CN111799094A - 基于减少传质和扩散控制多层电极的电容器 - Google Patents

基于减少传质和扩散控制多层电极的电容器 Download PDF

Info

Publication number
CN111799094A
CN111799094A CN201910277759.7A CN201910277759A CN111799094A CN 111799094 A CN111799094 A CN 111799094A CN 201910277759 A CN201910277759 A CN 201910277759A CN 111799094 A CN111799094 A CN 111799094A
Authority
CN
China
Prior art keywords
electrode
thickness
layer
thin
mass transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910277759.7A
Other languages
English (en)
Inventor
李长明
吴超
辛程勋
辛民昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Original Assignee
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Jiuhuan Xinyue New Energy Technology Co ltd filed Critical Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Priority to CN201910277759.7A priority Critical patent/CN111799094A/zh
Priority to PCT/CN2020/083419 priority patent/WO2020207363A1/zh
Publication of CN111799094A publication Critical patent/CN111799094A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明首先公开了一种基于减少传质和扩散控制多层电极的电容器,包括离子导电但电子绝缘的隔膜,所述隔膜的两侧分别设有电极,所述电极包括多层的薄层电极,相邻两个所述薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个所述薄层电极通过所述导电薄膜导电连接,且所述薄层电极的厚度满足:L≤kδ;其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。通过将电极设置为多层薄层电极,可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极的厚度,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。

Description

基于减少传质和扩散控制多层电极的电容器
技术领域
本发明涉及储能设备技术领域,具体的为一种基于减少传质和扩散控制多层电极的电容器。
背景技术
现有的锂离子电池包括正电极、负电极和隔膜,正电极和负电极之间设有电解液。根据锂离子电池的充放电原理可知:锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时,嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。锂电池放电需要注意几点:第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。第二,绝对不能过放电!锂电池内部存储电能是靠电化学一种可逆的化学变化实现的,过度的放电会导致这种化学变化有不可逆的反应发生,因此锂电池最怕过放电,一旦放电电压低于2.7V,将可能导致电池报废。
由图1可知,在锂离子电池充放电过程中,正极1和负极2仅有表面与电解液接触而产生锂离子的嵌入和脱嵌,正极1和负极2内部并未参与锂离子的嵌入和脱嵌,这也是导致现有的锂离子电池充放电电流不大的原因,同时也限制了锂离子电池的充放电容量。
发明内容
有鉴于此,本发明的目的在于提供一种基于减少传质和扩散控制多层电极的电容器,能够减小扩散控制对充放电的影响,提高充放电速率,并能够提高比表面积,增大储能容量。
为达到上述目的,本发明提供如下技术方案:
一种基于减少传质和扩散控制多层电极的电容器,包括离子导电但电子绝缘的隔膜,所述隔膜的两侧分别设有电极,所述电极包括多层的薄层电极,相邻两个所述薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个所述薄层电极通过所述导电薄膜导电连接,且所述薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,所述导电薄膜采用允许电解液通过从而实现离子导电的多孔导电材料制成。
进一步,所述薄层电极的厚度大于等于1nm。
进一步,所述薄层电极的厚度满足:L≤10δ。
进一步,所述薄层电极的厚度满足:L≤5δ。
进一步,所述薄层电极的厚度满足:L≤2δ。
进一步,所述薄层电极的厚度满足:L≤δ。
进一步,所述导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成。
进一步,所述导电薄膜的厚度满足:
L0≤kδ
其中,L0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
进一步,所述导电薄膜的厚度大于等于1nm。
进一步,所述导电薄膜的厚度满足:L0≤10δ。
进一步,所述导电薄膜的厚度满足:L0≤5δ。
进一步,所述导电薄膜的厚度满足:L0≤2δ。
进一步,所述导电薄膜的厚度满足:L0≤δ。
进一步,所述扩散控制层厚度为:
Figure BDA0002020609930000021
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,位于所述隔膜两侧的所述薄层电极采用相同的电极材料制成;或,设置在所述隔膜两侧的所述薄层电极分别采用不同的电极材料制成。
进一步,所述电极上设有与其导电连接的集流体;位于所述隔膜同一侧的所述导电薄膜与所述集流体导电连接。
进一步,所述薄层电极与所述隔膜平行或垂直。
本发明的有益效果在于:
本发明基于减少传质和扩散控制多层电极的电容器,通过将电极设置为多层的薄层电极,如此,电解液进入到导电薄膜后分别与薄层电极的表面接触,即所有的薄层电极的表面均会参与电池充放电反应,可增加同时充放电的薄层电极的数量,即可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极的厚度,能够减小传质和扩散控制对充放电的影响,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明基于减少传质和扩散控制多层电极的电容器实施例的结构示意图。
附图标记说明:
1-隔膜;2-电极片;3-导电薄膜;4-负孔道;5-集流体;6-集流体。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,为本发明基于减少传质和扩散控制多层电极的电容器实施例的结构示意图。本实施例基于减少传质和扩散控制多层电极的电容器,包括离子导电并实现正、负极区离子交换和传质但电子绝缘的隔膜,隔膜的两侧分别设有电极,电极包括多层薄层电极,相邻两个薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个薄层电极通过导电薄膜导电连接,且薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
具体的,本实施例的薄层电极的厚度大于等于1nm,且薄层电极的厚度满足:L≤10δ;优选的,薄层电极的厚度满足:L≤5δ。优选的,薄层电极的厚度满足:L≤2δ。优选的,薄层电极的厚度满足:L≤δ。本实施例的薄层电极的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响,提高储能设备的比功率以及极大地提高多孔电极的利用率。
进一步,导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成,本实施例的导电薄膜采用石墨烯制成。且导电薄膜的厚度满足:L0≤kδ;其中,L0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。优选的,导电薄膜的厚度大于等于1nm,且导电薄膜的厚度满足:L0≤10δ,优选的,导电薄膜的厚度满足:L0≤5δ;优选的,导电薄膜的厚度满足:L0≤2δ,优选的,导电薄膜的厚度满足:L0≤δ。本实施例的导电薄膜的厚度小于等于扩散控制层厚度,能够消除或减小传质或扩散控制的影响。
进一步,扩散控制层厚度为:
Figure BDA0002020609930000031
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,位于所述隔膜1两侧的所述薄层电极2,3采用相同的电极材料制成,即此时的电容器为对称式电容。当然,设置在隔膜两侧的所述薄层电极也可以分别采用不同的电极材料制成,即此时的电容器为非对称式电容。本实施例的位于隔膜两侧的薄层电极采用相同的电极材料制成。
进一步,所述电极上设有与其导电连接的集流体4,5;位于所述隔膜1同一侧的所述导电薄膜与所述集流体导电连接。即本实施例位于所述隔膜1同一侧的所述导电薄膜6与所述集流体4导电连接,位于所述隔膜1同一侧的所述导电薄膜7与所述集流体5导电连接,可使电极内部保持等电位。
进一步,所述薄层电极2,3与所述隔膜1平行或垂直。本实施例的薄层电极2,3与所述隔膜1平行。
本实施例基于减少传质和扩散控制多层电极的电容器,通过将电极设置为多层的薄层电极,如此,电解液进入到导电薄膜后分别与薄层电极的表面接触,即所有的薄层电极的表面均会参与电池充放电反应,可增加同时充放电的薄层电极的数量,即可有效提高比表面积,增大储能容量;另外,通过利用扩散控制层厚度来限定薄层电极的厚度,能够减小传质和扩散控制对充放电的影响,从而使反应分子或离子等在电极内不受传质速率的控制或大大改善传质速率的控制,提高储能设备的比功率以及极大地提高多孔电极的利用率。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (18)

1.一种基于减少传质和扩散控制多层电极的电容器,包括离子导电但电子绝缘的隔膜,所述隔膜的两侧分别设有电极,其特征在于:所述电极包括多层的薄层电极,相邻两个所述薄层电极之间设有可同时离子导电和电子导电的导电薄膜,该相邻的两个所述薄层电极通过所述导电薄膜导电连接,且所述薄层电极的厚度满足:
L≤kδ
其中,L为薄层电极的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
2.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜采用允许电解液通过从而实现离子导电和交换的多孔导电材料制成。
3.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极的厚度大于等于1nm。
4.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极的厚度满足:L≤10δ。
5.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极的厚度满足:L≤5δ。
6.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极的厚度满足:L≤2δ。
7.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极的厚度满足:L≤δ。
8.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜采用但不限于多孔的碳、石墨、石墨烯、还原石墨烯或聚苯胺制成。
9.根据权利要求1所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度满足:
L0≤kδ
其中,L0为导电薄膜的厚度;k为系数,且k≥1;δ为扩散控制层厚度。
10.根据权利要求9所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度大于等于1nm。
11.根据权利要求10所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度满足:L0≤10δ。
12.根据权利要求10所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度满足:L0≤5δ。
13.根据权利要求10所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度满足:L0≤2δ。
14.根据权利要求10所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述导电薄膜的厚度满足:L0≤δ。
15.根据权利要求1-14任一项所述基于减少传质和扩散控制多层电极的电容器,其特征在于:所述扩散控制层厚度为:
Figure FDA0002020609920000021
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
16.根据权利要求1所述的基于减少传质和扩散控制多层电极的电容器,其特征在于:位于所述隔膜两侧的所述薄层电极采用相同的电极材料制成;或,设置在所述隔膜两侧的所述薄层电极分别采用不同的电极材料制成。
17.根据权利要求1-14任一项所述的基于减少传质和扩散控制多层电极的电容器,其特征在于:所述电极上设有与其导电连接的集流体;位于所述隔膜同一侧的所述导电薄膜与所述集流体导电连接。
18.根据权利要求17所述的基于减少传质和扩散控制多层电极的电容器,其特征在于:所述薄层电极与所述隔膜平行或垂直。
CN201910277759.7A 2019-04-08 2019-04-08 基于减少传质和扩散控制多层电极的电容器 Pending CN111799094A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910277759.7A CN111799094A (zh) 2019-04-08 2019-04-08 基于减少传质和扩散控制多层电极的电容器
PCT/CN2020/083419 WO2020207363A1 (zh) 2019-04-08 2020-04-06 基于减少传质和扩散控制的多层电极及储能设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910277759.7A CN111799094A (zh) 2019-04-08 2019-04-08 基于减少传质和扩散控制多层电极的电容器

Publications (1)

Publication Number Publication Date
CN111799094A true CN111799094A (zh) 2020-10-20

Family

ID=72804954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910277759.7A Pending CN111799094A (zh) 2019-04-08 2019-04-08 基于减少传质和扩散控制多层电极的电容器

Country Status (1)

Country Link
CN (1) CN111799094A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552305A (zh) * 2014-10-16 2016-05-04 罗伯特·博世有限公司 用于超级电容器和电池组的组合的电极及其制造方法
CN107331528A (zh) * 2017-06-29 2017-11-07 中国科学院电工研究所 多层复合电极及采用该电极的锂离子电池电容
CN209880409U (zh) * 2019-04-08 2019-12-31 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制多层电极的电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552305A (zh) * 2014-10-16 2016-05-04 罗伯特·博世有限公司 用于超级电容器和电池组的组合的电极及其制造方法
CN107331528A (zh) * 2017-06-29 2017-11-07 中国科学院电工研究所 多层复合电极及采用该电极的锂离子电池电容
CN209880409U (zh) * 2019-04-08 2019-12-31 青岛九环新越新能源科技股份有限公司 基于减少传质和扩散控制多层电极的电容器

Similar Documents

Publication Publication Date Title
US11901500B2 (en) Sandwich electrodes
CN102696144B (zh) 电力储存设备单元及其制造方法以及蓄电设备
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
WO2022117080A1 (zh) 锂离子电池及动力车辆
US9806337B2 (en) Electrode structure having alternating composite layers
JP2016122650A5 (zh)
CN113594468B (zh) 一种集流体及其制备方法和应用
CN112242564A (zh) 具有电容器辅助夹层的固态电池
CN112290080A (zh) 一种可低温充电的锂离子电池
CN209880409U (zh) 基于减少传质和扩散控制多层电极的电容器
KR102264546B1 (ko) 이차전지용 전극조립체
WO2020207362A1 (zh) 双极导电薄膜连接结构的储能设备
JP2015018670A (ja) バイポーラ電池
KR20140058508A (ko) 리튬 축전지
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
CN112436106B (zh) 金属正极和基于金属正极的电池
CN212161973U (zh) 电极极片和二次电池
CN111799094A (zh) 基于减少传质和扩散控制多层电极的电容器
WO2020207363A1 (zh) 基于减少传质和扩散控制的多层电极及储能设备
KR20190047514A (ko) 전극 조립체 및 이를 포함하는 전기화학소자
CN209822768U (zh) 双极导电薄膜连接结构的储能设备
CN113782813A (zh) 电芯结构
CN111799432A (zh) 基于减少传质和扩散控制的多层电极及储能设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination