WO2020207363A1 - 基于减少传质和扩散控制的多层电极及储能设备 - Google Patents

基于减少传质和扩散控制的多层电极及储能设备 Download PDF

Info

Publication number
WO2020207363A1
WO2020207363A1 PCT/CN2020/083419 CN2020083419W WO2020207363A1 WO 2020207363 A1 WO2020207363 A1 WO 2020207363A1 CN 2020083419 W CN2020083419 W CN 2020083419W WO 2020207363 A1 WO2020207363 A1 WO 2020207363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
thin
diffusion control
mass transfer
Prior art date
Application number
PCT/CN2020/083419
Other languages
English (en)
French (fr)
Inventor
李长明
吴超
辛程勋
辛民昌
Original Assignee
青岛九环新越新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910277759.7A external-priority patent/CN111799094A/zh
Priority claimed from CN201910277072.3A external-priority patent/CN111799432A/zh
Application filed by 青岛九环新越新能源科技股份有限公司 filed Critical 青岛九环新越新能源科技股份有限公司
Publication of WO2020207363A1 publication Critical patent/WO2020207363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of energy storage equipment, in particular to a multilayer electrode and energy storage equipment based on mass transfer reduction and diffusion control.
  • the existing lithium ion battery includes a positive electrode, a negative electrode and a separator, and an electrolyte is provided between the positive electrode and the negative electrode.
  • the charging and discharging process of lithium-ion batteries is the intercalation and deintercalation process of lithium ions.
  • the carbon as the negative electrode has a layered structure with many micropores. The lithium ions reaching the negative electrode are embedded in the micropores of the carbon layer. The more lithium ions are inserted, the higher the charging capacity.
  • the positive electrode and negative electrode only have a certain depth of pore surface in contact with the electrolyte to produce the insertion and extraction of lithium ions.
  • the materials of the positive electrode and the negative electrode cannot fully participate in the insertion and extraction of lithium ions.
  • De-intercalation which is also the reason for the low charge and discharge current of existing lithium-ion batteries, not only limits the charge and discharge capacity of lithium-ion batteries, but also limits the charge and discharge power of the batteries.
  • the purpose of the present invention is to provide a multilayer electrode and energy storage device based on mass transfer reduction and diffusion control, which can reduce the influence of mass transfer and diffusion control on charge and discharge, increase the rate of charge and discharge, and can increase Specific surface area, increase energy storage capacity.
  • the present invention provides the following technical solutions:
  • the present invention first proposes a multi-layer electrode based on mass transfer reduction and diffusion control, including multiple thin-layer electrodes, and a conductive film capable of simultaneous ion conduction and electronic conduction is provided between two adjacent thin-layer electrodes. , The two adjacent thin-layer electrodes are electrically connected through the conductive film, and the thickness of the thin-layer electrodes satisfies:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the thin-layer electrode is greater than or equal to 1 nm.
  • the thickness of the thin-layer electrode satisfies: L ⁇ 10 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ 5 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ 2 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ .
  • the conductive film is made of a porous conductive material that allows electrolyte to pass through to achieve ion conduction and exchange.
  • the conductive film is made of but not limited to porous carbon, graphite, graphene, reduced graphene or polyaniline.
  • the thickness of the conductive film satisfies:
  • L 0 is the thickness of the conductive film
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the conductive film is greater than or equal to 1 nm.
  • the thickness of the conductive film satisfies: L 0 ⁇ 10 ⁇
  • the thickness of the conductive film satisfies: L 0 ⁇ 5 ⁇ .
  • the thickness of the conductive film satisfies: L 0 ⁇ 2 ⁇ .
  • the thickness of the conductive film satisfies: L 0 ⁇ .
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • the present invention also proposes an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control, which includes an electronically insulated membrane that can pass ions, and electrodes are provided on both sides of the membrane, and the electrodes are as described above. Multilayer electrodes based on reduced mass transfer and diffusion control.
  • the energy storage device is a battery
  • the diaphragm is a battery diaphragm
  • the electrodes located on both sides of the battery diaphragm are a positive electrode and a negative electrode, respectively, and a positive electrode current collector electrically connected to the positive electrode is provided on the positive electrode
  • the negative electrode is provided with a negative current collector conductively connected to the negative electrode.
  • the positive electrode includes positive thin-layer electrodes arranged at intervals, and the conductive film arranged between two adjacent layers of the positive thin-layer electrodes is a positive electrode conductive film;
  • the negative electrode includes negative thin-layer electrodes arranged at intervals, and the conductive film arranged between two adjacent layers of the negative thin-layer electrodes is a negative conductive film.
  • the positive thin-layer electrode and the negative thin-layer electrode are both parallel to the battery separator, and the positive thin-layer electrode adopts a porous positive thin-layer electrode that can divert electrolyte to the positive conductive film,
  • the negative thin-layer electrode adopts a porous negative thin-layer electrode that can divert electrolyte to the negative conductive film.
  • all the positive electrode conductive films are electrically connected to the positive electrode current collector, and all the negative electrode conductive films are electrically conductively connected to the negative electrode current collector.
  • both the positive thin-layer electrode and the negative thin-layer electrode are perpendicular to the battery separator.
  • all the positive electrode conductive films are electrically connected to the positive electrode current collector, and all the negative electrode conductive films are electrically conductively connected to the negative electrode current collector.
  • the positive thin layer electrode is made of lithium ion battery anode material
  • the negative thin layer electrode is made of lithium ion battery anode material
  • the energy storage device is a hybrid energy storage device, which is located in the two electrodes on both sides of the diaphragm, and the thin-layer electrode of one of the electrodes is made of battery positive electrode material or electrode negative electrode material, and the other The thin-layer electrode of one of the electrodes is made of capacitor electrode material.
  • the energy storage device is a capacitor, and the thin-layer electrodes on both sides of the diaphragm are made of the same electrode material; or, the thin-layer electrodes provided on both sides of the diaphragm are made of different electrodes. Made of materials.
  • a current collector conductively connected to the electrode is provided; the conductive film on the same side of the diaphragm is conductively connected to the current collector.
  • the thin-layer electrode is parallel or perpendicular to the diaphragm.
  • the present invention is based on the energy storage device of multi-layer electrodes for reducing mass transfer and diffusion control.
  • the electrolyte enters the conductive film and contacts the surface of the thin-layer electrodes respectively.
  • the surface of the layer electrode will participate in the battery charge and discharge reaction, which can increase the number of thin layer electrodes that can be charged and discharged at the same time, which can effectively increase the specific surface area and increase the energy storage capacity; in addition, the thickness of the diffusion control layer is used to limit the thin layer electrode The thickness can reduce the influence of mass transfer and diffusion control on charging and discharging, so that reactive molecules or ions in the electrode are not controlled by the mass transfer rate or greatly improve the control of the mass transfer rate, and increase the specific power of the energy storage device And greatly improve the utilization rate of porous electrodes.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control according to the present invention
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control according to the present invention
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control according to the present invention
  • Embodiment 4 is a schematic structural diagram of Embodiment 4 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control according to the present invention
  • FIG. 5 is a schematic structural diagram of Embodiment 5 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control according to the present invention.
  • FIG. 1 it is a schematic structural diagram of Embodiment 1 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control of the present invention.
  • This embodiment is an energy storage device based on a multi-layer electrode for mass transfer reduction and diffusion control, including an ion-conducting but electronically insulated membrane. Electrodes are provided on both sides of the membrane. The electrodes adopt multi-layer electrodes based on mass transfer reduction and diffusion control.
  • the multilayer electrode based on mass transfer reduction and diffusion control includes a multilayer thin-layer electrode. A conductive film capable of realizing both ion conductivity and electronic conductivity is provided between two adjacent thin-layer electrodes. The thin-layer electrode is electrically connected through a conductive film, and the thickness of the thin-layer electrode satisfies:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the thin-layer electrode in this embodiment is greater than or equal to 1 nm, and the thickness of the thin-layer electrode satisfies: L ⁇ 10 ⁇ ; preferably, the thickness of the thin-layer electrode satisfies: L ⁇ 5 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ 2 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ .
  • the thickness of the thin-layer electrode of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate or reduce the influence of mass transfer or diffusion control, increase the specific power of the energy storage device, and greatly improve the utilization rate of the porous electrode.
  • the conductive film is made of a porous conductive material that allows electrolyte to pass through to achieve ion conduction and exchange.
  • the conductive film is made of, but not limited to, porous carbon, graphite, graphene, reduced graphene, or polyaniline.
  • the conductive film of this embodiment is made of graphene.
  • the thickness of the conductive film satisfies: L 0 ⁇ k ⁇ ; where L 0 is the thickness of the conductive film; k is a coefficient, and k ⁇ 1; and ⁇ is the thickness of the diffusion control layer.
  • the thickness of the conductive film is greater than or equal to 1 nm, and the thickness of the conductive film satisfies: L 0 ⁇ 10 ⁇ , preferably, the thickness of the conductive film satisfies: L 0 ⁇ 5 ⁇ ; preferably, the thickness of the conductive film satisfies: L 0 ⁇ 2 ⁇ Preferably, the thickness of the conductive film satisfies: L 0 ⁇ .
  • the thickness of the conductive film of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate or reduce the influence of mass transfer or diffusion control.
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • the energy storage device of this embodiment is a battery, and the diaphragm is a battery diaphragm 1.
  • the electrodes located on both sides of the battery diaphragm 1 are respectively a positive electrode and a negative electrode.
  • the positive electrode is provided with a positive current collector 2 electrically connected to it, and a negative electrode There is a negative current collector 3 electrically connected to it.
  • the positive electrode in this embodiment includes multiple positive thin-layer electrodes 4 arranged at intervals, and the conductive film arranged between two adjacent positive thin-layer electrodes 4 is the positive conductive film 5.
  • the negative electrode in this embodiment includes multiple negative thin-layer electrodes 6 arranged at intervals, and the conductive film arranged between two adjacent negative thin-layer electrodes 6 is the negative conductive film 7.
  • the positive thin-layer electrode 4 and the negative thin-layer electrode 6 of this embodiment are parallel to the battery separator 1, and the positive thin-layer electrode 4 is provided with a porous conductive film that can divert the electrolyte to the positive electrode.
  • the positive thin-layer electrode and the negative thin-layer electrode 6 are porous negative thin-layer electrodes that can divert electrolyte to the negative conductive film.
  • the positive thin layer electrode 4 is made of lithium ion battery positive electrode material
  • the negative thin layer electrode 6 is made of lithium ion battery negative electrode material, that is, the energy storage device in this embodiment is a lithium battery.
  • This embodiment is based on the energy storage device of multi-layer electrodes with reduced mass transfer and diffusion control.
  • the electrolyte enters the conductive film and contacts the surface of the thin-layer electrodes respectively.
  • the surface of the thin layer electrode will participate in the battery charging and discharging reaction, which can increase the number of thin layer electrodes that can be charged and discharged at the same time, which can effectively increase the specific surface area and increase the energy storage capacity; in addition, the thickness of the diffusion control layer is used to limit the thin layer
  • the thickness of the electrode can reduce the influence of mass transfer and diffusion control on charge and discharge, so that the reactive molecules or ions in the electrode are not controlled by the mass transfer rate or greatly improve the control of the mass transfer rate, and increase the ratio of energy storage devices. Power and greatly improve the utilization of porous electrodes.
  • FIG. 2 it is a schematic structural diagram of Embodiment 2 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control of the present invention.
  • This embodiment is an energy storage device based on a multi-layer electrode for mass transfer reduction and diffusion control, including an ion-conducting but electronically insulated membrane. Electrodes are provided on both sides of the membrane. The electrodes adopt multi-layer electrodes based on mass transfer reduction and diffusion control.
  • the multilayer electrode based on mass transfer reduction and diffusion control in this embodiment includes a multilayer thin-layer electrode. A conductive film capable of realizing both ion conductivity and electronic conductivity is provided between two adjacent thin-layer electrodes. The layer electrodes are electrically connected through the conductive film, and the thickness of the thin layer electrodes meets:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the energy storage device of this embodiment is a battery, and the diaphragm is a battery diaphragm 1.
  • the electrodes located on both sides of the battery diaphragm 1 are respectively a positive electrode and a negative electrode.
  • the positive electrode is provided with a positive current collector 2 electrically connected to it, and a negative electrode There is a negative current collector 3 electrically connected to it.
  • the positive electrode in this embodiment includes multiple positive thin-layer electrodes 4 arranged at intervals, and the conductive film arranged between two adjacent positive thin-layer electrodes 4 is the positive conductive film 5.
  • the negative electrode in this embodiment includes multiple negative thin-layer electrodes 6 arranged at intervals, and the conductive film arranged between two adjacent negative thin-layer electrodes 6 is the negative conductive film 7.
  • all the positive electrode conductive films 5 are electrically connected to the positive electrode current collector through the junction bridge 8
  • all the negative electrode conductive films 7 are electrically connected to the negative electrode current collector through the junction bridge 9.
  • FIG. 3 it is a schematic structural diagram of Embodiment 3 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control of the present invention.
  • This embodiment is an energy storage device based on a multi-layer electrode for mass transfer reduction and diffusion control, including an ion-conducting but electronically insulated membrane. Electrodes are provided on both sides of the membrane. The electrodes adopt multi-layer electrodes based on mass transfer reduction and diffusion control.
  • the multilayer electrode based on mass transfer reduction and diffusion control in this embodiment includes a multilayer thin-layer electrode. A conductive film capable of realizing both ion conductivity and electronic conductivity is provided between two adjacent thin-layer electrodes. The layer electrodes are electrically connected through the conductive film, and the thickness of the thin layer electrodes meets:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the energy storage device of this embodiment is a battery, and the diaphragm is a battery diaphragm 1.
  • the electrodes located on both sides of the battery diaphragm 1 are respectively a positive electrode and a negative electrode.
  • the positive electrode is provided with a positive current collector 2 electrically connected to it, and a negative electrode There is a negative current collector 3 electrically connected to it.
  • the positive electrode in this embodiment includes positive thin-layer electrodes 4 arranged at intervals, and the conductive film arranged between two adjacent positive thin-layer electrodes 4 is the positive conductive film 5.
  • the negative electrode of this embodiment includes negative thin-layer electrodes 6 arranged at intervals, and the conductive film arranged between two adjacent negative thin-layer electrodes 6 is the negative conductive film 7.
  • the positive thin-layer electrode 5 and the negative thin-layer electrode 7 are perpendicular to the battery separator 1, and all the positive electrode conductive films 5 are electrically connected to the positive electrode current collector 2, and all the negative electrode conductive films 7 are connected to the negative electrode current collector. 3 Conductive connection.
  • FIG. 3 it is a schematic structural diagram of Embodiment 3 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control of the present invention.
  • This embodiment is an energy storage device based on a multi-layer electrode for mass transfer reduction and diffusion control, including an ion-conducting but electronically insulated membrane. Electrodes are provided on both sides of the membrane. The electrodes adopt multi-layer electrodes based on mass transfer reduction and diffusion control.
  • the multilayer electrode based on mass transfer reduction and diffusion control in this embodiment includes a multilayer thin-layer electrode. A conductive film capable of realizing both ion conductivity and electronic conductivity is provided between two adjacent thin-layer electrodes. The layer electrodes are electrically connected through the conductive film, and the thickness of the thin layer electrodes meets:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the thin-layer electrode in this embodiment is greater than or equal to 1 nm, and the thickness of the thin-layer electrode satisfies: L ⁇ 10 ⁇ ; preferably, the thickness of the thin-layer electrode satisfies: L ⁇ 5 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ 2 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ .
  • the thickness of the thin-layer electrode of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate the influence of mass transfer or diffusion control, increase the specific power of the energy storage device, and greatly improve the utilization rate of the porous electrode.
  • the conductive film is made of but not limited to porous carbon, graphite, graphene, reduced graphene or polyaniline, and the conductive film of this embodiment is made of graphene.
  • the thickness of the conductive film satisfies: L 0 ⁇ k ⁇ ; where L 0 is the thickness of the conductive film; k is a coefficient, and k ⁇ 1; and ⁇ is the thickness of the diffusion control layer.
  • the thickness of the conductive film is greater than or equal to 1 nm, and the thickness of the conductive film satisfies: L 0 ⁇ 10 ⁇ , preferably, the thickness of the conductive film satisfies: L 0 ⁇ 5 ⁇ ; preferably, the thickness of the conductive film satisfies: L 0 ⁇ 2 ⁇ , Preferably, the thickness of the conductive film satisfies: L 0 ⁇ ⁇ .
  • the thickness of the conductive film of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate or reduce the influence of mass transfer or diffusion control effects.
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • the two electrodes located on both sides of the diaphragm 10 are made of different electrode materials, and are respectively located in the two electrodes on both sides of the diaphragm 10, and the thin-layer electrode 11 of one electrode is made of battery positive electrode material or electrode negative electrode.
  • the thin-layer electrode 12 of the other electrode is made of capacitor electrode material.
  • a conductive film 13 is provided between two adjacent thin-layer electrodes 11 of one electrode, and a conductive film 14 is provided between two adjacent thin-layer electrodes 11 of the other electrode.
  • the energy storage device in this embodiment is a hybrid energy storage device.
  • the thin-layer electrode 11 and the thin-layer electrode 12 of this embodiment are both parallel to the diaphragm 10, of course, the thin-layer electrode 11 and the thin-layer electrode 12 can also be arranged perpendicular to the diaphragm 10, which will not be repeated.
  • FIG. 5 it is a schematic structural diagram of Embodiment 5 of an energy storage device based on multi-layer electrodes for mass transfer reduction and diffusion control of the present invention.
  • This embodiment is based on a multi-layered electrode energy storage device for reducing mass transfer and diffusion control, including a membrane that conducts ions and realizes ion exchange and mass transfer in the positive and negative regions but is electronically insulated. Electrodes are provided on both sides of the membrane, and the electrodes include multiple A thin-layer electrode, a conductive film capable of ionic conduction and electronic conduction is provided between two adjacent thin-layer electrodes. The two adjacent thin-layer electrodes are electrically connected through the conductive film, and the thickness of the thin-layer electrode meets:
  • L is the thickness of the thin-layer electrode
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the thin-layer electrode in this embodiment is greater than or equal to 1 nm, and the thickness of the thin-layer electrode satisfies: L ⁇ 10 ⁇ ; preferably, the thickness of the thin-layer electrode satisfies: L ⁇ 5 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ 2 ⁇ .
  • the thickness of the thin-layer electrode satisfies: L ⁇ .
  • the thickness of the thin-layer electrode of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate or reduce the influence of mass transfer or diffusion control, increase the specific power of the energy storage device and greatly increase the utilization rate of the porous electrode.
  • the conductive film is made of but not limited to porous carbon, graphite, graphene, reduced graphene or polyaniline, and the conductive film of this embodiment is made of graphene.
  • the thickness of the conductive film satisfies: L 0 ⁇ k ⁇ ; where L 0 is the thickness of the conductive film; k is a coefficient, and k ⁇ 1; and ⁇ is the thickness of the diffusion control layer.
  • the thickness of the conductive film is greater than or equal to 1 nm, and the thickness of the conductive film satisfies: L 0 ⁇ 10 ⁇ , preferably, the thickness of the conductive film satisfies: L 0 ⁇ 5 ⁇ ; preferably, the thickness of the conductive film satisfies: L 0 ⁇ 2 ⁇ Preferably, the thickness of the conductive film satisfies: L 0 ⁇ .
  • the thickness of the conductive film of this embodiment is less than or equal to the thickness of the diffusion control layer, which can eliminate or reduce the influence of mass transfer or diffusion control.
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • the energy storage device in this embodiment is a capacitor
  • the thin-layer electrodes 16, 17 located on both sides of the diaphragm 15 are made of the same electrode material, that is, the capacitor at this time is a symmetrical capacitor.
  • the thin-layer electrodes arranged on both sides of the diaphragm can also be made of different electrode materials, that is, the capacitor at this time is an asymmetric capacitor.
  • the thin-layer electrodes located on both sides of the diaphragm in this embodiment are made of the same electrode material.
  • the electrode is provided with current collectors 18, 19 conductively connected to the electrode; the conductive film on the same side of the diaphragm 15 is conductively connected to the current collector. That is, in this embodiment, the conductive film 20 on the same side of the diaphragm 15 is conductively connected to the current collector 18, and the conductive film 21 on the same side of the diaphragm 15 is conductively connected to the current collector 19, so that The inside of the electrode maintains an equipotential.
  • the thin-layer electrodes 16, 17 and the diaphragm 15 are parallel or perpendicular.
  • the thin-layer electrodes 16 and 17 of this embodiment are parallel to the diaphragm 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

一种基于减少传质和扩散控制的多层电极和一种基于减少传质和扩散控制多层电极的储能设备,其中基于减少传质和扩散控制的多层电极包括多层的薄层电极(4,6),相邻两个薄层电极(4,6)之间设有可同时离子导电和电子导电的导电薄膜(5,7),该相邻的两个薄层电极(4,6)通过导电薄膜(5,7)导电连接,且薄层电极(4,6)的厚度满足:L≤kδ;其中,L为薄层电极(4,,6)的厚度;k为系数,且k≥1;δ为扩散控制层厚度。通过将电极设置为多层薄层电极(4,6),可增加同时充放电的薄层电极(4,6)的数量,即可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极(4,6)的厚度,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。

Description

基于减少传质和扩散控制的多层电极及储能设备 技术领域
本发明涉及储能设备技术领域,具体的为一种基于减少传质和扩散控制的多层电极及储能设备。
背景技术
现有的锂离子电池包括正电极、负电极和隔膜,正电极和负电极之间设有电解液。根据锂离子电池的充放电原理可知:锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时,嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。锂电池放电需要注意几点:第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。第二,绝对不能过放电!锂电池内部存储电能是靠电化学一种可逆的化学变化实现的,过度的放电会导致这种化学变化有不可逆的反应发生,因此锂电池最怕过放电,一旦放电电压低于2.7V,将可能导致电池报废。
在锂离子电池充放电过程中,正电极和负电极仅有一定深度的孔表面与电解液接触而产生锂离子的嵌入和脱嵌,正电极和负电极的材料不能完全参与锂离子的嵌入和脱嵌,这也是导致现有的锂离子电池充放电电流不大的原因,不但限制了锂离子电池的充放电容量,而且也限制了电池的充放电功率。
发明内容
有鉴于此,本发明的目的在于提供一种基于减少传质和扩散控制的多层电极及储能设备,能够减小传质和扩散控制对充放电的影响,提高充放电速率,并能够提高比表面积,增大储能容量。
为达到上述目的,本发明提供如下技术方案:
本发明首先提出了一种基于减少传质和扩散控制的多层电极,包括多层的薄层电极,相邻两个所述薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个所述薄层电极通过所述导电薄膜导电连接,且所述薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,所述薄层电极的厚度大于等于1nm。
进一步,所述薄层电极的厚度满足:L≤10δ。
进一步,所述薄层电极的厚度满足:L≤5δ。
进一步,所述薄层电极的厚度满足:L≤2δ。
进一步,所述薄层电极的厚度满足:L≤δ。
进一步,所述导电薄膜采用允许电解液通过从而实现离子导电和交换的多孔导电材料制成。
进一步,所述导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成。
进一步,所述导电薄膜的厚度满足:
L 0≤kδ
其中,L 0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,所述导电薄膜的厚度大于等于1nm。
进一步,所述导电薄膜的厚度满足:L 0≤10δ
进一步,所述导电薄膜的厚度满足:L 0≤5δ。
进一步,所述导电薄膜的厚度满足:L 0≤2δ。
进一步,所述导电薄膜的厚度满足:L 0≤δ。
进一步,所述扩散控制层厚度为:
Figure PCTCN2020083419-appb-000001
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
本发明还提出了一种基于减少传质和扩散控制多层电极的储能设备,包括电子绝缘且可通过离子的隔膜,所述隔膜的两侧分别设有电极,所述电极采用如上所述基于减少传质和扩散控制的多层电极。
进一步,所述储能设备为电池,所述隔膜为电池隔膜;位于所述电池隔膜两侧的所述电极分别为正电极和负电极,所述正电极上设有与其导电连接的正极集流体,所述负电极上设有与其导电连接的负极集流体。
进一步,所述正电极包括间隔设置的正薄层电极,设置在相邻两层所述正薄层电极之间的所述导电薄膜为正极导电薄膜;
所述负电极包括间隔设置的负薄层电极,设置在相邻两层所述负薄层电极之间的所述导电薄膜为负极导电薄膜。
进一步,所述正薄层电极和负薄层电极均与所述电池隔膜之间相互平行,所述正薄层电极采用可将电解液导流至所述正极导电薄膜的多孔正薄层电极,所述负薄层电极采用可将电解液导流至所述负极导电薄膜的多孔负薄层电极。
进一步,所有的所述正极导电薄膜均与所述正极集流体导电连接,所有的所述负极导电薄膜均与所述负极集流体导电连接。
进一步,所述正薄层电极和负薄层电极均与所述电池隔膜之间相互垂直。
进一步,所有的所述正极导电薄膜均与所述正极集流体导电连接,所有的所述负极导电薄膜均与所述负极集流体导电连接。
进一步,所述正薄层电极采用锂离子电池正极材料制成,所述负薄层电极采用锂离子电池负极材料制成。
进一步,所述储能设备为混合型储能设备,分别位于所述隔膜两侧的两个所述电极中,其中一个所述电极的薄层电极采用电池正极材料或电极负极材料制成,另一个所述电极的薄层电极采用电容电极材料制成。
进一步,所述储能设备为电容器,位于所述隔膜两侧的所述薄层电极采用相同的电极材料制成;或,设置在所述隔膜两侧的所述薄层电极分别采用不同的电极材料制成。
进一步,所述电极上设有与其导电连接的集流体;位于所述隔膜同一侧的所述导电薄膜与所述集流体导电连接。
进一步,所述薄层电极与所述隔膜平行或垂直。
本发明的有益效果在于:
本发明基于减少传质和扩散控制多层电极的储能设备,通过将电极设置为多层薄层电极,如此,电解液进入到导电薄膜后分别与薄层电极的表面接触,即所有的薄层电极的表面均会参与电池充放电反应,可增加同时充放电的薄层电极的数量,即可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极的厚度,能够减小传质和扩散控制对充放电的影响,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明基于减少传质和扩散控制多层电极的储能设备实施例1的结构示意图;
图2为本发明基于减少传质和扩散控制多层电极的储能设备实施例2的结构示意图;
图3为本发明基于减少传质和扩散控制多层电极的储能设备实施例3的结构示意图;
图4为本发明基于减少传质和扩散控制多层电极的储能设备实施例4的结构示意图;
图5为本发明基于减少传质和扩散控制多层电极的储能设备实施例5的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
如图1所示,为本发明基于减少传质和扩散控制多层电极的储能设备实施例1的结构示意图。本实施例基于减少传质和扩散控制多层电极的储能设备,包括离子导电但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极采用基于减少传质和扩散控制的多层电极。本实施例基于减少传质和扩散控制的多层电极包括多层的薄层电极,相邻两个薄层电极之间设有可同时实现离子导电和电子导电的导电薄膜,该相邻两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
具体的,本实施例的薄层电极的厚度大于等于1nm,且薄层电极的厚度满足:L≤10δ;优选的,薄层电极的厚度满足:L≤5δ。优选的,薄层电极的厚度满足:L≤2δ。优选的,薄层电极的厚度满足:L≤δ。本实施例的薄层电极的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响,提高储能设备的比功率以及极大地提高多孔电极的利用率。
进一步,导电薄膜采用允许电解液通过从而实现离子导电和交换的多孔导电材料制成。导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成,本实施例的导电薄膜采用石墨烯制成。且导电薄膜的厚度满足:L 0≤kδ;其中,L 0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。具体的,导电薄膜的厚度大于等于1nm,且导电薄膜的厚度满足:L 0≤10δ,优选的,导电薄膜的厚度满足:L 0≤5δ;优选的,导电薄膜的厚度满足:L 0≤2δ,优选的,导电薄膜的厚度满足:L 0≤δ。本实施例的导电薄膜的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响。
进一步,扩散控制层厚度为:
Figure PCTCN2020083419-appb-000002
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,本实施例的储能设备为电池,隔膜为电池隔膜1;位于电池隔膜1两侧的电极 分别为正电极和负电极,正电极上设有与其导电连接的正极集流体2,负电极上设有与其导电连接的负极集流体3。本实施例的正电极包括间隔设置的多层正薄层电极4,设置在相邻两层正薄层电极4之间的导电薄膜为正极导电薄膜5。本实施例的负电极包括间隔设置的多层负薄层电极6,设置在相邻两层负薄层电极6之间的导电薄膜为负极导电薄膜7。
进一步,本实施例的正薄层电极4和负薄层电极6均与电池隔膜1之间相互平行,正薄层电极4上设有采用可将电解液导流至所述正极导电薄膜的多孔正薄层电极,负薄层电极6采用可将电解液导流至所述负极导电薄膜的多孔负薄层电极。
进一步,正薄层电极4采用锂离子电池正极材料制成,负薄层电极6采用锂离子电池负极材料制成,即本实施例的储能设备为锂电池。
本实施例基于减少传质和扩散控制多层电极的储能设备,通过将电极设置为多层薄层电极,如此,电解液进入到导电薄膜后分别与薄层电极的表面接触,即所有的薄层电极的表面均会参与电池充放电反应,可增加同时充放电的薄层电极的数量,即可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极的厚度,能够减小传质和扩散控制对充放电的影响,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。
实施例2
如图2所示,为本发明基于减少传质和扩散控制多层电极的储能设备实施例2的结构示意图。本实施例基于减少传质和扩散控制多层电极的储能设备,包括离子导电但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极采用基于减少传质和扩散控制的多层电极。本实施例基于减少传质和扩散控制的多层电极包括多层薄层电极,相邻两个薄层电极之间设有可同时实现离子导电和电子导电的导电薄膜,该相邻两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,本实施例的储能设备为电池,隔膜为电池隔膜1;位于电池隔膜1两侧的电极分别为正电极和负电极,正电极上设有与其导电连接的正极集流体2,负电极上设有与其导电连接的负极集流体3。本实施例的正电极包括间隔设置的多层正薄层电极4,设置在相邻两层正薄层电极4之间的导电薄膜为正极导电薄膜5。本实施例的负电极包括间隔设置的多层负薄层电极6,设置在相邻两层负薄层电极6之间的导电薄膜为负极导电薄膜7。
进一步,所有的正极导电薄膜5均通过接线桥8与正极集流体导电连接,所有的负极导 电薄膜7均通过接线桥9与负极集流体导电连接。
本实施例的其他结构与实施例1相同,不再一一累述。
实施例3
如图3所示,为本发明基于减少传质和扩散控制多层电极的储能设备实施例3的结构示意图。本实施例基于减少传质和扩散控制多层电极的储能设备,包括离子导电但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极采用基于减少传质和扩散控制的多层电极。本实施例基于减少传质和扩散控制的多层电极包括多层薄层电极,相邻两个薄层电极之间设有可同时实现离子导电和电子导电的导电薄膜,该相邻两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,本实施例的储能设备为电池,隔膜为电池隔膜1;位于电池隔膜1两侧的电极分别为正电极和负电极,正电极上设有与其导电连接的正极集流体2,负电极上设有与其导电连接的负极集流体3。本实施例的正电极包括间隔设置的正薄层电极4,设置在相邻两层正薄层电极4之间的导电薄膜为正极导电薄膜5。本实施例的负电极包括间隔设置的负薄层电极6,设置在相邻两层负薄层电极6之间的导电薄膜为负极导电薄膜7。
进一步,正薄层电极5和负薄层电极7均与电池隔膜1之间相互垂直,且所有的正极导电薄膜5均与正极集流体2导电连接,所有的负极导电薄膜7均与负极集流体3导电连接。
本实施例的其他结构与实施例1相同,不再一一累述。
实施例4
如图3所示,为本发明基于减少传质和扩散控制多层电极的储能设备实施例3的结构示意图。本实施例基于减少传质和扩散控制多层电极的储能设备,包括离子导电但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极采用基于减少传质和扩散控制的多层电极。本实施例基于减少传质和扩散控制的多层电极包括多层薄层电极,相邻两个薄层电极之间设有可同时实现离子导电和电子导电的导电薄膜,该相邻两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
具体的,本实施例的薄层电极的厚度大于等于1nm,且薄层电极的厚度满足:L≤10δ;优选的,薄层电极的厚度满足:L≤5δ。优选的,薄层电极的厚度满足:L≤2δ。优选的,薄层电极的厚度满足:L≤δ。本实施例的薄层电极的厚度小于等于扩散控制层厚度,能够 消除传质或扩散控制的影响,提高储能设备的比功率以及极大地提高多孔电极的利用率。
进一步,导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成,本实施例的导电薄膜采用石墨烯制成。且导电薄膜的厚度满足:L 0≤kδ;其中,L 0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,导电薄膜的厚度大于等于1nm,且导电薄膜的厚度满足:L 0≤10δ,优选的,导电薄膜的厚度满足:L 0≤5δ;优选的,导电薄膜的厚度满足:L 0≤2δ,优选的,导电薄膜的厚度满足:L 0≤δ。本实施例的导电薄膜的厚度小于等于扩散控制层厚度,能够消除或减少传质或扩散控制效应的影响。
进一步,扩散控制层厚度为:
Figure PCTCN2020083419-appb-000003
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,本实施例位于隔膜10两侧的两个电极分别采用不同的电极材料制成,分别位于隔膜10两侧的两个电极中,其中一个电极的薄层电极11采用电池正极材料或电极负极材料制成,另一个电极的薄层电极12采用电容电极材料制成。本实施例的其中一个电极的相邻两个薄层电极11之间设有导电薄膜13,另一个电极的相邻两个薄层电极11之间设有导电薄膜14。本实施例的储能设备为混合型储能设备。
本实施例的薄层电极11和薄层电极12均与隔膜10平行,当然,也可以将薄层电极11和薄层电极12设置为与隔膜10垂直,不再累述。
实施例5
如图5所示,为本发明基于减少传质和扩散控制多层电极的储能设备实施例5的结构示意图。本实施例基于减少传质和扩散控制多层电极的储能设备,包括离子导电并实现正、负极区离子交换和传质但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极包括多层薄层电极,相邻两个薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
具体的,本实施例的薄层电极的厚度大于等于1nm,且薄层电极的厚度满足:L≤10δ;优选的,薄层电极的厚度满足:L≤5δ。优选的,薄层电极的厚度满足:L≤2δ。优选的,薄层电极的厚度满足:L≤δ。本实施例的薄层电极的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响,提高储能设备的比功率以及极大地提高多孔电极的利用 率。
进一步,导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成,本实施例的导电薄膜采用石墨烯制成。且导电薄膜的厚度满足:L 0≤kδ;其中,L 0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。优选的,导电薄膜的厚度大于等于1nm,且导电薄膜的厚度满足:L 0≤10δ,优选的,导电薄膜的厚度满足:L 0≤5δ;优选的,导电薄膜的厚度满足:L 0≤2δ,优选的,导电薄膜的厚度满足:L 0≤δ。本实施例的导电薄膜的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响。
进一步,扩散控制层厚度为:
Figure PCTCN2020083419-appb-000004
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,本实施例的储能设备为电容器,位于所述隔膜15两侧的所述薄层电极16,17采用相同的电极材料制成,即此时的电容器为对称式电容。当然,设置在隔膜两侧的所述薄层电极也可以分别采用不同的电极材料制成,即此时的电容器为非对称式电容。本实施例的位于隔膜两侧的薄层电极采用相同的电极材料制成。
进一步,所述电极上设有与其导电连接的集流体18,19;位于所述隔膜15同一侧的所述导电薄膜与所述集流体导电连接。即本实施例位于所述隔膜15同一侧的所述导电薄膜20与所述集流体18导电连接,位于所述隔膜15同一侧的所述导电薄膜21与所述集流体19导电连接,可使电极内部保持等电位。
进一步,所述薄层电极16,17与所述隔膜15平行或垂直。本实施例的薄层电极16,17与所述隔膜15平行。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (27)

  1. 一种基于减少传质和扩散控制的多层电极,其特征在于:包括多层薄层电极,相邻两个所述薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个所述薄层电极通过所述导电薄膜导电连接,且所述薄层电极的厚度满足:
    L≤kδ
    其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
  2. 根据权利要求1所述基于减少传质和扩散控制的多层电极,其特征在于:所述薄层电极的厚度大于等于1nm。
  3. 根据权利要求1所述基于减少传质和扩散控制的多层电极,其特征在于:所述薄层电极的厚度满足:L≤10δ。
  4. 根据权利要求3所述基于减少传质和扩散控制的多层电极,其特征在于:所述薄层电极的厚度满足:L≤5δ。
  5. 根据权利要求4所述基于减少传质和扩散控制的多层电极,其特征在于:所述薄层电极的厚度满足:L≤2δ。
  6. 根据权利要求5所述基于减少传质和扩散控制的多层电极,其特征在于:所述薄层电极的厚度满足:L≤δ。
  7. 根据权利要求1所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜采用允许电解液通过从而实现离子导电和交换的多孔导电材料制成。
  8. 根据权利要求1所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成。
  9. 根据权利要求1所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜的厚度满足:
    L 0≤kδ
    其中,L 0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
  10. 根据权利要求9所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜的厚度大于等于1nm。
  11. 根据权利要求10所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜的厚度满足:L 0≤10δ
  12. 根据权利要求11所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜的厚度满足:L 0≤5δ。
  13. 根据权利要求12所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电 薄膜的厚度满足:L 0≤2δ。
  14. 根据权利要求13所述基于减少传质和扩散控制的多层电极,其特征在于:所述导电薄膜的厚度满足:L 0≤δ。
  15. 根据权利要求1-14任一项所述基于减少传质和扩散控制的多层电极,其特征在于:所述扩散控制层厚度为:
    Figure PCTCN2020083419-appb-100001
    其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
  16. 一种基于减少传质和扩散控制多层电极的储能设备,包括离子导电但电子绝缘的隔膜,所述隔膜的两侧分别设有电极,其特征在于:所述电极采用如权利要求1-15任一项所述基于减少传质和扩散控制的多层电极。
  17. 根据权利要求16所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述储能设备为电池,所述隔膜为电池隔膜;位于所述电池隔膜两侧的所述电极分别为正电极和负电极,所述正电极上设有与其导电连接的正极集流体,所述负电极上设有与其导电连接的负极集流体。
  18. 根据权利要求17所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述正电极包括间隔设置的多层正薄层电极,设置在相邻两层所述正薄层电极之间的所述导电薄膜为正极导电薄膜;
    所述负电极包括间隔设置的多层负薄层电极,设置在相邻两层所述负薄层电极之间的所述导电薄膜为负极导电薄膜。
  19. 根据权利要求18所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述正薄层电极和负薄层电极均与所述电池隔膜之间相互平行,所述正薄层电极采用可将电解液导流至所述正极导电薄膜的多孔正薄层电极,所述负薄层电极采用可将电解液导流至所述负极导电薄膜的多孔负薄层电极,实现正、负电极去离子的迁移和交换。
  20. 根据权利要求19所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所有的所述正极导电薄膜均与所述正极集流体导电连接,所有的所述负极导电薄膜均与所述负极集流体导电连接。
  21. 根据权利要求18所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述正薄层电极和负薄层电极均与所述电池隔膜之间相互垂直。
  22. 根据权利要求21所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所有的所述正极导电薄膜均与所述正极集流体导电连接,所有的所述负极导电薄膜均与 所述负极集流体导电连接。
  23. 根据权利要求16-22任一项所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述正薄层电极采用锂离子电池正极材料制成,所述负薄层电极采用锂离子电池负极材料制成。
  24. 根据权利要求16所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述储能设备为混合型储能设备,分别位于所述隔膜两侧的两个所述电极中,其中一个所述电极的薄层电极采用电池正极材料或电极负极材料制成,另一个所述电极的薄层电极采用电容电极材料制成。
  25. 根据权利要求16所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述储能设备为电容器,位于所述隔膜两侧的所述薄层电极采用相同的电极材料制成;或,设置在所述隔膜两侧的所述薄层电极分别采用不同的电极材料制成。
  26. 根据权利要求25所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述电极上设有与其导电连接的集流体;位于所述隔膜同一侧的所述导电薄膜与所述集流体导电连接。
  27. 根据权利要求26所述的基于减少传质和扩散控制多层电极的储能设备,其特征在于:所述薄层电极与所述隔膜平行或垂直。
PCT/CN2020/083419 2019-04-08 2020-04-06 基于减少传质和扩散控制的多层电极及储能设备 WO2020207363A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910277072.3 2019-04-08
CN201910277759.7A CN111799094A (zh) 2019-04-08 2019-04-08 基于减少传质和扩散控制多层电极的电容器
CN201910277759.7 2019-04-08
CN201910277072.3A CN111799432A (zh) 2019-04-08 2019-04-08 基于减少传质和扩散控制的多层电极及储能设备

Publications (1)

Publication Number Publication Date
WO2020207363A1 true WO2020207363A1 (zh) 2020-10-15

Family

ID=72750625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083419 WO2020207363A1 (zh) 2019-04-08 2020-04-06 基于减少传质和扩散控制的多层电极及储能设备

Country Status (1)

Country Link
WO (1) WO2020207363A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346835A (zh) * 2005-12-27 2009-01-14 松下电器产业株式会社 锂二次电池用电极和使用该电极的锂二次电池
CN101414674A (zh) * 2008-08-05 2009-04-22 华南师范大学 锂离子电池锡/碳纳米多层膜负极材料及其制备方法和应用
CN203910910U (zh) * 2014-04-25 2014-10-29 福建省诺希新材料科技有限公司 一种石墨烯/硅多层膜复合阳极材料
CN105322129A (zh) * 2014-06-27 2016-02-10 中国科学院沈阳自动化研究所 一种叠层锂离子电池电极结构及其喷墨打印制备方法
CN109390575A (zh) * 2018-10-25 2019-02-26 扬州市轩煌铸造有限公司 阳极材料
CN209880409U (zh) * 2019-04-08 2019-12-31 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制多层电极的电容器
CN210074028U (zh) * 2019-04-08 2020-02-14 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制的多层电极及储能设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346835A (zh) * 2005-12-27 2009-01-14 松下电器产业株式会社 锂二次电池用电极和使用该电极的锂二次电池
CN101414674A (zh) * 2008-08-05 2009-04-22 华南师范大学 锂离子电池锡/碳纳米多层膜负极材料及其制备方法和应用
CN203910910U (zh) * 2014-04-25 2014-10-29 福建省诺希新材料科技有限公司 一种石墨烯/硅多层膜复合阳极材料
CN105322129A (zh) * 2014-06-27 2016-02-10 中国科学院沈阳自动化研究所 一种叠层锂离子电池电极结构及其喷墨打印制备方法
CN109390575A (zh) * 2018-10-25 2019-02-26 扬州市轩煌铸造有限公司 阳极材料
CN209880409U (zh) * 2019-04-08 2019-12-31 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制多层电极的电容器
CN210074028U (zh) * 2019-04-08 2020-02-14 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制的多层电极及储能设备

Similar Documents

Publication Publication Date Title
US11901500B2 (en) Sandwich electrodes
CN106063024B (zh) 具有形状变化控制的Li/金属电池
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
JPH11204136A (ja) バイポーラ型リチウムイオン2次電池及びその製造方法
US10700332B2 (en) Separator and galvanic cell providing robust separation of anode and cathode
US9806337B2 (en) Electrode structure having alternating composite layers
CN112242564B (zh) 具有电容器辅助夹层的固态电池
EP3614463A1 (en) Electrode structure of electrochemical energy storage device and manufacturing method thereof
WO2006113924A3 (en) Safer high energy battery
CN107819103B (zh) 具有提高的活性材料份额的电极
JP2000195495A (ja) シ―ト電池
CN209880409U (zh) 基于减少传质和扩散控制多层电极的电容器
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
WO2020207363A1 (zh) 基于减少传质和扩散控制的多层电极及储能设备
WO2020207362A1 (zh) 双极导电薄膜连接结构的储能设备
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
KR20240000416U (ko) 리튬 이온 배터리
CN112436106B (zh) 金属正极和基于金属正极的电池
US20170179494A1 (en) Electrode having active material encased in conductive net
CN111799432A (zh) 基于减少传质和扩散控制的多层电极及储能设备
CN111799094A (zh) 基于减少传质和扩散控制多层电极的电容器
US20220416305A1 (en) Battery Pack and Battery Cell
CN114284463A (zh) 一种复合补锂片以及设有该复合补锂片的电芯和电池
CN209963144U (zh) 减少传质或扩散控制或完全无传质或扩散控制的储能设备
CN219959092U (zh) 高倍率固态电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787100

Country of ref document: EP

Kind code of ref document: A1