は、図1に示すように、タンクユニット10の内部に設けられる。なお、制御装置50は、例えば、タンクユニット10の外部等に設けられてもよい。
 図2は、実施の形態1の貯湯式給湯機100の制御構成を示すブロック図である。制御装置50は、図2に示すように、例えば、ヒートポンプユニット1、混合弁13、第1ポンプ14および第2ポンプ15に電気的に接続される。本実施の形態の制御装置50は、ヒートポンプユニット1、混合弁13、第1ポンプ14および第2ポンプ15を制御する。
 また、貯湯式給湯機100は、リモートコントローラ51を備える。リモートコントローラ51は、制御装置50に接続される。制御装置50とリモートコントローラ51とは、相互に通信が可能である。リモートコントローラ51は、例えば、図示しない表示部および操作部を備える。表示部は、貯湯式給湯機100の動作状態等の情報を表示する。操作部は、使用者によって操作される部位である。操作部は、例えばスイッチ等である。リモートコントローラ51は、例えば、スピーカおよびマイク等を備えてもよい。
 リモートコントローラ51は、使用者からの操作に応じた動作指令を制御装置50へ送信する。動作指令は、貯湯式給湯機100を動作させるためのものである。制御装置50は、例えば受信した動作指令に基づいて、ヒートポンプユニット1、混合弁13、第1ポンプ14および第2ポンプ15を制御する。
 リモートコントローラ51は、例えば、使用者からの操作に応じた設定値変更指令を制御装置50へ送信する。制御装置50には、各種の設定値が予め設定される。制御装置50は、受信した設定値変更指令に応じて、各種の設定値を変更する。この各種の設定値には、目標温度が含まれる。例えば、使用者は、貯湯式給湯機100から給湯端末等を介して得たい水の温度を、この目標温度として設定する。
 本実施の形態において使用者は、リモートコントローラ51を操作することで、目標温度を設定することができる。リモートコントローラ51は、目標温度を設定する設定手段の一例である。制御装置50は、例えば、リモートコントローラ51によって設定された目標温度に応じて、混合弁13および第1ポンプ14を制御する。
 貯湯式給湯機100は、例えば、各種のセンサを備えてもよい。例えば、タンク11の表面には、複数のサーミスタが取り付けられる。これらの複数のサーミスタは、タンク11に貯められた水の温度分布を検出する。複数のサーミスタは、検出した温度分布の情報を、例えば制御装置50へ送信する。制御装置50は、例えば複数のサーミスタから受信した情報に基づいて、タンク11内の水の蓄熱量を算出する。このようにして、制御装置50は、タンク11内の水の蓄熱量を監視する。制御装置50は、例えば、算出した蓄熱量に基づいて、ヒートポンプユニット1および第2ポンプ15を制御する。
 タンク11の上部には、例えば、第1サーミスタ20aが設けられてもよい。第1サーミスタ20aは、タンク11の内部の上部に貯められた高温の水の温度を検出するセンサである。第1サーミスタ20aは、第1接続口11aから取り出される水の温度を検出する高温水温度検出部の一例である。
 高温水供給配管18bには、第2サーミスタ20bが設けられてもよい。第2サーミスタ20bは、熱交換器12の二次側から流出した熱媒の温度を検出するセンサである。本実施の形態の第2サーミスタ20bは、供給温度検出部の一例である。また、第1配管16aには、第3サーミスタ20cが設けられてもよい。第3サーミスタ20cは、出口13cから熱交換器12の一次側の流入口へ流れる水の温度を検出するセンサである。第2サーミスタ20bは、混合温度検出部の一例である。
 第3配管16cには、第4サーミスタ20dが設けられてもよい。第4サーミスタ20dは、熱交換器12の一次側の流出口から第2入口13bへ流れる水の温度を検出する低温水温度検出部の一例である。
 給水配管18aには、第1流量センサ30aが設けられてもよい。第1流量センサ30aは、例えば、水源から熱交換器12の二次側へ供給される水の流量を検出する。第1流量センサ30aは、熱交換器12の二次側を流れる熱媒体の流量を検出する第1の流量検出部の一例である。また、第1配管16aには、第2流量センサ30bが設けられてもよい。第2流量センサ30bは、出口13cから熱交換器12の一次側の流入口へ流れる水の温度を検出する第2の流量検出部の一例である。
 第1サーミスタ20a、第2サーミスタ20b、第3サーミスタ20cおよび第4サーミスタ20d、第1流量センサ30aおよび第2流量センサ30bは、図2に示すように、制御装置50に接続される。本実施の形態において制御装置50は、第1サーミスタ20a、第2サーミスタ20b、第3サーミスタ20cおよび第4サーミスタ20d、第1流量センサ30aおよび第2流量センサ30bの検知結果に基づいて動作する。
 制御装置50は、一例として、算出部52、流れ判定部53および制御部54を有する。算出部52は、例えば、適切な混合比率の算出を行う機能をもつ部分である。流れ判定部53は、熱交換器12の二次側に熱媒体が流れているか否かを判定する判定手段の一例である。流れ判定部53は、例えば、第1流量センサの検出結果に基づいて流れの有無を判定する。また、制御部54は、ヒートポンプユニット1、混合弁13、第1ポンプ14および第2ポンプ15を制御する機能を有する。制御部54は、貯湯式給湯機100の動作を制御するための制御手段の一例である。
 図3は、実施の形態1の制御装置50の機能を実現するための処理回路の構成の例を示す図である。制御装置50の算出部52、流れ判定部53および制御部54の機能は、例えば、図3に示すように、処理回路により実現される。処理回路は、専用ハードウェア50aであってもよい。処理回路は、プロセッサ50bおよびメモリ50cを備えていてもよい。処理回路は、一部が専用ハードウェア50aとして形成され、更にプロセッサ50bおよびメモリ50cを備えていてもよい。図3は、処理回路が、その一部が専用ハードウェア50aとして形成され、更にプロセッサ50bおよびメモリ50cを備えている場合の例を示している。
 一部が少なくとも1つの専用ハードウェア50aである処理回路には、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。
 処理回路が少なくとも1つのプロセッサ50bおよび少なくとも1つのメモリ50cを備える場合、制御装置50の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、メモリ50cに格納される。プロセッサ50bは、メモリ50cに記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 プロセッサ50bは、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータあるいはDSPともいう。メモリ50cには、例えば、RAM、ROM、フラッシュメモリー、EPROMおよびEEPROM等の不揮発性または揮発性の半導体メモリ、または磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクおよびDVD等が該当する。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御装置50の算出部52、流れ判定部53および制御部54の機能を実現することができる。
 貯湯式給湯機100の動作は、一例として、単一の制御装置50により制御される。貯湯式給湯機100は、制御手段となる複数の装置を備えていてもよい。貯湯式給湯機100の動作は、例えば、複数の連携した装置によって制御されてもよい。また、貯湯式給湯機100は、制御装置50の機能を実現するための処理回路を複数備えていてもよい。
 次に、本実施の形態の貯湯式給湯機100の動作について説明する。まず、貯湯式給湯機100の昇温運転について説明する。昇温運転とは、タンク11内の水の蓄熱量を増加させるための運転である。図4は、実施の形態1の貯湯式100の昇温運転を示す図である。図4中の太線は、昇温運転における水の流れを示している。
 制御装置50は、上述のようにタンク11内の水の蓄熱量を監視する。制御装置50は、例えばタンク11内の水の蓄熱量が予め設定された基準を下回ると、ヒートポンプユニット1および第2ポンプ15を動作させる。制御装置50は、例えば制御部54によってヒートポンプユニット1および第2ポンプ15を動作させる。これにより、昇温運転が開始する。なお、昇温運転が開始する時点は、本例に限られない。昇温運転は、例えば、昇温運転を開始させるための動作指令をリモートコントローラ51から制御装置50が受信することによって開始してもよい。
 昇温運転が開始すると、図4に示すように、タンク11の下部からヒートポンプユニット1へと低温の水が導かれる。ヒートポンプユニット1は、タンク11から導かれて低温の水を加熱する。ヒートポンプユニット1によって加熱された水は、ヒートポンプ出水配管19bを通過し、タンク11の上部へ流入する。
 図4に示す昇温運転が継続されることによって、タンク11内の水の蓄熱量が増加する。制御装置50は、例えばタンク11内の水の蓄熱量が予め設定された基準を上回ると、ヒートポンプユニット1および第2ポンプ15を停止させる。ヒートポンプユニット1および第2ポンプ15は、例えば、制御部54によって停止させられる。これにより、昇温運転が終了する。なお、昇温運転が終了する時点は、本例に限られない。昇温運転は、例えば、昇温運転を終了させるための動作指令をリモートコントローラ51から制御装置50が受信することによって終了してもよい。
 次に、本発明に特に関連する動作として、貯湯式給湯機100の高温水供給運転について説明する。高温水供給運転とは、使用者へ高温の水を供給するための運転である。図5は、実施の形態1の貯湯式給湯機100の高温水供給運転を示す図である。図5中の太線は、高温水供給運転における水の流れを示している。また、図6は、実施の形態1の貯湯式給湯機100の高温水供給運転を示すフローチャートである。
 まず、使用者は、リモートコントローラ51を操作して目標温度を設定する(ステップS1)。目標温度は、例えば、40℃である。リモートコントローラ51によって設定される目標温度は、例えば、制御装置50の制御部54に記憶される。
 使用者は、目標温度を設定した後、蛇口等の給湯端末を操作する。これにより、水源から給湯端末へ向けて水が流れる。使用者が給湯端末を操作すると、例えば、図5に示すように、給水配管18a、熱交換器12の二次側および高温水供給配管18bに水が流れる。すなわち、熱交換器12の二次側に流れが発生する(ステップS2)。
 給水配管18aに水が流れると、制御装置50の流れ判定部53は、例えば第1流量センサ30aの検出結果に基づき、熱交換器12の二次側に流れが有ると判定する。流れ判定部53によって熱交換器12の二次側に流れが有ると判定されると、制御部54は、第1ポンプ14を駆動させる(ステップS3)。これにより、図5に示す高温水供給運転が開始する。
 なお、高温水供給運転の開始時の貯湯式給湯機100の動作は、上記した例に限られない。例えば、制御装置50は、使用者による給湯端末の操作を検出する機能を有していてもよい。制御装置50は、給湯端末が操作されたと検出すると、第1ポンプ14を駆動させてもよい。給湯端末の操作の検出およびこの検出後の第1ポンプ14の制御は、例えば、制御部54によって行われる。
 ステップS3で第1ポンプ14が駆動すると、図5に示すように、第1接続口11aから第1入口13aへ向けて高温の水が流れる。また、熱交換器12の一次側の流出口から、第2入口13bおよび第2接続口11bへ向けて水が流れる。混合弁13内部では、第1入口13aから流入した水と第2入口13bから流入した水とが混合される。混合弁13内部で混合された水は、出口13cから熱交換器12の一次側の流入口へ流入する。
 高温水供給運転が行われている間、熱交換器12の一次側には、上記のように水が流れる。熱交換器12の一次側に流れ込む水は、第1接続口11aから取り出された高温の水と、熱交換器12の一次側から流れ出た水との混合物である。この混合物は、水源から給水配管18aを介して熱交換器12の二次側へと流れ込む低温の水よりも温度が高い。
 本実施の形態の高温水供給運転によれば、熱交換器12の二次側を流れる水は、熱交換器12の一次側を流れる水によって加熱される。熱交換器12の二次側を通過して加熱された水は、蛇口等の給湯端末を介して使用者へ供給される。本実施の形態によれば、使用者は、タンク11に貯められた高温の水によって加熱された水を得ることができる。
 また、貯湯式給湯機100は、混合手段の一例として、混合弁13および第5配管16eを備えている。これにより、高温水供給運転が行われる際、熱交換器12の一次側には、タンク11の上部から取り出された高温の水に熱交換器12の二次側を通過した水が混合されたものが供給される。
 熱交換器12の二次側を通過した水は、タンク11の上部に貯められた水よりも低温である。また、熱交換器12の二次側を通過した水は、熱交換器12の二次側を通過する前の水、すなわち第1配管16aを流れる水よりも低温である。このため、高温水供給運転の際、熱交換器12の一次側に過度に高温な水が供給されることがない。本実施の形態の貯湯式給湯機100は、高温の水によって熱媒体を加熱するための熱交換器12内でのスケールの析出を抑制することができる。これにより、熱交換器12は、より長期間の使用が可能となる。
 また、制御手段の一例である制御部54は、高温水供給運転の間、設定された目標温度に応じて、第1ポンプ14及び混合弁13を制御する(ステップS4)。制御部54は、例えば、予め設定されたプログラム等に基づき、給湯端末から目標温度の水が供給されるように、第1ポンプ14及び混合弁13を制御する。
 ステップS4において、制御部54は、一例として、第2サーミスタ20bによって検出される温度が目標温度になるように、第1ポンプ14及び混合弁13を制御する。例えば、制御部54は、第2サーミスタ20bによって検出される温度が目標温度に一致するように、第1ポンプ14及び混合弁13を制御する。なお、制御部54は、第2サーミスタ20bによって検出される温度が目標温度から一定の誤差範囲内に収まるように、第1ポンプ14及び混合弁13を制御してもよい。誤差範囲は、例えば、プラスマイナス3℃程度である。本実施の形態によれば、第1ポンプ14及び混合弁13がより適切に動作する。
 制御部54は、例えば、第2サーミスタ20bによって検出される温度が目標温度になるように、混合弁13に上述した混合比率を調節させる。これにより、使用者は、より確実に目標温度の水を得ることができる。
 制御部54は、給湯端末から使用者へ供給される水の温度が、当該給湯端末が操作されてからより速く目標温度に達するように、混合弁13及び第1ポンプ14を制御してもよい。制御部54は、ステップS4の開始直後は、より大流量の水が上述した熱源回路を流れるように第1ポンプ14を制御してもよい。制御部54は、ステップS4の開始直後は、上述した混合比率がより大きくなるように、混合弁13を制御してもよい。
 制御部54は、ステップS4において、第2サーミスタ20bによって検出された温度が目標温度未満である場合、混合弁13で、タンク11の上部の水の混合比率を増加させてもよい。これにより、使用者は、給湯端末を操作してからより速く目標温度の水を得ることができる。制御部54は、例えば、混合弁13に、第2サーミスタ20bによって検出された温度が目標温度に達するまで混合比率を増加させる。そして、制御部54は、混合弁13に、第2サーミスタ20bによって検出された温度が目標温度で維持されるように混合比率を調整させてもよい。これにより、目標温度に比べて高温の水が使用者に提供されてしまうことが防止される。
 また、制御部54は、混合弁13に、第3サーミスタ20cによって検出される温度が目標温度以上になるように混合比率を調整させてもよい。これにより、使用者は、給湯端末を操作してからより速く目標温度の水を得ることができる。
 また、本実施の形態の制御部54は、ステップS4において、熱源回路を流れる水の流量が目標流量になるように第1ポンプ14を制御してもよい。目標流量は、例えば、高温水供給運転に適切な流量として予め設定される。制御部54は、第2流量センサ30bによって検出される流量がこの目標流量になるように第1ポンプ14を制御してもよい。これにより、熱交換器には目標流量の水がより確実に循環する。
 この目標流量は、例えば、第1流量センサ30aによって検出される流量であってもよい。すなわち、制御部54は、熱源回路を流れる流量が第1流量センサ30aによって検出された流量になるように第1ポンプ14を制御してもよい。これにより、例えば、制御部54が各機器を制御するために必要なプログラムの構築がより容易になる。
 また、目標流量は、例えば、第1流量センサ30aによって検出される流量よりも大きくてもよい。すなわち、制御部54は、熱源回路を流れる流量が第1流量センサ30aによって検出された流量よりも大きくなるように第1ポンプ14を制御してもよい。これにより、使用者は、給湯端末を操作してからより速く目標温度の水を得ることができる。
 また、本実施の形態の制御装置50の算出部52は、第1サーミスタ20aが検出した温度と第4サーミスタ20dが検出した温度とに応じて、適切な混合比率を算出してもよい。制御部54は、混合比率が算出部52によって算出された値に混合弁13を制御してもよい。
 制御部54は、例えば、以下の式(1)に基づいて、混合比率の算出をする。
 (1)F1:F2=(T1-T2):(T3-T1)
 式(1)において、F1は、第1入口へ流入する水の流量である。F2は第2流入口へ流入する水の流量である。T1は目標混合温度である。目標混合温度は、予め設定される。制御部54は、例えば第3サーミスタ20cによって検出される温度が目標混合温度になるように、混合弁13を制御する。T2は、第4サーミスタ20dによって検出される温度である。T3は、第1サーミスタ20aによって検出される温度である。
 目標混合温度T1は、例えば、上述した目標温度より5℃高く設定される。例えば、目標温度が40℃、T1が45℃、T2が20℃、T3が40℃のとき、F1:F2は=5:3として算出される。
 使用者は、必要な高温の水を得た後、蛇口等の給湯端末を操作する。これにより、熱交換器12の二次側の流れが止まる(ステップS5)。すなわち、給水配管18a内の流量がゼロになる。流れ判定部53は、第1流量センサ30aの検出結果に基づいて、熱交換器12の二次側に熱媒体が流れていないと判定する。熱交換器12の二次側に熱媒体が流れていないと流れ判定部53によって判定されると、制御部54は、第1ポンプ14を停止させる(ステップS6)。これにより、高温水供給運転が終了する。
 また、図6に示すように、制御部54は、ステップS6の後、第1入口13aへ水が流入しないように混合弁13を制御してもよい(ステップS7)。これにより、タンク11に貯められた水が対流によって熱交換器12の一次側へ供給されてしまうことが防止される。このステップS7は、ステップS6の前に実施されてもよい。またステップS7は、ステップS6と同時に実施されてもよい。ステップS7は、ステップS6の直後に実施されてもよい。
 ステップS7は、ステップS6が実施されてから一定時間経過後に実施されてもよい。すなわち、制御部54は、第1ポンプ14を駆動させてから当該第1ポンプ14を停止させると、一定時間経過後、第1接続口11aから第1入口13aへ水が流入しないように混合弁13を制御してもよい。一定時間は、例えば3分から5分の間の時間である。本例であれば、例えば高温水供給運転の開始と停止が連続的に繰り返された場合における混合弁13の動作回数が削減される。これにより、混合弁13の寿命がより長くなる。また、高温水供給運転が停止後にすぐ再開した場合、使用者は、より速く目標温度の水を得ることができる。
 上述したように、本発明は、上記の実施の形態に限定されるものではない。図7は、実施の形態1の変形例を示す図である。例えば、貯湯式給湯機100に備えられた熱交換器12の二次側は、暖房機器60に接続されていてもよい。熱交換器12の二次側の流出口には、第1暖房配管61aが接続されてもよい。第1暖房配管61aの他端は、例えば、第1アダプタ62aを介して、第2暖房配管61bの一端に接続される。第2暖房配管61bの他端は、暖房機器60の流入口に接続される。
 暖房機器60の流出口には、第3暖房配管61cの一端が接続される。第3暖房配管61cの他端は、第2アダプタ62bを介して、第4暖房配管61dの一端に接続される。第4暖房配管61dの他端は、熱交換器12の二次側の流入口に接続される。本変形例において、第1暖房配管61a、第2暖房配管61b、第3暖房配管61cおよび第4暖房配管61dには、暖房機器60内を流れる熱媒体が循環する。このように、本発明は、高温の水によって熱媒体を加熱する各種の装置に利用することができる。
 この発明は、例えば、高温の水を貯め、当該水によって熱媒体を加熱する貯湯式給湯機に利用できる。
 1 ヒートポンプユニット、 2 圧縮機、 3 ヒートポンプ熱交換器、 4 膨張弁、 5 空気熱交換器、 6 熱媒体循環配管、 10 タンクユニット、 11 タンク、 11a 第1接続口、 11b 第2接続口、 11c 第3接続口、 11d 第4接続口、 12 熱交換器、 13 混合弁、 13a 第1入口、 13b 第2入口、 13c 出口、 14 第1ポンプ、 15 第2ポンプ、 16a 第1配管、 16b 第2配管、 16c 第3配管、 16d 第4配管、 16e 第5配管、 17 配管接続部、 18a 給水配管、 18b 高温水供給配管、 19a ヒートポンプ入水配管、 19b ヒートポンプ出水配管、 20a 第1サーミスタ、 20b 第2サーミスタ、 20c 第3サーミスタ、 20d 第4サーミスタ、 30a 第1流量センサ、 30b 第2流量センサ、 50 制御装置、 50a 専用ハードウェア、 50b プロセッサ、 50c メモリ、 51 リモートコントローラ、 52 算出部、 53 流れ判定部、 54 制御部、 60 暖房機器、 61a 第1暖房配管、 61b 第2暖房配管、 61c 第3暖房配管、 61d 第4暖房配管、 62a 第1アダプタ、 62b 第2アダプタ、 100 貯湯式給湯機

Claims (12)

  1.  水を加熱する加熱手段と、
     前記加熱手段によって加熱された水が貯められるタンクと、
     一次側を流れる水によって二次側を流れる熱媒体を加熱する熱交換器と、
     前記タンクに貯められた水を、前記タンクに形成された取出し口から取り出し、前記一次側を経由させて前記タンクに形成された戻し口から前記タンクへ戻すためのポンプと、
     前記ポンプを制御する制御手段と、
     前記取出し口から取り出された水に前記一次側の流出口から流出した水を混合させて前記一次側の流入口へ流入させるための混合手段と、
     を備える貯湯式給湯機。
  2.  前記混合手段には、前記取出し口に通じる第1入口と前記一次側の前記流出口に通じる第2入口と前記一次側の前記流入口に通じる出口とを有する混合装置が含まれ、
     前記混合装置は、前記一次側の前記流出口から前記第2入口へ流入する水の流量に対する前記取出し口から前記第1入口へ流入する水の流量の比率を調節可能であり、
     前記制御手段は、前記ポンプ及び前記混合装置を制御する請求項1に記載の貯湯式給湯機。
  3.  目標温度を設定する設定手段を備え、
     前記制御手段は、前記設定手段によって設定された前記目標温度に応じて前記ポンプ及び前記混合装置を制御する請求項2に記載の貯湯式給湯機。
  4.  前記二次側から流出した熱媒体の温度を検出する供給温度検出部を備え、
     前記制御手段は、前記供給温度検出部によって検出される温度が前記目標温度になるように前記ポンプ及び前記混合装置を制御する請求項3に記載の貯湯式給湯機。
  5.  前記制御手段は、前記混合装置に、前記供給温度検出部によって検出される温度が前記目標温度になるように前記比率を調節させる請求項4に記載の貯湯式給湯機。
  6.  前記制御手段は、前記供給温度検出部によって検出された温度が前記目標温度未満である場合、前記混合装置に、前記比率を増加させる請求項5に記載の貯湯式給湯機。
  7.  前記制御手段は、前記供給温度検出部によって検出された温度が前記目標温度未満である場合、前記混合装置に、前記供給温度検出部によって検出される温度が前記目標温度に達するまで前記比率を増加させた後、前記供給温度検出部によって検出される温度が前記目標温度に維持されるように前記比率を調節させる請求項6に記載の貯湯式給湯機。
  8.  前記混合装置の前記出口から前記一次側の前記流入口へ向けて流れる水の温度を検出する混合温度検出部を備え、
     前記制御手段は、前記混合装置に、前記混合温度検出部によって検出される温度が前記目標温度以上になるように前記比率を調節させる請求項2から請求項7の何れか1項に記載の貯湯式給湯機。
  9.  前記二次側に熱媒体が流れているか否かを判定する判定手段を備え、
     前記制御手段は、前記判定手段によって前記二次側に熱媒体が流れていないと判定されると、前記取出し口から前記混合装置の前記第1入口へ水が流入しないように前記混合装置を制御する請求項2から請求項8の何れか1項に記載の貯湯式給湯機。
  10.  前記制御手段は、前記ポンプを駆動させてから前記ポンプを停止させると、一定時間経過後、前記取出し口から前記混合装置の前記第1入口へ水が流入しないように前記混合装置を制御する請求項2から請求項8の何れか1項に記載の貯湯式給湯機。
  11.  前記二次側を流れる熱媒体の流量を検出する流量検出部を備え、
     前記制御手段は、前記一次側を流れる流量が前記流量検出部によって検出された流量になるように前記ポンプを制御する請求項1から請求項10の何れか1項に記載の貯湯式給湯機。
  12.  前記二次側を流れる熱媒体の流量を検出する流量検出部を備え、
     前記制御手段は、前記一次側を流れる流量が前記流量検出部によって検出された流量よりも大きくなるように前記ポンプを制御する請求項1から請求項10の何れか1項に記載の貯湯式給湯機。
PCT/JP2016/088512 2016-12-22 2016-12-22 貯湯式給湯機 WO2018116466A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088512 WO2018116466A1 (ja) 2016-12-22 2016-12-22 貯湯式給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088512 WO2018116466A1 (ja) 2016-12-22 2016-12-22 貯湯式給湯機

Publications (1)

Publication Number Publication Date
WO2018116466A1 true WO2018116466A1 (ja) 2018-06-28

Family

ID=62627165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088512 WO2018116466A1 (ja) 2016-12-22 2016-12-22 貯湯式給湯機

Country Status (1)

Country Link
WO (1) WO2018116466A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737350B (zh) * 2020-06-15 2021-08-21 台灣櫻花股份有限公司 電熱水器無水流開關恆溫混水閥控制系統及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194347A (ja) * 2001-12-26 2003-07-09 Denso Corp 多機能給湯装置
JP2005345075A (ja) * 2004-06-07 2005-12-15 Mitsubishi Electric Corp 貯湯式給湯器
JP2006010134A (ja) * 2004-06-23 2006-01-12 Mitsubishi Electric Corp 多機能給湯装置
JP2010230289A (ja) * 2009-03-30 2010-10-14 Panasonic Corp 貯湯式給湯機
WO2010122759A1 (ja) * 2009-04-21 2010-10-28 パナソニック株式会社 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
JP2011080682A (ja) * 2009-10-07 2011-04-21 Panasonic Corp 貯湯式給湯機
JP2012247175A (ja) * 2011-05-31 2012-12-13 Panasonic Corp ヒートポンプ式温水暖房装置
JP2014062719A (ja) * 2012-09-24 2014-04-10 Corona Corp 貯湯式給湯機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194347A (ja) * 2001-12-26 2003-07-09 Denso Corp 多機能給湯装置
JP2005345075A (ja) * 2004-06-07 2005-12-15 Mitsubishi Electric Corp 貯湯式給湯器
JP2006010134A (ja) * 2004-06-23 2006-01-12 Mitsubishi Electric Corp 多機能給湯装置
JP2010230289A (ja) * 2009-03-30 2010-10-14 Panasonic Corp 貯湯式給湯機
WO2010122759A1 (ja) * 2009-04-21 2010-10-28 パナソニック株式会社 貯湯式給湯装置、給湯暖房装置、運転制御装置、運転制御方法及びプログラム
JP2011080682A (ja) * 2009-10-07 2011-04-21 Panasonic Corp 貯湯式給湯機
JP2012247175A (ja) * 2011-05-31 2012-12-13 Panasonic Corp ヒートポンプ式温水暖房装置
JP2014062719A (ja) * 2012-09-24 2014-04-10 Corona Corp 貯湯式給湯機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737350B (zh) * 2020-06-15 2021-08-21 台灣櫻花股份有限公司 電熱水器無水流開關恆溫混水閥控制系統及方法

Similar Documents

Publication Publication Date Title
JP6092815B2 (ja) 給湯装置
JP5882120B2 (ja) 貯湯式給湯装置
JP5170219B2 (ja) 給湯機の異常検出装置
JP6172392B2 (ja) ヒートポンプ装置
JP5705332B2 (ja) 瞬間湯沸器
JP5946685B2 (ja) 給湯システム
WO2018116466A1 (ja) 貯湯式給湯機
JP4539692B2 (ja) 貯湯式給湯機
JP5980176B2 (ja) 即時給湯システム
JP5379083B2 (ja) 給湯システム
JP5816226B2 (ja) 貯湯式給湯装置
JP6045108B2 (ja) 一缶二水路燃焼装置
JP2016188750A (ja) 給湯システム
JP2011149605A (ja) 給湯機
JP4656106B2 (ja) 貯湯式給湯機
JP2021032487A (ja) 給湯装置
JP6217867B2 (ja) 流体循環システム
JP2013040563A (ja) ポンプ駆動制御装置
JP2019060536A (ja) 温水装置
JP2011163632A (ja) 貯湯式給湯装置
JP6836478B2 (ja) 風呂給湯装置
JP6183562B2 (ja) 流体循環システム
JP6604510B2 (ja) ヒートポンプ給湯装置
JP6429581B2 (ja) 風呂装置及びその制御方法
JP5394316B2 (ja) 貯湯式給湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP