JP5237642B2 - リチウム二次電池用電極およびそれを用いたリチウム二次電池 - Google Patents

リチウム二次電池用電極およびそれを用いたリチウム二次電池 Download PDF

Info

Publication number
JP5237642B2
JP5237642B2 JP2007552957A JP2007552957A JP5237642B2 JP 5237642 B2 JP5237642 B2 JP 5237642B2 JP 2007552957 A JP2007552957 A JP 2007552957A JP 2007552957 A JP2007552957 A JP 2007552957A JP 5237642 B2 JP5237642 B2 JP 5237642B2
Authority
JP
Japan
Prior art keywords
layer
electrode
secondary battery
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007552957A
Other languages
English (en)
Other versions
JPWO2007077870A1 (ja
Inventor
洋 樋口
雅祥 平本
太 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007552957A priority Critical patent/JP5237642B2/ja
Publication of JPWO2007077870A1 publication Critical patent/JPWO2007077870A1/ja
Application granted granted Critical
Publication of JP5237642B2 publication Critical patent/JP5237642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウム二次電池用電極およびそれを用いたリチウム二次電池に関する。
携帯型通信機器などの小型電子・電気機器の需要は近年益々増加しており、それに使用される二次電池の生産量も伸長している。中でも、エネルギー密度の高いリチウム二次電池(リチウムイオン二次電池とも呼ばれる)の生産量の伸長は顕著である。電子・電気機器の用途が多様化し、また、小型化が図られるにつれて、二次電池のさらなる性能向上も求められている。具体的には、放電容量の増大と寿命の延長がますます求められている。
現在市販されているリチウム二次電池では、正極にLiCoO2などのLi含有複合酸化物が用いられ、負極(負極活物質)に黒鉛が用いられる。しかし、黒鉛からなる負極は、LiC6となる組成までしかリチウムイオンを吸蔵できないため、リチウムイオンの吸蔵および放出の体積当たり容量は、理論的に372mAh/gが最大となる。この値は金属リチウムの理論容量の約1/5に過ぎない。つまり、現在市販されているリチウム二次電池の容量は、リチウムを負極として用いるリチウム二次電池の容量の1/5程度にとどまっている。
リチウムイオンを可逆的に吸蔵および放出することができる物質としては、Al、Ga、In、Si、Ge、Sn、Pb、As、Sb、Biといった金属元素あるいはそれらの合金が知られている。理論的な体積当たりの容量は、例えば以下の通りであり、いずれも黒鉛などの炭素質材料の体積当たり容量よりも大きい。
Si:2377mAh/cm3
Ge:2344mAh/cm3
Sn:1982mAh/cm3
Al:2167mAh/cm3
Sb:1679mAh/cm3
Bi:1768mAh/cm3
Pb:1720mAh/cm3
しかし、これらの材料は、リチウムイオンの吸蔵・放出反応の際に生じる膨張・収縮が大きい。図10に示すように、リチウム二次電池の負極は、一般的には、集電体3および集電体3に接合されたリチウムイオンを吸蔵する負極材料101によって構成されている。このため、こうした負極材料101の膨張・収縮により、負極材料101が集電体103から剥離し、容量が減少するという課題がある。
この課題に対して、たとえば特許文献1は、強固なセラミックス材料の多孔質体の孔内にケイ素を充填させた構造を提案している。この多孔質体は、膨張収縮する負極活物質であるケイ素をその機械的強度によって保持するフレームである。このようなセラミックス材料として、Be、Mg、Ti、Zr、V、Nb、Cr、Fe、Co、Ni、B、Al、およびSiから選ばれる元素の炭化物、ほう化物、窒化物および酸化物を1種もしくは2種以上を基材とするセラミックスを用いることを開示している。
また、このような課題に関連して、特許文献2は、活物質の膜が割れたときでも物質同士の電気的接触を確保するために、ポリエステルフィルム基材上にCu/Sn/Cu構造を有する集電体を形成し、その上活物質からなる膜を形成することを開示している。
特許文献3は、炭素材料のような積層構造を実現し、活物質粉の充放電中における更なる微粉化を抑制するために、活物質層とCu−Sn層との積層構造を形成することを開示している。
特許文献4は、リチウム化合物の形成能力が低い金属からなる層を、Sn、Al、Sn合金あるいはAl合金からなるリチウム化合物の形成能力の高い金属からなる層で挟み込んだ積層構造を開示している。
特開2000−090922号公報 特許第3755502号明細書 特開2003−168425号公報 特開2004−139954号公報
しかし、特許文献1に開示された構造では、セラミック多孔質体が形成する空孔の容積は十分ではない。たとえば、空孔率が50%程度であるとした場合、空孔容積の1/4の負極活物質を充填したとしても体積容量密度は最大で約1185Ah/cm3に過ぎない。これよりも多くの活物質を充填しようとすれば、活物質が膨張する空間がなくなってしまう。このため、特許文献1の構造では体積容量密度を高めることはできない。
また、特許文献1に開示されたセラミックス材料は、リチウムの還元作用を受ける。還元された多孔質体は、脆くなり微粉化するとともに、多孔質体内に生成する酸化リチウムや窒化リチウムは多孔質体に不用な応力を与える。これにより多孔質体は本来の強度を失い、サイクル特性の劣化が生じる。
また還元反応が生じることを考慮して、あらかじめ余分にリチウムをリチウム二次電池に注入しておく必要がある。あるいは、還元反応に使われるリチウムによって、体積容量密度が設計値から低下してしまう。
さらに、特許文献1に開示されたセラミックス材料には、SiCやMgO、Al23、TiO2、ZrO2、Fe34等、電子伝導性が乏しいものが含まれており、実用的なリチウム二次電池の実現は難しいと考えられる。
特許文献2〜4はいずれも、Snからなる第1の層およびCu、Ni、Fe、Co、Crなどの金属およびステンレス合金からなる第2の層を積層した構造を採用している。しかし、本願発明者の検討によれば、これらの特許文献では、Snからなる第1の層の膨張による応力に十分耐えうる設計がなされていないため、電極の変形およびそれによる容量の低下が生じることが分かった。
特許文献2〜4に開示された構造において、強度不足を補うために、第2の層を厚くすることも考えられる。しかし、この場合、第2の層を厚くする分だけ体積容量密度が低下する。また、第2の層のリチウムの透過性が損なわれ、容量が低下するという新たな課題も生じる。
リチウムイオンを吸蔵することによる膨張は、負極活物質に限らず、正極活物質においても生じる。したがって上述の課題は正極においても当てはまる。
本発明は、このような従来技術の課題の少なくとも1つを解決し、サイクル特性に優れたリチウム二次電池およびリチウム二次電池用電極を提供することを目的とする。
本発明のリチウム二次電池用電極は、集電体と、前記集電体に設けられた活物質構造とを備え、前記活物質構造は、リチウムイオンを吸蔵および放出する第1の材料を含む少なくとも1つの第1の層と、リチウムと化学的に反応しない導電性の第2の材料を含む少なくとも1つの第2の層とを含み、前記第1の層および前記第2の層は交互に積層されており、前記第2の層のヤング率は前記第1の層のヤング率よりも大きい。
ある好ましい実施形態において、前記第2の材料は、導電性を有する金属化合物である。
ある好ましい実施形態において、前記第2の材料は200GPa以上のヤング率を有する。
ある好ましい実施形態において、前記第2の材料は、金属窒化物、金属炭化物および金属ホウ化物から選ばれる1つである。
ある好ましい実施形態において、前記第2の材料は、4A族金属の窒化物である。
ある好ましい実施形態において、前記第2の材料は、窒化チタン、窒化ジルコニウムおよび窒化ハフニウムから選ばれる1種または2種以上の混合物である。
ある好ましい実施形態において、前記活物質構造は、前記第1の層および第2の層をそれぞれ2つ以上含む。
ある好ましい実施形態において、前記第2の層の厚さは6nm未満である。
ある好ましい実施形態において、前記第1の層の厚さは4.5nm以下である。
ある好ましい実施形態において、前記第2の層は複数の開口部を有する。
ある好ましい実施形態において、前記リチウム二次電池用電極は負極である。
ある好ましい実施形態において、前記第1の材料は、ケイ素、ゲルマニウムおよびスズから選ばれる少なくとも1種を含む。
ある好ましい実施形態において、前記リチウム二次電池用電極は正極である。
ある好ましい実施形態において、前記第1の材料は、リチウムを含む遷移金属の複合酸化物および複合硫化物である。
本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出可能な正極と、上記いずれかに規定されるリチウム二次電池用電極からなる負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質とを備える。
本発明のリチウム二次電池は、上記いずれかに規定されるリチウム二次電池用電極からなる正極と、負極リチウムイオンを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質とを備える。
本発明のリチウム二次電池用電極によれば、第2の層によって第1の層がその水平方向へ膨張および収縮するのを抑制し、かつ、垂直な方向へ膨張および収縮するのを選択的に許容する。また、第2の層は、充放電に伴うリチウムイオンの移動によってもリチウムの還元作用を受けることなく、機械的強度の低下が生じることはない。このため、第1の層のリチウムイオンの吸蔵放出に伴う体積変化を許容しながら、集電体から第1の層が剥離あるいは離脱するのを防止することが可能となる。よって、リチウム二次電池のサイクル寿命を向上させることができる。
以下、図面を参照しながら本発明によるリチウム二次電池用電極およびそれを用いたリチウム二次電池の実施形態を説明する。
(第1の実施形態)
図1は、本発明によるリチウム二次電池用電極の一実施形態の構造を概略的に示す断面図である。本発明によるリチウム二次電池用電極はリチウムイオンの吸蔵および放出による膨張および収縮によって、活物質が集電体から物理的にはがれたり、脱離し、集電体との間で電気的接触を維持できなくなるのを効果的に防止する。このような課題は、リチウム二次電池の正極および負極の両方で生じるため、本発明のリチウム二次電池用電極は正極および負極に好適に用いることができる。
図1に示すように、リチウム二次電池用電極10は、集電体3と活物質構造4とを備えている。
集電体3は、充電時には活物質構造4全体に電圧を印加し、放電時には、活物質構造4において生じた電荷を集め、外部へ取り出す働きをする。リチウム二次電池用電極10が負極に用いられる場合、集電体3としては、銅、ニッケル、ステンレスなど、リチウム二次電池用負極の集電体として公知な材料を用いることができる。リチウム二次電池用電極10が正極に用いられる場合には、集電体3としては、アルミニウム、ニッケルおよびニッケル系合金(主要な添加元素はアルミニウム、ケイ素、炭素など)など、リチウム二次電池用正極の集電体として公知な材料を用いることができる。
集電体3は、一般的には、厚さ10〜20μm程度の箔形状を備えている。しかし、集電体3は、数μmの厚さに形成することも技術的に可能であり、本実施形態で用いる集電体3の厚さも数μmであってもよい。
活物質構造4は集電体3に設けられ、活物質構造4が集電体3と電気的に接続されている。
活物質構造4は、図1に示すように、少なくとも1つの第1の層1と、少なくとも1つの第2の層2とを含み、第1の層1および第2の層2は交互に積層されている。より好ましくは、少なくとも1つの第1の層1が一対の第2の層2で挟まるよう、第1の層1および第2の層2はそれぞれ2つ以上である。
第1の層1は、活物質としてリチウムイオンを吸蔵および放出する第1の材料を含む。リチウム二次電池用電極10が負極に用いられる場合、第1の材料は、リチウムと合金化し、体積当たりのリチウムイオンを吸蔵する量が大きい物質であることが好ましい。具体的には、第1の材料は、ケイ素、ゲルマニウムおよびスズから選ばれた1つまたは2つ以上の混合物であることが好ましい。あるいは、第1の材料は、ケイ素酸化物、ゲルマニウム酸化物およびスズ酸化物等の酸化物と、リチウムイオンを吸蔵する他の材料とを含んでいてもよい。また、第1の材料は、膨張抑制効果と電気抵抗の低減効果を期待して、タングステン、ニッケル、コバルト、モリブデン、クロム、鉄等の遷移金属を含んでいてもよい。
リチウム二次電池用電極10が正極に用いられる場合には、第1の材料は、リチウムを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属複合酸化物や複合硫化物等の1種もしくは2種以上を含む。また、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等も正極活物質として使用できる。
第2の層2は、第1の層1より大きなヤング率を有している。図2に示すように、第1の層1はリチウムイオンを吸蔵することによって、矢印Hで示す第1の層1に平行な方向および矢印Vで示す第1の層1に垂直な方向に膨張する。また、第1の層1がリチウムイオンを放出する際には、第1の層1は、これらの矢印の逆の方向に収縮する。このとき、第2の層のヤング率が第1の層1より大きいため、第2の層2は矢印Hで示す方向、つまり第1の層1に平行な方向への第1の層1の体積変化を抑制することができる。これにより、第1の層1が集電体3から剥離あるいは脱離するのを防止する。一方、第2の層2は、矢印Vで示す第1の層に垂直な方向へは第1の層1を拘束しない。このため、第1の層1は、垂直な方向へ膨張したり、収縮したりすることにより、リチウムイオンを吸蔵および放出することができる。つまり、集電体3と活物質構造4とが接触する面と平行な方向への体積変化が抑制されるように、第1の層1および第2の層2が積層されているため、集電体3から活物質構造4が剥離あるいは脱離するのが防がれる。
第2の層2は積層された複数の第1の層1の間に介在するため、導電性を有していることが好ましい。また、リチウムと化学的に反応しないことが好ましい。これらの点を考慮すると、第2の層2を構成する第2の材料は、導電性を有する金属化合物であり、より好ましくは、金属窒化物、金属炭化物および金属ホウ化物から選ばれる1つであることが好ましい。金属化合物、特に金属窒化物、金属炭化物および金属ホウ化物は安定であり、リチウムと化学的に反応しない。また、これらの金属化合物は、一般に大きなヤング率を有し、第1の層1として上述した第1の材料を選択する場合において、第1の層1よりも大きなヤング率を有する第2の層2を形成することができる。
このような第2の層2を構成する第2の材料としては、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルなどの金属窒化物、ホウ化チタン、ホウ化ジルコニウム、ホウ化ハフニウム、ホウ化バナジウム、ホウ化クロム、ホウ化ニオブ、ホウ化タンタル、ホウ化モリブデン、ホウ化タングステン等の金属ホウ化物、炭化チタン、炭化ジルコニウム、炭化クロム、炭化ニオブ、炭化タンタル、炭化モリブデン、炭化タングステンなどの金属炭化物が挙げられる。
種々の材料からなる第1の層1のヤング率について調べた結果、第1の層1が正極活物質である場合でも負極活物質である場合でも、上述した第1の材料から公知の薄膜技術を用いて形成した第1の層1のヤング率は約100GPaであることが分かった。たとえば、負極として用いるスパッタリングにより形成したケイ素層のヤング率は約90GPaであり、正極に用いるリチウムコバルト複合酸化物からなる層のヤング率は約100GPaである。単結晶シリコンのヤング率が約180GPaであることを考慮すると、第2の層2は、約200GPa以上のヤング率を有していれば、第1の層1の膨張、収縮を抑制する拘束層として機能することが分かる。つまり、第2の層2を構成する第2の材料は、200GPa以上のヤング率を有していればよい。
種々の材料について検討した結果、第2の材料が4A族金属の窒化物、炭化物およびホウ化物であれば、リチウムと化学的に反応せず、かつ、第2の層2を形成した場合において、約250GPa以上のヤング率を有するため、より好ましいことが分かった。
特に、窒化チタン、窒化ジルコニウムおよび窒化ハフニウムは公知の薄膜技術を用いて比較的容易に第2の層2として用いることのできる薄膜を形成することができるという点で、第2の材料としてより好ましい。また、窒化チタン、窒化ジルコニウムおよび窒化ハフニウムは、窒化リチウムに対して標準生成自由エネルギーが非常に大きいことから、リチウムに対して非常に安定でもあり、化学的および物理的特性において、第2の材料として最も適していることが分かった。したがって、第2の材料として、窒化チタン、窒化ジルコニウムおよび窒化ハフニウムから選ばれる1種または2種以上の混合物を用いることが最も好ましい。
第2の層2による上述の効果を得るためには、第1の層1と第2の層2とが互いに密着していることが好ましい。しかし、第1の層1と第2の層2とは必ずしも直接接している必要はなく、たとえば、リチウムと化学的に反応しにくく、かつ、リチウムイオンが透過し、導電性を有する層を第1の層1および第2の層2との間に形成してもよい。
第1の層1および第2の層2の積層数に特に制限はなく、第1の層1を集電体3もしくは第2の層2によって挟み込むことよって、本発明の効果が得られる。第1の層1および第2の層2の数が多くなれば、多くのリチウムを吸蔵および放出することが可能になるため、リチウム二次電池用電極10を用いたリチウム二次電池の充電容量を大きくすることができる。たとえば、直径18mm、高さ65mmの円筒型18650リチウム二次電池の負極としてリチウム二次電池用電極10を用いる場合、第1の層1および第2の層2の数は1500層以上9000層以下にすることができる。
第1の層1および第2の層2は、半導体製造工程などで利用される公知の薄膜技術を用いて形成することができる。具体的には、蒸着法、スパッタ法、CVD法、PVD法などの薄膜技術を用いることにより、材料固有の密度に対して90%程度の嵩密度を有する第1の層1および第2の層2を得ることができ、また、良好な層間密着性を得ることができる。良好な密着性が得られ、また、十分に緻密な第1の層1および第2の層1が形成できるのであれば、めっき、ゾルゲル法のような化学的成膜技術、インクジェット、グラビア印刷、スクリーン印刷、スピンコーティング法のような塗布技術を用いて第1の層1および第2の層2を形成してもよい。また、これらの塗布技術を用いて、第1の材料の前駆体と第2の材料の前駆体のいずれか一方、または、両方を層状に形成した後、乾燥および焼結などの後処理プロセスによって第1の層1および第2の層のいずれか一方、または、両方を形成することもできる。
なお、図1においては、活物質構造4の集電体3と接触する面は第1の層1であるが、第2の層2と集電体3が接触していてもよい。ただし、第1の層1に含まれるリチウムと第1の層1を構成する第1の材料と集電体3とが互いに反応する場合には、そのような反応を抑制するため、第2の層2が集電体3と接するように活物質構造4を構成することが好ましい。また、図1では、活物質構造4の最表面は第1の層1であるが、第2の層2が最表面を構成していてもよい。
第2の層2は、リチウムを透過することが好ましい。このため、第2の層2が孔のない完全な膜である場合、第2の層2の厚さT2は0nm<T2<6nmを満たすことが好ましい。厚さT2が6nmより大きい場合、リチウムの透過性が乏しくなるため、初期放電容量が小さくなり、大容量のリチウム二次電池には適さない場合がある。また、第1の層1の厚さT1は、0nm<T1≦4.5nmを満たすことが好ましい。T2の厚さを上述の範囲に設定する場合において、T1の厚さが4.5nmよりも大きいと、第2の層2の強度が相対的に不足し、本発明の効果が低下する場合がある。第2の層2に孔が空いており、T2を6nm以上にできる場合には、T1の厚さに特に制限はない。
一方、第2の層2は、図2に示すように、下地を露出するピンホール、孔など開口部5を有しており、ポーラスな構造を有していてもよい。この開口部5は、スパッタリング、蒸着、CVDなどの方法においては基板温度といった成膜条件により、第2の層2が下地を全体的に覆わない部分が生じることによって形成することができる。この開口部5には、好ましくは、隣接する層、つまり、第1の層1の第1の材料が充填される。第1の層1の主面における開口部5の形状に、特に制限はなく、線状、格子状、斑点状であってもよい。開口部5は、第2の層2をスパッタリングや蒸着、CVD法などにより形成する際、第2の層2を形成する面を所定の欠落パターンを有するマスクを用いることによって、意図的に作製することもできる。マスクとしては、メタルマスクやレジストマスク等を利用することができる。
第2の層2に開口部5を設けることによって、活物質構造4における垂直方向の電子伝導性とイオン伝導性が向上する。この場合、6nmより厚い第2の層2を形成してもリチウムを透過させることが可能となる。
本実施形態のリチウム二次電池用電極によれば、第2の層によって第1の層がその水平方向への膨張および収縮を抑制し、かつ、垂直な方向への膨張および収縮を選択的に許容する。また、第2の層は、充放電に伴うリチウムイオンの移動によってもリチウムの還元作用を受けることなく、機械的強度の低下が生じることはない。このため、第1の層のリチウムイオンの吸蔵放出に伴う体積変化を許容しながら、集電体から第1の層が剥離あるいは離脱するのを防止することが可能となる。よって、リチウム二次電池のサイクル寿命を向上させることができる。また、第1の層のリチウムイオンの吸蔵放出に伴う体積変化を許容しながら、集電体から第1の層が剥離あるいは離脱するのを防止することが可能であるため、炭素よりもリチウム吸蔵能力の高い物質を負極活物質として使用することが可能となり、より大容量で、サイクル特性に優れたリチウム二次電池を実現することができる。
(第2の実施形態)
次に本発明によるリチウム二次電池の実施形態を説明する。図4は、コイン型のリチウム二次電池20の断面を示している。リチウム二次電池20は、正極22と、負極24と、正極22および負極24との間に配置されたセパレータ23とからなる電極群を備えている。電極群にはリチウムイオン伝導性を有する電解質(図示せず)が含浸されている。また、正極22は正極端子を兼ねた正極ケース21と電気的に接続している。負極24は負極端子を兼ねた封口板26と電気的に接続している。また、リチウム二次電池20全体は、ガスケット25により密閉されている。
正極22に含まれる正極活物質としては、リチウムを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属の複合酸化物や複合硫化物等の1種もしくは2種以上が使用できる。その他、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等も正極活物質として使用できる。ただし、負極の容量評価を行う目的の電池を作製する場合は、金属リチウムを用いてもよい。
電解質としては、有機溶媒にリチウム塩を溶解させた非水電解液系、ポリマー電解質、無機固体電解質、ポリマー系と無機固体電解質の複合材等の何れを使用してもよい。非水電解液の溶媒としては、鎖状エステル類、γ―ラクトン類、鎖状エーテル類、環状エーテル類およびニトリル類等の1種もしくは2種以上を使用することができる。
鎖状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が挙げられる。γ―ラクトン類には、γ―ブチルラクトン等が挙げられる。鎖状エーテル類には、1,2―ジメトキシエタン、1,2―ジエトキシエタン、エトキシメトキシエタン等が挙げられる。環状エーテル類には、テトラヒドロフラン類が挙げられる。ニトリル類には、アセトニトリル等が挙げられる。
非水電解液の溶質(支持電解質)のうち、リチウム塩としては、LiAsF6、LiBF4、LiPF6、LiAlCl4、LiClO4、LiCF3SO3、LiSbF6、LiSCN、LiCl、LiC65SO3、LiN(CF3SO22、LiC(CF3SO23、LiC49SO3等のリチウム塩およびこれらの混合物を用いることができる。
セパレータ23としては、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔性ポリマーフィルムやガラスフィルター、不織布等の多孔性材を用いることができる。
負極24には、第1の実施形態で説明したリチウム二次電池用電極10を用いる。たとえば、第1の材料としてケイ素を用い、第2の材料として窒化チタンを用いる。これらの材料を用いて銅箔からなる集電体3上に、スパッタリングにより、たとえば、厚さ3nmの第1の層1および厚さ3nmの第2の層2を交互に500回積層することによって、負極24を形成する。
リチウム二次電池20によれば、負極において、集電体から負極活物質が剥離あるいは脱離するのを防止することができ、かつ、リチウムの吸蔵を許容できるため、より、多くのリチウムを吸蔵できる負極活物質を用いることができる。したがって、より大容量で、サイクル特性に優れたリチウム二次電池を実現することができる。
(第3の実施形態)
次に本発明によるリチウム二次電池の他の実施形態を説明する。図5は、円筒型のリチウム二次電池30の断面を示している。リチウム二次電池30は、負極31と、正極33と、セパレータ32とからなる電極群を備えている。電極群は、セパレータ32を正極33と負極31とによって狭持するように積層され、捲回されている。積層された電極群は、電池ケース34内に収納されており、リチウムイオン伝導性を有する電解質(図示せず)で満たされている。
電池ケース34の開口端部は、封口板35および絶縁ガスケット36によって封止され、電池30の内部が密閉されている。正極33はタブ37によって、封口板35と電気的に接続されており、封口板35は電池30の正極端子を兼ねている。また、負極31は電池ケース34と電気的に接続されており、電池ケース34は電池11の負極端子を兼ねている。
負極31、セパレータ32、正極33および電解質には、たとえば第2の実施形態で説明した材料を用いることができる。
リチウム二次電池30によれば、負極において、集電体から負極活物質が剥離あるいは脱離するのを防止することができ、かつ、リチウムの吸蔵を許容できるため、より、多くのリチウムを吸蔵できる負極活物質を用いることができる。特に、電極群を積層した場合でも、積層方向には、負極活物質が膨張することが可能であり、これにより、集電体から負極活物質が剥離あるいは脱離することなくリチウムイオンを吸蔵および放出することできる。したがって、より大容量で、サイクル特性に優れたリチウム二次電池を実現することができる。
なお、第2および第3の実施形態で説明したリチウム二次電池は本発明の実施形態の例に過ぎず、他の形態を備えたリチウム二次電池に本発明を適用してもよい。具体的には、ボタン、シート、扁平、角形等の何れの形態をリチウム二次電池は備えていてもよい。リチウム二次電池の正極、電解質、セパレータ等は、公知の材料を用いることができる。
また、第2および第3の実施形態では第1の実施形態のリチウム二次電池用電極を負極に用いたが、正極に用いてもよい。第1の実施形態で説明したように、正極においてもリチウムの吸蔵および放出によって、正極活物質の膨張および収縮が生じるため、第1の実施形態のリチウム二次電池用電極を負極に用いた場合と同様の効果を得ることができる。また、正極および負極の両方に第1の実施形態のリチウム二次電池用電極を用いてもよい。
以下本発明によるリチウム二次電池用電極の効果を確認するために種々の実験を行った。その結果を以下において説明する。
(実施例1)
ターゲットを複数装着でき、かつ基板をターゲット間で移動させる機能およびガス成分と流量を変更する機能を有するスパッタ装置を用意した。第1の材料としてケイ素を用い、第2の材料として窒化チタンを用いるために、ケイ素ターゲットおよびチタンターゲットをスパッタ装置に装着した。集電体3として銅箔(日本電解株式会社製 YB−10)を用い、銅箔を2つのターゲットの下方領域間において反復移動させることによって、銅箔上に第1の層1であるケイ素と、第2の層2である窒化チタンとを交互に積層し、負極を形成した。
ケイ素からなる第1の層1は、アルゴン雰囲気下、1Paの圧力および400Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は4秒とし、この4秒間のシャッター開放時間中に約3nmの厚さの第1の層1を形成した。
窒化チタンからなる第2の層2は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1.2Paの圧力および、300Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は1秒とし、この1秒間のシャッター開放時間中に約1nmの厚さの第2の層2を形成した。
ガス成分の切り替えのために、第1の層1の形成と第2の層2の形成との間に、5秒間のパージ時間を設けた。
上述の条件で、250層の第1の層1および第2の層2を交互にCu箔上に形成し、Cu箔上に1μmの厚さを有する活物質構造4が設けられた負極を形成した。集電体3であるCu箔と接する層は第1の層1とした。
(比較例1)
比較例として、上記実施例1において、第2の層2を形成しないことを除いて同様の条件を用い、集電体3である銅箔上に第1の層(ケイ素層)のみを形成したものを準備した。厚さは0.75μmであった。
(評価1)
得られた負極を直径11.3mmの円形に切り出し、金属リチウムを正極に用い、図4に示す評価セルを作製した。評価セルの充電および放電を繰り返し、サイクル数と容量維持率の関係を測定した。ここで、容量維持率とは初回の充放電から10回目の充放電までに観測される最大容量を基準容量として、これに対する実測容量の割合をいう。
電解液にはLiPF61モルをエチレンカーボネート、メチルエチルカーボネート、ジエチルカーボネートの混合溶媒1L(混合比:体積比3:5:2)に溶解させたものを用いた。
測定条件は、充電電流、放電電流ともに50μA、充電停止電圧1V、放電停止電圧0V、充電と放電の間の休止時間は10分、計測環境温度は25℃とした。
図6は、サイクル数と容量維持率の関係の測定結果を示している。10サイクル後の容量維持率で比較すると、比較例1の第1の層(ケイ素)のみを形成したものは、約75.6%まで低下しているのに対し、実施例1の電極を備えたリチウム二次電池は98.6%を維持しており、実施例1の方が容量維持率が高いことが分かった。
(実施例2)
ターゲットを複数装着でき、かつ基板をターゲット間で移動させる機能およびガス成分と流量を変更する機能を有するスパッタ装置を用意した。第1の材料としてケイ素を用い、第2の材料として窒化ジルコニウムを用いるために、ケイ素ターゲットおよびジルコニウムターゲットをゲットスパッタ装置に装着した。集電体3として銅箔(日本電解株式会社製 YB−10)を用い、銅箔を2つのターゲットの下方領域間において反復移動させることによって、銅箔上に第1の層1であるケイ素と、第2の層2である窒化ジルコニウムとを交互に積層し、負極を形成した。
ケイ素からなる第1の層1は、アルゴン雰囲気下、1Paの圧力および400Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は4秒とし、この4秒間のシャッター開放時間中に約3nmの厚さの第1の層1を形成した。
窒化ジルコニウムからなる第2の層2は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1Paの圧力および、300Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は1秒とし、この1秒間のシャッター開放時間中に約1.4nmの厚さの第2の層2を形成した。
ガス成分の切り替えのために、第1の層1の形成と第2の層2の形成との間に、5秒間のパージ時間を設けた。
上述の条件で、250層の第1の層1および第2の層2を交互にCu箔上に形成し、Cu箔上に1.1μmの厚さを有する活物質構造4が設けられた負極を形成した。集電体3であるCu箔と接する層は第1の層1とした。
(比較例2)
比較例として、上記実施例1において、第2の層2を形成しないことを除いて同様の条件を用い、集電体3である銅箔上に第1の層(ケイ素層)のみを形成したものを準備した。厚さは0.75μmであった。
(評価2)
得られた負極を直径11.3mmの円形に切り出し、金属リチウムを正極に用い、図4に示す評価セルを作製した。評価セルの充電および放電を繰り返し、サイクル数と容量維持率の関係を測定した。ここで、容量維持率とは初回の充放電から10回目の充放電までに観測される最大容量を基準容量として、これに対する実測容量の割合をいう。
電解液にはLiPF61モルをエチレンカーボネート、メチルエチルカーボネート、ジエチルカーボネートの混合溶媒1L(混合比:体積比3:5:2)に溶解させたものを用いた。
測定条件は、充電電流、放電電流ともに50μA、充電停止電圧1V、放電停止電圧0V、充電と放電の間の休止時間は10分、計測環境温度は25℃とした。
図7は、サイクル数と容量維持率の関係の測定結果を示している。10サイクル後の容量維持率で比較すると、比較例1の第1の層(ケイ素)のみを形成したものは、約75.6%まで低下しているのに対し、実施例2の電極を備えたリチウム二次電池は93.5%を維持しており、実施例2の方が容量維持率が高いことが分かった。
(実施例3)
ターゲットを複数装着でき、かつ基板をターゲット間で移動させる機能およびガス成分と流量を変更する機能を有するスパッタ装置を用意した。第1の材料としてケイ素を用い、第2の材料として窒化ハフニウムを用いるために、ケイ素ターゲットおよびジルコニウムターゲットをゲットスパッタ装置に装着した。集電体3として銅箔(日本電解株式会社製 YB−10)を用い、銅箔を2つのターゲットの下方領域間において反復移動させることによって、銅箔上に第1の層1であるケイ素と、第2の層2である窒化ハフニウムとを交互に積層し、負極を形成した。
ケイ素からなる第1の層1は、アルゴン雰囲気下、1Paの圧力および400Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は4秒とし、この4秒間のシャッター開放時間中に約3nmの厚さの第1の層1を形成した。
窒化ハフニウムからなる第2の層2は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1Paの圧力および、300Wの進行波出力で形成した。ターゲットの直径は80mmである。シャッター開放時間は1秒とし、この1秒間のシャッター開放時間中に約1.4nmの厚さの第2の層2を形成した。
ガス成分の切り替えのために、第1の層1の形成と第2の層2の形成との間に、5秒間のパージ時間を設けた。
上述の条件で、250層の第1の層1および第2の層2を交互にCu箔上に形成し、Cu箔上に1μmの厚さを有する活物質構造4が設けられた負極を形成した。集電体3であるCu箔と接する層は第1の層1とした。
(比較例3)
比較例として、上記実施例1において、第2の層2を形成しないことを除いて同様の条件を用い、集電体3である銅箔上に第1の層(ケイ素層)のみを形成したものを準備した。厚さは0.75μmであった。
(評価3)
得られた負極を直径11.3mmの円形に切り出し、金属リチウムを正極に用い、図4に示す評価セルを作製した。評価セルの充電および放電を繰り返し、サイクル数と容量維持率の関係を測定した。ここで、容量維持率とは初回の充放電から10回目の充放電までに観測される最大容量を基準容量として、これに対する実測容量の割合をいう。
電解液にはLiPF61モルをエチレンカーボネート、メチルエチルカーボネート、ジエチルカーボネートの混合溶媒1L(混合比:体積比3:5:2)に溶解させたものを用いた。
測定条件は、充電電流、放電電流ともに50μA、充電停止電圧1V、放電停止電圧0V、充電と放電の間の休止時間は10分、計測環境温度は25℃とした。
図8は、サイクル数と容量維持率の関係の測定結果を示している。10サイクル後の容量維持率で比較すると、比較例1の第1の層(ケイ素)のみを形成したものは、約75.6%まで低下しているのに対し、実施例2の電極を備えたリチウム二次電池は99.6%を維持しており、実施例2の方が容量維持率が高いことが分かった。
(実施例4)
実施例1と同一装置および同一材料を用い、厚さ0.5mmのサファイア基板上に厚さ5μmのケイ素層を形成し、そのヤング率を計測した。
ケイ素層は、アルゴン雰囲気下、1Paの圧力および400Wの進行波出力で、シャッターを6660秒開放して形成した。
ヤング率の計測には米国MTS社製ナノインデンタXP装置を用いた。この装置は、圧子によってケイ素層に負荷を加えた後の除荷時における圧子の変位量と圧子に加わる応力からヤング率を求める機能を有している。圧子にはバーコビッチ圧子を用い、表面からの圧子押し込み深さ500nmにおける計測値をヤング率とした。なお、本願明細書において言及するヤング率は、全てこの装置によって計測した。計測の結果、形成したケイ素層のヤング率は90±5GPaであった。
同様にして、実施例1と同一の設備および同一の材料を用い、厚さ0.5mmのサファイア基板上に厚さ3μmの窒化チタン層を形成し、そのヤング率を計測した。
窒化チタン層は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1.2Paの圧力および300Wの進行波出力で、シャッターを6660秒開放して形成した。形成した窒化チタン層のヤング率は300±15GPaであった。
同様にして、実施例2と同一の設備および同一の材料を用い、厚さ0.5mmのサファイア基板上に厚さ3μmの窒化ジルコニウム層を形成し、そのヤング率を計測した。
窒化ジルコニウム層は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1.2Paの圧力および300Wの進行波出力で、シャッターを6660秒開放して形成した。形成した窒化ジルコニウム層のヤング率は273±14GPaであった。
同様にして、実施例3と同一の設備および同一の材料を用い、厚さ0.5mmのサファイア基板上に厚さ3μmの窒化ハフニウム層を形成し、そのヤング率を計測した。
窒化ハフニウム層は、ArおよびN2混合ガス(体積比10:1)雰囲気下、1.2Paの圧力および300Wの進行波出力で、シャッターを6660秒開放して形成した。形成した窒化ハフニウム層のヤング率は259±14GPaであった。
また、集電体3として用いる第1および第2のCu箔(日本電解株式会社製 YB−10およびYB−20)のヤング率を計測した。ヤング率は、それぞれ85±3GPaおよび82±4GPaであった。ヤング率計測用アルミニウム台上へのCu箔の固定には、2液混合式エポキシ系接着剤を用いた。第1の銅箔と第2のCu箔とは厚さが異なる。
実施例1と同一装置および同一材料を用い、集電体3としての第1のCu箔(日本電解株式会社製 YB−10)上に第1の層1としてのケイ素層および第2の層2としての窒化チタン層を交互に1000層積層し、リチウム二次電池用負極を作製した。作製した負極を用いて、評価1で説明したようにコインセルを作製し、10サイクル後の容量維持率を測定した。
作製したサンプルの第1の層1および第2の層2の厚さと、これを負極として作製した評価セルの10サイクル後の容量維持率とを表1に示す。
Figure 0005237642
表1に示すように、負極活物質である第1の層が厚くなるにしたがって、初期放電容量は増大する。これは、第1の層の厚さに比例して第1の層の体積が増大し、リチウムを吸蔵可能な活物質の体積が増大するからである。しかし、試料番号4−4、4−8及び4−12は、第1の層が同じ厚さの他の試料と比較して、数%程度の初期放電容量しか備えていない。このため、試料番号4−4、4−8及び4−12は大容量の二次電池としては適していないことが判った。これは、第2の層2が6μmと厚いことによって、第2の層2のリチウム透過性が阻害される結果、各第1の層までリチウムが拡散しにくいからであると考えられる。ただし、以下で説明するように、試料番号4−4、4−8及び4−12はサイクル特性には優れる。
さらに、試料番号4−9、4−10、4−13、4−14、4−15、4−16は、10サイクル後容量維持率が80%を下回った。これは、第1の層1の膨張による応力に対して第2の層2の強度が相対的に不足したためであると考えられる。ただし、これらの値は、第2の層2を用いない従来の構造を採用したリチウム二次電池に比べ改善されている。
それ以外の試料については、初期放電容量も大きく、10サイクル後の容量維持率が80%以上であり、良好な結果が得られた。このため、第2の層の厚さT2は、0nm<T2<6nmを満たし、第1の層の厚さT1は、0nm<T1≦4.5nmを満たしていることが好ましいことが分かる。
(実施例5)
実施例2と同一装置および同一材料を用い、集電体3としての第2のCu箔(日本電解株式会社製 YB−20)上に第1の層1としてのケイ素層および第2の層2としての窒化ジルコニウム層を交互に1000層積層し、リチウム二次電池用負極を作製した。作製した負極を用いて、評価で説明したようにコインセルを作製し、10サイクル後の容量維持率を測定した。
作製したサンプルの第1の層1および第2の層2の厚さと、これを負極として作製した評価セルの10サイクル後の容量維持率とを表2に示す。
Figure 0005237642
表1に示すように、負極活物質である第1の層が厚くなるにしたがって、初期放電容量は増大する。これは、第1の層の厚さに比例して第1の層の体積が増大し、リチウムを吸蔵可能な活物質の体積が増大するからである。しかし、試料番号5−4、5−8及び5−12は、第1の層が同じ厚さの他の試料と比較して、5%程度の初期放電容量しか備えていない。このため、試料番号5−4、5−8及び5−12は大容量の二次電池としては適していないことが判った。これは、第2の層2が6μmと厚いことによって、第2の層2のリチウム透過性が阻害される結果、各第1の層までリチウムが拡散しにくいからであると考えられる。ただし、以下で説明するように、試料番号4−4、4−8及び4−12はサイクル特性には優れる。
さらに、試料番号5−9、5−10、5−13、5−14、5−15、5−16は、10サイクル後容量維持率が80%を下回った。これは、第1の層1の膨張による応力に対して第2の層2の強度が相対的に不足したためであると考えられる。ただし、これらの値は、第2の層2を用いない従来の構造を採用したリチウム二次電池に比べ改善されている。
それ以外の試料については、初期放電容量も大きく、10サイクル後の容量維持率が80%以上であり、良好な結果が得られた。このため、第2の層の厚さT2は、0nm<T2<6nmを満たし、第1の層の厚さT1は、0nm<T1≦4.5nmを満たしていることが好ましいことが分かる。
(比較例4〜6)
比較例4〜6として、上記実施例1において、第2の層2を形成しないことを除いて同様の条件を用い、集電体3である銅箔上に第1の層(ケイ素層)のみを形成したものを作製した。比較例4〜6では、それぞれ厚さ3μm、4.5μmおよび6μmのケイ素からなる第1の層1が1000層堆積されている。作製した比較例4〜6を負極として用い、評価1で説明したようにコインセルを作製し、10サイクルまでの容量維持率を測定した。測定結果を図9に示す。
図9から明らかなように、第2の層2を有しない比較例4〜6の電極を負極に用いたリチウム二次電池では、サイクル特性が顕著に劣化し、10サイクル後の容量維持率は、それぞれ66.3%、31.3%および13.3%にまで低下している。これらの値は、実施例4の試料番号4−9、4−10、4−13、4−14、4−15および実施例5の試料番号5−9、5−10、5−13、5−14、5−15の10サイクル後の容量維持率よりも低い。これらのことから、本発明リチウム二次電池用電極によれば、第2の層2を設けることによって、従来技術に比べて、サイクル特性の改善が図られることが分かる。
本発明のリチウム二次電池用電極およびそれを用いたリチウム二次電池は、種々の形態のリチウム二次電池に適用可能であり、特に、良好なサイクル特性が要求されるリチウム二次電池に好適に用いられる。
本発明よるリチウム二次電池用電極の一実施形態の構造を概略的に示す断面図である。 図1の電極において、第1の層の体積変化を抑制する機構を説明する図である。 本発明よるリチウム二次電池用電極の他の形態の構造を概略的に示す断面図である。 本発明によるリチウム二次電池の一実施形態の構造を概略的に示す断面図である。 本発明によるリチウム二次電池の他の実施形態の構造を概略的に示す断面図である。 本発明による実施例1と比較例1の充放電サイクル数と容量維持率の関係図を示すグラフである。 本発明による実施例2と比較例2の充放電サイクル数と容量維持率の関係図を示すグラフである。 本発明による実施例3と比較例3の充放電サイクル数と容量維持率の関係図を示すグラフである。 比較例4〜6の充放電サイクル数と容量維持率の関係図を示すグラフである。 従来のリチウム二次電池用負極の構造を概略的に示す断面図である。
符号の説明
1 第1の層
2 第2の層
3 集電体
4 活物質構造
5 開口部
10 リチウム二次電池用電極
20 コイン型リチウム二次電池
21 正極ケース
22 正極
23 セパレータ
24 負極
25 ガスケット
26 封口板
30 円筒型リチウム二次電池
31 負極
32 セパレータ
33 正極
34 電池ケース
35 封口板
36 絶縁ガスケット
37 タブ

Claims (14)

  1. 集電体と、前記集電体に設けられた活物質構造とを備えたリチウム二次電池用電極であって、
    前記活物質構造は、リチウムイオンを吸蔵および放出する第1の材料を含む少なくとも1つの第1の層と、リチウムと化学的に反応しない導電性の第2の材料を含む少なくとも1つの第2の層とを含み、
    前記第1の層および前記第2の層は交互に積層されており、
    前記第2の層のヤング率は前記第1の層のヤング率よりも大きく、
    前記第1の層および前記第2の層は薄膜技術により形成され、
    前記第2の材料は、導電性を有する金属化合物であり、200GPa以上のヤング率を有する、リチウム二次電池用電極。
  2. 前記第2の材料は、金属窒化物、金属炭化物および金属ホウ化物から選ばれる1つである請求項に記載のリチウム二次電池用電極。
  3. 前記第2の材料は、4A族金属の窒化物である請求項に記載のリチウム二次電池用電極。
  4. 前記第2の材料は、窒化チタン、窒化ジルコニウムおよび窒化ハフニウムから選ばれる1種または2種以上の混合物である請求項に記載のリチウム二次電池用電極。
  5. 前記第1の層および第2の層をそれぞれ2つ以上含む請求項に記載のリチウム二次電池用電極。
  6. 前記第2の層の厚さは6nm未満である請求項に記載のリチウム二次電池用電極。
  7. 前記第1の層の厚さは4.5nm以下である請求項に記載のリチウム二次電池用電極。
  8. 前記第2の層は複数の開口部を有する請求項に記載のリチウム二次電池用電極。
  9. 前記リチウム二次電池用電極は負極である請求項に記載のリチウム二次電池用電極。
  10. 前記第1の材料は、ケイ素、ゲルマニウムおよびスズから選ばれる少なくとも1種を含む請求項に記載のリチウム二次電池用電極。
  11. 前記リチウム二次電池用電極は正極である請求項に記載のリチウム二次電池用電極。
  12. 前記第1の材料は、リチウムを含む遷移金属の複合酸化物および複合硫化物である請求項11に記載のリチウム二次電池用電極。
  13. リチウムイオンを吸蔵・放出可能な正極と、
    請求項1から10のいずれかに規定されるリチウム二次電池用電極からなる負極と、
    リチウムイオン伝導性を有する電解質と、
    を備えたリチウム二次電池。
  14. 請求項1から11および12のいずれかに規定されるリチウム二次電池用電極からなる正極と、
    負極リチウムイオンを吸蔵・放出可能な負極と、
    リチウムイオン伝導性を有する電解質と、
    を備えたリチウム二次電池。
JP2007552957A 2005-12-27 2006-12-27 リチウム二次電池用電極およびそれを用いたリチウム二次電池 Active JP5237642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007552957A JP5237642B2 (ja) 2005-12-27 2006-12-27 リチウム二次電池用電極およびそれを用いたリチウム二次電池

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005374413 2005-12-27
JP2005374413 2005-12-27
JP2006033365 2006-02-10
JP2006033365 2006-02-10
JP2006055830 2006-03-02
JP2006055830 2006-03-02
PCT/JP2006/326049 WO2007077870A1 (ja) 2005-12-27 2006-12-27 リチウム二次電池用電極およびそれを用いたリチウム二次電池
JP2007552957A JP5237642B2 (ja) 2005-12-27 2006-12-27 リチウム二次電池用電極およびそれを用いたリチウム二次電池

Publications (2)

Publication Number Publication Date
JPWO2007077870A1 JPWO2007077870A1 (ja) 2009-06-11
JP5237642B2 true JP5237642B2 (ja) 2013-07-17

Family

ID=38228224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007552957A Active JP5237642B2 (ja) 2005-12-27 2006-12-27 リチウム二次電池用電極およびそれを用いたリチウム二次電池

Country Status (4)

Country Link
US (1) US8080337B2 (ja)
JP (1) JP5237642B2 (ja)
CN (1) CN101346835B (ja)
WO (1) WO2007077870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123839A (ko) 2015-04-17 2016-10-26 현대자동차주식회사 리튬이온전지용 양극 및 이를 이용한 리튬이온전지

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243428A (ja) * 2007-03-26 2008-10-09 Sumitomo Electric Ind Ltd リチウム二次電池用電極及びその製造方法
JP4581029B2 (ja) * 2008-02-14 2010-11-17 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP5273655B2 (ja) * 2008-11-28 2013-08-28 独立行政法人産業技術総合研究所 リチウム電池またはハイブリットキャパシタ用三成分系電極材用粒子及びその製造方法
CN101752544B (zh) * 2008-12-01 2012-07-25 比亚迪股份有限公司 硅负极及其制备方法和包括该硅负极的锂离子二次电池
KR101746243B1 (ko) * 2009-09-30 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 음극 활성 재료, 음극, 및 전력 저장 장치
CN102714300B (zh) * 2010-01-08 2015-10-21 丰田自动车株式会社 锂离子二次电池用正极板、锂离子二次电池、车辆、电池搭载设备、和锂离子二次电池用正极板的制造方法
US8465556B2 (en) * 2010-12-01 2013-06-18 Sisom Thin Films Llc Method of forming a solid state cathode for high energy density secondary batteries
US9362556B2 (en) * 2010-12-07 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP6035013B2 (ja) 2011-08-30 2016-11-30 株式会社半導体エネルギー研究所 電極の作製方法
JP2013054878A (ja) 2011-09-02 2013-03-21 Semiconductor Energy Lab Co Ltd 電極の作製方法および蓄電装置
DE102011088528A1 (de) * 2011-12-14 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Kathode mit Schichtsystem
WO2013114094A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
JP6216154B2 (ja) 2012-06-01 2017-10-18 株式会社半導体エネルギー研究所 蓄電装置用負極及び蓄電装置
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
WO2014073461A1 (en) 2012-11-07 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
US9812706B2 (en) * 2012-12-28 2017-11-07 Industrial Technology Research Institute Protected active metal electrode and device with the electrode
CN104584277A (zh) * 2013-03-26 2015-04-29 三洋电机株式会社 非水电解质二次电池用正极和非水电解质二次电池
JP2015049965A (ja) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 二次電池用の電極
JP6115780B2 (ja) * 2013-12-25 2017-04-19 株式会社豊田自動織機 複合負極活物質体、非水電解質二次電池用負極および非水電解質二次電池
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN103956471B (zh) * 2014-05-27 2017-01-11 哈尔滨工业大学 一种电泳-电沉积制备碳/锗叠层复合负极材料的方法
CN105322129B (zh) * 2014-06-27 2018-06-29 中国科学院沈阳自动化研究所 一种叠层锂离子电池电极结构及其喷墨打印制备方法
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
CN104409701B (zh) * 2014-11-19 2017-04-19 西南大学 一种钠离子电池正极材料及其制备方法
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP7065451B2 (ja) * 2017-05-30 2022-05-12 パナソニックIpマネジメント株式会社 二次電池用正極、及び二次電池
US20190296332A1 (en) * 2018-03-23 2019-09-26 EnPower, Inc. Electrochemical cells having one or more multilayer electrodes
DE102018114009A1 (de) 2018-06-12 2019-12-12 Volkswagen Aktiengesellschaft Aktivmaterialkörper für einen Akkumulator
CN110867560B (zh) * 2018-08-28 2021-04-02 宁德时代新能源科技股份有限公司 一种负极极片及二次电池
CN109888176B (zh) * 2019-01-22 2020-12-01 浙江工业大学 一种锂硫二次电池的正极
WO2020207363A1 (zh) * 2019-04-08 2020-10-15 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制的多层电极及储能设备
US20220344654A1 (en) * 2019-09-20 2022-10-27 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and electronic device
JP7383501B2 (ja) 2020-01-16 2023-11-20 パナソニックホールディングス株式会社 蓄電装置及び蓄電モジュール
CN114725312A (zh) * 2022-04-29 2022-07-08 三一技术装备有限公司 干法极片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168425A (ja) * 2001-11-30 2003-06-13 Nippon Foil Mfg Co Ltd Li二次電池用の負極材料、それを用いた負極
JP2004103476A (ja) * 2002-09-11 2004-04-02 Sony Corp 非水電解質電池
JP2004139954A (ja) * 2002-04-26 2004-05-13 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
JP2004319457A (ja) * 2003-03-28 2004-11-11 Hitachi Maxell Ltd 非水二次電池用負極、その製造方法および前記負極を用いた非水二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090922A (ja) 1998-09-09 2000-03-31 Sumitomo Metal Ind Ltd リチウム二次電池とその負極材料及び該材料の製造方法
CN100508249C (zh) * 2002-04-26 2009-07-01 三井金属矿业株式会社 非水电解液二次电池用负极及其制造方法和该二次电池
US7507502B2 (en) * 2003-03-28 2009-03-24 Hitachi Maxell, Ltd. Negative electrode having intermetallic compound that occludes/desorbs lithium as an active material layer on collector for non-aqueous secondary battery and non-aqueous secondary battery using the same
CN100495777C (zh) * 2003-10-17 2009-06-03 三洋电机株式会社 非水电解质电池
US7135531B2 (en) * 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168425A (ja) * 2001-11-30 2003-06-13 Nippon Foil Mfg Co Ltd Li二次電池用の負極材料、それを用いた負極
JP2004139954A (ja) * 2002-04-26 2004-05-13 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
JP2004103476A (ja) * 2002-09-11 2004-04-02 Sony Corp 非水電解質電池
JP2004319457A (ja) * 2003-03-28 2004-11-11 Hitachi Maxell Ltd 非水二次電池用負極、その製造方法および前記負極を用いた非水二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123839A (ko) 2015-04-17 2016-10-26 현대자동차주식회사 리튬이온전지용 양극 및 이를 이용한 리튬이온전지

Also Published As

Publication number Publication date
US20100086857A1 (en) 2010-04-08
CN101346835B (zh) 2011-06-15
US8080337B2 (en) 2011-12-20
WO2007077870A1 (ja) 2007-07-12
CN101346835A (zh) 2009-01-14
JPWO2007077870A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5237642B2 (ja) リチウム二次電池用電極およびそれを用いたリチウム二次電池
JP5262323B2 (ja) 多孔性保護膜付き負極、及び多孔性保護膜付き負極の製造方法
KR101560827B1 (ko) 정극 활물질, 정극 및 비수 전해질 2차전지
JP5374851B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR100770502B1 (ko) 비수전해액 2차전지
KR101164232B1 (ko) 전극 및 그것을 사용한 전지
JP4088957B2 (ja) リチウム二次電池
KR101376376B1 (ko) 전지
JP3755502B2 (ja) 非水電解質電池
KR20080104980A (ko) 부극 및 전지
KR20080103438A (ko) 집전체, 부극 및 전지
KR20090129951A (ko) 부극 및 2차 전지
WO2006080265A1 (ja) リチウム二次電池用負極とそれを用いたリチウム二次電池およびそれらの製造方法
KR20150108397A (ko) 정극 활물질 및 상기 활물질을 사용한 리튬 이차 전지
KR20080057139A (ko) 부극 및 그것을 이용한 전지, 및 부극의 제조 방법
JP2007042329A (ja) リチウム二次電池
JP5832729B2 (ja) 二次電池用電極及び非水電解液電池
JP4898095B2 (ja) リチウム二次電池
KR101103182B1 (ko) 부극 및 그를 이용한 전지
JP2008059765A (ja) 非水系二次電池
JP2008192364A (ja) リチウム二次電池用負極集電体および負極ならびにリチウム二次電池
JP2002231224A (ja) リチウム二次電池用電極及びその製造方法並びにリチウム二次電池
KR101623963B1 (ko) 정극 활물질 및 그것을 이용한 정극과 비수 전해질 2차 전지
KR100866863B1 (ko) 리튬 이차 전지용 음극, 이의 제조방법 및 이를 포함하는리튬 이차 전지
JP2007019032A (ja) 電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3