WO2010117060A1 - 二次電池用集電体及びこれを用いた二次電池 - Google Patents

二次電池用集電体及びこれを用いた二次電池 Download PDF

Info

Publication number
WO2010117060A1
WO2010117060A1 PCT/JP2010/056452 JP2010056452W WO2010117060A1 WO 2010117060 A1 WO2010117060 A1 WO 2010117060A1 JP 2010056452 W JP2010056452 W JP 2010056452W WO 2010117060 A1 WO2010117060 A1 WO 2010117060A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
current collector
secondary battery
particles
ion
Prior art date
Application number
PCT/JP2010/056452
Other languages
English (en)
French (fr)
Inventor
千鶴 松山
康行 田中
本田 崇
井深 重夫
新田 芳明
聡 市川
加世田 学
智也 久保田
治之 齊藤
敬介 島本
加奈 佐藤
行成 加藤
堀江 英明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/263,241 priority Critical patent/US10193159B2/en
Priority to MX2011010546A priority patent/MX2011010546A/es
Priority to BRPI1014577-0A priority patent/BRPI1014577B1/pt
Priority to RU2011145292/07A priority patent/RU2482573C1/ru
Priority to KR1020137031070A priority patent/KR101611017B1/ko
Priority to JP2011508399A priority patent/JP5488590B2/ja
Priority to CN201080015740.2A priority patent/CN102388491B/zh
Priority to EP10761759.9A priority patent/EP2418720B1/en
Publication of WO2010117060A1 publication Critical patent/WO2010117060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a current collector for a secondary battery and a secondary battery using the current collector.
  • the present invention uses a current collector for a secondary battery that can effectively suppress ion permeability and secures lightness in a current collector including a resin layer having conductivity.
  • the present invention relates to a secondary battery.
  • hybrid vehicles HEV
  • electric vehicles EV
  • fuel cell vehicles have been developed from the viewpoint of environment and fuel consumption.
  • a power supply device capable of discharging and charging.
  • a secondary battery such as a lithium ion battery or a nickel metal hydride battery, an electric double layer capacitor, or the like is used.
  • lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charging and discharging, and various developments are being made.
  • connection portion causes a reduction in the output density and energy density of the battery.
  • bipolar secondary batteries such as bipolar lithium ion secondary batteries have been developed.
  • a bipolar secondary battery has a structure in which a plurality of bipolar electrodes, each having a positive electrode active material layer formed on one side of a current collector and a negative electrode active material layer formed on the other side, are stacked via an electrolyte layer or a separator.
  • Patent Document 1 discloses a current collector in which metal particles or carbon particles are mixed as a conductive material in a polymer material and further includes a conductive resin.
  • the current collector as described in Patent Document 1 has a lower barrier property to lithium ions in the electrolyte than the metal foil current collector. For this reason, when applied to a bipolar lithium ion secondary battery, lithium ions may penetrate into the current collector of the bipolar electrode and the lithium ions may remain occluded inside the current collector. It was. Since the occluded lithium ions are not easily released, the capacity of the battery may be reduced.
  • the present invention has been made in view of such problems of the conventional technology. And the objective is to provide the means which can suppress occlusion of the ion in the inside of a collector in the collector for secondary batteries containing the resin layer which has electroconductivity.
  • a current collector for a secondary battery includes a conductive resin layer and an ion blocking layer disposed on the surface of the resin layer.
  • the ion blocking layer includes ion trapping particles in which a metal compound is present on the surface of the metal-containing particles. Further, the ion trapping particles are continuously present from the interface between the resin layer and the ion blocking layer toward the surface of the ion blocking layer.
  • FIG. 1A is a schematic cross-sectional view showing an example of a current collector according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-section showing another example of a current collector according to an embodiment of the present invention.
  • FIG. FIG. 2A is an X-ray photoelectron spectrum of titanium atoms before application of voltage in titanium nitride
  • FIG. 2B is an X-ray photoelectron spectrum of titanium atoms after application of voltage in titanium nitride.
  • FIG. 3 is a schematic cross-sectional view of a bipolar electrode including a current collector, a positive electrode, and a negative electrode according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view schematically showing the entire structure of the bipolar lithium ion secondary battery.
  • FIG. 5 is a perspective view showing the appearance of a bipolar lithium ion secondary battery.
  • FIG. 6 is a graph showing the relationship between the number of cycles and the capacity retention rate of the batteries of Examples III-1, III-2, III-3 and III-5 and batteries using only the resin layer as a current collector.
  • FIG. 7 is a graph showing the relationship between the capacity retention ratio and the thickness of the ion blocking layer in Example IV.
  • FIG. 8 is a graph showing the relationship between the relative temperature and time of the batteries of Examples V-1, V-2, V-3 and Comparative Example V-1 and the battery using only the resin layer as a current collector.
  • FIG. 9 is a perspective view showing the configuration of the assembled battery in Example V.
  • FIG. 9 is a perspective view showing the configuration of the assembled battery in Example V.
  • a current collector 1 for a secondary battery includes a resin layer 2 having conductivity, and an ion blocking layer 3 disposed on the surface of the resin layer 2.
  • the ion blocking layer 3 includes ion trapping particles 6 in which the metal compound 5 is present on the surface of the metal-containing particles 4. Further, the ion trapping particles 6 are continuously present from the interface 7 between the resin layer 2 and the ion blocking layer 3 toward the surface 3 a of the ion blocking layer 3.
  • the ion blocking layer 3 includes a plurality of ion trapping particles 6.
  • the ion trapping particles 6 are continuously bonded from the interface 7 formed by the contact between the resin layer 2 and the ion blocking layer 3 to the surface 3 a on the opposite side of the interface 7.
  • the surface 3 a opposite to the interface 7 is in contact with the electrode (positive electrode or negative electrode) 8. Thereby, a conductive path is formed from the interface 7 to the surface 3a, and conductivity is ensured from the electrode 8 to the resin layer 2.
  • the ion trapping particles 6 in the ion blocking layer 3 suppress the intrusion of ions (for example, lithium ions) moving between the positive electrode and the negative electrode through the electrolyte layer into the resin layer 2. Therefore, by providing the ion blocking layer 3, occlusion of ions inside the current collector 1 is suppressed.
  • ions for example, lithium ions
  • the ion-trapping particles 6 constituting the ion blocking layer 3 have metal-containing particles 4 at the center of the particles, and the metal compound 5 is present on the surface of the metal-containing particles 4. Since the metal compound 5 interacts with lithium ions and can adsorb lithium ions during charging, the lithium ions that have entered the ion blocking layer 3 from the electrode 8 are unlikely to reach the resin layer 2. Furthermore, the metal compound 5 has a strong ionization tendency during discharge and desorbs lithium ions. As described above, the metal compound 5 reversibly adsorbs and desorbs ions, and the ions involved in the battery reaction are not substantially reduced, so that the discharge capacity can be maintained.
  • the electric resistance of the metal compound 5 in the ion trapping particles 6 is larger than that of pure metal, the electric resistance in the surface direction of the current collector (X direction in FIG. 1) is increased. Therefore, even when an internal short circuit occurs, it is possible to prevent current from concentrating on the short circuit part along the surface direction of the current collector, and to suppress an increase in temperature inside the battery.
  • the thickness of the ion blocking layer 3 is preferably 50 nm to 1000 nm, even if the electrical resistance of the metal compound 5 is larger than that of pure metal, the conductivity in the Y direction is ensured. Battery performance is hardly affected. As described above, in the ion blocking layer 3, current flows in the Y direction at the time of charge / discharge, but hardly flows in the surface direction, so that both conductivity and safety at the time of short circuit can be achieved.
  • the ion blocking layer 3 includes the ion trapping particles 6 in which the metal compound 5 exists on the surface of the metal-containing particles 4.
  • Such an ion blocking layer 3 may be deposited so as to cover the entire surface of the resin layer 2, or may be configured to cover a part of the surface of the resin layer 2. Moreover, it may be arrange
  • the metal compound 5 needs to be present on at least a part of the surface of the metal-containing particle 4, but from the viewpoint of securing the electric resistance in the surface direction of the ion blocking layer 3, the entire surface of the metal-containing particle 4 is covered. It is preferable to cover.
  • the metal-containing particles 4 inside the ion trapping particles 6 may be pure metal particles made of a single metal element, alloy particles made of a plurality of metal elements, or metal compound particles made of a metal element and a non-metal element. preferable.
  • the metal-containing particles contain at least one metal element selected from the group consisting of copper (Cu), nickel (Ni), titanium (Ti), chromium (Cr), platinum (Pt), and gold (Au). It is preferable.
  • the metal-containing particles 4 can be pure metal particles made of at least one metal element selected from the group consisting of copper, nickel, titanium, chromium, platinum and gold, or alloy particles made of these metal elements. Further, the metal-containing particles 4 may be metal compound particles composed of these metal particles and a nonmetallic element. Such a metal element has high potential stability even under a low potential of about several tens of mV when a carbon-based material is used for the negative electrode active material. Therefore, the elution of the metal in the ion blocking layer 3 is suppressed, so that the exposure of the resin layer 2 can be prevented. As a result, lithium ions can be prevented from entering the resin and deterioration of the battery can be suppressed.
  • the metal compound particles include at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfates, metal phosphates, and metal phosphorus compounds. It is preferable to contain. Specifically, the metal compound particles include at least one metal element oxide, nitride, carbide, sulfate, phosphate, and phosphorus compound selected from the group consisting of copper, nickel, titanium, chromium, platinum, and gold. Can be used.
  • the metal compound 5 a compound that adsorbs lithium ions during charging and desorbs lithium ions during discharging is used. Therefore, the metal compound 5 preferably contains at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfates, metal phosphates, and metal phosphorus compounds. Specifically, the metal compound 5 is an oxide, nitride, carbide, sulfate, phosphate, and phosphorus compound of at least one metal element selected from the group consisting of copper, nickel, titanium, chromium, platinum, and gold. Can be used.
  • a metal oxide as the metal compound 5.
  • the metal-containing particles 4 are particles made of any one of copper, titanium and chromium, and the metal compound 5 is made of an oxide of a metal element constituting the metal-containing particles 4.
  • the metal-containing particles 4 are preferably copper (Cu), and the metal compound 5 is preferably copper oxide (cuprous oxide (Cu 2 O), cupric oxide (CuO)).
  • the cuprous oxide (Cu 2 O) in the sub-nanometer oxide layer (metal compound 5) present on the surface layer of the copper particles as the metal-containing particles 4 interacts with lithium ions to form a stable intermediate layer. Thus, it is considered that lithium ions hardly reach the resin layer 2.
  • the metal-containing particles 4 are preferably titanium (Ti) and the metal compound 5 is preferably titanium oxide (TiO 2 ).
  • the 2p orbit of oxygen atoms in titanium oxide is an empty orbit, or there are unpaired electrons having a negative charge. Therefore, it is considered that vacancies and unpaired electrons attract lithium ions, and the lithium ions are stabilized in the metal compound 5.
  • lithium titanate (LiTiO 2 , Li 4 Ti 5 O 12 ) which can also serve as a negative electrode material, titanium oxide has good stability with lithium. For this reason, it is thought that titanium oxide and lithium ions existing on the outermost surface form a composite compound and prevent the resin layer 2 from reaching.
  • the metal-containing particle 4 is chromium (Cr) and the metal compound 5 is chromium oxide (Cr 2 O 3 ).
  • Cr chromium oxide
  • chromium oxide it is considered that the above copper oxide and titanium oxide adsorb lithium ions by the same mechanism.
  • the metal-containing particles 4 may be metal compound particles, and the metal compound particles and the metal compound 5 in the ion trapping particles 6 may be formed from the same material. That is, the entire ion trapping particle 6 may be formed of the metal oxide, metal nitride, metal carbide, metal sulfate, metal phosphate, and metal phosphorus compound. Even such ion trapping particles 6 can exhibit lithium ion adsorption ability on the surface of the particles. Moreover, even if the entire metal-containing particles are the above-described metal oxide or metal nitride, the conductivity in the stacking direction is ensured because the ion blocking layer 3 is extremely thin. As a result, the battery performance is hardly affected.
  • Examples of the ion trapping particles 6 in which the entire metal-containing particle is a metal compound include copper oxide (Cu 2 O), titanium oxide (TiO 2 ), and chromium oxide (Cr 2 O 3 ) particles. it can. Also, copper nitride (Cu 3 N), it may also be mentioned particles of titanium nitride (TiN) and chromium nitride (CrN). Furthermore, particles of copper phosphide (Cu 3 P), titanium phosphide (TiP) and chromium phosphide (CrP) can also be used. Also preferred are particles of nickel oxide (NiO), nickel nitride (NiN) and nickel phosphide (Ni 3 P etc.).
  • the metal compound 5 in the ion trapping particles 6 is preferably a compound that can have a mixed valence. That is, the metal compound 5 is preferably a compound containing two or more of the same kind of elements having different valences. Such a compound capable of having a mixed valence changes to an insulator when the inside of the battery generates heat at a rate of, for example, 10 to 100 ° C./second. By having such a function of changing to an insulator, it is possible to increase the electrical resistance of the ion blocking layer 3 during heat generation and suppress the generation of Joule heat.
  • titanium nitride usually has a mixed valence with a non-stoichiometric composition represented by TiNx.
  • TiNx a non-stoichiometric composition represented by TiNx.
  • FIG. 2A shows an X-ray photoelectron spectrum (XPS) and a spectrum after waveform separation of titanium atoms before applying a voltage in titanium nitride
  • FIG. 2B shows a spectrum after applying the voltage in titanium nitride.
  • the X-ray photoelectron spectrum of the titanium atom and the spectrum after waveform separation are shown.
  • TiNx titanium nitride
  • titanium is usually bivalent, trivalent and tetravalent on the outermost surface.
  • an ion blocking layer made of titanium nitride is present on the negative electrode side and exposed to a reduced state during charging, as shown in FIG. Change to trivalent.
  • titanium is tetravalent when both denitrification reaction and oxidation reaction are involved.
  • This tetravalent titanium is converted into an insulator titanium oxide (TiO 2 ) and stabilized by oxygen in the atmosphere and oxygen released from the positive electrode active material.
  • At least the metal compound 5 is preferably formed from a compound that can have a mixed valence, but the entire ion trapping particle 6 may be formed from a compound that can have a mixed valence.
  • the compound having such a mixed valence include 3d transition metal or 4d transition metal nitride.
  • 3d transition metals include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) And zinc (Zn).
  • Examples of 4d transition metals include yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), ruthenium (Ru), palladium (Pd), silver (Ag), and cadmium ( Cd).
  • Y yttrium
  • Zr zirconium
  • Nb molybdenum
  • Mo molybdenum
  • Tc technetium
  • Ru ruthenium
  • Pd palladium
  • silver silver
  • Cd transition metals examples include yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), ruthenium (Ru), palladium (Pd), silver (Ag), and cadmium ( Cd).
  • the ion blocking layer 3 may include a plurality of different types of layers.
  • the ion blocking layer 3 includes a layer made of first ion-trapping particles in which a metal compound composed of a metal element and a non-metal element is present on the surface of the metal-containing particle, and a mixed atom on the surface of the metal-containing particle.
  • a laminated structure with a layer composed of second ion trapping particles in which a compound capable of taking a valence exists may be used.
  • the ion blocking layer 3A in the current collector 1A is a layer composed of the first ion trapping particles 6A in which a compound capable of taking a mixed valence exists on the surface of the metal-containing particles. .
  • the ion blocking layer 3B is a layer composed of second ion trapping particles 6B in which a metal compound composed of a metal element and a nonmetal element exists on the surface of the metal-containing particle.
  • a plurality of different types of layers may be stacked.
  • the ion trapping particles 6 can take any shape.
  • the particle diameter of the ion trapping particles is not particularly limited, but the primary particle diameter is preferably 0.1 to 500 nm, more preferably 0.1 to 200 nm, and further preferably 0.1 to 50 nm. preferable.
  • the primary particle diameter of the ion trapping particles 6 is 0.1 nm or more, the particles 6 can be easily arranged on the resin layer 2. Moreover, if the primary particle diameter of the particle 6 is 500 nm or less, a sufficient specific surface area is obtained, and the effect of adsorbing lithium ions is enhanced. Furthermore, since it becomes difficult for electrolyte solution to penetrate
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the ion blocking layer is made of a conductive material containing a nonmetallic element having a property of suppressing the permeation of the above-described ions or solvent. Since the conductive material containing a nonmetallic element has a lower density than a material made of only metal, the light weight of the current collector can be ensured.
  • the nonmetallic element contained in the conductive material is preferably 5 atomic% or more, more preferably 50 atomic% or more from the viewpoint of weight reduction.
  • the conductive material used in the ion blocking layer of the present embodiment includes a nonmetallic element, and thus has a larger volume resistivity than a conductive material made of only metal.
  • the volume resistivity of the ion blocking layer is preferably 7.2 ⁇ 10 ⁇ 5 to 10 ⁇ ⁇ cm, more preferably 1 ⁇ 10 ⁇ 4 to 5 ⁇ ⁇ cm, and 1 ⁇ 10 ⁇ 3 to 1 ⁇ ⁇ cm. More preferably it is.
  • the thickness of the ion blocking layer 3 is preferably 50 nm to 1000 nm. In addition, when a plurality of ion blocking layers are provided as shown in FIG. 1B, the total thickness of the ion blocking layers is preferably 50 nm to 1000 nm. As described above, since the ion blocking layer contains a metal compound made of metal oxide or metal nitride having ion adsorption / release capability, ions can penetrate even if the thickness is about 50 nm to 1000 nm. Can be suppressed.
  • the thickness of the ion blocking layer 3 is preferably 50 nm to 200 nm, particularly preferably 50 nm to 100 nm. In addition, the thickness of the said ion interruption
  • FIG. 3 shows the above-described current collector 1 for a secondary battery, the positive electrode active material layer (positive electrode) 13 formed on one surface of the current collector, and the other surface of the current collector.
  • 2 is a schematic cross-sectional view of a bipolar electrode 23 including a negative electrode active material layer (negative electrode) 15.
  • FIG. 3 in the current collector 1, the ion blocking layer 3 is preferably formed on the entire surface of the resin layer 2 on the side in contact with the negative electrode active material layer 15. Lithium ions in the electrolytic solution enter the resin layer 2 mainly from the joint surface between the negative electrode active material layer 15 and the resin layer 2. Therefore, if the ion blocking layer 3 is formed on the negative electrode active material layer 15 side as shown in FIG. 3, the effect of preventing intrusion of lithium ions in the electrolytic solution is enhanced, and the capacity retention rate of the battery is improved.
  • the resin layer 2 is a layer containing a polymer material as a main component, and contributes to reducing the weight of the current collector as well as having a function as an electron transfer medium.
  • a resin layer having conductivity for example, a method of using a conductive polymer or adding a conductive material can be used.
  • the conductive material may be used as necessary.
  • the resin used for the resin layer is not particularly limited, and a conventionally known non-conductive polymer or conductive polymer can be used.
  • Preferred non-conductive polymers include polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE)), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyether nitrile ( PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl Examples include methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS), silicon resin, cellulose, and epoxy resin.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polyethylene
  • Such a non-conductive polymer has excellent potential resistance or solvent resistance.
  • Preferred conductive polymers include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer has sufficient conductivity without adding a conductive material, it is advantageous from the viewpoint of facilitating the manufacturing process and reducing the weight of the current collector.
  • These non-conductive polymers and conductive polymers may be used alone or in a combination of two or more.
  • polyimide As the polymer material used for the resin layer, it is particularly preferable to use polyimide as the polymer material used for the resin layer. Since polyimide hardly occludes lithium ions, the effect appears more remarkably.
  • the resin layer may contain other polymer material in addition to polyimide.
  • other polymer materials include amide, amino group, thioamide, imide, imino group, ketone, ketene, isocyanate, acyl group, acetyl group, carboxyl group, carbonyl group, aldehyde group, acetal, hemiacetal, ester, A material containing a functional group such as thioester, phosphate ester, ether, enone, enol, acid anhydride, acid hydrazone, acid azide, and sulfonyl group is preferred. These functional groups are difficult to decompose when used as a current collector for a secondary battery.
  • polymer material having such a functional group and being stable with respect to the electrolytic solution, potential, and lithium ion examples include polyamide (PA), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate ( PBT), modified polyphenylene ether (m-PPE, modified PPE, PPO), acrylic resin, polysulfone (PSF), polyether sulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyether ether Ketone (PEEK) etc. are mentioned.
  • PA polyamide
  • PAI polyamideimide
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • m-PPE modified polyphenylene ether
  • PES polysulfone
  • PAR polyether sulfone
  • LCP liquid crystal polymer
  • PEEK polyether ether Ketone
  • the resin layer includes a conductive material as necessary in order to ensure conductivity in the stacking direction.
  • the conductive material can be used without particular limitation as long as it is a substance having conductivity.
  • a metal and a carbon material are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the carbon material has a very wide potential window, is stable in a wide range with respect to both the positive electrode potential and the negative electrode potential, and has excellent conductivity.
  • the density is lower than that of a conductive material including a metal, the current collector can be reduced in weight, which is preferable.
  • the metal contained in the resin layer is not particularly limited, but nickel (Ni), titanium (Ti), aluminum (Al), platinum (Pt), gold (Au), iron (Fe), chromium (Cr), It is preferable to include at least one metal selected from the group consisting of tin (Sn), zinc (Zn), indium (In), antimony (Sb), and potassium (K), or an alloy or metal oxide containing these metals. . These metals are resistant to the potential of the positive electrode or the negative electrode formed on the current collector surface. Of these, Ni, Pt, Au and Cr are particularly preferable.
  • alloy contained in the resin layer include stainless steel (SUS), Inconel (registered trademark), Hastelloy (registered trademark), Fe—Cr alloy, Ni—Cr alloy, and the like. By using these alloys, high potential resistance can be obtained.
  • the carbon material contained in the resin layer is not particularly limited, but acetylene black, Vulcan (registered trademark), black pearl, carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon nano It is preferable to include at least one selected from the group consisting of balloons and fullerenes. Among these, it is more preferable to include at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, ketjen black, carbon nanoballoons, and fullerenes. Since these carbon materials have a hollow structure, the surface area per unit mass is large, and the current collector can be further reduced in weight. In addition, these electroconductive materials can be used individually by 1 type or in combination of 2 or more types.
  • the conductive material various sizes of materials can be used depending on the size and thickness of the resin layer and the shape of the conductive material.
  • the average particle diameter when the conductive material is granular is preferably about 0.1 ⁇ m to 10 ⁇ m from the viewpoint of facilitating molding of the resin layer.
  • the value of “average particle diameter” is the average of the particle diameters of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as a value is adopted.
  • the content of the polymer material contained in the resin layer is preferably at least 50% by mass, more preferably 75% by mass or more, based on the total mass of the resin layer. Moreover, when the polymer material contained in the resin layer is a conductive polymer, the resin layer may be formed only of the conductive polymer.
  • the content of the conductive material contained in the resin layer is not particularly limited, but is preferably 5 to 35% by mass, more preferably 5 to 25% by mass with respect to the total mass of the polymer material. Preferably, it is 5 to 15% by mass.
  • the shape of the conductive material is not particularly limited, and a shape such as a granular shape, a fiber shape, a plate shape, a lump shape, a cloth shape, and a mesh shape can be appropriately selected.
  • a shape such as a granular shape, a fiber shape, a plate shape, a lump shape, a cloth shape, and a mesh shape.
  • the resin layer may contain other additives in addition to the polymer material and the conductive material.
  • the thickness of the resin layer is not particularly limited, but is preferably 0.1 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 150 ⁇ m, and even more preferably 10 ⁇ m to 100 ⁇ m.
  • a current collector with high current collection efficiency can be obtained.
  • the thickness of the resin layer is 200 ⁇ m or less, a battery having a high battery capacity per unit volume can be obtained.
  • the method for disposing the ion trapping particles 6 on the conductive resin layer 2 is not particularly limited, and a conventional resin thin film or metal thin film forming technique can be appropriately combined.
  • a method of disposing the ion blocking layer 3 made of the ion trapping particles 6 on the surface of the resin layer 2 includes sputtering, electrolytic plating, vacuum deposition, CVD, PVD, ion beam deposition. Methods such as ion plating, atomic layer deposition, laser ablation, electroless plating, arc spraying, and unbalanced magnetron (UBM) can be used. If it is said method, the ion blocking layer 3 with high adhesiveness with the resin layer 2 can be produced.
  • the ion blocking layer having the above thickness can be efficiently produced.
  • the material constituting the metal compound 5 is used as the target material, the argon gas particles are collided with the target material, and the target component repelled by the impact is adhered onto the resin layer 2 to thereby form the ion blocking layer 3.
  • the target material an oxide, nitride, carbide, sulfate, phosphate, or phosphorus compound of at least one metal element selected from the group consisting of copper, nickel, titanium, chromium, platinum, and gold can be used.
  • the ion blocking layer 3 may be manufactured by a reactive sputtering method. That is, when the metal elements (copper, nickel, titanium, chromium, platinum and gold) constituting the metal compound 5 are sputtered, oxygen or nitrogen is flowed into the chamber, and ion trapping made of the metal oxide or nitride is performed. Particles may be produced.
  • a metal layer made of metal element particles constituting the metal compound 5 is formed on the resin layer by sputtering. Thereafter, the resin layer on which the metal layer is formed is left in an oxygen atmosphere (for example, in air). Thereby, the surface of a metal particle is oxidized and the metal containing particle 4 and the metal compound 5 can be formed. Furthermore, since the oxygen diffuses from the resin layer 2 by the water and oxygen adsorbed by the resin layer 2, the surface of the metal particles in the ion blocking layer 3 can be oxidized.
  • the thickness of the ion blocking layer 3 is preferably 50 nm to 1000 nm. This is because, even with this thickness, intrusion of ions can be suppressed, and the thickness within this range can oxidize the entire surface of the metal particles contained in the ion blocking layer. is there. Moreover, the metal oxide (metal compound) can be formed in the whole ion blocking layer 3 by making the thickness of the ion blocking layer 3 within this range and dare to arrange the metal particles sparsely. Therefore, the entire ion blocking layer 3 can be more oxidized by setting the thickness of the ion blocking layer 3 to 50 nm to 200 nm, preferably 50 nm to 100 nm. When the ion blocking layer is formed by sputtering using the material constituting the metal compound 5 as the target material as described above, the thickness of the ion blocking layer 3 is out of the above range. I do not care.
  • the current collector for a secondary battery according to the present invention is not particularly limited, such as a stacked (flat) battery or a wound (cylindrical) battery, and can be applied to any conventionally known battery.
  • the secondary battery electrolytes are distinguished.
  • it can be applied to any of a liquid electrolyte type battery in which a separator is impregnated with a non-aqueous electrolyte, a polymer gel electrolyte type battery also called a polymer battery, and a solid polymer electrolyte (all solid electrolyte) type battery.
  • the polymer gel electrolyte and the solid polymer electrolyte these can be used alone, or the polymer gel electrolyte or the solid polymer electrolyte can be used by impregnating the separator.
  • any known electrode material can be applied.
  • Examples include lithium ion secondary batteries, sodium ion secondary batteries, potassium ion secondary batteries, nickel metal hydride secondary batteries, nickel cadmium secondary batteries, nickel metal hydride batteries, and the like, preferably lithium ion secondary batteries. . This is because in the lithium ion secondary battery, the voltage of the cell (single cell layer) is large, high energy density and high output density can be achieved, and it is excellent as a vehicle driving power source or an auxiliary power source.
  • FIG. 4 is a schematic cross-sectional view schematically showing the entire structure of the bipolar lithium ion secondary battery 10.
  • the bipolar lithium ion secondary battery 10 shown in FIG. 4 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29.
  • the power generation element 21 of the bipolar lithium ion secondary battery 10 includes a current collector 1, a positive electrode active material layer 13 that is electrically coupled to one surface of the current collector 1, and a current collector.
  • a plurality of bipolar electrodes 23 including a negative electrode active material layer 15 electrically coupled to the other surface of the electric body 1 are provided.
  • Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21.
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material.
  • each bipolar electrode 23 and the electrolyte layer 17 are arranged such that the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of the other bipolar electrode 23 face each other through the electrolyte layer 17. They are stacked alternately. That is, the electrolyte layer 17 is disposed between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. ing.
  • the adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar lithium ion secondary battery 10 has a configuration in which the single battery layers 19 are stacked.
  • an insulating portion 31 is disposed on the outer peripheral portion of the unit cell layer 19.
  • the positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 1a located in the outermost layer of the power generation element 21.
  • the negative electrode active material layer 15 is formed only on one side of the negative electrode side outermost current collector 1b located in the outermost layer of the power generating element 21.
  • the positive electrode active material layer 13 may be formed on both surfaces of the outermost layer current collector 1a on the positive electrode side.
  • the negative electrode active material layer 15 may be formed on both surfaces of the outermost layer current collector 1b on the negative electrode side.
  • the positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 1 a on the positive electrode side, and this is extended and led out from the battery exterior material 29.
  • the negative electrode current collector plate 27 is disposed so as to be adjacent to the outermost layer current collector 1 b on the negative electrode side, and is similarly extended and led out from the battery outer packaging material 29.
  • an insulating part 31 is usually provided around each unit cell layer 19.
  • the insulating part 31 is intended to prevent the adjacent current collectors 1 in the battery from contacting each other and the occurrence of a short circuit due to a slight irregularity at the end of the unit cell layer 19 in the power generation element 21.
  • an insulating part 31 By installing such an insulating part 31, long-term reliability and safety are ensured, and a high-quality bipolar lithium ion secondary battery 10 is provided.
  • the number of unit cell layers 19 is adjusted according to the desired voltage. Further, in the bipolar lithium ion secondary battery 10, the number of the single battery layers 19 may be reduced as long as sufficient output can be secured even if the thickness of the battery is reduced as much as possible. Even in the bipolar lithium ion secondary battery 10, in order to prevent external impact and environmental degradation during use, the power generating element 21 is sealed in the battery outer packaging material 29 and sealed, and the positive current collector plate 25 and the negative current collector 25. A structure in which the electric plate 27 is taken out of the battery exterior material 29 is preferable. In addition, said secondary battery can be manufactured by a conventionally well-known manufacturing method. Hereinafter, main components other than the current collector in the bipolar lithium ion secondary battery of the present embodiment will be described.
  • the positive electrode active material layer (positive electrode) 13 includes a positive electrode active material.
  • a positive electrode active material for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Co—Mn) O 2, and lithium—such as those in which some of these transition metals are substituted with other elements
  • Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds.
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • the negative electrode active material layer (negative electrode) 15 includes a negative electrode active material.
  • the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon, metal materials such as lithium-transition metal composite oxide (for example, Li 4 Ti 5 O 12 ), lithium alloy negative electrode materials, and the like.
  • metal materials such as lithium-transition metal composite oxide (for example, Li 4 Ti 5 O 12 ), lithium alloy negative electrode materials, and the like.
  • two or more negative electrode active materials may be used in combination.
  • a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material.
  • each active material contained in each active material layer 13, 15 is not particularly limited.
  • the positive electrode active material is preferably 3 to 25 ⁇ m
  • the negative electrode active material is preferably 1 to 50 ⁇ m.
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 may contain a binder.
  • a binder used for an active material layer
  • the following materials are mentioned.
  • Polymers such as polyvinylidene fluor
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, and are stable at both the positive electrode potential and the negative electrode potential.
  • These binders may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the binder contained in the active material layer is not particularly limited as long as the amount can bind the active material.
  • the amount of the binder is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass with respect to the active material layer.
  • additives examples include a conductive additive, an electrolyte salt (lithium salt), and an ion conductive polymer.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber.
  • Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about the nonaqueous solvent secondary battery.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery is referred to as appropriate. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • the organic solvent used as the plasticizer include carbonates such as ethylene carbonate (EC) and propylene carbonate (PC).
  • the supporting salt (lithium salt) include a compound added to the active material layer of the electrode such as LiBETI.
  • polymer electrolytes are classified into gel electrolytes containing an electrolytic solution and intrinsic polymer electrolytes not containing an electrolytic solution.
  • the gel electrolyte has a configuration in which the liquid electrolyte is injected into a matrix polymer made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • electrolyte salts such as lithium salts are well dissolved.
  • a separator may be used for the electrolyte layer.
  • the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
  • the intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the above matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is made of an intrinsic polymer electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability is improved.
  • a supporting salt lithium salt
  • the matrix polymer of gel electrolyte or intrinsic polymer electrolyte expresses excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization process may be performed.
  • a metal or a conductive polymer is employed as a material of the outermost layer current collectors 1a and 1b.
  • a metal material is preferably used.
  • metal materials such as aluminum, nickel, iron, stainless steel, titanium, copper, are mentioned.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals is preferably used.
  • covered with aluminum may be sufficient.
  • aluminum and copper are preferable from the viewpoints of electron conductivity and battery operating potential.
  • the material which comprises the positive electrode current collecting plate 25 and the negative electrode current collecting plate 27 is not particularly limited, and a known highly conductive material is used.
  • a constituent material of the current collector plate metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. And aluminum, copper, etc. are especially preferable from a lightweight, corrosion resistance, and a highly conductive viewpoint. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • Battery exterior material As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • the laminate film for example, a laminate film having a three-layer structure in which polypropylene (PP), aluminum, and nylon are laminated in this order can be used.
  • PP polypropylene
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • the insulating part 31 prevents a liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17.
  • the insulating part 31 is intended to prevent current collectors adjacent in the battery from contacting each other and a short circuit caused by a slight irregularity at the end of the unit cell layer 19 in the power generation element 21. Is provided.
  • the insulating portion 31 As a material constituting the insulating portion 31, as long as it has insulating properties, sealing performance against falling off of the solid electrolyte, sealing performance against penetration of moisture from the outside (sealing performance), heat resistance at the battery operating temperature, etc. good.
  • urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber or the like is used.
  • polyethylene resin and polypropylene resin are preferably used as the constituent material of the insulating portion 31 from the viewpoints of corrosion resistance, chemical resistance, ease of production (film forming property), economy, and the like.
  • FIG. 5 is a perspective view showing the appearance of a laminated flat bipolar lithium ion secondary battery which is a typical form of a secondary battery.
  • the stacked flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive current collector 58 for taking out power from both sides thereof, a negative current collector A plate 59 is pulled out.
  • the power generation element (battery element) 57 is wrapped by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed.
  • the power generation element (battery element) 57 includes a positive current collector plate 58 and a negative electrode.
  • the current collector plate 59 is sealed in a state of being pulled out.
  • the power generation element (battery element) 57 corresponds to the power generation element (battery element) 21 of the bipolar lithium ion secondary battery 10 shown in FIG. 4 described above.
  • the lithium ion battery is not limited to a laminated flat shape.
  • the wound type lithium ion battery may have a cylindrical shape, or may have a rectangular shape that is deformed by such a cylindrical shape.
  • a laminate film may be used as the exterior material, or a conventional cylindrical can (metal can) may be used.
  • the power generation element (battery element) is preferably packaged with an aluminum laminate film, which can reduce the weight of the battery.
  • the removal of the current collector plates 58 and 59 shown in FIG. 5 is not particularly limited.
  • the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be drawn out from the same side, or the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be divided into a plurality of parts and taken out from each side. good.
  • a terminal may be formed using, for example, a cylindrical can (metal can) instead of the current collector plate.
  • the lithium ion battery can be suitably used as a large-capacity power source for electric vehicles, hybrid electric vehicles, fuel cell vehicles, hybrid fuel cell vehicles and the like.
  • Example I-1 (1) Production of current collector A film-like film having a thickness of 50 ⁇ m in which 10% by mass of carbon particles (primary particle diameter 20 nm) as a conductive material is dispersed with respect to 100% by mass of polyimide as a polymer material. A resin layer was prepared. Specifically, a polyimide containing polyamic acid is dissolved in N-methylpyrrolidone (NMP) as a solvent, and carbon particles are dispersed therein to produce a film by a melt casting method to obtain a conductive resin layer. It was.
  • NMP N-methylpyrrolidone
  • lithium spinel manganate (LiMnO 4 ) (85% by mass) as a positive electrode active material
  • acetylene black (5% by mass) as a conductive auxiliary agent
  • PVdF (10% by mass) as a binder
  • the said negative electrode active material slurry was apply
  • the positive electrode active material slurry is applied to the surface of the current collector opposite to the side where the negative electrode active material layer is applied, and dried to form a positive electrode active material layer having a thickness of 30 ⁇ m. Produced.
  • the outer surface of the positive electrode active material layer and the negative electrode active material layer of this bipolar electrode was peeled off by 20 mm to expose the surface of the current collector.
  • the area where the negative electrode active material layer is formed is the same as the area where the positive electrode active material layer is formed, so that the projections of the negative electrode active material layer and the positive electrode active material layer onto the current collectors coincide with each other. Adjusted.
  • the two bipolar electrodes produced above were laminated so that the positive electrode active material layer and the negative electrode active material layer face each other with a separator interposed therebetween, and a laminate was produced. And the three sides of this laminate were laminated to form a bag. Next, an electrolyte solution was injected from the remaining open side into a space where the positive electrode and the negative electrode faced each other, and was laminated under a vacuum to produce a single-layer bipolar lithium ion secondary battery.
  • Example I-1 A bipolar lithium ion secondary battery was produced in the same manner as in Example I-1, except that only the resin layer obtained in the production process of the current collector of Example I-1 was used as the current collector.
  • a charge / discharge test was conducted using the batteries prepared in Example I-1 and Comparative Examples I-1 and I-2.
  • a constant current (CC) was charged to a full current of each battery at a current of 80 mA, and then charged at a constant voltage (CV), and the total charge was performed for 10 hours. Thereafter, these batteries were discharged at a constant current / constant voltage (CC / CV) at 80 mA and then discharged at a constant current, and this cycle was repeated at 25 ° C. (cycle test).
  • Table 1 shows the discharge capacity retention ratio after 10 cycles (discharge capacity after 10 cycles / initial discharge capacity) as a result of the cycle test.
  • the connection resistance between the conductive resin layer and the copper foil was large, and could not be evaluated.
  • Example I-1 using the current collector containing the conductive resin layer and the copper oxide particles is Comparative Example I- using only the resin layer as the current collector. It was revealed that the capacity retention rate was higher than that of the first battery. This is considered to be a result of the lithium oxide occlusion inside the current collector being suppressed by the copper oxide particles, and the reduction in battery capacity due to the occluded lithium ions being suppressed.
  • the current collector used in Example I-1 is less increased in resistance in the stacking direction of the current collector as compared with the current collector used in Comparative Example I-2, so that the battery performance decreases. Can be suppressed.
  • Example II-1 (1) Production of current collector As in Example I-1, polyimide as a polymer material and carbon particles (Ketjen black) as a conductive material were mixed to prepare a film-like resin layer. .
  • TiNx titanium nitride particles
  • TiNx titanium nitride particles
  • the current collector was cut into 9 cm 2 .
  • the cut current collector was opposed to the lithium foil so that the ion blocking layer side faced the lithium with the separator interposed therebetween, and the electrolyte was injected to prepare a battery.
  • the electrolytic solution a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1M in an equal volume mixed solution of propylene carbonate (PC) and ethylene carbonate was used.
  • Example II-2 A current collector was produced in the same manner as in Example II-1, except that titanium nitride particles (TiNx) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • the amount of nitrogen gas in the chamber was adjusted so that the amount of nitrogen reacted with titanium was larger than that in Example II-1.
  • the ion blocking layer component of Example II-1 under the condition of reducing the nitrogen gas amount is expressed as “TiNx-L”, and the condition of Example II-2 under the condition of increasing the nitrogen gas amount is shown.
  • the ion blocking layer component was expressed as “TiNx-H”.
  • Example II-3 First, a chromium oxide particle layer having a thickness of 50 nm and a copper oxide particle layer having a thickness of 100 nm were formed on the resin layer by sputtering. Next, a nickel phosphide (Ni—P) layer having a thickness of 1000 nm was formed on the copper oxide particle layer by plating to produce a current collector. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • Ni—P nickel phosphide
  • Example II-4> A current collector was produced in the same manner as in Example II-1, except that titanium oxide particles were deposited to a thickness of 100 nm on the resin layer by sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • Example II-5> A current collector was produced in the same manner as in Example II-1, except that copper oxide particles were deposited to a thickness of 100 nm on the resin layer by sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • Example II-6> A current collector was produced in the same manner as in Example II-1, except that chromium oxide particles were deposited to a thickness of 100 nm on the resin layer by sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • Example II-7 A current collector was produced in the same manner as in Example II-1, except that chromium nitride particles (Cr 2 N) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • chromium nitride particles Cr 2 N
  • Example II-8 A current collector was produced in the same manner as in Example II-1, except that titanium nitride particles (Cr 2 N) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector. In the case of Example II-8, the amount of nitrogen gas in the chamber was adjusted so that the amount of nitrogen reacted with chromium was less than that of Example II-7.
  • Example II-7 the ion blocking layer component of Example II-7 under the condition where the amount of nitrogen gas was increased was expressed as “Cr 2 NH”, and Example II- under the condition where the amount of nitrogen gas was reduced Eight ion blocking layer components were denoted as “Cr 2 NL”.
  • Example II-9 A current collector was prepared in the same manner as in Example II-1, except that chromium nitride particles (CrN) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering. Further, a battery was produced in the same manner as in Example II-1 using the obtained current collector.
  • CrN chromium nitride particles
  • the cells of Examples II-1 to II-9 showed a natural potential value of 0.4 V or more. It is considered that a material having a natural potential value close to 0 V is closer to lithium ions, that is, has a higher reactivity (chemical bond) with lithium ions. As shown in Table 2, since the cells of Examples II-1 to II-9 had high natural potentials, the materials of the ion blocking layers of Examples II-1 to II-9 were made of lithium. It was found that there was almost no chemical bonding and it was stable in the low potential region.
  • Example III-1 (1) Production of current collector As in Example I-1, polyimide as a polymer material and carbon particles (Ketjen black) as a conductive material are mixed to form a film-like resin having a thickness of 50 ⁇ m. Prepared the layer. Next, copper oxide particles were deposited to a thickness of 200 nm on one surface of the resin layer by sputtering to produce a current collector.
  • Example II (2) Production of Battery
  • the negative electrode active material slurry prepared in Example I-1 was applied to the surface of the current collector on which the copper oxide particles are arranged, and dried at 80 ° C. to form a negative electrode having a thickness of 30 ⁇ m. An active material layer was formed.
  • the positive electrode active material slurry prepared in Example I-1 was applied to the surface of the current collector opposite to the side where the negative electrode active material layer was applied, and dried at 80 ° C. to obtain a positive electrode active material having a thickness of 30 ⁇ m. A material layer was formed. In this manner, the bipolar electrode of this example was produced.
  • both the positive electrode active material layer and the negative electrode active material layer of this bipolar electrode were peeled 20 mm from the outer peripheral portion to expose the surface of the current collector. Then, the two bipolar electrodes were laminated so that the positive electrode active material layer and the negative electrode active material layer face each other with a separator interposed therebetween, and a laminate was produced. Further, three sides of this laminate were laminated to form a bag. Next, from the remaining open side, the electrolyte prepared in Example I-1 is poured into a space where the positive electrode and the negative electrode face each other, and is laminated in a vacuum, so that a single layer lithium ion secondary battery is obtained. Was made.
  • Example III-2 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium oxide particles were deposited to a thickness of 200 nm on the resin layer by sputtering.
  • Example III-3 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that titanium oxide particles were deposited to a thickness of 200 nm on the resin layer by sputtering.
  • Example III-4> A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that titanium nitride particles were deposited to a thickness of 100 nm on the resin layer by reactive sputtering.
  • Example III-5 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that titanium nitride particles were deposited to a thickness of 50 nm on the resin layer by reactive sputtering.
  • the amount of nitrogen gas in the chamber was adjusted so that the amount of nitrogen reacted with titanium was less than that in Example III-4.
  • the ion blocking layer component of Example III-4 under the condition where the amount of nitrogen gas was increased is expressed as “TiNx-H”, and Example III-5 under the condition where the amount of nitrogen gas was reduced
  • the ion blocking layer component was expressed as “TiNx-L”.
  • Example III-6 First, a chromium oxide particle layer having a thickness of 50 nm and a copper oxide particle layer having a thickness of 100 nm were formed on the resin layer by sputtering. Next, a nickel phosphide (Ni—P) layer having a thickness of 1000 nm was formed on the copper oxide particle layer by plating to produce a current collector. Further, a cell was produced in the same manner as in Example III-1 using the obtained current collector.
  • Ni—P nickel phosphide
  • Example III-7 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium nitride particles (Cr 2 N) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering.
  • Cr 2 N chromium nitride particles
  • Example III-8 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium nitride particles (Cr 2 N) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering.
  • the amount of nitrogen gas in the chamber was adjusted so that the amount of nitrogen reacted with chromium was less than that of Example III-7.
  • the ion blocking layer component of Example III-7 under the condition where the amount of nitrogen gas was increased was expressed as “Cr 2 NH”, and Example III- under the condition where the amount of nitrogen gas was reduced Eight ion blocking layer components were denoted as “Cr 2 NL”.
  • Example III-9 A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium nitride particles (Cr 2 N) were deposited to a thickness of 50 nm on the resin layer in the same manner as in Example III-7. did.
  • Example III-10> A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium nitride particles (Cr 2 N) were deposited to a thickness of 50 nm on the resin layer in the same manner as in Example III-8. did.
  • Example III-11> A bipolar lithium ion secondary battery was fabricated in the same manner as in Example III-1, except that chromium nitride particles (CrN) were deposited to a thickness of 100 nm on the resin layer by reactive sputtering.
  • CrN chromium nitride particles
  • the batteries of Examples III-1 to III-11 have a capacity retention rate of 80% or more, and in particular, the batteries of Examples III-5 and III-6 have a high capacity maintenance ratio of 90% or more. Indicated.
  • the interaction between the ion trapping particles and the lithium ions makes it difficult for lithium ions to reach the resin layer. It is done.
  • FIG. 6 shows batteries of Examples III-1 (Cu 2 O), III-2 (Cr 2 O 3 ), III-3 (TiO 2 ), III-5 (TiN) and resins as current collectors.
  • the relationship between the cycle number of a battery using only a layer and a capacity maintenance rate is shown.
  • the capacity retention rate was remarkably lowered as the number of cycles increased, and the capacity maintenance rate became 10% at the 50th cycle. This is thought to be due to the fact that lithium ions were occluded inside the current collector and lithium ions were not efficiently transferred between the electrodes, so that the battery performance was lowered.
  • Example IV> Similarly to Example I-1, polyimide as a polymer material and carbon particles (Ketjen Black) as a conductive material were mixed to prepare a plurality of film-like resin layers having a thickness of 50 ⁇ m. Next, titanium oxide particles (TiO 2 ) were deposited to a thickness of 20 nm and 200 nm on one surface of the resin layer by a sputtering method, and current collectors were respectively produced.
  • TiO 2 titanium oxide particles
  • titanium nitride particles TiNx—H
  • current collectors in which titanium nitride particles (TiNx—H) were deposited to a thickness of 20 nm and 200 nm on one surface of the resin layer by reactive sputtering were prepared. Note that when the titanium nitride particles were produced, the amount of nitrogen gas in the chamber was large.
  • current collectors were prepared by depositing titanium nitride particles (TiNx-L) in thicknesses of 20 nm and 200 nm on one surface of the resin layer by reactive sputtering. Note that when producing titanium nitride particles, the amount of nitrogen gas in the chamber was small.
  • a bipolar lithium ion secondary battery was produced in the same manner as in Example III-1 using the six kinds of current collectors thus produced and a current collector having only a resin layer without an ion blocking layer. Further, the same cycle test as in Examples III-1 to III-11 was performed, and the capacity retention rate was measured. However, in the cycle test of this example, it was set to 10 cycles instead of 50 cycles. The measurement results are shown in FIG. The vertical axis of FIG. 7 shows the ratio of the discharge capacity at the 10th cycle when the first discharge capacity is 1, as the capacity retention rate, and the horizontal axis shows the thickness of the ion blocking layer. From FIG. 7, it was confirmed that the capacity retention rate saturates when the thickness of the ion blocking layer is 50 nm or more. Therefore, it is found that the thickness of the ion blocking layer on the resin layer is preferably 50 nm or more.
  • Example V-1 (1) Production of current collector As in Example I-1, polyimide as a polymer material and carbon particles (Ketjen black) as a conductive material are mixed to form a film-like resin having a thickness of 50 ⁇ m. Prepared the layer. Next, copper oxide particles were deposited to a thickness of 50 nm on one surface of the resin layer by sputtering to produce a current collector.
  • LiNiO 2 85 parts by mass
  • acetylene black 5 parts by mass
  • PVdF 10 parts by mass
  • the prepared negative electrode active material slurry is applied to one side of the negative electrode current collector (side having the ion blocking layer) using a coating apparatus, dried, and subjected to a press treatment using a roll press machine, and the negative electrode active material layer (Thickness 91 ⁇ m) was formed.
  • the prepared positive electrode active material slurry is applied to the resin surface (the surface without the ion blocking layer) of the current collector using a coating apparatus, dried, and subjected to a press treatment using a roll press machine, A positive electrode active material layer (thickness: 76 ⁇ m) was formed.
  • an aramid microfiber membrane (thickness 30 ⁇ m) was prepared as a separator. Further, as an electrolytic solution, a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1M in an equal volume mixed solution of ethylene carbonate (EC) and ethyl ethyl carbonate (MEC) was prepared.
  • EC ethylene carbonate
  • MEC ethyl ethyl carbonate
  • the voltage monitor flexible was sandwiched, and the three sides were sealed with a heat seal, and the electrolyte was injected from the remaining one side and sealed.
  • the obtained power generation element was put into a battery outer package made of an aluminum laminate sheet to complete a bipolar lithium ion secondary battery.
  • Example V-2 A current collector was produced in the same manner as in Example V-1, except that titanium oxide particles were deposited to a thickness of 50 nm on the resin layer by sputtering. Furthermore, using the obtained current collector, a bipolar lithium ion secondary battery was produced in the same manner as in Example V-1.
  • Example V-3> A current collector was produced in the same manner as in Example V-1, except that titanium nitride particles were deposited to a thickness of 50 nm on the resin layer by reactive sputtering. Furthermore, using the obtained current collector, a bipolar lithium ion secondary battery was produced in the same manner as in Example V-1.
  • Example V-4> A current collector was prepared in the same manner as in Example V-1, except that zirconium nitride particles were deposited to a thickness of 50 nm on the resin layer by reactive sputtering. Furthermore, using the obtained current collector, a bipolar lithium ion secondary battery was produced in the same manner as in Example V-1.
  • Example V-5 A current collector was prepared in the same manner as in Example V-1, except that chromium nitride particles were deposited to a thickness of 50 nm on the resin layer by reactive sputtering. Furthermore, using the obtained current collector, a bipolar lithium ion secondary battery was produced in the same manner as in Example V-1.
  • Example V-1 A bipolar lithium ion secondary battery was produced in the same manner as in Example V-1, using a stainless steel foil (SUS foil) with a thickness of 20 ⁇ m as a current collector.
  • SUS foil stainless steel foil
  • FIG. 8 shows a battery of Example V-1 (Cu 2 O), V-2 (TiO 2 ), V-3 (TiNx), and Comparative Example V-1 (SUS foil) and only a resin layer as a current collector.
  • the relationship between the relative temperature and time of a battery using the battery is shown.
  • the vertical axis in FIG. 8 indicates the relative temperature when the maximum temperature rise of Example V-2 (TiO 2 ) is 1.
  • the time when the conductive member was penetrated through the center of the battery and 100C discharge was started was set to 0 minutes. As shown in FIG.
  • Example V-3 (TiNx) has a very low temperature rise and secures safety during a short circuit.
  • the temperature rise is low, but as shown in FIG. 6, the battery performance cannot be ensured because the current collector with only the resin layer has a low capacity retention rate. .
  • Example V-6> (1) Production of current collector As in Example I-1, polyimide (PI), which is a polymer material, and carbon particles (Ketjen Black), which is a conductive material, are mixed to form a film having a thickness of 20 ⁇ m. A resin layer was prepared. Next, copper oxide particles were deposited to a thickness of 100 nm on both surfaces of the resin layer by a sputtering method to produce a negative electrode current collector.
  • PI polyimide
  • carbon particles Karl Black
  • a film-like resin layer having a thickness of 20 ⁇ m similar to the above was prepared, and aluminum particles were deposited to a thickness of 100 nm by a sputtering method to produce a positive electrode current collector.
  • Example V-2 Production of Battery
  • a positive electrode active material slurry and a negative electrode active material slurry were prepared in the same manner as in Example V-1. And the prepared negative electrode active material slurry was apply
  • the prepared positive electrode active material slurry was applied to both surfaces of the positive electrode current collector using a coating apparatus, dried, and pressed using a roll press.
  • positive electrode active material layers single-sided thickness 110 ⁇ m
  • the positive electrode current collector plate made from aluminum was welded to the positive electrode current collector, and the positive electrode was produced.
  • a polyethylene microporous membrane (thickness: 30 ⁇ m, size: 10.5 cm ⁇ 5.5 cm) was prepared as a separator. Further, as an electrolytic solution, a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1M in an equal volume mixed solution of ethylene carbonate (EC) and diethyl carbonate (DMC) was prepared.
  • EC ethylene carbonate
  • DMC diethyl carbonate
  • the 11 positive electrodes, 10 negative electrodes, and 11 separators prepared above are sequentially laminated so that the positive electrode active material layer and the negative electrode active material layer of the adjacent positive electrode and negative electrodes face each other with the separator interposed therebetween, thereby producing a power generation element. did.
  • the obtained power generation element was put in a battery exterior material made of an aluminum laminate sheet so that a part of each positive electrode current collector plate and negative electrode current collector plate was led out to the outside. Thereafter, the electrolytic solution was injected and sealed to complete the stacked lithium ion battery shown in FIG.
  • Example V-7 First, copper oxide particles were deposited to a thickness of 100 nm by sputtering on both surfaces of a 20 ⁇ m thick film-like resin layer used in Example I-5. Next, titanium nitride particles were deposited to a thickness of 100 nm on the copper oxide particle layer by reactive sputtering to produce a negative electrode current collector. Then, using the obtained negative electrode current collector, an assembled battery was produced in the same manner as in Example V-6.
  • Example V-8 First, copper oxide particles were deposited to a thickness of 100 nm by sputtering on both surfaces of a 20 ⁇ m thick film-like resin layer used in Example I-5. Next, zirconium nitride particles were deposited to a thickness of 100 nm on the copper oxide particle layer by reactive sputtering to produce a negative electrode current collector. Then, using the obtained negative electrode current collector, an assembled battery was produced in the same manner as in Example V-6.
  • Example V-2 An assembled battery was produced in the same manner as in Example V-6, except that a copper foil having a thickness of 10 ⁇ m was used as the negative electrode current collector.
  • the battery surface temperature was measured by measuring the maximum temperature rise of the battery by attaching a thermocouple to the center of the laminated laminate of the battery (location G in FIG. 9). In the assembled battery, thermocouples were attached to all three batteries, and the average value of the maximum rising temperatures of each battery was defined as the battery surface temperature. The experimental results are shown in Table 5.
  • FIG. 1A shows an embodiment in which an ion blocking layer and an electrode in a current collector are in contact with each other, but other layers may be interposed between them.
  • the metal compound in the ion blocking layer adsorbs ions, so that ions do not easily reach the resin layer.
  • the current collector of the present invention contributes to suppression of occlusion of ions by other mechanisms, the technical scope of the present invention is not affected at all.
  • the ion blocking layer physically suppresses the intrusion of ions during charging, and the metal compound on the surface of the ion trapping particles interacts with the ions, thereby making it difficult for the ions to reach the resin layer. Therefore, occlusion of ions inside the current collector including the conductive resin layer can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の二次電池用集電体(1)は、導電性を有する樹脂層(2)と、前記樹脂層(2)の表面に配置されるイオン遮断層(3)とを備える。そして、前記イオン遮断層(3)は、金属含有粒子(4)の表面に金属化合物(5)が存在するイオン捕捉粒子(6)を含む。さらに、前記イオン捕捉粒子(6)は、前記樹脂層(2)とイオン遮断層(3)との界面(7)から前記イオン遮断層(3)の表面(3a)に向かって連続して存在する。これにより、イオン遮断層(3)がイオンの侵入を抑制し、集電体(1)の内部におけるイオンの吸蔵を低減することができる。

Description

二次電池用集電体及びこれを用いた二次電池
 本発明は、二次電池用集電体及びこれを用いた二次電池に関する。特に本発明は、導電性を有する樹脂層を含む集電体において、イオン透過性を効果的に抑制することができ、かつ、軽量性を確保した二次電池用集電体及びこれを用いた二次電池に関する。
 近年、環境や燃費の観点から、ハイブリッド自動車(HEV)や電気自動車(EV)、さらには燃料電池自動車の開発が続けられている。これらのいわゆる電動車両においては、放電・充電ができる電源装置の活用が不可欠である。この電源装置としては、リチウムイオン電池やニッケル水素電池等の二次電池や、電気二重層キャパシタ等が利用される。特に、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから、電動車両に好適と考えられ、各種の開発が進められている。ただし、上記各種自動車のモータ駆動用電源に適用するためには、大出力を確保するために、複数の二次電池を直列に接続して用いる必要がある。
 しかしながら、接続部を介して電池を接続した場合、接続部の電気抵抗によって出力が低下してしまう。また、接続部を有する電池は空間的にも不利である。即ち、接続部によって、電池の出力密度やエネルギー密度の低下がもたらされる。
 この問題を解決するものとして、双極型リチウムイオン二次電池等の双極型二次電池が開発されている。双極型二次電池は、集電体の片面に正極活物質層が形成され、他方の面に負極活物質層が形成された双極型電極が、電解質層やセパレータを介して複数積層された構成を有する。
 このような双極型二次電池に用いる集電体は、大きな出力密度を確保するために、より軽量かつ導電性に優れた材料からなることが望ましい。そこで、近年、従来の金属箔に代わって導電性材料が添加された高分子材料から構成される集電体が提案されている。例えば、特許文献1では、高分子材料に導電性材料として金属粒子又はカーボン粒子が混合され、さらに導電性を有する樹脂を含む集電体が開示されている。
特開2006-190649号公報
 しかしながら、特許文献1に記載されているような集電体は、金属箔の集電体に比べて電解液中のリチウムイオンの遮断性が低い。そのため、双極型リチウムイオン二次電池に適用した場合には、双極型電極の集電体内にリチウムイオンが浸透し、集電体内部にリチウムイオンが吸蔵されたままになる場合があることがわかった。この吸蔵されたリチウムイオンは放出されにくいため、電池の容量が低下する場合がある。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、導電性を有する樹脂層を含む二次電池用集電体において、集電体の内部におけるイオンの吸蔵を抑制し得る手段を提供することにある。
 本発明の態様に係る二次電池用集電体は、導電性を有する樹脂層と、上記樹脂層の表面に配置されるイオン遮断層と、を備える。そして、上記イオン遮断層は、金属含有粒子の表面に金属化合物が存在するイオン捕捉粒子を含む。さらに上記イオン捕捉粒子は、上記樹脂層とイオン遮断層との界面からイオン遮断層の表面に向かって連続して存在する。
図1(a)は本発明の実施形態に係る集電体の一例を示す概略断面図であり、図1(b)は本発明の実施形態に係る集電体の他の例を示す概略断面図である。 図2(a)は窒化チタンにおける電圧印加前のチタン原子のX線光電子分光スペクトルであり、図2(b)は窒化チタンにおける電圧印加後のチタン原子のX線光電子分光スペクトルである。 図3は、本発明の実施形態に係る集電体、正極及び負極を備えた双極型電極の概略断面図である。 図4は、双極型リチウムイオン二次電池の全体構造を模式的に表した概略断面図である。 図5は、双極型リチウムイオン二次電池の外観を表した斜視図である。 図6は、実施例III-1、III-2、III-3及びIII-5の電池並びに集電体として樹脂層のみを使用した電池のサイクル数と容量維持率との関係を示すグラフである。 図7は、実施例IVにおける容量維持率とイオン遮断層の厚さとの関係を示すグラフである。 図8は、実施例V-1、V-2、V-3及び比較例V-1の電池並びに集電体として樹脂層のみを使用した電池の相対温度と時間との関係を示すグラフである。 図9は、実施例Vにおける組電池の構成を示す斜視図である。
 以下、本発明に係る二次電池用集電体及びこれを用いた二次電池について、図面を用いて詳細に説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、説明の便宜上、本発明に係る二次電池用集電体をリチウムイオン二次電池に使用した場合を中心に説明する。
[二次電池用集電体]
 本発明の実施形態に係る二次電池用集電体1は、図1に示すように、導電性を有する樹脂層2と、上記樹脂層2の表面に配置されるイオン遮断層3と、を備える。そして、イオン遮断層3は、金属含有粒子4の表面に金属化合物5が存在するイオン捕捉粒子6を含む。さらに、イオン捕捉粒子6は、上記樹脂層2とイオン遮断層3との界面7からイオン遮断層3の表面3aに向かって連続して存在する。
 具体的には、図1に示すように、上記イオン遮断層3は、複数のイオン捕捉粒子6を備えている。そして、このイオン捕捉粒子6は、樹脂層2とイオン遮断層3が接触してなる界面7から界面7の反対側の表面3aにかけて、連続して結合している。さらに、図1の実施形態では、界面7の反対側の表面3aは、電極(正極又は負極)8と接触している。これにより、界面7から表面3aにかけて導電パスが形成され、電極8から樹脂層2にかけて導電性が確保される。さらに、上記イオン遮断層3におけるイオン捕捉粒子6は、電解質層を介して正極と負極の間を移動するイオン(例えばリチウムイオン)が樹脂層2の内部へ侵入するのを抑制する。そのため、イオン遮断層3を設けることにより、集電体1の内部におけるイオンの吸蔵が抑制される。
 上記イオン遮断層3を構成するイオン捕捉粒子6は、粒子の中心部に金属含有粒子4を有し、さらに金属含有粒子4の表面に金属化合物5が存在している。そして、この金属化合物5はリチウムイオンと相互作用し、充電時にはリチウムイオンを吸着することができるため、電極8からイオン遮断層3に侵入したリチウムイオンが樹脂層2に到達しにくくなる。さらに、上記金属化合物5は、放電時においてイオン化傾向が強まり、リチウムイオンを脱離する。このように、金属化合物5は可逆的にイオンを吸着及び脱離し、電池反応に関わるイオンが実質的に減少しないため、放電容量を維持することもできる。
 なお、リチウムイオン電池の場合、鉄粉などの異物がセパレータに混入することで内部短絡が引き起こされる。つまり、正極及び負極の化学変化エネルギを電気エネルギにする際に、セパレータに混入した異物が発熱してしまい、セパレータを溶融させてしまう。もしセパレータが溶融した場合、正負極間の絶縁が保てなくなるため、さらなる発熱を引き起こす。この場合、イオン遮断層が導電性が高い金属粒子で構成されている場合には、面方向(図1のX方向)に電流が流れ、電池内部の発熱がさらに促進されてしまう。
 しかし、イオン捕捉粒子6における金属化合物5の電気抵抗は純金属より大きいため、集電体の面方向(図1中のX方向)の電気抵抗が高くなる。よって、もし内部短絡が生じた場合でも、集電体の面方向に沿って短絡部位へ電流が集中することを防止し、電池内部の温度上昇を抑制することができる。なお、後述するように、上記イオン遮断層3の厚さは50nm~1000nmであることが好ましいため、たとえ金属化合物5の電気抵抗が純金属より大きい場合でも、Y方向の導電性は確保され、電池性能に影響を与えることは殆どない。このように、上記イオン遮断層3では、充放電時にはY方向に電流が流れるが、面方向には流れにくいため、導電性と短絡時の安全性の両立を図ることができる。
 以下、本実施形態の集電体を構成するイオン遮断層及び樹脂層について説明する。
 (イオン遮断層)
 上述のようにイオン遮断層3は、金属含有粒子4の表面に金属化合物5が存在するイオン捕捉粒子6を含んでいる。そして、このようなイオン遮断層3は、樹脂層2の表面の全体を覆うように堆積されていても良く、樹脂層2の表面の一部を覆う形態であっても良い。また、樹脂層2の一方の表面のみに配置されていても良く、両方の表面に配置されていても良い。さらに、イオン遮断層3は、イオン捕捉粒子6以外にも樹脂層2の内部へのリチウムイオンの侵入を抑制する物質を含んでいても良いし、イオン捕捉粒子6のみから形成されていても良い。
 上記金属化合物5は、金属含有粒子4の表面の少なくとも一部に存在している必要があるが、イオン遮断層3の面方向の電気抵抗を確保する観点から、金属含有粒子4の表面全体を覆うことが好ましい。イオン捕捉粒子6内部の金属含有粒子4としては、単一の金属元素からなる純金属粒子、複数の金属元素からなる合金粒子、又は金属元素と非金属元素とからなる金属化合物粒子であることが好ましい。また、金属含有粒子は、銅(Cu)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、白金(Pt)及び金(Au)からなる群から選ばれる少なくとも一つの金属元素を含有することが好ましい。つまり、金属含有粒子4は、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素からなる純金属粒子やこれらの金属元素からなる合金粒子を用いることができる。さらに、金属含有粒子4は、これらの金属粒子と非金属元素からなる金属化合物粒子であっても良い。このような金属元素は、負極活物質にカーボン系材料を使用した場合、数十mV程度の低電位下でも電位安定性が高い。そのため、イオン遮断層3における金属の溶出が抑制されることから、樹脂層2の露出を防止することができる。その結果、リチウムイオンが樹脂内へ進入を防ぎ、電池の劣化を抑制することができる。
 金属含有粒子4が金属化合物粒子である場合、金属化合物粒子は、金属酸化物、金属窒化物、金属炭化物、金属硫酸塩、金属リン酸塩及び金属リン化合物からなる群から選ばれる少なくとも一つを含有することが好ましい。具体的には、金属化合物粒子は、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素の酸化物、窒化物、炭化物、硫酸塩、リン酸塩及びリン化合物を用いることができる。
 さらに、上記金属化合物5としては、充電時にはリチウムイオンを吸着し、放電時にはリチウムイオンを脱離する化合物を用いる。そのため、金属化合物5は、金属酸化物、金属窒化物、金属炭化物、金属硫酸塩、金属リン酸塩及び金属リン化合物からなる群から選ばれる少なくとも一つを含有することが好ましい。具体的には、金属化合物5は、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素の酸化物、窒化物、炭化物、硫酸塩、リン酸塩及びリン化合物を用いることができる。このような金属化合物は、リチウムイオンと相互作用し、充電時にはリチウムイオンを吸着することができるため、リチウムイオンが樹脂層に到達しにくくなる。つまり、これらの金属元素の酸化物や窒化物、リン化物内に存在する酸素原子(O)や窒素原子(N)、リン原子(P)の不対電子又は非共有電子対はマイナスの電荷を有し、リチウムイオンはプラスの電荷を有する。そのため、金属化合物5として上記酸化物や窒化物、リン化物を用いた場合には、特にリチウムイオンとの電気的相互作用が強くなり、リチウムイオンを効率的に吸着できると考えられる。
 そして、金属化合物5としては金属酸化物を用いることが特に好ましい。具体的には、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素の酸化物を用いることが好ましい。金属酸化物はリチウムイオンと相互作用しやすいため、リチウムイオンを引き寄せ、金属化合物5上でリチウムイオンを安定化すると考えられる。
 また、金属含有粒子4が銅、チタン及びクロムのいずれかからなる粒子であり、金属化合物5が金属含有粒子4を構成する金属元素の酸化物からなることが特に好ましい。具体的には、金属含有粒子4が銅(Cu)であり、金属化合物5が酸化銅(酸化第一銅(CuO)、酸化第二銅(CuO))であることが好ましい。金属含有粒子4たる銅粒子の表層に存在するサブナノメートルの酸化物層(金属化合物5)中の酸化第一銅(CuO)がリチウムイオンと相互作用し、安定な中間層を形成することで、リチウムイオンを樹脂層2に到達しにくくすると考えられる。
 また、金属含有粒子4がチタン(Ti)であり、金属化合物5が酸化チタン(TiO)であることが好ましい。酸化チタンにおける酸素原子の2p軌道は空軌道となっているか、又はマイナスの電荷を持つ不対電子が存在している。そのため、空軌道や不対電子がリチウムイオンをを引き寄せ、金属化合物5においてリチウムイオンが安定化していると考えられる。また負極材にも成り得るチタン酸リチウム(LiTiO、LiTi12)が示す通り、酸化チタンはリチウムとの安定性が良い。そのため、最表面に存在する酸化チタンとリチウムイオンが複合化合物を形成し、樹脂層2に到達するのを抑制するのではないかと考えられる。
 さらに、金属含有粒子4がクロム(Cr)であり、金属化合物5が酸化クロム(Cr)であることが好ましい。酸化クロムについても上記酸化銅や酸化チタンを同様のメカニズムにより、リチウムイオンを吸着するものと考えられる。
 なお、上記金属含有粒子4が金属化合物粒子であり、上記イオン捕捉粒子6における上記金属化合物粒子と上記金属化合物5とが、同じ材料から形成されていても良い。つまり、イオン捕捉粒子6全体が、上記金属酸化物、金属窒化物、金属炭化物、金属硫酸塩、金属リン酸塩及び金属リン化合物によって形成されていても良い。このようなイオン捕捉粒子6であっても粒子の表面で、リチウムイオン吸着能を発揮することができる。また、たとえ金属含有粒子全体が上記金属酸化物や金属窒化物であったとしても、イオン遮断層3の厚さが極めて薄いため、積層方向の導電性は確保される。その結果、電池性能に影響を与えることは殆どない。
 このような金属含有粒子全体が金属化合物であるイオン捕捉粒子6としては、特に、酸化銅(CuO)、酸化チタン(TiO)及び酸化クロム(Cr)の粒子を挙げることができる。また、窒化銅(CuN)、窒化チタン(TiN)及び窒化クロム(CrN)の粒子も挙げることができる。さらに、リン化銅(CuP)、リン化チタン(TiP)及びリン化クロム(CrP)の粒子も使用することができる。また、酸化ニッケル(NiO)、窒化ニッケル(NiN)及びリン化ニッケル(NiP等)の粒子も好ましい。
 さらに、イオン捕捉粒子6における金属化合物5は、混合原子価を取り得る化合物であることが好ましい。つまり、金属化合物5は、原子価の異なる同種元素を二つ以上含む化合物であることが好ましい。このような混合原子価を取り得る化合物は、電池内部がたとえば10~100℃/秒のような速度で発熱した場合、絶縁体へ変化する。このような絶縁体へ変化する機能を有することで、発熱時にはイオン遮断層3の電気抵抗を上げ、ジュール熱の発生を抑制することができる。
 窒化チタンを例に説明すると、窒化チタンは、通常TiNxで表される非化学量論組成による混合原子価を取っている。そして、電池内部が発熱した場合には、脱窒素反応を起こす。特に、負極側に窒化チタン粒子からなるイオン遮断層を設けた場合、窒化チタンの脱窒素反応と酸化反応の両方が起こり、絶縁体の酸化チタン(TiOx)が生成する。そのため、この酸化チタンが負極側の電気抵抗を上げ、ジュール熱発生を抑制することができる。
 ここで、図2(a)には窒化チタンにおける電圧印加前のチタン原子のX線光電子分光スペクトル(XPS)と波形分離後のスペクトルを示し、図2(b)には窒化チタンにおける電圧印加後のチタン原子のX線光電子分光スペクトルと波形分離後のスペクトルを示す。図2(a)に示すように、窒化チタン(TiNx)において、通常チタンは最表面で2価、3価及び4価を取っている。しかし、窒化チタンからなるイオン遮断層が負極側に存在し、充電時の還元状態に曝された場合には、図2(b)に示すように、最表面のチタンは0価、2価及び3価へ変化する。さらに、電池内部が発熱した場合、脱窒素反応及び酸化反応の両方が伴うとチタンは4価を取る。この4価のチタンは、大気中の酸素や正極活物質から放出された酸素によって、絶縁体の酸化チタン(TiO)へ変化して安定化する。
 このように、少なくとも金属化合物5は混合原子価を取り得る化合物から形成されることが好ましいが、イオン捕捉粒子6全体が混合原子価を取り得る化合物から形成されていても良い。このような混合原子価を取る化合物としては、3d遷移金属又は4d遷移金属の窒化物が挙げられる。3d遷移金属としては、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)及び亜鉛(Zn)が挙げられる。また、4d遷移金属としては、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、パラジウム(Pd)、銀(Ag)及びカドミウム(Cd)が挙げられる。この中でも、3d遷移金属中のTi, V, Cr, Mn, Fe, Coの窒化物や4d遷移金属中のZrの窒化物が好ましい。特に窒化チタン(TiNx)や窒化ジルコニウム(ZrNx)、窒化クロム(CrNx)は、上記特性に加え負極電位耐性を併せ持つため、より好ましい。
 イオン遮断層3は、異なる種類の層が複数積層されていても良い。また、イオン遮断層3は、上記金属含有粒子の表面に、金属元素と非金属元素とからなる金属化合物が存在する第一イオン捕捉粒子からなる層と、上記金属含有粒子の表面に、混合原子価を取り得る化合物が存在する第二イオン捕捉粒子からなる層との積層構造であっても良い。例えば図1(b)に示すように、集電体1Aにおけるイオン遮断層3Aは、金属含有粒子の表面に、混合原子価を取り得る化合物が存在する第一イオン捕捉粒子6Aからなる層である。また、イオン遮断層3Bは、金属含有粒子の表面に、金属元素と非金属元素とからなる金属化合物が存在する第二イオン捕捉粒子6Bから構成される層である。このように、異なる種類の層が複数積層されていても良い。
 上記イオン捕捉粒子6は、任意の形状を取ることができる。イオン捕捉粒子6の形状としては、球状、立方体状、柱状、板状、燐片状、棒状、針状、繊維状、板状、塊状及び不定形状などを適宜選択することができる。ナノ粒子やナノクラスタの形態であっても良い。イオン捕捉粒子の粒子径は特に制限されないが、その一次粒子径が0.1~500nmであることが好ましく、0.1~200nmであることがより好ましく、0.1~50nmであることがさらに好ましい。イオン捕捉粒子6の一次粒子径が0.1nm以上であれば、樹脂層2上に粒子6を容易に配置することができる。また、前記粒子6の一次粒子径が500nm以下であれば、十分な比表面積が得られ、リチウムイオンの吸着する効果が高くなる。さらに、隣接する粒子6の間から電解液が侵入しにくくなるため、隔壁としての機能が得られる。なお、前記一次粒子径は、作製した集電体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察することによって測定することができる。また、本明細書中において、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。
 上述のように、イオン遮断層は、上述のイオン又は溶媒の透過を抑制する性質を有する非金属元素を含む導電性材料からなる。非金属元素を含む導電性材料は、金属のみからなる材料と比較して密度が小さいために、集電体の軽量性を確保することができる。該導電性材料に含まれる非金属元素は、軽量化の観点から、好ましくは5原子%以上であり、より好ましくは50原子%以上である。
 また、本実施形態のイオン遮断層で用いられる導電性材料は、非金属元素を含むことにより、金属のみからなる導電性材料と比較して体積抵抗率が大きい。これにより内部短絡が発生した場合であっても短絡部位に電流集中が起きにくく、集電体の発熱を防止することができる。ただし、体積抵抗率が大きすぎると、集電体の厚さ方向の導電性を確保できない虞がある。これらの観点から、イオン遮断層の体積抵抗率は7.2×10-5~10Ω・cmが好ましく、1×10-4~5Ω・cmがより好ましく、1×10-3~1Ω・cmであることがさらに好ましい。
 上記イオン遮断層3の厚さは、50nm~1000nmであることが好ましい。また、図1(b)のように、複数のイオン遮断層を備えている場合には、イオン遮断層全体の厚さが50nm~1000nmであることが好ましい。上述のように、イオン遮断層は、イオン吸着放出能を有する金属酸化物や金属窒化物などからなる金属化合物を含有しているため、たとえ50nm~1000nm程度の厚さであってもイオンの侵入を抑制することができる。なお、イオン遮断層3の厚さは、50nm~200nmであることが好ましく、50nm~100nmであることが特に好ましい。なお、前記イオン遮断層3及び後述する樹脂層2の厚さは、作製した集電体をSEM又はTEMで観察することによって測定することができる。
 図3は、上述した二次電池用集電体1と、上記集電体の一方の面に形成された正極活物質層(正極)13と、上記集電体の他方の面に形成された負極活物質層(負極)15と、を備えた双極型電極23の概略断面図である。図3に示すように、集電体1において、イオン遮断層3は、樹脂層2の、負極活物質層15と接する側の表面全体に形成されることが好ましい。電解液中のリチウムイオンは、主に負極活物質層15と樹脂層2との接合面から樹脂層2の内部に侵入する。そのため、図3のように負極活物質層15の側にイオン遮断層3を形成すれば、電解液中のリチウムイオンの侵入を防ぐ効果が高くなり、電池の容量維持率が向上する。
 (樹脂層)
 樹脂層2は高分子材料を主成分とする層であって、電子移動媒体としての機能を有することは勿論のこと、集電体の軽量化に寄与する。導電性を有する樹脂層を得るためには、例えば、導電性高分子を用いたり、導電性材料を添加する方法が挙げられる。本実施形態の集電体においては、粒子状のイオン捕捉粒子も導電性を確保する機能を有するため、上記導電性材料は必要に応じて用いれば良い。
 樹脂層に使用される樹脂は、特に制限はなく、従来公知の非導電性高分子又は導電性高分子を使用することができる。好ましい非導電性高分子としては、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)、シリコン樹脂、セルロース及びエポキシ樹脂などが挙げられる。このような非導電性高分子は、優れた耐電位性又は耐溶媒性を有する。また、好ましい導電性高分子としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル及びポリオキサジアゾールなどが挙げられる。このような導電性高分子は、導電性材料を添加しなくても十分な導電性を有するため、製造工程の容易化及び集電体の軽量化の観点から有利である。これらの非導電性高分子及び導電性高分子は、一種を単独で使用しても良いし、二種以上を組み合わせて混合物として使用しても良い。
 本実施形態の集電体においては、樹脂層に使用される高分子材料として、ポリイミドを用いることが特に好ましい。ポリイミドは、リチウムイオンを吸蔵にくいため、効果がより顕著に現れる。
 上記樹脂層は、ポリイミドに加えて、他の高分子材料を含んでも良い。他の高分子材料としては、例えば、アミド、アミノ基、チオアミド、イミド、イミノ基、ケトン、ケテン、イソシアネート、アシル基、アセチル基、カルボキシル基、カルボニル基、アルデヒド基、アセタール、ヘミアセタール、エステル、チオエステル、リン酸エステル、エーテル、エノン、エノール、酸無水物、酸ヒドラゾン、酸アジド、スルホニル基などの官能基を含む材料が好ましい。これらの官能基は、二次電池用集電体として用いたときに分解しにくい。このような官能基を有し、電解液、電位及びリチウムイオンに対して安定な高分子材料としては、例えば、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、アクリル樹脂、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)などが挙げられる。
 上記樹脂層は、積層方向の導電性を確保するため、必要に応じて導電性材料を含む。導電性材料は、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、又はリチウムイオン遮断性に優れた材料として、金属及び炭素材料が挙げられる。中でも、炭素材料は電位窓が非常に広く、正極電位及び負極電位の双方に対して幅広い範囲で安定であり、さらに優れた導電性を有する。また、金属を含む導電性材料よりも密度が小さいので、集電体の軽量化を図ることができるため好適である。
 樹脂層に含まれる金属としては、特に制限はないが、ニッケル(Ni)、チタン(Ti)、アルミニウム(Al)、白金(Pt)、金(Au)、鉄(Fe)、クロム(Cr)、スズ(Sn)、亜鉛(Zn)、インジウム(In)、アンチモン(Sb)及びカリウム(K)からなる群から選ばれる少なくとも一種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むことが好ましい。これらの金属は、集電体表面に形成される正極又は負極の電位に対して耐性を有する。これらのうち、Ni、Pt、Au及びCrが特に好ましい。
 樹脂層に含まれる合金としては、具体的には、ステンレス鋼(SUS)、インコネル(登録商標)、ハステロイ(登録商標)及びFe-Cr系合金、Ni-Cr合金等が挙げられる。これらの合金を用いることにより、高い耐電位性が得られる。
 また、樹脂層に含まれる炭素材料としては、特に制限はないが、アセチレンブラック、バルカン(登録商標)、ブラックパール、カーボンナノファイバ、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン及びフラーレンからなる群から選ばれる少なくとも一種を含むことが好ましい。中でも、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラック、カーボンナノバルーン及びフラーレンからなる群から選ばれる少なくとも一種を含むことがより好ましい。これらの炭素材料は中空構造を有するため、単位質量あたりの表面積が大きく、集電体をより一層軽量化することができる。なお、これらの導電性材料は一種を単独で、あるいは二種以上を組み合わせて使用することができる。
 導電性材料は、樹脂層の大きさや厚さ、導電性材料の形状によって、様々な大きさの材料を使用することができる。一例として、導電性材料が粒状の場合の平均粒子径は、樹脂層の成形を容易にする観点から、0.1μm~10μm程度であることが好ましい。なお、「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 樹脂層に含まれる高分子材料の含有量としては、樹脂層の全質量に対して、少なくとも50質量%以上含まれることが好ましく、75質量%以上含まれることがより好ましい。また、樹脂層に含まれる高分子材料が導電性高分子の場合は、樹脂層が導電性高分子のみから形成されていても良い。
 樹脂層に含まれる導電性材料の含有量も特に制限はないが、高分子材料の全質量に対して、好ましくは5~35質量%であり、より好ましくは5~25質量%であり、さらに好ましくは5~15質量%である。このような量の導電性材料を高分子材料に添加することにより、樹脂層の質量増加を抑制しつつ、高分子材料に十分な導電性を付与することができる。
 導電性材料の形状は、特に制限はなく、粒状、繊維状、板状、塊状、布状及びメッシュ状などの形状を適宜選択することができる。例えば、樹脂に対して広範囲に亘って導電性を付与したい場合は、粒状の導電性材料を使用することが好ましい。一方、樹脂において特定方向への導電性をより向上させたい場合は、繊維状等の形状に一定の方向性を有するような導電性材料を使用することが好ましい。
 なお、上記樹脂層には、高分子材料及び導電性材料の他、他の添加剤を含んでいても良い。
 樹脂層の厚さは特に制限されないが、0.1μm~200μmであることが好ましく、5μm~150μmであることがより好ましく、10μm~100μmであることがさらに好ましい。樹脂層の厚さが0.1μm以上であれば、集電効率の高い集電体が得られる。樹脂層の厚さが200μm以下であれば、単位体積あたりの電池容量の高い電池が得られる。
[二次電池用集電体の製造方法]
 導電性を有する樹脂層2にイオン捕捉粒子6を配置する方法としては特に制限されず、既存の樹脂薄膜や金属薄膜の成膜技術などを適宜組み合わせることができる。例えば、上記図1(a)のように、樹脂層2の表面にイオン捕捉粒子6からなるイオン遮断層3を配置する方法としては、スパッタ、電解メッキ、真空蒸着、CVD、PVD、イオンビーム蒸着、イオンプレーティング、原子層堆積、レーザーアブレーション、無電解メッキ、アーク溶射、アンバランスドマグネトロン(UBM)などの方法を用いることができる。上記の方法であれば、樹脂層2との接着性が高いイオン遮断層3を作製することができる。
 特にスパッタ法を用いることにより、上記厚さのイオン遮断層を効率的に作製することができる。例えば、ターゲット材料として上記金属化合物5を構成する材料を用い、アルゴンガス粒子をターゲット材料に衝突させ、その衝撃ではじき飛ばされたターゲット成分を樹脂層2上に付着させることで、イオン遮断層3を製造するとができる。ターゲット材料として、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素の酸化物、窒化物、炭化物、硫酸塩、リン酸塩又はリン化合物を用いることができる。
 また、反応性スパッタ法により、イオン遮断層3を製造しても良い。つまり、上記金属化合物5を構成する金属元素(銅、ニッケル、チタン、クロム、白金及び金)をスパッタする際に酸素や窒素をチャンバ内に流し、上記金属の酸化物や窒化物からなるイオン捕捉粒子を製造しても良い。
 また、最初に、スパッタ法により金属化合物5を構成する金属元素の粒子からなる金属層を樹脂層上に形成する。その後、上記金属層を形成した樹脂層を酸素雰囲気下(例えば空気中)に放置する。これにより、金属粒子の表面が酸化され、金属含有粒子4と金属化合物5を形成することができる。さらに、上記樹脂層2が吸着している水や酸素によって、樹脂層2からも酸素が拡散するため、イオン遮断層3内の金属粒子の表面を酸化することができる。
 なお、上述のように、イオン遮断層3の厚さは、50nm~1000nmであることが好ましい。これは、この厚さであってもイオンの侵入を抑制することができると共に、この範囲の厚さであることにより、イオン遮断層に含まれる金属粒子の表面全体を酸化させることができるためである。また、イオン遮断層3の厚さをこの範囲にし、金属粒子をあえて疎に配置することで、イオン遮断層3の全体に金属酸化物(金属化合物)を形成することができる。そのため、イオン遮断層3の厚さを50nm~200nm、好ましくは50nm~100nmにすることにより、イオン遮断層3全体をより酸化することができる。なお、上述のようにターゲット材料として上記金属化合物5を構成する材料を用いて、スパッタ法によりイオン遮断層を形成する場合には、上記イオン遮断層3の厚さは上記範囲外であっても構わない。
[二次電池]
 次に、上述した二次電池用集電体を用いた二次電池について詳細に説明する。本発明に係る二次電池用集電体は、積層型(扁平型)電池、巻回型(円筒型)電池など特に制限されず、従来公知のいずれの電池にも適用することができる。同様に二次電池の電解質の形態で区別した場合にも、特に制限はない。例えば、非水電解液をセパレータに含浸させた液体電解質型電池、ポリマー電池とも称される高分子ゲル電解質型電池及び固体高分子電解質(全固体電解質)型電池のいずれにも適用することができる。高分子ゲル電解質及び固体高分子電解質に関しては、これらを単独で使用することもできるし、これら高分子ゲル電解質や固体高分子電解質をセパレータに含浸させて使用することもできる。
 また、電池の電極材料又は電極間を移動する金属イオンで見た場合にも、特に制限されず、公知のいずれの電極材料等にも適用することができる。例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池、ニッケル水素電池などが挙げられ、好ましくは、リチウムイオン二次電池である。これは、リチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度及び高出力密度が達成でき、車両の駆動電源用や補助電源用として優れているためである。
 図4は、双極型リチウムイオン二次電池10の全体構造を模式的に表した概略断面図である。図4に示す双極型リチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材29の内部に封止された構造を有する。
 図4に示すように、双極型リチウムイオン二次電池10の発電要素21は、集電体1と、上記集電体1の一方の面に電気的に結合した正極活物質層13と、集電体1の他方の面に電気的に結合した負極活物質層15とを備えた双極型電極23を複数有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23及び電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と上記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
 隣接する正極活物質層13、電解質層17及び負極活物質層15は、一つの単電池層19を構成する。したがって、双極型リチウムイオン二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部には絶縁部31が配置されている。なお、発電要素21の最外層に位置する正極側の最外層集電体1aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体1bには、片面のみに負極活物質層15が形成されている。ただし、正極側の最外層集電体1aの両面に正極活物質層13が形成されても良い。同様に、負極側の最外層集電体1bの両面に負極活物質層15が形成されても良い。
 さらに、図4に示す双極型リチウムイオン二次電池10では、正極側の最外層集電体1aに隣接するように正極集電板25が配置され、これが延長されて電池外装材29から導出している。一方、負極側の最外層集電体1bに隣接するように負極集電板27が配置され、同様にこれが延長されて電池外装材29から導出している。
 図4に示す双極型リチウムイオン二次電池10においては、通常、各単電池層19の周囲に絶縁部31が設けられる。この絶縁部31は、電池内で隣り合う集電体1同士が接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。このような絶縁部31の設置により、長期間の信頼性及び安全性が確保され、高品質の双極型リチウムイオン二次電池10が提供される。
 なお、単電池層19の積層数は、所望する電圧に応じて調節する。また、双極型リチウムイオン二次電池10では、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層数を少なくしても良い。双極型リチウムイオン二次電池10でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21を電池外装材29に減圧して封入し、正極集電板25及び負極集電板27を電池外装材29の外部に取り出した構造とするのが良い。なお、上記の二次電池は、従来公知の製造方法により製造することができる。以下、本実施形態の双極型リチウムイオン二次電池における、集電体以外の主要な構成部材について説明する。
 (正極(正極活物質層)及び負極(負極活物質層))
 正極活物質層(正極)13は、正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Co-Mn)O及びこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、二種以上の正極活物質が併用されても良い。好ましくは、容量及び出力特性の観点から、リチウム-遷移金属複合酸化物が正極活物質として用いられる。
 負極活物質層(負極)15は、負極活物質を含む。負極活物質としては、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)等の金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、二種以上の負極活物質が併用されても良い。好ましくは、容量及び出力特性の観点から、炭素材料又はリチウム-遷移金属複合酸化物が負極活物質として用いられる。
 各活物質層13、15に含まれるそれぞれの活物質の平均粒子径は特に制限されない。ただ、高出力化の観点からは、正極活物質で3~25μmであり、負極活物質で1~50μmであることが好ましい。
 正極活物質層13及び負極活物質層15は、バインダを含んでも良い。活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂;ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム;エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることが好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く、正極電位及び負極電位の双方に安定である。これらのバインダは、一種単独で用いてもよいし、二種以上を併用しても良い。
 活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではない。バインダ量としては、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 活物質層に含まれうるその他の添加剤としては、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等が挙げられる。
 導電助剤とは、正極活物質層又は負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与する。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。また、イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系及びポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層及び負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整することができる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照される。一例を挙げると、各活物質層の厚さは、2~100μm程度である。
 (電解質層)
 電解質層17を構成する電解質としては、液体電解質又はポリマー電解質を用いることができる。液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられる有機溶媒としては、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、LiBETI等の電極の活物質層に添加される化合物が例示される。
 一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質が注入される構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)及びこれらの共重合体等が挙げられる。このようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解する。
 なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いても良い。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。
 真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解した構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上する。
 ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現する。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せば良い。
 (最外層集電体)
 最外層集電体1a,1bの材質としては、例えば、金属や導電性高分子が採用される。電気の取り出しやすさの観点からは、好適には金属材料が用いられる。具体的には、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅などの金属材料が挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、あるいはこれらの金属の組み合わせのめっき材などが好ましく用いられる。また、金属表面にアルミニウムが被覆された箔であっても良い。なかでも、電子伝導性、電池作動電位という観点からは、アルミニウム及び銅が好ましい。
 (正極集電板及び負極集電板)
 正極集電板25及び負極集電板27を構成する材料は特に制限されず、公知の高導電性材料が用いられる。集電板の構成材料としては、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。そして、軽量、耐食性、高導電性の観点からアルミニウム及び銅などが特に好ましい。なお、正極集電板と負極集電板とでは同一の材質が用いられても良いし、異なる材質が用いられても良い。
 (電池外装材)
 電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースを用いることができる。該ラミネートフィルムには、例えば、ポリプロピレン(PP)、アルミニウム、ナイロンをこの順に積層してなる三層構造のラミネートフィルム等を用いることができる。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
 (絶縁部)
 絶縁部31は、電解質層17からの電解液の漏れによる液絡を防止する。また、絶縁部31は、電池内で隣り合う集電体同士が接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。
 絶縁部31を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性、外部からの水分の浸透に対するシール性(密封性)、電池動作温度下での耐熱性などを有するものであれば良い。例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴムなどが用いられる。なかでも、耐食性、耐薬品性、作り易さ(製膜性)、経済性などの観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁部31の構成材料として好ましく用いられる。
 図5は、二次電池の代表的な形態である積層型の扁平な双極型のリチウムイオン二次電池の外観を表した斜視図である。図5に示すように、積層型の扁平なリチウムイオン二次電池50は長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板58、負極集電板59が引き出されている。発電要素(電池要素)57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素(電池要素)57は、正極集電板58及び負極集電板59を外部に引き出した状態で密封されている。ここで、発電要素(電池要素)57は、先に説明した図4に示す双極型リチウムイオン二次電池10の発電要素(電池要素)21に相当するものである。
 なお、上記リチウムイオン電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のものであっても良いし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであっても良い。上記円筒型の形状のものでは、その外装材にラミネートフィルムを用いても良いし、従来の円筒缶(金属缶)を用いても良い。特に発電要素(電池要素)がアルミニウムラミネートフィルムで外装されることが好ましく、これにより電池を軽量化することができる。
 また、図5に示す集電板58、59の取り出しに関しても、特に制限されるものではない。正極集電板58と負極集電板59とを同じ辺から引き出すようにしても良いし、正極集電板58と負極集電板59をそれぞれ複数に分けて、各辺から取り出しようにしても良い。また、巻回型のリチウムイオン電池では、集電板に代えて、例えば円筒缶(金属缶)を利用して端子を形成すれば良い。
 上記リチウムイオン電池は、電気自動車やハイブリッド電気自動車、燃料電池車、ハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 <実施例I-1>
 (1)集電体の作製
 高分子材料であるポリイミド100質量%に対して、導電性材料であるカーボン粒子(1次粒子径20nm)10質量%を分散させた、厚さ50μmのフィルム状の樹脂層を準備した。具体的には、ポリアミック酸を含むポリイミドを溶媒であるN-メチルピロリドン(NMP)に溶解させ、これにカーボン粒子を分散させて溶融キャスト法によりフィルムを作製し、導電性を有する樹脂層を得た。
 次に、この樹脂層の一方の表面に、スパッタ法を用いて酸化銅粒子を200nmの厚さに堆積し、集電体を作製した。得られた集電体をTEMで観察し、一次粒子径が50~150nmである球状の粒子が堆積されていることを確認した。
 (2)電池の作製
 まず、負極活物質であるハードカーボン(90質量%)及びバインダであるポリフッ化ビニリデン(PVdF)(10質量%)を準備した。次に、これらの固形分に対して、スラリー粘度調整溶媒であるN-メチルピロリドン(NMP)を適量添加して、負極活物質スラリを調製した。
 さらに、正極活物質であるスピネルマンガン酸リチウム(LiMnO)(85質量%)、導電助剤であるアセチレンブラック(5質量%)及びバインダであるPVdF(10質量%)を準備した。そして、これらの固形分に対して、スラリー粘度調整溶媒であるNMPを適量添加して、正極活物質スラリを調製した。
 そして、上記で作製した集電体の酸化銅粒子が配置されている側の表面に、上記負極活物質スラリを塗布し、乾燥させて厚さ30μmの負極活物質層を形成した。次に、集電体の負極活物質層を塗布した側と反対側の表面に、上記正極活物質スラリを塗布し、乾燥させて厚さ30μmの正極活物質層を形成し、双極型電極を作製した。
 次に、この双極型電極の正極活物質層及び負極活物質層の外周部を20mm剥がしとることにより、集電体の表面を露出させた。この際、負極活物質層を形成した面積と、正極活物質層を形成した面積とが同じになり、負極活物質層及び正極活物質層のそれぞれの集電体への投影図が一致するように調整した。
 電解液として、プロピレンカーボネート(PC)とエチレンカーボネートとの等体積混合液に、リチウム塩であるLiPFが1Mの濃度で溶解した溶液を準備した。
 上記で作製した双極型電極2枚を、セパレータを介して正極活物質層と負極活物質層とが対向するように積層し、積層体を作製した。そして、この積層体の三辺をラミネートして、袋状にした。次に、残りの開いた一辺より電解液を正極及び負極が対向した空間に注入し、真空下でラミネートすることで、一層の双極型リチウムイオン二次電池を作製した。
 <比較例I-1>
 実施例I-1の集電体の作製工程において得られた樹脂層のみを集電体として用いたこと以外は、実施例I-1と同様にして双極型リチウムイオン二次電池を作製した。
 <比較例I-2>
 実施例I-1の集電体の作製工程において得られた樹脂層と厚さ5μmの銅箔とを、バッチ式加熱プレス機を用いて、120℃、3MPaで10分間加圧して熱圧着して集電体を作製した。そして、この集電体を用いて、実施例I-1と同様に、双極型リチウムイオン二次電池を作製した。
 <評価>
 実施例I-1、比較例I-1及びI-2で作製した電池を用いて、充放電試験を行った。充放電試験は、まず80mAの電流で各電池の満電流まで定電流(CC)充電し、その後定電圧(CV)で充電し、合わせて10時間充電した。その後、これらの電池を80mAで定電流・定電圧(CC・CV)で放電した後、定電流放電し、これを1サイクルとして、このサイクルを25℃で繰り返し行った(サイクル試験)。
 表1に、サイクル試験の結果として、10サイクル後における放電容量維持率(10サイクル後の放電容量/初期放電容量)を示す。ただし、比較例2で作製した電池では、導電性を有する樹脂層と銅箔との間の接続抵抗が大きく、評価することができなかった。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から、導電性を有する樹脂層と酸化銅粒子とを含む集電体を用いた実施例I-1の電池は、樹脂層のみを集電体として用いた比較例I-1の電池と比べて、高い容量維持率を示すことが明らかになった。これは、酸化銅粒子によって集電体の内部におけるリチウムイオンの吸蔵が抑えられ、吸蔵されたリチウムイオンに起因する電池容量の低下が抑制された結果と考えられる。また、実施例I-1で用いた集電体は、比較例I-2で用いた集電体に比べて、集電体の積層方向の抵抗の増大が抑制されるため、電池性能の低下を抑えることができる。
 <実施例II-1>
 (1)集電体の作製
 実施例I-1と同様に、高分子材料であるポリイミドと、導電性材料であるカーボン粒子(ケッチェンブラック)とを混合し、フィルム状の樹脂層を準備した。
 次に、この樹脂層の一方の表面に、反応性スパッタ法により窒化チタン粒子(TiNx)を100nmの厚さに堆積し、集電体を作製した。なお、窒化チタンは、チタンをターゲットとし、チャンバ内に窒素ガス(N)及びアルゴンガス(Ar)を封入することで形成した。
 (2)電池の作製
 まず、上記集電体を9cmに切断した。次に、切断した集電体を、セパレータをはさんでイオン遮断層側がリチウムを向き合うようにリチウム箔と対向させ、電解液を注入し、電池を作製した。電解液としては、プロピレンカーボネート(PC)とエチレンカーボネートとの等体積混合液に、リチウム塩であるLiPFが1Mの濃度で溶解した溶液を使用した。
 <実施例II-2>
 反応性スパッタ法により、樹脂層上に窒化チタン粒子(TiNx)を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。なお、実施例II-2の場合、チタンと反応させる窒素量を実施例II-1に対し多くするように、チャンバ内の窒素ガス量を調整した。また、表2では、窒素ガス量を低減させた条件の実施例II-1のイオン遮断層成分を「TiNx-L」と表記し、窒素ガス量を増加させた条件の実施例II-2のイオン遮断層成分を「TiNx-H」と表記した。
 <実施例II-3>
 まず、スパッタ法により、厚さ50nmの酸化クロム粒子層と厚さ100nmの酸化銅粒子層を樹脂層上に形成した。次に、前記酸化銅粒子層上に、めっきにより厚さ1000nmのリン化ニッケル(Ni-P)の層を形成することにより、集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <実施例II-4>
 スパッタ法により、樹脂層上に酸化チタン粒子を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <実施例II-5>
 スパッタ法により、樹脂層上に酸化銅粒子を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <実施例II-6>
 スパッタ法により、樹脂層上に酸化クロム粒子を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <実施例II-7>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子(CrN)を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <実施例II-8>
 反応性スパッタ法により、樹脂層上に窒化チタン粒子(CrN)を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。なお、実施例II-8の場合、クロムと反応させる窒素量を実施例II-7に対し少なくするように、チャンバ内の窒素ガス量を調整した。また、表2では、窒素ガス量を増加させた条件の実施例II-7のイオン遮断層成分を「CrN-H」と表記し、窒素ガス量を低減させた条件の実施例II-8のイオン遮断層成分を「CrN-L」と表記した。
 <実施例II-9>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子(CrN)を100nmの厚さに堆積した以外は、実施例II-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例II-1と同様に電池を作製した。
 <評価>
 充放電装置を用いて、実施例II-1~II-9のセルに電位を印加した後、終止電圧を測定した。測定条件は、まず電流値1mAにて定電流放電行い、電圧を60mVに低下させ、その後、電流値100μA、電圧値50mVにて定電流-定電圧放電を16時間行った。なお、電圧が60mVに到達した後に、定電流-定電圧放電で50mVへ低下させる設定を行っていたが、その切り替わるタイミングで電圧が上昇したたため、その結果を自然電位として表2に記載した。
Figure JPOXMLDOC01-appb-T000002
 今回の評価では、定電流放電にて60mVに到達する時間が早いほど、電位応答性が良いと判断でき、さらに終止電圧が指定した50mVに近いほど、リチウムに対する低電位安定性が高いと判断できる。また、上記評価では、定電流放電にて60mVへの到達時間が早いほど、終止電圧が低い関係が認められた。そして、表2に示すように、実施例II-1~II-9のセルは、終止電圧が指定した50mVに近い。特に、実施例II-1~II-3及びII-7~II-9のようなイオン遮断層成分が窒化物及びリン化物の場合は、特に50mVに近い。そのため、実施例II-1~II-9のイオン遮断層の、リチウムに対する低電位安定性が高いことを確認した。
 さらに、実施例II-1~II-9のセルは、自然電位の値が0.4V以上の値を示した。自然電位が0Vに近い値の材料ほどリチウムイオンと近い状態、つまりはリチウムイオンとの反応性(化学的結合)が高いと考えられる。そして、表2に示すように、実施例II-1~II-9のセルは自然電位が高めであったことから、実施例II-1~II-9のイオン遮断層の材料はリチウムとの化学的結合はほとんどなく、低電位領域において安定であることが分かった。
 なお、実施例II-1及びII-2のセル(TiNx)と実施例II-4のセル(TiO)を比較すると、実施例II-1及びII-4のセルの方が自然電位が低い。これは、イオン捕捉粒子の表面にリチウムイオンが引き寄せられ、若干リチウムに電位が近づいたためであると考えられる。
 <実施例III-1>
 (1)集電体の作製
 実施例I-1と同様に、高分子材料であるポリイミドと、導電性材料であるカーボン粒子(ケッチェンブラック)とを混合し、厚さ50μmのフィルム状の樹脂層を準備した。次に、この樹脂層の一方の表面に、スパッタ法により酸化銅粒子を200nmの厚さに堆積し、集電体を作製した。
 (2)電池の作製
 集電体の酸化銅粒子が配置されている側の表面に、実施例I-1で調製した負極活物質スラリを塗布し、80℃で乾燥させて厚さ30μmの負極活物質層を形成した。次に、集電体の負極活物質層を塗布した側と反対側の表面に、実施例I-1で調製した正極活物質スラリを塗布し、80℃で乾燥させて厚さ30μmの正極活物質層を形成した。このようにして、本実施例の双極型電極を作成した。
 次に、実施例I-1と同様に、この双極型電極の正極活物質層及び負極活物質層ともに外周部は20mmを剥がしとることにより集電体の表面を露出させた。そして、この双極型電極2枚を、セパレータを介して正極活物質層と負極活物質層とが対向するように積層し、積層体を作製した。さらに、この積層体の三辺をラミネートして、袋状にした。次に、残りの開いた一辺より、実施例I-1で調製した電解液を正極及び負極が対向した空間に注液し、真空下でラミネートすることで、一層の双極型リチウムイオン二次電池を作製した。
 <実施例III-2>
 スパッタ法により、樹脂層上に酸化クロム粒子を200nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-3>
 スパッタ法により、樹脂層上に酸化チタン粒子を200nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-4>
 反応性スパッタ法により、樹脂層上に窒化チタン粒子を100nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-5>
 反応性スパッタ法により、樹脂層上に窒化チタン粒子を50nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。なお、実施例III-5の場合、チタンと反応させる窒素量を実施例III-4に対し少なくするように、チャンバ内の窒素ガス量を調整した。また、表3では、窒素ガス量を増加させた条件の実施例III-4のイオン遮断層成分を「TiNx-H」と表記し、窒素ガス量を低減させた条件の実施例III-5のイオン遮断層成分を「TiNx-L」と表記した。
 <実施例III-6>
 まず、スパッタ法により、厚さ50nmの酸化クロム粒子層と厚さ100nmの酸化銅粒子層を樹脂層上に形成した。次に、前記酸化銅粒子層上に、めっきにより厚さ1000nmのリン化ニッケル(Ni-P)の層を形成することにより、集電体を作製した。さらに、得られた集電体を用いて、実施例III-1と同様にセルを作製した。
 <実施例III-7>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子(CrN)を100nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-8>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子(CrN)を100nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。なお、実施例III-8の場合、クロムと反応させる窒素量を実施例III-7に対し少なくするように、チャンバ内の窒素ガス量を調整した。また、表3では、窒素ガス量を増加させた条件の実施例III-7のイオン遮断層成分を「CrN-H」と表記し、窒素ガス量を低減させた条件の実施例III-8のイオン遮断層成分を「CrN-L」と表記した。
 <実施例III-9>
 実施例III-7と同様にして樹脂層上に窒化クロム粒子(CrN)を50nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-10>
 実施例III-8と同様にして樹脂層上に窒化クロム粒子(CrN)を50nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <実施例III-11>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子(CrN)を100nmの厚さに堆積した以外は、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。
 <評価>
 実施例III-1~III-11で作製したそれぞれの電池に0.1C(8mA)の充放電を行った後、電池内のガス抜きを行い、25℃、1Cにて容量確認を実施した。その後、実施例III-5の電池以外は25℃にて、実施例III-5の電池は45℃にてサイクル試験を行った。サイクル試験は、まず1C(80mA)の電流で4.2Vまで定電流、定電圧で合計2.5時間充電し、次に2.5Vまで定電流放電する。これを1サイクルとし、50サイクルまで実施した。そして、電池内のガス抜き後一回目の放電容量を1とし、50サイクル目の放電容量の割合を容量維持率として、各実施例の容量維持率を表3に記載した。
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例III-1~III-11の電池は容量維持率が80%以上であり、特に実施例III-5及びIII-6の電池では容量維持率が90%以上と高い値を示した。これは、本発明に係るイオン捕捉粒子の耐電位性が優れることに加えて、イオン捕捉粒子とリチウムイオンとの相互作用により、リチウムイオンが樹脂層に到達しにくくしているのではないかと考えられる。
 さらに、図6には、実施例III-1(CuO)、III-2(Cr)、III-3(TiO)、III-5(TiN)の電池及び集電体として樹脂層のみを使用した電池のサイクル数と容量維持率との関係を示す。図6に示すように、各実施例の電池は、サイクル数が増加しても容量維持率の低下が抑えられている。しかし、イオン遮断層がない樹脂層のみの集電体は、サイクル数が増加と共に容量維持率が著しく低下しており、50サイクル目では容量維持率が10%となった。これは、集電体内部にリチウムイオンが吸蔵され、電極間でのリチウムイオンの移動が効率的に行われなくなったために、電池性能が低下したと考えられる。
 <実施例IV>
 実施例I-1と同様に、高分子材料であるポリイミドと、導電性材料であるカーボン粒子(ケッチェンブラック)とを混合し、厚さ50μmのフィルム状の樹脂層を複数準備した。次に、この樹脂層の一方の表面に、スパッタ法により酸化チタン粒子(TiO)を20nmと200nmの厚さに堆積し、集電体をそれぞれ作製した。
 さらに、この樹脂層の一方の表面に、反応性スパッタ法により窒化チタン粒子(TiNx-H)を20nmと200nmの厚さに堆積した集電体をそれぞれ作製した。なお、窒化チタン粒子を作製する際には、チャンバ内の窒素ガス量が多い状態とした。
 また、この樹脂層の一方の表面に、反応性スパッタ法により窒化チタン粒子(TiNx-L)を20nmと200nmの厚さに堆積した集電体をそれぞれ作製した。なお、窒化チタン粒子を作製する際には、チャンバ内の窒素ガス量が少ない状態とした。
 このように作製した六種類の集電体と、イオン遮断層がない樹脂層のみの集電体とを用い、実施例III-1と同様にして双極型リチウムイオン二次電池を作製した。さらに、実施例III-1~III-11と同様のサイクル試験を行い、容量維持率を測定した。但し、本実施例のサイクル試験では50サイクルではなく、10サイクルとした。測定結果を図7に示す。図7の縦軸は、一回目の放電容量を1とした場合の10サイクル目の放電容量の割合を容量維持率として示し、横軸にはイオン遮断層の厚さを示した。図7より、イオン遮断層の厚さが50nm以上で容量維持率が飽和する傾向を確認されたため、樹脂層上にイオン遮断層の厚さは50nm以上が好ましいことが分かった。
 <実施例V-1>
 (1)集電体の作製
 実施例I-1と同様に、高分子材料であるポリイミドと、導電性材料であるカーボン粒子(ケッチェンブラック)とを混合し、厚さ50μmのフィルム状の樹脂層を準備した。次に、この樹脂層の一方の表面に、スパッタ法により酸化銅粒子を50nmの厚さに堆積し、集電体を作製した。
 (2)電池の作製
 まず、負極活物質であるグラファイト(MCMB)(90質量部)及びバインダであるPVdF(10質量部)を準備した。次に、これらの固形分に対して、スラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量添加して、負極活物質スラリーを調製した。
 さらに、正極活物質であるLiNiO2(85質量部)、導電助剤のアセチレンブラック(5質量部)及びバインダのPVdF(10質量部)を準備した。そして、これらの固形文に対して、スラリー粘度調整溶媒であるNMPを適量添加して、正極活物質スラリーを調製した。
 調製した負極活物質スラリーを、上記負極集電体の片面(イオン遮断層がある面)にコーティング装置を用いて塗布し、乾燥させ、ロールプレス機を用いてプレス処理を施し、負極活物質層(厚さ91μm)を形成した。次に、調製した上記正極活物質スラリーを、上記集電体の樹脂面(イオン遮断層がない面)にコーティング装置を用いて塗布し、乾燥させ、ロールプレス機を用いてプレス処理を施し、正極活物質層(厚さ76μm)を形成した。
 次に、セパレータとして、アラミド製微繊維膜(厚さ30μm)を準備した。また、電解液として、エチレンカーボネート(EC)とエチルエチルカーボネート(MEC)との等体積混合液にリチウム塩であるLiPFが1Mの濃度に溶解した溶液を準備した。
 上記で作製した双極型電極を9枚及びセパレータ8枚、電極部がくり抜かれたシール材(PP/PEN/PP(20μm/30μm/20μm))を、正極活物質層と負極活物質層とがセパレータを介して向き合うように順次積層することにより、発電要素を作製した。
 次に、電圧モニタ用フレキを挟み込み、3辺を熱シールにて封止し、残りの一辺部から上記電解液を注入して、封止した。得られた発電要素をアルミラミネートシートからなる電池外装材に入れ、双極型リチウムイオン二次電池を完成させた。
 <実施例V-2>
 スパッタ法により、樹脂層上に酸化チタン粒子を50nmの厚さに堆積した以外は、実施例V-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例V-1と同様に双極型リチウムイオン二次電池を作製した。
 <実施例V-3>
 反応性スパッタ法により、樹脂層上に窒化チタン粒子を50nmの厚さに堆積した以外は、実施例V-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例V-1と同様に双極型リチウムイオン二次電池を作製した。
 <実施例V-4>
 反応性スパッタ法により、樹脂層上に窒化ジルコニウム粒子を50nmの厚さに堆積した以外は、実施例V-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例V-1と同様に双極型リチウムイオン二次電池を作製した。
 <実施例V-5>
 反応性スパッタ法により、樹脂層上に窒化クロム粒子を50nmの厚さに堆積した以外は、実施例V-1と同様に集電体を作製した。さらに、得られた集電体を用いて、実施例V-1と同様に双極型リチウムイオン二次電池を作製した。
 <比較例V-1>
 集電体として、厚さ20μmのステンレス箔(SUS箔)を用いて、実施例V-1と同様に双極型リチウムイオン二次電池を作製した。
 <評価(短絡試験による放電時の温度上昇確認試験)>
 実施例V-1~V-5及び比較例V-1のそれぞれの電池を、組み立て後0.5Cで満充電状態(4.2V:電池端子電圧)まで初回充電し、満充電状態で2日間エージングした。なお、初回充電した際の総電圧は、33.6Vであった。その後、1Cで2.5V(電池端子電圧)まで初回放電して容量測定を行った。なお、初回放電した際の総電圧は、20.0Vであった。その後、電池を0.5Cで満充電状態まで充電後、短絡試験として電池中央部に直径3mmの導電性部材(金属針)を貫通させた。次に、100Cの放電を2.5V(電池端子電圧)まで行い、放電時の電池表面温度を測定した。電池表面温度は、電池のラミネート外装材の中央部(図5のGの箇所)に熱電対を取り付けて、電池の最大上昇温度を測定した。測定結果を表4に示す。なお、表4では、比較例V-1の最高温度を1とした場合の実施例V-1~V-5の最高温度を相対温度として示した。
Figure JPOXMLDOC01-appb-T000004
 表4より、イオン遮断層として酸化銅及び酸化チタンを用いた場合には、SUS箔に比べ、温度上昇を40%抑制することができた。これは、酸化銅及び酸化チタンの電気抵抗により、ジュール熱の発生が抑制されたためと考えられる。さらに、イオン遮断層として、窒化チタン、窒化ジルコニウム及び窒化クロムを用いた場合には、SUS箔に比べ、温度上昇を60%以上抑制することができた。これは、温度上昇時に窒化チタン、窒化ジルコニウム及び窒化クロムの脱窒素反応及び酸化反応が起こり、酸化銅、酸化チタン及び酸化クロムなどの絶縁体が生成される。その結果、集電体の電気抵抗が上昇し、ジュール熱の発生を抑制することで、電池の温度上昇が抑制されたと考えられる。
 図8には、実施例V-1(CuO)、V-2(TiO)、V-3(TiNx)、比較例V-1(SUS箔)の電池及び集電体として樹脂層のみを使用した電池の相対温度と時間との関係を示す。なお、図8の縦軸は、実施例V-2(TiO)の最大上昇温度を1とした場合の相対温度を示している。また、図8の横軸では、電池中央部に導電性部材を貫通させ、100Cの放電を開始した時間を0分とした。図8に示すように、比較例V-1の場合は、放電開始後、すぐに最大上昇温度が1.2を超え、1.6以上となり、短絡時の温度上昇が極めて高いことが分かる。しかし、各実施例の場合は比較例に比べ、温度上昇が低く抑えられる。特に実施例V-3(TiNx)は、温度上昇が極めて低く、短絡時の安全性が確保されることが分かる。なお、集電体として樹脂層のみを使用した場合も温度上昇が低いが、図6に示すように、樹脂層のみの集電体は容量維持率が低いため、電池性能を確保することができない。
 <実施例V-6>
 (1)集電体の作製
 実施例I-1と同様に、高分子材料であるポリイミド(PI)と、導電性材料であるカーボン粒子(ケッチェンブラック)とを混合し、厚さ20μmのフィルム状の樹脂層を準備した。次に、この樹脂層の両面に、スパッタ法により酸化銅粒子を100nmの厚さに堆積し、負極集電体を作製した。
 また、上記と同様の厚さ20μmのフィルム状の樹脂層を準備し、スパッタ法によりアルミニウム粒子を100nmの厚さに堆積し、正極集電体を作製した。
 (2)電池の作製
 実施例V-1と同様に、正極活物質スラリー及び負極活物質スラリーを調製した。そして、調製した負極活物質スラリーを、上記負極集電体の両表面にコーティング装置を用いて塗布し、乾燥させ、ロールプレス機を用いてプレス処理を施した。これにより、負極集電体の両表面に負極活物質層(片面厚さ75μm)を形成した。そして、10cm×5cmのサイズにカットし、負極集電体にニッケル製の負極集電板を溶接して、負極を作製した。
 また、調製した正極活物質スラリーを、上記正極集電体の両表面にコーティング装置を用いて塗布し、乾燥させ、ロールプレス機を用いてプレス処理を施した。これにより、正極集電体の両表面に正極活物質層(片面厚さ110μm)を形成した。そして、9.5cm×4.5cmのサイズにカットし、正極集電体にアルミニウム製の正極集電板を溶接して、正極を作製した。
 セパレータとして、ポリエチレン製微多孔質膜(厚さ:30μm、サイズ:10.5cm×5.5cm)を準備した。また、電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DMC)との等体積混合液にリチウム塩であるLiPFが1Mの濃度に溶解した溶液を準備した。
 上記で作製した正極11枚、負極10枚及びセパレータ11枚を、隣接する正極及び負極同士の正極活物質層と負極活物質層とがセパレータを介して向き合うように順次積層して発電要素を作製した。
 次に、各正極集電板及び負極集電板の一部が外部に導出するように、得られた発電要素をアルミラミネートシートからなる電池外装材に入れた。その後、上記電解液を注入して、封止することにより、図5に示す積層型のリチウムイオン電池を完成させた。
 (3)組電池の作製
 上記で得られた3つのリチウムイオン電池を、図9に示すように、セル接続バスバー60を用いて直列に連結して、組電池を作製し、後述する短絡試験に用いた。
 <実施例V-7>
 まず、実施例I-5で使用した厚さ20μmのフィルム状の樹脂層の両面に、スパッタ法により酸化銅粒子を100nmの厚さに堆積した。次に、反応性スパッタ法により、酸化銅粒子層上に窒化チタン粒子を100nmの厚さに堆積して、負極集電体を作製した。そして、得られた負極集電体を用いて、実施例V-6と同様に組電池を作製した。
 <実施例V-8>
 まず、実施例I-5で使用した厚さ20μmのフィルム状の樹脂層の両面に、スパッタ法により酸化銅粒子を100nmの厚さに堆積した。次に、反応性スパッタ法により、酸化銅粒子層上に窒化ジルコニウム粒子を100nmの厚さに堆積して、負極集電体を作製した。そして、得られた負極集電体を用いて、実施例V-6と同様に組電池を作製した。
 <比較例V-2>
 負極集電体として、厚さ10μmの銅箔を用いた以外は、実施例V-6と同様に組電池を作製した。
 <評価(短絡試験による放電時の温度上昇確認試験)>
 実施例V-6~V-8及び比較例V-2の組電池を、組み立て後0.5Cで満充電状態(4.2V:電池端子電圧)まで初回充電し、満充電状態で1週間エージング後、1Cで2.0V(電池端子電圧)まで初回放電して容量測定を行った。その後、各組電池を0.5Cで満充電状態まで充電後、短絡試験として組電池全体に直径3mmの導電性部材(金属針)を貫通させた。次に、100Cの放電を2.0V(電池端子電圧)まで行い、放電時の電池表面温度を測定した。電池表面温度は、電池のラミネート外装材の中央部(図9の符号Gの箇所)に熱電対を取り付けて電池の最大上昇温度を測定した。なお、組電池では、3つの電池全てに熱電対を取り付け、各電池の最大上昇温度の平均値を電池表面温度とした。実験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、イオン遮断層として酸化銅を用いた場合には、銅箔に比べ10%程度温度上昇を抑制することができた。これは、酸化銅及び酸化チタンの電気抵抗により、ジュール熱の発生が抑制されたためと考えられる。さらに、イオン遮断層として、酸化銅と共に窒化チタン及び窒化ジルコニウムを用いた場合には、銅箔に比べ温度上昇を30%以上抑制することができた。これも実施例V-3及びV-4と同様に、温度上昇時に酸化チタンや酸化ジルコニウムが生成され。その結果、電池の温度上昇が抑制されたと考えられる。
 特願2009-095196号 (出願日:2009年4月9日)及び特願2009-251112号 (出願日:2009年10月30日)の全内容は、ここに引用される。
 以上、実施形態及び実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。具体的には、図1(a)には、集電体におけるイオン遮断層と電極が接触している実施形態を示したが、これらの間には、他の層が介在しても良い。
 なお、上述では、本発明の集電体におけるイオンを遮断するメカニズムとして、イオン遮断層における金属化合物がイオンを吸着するため、イオンが樹脂層に到達しにくくなると説明した。しかし、本発明の集電体が、他のメカニズムによりイオンの吸蔵の抑制に寄与していたとしても、本発明の技術的範囲は何ら影響を受けることはない。
 本発明によれば、イオン遮断層が充電時のイオンの侵入を物理的に抑制し、さらにイオン捕捉粒子表面の金属化合物がイオンと相互作用することで、イオンを樹脂層に到達しにくくする。そのため、導電性を有する樹脂層を含む集電体の内部におけるイオンの吸蔵を低減することができる。
 1 集電体
 2 樹脂層
 3 イオン遮断層
 4 金属含有粒子
 5 金属化合物
 6 イオン捕捉粒子

Claims (17)

  1.  導電性を有する樹脂層と、
     前記樹脂層の表面に配置されるイオン遮断層と、
     を備え、
     前記イオン遮断層は、金属含有粒子の表面に金属化合物が存在するイオン捕捉粒子を含み、
     前記イオン捕捉粒子は、前記樹脂層と前記イオン遮断層との界面から前記イオン遮断層の表面に向かって連続して存在することを特徴とする二次電池用集電体。
  2.  前記金属含有粒子が、単一の金属元素からなる純金属粒子、複数の金属元素からなる合金粒子、又は金属元素と非金属元素とからなる金属化合物粒子であることを特徴とする請求項1に記載の二次電池用集電体。
  3.  前記金属含有粒子が、銅、ニッケル、チタン、クロム、白金及び金からなる群から選ばれる少なくとも一つの金属元素を含有することを特徴とする請求項1又は2に記載の二次電池用集電体。
  4.  前記金属化合物粒子が、金属酸化物、金属窒化物、金属炭化物、金属硫酸塩、金属リン酸塩及び金属リン化合物からなる群から選ばれる少なくとも一つを含有することを特徴とする請求項2又は3に記載の二次電池用集電体。
  5.  前記金属化合物が、金属酸化物、金属窒化物、金属炭化物、金属硫酸塩、金属リン酸塩及び金属リン化合物からなる群から選ばれる少なくとも一つを含有することを特徴とする請求項1乃至3のいずれか一項に記載の二次電池用集電体。
  6.  前記金属化合物が金属酸化物からなることを特徴とする請求項5に記載の二次電池用集電体。
  7.  前記金属含有粒子が銅、チタン及びクロムのいずれかからなる粒子であり、前記金属化合物が前記金属含有粒子を構成する金属元素の酸化物からなることを特徴とする請求項1乃至6のいずれか一項に記載の二次電池用集電体。
  8.  前記金属含有粒子が金属化合物粒子であり、
     前記イオン捕捉粒子における前記金属化合物粒子と前記金属化合物とが、同じ材料からなることを特徴とする請求項1乃至6のいずれか一項に記載の二次電池用集電体。
  9.  前記イオン捕捉粒子がリン化ニッケルからなることを特徴とする請求項8に記載の二次電池用集電体。
  10.  前記金属化合物が、混合原子価を取り得る化合物であることを特徴とする請求項1乃至5のいずれか一項に記載の二次電池用集電体。
  11.  前記混合原子価を取り得る化合物が、3d遷移元素又は4d遷移元素の窒化物であることを特徴とする請求項10に記載の二次電池用集電体。
  12.  前記3d遷移元素又は4d遷移元素の窒化物が、窒化チタン、窒化クロム又は窒化ジルコニウムであることを特徴とする請求項10又は11に記載の二次電池用集電体。
  13.  前記イオン遮断層の厚さが、50nm~1000nmであることを特徴とする請求項1乃至12のいずれか一項に記載の二次電池用集電体。
  14.  前記イオン遮断層が、前記金属含有粒子の表面に金属元素と非金属元素とからなる金属化合物が存在する第一イオン捕捉粒子からなる層と、前記金属含有粒子の表面に混合原子価を取り得る化合物が存在する第二イオン捕捉粒子からなる層との積層構造であることを特徴とする請求項1乃至13のいずれか一項に記載の二次電池用集電体。
  15.  前記樹脂層がポリイミドを含有することを特徴とする請求項1乃至14のいずれか一項に記載の二次電池用集電体。
  16.  請求項1乃至15のいずれか一項に記載の二次電池用集電体と、
     前記集電体の一方の面に形成される正極と、
     前記集電体の他方の面に形成される負極と
     前記正極と負極との間に介在する電解質層と、
     を備え、
     前記負極が、前記二次電池用集電体におけるイオン遮断層側の面に配置されることを特徴とする二次電池。
  17.  前記二次電池が、双極型リチウムイオン二次電池であることを特徴とする請求項16に記載の二次電池。
PCT/JP2010/056452 2009-04-09 2010-04-09 二次電池用集電体及びこれを用いた二次電池 WO2010117060A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/263,241 US10193159B2 (en) 2009-04-09 2010-04-09 Current collector for secondary battery and secondary battery using the same
MX2011010546A MX2011010546A (es) 2009-04-09 2010-04-09 Colector para bateria secundaria y bateria secundaria que utiliza el mismo.
BRPI1014577-0A BRPI1014577B1 (pt) 2009-04-09 2010-04-09 Coletor de corrente para bateria secundária e bateria secundária que utiliza o mesmo
RU2011145292/07A RU2482573C1 (ru) 2009-04-09 2010-04-09 Токосъемник для вторичной батареи и вторичная батарея с его использованием
KR1020137031070A KR101611017B1 (ko) 2009-04-09 2010-04-09 2차 전지용 집전체 및 이를 사용한 2차 전지
JP2011508399A JP5488590B2 (ja) 2009-04-09 2010-04-09 二次電池用集電体及びこれを用いた二次電池
CN201080015740.2A CN102388491B (zh) 2009-04-09 2010-04-09 二次电池用集电体及使用其的二次电池
EP10761759.9A EP2418720B1 (en) 2009-04-09 2010-04-09 Collector for secondary battery, and secondary battery using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009095196 2009-04-09
JP2009-095196 2009-04-09
JP2009-251112 2009-10-30
JP2009251112 2009-10-30

Publications (1)

Publication Number Publication Date
WO2010117060A1 true WO2010117060A1 (ja) 2010-10-14

Family

ID=42936341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056452 WO2010117060A1 (ja) 2009-04-09 2010-04-09 二次電池用集電体及びこれを用いた二次電池

Country Status (9)

Country Link
US (1) US10193159B2 (ja)
EP (1) EP2418720B1 (ja)
JP (1) JP5488590B2 (ja)
KR (2) KR101611017B1 (ja)
CN (1) CN102388491B (ja)
BR (1) BRPI1014577B1 (ja)
MX (1) MX2011010546A (ja)
RU (1) RU2482573C1 (ja)
WO (1) WO2010117060A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031690A1 (ja) * 2014-08-25 2017-07-13 日産自動車株式会社 電極
WO2018110554A1 (ja) * 2016-12-14 2018-06-21 日産自動車株式会社 双極型二次電池
JP2018098206A (ja) * 2016-12-14 2018-06-21 日産自動車株式会社 双極型二次電池
JP2020136265A (ja) * 2019-02-14 2020-08-31 トヨタ自動車株式会社 電極、全固体電池および電極の製造方法
WO2020250078A1 (ja) * 2019-06-12 2020-12-17 株式会社半導体エネルギー研究所 固体二次電池
JP7047047B1 (ja) 2020-11-19 2022-04-04 グンゼ株式会社 集電体
WO2022107605A1 (ja) * 2020-11-19 2022-05-27 グンゼ株式会社 集電体

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053061B (zh) * 2010-08-09 2015-05-06 株式会社村田制作所 层叠型固体电池
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP5717461B2 (ja) * 2011-02-17 2015-05-13 株式会社東芝 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
US9099252B2 (en) * 2012-05-18 2015-08-04 Nokia Technologies Oy Apparatus and associated methods
EP2738831B1 (en) * 2012-11-29 2017-10-25 The Swatch Group Research and Development Ltd. Electrochemical cell
US10381690B2 (en) * 2013-08-14 2019-08-13 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2016194995A1 (ja) * 2015-06-04 2016-12-08 東亞合成株式会社 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
KR102106981B1 (ko) 2017-09-20 2020-05-06 엠티코리아(주) 선박의 해치 구조
CN111656576B (zh) * 2018-03-09 2023-07-07 松下知识产权经营株式会社 二次电池用正极、二次电池用正极集电体和二次电池
CN109411764B (zh) * 2018-10-30 2021-06-11 东南大学 一种氮化镍-泡沫镍复合锂金属负极集流体的制备方法
CN111564657B (zh) * 2019-02-14 2023-09-01 丰田自动车株式会社 电极、全固体电池和电极的制造方法
RU2732070C1 (ru) * 2020-03-28 2020-09-11 Общество с ограниченной ответственностью «Энергоэлемент» Модуль литий-ионной аккумуляторной батареи
JP2022139307A (ja) * 2021-03-11 2022-09-26 本田技研工業株式会社 固体電池
CN113871626B (zh) * 2021-09-06 2023-03-14 湖南领湃达志科技股份有限公司 一种二次电池双极集流体及其制造工艺
CN116131423A (zh) * 2021-11-12 2023-05-16 通用汽车环球科技运作有限责任公司 双极电容器辅助电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512722A (ja) * 2002-12-27 2006-04-13 アベスター・リミテツド・パートナーシツプ 電気化学セル用集電体およびこれを用いた電気化学的発電装置
JP2006190649A (ja) 2004-12-07 2006-07-20 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2007335206A (ja) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd 双極型電池
JP2008192364A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd リチウム二次電池用負極集電体および負極ならびにリチウム二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
CA2228095C (en) * 1997-01-28 2002-01-08 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
FR2817387B1 (fr) * 2000-11-27 2003-03-21 Ceca Sa Cellules de stockage d'energie a double couche electrochimique a haute densite d'energie et forte densite de puissance
JP2002175837A (ja) * 2000-12-06 2002-06-21 Nisshinbo Ind Inc 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ
WO2003009920A1 (en) * 2001-07-25 2003-02-06 Biosource, Inc. Electrode array for use in electrochemical cells
US7086726B2 (en) * 2002-04-09 2006-08-08 Fuji Photo Film Co., Ltd. Inkjet recording method
CN100483831C (zh) 2004-12-07 2009-04-29 日产自动车株式会社 双极性电极电池组及其制备方法
US7615314B2 (en) * 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
KR100814880B1 (ko) * 2006-11-22 2008-03-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
JP5200367B2 (ja) 2006-11-29 2013-06-05 日産自動車株式会社 双極型電池用電極
JP5214202B2 (ja) * 2007-09-21 2013-06-19 パナソニック株式会社 非水電解質二次電池およびその製造方法
KR20090061300A (ko) * 2007-12-11 2009-06-16 삼성전자주식회사 복합형 리튬 2차 전지 및 이를 채용한 전자 장치
US8057710B2 (en) * 2009-03-30 2011-11-15 Lg Chem, Ltd. Composite for electrode active material and secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512722A (ja) * 2002-12-27 2006-04-13 アベスター・リミテツド・パートナーシツプ 電気化学セル用集電体およびこれを用いた電気化学的発電装置
JP2006190649A (ja) 2004-12-07 2006-07-20 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2007335206A (ja) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd 双極型電池
JP2008192364A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd リチウム二次電池用負極集電体および負極ならびにリチウム二次電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031690A1 (ja) * 2014-08-25 2017-07-13 日産自動車株式会社 電極
WO2018110554A1 (ja) * 2016-12-14 2018-06-21 日産自動車株式会社 双極型二次電池
JP2018098206A (ja) * 2016-12-14 2018-06-21 日産自動車株式会社 双極型二次電池
JP2020136265A (ja) * 2019-02-14 2020-08-31 トヨタ自動車株式会社 電極、全固体電池および電極の製造方法
JP7259777B2 (ja) 2019-02-14 2023-04-18 トヨタ自動車株式会社 電極、全固体電池および電極の製造方法
WO2020250078A1 (ja) * 2019-06-12 2020-12-17 株式会社半導体エネルギー研究所 固体二次電池
JP7047047B1 (ja) 2020-11-19 2022-04-04 グンゼ株式会社 集電体
WO2022107605A1 (ja) * 2020-11-19 2022-05-27 グンゼ株式会社 集電体
WO2022107603A1 (ja) * 2020-11-19 2022-05-27 グンゼ株式会社 集電体
JP2022081129A (ja) * 2020-11-19 2022-05-31 グンゼ株式会社 集電体

Also Published As

Publication number Publication date
RU2482573C1 (ru) 2013-05-20
KR101611017B1 (ko) 2016-04-08
EP2418720A4 (en) 2014-06-11
US10193159B2 (en) 2019-01-29
BRPI1014577A2 (pt) 2016-04-26
EP2418720B1 (en) 2018-06-06
EP2418720A1 (en) 2012-02-15
CN102388491B (zh) 2016-10-12
BRPI1014577B1 (pt) 2019-09-17
CN102388491A (zh) 2012-03-21
JP5488590B2 (ja) 2014-05-14
MX2011010546A (es) 2011-10-19
KR20120022783A (ko) 2012-03-12
KR20140002805A (ko) 2014-01-08
US20120034521A1 (en) 2012-02-09
JPWO2010117060A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5488590B2 (ja) 二次電池用集電体及びこれを用いた二次電池
JP6346290B2 (ja) 積層型電池およびその製造方法
JP6620102B2 (ja) 電極
JP5770553B2 (ja) 双極型リチウムイオン二次電池用集電体
JP5494089B2 (ja) 双極型電池のシール構造
JP5375978B2 (ja) 双極型リチウムイオン二次電池用集電体
JP5768967B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN106415896B (zh) 电器件
KR101660100B1 (ko) 전기 디바이스용 부극 활물질
JP5418088B2 (ja) リチウムイオン二次電池用集電体
KR20130139370A (ko) 전기 디바이스용 부극 활물질, 전기 디바이스용 부극 및 전기 디바이스
WO2014080885A1 (ja) 電気デバイス用負極、及びこれを用いた電気デバイス
KR20140024429A (ko) 전기 디바이스용 부극 활물질
JP5402116B2 (ja) 双極型リチウムイオン二次電池用集電体
JP6958272B2 (ja) 非水電解質二次電池
JP5593984B2 (ja) 二次電池用集電体
JP2021072262A (ja) 全固体電池
JP2021048045A (ja) 全固体電池
JP7499043B2 (ja) 非水電解質二次電池
JP2021072261A (ja) 全固体電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015740.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13263241

Country of ref document: US

Ref document number: MX/A/2011/010546

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024512

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4370/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011145292

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010761759

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014577

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014577

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111007