JP2008192364A - リチウム二次電池用負極集電体および負極ならびにリチウム二次電池 - Google Patents

リチウム二次電池用負極集電体および負極ならびにリチウム二次電池 Download PDF

Info

Publication number
JP2008192364A
JP2008192364A JP2007023131A JP2007023131A JP2008192364A JP 2008192364 A JP2008192364 A JP 2008192364A JP 2007023131 A JP2007023131 A JP 2007023131A JP 2007023131 A JP2007023131 A JP 2007023131A JP 2008192364 A JP2008192364 A JP 2008192364A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
current collector
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023131A
Other languages
English (en)
Inventor
Hiroshi Higuchi
洋 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007023131A priority Critical patent/JP2008192364A/ja
Publication of JP2008192364A publication Critical patent/JP2008192364A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】負極極板の変形および負極活物質の極板からの脱落を効果的に抑制し、サイクル特性を向上させる。
【解決手段】本発明のリチウム二次電池用負極集電体10は、導電性基板1と、導電性基板1の表面の少なくとも一部に設けられた導電層2とを備えている。導電層2は、リチウムと反応しない金属化合物を主として含有する材料から形成されており、1μm以上10μm以下の厚さを有している。
【選択図】図1

Description

本発明は、サイクル特性に優れたリチウム二次電池用負極集電体およびそれを用いたリチウム二次電池用負極極板、ならびにリチウム二次電池に関する。
携帯用通信機器などの小型電子・電気機器の需要は近年益々増加しており、それに使用される二次電池の生産量も伸長している。なかでも、エネルギー密度の高いリチウム二次電池の生産量の伸長は顕著である。一方、小型電子・電気機器の用途が多様化し、さらに小型化が図られるにつれて、二次電池に対する一層の性能向上のニーズが高まっている。具体的には、放電容量の増大と寿命の延長がますます求められている。
現在市販されているリチウム二次電池は、正極にLiCoO2などのLi含有複合酸化物を用い、負極に黒鉛、正極集電体にはアルミニウム箔、負極集電体にはCu箔を用いている。黒鉛からなる負極活物質では、LiC6の組成までしかリチウムイオンを吸収できないため、リチウムイオンの吸収および放出の体積当たり容量は理論的に843mAh/cm3が最大値である。この値は金属リチウムの理論容量の約1/3に過ぎない。
体積当たり容量が大きく、最近実用化が試みられている負極活物質として、Al、Ga、In、Si、Ge、Sn、Pb、As、Sb、Biといった金属元素、あるいは、それらの合金が知られている。例えばSi、Ge、Sn、Al、Sbに関する理論的な体積当たり容量は、以下の表1に示す通りである。
Figure 2008192364
上記負極活物質の体積当たり容量は、いずれも、黒鉛などの炭素系活物質の体積当たり容量よりも格段に大きいが、これらの材料では、リチウムイオンの吸収・放出反応の際に生じる線膨張率が約50%以上になる。この線膨張率は、従来の炭素系負極材料の線膨張率に比べて格段に大きい。このため、上記活物質を負極集電体上に形成すると、リチウムイオンの吸収・放出反応時に負極活物質が大きく膨張収縮するため、負極集電体に加わる応力が大きくなり、負極集電体の変形や破断が発生するという課題があった。
この課題を解決するため、負極集電体の材料をCu以外の材料に換えることにより、集電体の機械的強度を高める試みが多くなされている(特許文献1、2)。
なお、特許文献3は、負極活物質と負極集電体との密着性を向上させることを目的として、負極活物質と負極集電体との間に導電性中間層を配置することを開示している。
特開2003−203637号公報 特開2003−7305号公報 特開2006−269242号公報
特許文献1は、負極活物質の膨張収縮に対応するため、破断限界が高い材料からなる負極集電体を使用することを開示している。このような負極集電体を使用することにより、リチウムイオンを吸収して負極極板が大きく伸びても、破断を防止する効果が得られるが、負極極板の伸びそのものを抑制することはできていない。負極極板の伸びは、負極極板の見かけ寸法の伸びや皺のような3次元的変形として現れる。このような負極極板の変形が生じると、負極活物質が極板から脱落し、容量が低下し、サイクル特性が劣化する要因となる。
特許文献2は、引っ張り強さ400N/mm2以上(0.4GPa以上)、比例限界160N/mm2以上(0.16GPa以上)、縦弾性係数(=ヤング率)が1.1N/mm2以上(0.0011GPa以上)の負極集電体を用いることにより、負極極板の変形を抑制することを開示している。ここで、ヤング率とは、弾性範囲内で応力に対する歪の値を決める定数である。例えばヤング率が約100GPaの銅から断面積1mm2、長さ1mのワイヤを作製し、そのワイヤを荷重10kgで引っ張ると、約0.1%の歪が生じることになる。
特許文献2は、上記の条件を満たす集電体材料として、銅合金を教示している。しかし、銅合金の弾性率は、1.3×105N/mm2(130GPa)程度であり、この大きさは、銅の弾性率1.0×105N/mm2(100GPa)と同等であるため、特許文献2の教示によっても十分な効果を期待することはできない。
特許文献3は、負極活物質と負極集電体との間に導電性中間層を配置することを開示しているが、導電性中間層の厚さは0.01〜0.02μmと薄いため、充電動作時における負極活物質の膨張を充分に抑制することはできない。
本発明は、上記課題を解決するためになされたものであり、その目的は、負極極板の変形および負極活物質の極板からの脱落を効果的に抑制し、それによって電池のサイクル特性を向上させることにある。
本発明のリチウム二次電池用負極集電体は、導電性基板と、前記導電性基板の表面の少なくとも一部に設けられた導電層とを備えるリチウム二次電池用負極集電体であって、前記導電層は、リチウムと反応しない金属化合物を主として含有する材料から形成されており、1μm以上10μm以下の厚さを有している。
好ましい実施形態において、前記金属化合物は、前記導電性基板のヤング率よりも高いヤング率を有している。
好ましい実施形態において、前記導電性基板は、主として銅を含有する金属材料から形成され、3μm以上20μm以下の厚さを有している。
好ましい実施形態において、前記金属化合物は金属窒化物から形成されている。
好ましい実施形態において、前記金属窒化物は、窒化チタン、窒化ジルコニウム、および窒化ハフニウムからなる群から選択された少なくも1つを含む。
本発明によるリチウム二次電池用負極は、上記のリチウム二次電池用負極集電体と、前記導電層上に設けられ、リチウムと反応する材料から形成された負極材料とを備える。
本発明によるリチウム二次電池は、上記のリチウム二次電池用負極と、正極と、前記負極および正極の間でリチウムイオンを移動させる非水電解質とを備える。
本発明のリチウム二次電池用負極集電体では、リチウムと反応しない金属化合物を主として含有する材料から形成した導電層を、例えば銅箔からなる導電性基板の表面に配置し、しかも、その導電層の厚さを1μm以上10μm以下の範囲に設定しているため、負極集電体の弾性率が向上する。その結果、集電体表面に形成した高容量の負極活物質層が充電動作時に膨張しても、負極集電体の変形は抑制されることになる。このため、本発明のリチウム二次電池用負極集電体および負極を用いるリチウム電池によれば、使用時における集電体からの負極活物質の脱落が抑制され、サイクル特性が向上する。
以下、図面を参照しながら本発明の実施形態を説明する。
(実施形態1)
[リチウム二次電池用負極集電体]
まず、図1を参照しつつ本発明によるリチウム二次電池用負極集電体(以下、「負極集電体」と称する)の実施形態を説明する。図1は、本実施形態における負極集電体10の構造を示す概略断面図である。
本実施形態における負極集電体10は、導電性基板1と、導電性基板1の表面に設けられた金属化合物を主材料とする導電層2とを備えている。図1では、導電層2が導電性基板1の片面(上面)にしか形成されていないが、導電層2は、導電性基板1の両面(上面および下面)に形成されていてもよい。図1では、導電層2が導電性基板1の上面の全体を覆っているように記載されているが、導電層2は、導電性基板1の上面の一部の領域または下面の一部の領域を覆うように形成されていてもよい。ただし、導電層2を設ける技術的意義は、後述するように、負極集電体の全体としての弾性係数を高めることにあるため、導電性基板1の上面および/または下面の大半の領域を覆うように形成されていることが好ましい。
導電性基板1の材料は、特に限定されないが、電子伝導性を有し、かつリチウムと反応して化合物や固溶体を形成しない材料であることが好ましい。これらの条件を満たす導電性材料としては、銅、ニッケル、チタンなどの金属が挙げられる。また、これらの導電性材料を樹脂フィルム等の非導電性材料の表面に形成したものを導電性基板1として用いても良い。
導電性基板1が主として銅を含有する金属材料から形成されている場合、導電性基板1は3μm以上20μm以下の厚さを有していることが好ましい。導電性基板1が20μmを超える厚さを有していても、本発明の効果は損なわれないが、本発明を採用する利点は、比較的薄い導電性基板1を使用しても導電層2の働きにより集電体の変形を抑制できる点にあるため、導電性基板1が20μmを超える厚さを有する場合には、本発明を採用する意義が相対的に小さくなる。なお、導電性基板1の厚さの下限を3μmに設定する理由は、極薄化に伴う極板製造時破断等、製造歩留まりが低下するためである。導電性基板1の更に好ましい厚さ範囲は、6μm以上20μm以下である。
本発明では、導電性基板1に比べてヤング率が高い材料から導電層2を形成し、しかも、その厚さを後述する範囲内に設定することにより、集電体の捲回性を確保しつつ強度を高め、負極活物質の膨張・収縮による変形を抑制することが可能になる。金属化合物は、一般に高いヤング率を有しているため、導電層2に用いられ得るが、本発明者の実験によると、金属化合物の中でも金属窒化物は、高い弾性率および電子伝導性を有し、かつリチウムと反応しないものが多いため、導電層2の主材料として好適に用いられることが分かった。本実施形態では、導電層2の主材料として、窒化チタン、窒化ジルコニウム、窒化ハフニウムを用いている。これらの金属窒化物は、500GPa以上の高い弾性率と、電子伝導性とを兼ね備えており、導電層2の主材料として最も優れている。
導電層2は、上記金属窒化物のみからなる層であることが好ましいが、本発明の効果を損なわない範囲であれば、これらの材料以外の成分、例えば銅、ニッケル、チタンなどを含んでいても良い。
本発明の効果を得るためには、導電層2の厚さを1μm以上に設定することが必要である。厚さが1μmよりも薄くなると、導電層2によって負極集電体に付与される強度が不足するため、負極極板の変形を抑制する効果が十分に得られなくなるからである。導電層2の厚さは、導電性基板1として用いられる銅箔の表面凹凸に対して十分大きいことが好ましい。銅箔の表面粗さは、最大高さで1μm程度であることから、これに1μmを加えた2μm以上に設定することがより好ましく、さらに安全を考慮して4μm以上に設定することが更に好ましい。一方、導電層2の厚さが20μmを超えて大きくなると、本発明の効果は損なわれないが、導電層2の体積に応じて負極の体積容量密度が低下し、また、導電層2が剛直になるために捲回構造を構成できないため、好ましくない。捲回構造を構成するためには、導電層2の厚さは10μm以下にすることが好ましい。
なお、導電層2の厚さをどのような値に設定することが好ましいかは、導電性基板1の材料および厚さと、導電層2の上に設ける負極活物質の種類および厚さとに依存する。この点については、詳細を後述する。
[リチウム二次電池用負極]
次に、図2を参照しつつ、本発明によるリチウム二次電池用負極の実施形態を説明する。図2は、本実施形態におけるリチウム二次電池用負極(以下、「負極極板」と称する)の構造を示す概略断面図である。
本実施形態の負極極板20は、図1に示す負極集電体10と、その導電層2の上に設けられた負極活物質層3とを備えている。負極活物質層3は、珪素を主材料とする活物質から形成されている。負極活物質層3を構成する材料は、リチウムを吸蔵・放出する性質を有するものであり、珪素、ゲルマニウムおよび錫からなる群より選ばれた少なくとも1つであることが好ましい。これらの活物質材料は、2種以上混在させた状態で用いることもできるし、他の不可避的に混入する物質や何らかの効果を目的として意図的に添加される物質を含んでいても良い。また、負極活物質層3は、前述した群より選ばれた元素のみからなる層である必要は無く、珪素酸化物、ゲルマニウム酸化物および錫酸化物等の酸化物を構成材料として含み、リチウムイオン吸蔵性を有する他の材料を含む層であっても良い。負極活物質層3には、膨張抑制効果と電気抵抗低減効果とを期待して、タングステン、ニッケル、コバルト、モリブデン、クロム、鉄等の遷移金属を添加していても良い。
導電性基板1の表面に導電層2を形成する方法や、導電層2の上に負極活物質層3を形成する方法としては、種々の方法を用いることが可能である。例えば、スパッタリング、蒸着、CVDなどの真空成膜技術、鍍金、ゾルゲル法のような化学的成膜技術、インクジェット、グラビア印刷、スクリーン印刷、スピンコートなどの塗布技術などの多様な手法を採用することができる。導電層2や負極活物質層3の強度を高め、これらの層と導電性基板1との密着性を向上させるという観点からは、スパッタリング、蒸着、CVDなどの方法を用いることが好ましい。
負極活物質層3の厚さは、例えば1〜10μmの範囲内、例えば3μm程度に設定され得る。
[リチウム二次電池]
次に、図4を参照しつつ、本発明によるリチウム二次電池の実施形態を説明する。図4は、本実施形態におけるリチウム二次電池の構造を示す概略断面図である。
本実施形態のリチウム二次電池は、評価用セルとして使用され得るコイン型電池30である。このコイン型電池30は、正極22と、負極24と、これらの間に介在するセパレータ23とからなる電極群を有しており、電極群には、リチウムイオン伝導性を有する電解質(図示せず)が含浸されている。
負極24は、本発明による負極であり、図2に示す構成を有している。正極22は、正極端子を兼ねた正極ケース21と電気的に接続しており、負極24は負極端子を兼ねた封口板26と電気的に接続している。また、電池全体は、ガスケット25により密閉されている。
なお、本発明は、リチウム二次電池の形態によって制限されず、コイン型の他に、ボタン、シート、シリンダー、扁平、角形等の何れであっても適用可能である。また、リチウム二次電池の正極、電解質、セパレータ等は、現行のリチウム二次電池に使われているものを広く称することが可能である。
(実施例)
導電性基板1として厚さ10μmの電解銅箔(日本電解株式会社製YB−10)を用意し、その上に窒化チタンからなる導電層2(厚さ1μm)をRFマグネトロンスパッタ装置によって堆積し、本実施例の負極集電体10を作製した。窒化チタンの堆積は、アルゴンと窒素との混合ガスプラズマによってTiターゲット(150φ、厚さ5mm)をスパッタすることにより行った。堆積条件は、アルゴン:窒素のガス混合比が10:1、圧力が1Pa、周波数が13.84Mz、進行波出力が300Wであった。
(比較例1)
比較例1として、厚さ10μmの電解銅箔(日本電解株式会社製YB−10)からなる導電性基板1を負極集電体10として用いた。その他の点は、実施例と同様である。
(比較例2)
比較例2として、上記実施例における導電層2の厚さを0.5μmに減じ、その他の条件は、実施例と同一とした。導電層2の厚さは、上記スパッタ法におけるシャッター開放時間によって調整した。
上記の実施例および比較例1、2について、負極活物質層3を形成しないサンプルで導電層2の弾性率を測定した。この測定には、米国MTS社製ナノインデンターXPを用いた。サンプルは、約10mm角の大きさに切り出し、直径30mm円筒形試料台にエポキシ樹脂によって固定した。計測に用いたバーコビッチ圧子の試料に対する押し込み深さは300nmとし、10回の計測結果の平均値を計測値とした。
計測の結果、得られた弾性率は300GPaであった。これは、一般に知られている窒化チタンの弾性率560GPaに対して小さい値であるが、これは、実際に得られた膜が有する、電子顕微鏡などでは観察できない空隙等に起因するものであると考えられる。
実施例及び比較例1、2による負極集電体10の表面に、厚さ1μmの珪素からなる負極活物質層3をRFマグネトロンスパッタ装置によって堆積して、負極極板20を作製した。珪素の堆積は、アルゴンプラズマにより珪素ターゲット(150φ、厚さ5mm)をスパッタすることにより行った。堆積条件は、圧力が1Pa、周波数が13.84Mz、進行波出力が400Wであった。
負極極板20の断面SEM像を観察することにより、導電層2及び負極活物質層3が±0.1μmの精度で形成されていることを確認した。断面形成は、負極極板20を約5mm角に切り取って樹脂埋めした後、垂直断面が露出するように、湿式研磨することで行った。
負極極板20をほぼ直径11.3mmの円形で切り出した。評価前後の負極極板の変形を数値として検出するため、円形に切り出した負極極板20の直径を5回計測し、その平均値を計測値とした。円形の負極極板20の直径計測には、ステージに精度1μmの測長機能を有する光学顕微鏡を用いた。
金属リチウムを正極に用い、図4に示す評価用セルを作製し、サイクル数と容量維持率の関係を測定した。ここで、容量維持率とは試験において観測される最大充電容量を基準容量として、これに対する各サイクルにおける実測充電容量の割合をいう。
電解液はLiPF61モルをエチレンカーボネート、メチルエチルカーボネート、ジエチルカーボネートの混合溶媒1L(混合比:体積比3:5:2)に溶解させたものを用いた。
測定条件は、充電電流、放電電流ともに100μA、充電停止電圧1V、放電停止電圧0V、充電と放電の間の休止時間は10分、計測環境温度は25℃とした。
図5は、そのサイクル試験結果である。実施例は、10サイクル目の容量維持率がほぼ100%であるのに対して、比較例1及び比較例2はその低下が著しい。そこで、試験を終えた評価用セルを分解して円形の負極極板20を観察し、その直径を計測した。
実施例の負極極板は、その状態に全く変化がなく、その直径を計測したところ、0.5%の伸びを観測した。計測方法は、評価用セル作製前の計測と同様に5回計測して平均値を計測値とした。
一方、比較例1及び2の負極極板は、珪素からなる負極活物質層3が負極集電体10から脱離しており、なおかつ、その直径はそれぞれ1.3%、1.1%伸びていた。このことから、負極集電体10が、導電性基板1の表面に金属窒化物を含む導電層2としての窒化チタンが少なくとも1μm以上形成されて構成されている場合は、負極集電体10の膨張が抑制され、負極活物質層3が負極集電体10から脱落するのを防止していると考えられる。
図6は、それぞれ珪素からなる負極活物質層3の厚さが3μmの場合において、窒化チタンからなる導電層2の厚さと負極極板20の伸び率との関係を示すグラフである。このグラフには、銅からなる導電性基板1がCu箔であり、その厚さが10μm、20μm、30μmの場合に分けてデータが示されている。
図7は、窒化チタンからなる導電層2の厚さが1.5μmの場合において、珪素からなる負極活物質層3の厚さと負極極板20の伸び率との関係を示すグラフである。このグラフにも、銅からなる導電性基板1の厚さが10μm、20μm、30μmの場合に分けてデータが示されている。
図6および図7のデータは、有限要素法による応力解析によって求めたものであり、窒化チタンのヤング率を300GPa、珪素のヤング率を90GPaに設定している。これらのヤング率は、厚さ2〜4μmのスパッタ膜の実測値を基に設定した。
負極極板20の伸びは、珪素がリチウムイオンを吸収することによって負極活物質層が膨張し、それによって集電体が弾性的に変形するために生じるものとしている。すなわち、塑性変形は考慮していない。
図6および図7から明らかなように、導電性基板1の厚さが薄いほど、伸び率は大きい。図6から明らかなように、導電層2の厚さが大きくなるほど、伸び率を低減する効果が高くなるが、厚さ1μmでも伸び率を低減する効果が得られている。この伸び率低減の効果は、導電性基板1が薄い場合により顕著であるといえる。なお、導電層2の厚さが10μmに近づくに従って、伸び率低減効果は飽和する傾向にあるため、導電層2の厚さを10μmよりも大きくする意義は小さい。
図7からわかるように、負極活物質層3の厚さが大きくなるほど、伸び率が増大する。このため、負極活物質層3の厚さは7μm程度以下に設定することが好ましいが、この厚さを小さくしすぎると、容量が低下するため、1μm以上に設定することが好ましい。
実験によると、窒化チタンからなる導電層2の厚さが1.5μm、珪素からなる負極活物質層3の厚さが3μmのサンプルでは、良好な充放電サイクル特性が確認されているため、図6および図7に示す「伸び率」が15%以下になるように各種パラメータを設定することが好ましいと言える。
このように本発明の実施例によれば、リチウムと反応しない金属化合物からなる厚さ1μm以上10μm以下の薄い導電層2を用いることにより、例えば厚さ20μm以下の比較的薄い銅箔集電体の弾性率を効果的に高め、それによって容量の大きな負極活物質を利用したリチウム二次電池の実用化を可能にすることができる。
なお、上記の実施例では、窒化チタンからなる導電層2を導電性基板1の上に直接的に接触するように形成しているが、導電性基板1と導電層2との間に導電性を有する中間層が介在しても良い。また、導電層2が窒化チタンの層以外の金属窒化物(例えば窒化ジルコニウムなど)の層を含む多層構造を有していてもよい。
導電層2上に形成する負極活物質の形態は任意であり、複数の柱状粒子から形成されていてもよいし、層構造を有していてもよい。
また、実施例において負極活物質層に用いた珪素スパッタ膜は、ヤング率が90GPaと比較的硬い材料である。一方、珪素酸化物、スズ、スズ酸化物等は、珪素スパッタ膜に対して20%〜40%の小さなヤング率を有する活物質である。本発明は、負極活物質として、これらの材料を用いることもでき、本発明の適用範囲は広い。特にスズのヤング率は、珪素の60%にあたる50GPaであり、スズを負極活物質として用いた場合は、珪素を負極活物質として用いた場合の約1.5倍の厚さまで、その効果を発揮することができる。
本発明によれば、珪素などの容量が大きい負極活物質を用いても、負極活物質の剥がれが生じにくく、サイクル特性が向上するので、リチウム二次電池に適用して有用である。
本発明の負極集電体の概略断面図である。 本発明の負極極板の概略断面図である。 比較例1の概略断面図である。 負極極板の評価に用いた評価用セルの概略断面図である。 負極極板の評価試験におけるサイクル数と容量維持率との関係を示すグラフである。 珪素からなる負極活物質層3の厚さが3μmの場合において、窒化チタンからなる導電層2の厚さと負極極板20の伸び率との関係を示すグラフである。 窒化チタンからなる導電層2の厚さが1.5μmの場合において、珪素からなる負極活物質層3の厚さと負極極板20の伸び率との関係を示すグラフである。
符号の説明
1 導電性基板
2 金属化合物を含む導電層
3 負極活物質層
10 負極集電体
20 負極極板
30 評価用セル
31 正極ケース
32 正極
33 セパレータ
34 負極
35 ガスケット
36 封口板

Claims (7)

  1. 導電性基板と、前記導電性基板の表面の少なくとも一部に設けられた導電層とを備えるリチウム二次電池用負極集電体であって、
    前記導電層は、リチウムと反応しない金属化合物を主として含有する材料から形成されており、1μm以上10μm以下の厚さを有しているリチウム二次電池用負極集電体。
  2. 前記金属化合物は、前記導電性基板のヤング率よりも高いヤング率を有している請求項1に記載のリチウム二次電池用負極集電体。
  3. 前記導電性基板は、主として銅を含有する金属材料から形成され、3μm以上20μm以下の厚さを有している請求項2に記載のリチウム二次電池用負極集電体。
  4. 前記金属化合物は金属窒化物から形成されている請求項3に記載のリチウム二次電池用負極集電体。
  5. 前記金属窒化物は、窒化チタン、窒化ジルコニウム、および窒化ハフニウムからなる群から選択された少なくも1つを含む、請求項4に記載のリチウム二次電池用負極集電体。
  6. 請求項1に記載のリチウム二次電池用負極集電体と、
    前記導電層上に設けられ、リチウムと反応する材料から形成された負極材料と、
    を備えるリチウム二次電池用負極。
  7. 請求項6に記載のリチウム二次電池用負極と、
    正極と、
    前記負極および正極の間でリチウムイオンを移動させる非水電解質と、
    を備えるリチウム二次電池。
JP2007023131A 2007-02-01 2007-02-01 リチウム二次電池用負極集電体および負極ならびにリチウム二次電池 Pending JP2008192364A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023131A JP2008192364A (ja) 2007-02-01 2007-02-01 リチウム二次電池用負極集電体および負極ならびにリチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023131A JP2008192364A (ja) 2007-02-01 2007-02-01 リチウム二次電池用負極集電体および負極ならびにリチウム二次電池

Publications (1)

Publication Number Publication Date
JP2008192364A true JP2008192364A (ja) 2008-08-21

Family

ID=39752280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023131A Pending JP2008192364A (ja) 2007-02-01 2007-02-01 リチウム二次電池用負極集電体および負極ならびにリチウム二次電池

Country Status (1)

Country Link
JP (1) JP2008192364A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117060A1 (ja) * 2009-04-09 2010-10-14 日産自動車株式会社 二次電池用集電体及びこれを用いた二次電池
JP2011204386A (ja) * 2010-03-24 2011-10-13 Nissan Motor Co Ltd 双極型電池のシール構造
US10483534B2 (en) * 2014-07-16 2019-11-19 Prologium Holding Inc. Lithium metal anode electrode
WO2020215781A1 (zh) * 2019-04-26 2020-10-29 宁德时代新能源科技股份有限公司 一种电池及包含电池的装置
WO2020220686A1 (zh) * 2019-04-28 2020-11-05 宁德时代新能源科技股份有限公司 正极集流体、正极极片、二次电池及装置
WO2021116811A1 (ja) * 2019-12-10 2021-06-17 株式会社半導体エネルギー研究所 二次電池
WO2021225416A1 (ko) * 2020-05-08 2021-11-11 주식회사 엘지에너지솔루션 리튬 프리 전지용 음극 집전체, 이를 포함하는 전극 조립체 및 리튬 프리 전지
WO2022080707A1 (ko) * 2020-10-12 2022-04-21 삼성전자주식회사 전고체 이차 전지 및 그 충전 방법
WO2023098120A1 (en) * 2021-12-02 2023-06-08 Guangdong Haozhi Technology Co. Limited Modified current collector for secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193159B2 (en) 2009-04-09 2019-01-29 Nissan Motor Co., Ltd. Current collector for secondary battery and secondary battery using the same
EP2418720A1 (en) * 2009-04-09 2012-02-15 Nissan Motor Co., Ltd. Collector for secondary battery, and secondary battery using same
WO2010117060A1 (ja) * 2009-04-09 2010-10-14 日産自動車株式会社 二次電池用集電体及びこれを用いた二次電池
CN102388491A (zh) * 2009-04-09 2012-03-21 日产自动车株式会社 二次电池用集电体及使用其的二次电池
RU2482573C1 (ru) * 2009-04-09 2013-05-20 Ниссан Мотор Ко., Лтд. Токосъемник для вторичной батареи и вторичная батарея с его использованием
JP5488590B2 (ja) * 2009-04-09 2014-05-14 日産自動車株式会社 二次電池用集電体及びこれを用いた二次電池
EP2418720A4 (en) * 2009-04-09 2014-06-11 Nissan Motor COLLECTOR FOR SECONDARY BATTERY AND SECONDARY BATTERY USING THE SAME
KR101611017B1 (ko) * 2009-04-09 2016-04-08 닛산 지도우샤 가부시키가이샤 2차 전지용 집전체 및 이를 사용한 2차 전지
JP2011204386A (ja) * 2010-03-24 2011-10-13 Nissan Motor Co Ltd 双極型電池のシール構造
US10483534B2 (en) * 2014-07-16 2019-11-19 Prologium Holding Inc. Lithium metal anode electrode
WO2020215781A1 (zh) * 2019-04-26 2020-10-29 宁德时代新能源科技股份有限公司 一种电池及包含电池的装置
CN112133925A (zh) * 2019-04-26 2020-12-25 宁德时代新能源科技股份有限公司 电池、电动汽车及消费类电子产品
CN112133925B (zh) * 2019-04-26 2021-10-26 宁德时代新能源科技股份有限公司 电池、电动汽车及消费类电子产品
WO2020220686A1 (zh) * 2019-04-28 2020-11-05 宁德时代新能源科技股份有限公司 正极集流体、正极极片、二次电池及装置
WO2021116811A1 (ja) * 2019-12-10 2021-06-17 株式会社半導体エネルギー研究所 二次電池
WO2021225416A1 (ko) * 2020-05-08 2021-11-11 주식회사 엘지에너지솔루션 리튬 프리 전지용 음극 집전체, 이를 포함하는 전극 조립체 및 리튬 프리 전지
WO2022080707A1 (ko) * 2020-10-12 2022-04-21 삼성전자주식회사 전고체 이차 전지 및 그 충전 방법
WO2023098120A1 (en) * 2021-12-02 2023-06-08 Guangdong Haozhi Technology Co. Limited Modified current collector for secondary battery

Similar Documents

Publication Publication Date Title
JP2008192364A (ja) リチウム二次電池用負極集電体および負極ならびにリチウム二次電池
KR101376376B1 (ko) 전지
JP4445465B2 (ja) 炭素被覆アルミニウムおよびその製造方法
JP5237642B2 (ja) リチウム二次電池用電極およびそれを用いたリチウム二次電池
KR101946658B1 (ko) 전극 박, 집전체, 전극 및 이를 이용한 축전 소자
EP1551070A1 (en) Composite current collector
JP2016517157A (ja) 固体及び液体の電解質を備えた電気化学セル
KR20140003511A (ko) 리튬이온 이차전지, 그 이차전지용 전극, 그 이차전지의 전극용 전해 동박
JP2007273182A (ja) 集電体、負極及び電池
KR20160004236A (ko) 부극 및 2차 전지
KR101841852B1 (ko) 리튬전지 음극재 및 그의 제조방법
KR101103182B1 (ko) 부극 및 그를 이용한 전지
KR20070028245A (ko) 리튬 이차 전지
JP2007042329A (ja) リチウム二次電池
EP2924771B1 (en) Negative electrode for electrical device and electrical device provided with same
JP2007134272A (ja) 集電体、負極および電池
JP5832729B2 (ja) 二次電池用電極及び非水電解液電池
CN111952658B (zh) 锂二次电池
US11444284B2 (en) Secondary battery and electrode member thereof capable of being decreased bending deformation after rolling
JP2021009848A (ja) 蓄電装置
KR20070095218A (ko) 부극 및 전지
US20230088683A1 (en) Battery and method of manufacturing battery
JP2005209496A (ja) 非水電解質二次電池
WO2012035918A1 (ja) 導電層被覆アルミニウム材とその製造方法
JP2013165250A (ja) 集電体及び電極、これを用いた蓄電素子