WO2010113245A1 - 内燃機関の油圧制御装置 - Google Patents

内燃機関の油圧制御装置 Download PDF

Info

Publication number
WO2010113245A1
WO2010113245A1 PCT/JP2009/056624 JP2009056624W WO2010113245A1 WO 2010113245 A1 WO2010113245 A1 WO 2010113245A1 JP 2009056624 W JP2009056624 W JP 2009056624W WO 2010113245 A1 WO2010113245 A1 WO 2010113245A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure stage
oil
pressure
engine
hydraulic control
Prior art date
Application number
PCT/JP2009/056624
Other languages
English (en)
French (fr)
Inventor
高橋 克明
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to US12/808,298 priority Critical patent/US8417440B2/en
Priority to PCT/JP2009/056624 priority patent/WO2010113245A1/ja
Priority to EP09829856.5A priority patent/EP2415980B1/en
Publication of WO2010113245A1 publication Critical patent/WO2010113245A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • F01M1/20Indicating or safety devices concerning lubricant pressure

Definitions

  • the present invention relates to a hydraulic control device for an internal combustion engine.
  • a general internal combustion engine hydraulic control device such as the internal combustion engine hydraulic control device disclosed in Patent Document 1 is a part of oil when the pressure of oil discharged from an oil pump exceeds a predetermined valve opening pressure. Is equipped with a relief valve that escapes to the relief passage. Thereby, it is suppressed that the pressure of the oil supplied to each part of the engine rises excessively.
  • a hydraulic control device for an internal combustion engine having a switching valve that switches the opening pressure of the relief valve to, for example, two stages has been developed.
  • the switching valve switches a pressure stage of oil supplied to each part of the internal combustion engine between a high pressure stage and a low pressure stage.
  • the oil pressure stage is switched to the low pressure stage, thereby improving the fuel efficiency of the engine. Is planned.
  • the problem is not limited to the one provided with the relief valve and the switching valve.
  • the hydraulic control device for an internal combustion engine having a pressure stage switching mechanism that switches the pressure stage of oil supplied to each part of the internal combustion engine between a high pressure stage and a low pressure stage has the same problem as described above. JP 2007-107485 A
  • An object of the present invention is to provide a hydraulic control device for an internal combustion engine that can accurately determine that an abnormality has occurred in a pressure stage switching mechanism.
  • an internal combustion engine comprising a pressure stage switching mechanism that switches a pressure stage of oil supplied to each part of the engine between a high pressure stage and a low pressure stage.
  • An engine hydraulic control device is provided.
  • the hydraulic control device includes a detection unit and a determination unit.
  • the detection unit detects the pressure of oil after being controlled by the pressure stage switching mechanism.
  • the determination unit outputs a command to the pressure stage switching mechanism to set the oil pressure stage to the high pressure stage, and the oil pressure detected by the detection unit after the command is output is high.
  • the high-pressure stage abnormality determination value is set to a value between a value assumed when the engine is operating at the time of the high-pressure stage and a value assumed when the pressure is low. .
  • a hydraulic control device for an internal combustion engine comprising a pressure stage switching mechanism that switches a pressure stage of oil supplied to each part of the engine between a high pressure stage and a low pressure stage.
  • the hydraulic control device includes a detection unit and a determination unit.
  • the detection unit detects the pressure of oil after being controlled by the pressure stage switching mechanism.
  • the determination unit outputs a command to the pressure stage switching mechanism to set the oil pressure stage to the low pressure stage, and the oil pressure detected by the detection unit after the output of the command is low. It is determined that an abnormality has occurred in the pressure stage switching mechanism on condition that the stage abnormality determination value is exceeded.
  • the low-pressure stage abnormality determination value is set to a value between a value assumed when the engine is in the high-pressure stage and a value assumed when the low-pressure stage is in the low-pressure stage. .
  • FIG. 1 is a schematic view of a hydraulic control device for an internal combustion engine according to an embodiment of the present invention.
  • Sectional drawing of the pressure stage switching mechanism in the hydraulic control apparatus of FIG. (A) is sectional drawing of the pressure stage switching mechanism of FIG. 2 in case the pressure stage of oil is set to the low pressure stage.
  • FIG. 3B is a cross-sectional view of the pressure stage switching mechanism of FIG. 2 when the oil pressure stage is set to a high pressure stage.
  • the graph which shows the relationship between the engine speed and oil pressure in the internal combustion engine of FIG.
  • the graph which shows the relationship between the engine speed in the internal combustion engine of FIG. 1, and an oil pressure, respectively about different cooling water temperature.
  • the graph explaining the setting aspect of the abnormality determination value in the pressure stage switching mechanism of FIG. The flowchart which shows the process sequence of the high voltage
  • the internal combustion engine is provided with a main supply passage 11 for supplying oil stored in an oil pan 12 to each part of the engine.
  • the main supply passage 11 is provided with an engine-driven oil pump 14 that sucks and discharges oil.
  • An oil strainer 13 is provided at the upstream end of the main supply passage 11, that is, the end on the oil pan 12 side, for filtering relatively large impurities contained in the oil.
  • An oil filter 15 that filters relatively small impurities contained in the oil is provided in a portion of the main supply passage 11 downstream of the oil pump 14.
  • the oil in the oil pan 12 is sucked by the pump 14 through the main supply passage 11 and discharged downstream of the passage 11.
  • the oil discharged from the oil pump 14 cools the pistons by injecting oil into various parts of the engine (for example, various hydraulically driven devices driven by oil pressure, pistons for extracting engine output) Piston jet mechanism, engine lubricated part, etc.).
  • the main supply passage 11 is connected to a relief passage 16 that connects a portion downstream of the oil pump 14 and a portion upstream of the oil pump 14. Specifically, one end of the relief passage 16 is connected to a portion of the main supply passage 11 downstream of the oil filter 15, and the other end of the relief passage 16 is connected between the oil pump 14 and the oil strainer 13 in the main supply passage 11. Connected to the part between.
  • the relief passage 16 is provided with a pressure stage switching mechanism 20 that switches a pressure stage of oil supplied to each part of the engine between a high pressure stage and a low pressure stage.
  • the pressure stage switching mechanism 20 is controlled by an electronic control device 30 as a determination unit.
  • the electronic control unit 30 includes an output signal from the engine speed sensor 32 that detects the engine speed NE, an output signal from the coolant temperature sensor 33 that detects the engine coolant temperature (hereinafter referred to as the coolant temperature THW), and the intake air amount.
  • Output signals of various sensors such as an output signal of an intake air amount sensor 34 for detecting GA, an output signal of an oil pressure sensor 31 for detecting oil pressure (hereinafter referred to as oil pressure Ps) supplied to each part of the engine, and the like. Entered.
  • An oil pressure sensor 31 as a detection unit is provided in the main supply passage 11.
  • the electronic control unit 30 grasps the engine operating state based on the output signal, and controls the internal combustion engine including the pressure stage switching mechanism 20 according to this.
  • the pressure stage switching mechanism 20 includes a relief valve 21 and a switching valve 29.
  • the relief valve 21 opens when the pressure of the oil discharged from the oil pump 14 becomes equal to or higher than a predetermined valve opening pressure Prrf.
  • the switching valve 29 serving as a switching unit switches the valve opening pressure Prrf to either the first pressure Prrf1 corresponding to the low pressure stage or the second pressure Prrf2 corresponding to the high pressure stage.
  • the second pressure Prrf2 is set to a value larger than the first pressure Prrf1.
  • the relief valve 21 includes a cylindrical housing 22 having a bottom portion 22A at one end, a cylindrical movable member 24 having a bottom portion 24a at one end, and a columnar valve body 25, provided in the middle of the relief passage 16. .
  • the movable member 24 is housed in a housing chamber 23 that is an internal space of the housing 22, and can be displaced in the axial direction A of the housing 22.
  • the valve body 25 is accommodated in the movable member 24 so that it can be displaced in the axial direction A.
  • the bottom 22A of the housing 22 and the bottom 24A of the movable member 24 are provided upstream in the relief passage 16, that is, on the relief passage 16 side connected to the main supply passage 11 downstream of the oil pump 14. ing.
  • the relief valve 21 includes a fixing member 26 that covers the opening of the end 22B of the housing 22 opposite to the bottom 22A. Furthermore, the relief valve 21 includes an urging spring 27 provided between the valve body 25 and the fixed member 26, and the urging spring 27 ties the valve body 25 to the bottom 24 ⁇ / b> A (upper side in FIG. 2) of the movable member 24. Energize towards.
  • the outer diameter of the movable member 24 is slightly smaller than the inner diameter of the housing 22.
  • the outer diameter of the valve body 25 is slightly smaller than the inner diameter of the movable member 24.
  • the fixing member 26 has a columnar enlarged diameter portion 26A and a columnar reduced diameter portion 26B having a smaller diameter than the enlarged diameter portion 26A.
  • the reduced diameter portion 26B is provided coaxially with the enlarged diameter portion 26A.
  • the inner end surface of the enlarged diameter portion 26A abuts on the end surface of the end portion 22B of the housing 22, and the side surface (circumferential surface) of the reduced diameter portion 26B is the inner peripheral surface of the end portion 24B of the movable member 24 opposite to the bottom portion 24A. It is provided so that it may contact
  • An inlet side through hole 22C is formed at the center of the bottom 22A of the housing 22.
  • an inlet side communication hole 24C having the same diameter as the inlet side through hole 22C is formed.
  • the through hole 22 ⁇ / b> C and the communication hole 24 ⁇ / b> C form part of the relief passage 16.
  • the opening that opens to the storage chamber 23 in the inlet-side through hole 22C corresponds to the inlet-side opening of the present invention.
  • an outlet side through hole 22D penetrating the same side portion is formed in the center of the side portion of the housing 22 in the axial direction A.
  • An outlet side communication hole 24D penetrating the same side portion is formed at a side portion of the movable member 24 corresponding to the outlet side through hole 22D.
  • the length of the outlet side communication hole 24D along the axial direction A is smaller than that of the outlet side through hole 22D.
  • the opening that opens to the storage chamber 23 in the outlet side through hole 22D corresponds to the outlet side opening of the present invention.
  • the movable member 24 When the movable member 24 is disposed at the “first position” closest to the bottom portion 22A of the housing 22 in the axial direction A, the portion on the bottom portion 24A side of the outlet side communication hole 24D and the bottom portion 22A of the outlet side through hole 22D.
  • the side portion is matched (see FIG. 3A).
  • the movable member 24 When the movable member 24 is disposed at the “second position” closest to the fixed member 26 in the axial direction A, the fixed member 26 side portion of the outlet side communication hole 24D and the fixed member 26 of the outlet side through hole 22D are disposed.
  • the side portion is matched (see FIG. 3B).
  • the length of the movable member 24 in the axial direction A is smaller than that of the storage chamber 23.
  • a space 23E is formed by the end 24B of the movable member 24, the enlarged diameter portion 26A and the reduced diameter portion 26B of the fixed member 26.
  • an introduction through-hole 22E for communicating the space 23E with the outside is formed in the end 22B of the housing 22.
  • a portion of the relief passage 16 upstream of the inlet-side through hole 22C of the housing 22 and the introduction through-hole 22E are connected by an introduction passage 28.
  • the introduction passage 28 is provided with an electromagnetic switching valve 29 for switching whether or not the oil discharged from the oil pump 14 is introduced into the introduction through hole 22E. In the present embodiment, when the switching valve 29 is energized, the valve 29 is opened, and when the switching valve 29 is deenergized, the valve 29 is closed.
  • FIG. 3A shows a cross-sectional structure of the pressure stage switching mechanism 20 when the oil pressure stage is a low pressure stage.
  • FIG. 3B shows a cross-sectional structure of the pressure stage switching mechanism 20 when the oil pressure stage is a high pressure stage.
  • the oil pressure Ps increases as the engine rotational speed NE increases until the engine rotational speed NE increases to the first rotational speed NE1.
  • the relief valve 21 opens, and excess oil in the main supply passage 11 on the downstream side of the oil pump 14 passes through the relief passage 16 and is upstream of the oil pump 14. To the main supply passage 11 on the side.
  • the oil pressure Ps increases as the engine rotational speed NE increases, but the rate of increase of the oil pressure Ps becomes slower than when the engine rotational speed NE is equal to or lower than the first rotational speed NE1. Then, when the engine rotational speed NE becomes the second rotational speed NE2 (> first rotational speed NE1), the pressure stage switching mechanism 20 switches the oil pressure stage from the low pressure stage to the high pressure stage, that is, the switching.
  • the valve 29 is switched from the open state to the closed body, the oil pressure Ps at that time is smaller than the second pressure Prrf2, so that the valve body 25 is maintained above the position shown in FIG. Is done. Therefore, the relief valve 21 is closed.
  • the oil pressure Ps increases more rapidly than when the relief valve 21 is open. It becomes like this.
  • the relief valve 21 is opened to enter the main supply passage 11 on the downstream side of the oil pump 14. Some excess oil is released to the main supply passage 11 upstream of the oil pump 14 through the relief passage 16. Therefore, the oil pressure Ps increases as the engine rotational speed NE increases, but the rate of increase of the engine rotational speed NE becomes slower than when the engine rotational speed NE is from the first rotational speed NE1 to the second rotational speed NE2. .
  • the change mode of the oil pressure Ps when the coolant temperature THW is the first temperature T1 is shown by a solid line, and the oil when the coolant temperature THW is the second temperature T2 ( ⁇ first temperature T1).
  • a change mode of the pressure Ps is indicated by a one-dot chain line.
  • the oil pressure Ps when the coolant temperature THW is the first temperature T1 on the high temperature side is the same as that at the second temperature T2 on the low temperature side. It is smaller than the oil pressure Ps. Therefore, when the coolant temperature THW is the first temperature T1, the oil pressure Ps becomes the first pressure Prrf1 and the relief valve 21 is opened when the engine speed NE is the first speed NE1.
  • the oil pressure Ps is the first when the engine rotational speed NE is a rotational speed NE11 ( ⁇ first rotational speed NE1) smaller than the first rotational speed NE1.
  • the relief valve 21 is opened at the pressure Prrf1.
  • the oil pressure Ps changes according to the parameters indicating the engine operating state such as the engine speed NE and the coolant temperature THW. Accordingly, in order to obtain the desired oil pressure Ps, the engine operating state is grasped through the electronic control unit 30, and the oil pressure stage is appropriately switched according to the engine operating state.
  • the switching timing of the oil pressure stage may be set in consideration of the intake air amount GA.
  • the pressure stage switching mechanism 20 it is determined whether or not the pressure stage switching mechanism 20 is abnormal as follows. That is, a command signal indicating that the oil pressure stage is set to the high pressure stage is output to the switching valve 29 through the electronic control unit 30. A determination that an abnormality has occurred in the pressure stage switching mechanism 20 is made on condition that the oil pressure Ps falls below the abnormality determination value Pthx after the output of the command signal. Thus, it is accurately determined that an abnormality in which the oil pressure stage cannot be set to the high pressure stage has occurred in the pressure stage switching mechanism 20. Further, a command signal for changing the oil pressure stage to the low pressure stage is output to the switching valve 29.
  • a determination that an abnormality has occurred in the pressure stage switching mechanism 20 is made on condition that the oil pressure Ps detected by the oil pressure sensor 31 after the output of the command signal exceeds the abnormality determination value Pthx.
  • FIG. 6 shows the relationship between the engine speed NE and the oil pressure Ps at a predetermined coolant temperature THW.
  • the oil pressure PHx assumed when the oil pressure stage is a high pressure stage is indicated by a one-dot chain line
  • the oil pressure PLx assumed when the oil pressure stage is a low pressure stage is indicated by a broken line.
  • the abnormality determination value Pthx is indicated by a solid line.
  • the oil pressure Ps at the same engine rotational speed NE increases as the cooling water temperature THW becomes lower. Therefore, as shown in FIG. 7, the abnormality determination value Pthx becomes smaller as the cooling water temperature THW becomes lower. It is set as a large value.
  • the oil pressure PHx assumed in the case of the high pressure stage at the predetermined cooling water temperature THW and the oil pressure PLx assumed in the case of the low pressure stage at the predetermined cooling water temperature THW are obtained in advance by experiments or the like. It is derived by referring to a map having the engine speed NE and the coolant temperature THW as parameters.
  • FIG. 8 is a flowchart showing the processing procedure. A series of processes shown in the flowchart of FIG. 8 is executed by the electronic control unit 30 when the switching valve 29 is energized during engine operation.
  • step S101 the energization to the switching valve 29 is interrupted. That is, the electronic control unit 30 outputs a command signal to the effect that the oil pressure stage is set to the high pressure stage to the switching valve 29.
  • the electronic control unit 30 determines whether or not a predetermined time ⁇ t has elapsed since the energization of the switching valve 29 was interrupted (step S102).
  • the predetermined time ⁇ t is set as a time longer than the time required from when the energization to the switching valve 29 is interrupted until the oil pressure stage becomes the high pressure stage.
  • the determination process is repeatedly executed until the predetermined time ⁇ t has elapsed.
  • the electronic control unit 30 sets the abnormality determination value Pthx based on the engine rotational speed NE and the coolant temperature THW as parameters indicating the engine operating state when the predetermined time ⁇ t has elapsed (step S103).
  • the electronic control unit 30 determines whether or not the oil pressure Ps at that time is equal to or less than the abnormality determination value Pthx (step S104).
  • step S104 When the oil pressure Ps is equal to or lower than the abnormality determination value Pthx (YES in step S104), the electronic control unit 30 determines that the high pressure stage switching abnormality has occurred in the pressure stage switching mechanism 20, and this series This process is temporarily terminated. On the other hand, if the oil pressure Ps at that time is larger than the abnormality determination value Pthx in the determination process of step S104, the series of processes is temporarily ended.
  • FIG. 9 is a flowchart showing the processing procedure. A series of processes shown in the flowchart of FIG. 9 is executed by the electronic control unit 30 when the energization of the switching valve 29 is interrupted during engine operation.
  • step S201 energization to the switching valve 29 is started as the process of step S201. That is, the electronic control unit 30 outputs a command signal indicating that the oil pressure stage is a low pressure stage to the switching valve 29.
  • step S202 the electronic control unit 30 determines whether or not a predetermined time ⁇ t has elapsed since the energization of the switching valve 29 was started.
  • the predetermined time ⁇ t is set as a time longer than the time required from the start of energization to the switching valve 29 until the oil pressure stage becomes the low pressure stage, and the predetermined time ⁇ t has not elapsed.
  • step S202 the determination process is repeatedly executed until a predetermined time ⁇ t has elapsed.
  • the electronic control unit 30 sets the abnormality determination value Pthx based on the engine rotational speed NE and the coolant temperature THW as parameters indicating the engine operating state when the predetermined time ⁇ t has elapsed (step S203).
  • the electronic control unit 30 determines whether or not the oil pressure Ps at that time is equal to or higher than the abnormality determination value Pthx (step S204).
  • step S204 If the oil pressure Ps is greater than or equal to the abnormality determination value Pthx (YES in step S204), the electronic control unit 30 determines that the low pressure stage switching abnormality has occurred in the pressure stage switching mechanism 20, and this series This process is temporarily terminated. On the other hand, if the oil pressure Ps at that time is smaller than the abnormality determination value Pthx in the determination process of step S204, this series of processes is temporarily ended.
  • the main supply passage 11 is provided with an oil pressure sensor 31 that detects the oil pressure Ps controlled by the pressure stage switching mechanism 20. Further, the electronic control unit 30 outputs a command signal to the effect that the oil pressure stage is changed to the high pressure stage to the pressure stage switching mechanism 20, and after the output of the command signal, the oil pressure Ps is changed to the engine at that time.
  • Pressure stage switching mechanism on condition that it falls below an abnormality determination value Pthx set to a value between a value PHx assumed in the high pressure stage in the operating state and a value PLx assumed in the low pressure stage 20 was determined to be abnormal. As a result, it is possible to accurately determine that an abnormality in which the oil pressure stage cannot be set to the high pressure stage has occurred in the pressure stage switching mechanism 20.
  • the abnormality determination value Pthx is a value PHx that is assumed when the pressure stage switching mechanism 20 is abnormal in the high-pressure stage in the engine operation state at that time, and the low-pressure stage Is set as an intermediate value to the value PLx assumed in Thereby, the abnormality determination value Pthx can be set easily.
  • the electronic control unit 30 outputs a command signal indicating that the oil pressure stage is set to the low pressure stage to the pressure stage switching mechanism 20 and is detected by the oil pressure sensor 31 after the command signal is output. It is determined that an abnormality has occurred in the pressure stage switching mechanism 20 on condition that the oil pressure Ps exceeds the abnormality determination value Pthx in the engine operating state at that time. As a result, it is possible to accurately determine that an abnormality in which the oil pressure stage cannot be set to the low pressure stage has occurred in the pressure stage switching mechanism 20.
  • the abnormality determination value Pthx used for the high pressure stage abnormality determination and the abnormality determination value Pthx used for the low pressure stage abnormality determination are the same. Accordingly, it is not necessary to set the abnormality determination value Pthx for each of the two determinations, so that the control configuration relating to the abnormality determination of the pressure stage switching mechanism 20 is simplified compared to the case where the determination value Pthx is set for each of the determinations. Can be.
  • the oil pump 14 is an engine drive type, and the electronic control unit 30 sets the abnormality determination value Pthx based on the engine rotational speed NE.
  • the oil pressure PHx assumed in the high pressure stage or the oil pressure PLx assumed in the low pressure stage increases as the engine rotational speed NE increases.
  • the abnormality determination value Pthx set as a value between the oil pressure PHx assumed in the high pressure stage and the oil pressure PLx assumed in the low pressure stage is based on the engine speed NE. If set, the abnormality determination value Pthx can be set more accurately.
  • the electronic control unit 30 sets the abnormality determination value Pthx based on both the engine speed NE and the coolant temperature THW.
  • the higher the temperature the smaller the value. Further, the higher the oil temperature, the higher the coolant temperature THW.
  • the abnormality determination value Pthx set as a value between the value PHx and the value PLx is set based on both the engine speed NE and the coolant temperature THW, thereby setting the abnormality determination value Pthx more accurately. be able to.
  • the hydraulic control device for an internal combustion engine exemplified in the above embodiment can be implemented with the following modifications, for example. While detecting the oil temperature directly, the abnormality determination value Pthx may be set based on the detected oil temperature. Further, parameters other than the cooling water temperature THW and the oil temperature may be employed as long as the parameters reflect the engine temperature.
  • setting the abnormality determination value Pthx based on both the engine speed NE and the engine temperature is desirable in setting the determination value Pthx more accurately.
  • the abnormality determination process is performed only at a predetermined engine temperature such as after completion of warm-up, for example, the abnormality determination value Pthx can be set based only on the engine rotational speed NE.
  • the abnormality determination value Pthx based on the engine speed NE in order to set the determination value Pthx more accurately.
  • a fixed value can be adopted as the abnormality determination value.
  • the engine-driven oil pump is exemplified, but the hydraulic control device according to the present invention does not necessarily include the engine-driven oil pump, and may employ an electric oil pump. it can. Even in this case, as long as the oil pressure Ps assumed in the high-pressure stage or the low-pressure stage has a characteristic such that the oil pressure Ps increases as the engine rotational speed NE increases, the same as in the above embodiment. Have advantages.
  • the switching valve 29 is an electromagnetic valve. However, instead of this, the switching valve may be opened and closed by hydraulic pressure, negative pressure, or the like. In the above embodiment, the position of the movable member 24 in the opening / closing direction of the valve body 25 is switched between the first position and the second position by the switching valve 29.
  • the means for switching the position of the movable member is not limited to this, and the position of the movable member may be switched by directly driving the movable member electrically or mechanically.
  • the relief valve according to the present invention is not limited to the relief valve 21 exemplified in the above embodiment. Any relief valve may be used as long as the pressure of the oil discharged from the oil pump becomes equal to or higher than a predetermined valve opening pressure Prrf to open a part of the oil.
  • the switching unit may be any unit that switches the valve opening pressure between the first pressure Prrf1 corresponding to the low pressure stage and the second pressure Prrf2 corresponding to the high pressure stage.
  • the abnormality determination value Pthx used for the low-pressure stage abnormality determination and the abnormality determination value Pthx used for the high-pressure stage abnormality determination are set as the same value, but the high-pressure stage abnormality determination value according to the present invention.
  • the low-pressure stage abnormality determination value is not limited to this. That is, the high pressure stage abnormality determination value and the low pressure stage abnormality determination value may be set individually. In this case, the high-pressure stage abnormality determination value is larger than, for example, an intermediate value between the oil pressure PHx assumed when the engine is in a high pressure stage and the oil pressure PLx assumed when the engine is in a low pressure stage. You may set as a value or a small value.
  • the low-pressure stage abnormality determination value is, for example, a value larger than an intermediate value between the oil pressure PHx assumed when the engine is in a high pressure stage and the oil pressure PLx assumed when the engine is in a low pressure stage. Or you may set as a small value.
  • a relief valve that opens when the pressure of the oil discharged from the oil pump exceeds a predetermined valve opening pressure and releases a part of the oil corresponds to the low pressure stage.
  • the pressure stage switching mechanism according to the present invention is not limited to this.
  • the pressure stage of oil supplied to each part of the engine by the oil pump itself is switched between the high pressure stage and the low pressure stage. There may be.

Abstract

 機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構を備える、内燃機関の油圧制御装置が提供される。油圧制御装置は検出部と判定部とを備える。前記判定部は、前記オイルの圧力段を前記高圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が高圧段異常判定値を下回ることを条件に前記圧力段切替機構に異常が生じていると判定する。

Description

内燃機関の油圧制御装置
 本発明は、内燃機関の油圧制御装置に関する。
 例えば、特許文献1に開示された内燃機関の油圧制御装置のように一般の内燃機関の油圧制御装置は、オイルポンプから吐出されるオイルの圧力が所定の開弁圧以上になるとオイルの一部をリリーフ通路に逃がすリリーフ弁を備えている。これにより、機関の各部位に供給されるオイルの圧力が過度に上昇することを抑制している。
 前記リリーフ弁の開弁圧を例えば2段階に切り替える切替弁を備える、内燃機関の油圧制御装置が開発されている。この油圧制御装置において、前記切替弁は、内燃機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段とに切り替える。こうした油圧制御装置によれば、例えば機関の各部位に対して供給されるオイルの圧力を高くする必要のない機関運転状態のときにはオイルの圧力段を低圧段に切り替えることで、機関の燃費の向上が図られる。
 ところが、前記切替弁を備える油圧制御装置では、オイルの圧力段を高圧段にすることができない異常がリリーフ弁或いは切替弁に生じると、機関の各部位に対して供給されるオイルの圧力が低くなる。すると、高い圧力のオイルを必要とする機関運転状態のときに機関を安定して運転することができないおそれがある。一方、オイルの圧力段を低圧段にすることができない異常が生じると、機関の各部位に対して供給されるオイルの圧力が必要以上に大きくなることに起因して燃費が悪化するといった問題が生じる。
 上記問題は、上記リリーフ弁及び切替弁を備えるものに限られるものではない。つまり、内燃機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段とに切り替える圧力段切替機構を備える内燃機関の油圧制御装置には、上記と同様な問題が存在する。
特開2007―107485号公報
 本発明の目的は、圧力段切替機構に異常が生じていることを的確に判定することのできる内燃機関の油圧制御装置を提供することにある。
 上記目的を達成するために、本発明の第1の態様に従い、機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構を備える、内燃機関の油圧制御装置が提供される。油圧制御装置は検出部と判定部とを備える。前記検出部は、前記圧力段切替機構により制御された後のオイルの圧力を検出する。前記判定部は、前記オイルの圧力段を前記高圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が高圧段異常判定値を下回ることを条件に前記圧力段切替機構に異常が生じていると判定する。前記高圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との間の値に設定される。
 本発明の第2の態様に従い、機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構を備える、内燃機関の油圧制御装置が提供される。油圧制御装置は検出部と判定部とを備える。前記検出部は、前記圧力段切替機構により制御された後のオイルの圧力を検出する。前記判定部は、前記オイルの圧力段を前記低圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が低圧段異常判定値を上回ることを条件に前記圧力段切替機構に異常が生じていると判定する。前記低圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との間の値に設定される。
本発明の一実施形態に係る内燃機関の油圧制御装置の概略図。 図1の油圧制御装置における圧力段切替機構の断面図。 (a)は、オイルの圧力段が低圧段に設定されている場合における図2の圧力段切替機構の断面図。(b)は、オイルの圧力段が高圧段に設定されている場合における図2の圧力段切替機構の断面図。 図1の内燃機関における機関回転速度とオイル圧力との関係を示すグラフ。 図1の内燃機関における機関回転速度とオイル圧力との関係を、異なる冷却水温についてそれぞれ示すグラフ。 図2の圧力段切替機構における異常判定値の設定態様を説明するグラフ。 図2の圧力段切替機構における異常判定値の設定態様を説明するグラフ。 図2の圧力段切替機構における高圧段異常判定の処理手順を示すフローチャート。 図2の圧力段切替機構における低圧段異常判定の処理手順を示すフローチャート。
 本発明の一実施形態に係る内燃機関の油圧制御装置を、図1~図9を参照して説明する。
 図1に示すように、内燃機関には、オイルパン12の内部に貯留されているオイルを機関の各部位に供給するための主供給通路11が設けられている。主供給通路11には、オイルを吸引及び吐出する機関駆動式のオイルポンプ14が設けられている。主供給通路11の上流側の端部、すなわちオイルパン12側の端部には、オイルに含まれる不純物のうち比較的大きなものを濾過するオイルストレーナ13が設けられている。主供給通路11においてオイルポンプ14よりも下流側の部位には、オイルに含まれる不純物のうち比較的小さいものを濾過するオイルフィルタ15が設けられている。機関運転にともないオイルポンプ14が駆動されると、オイルパン12内のオイルが主供給通路11を通じて同ポンプ14により吸引され、同通路11の下流に吐出される。オイルポンプ14から吐出されたオイルは、機関の各部位(例えばオイルの圧力により駆動される油圧駆動式の各種装置、機関出力を取り出すためのピストンに対してオイルを噴射することで同ピストンを冷却するピストンジェット機構、及び機関の被潤滑部等)に供給されるようになっている。
 また、主供給通路11には、オイルポンプ14よりも下流側の部位とオイルポンプ14よりも上流側の部位とを接続するリリーフ通路16が接続されている。具体的には、リリーフ通路16の一端は主供給通路11においてオイルフィルタ15よりも下流側の部位に接続され、リリーフ通路16の他端は主供給通路11においてオイルポンプ14とオイルストレーナ13との間の部位に接続されている。リリーフ通路16には、機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構20が設けられている。圧力段切替機構20は、判定部としての電子制御装置30により制御される。
 電子制御装置30には、機関回転速度NEを検出する機関回転速度センサ32の出力信号、機関冷却水の温度(以下、冷却水温THWという)を検出する冷却水温センサ33の出力信号、吸入空気量GAを検出する吸入空気量センサ34の出力信号、機関の各部位に供給されるオイルの圧力(以下、オイル圧力Psという)を検出するオイル圧力センサ31の出力信号等、各種センサの出力信号が入力される。検出部としてのオイル圧力センサ31は主供給通路11に設けられている。電子制御装置30は、前記出力信号に基づいて機関運転状態を把握し、これに応じて圧力段切替機構20を含む内燃機関の制御を行う。
 次に、圧力段切替機構20の具体的構成を、図2を参照して説明する。
 図2に示すように、圧力段切替機構20は、リリーフ弁21と切替弁29とを備えている。リリーフ弁21は、オイルポンプ14から吐出されるオイルの圧力が所定の開弁圧力Prrf以上になると開弁する。切替部としての切替弁29は、前記開弁圧力Prrfを、前記低圧段に対応する第1の圧力Prrf1及び前記高圧段に対応する第2の圧力Prrf2のいずれかに切り替える。第2の圧力Prrf2は第1の圧力Prrf1よりも大きな値に設定されている。
 リリーフ弁21は、リリーフ通路16の途中に設けられる、一端に底部22Aを有する円筒状のハウジング22、一端に底部24aを有する筒状の可動部材24、及び円柱状の弁体25を備えている。可動部材24は、ハウジング22の内部空間である収容室23内に収容され、ハウジング22の軸方向Aに変位可能である。弁体25は、軸方向Aに変位可能となるように可動部材24の内部に収容されている。ハウジング22の底部22A及び可動部材24の底部24Aは、リリーフ通路16において上流寄り、即ち、オイルポンプ14よりも下流側の主供給通路11に接続されるリリーフ通路16側に位置するように設けられている。また、リリーフ弁21は、底部22Aとは反対側のハウジング22の端部22Bの開口部を覆う固定部材26を備えている。さらに、リリーフ弁21は、弁体25と固定部材26との間に設けられる付勢ばね27を備え、該付勢ばね27は同弁体25を可動部材24の底部24A(図2において上側)に向かって付勢する。
 可動部材24の外径はハウジング22の内径よりもわずかに小さい。弁体25の外径は可動部材24の内径よりもわずかに小さい。固定部材26は、円柱状の拡径部26Aと、該拡径部26Aに比べて小径の円柱状の縮径部26Bとを有している。縮径部26Bは、拡径部26Aと同軸上に設けられている。拡径部26Aの内側端面がハウジング22の前記端部22Bの端面に当接し、縮径部26Bの側面(周面)が底部24Aとは反対側の可動部材24の端部24Bの内周面に当接するように設けられている。また、ハウジング22の底部22Aの中心には、入口側貫通孔22Cが形成されている。可動部材24の底部24Aの中心には、前記入口側貫通孔22Cと同一の直径である入口側連通孔24Cが形成されている。貫通孔22C及び連通孔24Cはリリーフ通路16の一部をなしている。入口側貫通孔22Cにおいて収容室23に開口する開口部が、本発明の入口側開口部に相当する。
 前記ハウジング22の側部における軸方向Aの中央には、同側部を貫通する出口側貫通孔22Dが形成されている。この出口側貫通孔22Dに対応する可動部材24の側部の部位には、同側部を貫通する出口側連通孔24Dが形成されている。出口側連通孔24Dの軸方向Aに沿った長さは、前記出口側貫通孔22Dのそれよりも小さい。出口側貫通孔22Dにおいて収容室23に開口する開口部が、本発明の出口側開口部に相当する。軸方向Aにおいて可動部材24が最もハウジング22の底部22A寄りに位置する「第1の位置」に配置されたとき、出口側連通孔24Dの底部24A側の部位と出口側貫通孔22Dの底部22A側の部位とが一致するようになっている(図3(a)参照)。軸方向Aにおいて可動部材24が最も固定部材26寄りに位置する「第2の位置」に配置されたとき、出口側連通孔24Dの固定部材26側の部位と出口側貫通孔22Dの固定部材26側の部位とが一致するようになっている(図3(b)参照)。
 可動部材24の軸方向Aにおける長さが、収容室23のそれよりも小さい。これにより、可動部材24の端部24Bと固定部材26の拡径部26Aと縮径部26Bとによって空間23Eが形成される。また、ハウジング22の端部22Bには、前記空間23Eと外部とを連通させる導入用貫通孔22Eが形成されている。また、リリーフ通路16においてハウジング22の入口側貫通孔22Cよりも上流側の部位と、上記導入用貫通孔22Eとは導入通路28により接続されている。導入通路28には、オイルポンプ14から吐出されたオイルを、上記導入用貫通孔22Eに導入するか否かを切り替えるための電磁式の切替弁29が設けられている。本実施形態では、切替弁29に対して通電がなされると同弁29は開弁し、切替弁29に対する通電が遮断されると同弁29は閉弁する。
 次に、圧力段切替機構20の作動態様を、図3を参照して説明する。
 図3(a)は、オイルの圧力段が低圧段の場合における圧力段切替機構20の断面構造を示す。また、図3(b)は、オイルの圧力段が高圧段の場合における圧力段切替機構20の断面構造を示す。
 図3(a)に示すように、切替弁29が開弁すると、オイルポンプ14から吐出されたオイルは導入通路28及び導入用貫通孔22Eを通じて前記空間23Eに導入される。これにより、空間23E内のオイルの圧力が上昇して、可動部材24がハウジング22の底部22Aに向かって、すなわち弁体25の閉弁方向に押し上げられる。そして、可動部材24は前記第1の位置まで変位する。そして、機関回転速度NEの上昇にともないオイルポンプ14から吐出されるオイルの圧力が上昇して、弁体25に対してその開弁方向に作用するオイルの圧力が第1の圧力Prrf1以上となると、弁体25が図3(a)にて示す位置或いはそれよりも下方の位置にまで変位する。これにより、入口側貫通孔22C、入口側連通孔24C、収容室23、出口側連通孔24D、及び出口側貫通孔22Dの全てが連通状態となる。すると、オイルポンプ14よりも下流側における主供給通路11内の過剰なオイルがリリーフ通路16を通じて、オイルポンプ14よりも上流側の主供給通路11に逃がされる。この結果、機関の各部に供給されるオイルの圧力段が低圧段となる。
 次に、図3(b)に示すように、切替弁29が閉弁すると、オイルポンプ14から吐出されたオイルの導入通路28及び導入用貫通孔22Eを通じた前記空間23Eへの導入が禁止される。これにより、可動部材24を、ハウジング22の底部22Aに向かって、すなわち弁体25の閉弁方向に押し上げる、オイルの圧力に基づく力が、可動部材24を固定部材26に向かって、すなわち弁体25の開弁方向に押し下げる力よりも小さくなり、それにより、可動部材24は前記第2の位置まで変位する。そして、機関回転速度NEの上昇にともないオイルポンプ14から吐出されるオイルの圧力が上昇して、弁体25に作用するオイルの圧力が第2の圧力Prrf2(>Prrf1)以上となると、弁体25が図3(b)にて示す位置或いはそれよりも下方まで変位する。これにより、入口側貫通孔22C、入口側連通孔24C、収容室23、出口側連通孔24D、及び出口側貫通孔22Dの全てが連通状態となる。すると、オイルポンプ14よりも下流側の主供給通路11における過剰なオイルがリリーフ通路16を通じて、オイルポンプ14よりも上流側の主供給通路11に逃がされるので、機関の各部に供給されるオイルの圧力が高圧段になる。
 次に、機関回転速度NEの上昇に応じてオイルの圧力段を低圧段から高圧段に切り替えた場合におけるオイル圧力Psの変化態様の一例について説明する。
 図4に示すように、機関回転速度NEが第1の回転速度NE1に上昇するまで機関回転速度NEの上昇にともないオイル圧力Psは上昇する。オイル圧力Psが第1の圧力Prrf1以上となると、リリーフ弁21が開弁してオイルポンプ14よりも下流側における主供給通路11内の過剰なオイルがリリーフ通路16を通じて、オイルポンプ14よりも上流側における主供給通路11に逃がされる。このため、機関回転速度NEの上昇にともないオイル圧力Psは上昇するが、機関回転速度NEが第1の回転速度NE1以下のときに比べてオイル圧力Psの上昇の割合は緩やかになる。そして、機関回転速度NEが第2の回転速度NE2(>第1の回転速度NE1)となるときに、圧力段切替機構20によりオイルの圧力段を低圧段から高圧段に切り替えると、すなわち、切替弁29を開弁状態から閉弁状体に切り替えると、その時点でのオイル圧力Psは第2の圧Prrf2より小さいので、弁体25が図3(b)にて示す位置よりも上方に維持される。従って、リリーフ弁21は閉弁する。このため、機関回転速度NEが第3の回転速度NE3(>第2の回転速度NE2)に上昇するまでは、リリーフ弁21が開弁しているときに比べて急激にオイル圧力Psが上昇するようになる。そして、機関回転速度NEが第3の回転速度NE3となってオイル圧力Psが第2の圧Prrf2以上となると、リリーフ弁21が開弁してオイルポンプ14よりも下流側における主供給通路11にある過剰なオイルがリリーフ通路16を通じて、オイルポンプ14よりも上流側における主供給通路11に逃がされる。このため、機関回転速度NEの上昇にともないオイル圧力Psは上昇するが、機関回転速度NEの上昇の割合が第1の回転速度NE1から第2の回転速度NE2までのときに比べて緩やかになる。
 次に、冷却水温THWとオイル圧力Psとの関係を、図5を参照して説明する。図5において、冷却水温THWが第1の温度T1であるときのオイル圧力Psの変化態様を実線で示し、冷却水温THWが第2の温度T2(<第1の温度T1)であるときのオイル圧力Psの変化態様を一点鎖線で示す。
 オイルの温度が高くなるほどオイルの粘度は低くなる。従って、図5に示すように、同一の機関回転速度NEにおいて、冷却水温THWが高温側である第1の温度T1のときのオイル圧力Psは、低温側である第2の温度T2のときのオイル圧力Psよりも小さい。このため、冷却水温THWが第1の温度T1であるときには、機関回転速度NEが第1の回転速度NE1のときにオイル圧力Psが第1の圧力Prrf1となってリリーフ弁21が開弁する。しかし、冷却水温THWが第2の温度T2であるときには、機関回転速度NEが第1の回転速度NE1よりも小さい回転速度NE11(<第1の回転速度NE1)のときにオイル圧力Psが第1の圧力Prrf1となってリリーフ弁21が開弁する。
 上記のように、機関回転速度NEや冷却水温THWといった機関運転状態を示すパラメータに応じてオイル圧力Psは変化する。従って、所望のオイル圧力Psを得ることができるように、電子制御装置30を通じて機関運転状態を把握するとともに、機関運転状態に応じてオイルの圧力段を適宜切り替えるようにしている。前記パラメータの他にも、例えば吸入空気量GAを加味してオイルの圧力段の切替タイミングを設定するようにしてもよい。
 ところで、前記圧力段切替機構20を備える内燃機関の油圧制御装置において、例えば断線等に起因して切替弁29が閉弁状態に維持される異常、或いは切替弁29が開弁状態に維持される異常が生じることがある。また、可動部材24が前記第1の位置或いは前記第2の位置に変位しなくなる異常が生じることがある。このため、例えばオイルの圧力段を高圧段とすることができず、高い圧力のオイルを必要とする機関運転状態のときに機関を安定して運転することができないおそれがある。また、オイルの圧力段を低圧段とすることができず、オイル圧力Psが必要以上に大きくなることに起因して燃費が悪化するといった問題が生じる。
 そこで、本実施形態では、以下のようにして圧力段切替機構20が異常であるか否かが判断される。すなわち、電子制御装置30を通じて、オイルの圧力段を高圧段とする旨の指令信号を切替弁29に対して出力する。当該指令信号の出力後にオイル圧力Psが、異常判定値Pthxを下回ることを条件に、圧力段切替機構20に異常が生じている旨の判定が行われる。これにより、圧力段切替機構20にオイルの圧力段を高圧段とすることができない異常が生じていることを的確に判定するようにしている。また、オイルの圧力段を低圧段にする旨の指令信号を切替弁29に対して出力する。当該指令信号の出力後にオイル圧力センサ31により検出されるオイル圧力Psが、異常判定値Pthxを上回ることを条件に、圧力段切替機構20に異常が生じている旨の判定が行われる。これにより、圧力段切替機構20にオイルの圧力段を低圧段とすることができない異常が生じていることを的確に判定するようにしている。
 次に、異常判定値Pthxの設定態様を、図6を参照して説明する。
 図6は、所定の冷却水温THWにおける機関回転速度NEとオイル圧力Psとの関係を示す。図6において、オイルの圧力段が高圧段である場合に想定されるオイルの圧力PHxを一点鎖線で示し、オイルの圧力段が低圧段である場合に想定されるオイルの圧力PLxを破線で示す。また、図6において、異常判定値Pthxを実線で示す。
 図6に示すように、異常判定値Pthxは、圧力段切替機構20が異常であるか否かの判定に際して、そのときの機関運転状態において高圧段である場合に想定されるオイルの圧力PHxと低圧段である場合に想定されるオイルの圧力PLxとの中間の値(=(PHx+PLx)/2)に設定される。具体的には、同一の冷却水温THWにおけるオイル圧力Psは機関回転速度NEが大きいときほど大きくなることから、機関回転速度NEが大きいときほど異常判定値Pthxを大きな値として設定するようにしている。
 また、上述したように、同一の機関回転速度NEにおけるオイル圧力Psは、冷却水温THWが低いときほど大きくなることから、図7に示すように、冷却水温THWが低いときほど異常判定値Pthxを大きな値として設定するようにしている。
 所定の冷却水温THWにおいて高圧段である場合に想定されるオイルの圧力PHx、及び所定の冷却水温THWにおいて低圧段である場合想定されるオイルの圧力PLxはそれぞれ実験等により予め求められており、機関回転速度NE及び冷却水温THWをパラメータとするマップを参照することにより導き出されるようになっている。
 次に、オイルの圧力段を高圧段とすることができない異常(以下、高圧段切替異常という)が圧力段切替機構20に生じているか否かを判定する処理手順を、図8を参照して説明する。図8は、上記処理手順を示すフローチャートである。図8のフローチャートに示される一連の処理は、機関運転中に切替弁29に対して通電が行われているときに電子制御装置30により実行される。
 この処理では、まず、ステップS101の処理として、切替弁29への通電が遮断される。すなわち、電子制御装置30は、オイルの圧力段を高圧段とする旨の指令信号を切替弁29に対して出力する。次に、電子制御装置30は、切替弁29への通電が遮断されてから所定時間Δtが経過したか否かを判断する(ステップS102)。ここで、所定時間Δtは、切替弁29への通電を遮断してからオイルの圧力段が高圧段となるまでに要する時間よりも長い時間として設定されている。所定時間Δtが経過していない場合には(ステップS102でNO)、所定時間Δtが経過するまで前記判断処理が繰り返し実行される。次に、電子制御装置30は、所定時間Δtが経過したときの機関運転状態を示すパラメータとしての機関回転速度NE及び冷却水温THWに基づいて異常判定値Pthxを設定する(ステップS103)。異常判定値Pthxが設定されると、電子制御装置30は、そのときのオイル圧力Psが上記異常判定値Pthx以下であるか否かを判断する(ステップS104)。オイル圧力Psが前記異常判定値Pthx以下である場合には(ステップS104でYES)、電子制御装置30は、圧力段切替機構20に前記高圧段切替異常が生じていると判断して、この一連の処理を一旦終了する。一方、前記ステップS104の判断処理において、そのときのオイル圧力Psが前記異常判定値Pthxよりも大きい場合には、この一連の処理を一旦終了する。
 次に、オイルの圧力段を低圧段とすることができない異常(以下、低圧段切替異常という)が圧力段切替機構20に生じているか否かを判定する処理手順を、図9を参照して説明する。図9は、前記処理手順を示すフローチャートである。図9のフローチャートに示される一連の処理は、機関運転中に切替弁29に対する通電が遮断されているときに電子制御装置30により実行される。
 この処理では、まず、ステップS201の処理として、切替弁29への通電が開始される。すなわち、電子制御装置30は、オイルの圧力段を低圧段とする旨の指令信号を切替弁29に対して出力する。次に、電子制御装置30は、切替弁29への通電が開始されてから所定時間Δtが経過したか否かを判断する(ステップS202)。ここで、所定時間Δtは、切替弁29への通電を開始してからオイルの圧力段が低圧段となるまでに要する時間よりも長い時間として設定されており、所定時間Δtが経過していない場合には(ステップS202でNO)、所定時間Δtが経過するまで前記判断処理が繰り返し実行される。次に、電子制御装置30は、所定時間Δtが経過したときの機関運転状態を示すパラメータとしての機関回転速度NE及び冷却水温THWに基づいて異常判定値Pthxを設定する(ステップS203)。異常判定値Pthxが設定されると、電子制御装置30は、そのときのオイル圧力Psが前記異常判定値Pthx以上であるか否かを判断する(ステップS204)。オイル圧力Psが前記異常判定値Pthx以上である場合には(ステップS204でYES)、電子制御装置30は、圧力段切替機構20に前記低圧段切替異常が生じていると判断して、この一連の処理を一旦終了する。一方、前記ステップS204の判断処理において、そのときのオイル圧力Psが前記異常判定値Pthxよりも小さい場合には、この一連の処理を一旦終了する。
 本実施形態は、以下の利点を有する。
 (1)主供給通路11には、圧力段切替機構20により制御されたオイル圧力Psを検出するオイル圧力センサ31が備えられている。また、電子制御装置30は、オイルの圧力段を高圧段にする旨の指令信号を圧力段切替機構20に対して出力し、かつ、当該指令信号の出力後にオイル圧力Psが、そのときの機関運転状態において高圧段である場合に想定される値PHxと低圧段である場合に想定される値PLxとの間の値に設定された異常判定値Pthxを下回ることを条件に、圧力段切替機構20に異常が生じていると判定することとした。これにより、オイルの圧力段を高圧段とすることができない異常が圧力段切替機構20に生じていることを的確に判定することができるようになる。
 (2)異常判定値Pthxは、圧力段切替機構20に異常が生じているか否かの判定に際して、そのときの機関運転状態において高圧段である場合に想定される値PHxと低圧段である場合に想定される値PLxとの中間の値として設定される。これにより、異常判定値Pthxを簡易に設定することができる。
 (3)電子制御装置30は、オイルの圧力段を低圧段にする旨の指令信号を圧力段切替機構20に対して出力し、かつ、当該指令信号の出力後にオイル圧力センサ31により検出されるオイル圧力Psが、そのときの機関運転状態における前記異常判定値Pthxを上回ることを条件に、圧力段切替機構20に異常が生じていると判定する。これにより、オイルの圧力段を低圧段とすることができない異常が圧力段切替機構20に生じていることを的確に判定することができるようになる。
 (4)高圧段異常判定に用いる異常判定値Pthxと低圧段異常判定に用いる異常判定値Pthxとは同一である。これにより、異常判定値Pthxを2つの判定毎に各別に設定する必要がないことから、判定値Pthxを各別に設定する場合に比べて、圧力段切替機構20の異常判断に係る制御構成を簡易なものとすることができる。
 (5)オイルポンプ14は機関駆動式であり、電子制御装置30は機関回転速度NEに基づいて異常判定値Pthxを設定する。機関駆動式のオイルポンプ14では、高圧段である場合に想定されるオイルの圧力PHx或いは低圧段である場合に想定されるオイルの圧力PLxは、機関回転速度NEが高くなるほど大きな値となる。従って、高圧段である場合に想定されるオイルの圧力PHxと低圧段である場合に想定されるオイルの圧力PLxとの間の値として設定される異常判定値Pthxを機関回転速度NEに基づいて設定することとすれば、異常判定値Pthxを一層的確に設定することができる。
 (6)電子制御装置30は、機関回転速度NE及び冷却水温THWの双方に基づいて異常判定値Pthxを設定する。オイルの温度が高くなるほどオイルの粘度は低くなり、オイルの圧力は低くなる。従って、オイルの圧力段が高圧段である場合に想定されるオイルの圧力PHx或いは低圧段である場合に想定されるオイルの圧力PLxは、機関回転速度NEが同一である場合には、オイルの温度が高いほど小さな値となる。また、オイルの温度が高いときほど冷却水温THWは高くなる。従って、値PHxと値PLxとの間の値として設定される異常判定値Pthxを機関回転速度NE及び冷却水温THWの双方に基づいて設定することにより、異常判定値Pthxをより一層的確に設定することができる。
 上記実施形態にて例示した内燃機関の油圧制御装置は、例えば次のように変更して実施することもできる。
 オイルの温度を直接検出するとともに、検出されたオイルの温度に基づいて異常判定値Pthxを設定するようにしてもよい。また、機関温度を反映するパラメータであれば、冷却水温THW及びオイル温度以外のパラメータを採用することもできる。
 上記実施形態のように、機関回転速度NE及び機関温度の双方に基づいて異常判定値Pthxを設定することは、同判定値Pthxをより一層的確に設定する上では望ましい。しかしながら、例えば暖機完了後等の所定の機関温度のときに限って上記異常判定処理を行うようにすれば、機関回転速度NEのみに基づいて異常判定値Pthxを設定することもできる。
 上記実施形態のように、機関回転速度NEに基づいて異常判定値Pthxを設定することが、同判定値Pthxをより一層的確に設定する上では望ましい。しかしながら、例えば暖機完了後のアイドル運転状態のときに限って上記異常判定処理を行うようにすれば、上記異常判定値として固定値を採用することもできる。
 上記実施形態では、機関駆動式のオイルポンプについて例示したが、本発明に係る油圧制御装置は機関駆動式のオイルポンプを必須の構成とするものではなく、電動式のオイルポンプを採用することもできる。この場合であっても、高圧段或いは低圧段である場合に想定されるオイル圧力Psが、機関回転速度NEが高くなるほど大きな値となるといった特性を有するものであれば、上記実施形態と同様の利点を有する。
 上記実施形態では、切替弁29を電磁弁としているが、これに代えて油圧、負圧等によって切替弁を開閉するようにしてもよい。
 上記実施形態では、切替弁29により、弁体25の開閉方向における可動部材24の位置を上記第1の位置と第2の位置とで切り替えるようにしている。しかしながら、可動部材の位置を切り替える手段はこれに限られるものではなく、電気的或いは機械的に可動部材を直接駆動して可動部材の位置を切り替えるようにしてもよい。
 本発明に係るリリーフ弁は上記実施形態において例示したリリーフ弁21に限られるものではない。リリーフ弁としては、オイルポンプから吐出されるオイルの圧力が所定の開弁圧Prrf以上となると開弁して同オイルの一部を逃がすものであればよい。また、切替部としては、低圧段に対応する第1の圧力Prrf1と高圧段に対応する第2の圧力Prrf2とで開弁圧を切り替えるものであればよい。
 上記実施形態では、低圧段異常判定に用いられる異常判定値Pthxと、高圧段異常判定に用いられる異常判定値Pthxとを同一の値として設定しているが、本発明に係る高圧段異常判定値及び低圧段異常判定値はこれに限られるものではない。すなわち、高圧段異常判定値と低圧段異常判定値とを個別に設定するようにしてもよい。この場合、高圧段異常判定値を、例えば機関運転状態において高圧段である場合に想定されるオイルの圧力PHxと低圧段である場合に想定されるオイルの圧力PLxとの中間の値よりも大きな値或いは小さな値として設定してもよい。また、低圧段異常判定値を、例えば機関運転状態において高圧段である場合に想定されるオイルの圧力PHxと低圧段である場合に想定されるオイルの圧力PLxとの中間の値よりも大きな値或いは小さな値として設定してもよい。
 上記実施形態では、低圧段異常判定及び高圧段異常判定の双方を実行するものについて例示したが、これに代えて低圧段異常判定及び高圧段異常判定の一方のみを実行するものとしてもよい。
 上記実施形態では、圧力段切替機構の一例として、オイルポンプから吐出されるオイルの圧力が所定の開弁圧以上となると開弁してオイルの一部を逃がすリリーフ弁と、低圧段に対応する第1の所定圧と同第1の所定圧よりも大きい圧力であって高圧段に対応する第2の所定圧とで開弁圧を切り替える切替部とを備えるものについて説明した。しかしながら、本発明に係る圧力段切替機構はこれに限られるものではなく、例えばオイルポンプ自体が機関の各部位に対して供給するオイルの圧力段を高圧段と低圧段との間で切り替えるものであってもよい。

Claims (10)

  1.  機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構を備える、内燃機関の油圧制御装置において、
     前記圧力段切替機構により制御された後のオイルの圧力を検出する検出部と、
     前記オイルの圧力段を前記高圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が高圧段異常判定値を下回ることを条件に前記圧力段切替機構に異常が生じていると判定する判定部と、を備え、
     前記高圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との間の値に設定される油圧制御装置。
  2.  請求項1に記載の内燃機関の油圧制御装置において、
     前記高圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との中間の値として設定される油圧制御装置。
  3.  請求項1又2に記載の内燃機関の油圧制御装置において、
     前記判定部は、前記オイルの圧力段を前記低圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が低圧段異常判定値を上回ることを条件に前記圧力段切替機構に異常が生じていると判定し、
     前記低圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との間の値に設定される油圧制御装置。
  4.  機関の各部位に対して供給されるオイルの圧力段を高圧段と低圧段との間で切り替える圧力段切替機構を備える、内燃機関の油圧制御装置において、
     前記圧力段切替機構により制御された後のオイルの圧力を検出する検出部と、
     前記オイルの圧力段を前記低圧段にする旨の指令を前記圧力段切替機構に対して出力するとともに、当該指令の出力後に前記検出部により検出される前記オイルの圧力が低圧段異常判定値を上回ることを条件に前記圧力段切替機構に異常が生じていると判定する判定部と、を備え、
     前記低圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との間の値に設定される油圧制御装置。
  5.  請求項3又は4に記載の内燃機関の油圧制御装置において、
     前記低圧段異常判定値は、当該判定に際してそのときの機関運転状態において前記高圧段である場合に想定される値と前記低圧段である場合に想定される値との中間の値として設定される油圧制御装置。
  6.  請求項1~5のいずれか一項に記載の内燃機関の油圧制御装置はさらに、前記オイルを加圧して前記機関の各部位に対して供給するオイルポンプを備え、前記圧力段切替機構は、
     前記オイルポンプから吐出されるオイルの圧力が所定の開弁圧以上である場合に開弁して前記オイルの一部を逃がすリリーフ弁と、
     前記開弁圧を、前記低圧段に対応する第1の圧力と、前記高圧段に対応し前記第1の圧力よりも大きい第2の圧力との間で切り替える切替部と
    を備える油圧制御装置。
  7.  請求項6に記載の内燃機関の油圧制御装置はさらに、前記オイルポンプの下流側と上流側とを接続するリリーフ通路を備え、前記リリーフ弁は、
     前記リリーフ通路に設けられ、入口側開口部と出口側開口部とを有する収容室と、
     前記収容室内に収容され、前記入口側開口部と前記出口側開口部との連通状態を変更可能であり、かつ、前記入口側開口部から導入されるオイルの圧力によって開弁方向に付勢される弁体と、
     前記弁体を閉弁方向に付勢する付勢部材と、
     前記収容室内において前記弁体の開閉方向に沿って変位可能に設けられ、前記出口側開口部の開口位置を前記弁体の開閉方向において可変とする連通孔を有する可動部材と、を備え、
     前記切替部は、前記弁体の開閉方向における前記可動部材の位置を、前記第1の圧力に対応する第1の位置と、同第1の位置よりも前記弁体の開弁方向寄りであって前記第2の圧力に対応する第2の位置との間で切り替える油圧制御装置。
  8.  請求項7に記載の内燃機関の油圧制御装置において、
     前記可動部材は、前記オイルポンプから吐出されるオイルの圧力に基づく力により前記弁体の閉弁方向に押圧され、
     前記切替部は、前記可動部材への前記オイルの導入態様を切り替える電磁弁である油圧制御装置。
  9.  請求項6~8のいずれか一項に記載の内燃機関の油圧制御装置において、
     前記オイルポンプは機関駆動式であり、
     前記判定部は、機関回転速度に基づいて前記高圧段異常判定値或いは前記低圧段異常判定値を設定する油圧制御装置。
  10.  請求項9に記載の内燃機関の油圧制御装置において、
     前記判定部は、機関回転速度及び機関温度の双方に基づいて前記高圧段異常判定値或いは前記低圧段異常判定値を設定する油圧制御装置。
PCT/JP2009/056624 2009-03-31 2009-03-31 内燃機関の油圧制御装置 WO2010113245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/808,298 US8417440B2 (en) 2009-03-31 2009-03-31 Hydraulic control device for internal combustion engine
PCT/JP2009/056624 WO2010113245A1 (ja) 2009-03-31 2009-03-31 内燃機関の油圧制御装置
EP09829856.5A EP2415980B1 (en) 2009-03-31 2009-03-31 Oil pressure control apparatus of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056624 WO2010113245A1 (ja) 2009-03-31 2009-03-31 内燃機関の油圧制御装置

Publications (1)

Publication Number Publication Date
WO2010113245A1 true WO2010113245A1 (ja) 2010-10-07

Family

ID=42827577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056624 WO2010113245A1 (ja) 2009-03-31 2009-03-31 内燃機関の油圧制御装置

Country Status (3)

Country Link
US (1) US8417440B2 (ja)
EP (1) EP2415980B1 (ja)
WO (1) WO2010113245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594969A (zh) * 2014-10-09 2015-05-06 芜湖扬宇机电技术开发有限公司 油压故障检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348177B2 (ja) * 2011-05-19 2013-11-20 マツダ株式会社 エンジンの油圧判定装置
US8739746B2 (en) 2012-01-31 2014-06-03 Ford Global Technologies, Llc Variable oil pump diagnostic
KR102065258B1 (ko) 2018-07-10 2020-01-10 한국조선해양 주식회사 윤활유펌프 토출유량의 모니터링 방법
CN108956009B (zh) * 2018-09-30 2023-09-19 广西玉柴机器股份有限公司 一种压电式压力传感器校准方法及装置
JP2024517799A (ja) * 2021-05-04 2024-04-23 カミンズ インコーポレーテッド エンジン潤滑システム、潤滑流体循環システム、及び流圧を調整するための方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101439A (ja) * 1992-09-22 1994-04-12 Mazda Motor Corp エンジンの制御装置
JP2000054817A (ja) * 1998-08-06 2000-02-22 Nippon Soken Inc 内燃機関の潤滑回路の油圧制御装置
JP2008286021A (ja) * 2007-05-15 2008-11-27 Toyota Motor Corp エンジンの油圧制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531485A (en) * 1984-03-01 1985-07-30 Murther Howard D Over ride oil pump
JPS62248812A (ja) 1986-04-22 1987-10-29 Nippon Soken Inc オイル循環装置
US4940114A (en) * 1989-09-05 1990-07-10 Albrecht Kenneth D Engine prelubricating system
JPH0417708A (ja) 1990-05-07 1992-01-22 Nissan Motor Co Ltd 内燃機関の潤滑油圧調整装置
US5085181A (en) * 1990-06-18 1992-02-04 Feuling Engineering, Inc. Electro/hydraulic variable valve timing system
JPH0526023A (ja) 1991-07-19 1993-02-02 Mazda Motor Corp エンジンの潤滑装置
JP3815575B2 (ja) 1995-05-15 2006-08-30 本田技研工業株式会社 内燃機関によって駆動される車両の制御装置
JP2000328916A (ja) 1999-05-19 2000-11-28 Honda Motor Co Ltd エンジンの潤滑制御装置
US6614345B2 (en) 2000-08-30 2003-09-02 Honda Giken Kogyo Kabushiki Kaisha Oil pressure warning system for outboard motor
JP4657523B2 (ja) 2000-08-30 2011-03-23 本田技研工業株式会社 船舶用内燃機関の油圧異常警告装置
JP4439368B2 (ja) * 2004-09-29 2010-03-24 本田技研工業株式会社 小型滑走艇用内燃機関
JP4573610B2 (ja) * 2004-09-29 2010-11-04 本田技研工業株式会社 小型滑走艇用内燃機関
JP4614724B2 (ja) * 2004-09-29 2011-01-19 本田技研工業株式会社 小型滑走艇用内燃機関
JP4297860B2 (ja) * 2004-09-29 2009-07-15 本田技研工業株式会社 小型滑走艇用内燃機関
JP4407613B2 (ja) 2005-10-14 2010-02-03 トヨタ自動車株式会社 エンジンの油圧制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101439A (ja) * 1992-09-22 1994-04-12 Mazda Motor Corp エンジンの制御装置
JP2000054817A (ja) * 1998-08-06 2000-02-22 Nippon Soken Inc 内燃機関の潤滑回路の油圧制御装置
JP2008286021A (ja) * 2007-05-15 2008-11-27 Toyota Motor Corp エンジンの油圧制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594969A (zh) * 2014-10-09 2015-05-06 芜湖扬宇机电技术开发有限公司 油压故障检测方法

Also Published As

Publication number Publication date
EP2415980A1 (en) 2012-02-08
EP2415980B1 (en) 2019-05-22
EP2415980A4 (en) 2017-04-26
US20110041798A1 (en) 2011-02-24
US8417440B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
WO2010113245A1 (ja) 内燃機関の油圧制御装置
JP5306974B2 (ja) 電動オイルポンプ
JP5245994B2 (ja) 内燃機関の油圧制御装置
JP5212546B2 (ja) 燃料供給装置
JP4735707B2 (ja) 内燃機関の油圧制御装置
JPWO2010029791A1 (ja) 燃料漏れ診断装置及び燃料漏れ診断方法
JP2011064100A (ja) 内燃機関の燃料供給系診断装置
WO2011048827A1 (ja) 内燃機関の制御装置
JP5182420B2 (ja) 内燃機関の制御装置
JP5966459B2 (ja) エンジンの潤滑制御方法及び装置
JP2010242530A (ja) 油圧制御装置
JP2011247167A (ja) 車載潤滑油供給装置
JP2009097390A (ja) エンジンの油圧制御装置
JP2012082749A (ja) 内燃機関の制御装置
CN108692012B (zh) 液压回路装置和液压回路的主压升压方法
JP5166067B2 (ja) エンジン
JP2007309106A (ja) 内燃機関の制御装置
KR101508891B1 (ko) 내연 기관 제어 장치
CN106401766B (zh) Isg重启时控制柴油发动机轨压的方法和柴油isg车辆
JP5295909B2 (ja) 内燃機関の運転制御方法
JP2010121595A (ja) 内燃機関の制御装置
JP2011247169A (ja) 車載潤滑油供給装置
JP2010242529A (ja) 内燃機関の油圧制御装置
JP4941269B2 (ja) エンジンの油圧制御装置
JP2010150987A (ja) 内燃機関の潤滑油供給装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009829856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12808298

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP