WO2010110392A1 - 塩素製造用触媒および該触媒を用いた塩素の製造方法 - Google Patents

塩素製造用触媒および該触媒を用いた塩素の製造方法 Download PDF

Info

Publication number
WO2010110392A1
WO2010110392A1 PCT/JP2010/055279 JP2010055279W WO2010110392A1 WO 2010110392 A1 WO2010110392 A1 WO 2010110392A1 JP 2010055279 W JP2010055279 W JP 2010055279W WO 2010110392 A1 WO2010110392 A1 WO 2010110392A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
chlorine
concentration
hydrogen chloride
Prior art date
Application number
PCT/JP2010/055279
Other languages
English (en)
French (fr)
Inventor
貴司 鍋田
堀内 伸彦
賢一 杉本
岩田 健二
村上 雅美
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2011506125A priority Critical patent/JP5468065B2/ja
Priority to KR1020117021778A priority patent/KR101287296B1/ko
Priority to US13/256,623 priority patent/US9108845B2/en
Priority to EP10756188.8A priority patent/EP2418016B1/en
Priority to BRPI1009832A priority patent/BRPI1009832A2/pt
Priority to CN201080010201.XA priority patent/CN102341173B/zh
Publication of WO2010110392A1 publication Critical patent/WO2010110392A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Definitions

  • the present invention relates to a catalyst for producing chlorine from hydrogen chloride, and more particularly to a chlorine production catalyst suitable for use in a fluidized bed reactor, and a method for producing chlorine using the same.
  • Chlorine is useful as a raw material for vinyl chloride, phosgene and the like.
  • a method for producing chlorine an electrolysis method of sodium chloride or catalytic oxidation of hydrogen chloride is widely known.
  • the electrolysis method of salt is disadvantageous in terms of energy because it uses a lot of electric power, and since it produces caustic soda as a by-product, the supply and demand balance of chlorine and caustic soda is always a problem.
  • the electrolysis method is a method for obtaining chlorine and hydrogen by electrolysis of hydrogen chloride, and was proposed by UHDE in the 1960s. Since then, various improvements have been made, but problems remain in that a large amount of power is consumed.
  • the gas phase catalytic oxidation method is also called a Deacon process, and was proposed in the 1860s as a method for obtaining chlorine from hydrogen chloride and oxygen. This reaction is an equilibrium reaction with exotherm, and the reaction proceeds more preferentially as the reaction temperature is lower.
  • a catalyst used for this reaction for example, a catalyst mainly composed of copper, a catalyst mainly composed of chromium, a catalyst mainly composed of ruthenium, and the like are known.
  • a catalyst having copper as a main component for example, a catalyst in which a lanthanoid such as copper chloride, alkali metal chloride or dymium chloride is supported on a silica gel carrier having a specific surface area of 200 m 2 / g or more and an average pore diameter of 60 mm or more (patent) Document 1), a catalyst prepared by impregnating copper, potassium and dymium into silica gel having a specific surface area of 410 m 2 / g and a pore volume of 0.72 ml / g (Patent Document 2) is known. These catalysts are composed of inexpensive components, but have low reaction activity and require high temperatures to obtain sufficient activity.
  • dymium is a mixture containing various rare earth elements, but because it is a mixture, the composition is not constant depending on the mining place and timing, and the activity using the catalyst using dymium is not constant and stable use. Is disadvantageous.
  • a catalyst mainly composed of chromium for example, a catalyst in which chromia is supported on silicon oxide is known (Patent Documents 3 and 4). Since this catalyst also has a low reaction activity, there is a problem that it is difficult to obtain a sufficient equilibrium conversion rate as in the case of a catalyst mainly composed of copper. At the same time, the main component is chromium, which is problematic for health and safety, and it can be said that the problem is large from the viewpoint of environmental impact.
  • ruthenium for example, a supported metal ruthenium catalyst, a ruthenium oxide catalyst, a ruthenium composite oxide catalyst, and the like are known (Patent Documents 5 and 6). Although these catalysts have sufficient activity even at low temperatures, ruthenium, which is the main component, is expensive, so there is a need to recover and reuse ruthenium from waste catalysts. In addition, ruthenium is a rare metal, so it is easily affected by price increases due to increased demand, and it can be said that there are problems in terms of stable supply and cost.
  • the fluidized bed process is a process in which solid particles are suspended by a fluid to perform operations such as reaction and heat treatment, and has been widely known since the latter half of the 19th century. Also in the oxidation reaction using a hydrogen chloride catalyst, a fluidized bed process using a catalyst mainly composed of chromium has been put into practical use. In the fluidized bed process, it is required that solid particles maintain good fluidity during the reaction, and various studies have been made regarding particle physical properties, apparatus structure, and operating conditions. Further, in order for the solid particles to maintain good fluidity, it is necessary to maintain the catalyst shape during the reaction. If the shape of the catalyst changes significantly during the reaction due to wear, crushing, or the like, the catalyst components will be scattered, causing a reduction in reaction activity. However, there are many unknown areas regarding the influence of each factor on fluidity, and it cannot be said that sufficient studies have been made.
  • Patent Documents 7 and 8 a catalyst having a specific particle size and specific surface area has little change with time in activity and has little sticking when used in a fluidized bed, and has already proposed this.
  • the present invention is a reaction in which hydrogen chloride is oxidized with oxygen to produce chlorine, and has excellent reaction activity, long catalyst life, low cost and stable supply, and maintains high fluidity for a long time without causing sticking. It is an object of the present invention to provide a chlorine production catalyst suitable for use in a fluidized bed reactor, and to provide a chlorine production method using the catalyst. Another object of the present invention is to provide a catalyst for producing chlorine capable of maintaining a good reaction yield over a long period of time, in a reaction in which hydrogen chloride is oxidized with oxygen to produce chlorine. Yes.
  • the catalyst for producing chlorine of the present invention is a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen in a fluidized bed reactor, and comprises (A) a copper element, (B) an alkali metal element, and (C A lanthanoid element (C) comprising spherical particles having an average sphericity of 0.80 or more, and the lanthanoid element (C) has a bond dissociation energy with oxygen at 298 K of 100 to 185 kcal / mol.
  • the copper element (A) content in the catalyst is 0.3 wt% or more and 4.5 wt% or less.
  • the weight ratio of the copper element (A) and the alkali metal element (B) is in the range of 1: 0.2 to 1: 4.0, and the copper element (A)
  • the weight ratio with the lanthanoid element (C) is preferably in the range of 1: 0.2 to 1: 6.0.
  • the weight ratio of the copper element (A) to the alkali metal element (B) is in the range of 1: 0.2 to 1: 2.0, and the copper element (A) and the lanthanoid element (C) It is also preferable that the weight ratio is in the range of 1: 0.2 to 1: 3.0.
  • the lanthanoid element (C) is preferably at least one selected from the group consisting of praseodymium, neodymium, samarium and europium.
  • the alkali metal (B) contains at least one selected from the group consisting of sodium and potassium.
  • the average sphericity is composed of spherical particles of 0.90 or more and 1.00 or less.
  • the catalyst for producing chlorine of the present invention has an end velocity in air calculated from the Stokes equation of 0.10 m / second or more and 2.0 m / second or less, and a particle density of 0.4 g / ml or more, It is preferably 1.2 g / ml or less.
  • the catalyst for producing chlorine of the present invention is preferably formed by supporting a component containing a copper element, an alkali metal element and a rare earth metal element on a carrier.
  • the method for producing chlorine according to the present invention is characterized in that hydrogen chloride is oxidized with oxygen in a fluidized bed reactor in the presence of the chlorine production catalyst according to the present invention.
  • the fluidized bed reactor of the present invention is characterized by including the chlorine production catalyst of the present invention.
  • the reaction activity is excellent, the catalyst life is long, stable supply is possible at a low price, and the flow stability is excellent, that is, the fixation is achieved.
  • a chlorine production catalyst suitable for use in a fluidized bed reactor that does not occur and can maintain high fluidity over a long period of time.
  • a catalyst for producing chlorine which has good fluidity of catalyst particles when used in a fluidized bed reactor, is light and easy to handle, is inexpensive, and can be stably used for a long time. Can be provided.
  • the method which can produce chlorine continuously, efficiently using this catalyst can be provided.
  • FIG. 1 shows a schematic diagram of a glass reaction tube used for evaluation of catalyst activity in Examples and Comparative Examples.
  • the catalyst for producing chlorine of the present invention is a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen, and contains a copper element (A), an alkali metal element (B) and a specific lanthanoid element (C).
  • the spherical particles have an average sphericity of 0.80 or more.
  • the catalyst for producing chlorine of the present invention contains a copper element (A), an alkali metal element (B) and a specific lanthanoid element (C) as active components.
  • the copper element (A) may be contained in a monovalent or divalent state.
  • the content of elemental copper is 0.3% by weight or more and 4.5% by weight or less per 100% by weight of the catalyst, preferably 0.5% by weight or more and 3.5% by weight or less, more preferably 0.8% by weight. 5% by weight or more and 3.0% by weight or less. If the copper content is greater than 4.5% by weight, the fluidity between the catalysts deteriorates, which is not preferable. On the other hand, if the copper content is less than 0.3% by weight, a sufficient chlorine yield cannot be obtained, which is not preferable.
  • alkali metal element (B) contained in the chlorine production catalyst of the present invention examples include lithium, sodium, potassium, rubidium, cesium, and francium. These alkali metal elements (B) may be contained alone or in combination of two or more in the catalyst. Among these, sodium and / or potassium are preferable, and potassium is more preferable.
  • the content of the alkali metal element (B) is not particularly limited, but is preferably 0.1% by weight or more and 5.0% by weight or less, preferably 0.2% by weight or more, per 100% by weight of the catalyst for chlorine production. 0 wt% or less is more preferable, and 0.3 wt% or more and 3.0 wt% or less is more preferable.
  • the lanthanoid element (C) contained in the catalyst for producing chlorine according to the present invention is a lanthanoid element having a bond dissociation energy with oxygen at 298 K in the range of 100 to 185 kcal / mol among so-called lanthanoid elements having atomic numbers 57 to 71. Is mentioned.
  • the bond dissociation energy of lanthanoid and oxygen at 298K is as shown in the following Table 1.
  • the lanthanoid element (C) contained in the catalyst for chlorine production of the present invention specifically, praseodymium ( Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium ( And one or more lanthanoid elements selected from the group consisting of Tm) and lutetium (Lu).
  • Ln-O (lanthanoid-oxygen) bond dissociation energy D 298 at 298 K shown in Table 1 above is the organometallic reactant handbook (edited by Kohei Tamao, Kagaku Dojin, date of issue: June 2003). ) The values described in Table 2 on page 223.
  • the bond dissociation energy of the lanthanoid element (C) exceeds 185 kcal / mol, the bond with oxygen becomes too strong, and if it is less than 100 kcal / mol, the affinity with oxygen becomes too low, In some cases, the reaction activity (hydrogen chloride conversion) cannot be sufficiently improved.
  • lanthanoid elements (C) praseodymium, neodymium, samarium, europium, gadolinium, and dysprosium are preferable, and praseodymium, neodymium, samarium, and europium have a balance of conversion from hydrogen chloride to chlorine and flow stability. More preferable from the viewpoint.
  • These lanthanoid elements (C) may be used alone or in combination of two or more.
  • the content of the lanthanoid element (C) is not particularly limited, but is preferably 0.3% by weight or more and 10.0% by weight or less, and 0.5% by weight or more, 7.0% per 100% by weight of the catalyst for chlorine production. % By weight or less is more preferable, and 0.5% by weight or more and 5.0% by weight or less are more preferable.
  • the catalyst for chlorine production of the present invention contains a copper element (A), an alkali metal element (B), and a lanthanoid element (C), and the weight ratio thereof is not particularly limited, but the copper element (A) and the alkali metal element
  • the weight ratio of (B) is in the range of 1: 0.2 to 1: 4.0, and the weight ratio of the copper element (A) to the lanthanoid element (C) is 1: 0.2 to 1: A range of 6.0 is preferred.
  • the weight ratio of the copper element (A) to the alkali metal element (B) is in the range of 1: 0.2 to 1: 2.0, and the weight ratio of the copper element (A) to the lanthanoid element (C).
  • the weight ratio of the copper element (A) to the alkali metal element (B) is 1: 0.3 to 1: 1.5. More preferably, the weight ratio of the copper element (A) to the lanthanoid element (C) is 1: 0.3 to 1: 2.5, and the copper element (A) and the alkali metal element (B) The weight ratio of 1: 0.4 to 1: 1.0, and the weight ratio of the copper element (A) and the lanthanoid element (C) is 1: 0.4 to 1: 2.0. Is most preferred. The above range is preferable because each element as an active component is easily complexed, a long life is obtained, and the catalyst for producing chlorine is excellent in activity.
  • the chlorine production catalyst of the present invention comprises spherical particles, and the active element copper element (A), alkali metal element (B), and lanthanoid element (C) are usually supported on a porous spherical particle carrier. ing.
  • the carrier constituting the chlorine production catalyst of the present invention can disperse and carry the active ingredient and has corrosion resistance that does not decompose against hydrochloric acid and chlorine.
  • the carrier desirably has an average particle size of 10 ⁇ m or more and less than 1000 ⁇ m, preferably 30 ⁇ m or more and less than 600 ⁇ m, more preferably 50 ⁇ m or more and less than 300 ⁇ m.
  • the average pore diameter of the carrier (hereinafter referred to as the average pore diameter) is preferably 3 nm or more and 50 nm or less, and more preferably 6 nm or more and 30 nm or less. If the average pore diameter is less than 3 nm, it is difficult to introduce metal components such as copper into the pores, which causes aggregation on the surface and blockage of the pores. On the other hand, if the average pore diameter is larger than 50 nm, the surface area of the carrier is reduced, and the reaction efficiency is lowered, which is not preferable.
  • the specific surface area of the carrier is preferably 30 m 2 / g or more and 1000 m 2 / g or less, more preferably 50 m 2 / g or more and 500 m 2 / g or less, 100 m 2 / g or more, 300 m 2 or less. / G or less is more preferable. If the specific surface area is less than 30 m 2 / g, the reaction point is decreased, which is not preferable. If it is larger than 1000 m 2 / g, a special method is required for producing the carrier, which is not preferable from the viewpoint of production cost.
  • the specific surface area in the present invention was measured using a BET method specific surface area measuring device (BELSORP-max, manufactured by Nippon Bell Co., Ltd.).
  • the bulk density of the carrier is preferably 0.20 g / ml or more and 1.00 g / ml or less, more preferably 0.30 g / ml or more and 0.80 g / ml or less.
  • the pore volume of the carrier is preferably 0.5 ml / g or more and 3.0 ml / g or less, more preferably 0.5 ml / g or more and 2.0 ml / g or less. If it is less than 0.5 ml / g, the space in the pores is not sufficient, and the reaction efficiency may be lowered. On the other hand, when it is larger than 3.0 ml / g, the strength as a support is lowered, and the catalyst itself may be destroyed during the reaction, which is not preferable.
  • the material for the carrier examples include silica, silica alumina, alumina, titania, zirconia, and the like. Among them, silica is preferable because of its high strength and long life of the catalyst.
  • the silica carrier any of commercially available silica gel, fumed silica and the like can be used.
  • the content of the carrier in the catalyst for producing chlorine of the present invention is usually 98 to 65% by weight, preferably 97 to 69% by weight, more preferably 94 to 72% by weight per 100% by weight of the catalyst. In the said range, since the activity and intensity
  • the catalyst for chlorine production of the present invention has a shape close to a true sphere, the catalyst has excellent wear resistance and durability, and also has good fluidity, so the average value of sphericity is 0.80 or more, preferably Has a spherical particle shape of 0.90 or more. If it is less than 0.80, the abrasion and pulverization of particles due to friction cannot be ignored, and the fluidity during the reaction deteriorates. If good fluidity cannot be ensured, the reaction efficiency decreases, resulting in a decrease in productivity.
  • the upper limit of the average value of sphericity is 1, and when it is 1, it indicates a true sphere.
  • the average value of the sphericity of the spherical particles is a value represented by the average value of the circularity coefficient (the sphericity of each spherical particle) obtained from an image of a micrograph such as a scanning electron microscope (SEM).
  • the number of particles to be measured for obtaining the average value is desirably 1000 or more.
  • the sphericity is calculated from the circumference and area of each particle image. 4 ⁇ ⁇ ⁇ area / (perimeter length ⁇ perimeter length) Which is closer to 1 as the particle image is closer to a perfect circle.
  • the average sphericity of the spherical particles was determined by measuring according to the following procedure in Examples and Comparative Examples described later.
  • a measurement sample is fixed on a sample stage with an adhesive tape and photographed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM image is taken into an image analyzer, the sphericity (circularity coefficient) of each particle is measured, and the average sphericity is calculated from the number of measured particles.
  • the measurement target is particles having an equivalent circle diameter of 30 ⁇ m or more, and the number of measurement particles is preferably 1000 or more as described above.
  • the apparatus used in the measurement of the present invention is as follows.
  • the method for forming the spherical particle shape of the catalyst for chlorine production of the present invention is not particularly limited, and the catalyst may be formed by supporting an active ingredient on a spherical particle-shaped carrier. Although it may be formed by polishing, since the shape of the catalyst particles usually depends directly on the shape of the carrier, a carrier having a spherical particle shape is used as the carrier constituting the chlorine production catalyst of the present invention. It is more desirable to use a spherical particle shape having an average value of sphericity of 0.80 or more, preferably 0.90 or more. The upper limit is 1.
  • the particle shape of the catalyst is not spherical or has a low sphericity, particle wear and pulverization due to friction cannot be ignored, and fluidity during the reaction may be reduced. If good fluidity cannot be ensured, the reaction efficiency may decrease, resulting in a decrease in productivity.
  • the chlorine production catalyst of the present invention may contain components (other components) other than the active component and the carrier.
  • the component include palladium element, iridium element, chromium element, vanadium element, niobium element, iron element, nickel element, aluminum element, molybdenum element, tungsten element, alkaline earth metal element and the like.
  • these other components are usually contained in the range of 0.001 to 10 parts by weight, preferably 0.01 to 10 parts by weight per 100 parts by weight of the carrier.
  • the chlorine production catalyst of the present invention may contain one or more other rare earth elements such as lanthanum, cerium, ytterbium, scandium, and yttrium within a range not impairing the object of the present invention. These elements can be appropriately used as long as the object of the present invention is not impaired, but preferably 0.001% by weight or more and 10% by weight or less per 100% by weight of the catalyst for chlorine production.
  • the weight ratio of the lanthanoid element (C) according to the present invention to other rare earth elements is not particularly limited, but is preferably in the range of 1: 0 to 1: 9.0, more preferably 1: 0. ⁇ 1: 4.0.
  • the catalyst for producing chlorine according to the present invention is not particularly limited, and for example, the average particle size may be 10 ⁇ m or more and less than 1000 ⁇ m, preferably 30 ⁇ m or more and less than 600 ⁇ m, more preferably 50 ⁇ m or more and less than 300 ⁇ m. desirable.
  • the catalyst for producing chlorine of the present invention is not particularly limited.
  • the average pore diameter is preferably 3 nm or more and 50 nm or less, and more preferably 6 nm or more and 30 nm or less. If the average pore diameter is less than 3 nm, it is difficult to introduce metal components such as copper into the pores, which causes aggregation on the surface and blockage of the pores. On the other hand, if the average pore diameter is larger than 50 nm, the surface area of the catalyst is decreased, and the reaction efficiency may be decreased, which is not preferable.
  • the chlorine production catalyst of the present invention is not particularly limited.
  • the specific surface area is preferably 30 m 2 / g or more and 1000 m 2 / g or less, and 50 m 2 / g or more and 500 m 2 / g. more preferably less is, 100 m 2 / g or more, more preferably 300 meters 2 / g or less.
  • the specific surface area in the present invention was measured using a BET method specific surface area measuring device (BELSORP-max, manufactured by Nippon Bell Co., Ltd.).
  • the chlorine production catalyst of the present invention is not particularly limited, but preferably has a bulk density of 0.20 g / ml or more and 1.00 g / ml or less, 0.30 g / ml or more, 0.0. More preferably, it is 80 g / ml or less.
  • the catalyst for producing chlorine of the present invention is not particularly limited, but preferably has a pore volume of 0.3 ml / g or more and 3.0 ml / g or less, 0.5 ml / g or more, 2 It is more preferably 0.0 ml / g or less, further preferably 0.6 ml / g or more and 1.5 ml / g or less. If it is less than 0.3 ml / g, the space in the pores is insufficient and the diffusion of the substrate becomes insufficient, the specific surface area is lowered, and the reaction efficiency is lowered. On the other hand, if it is larger than 3.0 ml / g, the strength as a catalyst is lowered, and the catalyst itself may be destroyed during the reaction, which is not preferable.
  • the chlorine production catalyst of the present invention is not particularly limited, but preferably has a particle density of 0.4 g / ml or more and 1.2 g / ml or less, 0.6 g / ml or more, and 1. More preferably, it is 0 g / ml or less.
  • the particle density satisfies such a range, it is preferable because the catalyst is light in weight, easy to handle and inexpensive, and can provide a catalyst that can be stably used for a long time.
  • the particle density: Z (g / ml) is a value calculated from the following equation from the true particle density: X (g / ml) and the pore volume: Y (ml / g). is there.
  • the terminal velocity in air calculated from the Stokes equation is preferably 0.05 m / second or more and 2.0 m / second or less, more preferably 0.10 m / second. As mentioned above, it is desirable that it is 1.5 m / sec or less, More preferably, it is 0.15 m / sec or more and 1.0 m / sec or less. When the terminal velocity calculated from the Stokes equation satisfies such a range, it is preferable because a better fluidity is exhibited when the catalyst is used for the reaction in the fluidized bed reactor.
  • the terminal velocity of the catalyst is the terminal velocity in air calculated from the Stokes equation, and the value is obtained by the following equation (catalyst lecture volume 6 “catalytic reactor and its design” page 149 (See 3.116) (edited by the Catalysis Society of Japan, Kodansha).
  • the terminal velocity u t g ( ⁇ s - ⁇ g) d p 2 / 18 ⁇ (In the formula, g represents acceleration of gravity, ⁇ s represents particle density, ⁇ g represents gas density, d p represents average particle diameter, and ⁇ represents gas viscosity.)
  • g acceleration of gravity
  • ⁇ s particle density
  • ⁇ g gas density
  • d p average particle diameter
  • gas viscosity
  • the method for producing a catalyst for producing chlorine according to the present invention includes a step of dispersing a copper compound, an alkali metal compound and a lanthanoid compound in a spherical particle carrier, and a carrier in which the copper compound, alkali metal compound and lanthanoid compound are dispersed. And a method having a step of drying or baking.
  • the above-described method for producing a catalyst may include a step of crushing the catalyst or a step of classifying the catalyst into a specific particle size as necessary.
  • the active element copper element (A), alkali metal element (B), and specific lanthanoid element (C) are respectively a copper compound, an alkali metal compound, and a lanthanoid compound.
  • a carrier those described above are preferably used.
  • a carrier having a spherical particle shape such as an average value of sphericity of 0.80 or more, preferably 0.90 or more is used as the catalyst. It is desirable in that a long life can be obtained.
  • the method for dispersing and supporting the active ingredient on the carrier is not particularly limited, and any of the above-described element deposition in a vacuum chamber, vapor phase loading, and liquid phase loading (liquid phase preparation method) can be used. Considering operability and uniform dispersibility, liquid phase support is desirable. In the case of liquid phase support, a compound containing each active ingredient is added to a solvent, and a raw material solution or a raw material dispersion in which the raw material is dispersed in the solvent may be sprayed onto the catalyst carrier.
  • the catalyst carrier may be After immersing in the raw material solution or raw material dispersion, the raw material solution or raw material dispersion may be directly evaporated and dried while stirring, and the catalyst carrier may contain the active ingredient containing the raw material solution or raw material. It is also possible to employ a method in which the catalyst carrier is lifted from the raw material solution or the raw material dispersion and dried after being immersed in the dispersion.
  • the catalyst support When the catalyst support is immersed and supported in a raw material solution or raw material dispersion containing the active ingredient, if the supported amount is small, the catalyst support is immersed in the raw material solution or the raw material dispersion again to activate the catalyst carrier.
  • the content rate of a component can be raised.
  • the active ingredient in the raw material solution or the raw material dispersion liquid may be in a solid state not dissolved in the solvent as long as the active ingredient has a size that can enter the pores of the carrier.
  • it is preferable that each active ingredient is dissolved in a solvent, that is, a raw material solution.
  • the volume of the raw material dispersion is desirably equal to or less than the pore volume of the catalyst carrier.
  • the volume of the raw material dispersion is larger than the pore volume of the catalyst carrier, the raw material dispersion cannot be completely filled in the pores of the catalyst carrier and is present on the surface of the catalyst carrier, which is not preferable.
  • the solvent for each active ingredient when supported in the liquid phase is not particularly limited as long as it can dissolve or disperse the compound containing the active ingredient, but water is preferable from the viewpoint of ease of handling.
  • the concentration when the active ingredient is dissolved and dispersed in the solvent is not particularly limited as long as the compound of the active ingredient can be uniformly dissolved or dispersed. However, if the concentration is too low, it takes time to carry the active ingredient and the total amount of the active ingredient and the solvent.
  • the amount of the active ingredient per 100% by weight is preferably 1 to 50% by weight, more preferably 2 to 40% by weight.
  • a solvent having an amount larger than the pore volume remains in the catalyst after dispersion, it is necessary to remove the solvent after the dispersion and before filling the reactor.
  • the amount of the solvent may be used in the reaction as it is, or the solvent may be removed.
  • only drying may be performed, but further baking may be performed.
  • the drying conditions are not particularly limited, but are usually carried out in the air or under reduced pressure at 0 to 200 ° C. and 10 min to 24 hours.
  • the firing conditions are not particularly limited, but the firing can be usually performed in the air at 200 ° C. to 600 ° C. for 10 minutes to 24 hours.
  • the copper compound, alkali metal compound, and lanthanoid compound dispersed in the carrier may be any compound, but usually each independently a halide, nitrate, sulfate, acetate, carbonate, oxalate, alkoxide or It is a complex salt. Of these, chlorides, nitrates and acetates are preferred from the viewpoint that complex salts are easily formed.
  • the amount of copper compound, alkali metal compound, lanthanoid compound and carrier used varies depending on the loading method, but the copper element (A), alkali metal element (B), and lanthanoid element (C) contained in the resulting catalyst are It is preferable to use an amount that falls within the aforementioned range.
  • the shape of the catalyst obtained by the above production method usually depends on the shape of the carrier, but after supporting the active ingredient on the carrier, drying and firing as necessary, crushing, polishing, redispersion of the agglomerated particles
  • the particle shape may be spherical.
  • silica carrier when used as the carrier, a commercially available one can be used as it is, but it can also be used by drying or baking at a temperature of 30 to 700 ° C. before carrying the active ingredient. .
  • the above copper compound, alkali metal compound, and lanthanoid compound include rare earth compounds other than the lanthanoid compound according to the present invention, palladium compounds, iridium compounds, chromium compounds, vanadium compounds, niobium compounds, iron compounds, nickel compounds, aluminum compounds, molybdenum
  • the addition method is not particularly limited, and a solution together with the copper compound, the alkali metal compound, and the lanthanoid compound is added to the support. It may be dispersed, or may be separately dispersed on the carrier first or later on the carrier.
  • a catalyst containing components other than the active component, the active component and the carrier can be obtained.
  • the total amount of these other components is usually 0.001 to 10 parts by weight, preferably 0.01 to 10 parts by weight in terms of metal element per 100 parts by weight of the support. The range is 10 parts by weight.
  • the catalyst for producing chlorine according to the present invention is usually composed of an aggregate of spherical particles, and the individual particles may have a substantially uniform composition, as long as the above-mentioned specific properties are satisfied as a whole.
  • the catalyst for producing chlorine according to the present invention is preferably an aggregate of only spherical particles having the same composition, but may be a mixture of spherical particles having different compositions and satisfy the above-mentioned specific properties as a whole. .
  • Examples of the catalyst for producing chlorine of the present invention which is a mixture of spherical particles having different compositions, include, for example, spherical particles containing a copper element (A), an alkali metal element (B) and a specific lanthanoid element (C);
  • Any material that satisfies the characteristics of the catalyst for chlorine production to be defined may be used.
  • the catalyst for producing chlorine of the present invention contains spherical particles (P) that are inert to the reaction, the inert spherical particles are made of reactants (hydrogen chloride, oxygen) and products (chlorine, water). Is not particularly limited as long as it has no reactivity with respect to, for example, silica, silica alumina, alumina, titania, zirconia, glass, etc., among which silica and alumina are preferable, and silica is particularly preferable. preferable.
  • the shape of the inert particles (P) may be any shape such as particles, granules, or spheres that are generally used as a fluidized bed catalyst, but in order to suppress wear during the reaction, it is preferably a sphere. More preferably, the spherical particles have an average value of sphericity of 0.80 or more.
  • the content of the copper element (A) is 0.3% by weight or more and 4.5% by weight or less per 100% by weight of the catalyst.
  • the content of the copper element (A) is in the above range.
  • the inert particles (P) are mixed with the catalyst so that the copper element (A) content per 100% by weight of the catalyst is within the above range.
  • the catalyst is included in the chlorine production catalyst of the present invention.
  • Such a catalyst for producing chlorine of the present invention can be suitably used as a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen in a fluidized bed reactor, has excellent catalytic activity, and has a long catalyst life. It can be stably supplied at low cost, and can maintain excellent fluidity over a long period without causing sticking. Moreover, since the catalyst for chlorine production of the present invention has a high sphericity, it is excellent in particle strength, hardly causes particle cracking, and has excellent wear resistance. For this reason, when chlorine is produced using the catalyst for producing chlorine of the present invention, chlorine can be produced stably, continuously, efficiently and more economically over a long period of time.
  • the method for producing chlorine of the present invention is a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of a catalyst in a fluidized bed reactor, wherein the catalyst is used for producing the chlorine of the present invention described above. It is a catalyst.
  • the reaction method is preferably a flow type because chlorine can be produced continuously. Since this reaction is an equilibrium reaction, if the reaction temperature is too high, the conversion rate decreases, and if it is too low, the activity of the catalyst is not sufficient. Therefore, the reaction temperature is usually 250 ° C. or more and less than 500 ° C., preferably 320 ° C. As mentioned above, it carries out at less than 420 degreeC.
  • the pressure during the reaction is preferably not less than atmospheric pressure and less than 50 atm in consideration of operability.
  • oxygen source for oxygen used in the reaction air may be used as it is, but pure oxygen that can easily control the oxygen partial pressure is more preferable. Further, since the reaction of oxidizing hydrogen chloride with oxygen to generate chlorine is an equilibrium reaction, the conversion rate does not reach 100%, and it is necessary to separate unreacted hydrogen chloride from the product chlorine.
  • the stoichiometric molar ratio of hydrogen chloride to oxygen (hydrogen chloride / oxygen) is 4, but in general, it is possible to obtain higher activity and better fluidity by supplying oxygen in excess than the theoretical amount.
  • the molar ratio of hydrogen chloride to oxygen (hydrogen chloride / oxygen) is preferably 0.5 or more and less than 3.0, more preferably 1.0 or more and less than 2.5. Moreover, you may distribute
  • the source gas used may contain an impurity gas in addition to hydrogen chloride and oxygen, which are chlorine sources.
  • an impurity For example, chlorine, water, nitrogen, a carbon dioxide, carbon monoxide, hydrogen, carbonyl chloride, an aromatic compound, a sulfur-containing compound, a halogen-containing compound etc. are mentioned.
  • carbon monoxide is known to cause a decrease in the catalyst activity in the conventional catalyst, but when the catalyst of the present invention is used, a significant decrease in the catalyst activity is not recognized and sufficient. Activity is maintained.
  • the concentration contained in the raw material gas of carbon monoxide is preferably less than 10.0 vol%, and more preferably less than 6.0 vol%. If it is 10.0 vol% or more, the oxidation reaction of carbon monoxide proceeds remarkably, causing problems such as excessive heat generation and reduced conversion of hydrogen chloride.
  • the supply rate of hydrogen chloride relative to the weight of the catalyst used for producing chlorine in the present invention is preferably usually 100 NL / hr or more and less than 2000 NL / hr, more preferably 200 NL / hr or more and 1000 NL / kg per 1 kg of the catalyst. It is less than hr.
  • the gas superficial velocity in the present invention is preferably 0.01 m / second or more and 1.0 m / second or less, more preferably 0.02 m / second or more and 0.5 m / second or less. If the gas superficial velocity is less than 0.01 m / sec, the flow of the catalyst is insufficient and the fluidity is deteriorated. If the gas superficial velocity is higher than 1.0 m / sec, the catalyst will be scattered from the reactor, which is not preferable. Further, the gas superficial velocity is preferably equal to or lower than the above-mentioned final catalyst velocity. If the terminal velocity of the catalyst is slower than the gas superficial velocity, there is a possibility that the scattering of the catalyst from the inside of the reactor becomes remarkable, which is not preferable.
  • the production process is not particularly limited, but preferably includes the following steps.
  • a step of preheating a raw material gas containing hydrogen chloride and oxygen (2) A step of oxidizing hydrogen chloride (3) A step of cooling a product gas containing hydrogen chloride, oxygen, chlorine and water (4) ) Steps for recovering and removing hydrogen chloride from the product gas (5) Steps for dehydrating the product gas (6) Steps for compressing and cooling the product gas and separating the chlorine as liquefied chlorine
  • a source gas containing hydrogen chloride and oxygen it is preferable to heat to 100 ° C. or more and less than 400 ° C. before introducing the gas into the fluidized bed reactor, and more desirably 150 ° C. or more and less than 350 ° C. If the temperature to be heated in advance is less than 100 ° C., hydrogen chloride gas condenses in the system, and there is a possibility that device corrosion proceeds, which is not preferable.
  • the product gas containing chlorine and water produced in the reactor and unreacted hydrogen chloride and oxygen at about 250 ° C. to 500 ° C. Is cooled by a refrigerant.
  • the refrigerant is not particularly limited, but water is preferable.
  • the step of recovering / removing hydrogen chloride from the product gas aims at recovering / removing unreacted hydrogen chloride from the product gas containing hydrogen chloride, oxygen, chlorine, and water.
  • the method for recovering and removing hydrogen chloride is not particularly limited, but a method in which hydrogen chloride is absorbed by the recovery medium is preferable.
  • the recovery medium is not particularly limited, but water is preferable because of easy handling.
  • the step of cooling the product gas and the step of absorbing hydrogen chloride may be performed using separate apparatuses or may be performed using the same apparatus.
  • the step of dehydrating the product gas aims at removing water from the product gas containing chlorine, oxygen, and water.
  • the dehydration method is not particularly limited, and methods such as a cooling dehydration method, an absorption dehydration method, an adsorption dehydration method, and a compression dehydration method can be suitably used, and a method by an absorption dehydration method is particularly preferable. By using this process, residual moisture contained in the product gas can be removed almost completely.
  • the product gas from which moisture has been removed in the previous process is compressed and cooled to liquefy the chlorine and separate it from the gas phase.
  • the gas phase after chlorine is liquefied and separated contains oxygen and unrecovered chlorine.
  • This gas containing oxygen can be used as a raw material gas in the (2) hydrogen chloride oxidation reaction step by reintroducing it into the step of (1) preheating the hydrogen chloride and oxygen-containing raw material gas in advance. it can.
  • the above-described catalyst for producing chlorine of the present invention containing the copper element (A), the alkali metal element (B) and the lanthanoid element (C) may be used.
  • spherical particles (P) that are inactive to the hydrogen chloride oxidation reaction can be used in the reactor in combination in order to improve fluidity.
  • the use ratio of the inert particles (P) at this time is not particularly limited, but is 1% by weight or more and 80% by weight or less, preferably 1% by weight or more with respect to the whole particles composed of the catalyst for chlorine production and the inert particles.
  • the inert particles (P) are as described above.
  • the catalyst in the fluidized bed reactor is withdrawn while the reaction proceeds, and the catalyst or inactive particles may be charged into the fluidized bed reactor. It can be arbitrarily implemented. That is, the copper element (A) concentration in the fluidized bed reactor can be easily controlled within a range that does not impair the object of the present invention. It is preferable to maintain 0.3 wt% or more and 4.5 wt% or less per wt%.
  • the catalyst for producing chlorine according to the present invention having high catalytic activity, long catalyst life, and excellent fluidity in the fluidized bed reactor is used.
  • chlorine can be produced stably, continuously and efficiently over a long period of time, and more economically.
  • the measurement sample was fixed on the sample stage with an adhesive tape and photographed using a scanning electron microscope (SEM).
  • the SEM image was taken into an image analyzer, the sphericity (circularity coefficient) of each particle was measured, and the average sphericity was calculated from the number of measured particles.
  • the measurement target was particles having an equivalent circle diameter of 30 ⁇ m or more, and the number of measured particles was 1000 or more.
  • the equipment and measurement conditions used in the measurement are as follows.
  • Pore volume Y (ml / g) was measured by the following method.
  • the terminal velocity u t g ( ⁇ s - ⁇ g) d p 2 / 18 ⁇
  • the gas density is assumed to be 20 ° C. air using the particle density ( ⁇ s ) and average particle diameter (d p ) obtained by the above measurement.
  • the terminal velocity was calculated with 1.2 kg / m 3 , gas viscosity of 0.018 mPa ⁇ s, and gravitational acceleration of 9.807 m / s 2 .
  • Example 1 As a carrier, spherical silica (Fuji Silysia Chemical Co., Ltd., Q-15, particle size distribution: 75 to 500 ⁇ m, physical properties from manufacturer analysis table are: average pore size: 15 nm, average particle size: 200 ⁇ m, bulk density: 0.4 g / Ml, pore volume: 1.2 ml / g. This silica is used as silica carrier 1) was calcined in air at 500 ° C. for 2 hours.
  • the concentration of copper element contained in the supported catalyst 1 is 2.5% by weight, the concentration of potassium element is 1.5% by weight, the concentration of neodymium element is 2.5% by weight, and the average sphericity is 0.918.
  • the average particle size was 213.4 ⁇ m, the particle density was 0.683 g / ml, and the terminal velocity calculated from the Stokes equation was 0.940 m / sec.
  • the supported catalyst obtained was measured and evaluated for hydrogen chloride conversion and fluidity by the methods described above. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 2 A supported catalyst 2 was obtained in the same manner as in Example 1 except that 3.26 g of samarium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 2 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.921.
  • the average particle size was 216.8 ⁇ m
  • the particle density was 0.661 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.939 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 3 A supported catalyst 3 was obtained in the same manner as in Example 1, except that 3.34 g of praseodymium chloride heptahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 3 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of praseodymium element is 2.5% by weight
  • the average sphericity is 0.921.
  • the average particle size was 215.6 ⁇ m
  • the particle density was 0.677 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.951 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 4 A supported catalyst 4 was obtained in the same manner as in Example 1 except that 3.27 g of europium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 4 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of europium element is 2.5% by weight
  • the average sphericity is 0.919.
  • the average particle size was 214.7 ⁇ m
  • the particle density was 0.671 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.934 m / sec.
  • the supported catalyst 4 obtained was measured and evaluated for hydrogen chloride conversion and fluidity by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 5 A supported catalyst 5 was obtained in the same manner as in Example 1 except that 3.32 g of gadolinium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 5 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of gadolinium element is 2.5% by weight
  • the average sphericity is 0.917.
  • the average particle size was 218.1 ⁇ m
  • the particle density was 0.679 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.976 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 6 A supported catalyst 6 was obtained in the same manner as in Example 1 except that 3.36 g of dysprosium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 6 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of dysprosium element is 2.5% by weight
  • the average sphericity is 0.918.
  • the average particle size was 216.2 ⁇ m
  • the particle density was 0.681 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.962 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 7 As spherical silica, instead of silica support 1, silica support 2 (Fuji Silysia Chemical Co., Ltd., Q-15, particle size distribution: 75 to 150 ⁇ m, physical properties from manufacturer analysis table are average pore size: 15 nm, average particle size Supported catalyst 7 was obtained in the same manner as in Example 1, except that 100 ⁇ m, bulk density: 0.4 g / ml, and pore volume: 1.2 ml / g were used. The concentration of copper element contained in the supported catalyst 7 is 2.5% by weight, the concentration of potassium element is 1.5% by weight, the concentration of neodymium element is 2.5% by weight, and the average sphericity is 0.923.
  • the average particle size was 108.9 ⁇ m, the particle density was 0.656 g / ml, and the terminal velocity calculated from the Stokes equation was 0.235 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 8 Example 1 except that the silica support 2 is used instead of the silica support 1 and samarium chloride hexahydrate 3.26 g is used instead of 3.20 g neodymium chloride hexahydrate as the spherical silica.
  • a supported catalyst 8 was obtained in the same manner as above.
  • the concentration of copper element contained in the supported catalyst 8 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.922.
  • the average particle size was 112.5 ⁇ m
  • the particle density was 0.644 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.246 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 9 As spherical silica, instead of silica carrier 1, silica carrier 3 (Fuji Silysia Co., Ltd., Q-6, particle size distribution: 75 to 150 ⁇ m, physical property values from manufacturer analysis table are average pore size: 6 nm, average particle size:
  • the supported catalyst 9 was obtained in the same manner as in Example 1 except that 100 ⁇ m, bulk density: 0.5 g / ml, and pore volume: 0.8 ml / g were used.
  • the concentration of copper element contained in the supported catalyst 9 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of neodymium element is 2.5% by weight
  • the average sphericity is 0.929.
  • the average particle size was 111.4 ⁇ m, the particle density was 0.886 g / ml, and the terminal velocity calculated from the Stokes equation was 0.332 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 10 Example 1 except that the silica support 3 is used in place of the silica support 1 as the spherical silica, and 3.26 g of samarium chloride hexahydrate is used instead of 3.20 g of neodymium chloride hexahydrate.
  • the supported catalyst 10 was obtained.
  • the concentration of the copper element contained in the supported catalyst 10 is 2.5% by weight
  • the concentration of the potassium element is 1.5% by weight
  • the concentration of the samarium element is 2.5% by weight
  • the average sphericity is 0.931.
  • the average particle size was 109.2 ⁇ m, the particle density was 0.879 g / ml, and the terminal velocity calculated from the Stokes equation was 0.317 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 11 The silica carrier 1 was calcined in air at 500 ° C. for 2 hours. In a glass flask (1 L), 150 g of water, 1.68 g of cupric chloride (Wako Pure Chemical, special grade), 1.86 g of neodymium chloride hexahydrate (Wako Pure Chemical, special grade), potassium chloride (Wako Pure Chemical, (Special grade) 0.90 g was added to form an aqueous solution, and 50.0 g of the baked silica carrier 1 was added thereto, and the mixture was evaporated to dryness at 80 ° C. using a rotary evaporator. This was calcined in air at 250 ° C. for 3 hours to obtain a supported catalyst 11.
  • the concentration of copper element contained in the supported catalyst 11 is 1.5% by weight, the concentration of potassium element is 0.9% by weight, the concentration of neodymium element is 1.5% by weight, and the average sphericity is 0.926.
  • the average particle size was 211.1 ⁇ m, the particle density was 0.640 g / ml, and the terminal velocity calculated from the Stokes equation was 0.862 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 12 A supported catalyst 12 was obtained in the same manner as in Example 11 except that 1.89 g of samarium chloride hexahydrate was used instead of 1.86 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 12 is 1.5% by weight
  • the concentration of potassium element is 0.9% by weight
  • the concentration of samarium element is 1.5% by weight
  • the average sphericity is 0.925.
  • the average particle size was 220.1 ⁇ m
  • the particle density was 0.636 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.931 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 13 In a glass flask (200 mL), 25 g of water, 2.89 g of cupric chloride (Wako Pure Chemical, special grade), neodymium chloride hexahydrate (Wako Pure Chemical, special grade) 3.20 g, potassium chloride (Wako Pure Chemical, Special grade) 1.53 g is added and stirred to make aqueous solution 1. Separately, 50.0 g of silica carrier 1 baked at 500 ° C. for 2 hours is added to a glass mixer (1 L), and the aqueous solution 1 is sprayed while being stirred. After the completion of spraying, a vacuum drying treatment was performed at 95 ° C. using a rotary evaporator to obtain a supported catalyst 13.
  • the concentration of copper element contained in the supported catalyst 13 is 2.5% by weight, the concentration of potassium element is 1.5% by weight, the concentration of neodymium element is 2.5% by weight, and the average sphericity is 0.919.
  • the average particle size was 217.7 ⁇ m, the particle density was 0.683 g / ml, and the terminal velocity calculated from the Stokes equation was 0.978 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 14 A supported catalyst 14 was obtained in the same manner as in Example 13 except that 3.26 g of samarium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 14 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.924.
  • the average particle size was 216.9 ⁇ m
  • the particle density was 0.661 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.940 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 15 A supported catalyst 15 was obtained in the same manner as in Example 1 except that sodium chloride was used instead of potassium chloride.
  • the concentration of copper element contained in the supported catalyst 15 is 2.5% by weight
  • the concentration of sodium element is 1.5% by weight
  • the concentration of neodymium element is 2.5% by weight
  • the average sphericity is 0.913.
  • the average particle size was 219.2 ⁇ m
  • the particle density was 0.666 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.967 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 16 In the same manner as in Example 1, except that sodium chloride was used instead of potassium chloride and 3.26 g of samarium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate, A supported catalyst 16 was obtained.
  • the concentration of copper element contained in the supported catalyst 16 is 2.5% by weight, the concentration of sodium element is 1.5% by weight, the concentration of samarium element is 2.5% by weight, and the average sphericity is 0.914.
  • the average particle size was 218.7 ⁇ m, the particle density was 0.672 g / ml, and the terminal velocity calculated from the Stokes equation was 0.971 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 17 The same method as in Example 1 was used, except that 1.63 g of samarium chloride hexahydrate and 1.67 g of praseodymium chloride heptahydrate were used instead of 3.20 g of neodymium chloride hexahydrate. Thus, a supported catalyst 17 was obtained.
  • the concentration of copper element contained in the supported catalyst 17 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 1.25% by weight
  • the concentration of praseodymium element is 1.25% by weight.
  • the average sphericity was 0.911, the average particle size was 216.2 ⁇ m, the particle density was 0.675 g / ml, and the terminal velocity calculated from the Stokes equation was 0.953 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 18 The same method as in Example 1 was used except that 1.63 g of samarium chloride hexahydrate and 1.67 g of lanthanum chloride heptahydrate were used instead of 3.20 g of neodymium chloride hexahydrate. Thus, a supported catalyst 18 was obtained.
  • the concentration of copper element contained in the supported catalyst 18 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 1.25% by weight
  • the concentration of lanthanum element is 1.25% by weight.
  • the average sphericity was 0.913, the average particle diameter was 218.5 ⁇ m, the particle density was 0.677 g / ml, and the terminal velocity calculated from the Stokes equation was 0.977 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 19 The catalyst described above except that the catalyst 2 used in Example 2 was used and the gas used was 90.0 Nml / min for hydrogen chloride, 45.0 Nml / min for oxygen, and 3.0 Nml / min for carbon monoxide. Evaluation was performed in the same manner as the reaction test method. The obtained hydrogen chloride conversion rate and fluidity were measured and evaluated by the above methods. The results are shown in Table 2.
  • Example 20 The catalyst described above except that the catalyst 2 used in Example 2 was used and the gas used was 90.0 Nml / min for hydrogen chloride, 45.0 Nml / min for oxygen, and 6.0 Nml / min for carbon monoxide. Evaluation was performed in the same manner as the reaction test method. The obtained hydrogen chloride conversion rate and fluidity were measured and evaluated by the above methods. The results are shown in Table 2.
  • Example 21 The silica carrier 1 was calcined in air at 500 ° C. for 2 hours. Add 150 g of water, 1.77 g of cupric chloride (Wako Pure Chemicals, special grade), 5.98 g of samarium chloride hexahydrate, 2.83 g of potassium chloride (Wako Pure Chemicals, special grade) to a glass flask (1 L). Then, 50.0 g of the baked silica carrier 1 was added thereto, and the mixture was evaporated to dryness at 80 ° C. using a rotary evaporator. This was calcined in air at 250 ° C. for 3 hours to obtain a supported catalyst 19.
  • the concentration of copper element contained in the supported catalyst 19 is 1.5% by weight, the concentration of potassium element is 2.7% by weight, the concentration of samarium element is 4.5% by weight, and the average sphericity is 0.915.
  • the average particle size was 213.4 ⁇ m, the particle density was 0.685 g / ml, and the terminal velocity calculated from the Stokes equation was 0.943 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • the silica carrier 1 was calcined in air at 500 ° C. for 2 hours.
  • a glass flask (1 L) 150 g of water and 6.20 g of cupric chloride (Wako Pure Chemical, special grade), neodymium chloride hexahydrate (Wako Pure Chemical, special grade) 6.86 g, potassium chloride (Wako Pure Chemical, (Special grade) 3.30 g was added to prepare an aqueous solution, and 50.0 g of the baked silica carrier 1 was added thereto, and then evaporated to dryness at 80 ° C. using a rotary evaporator. This was recovered by baking in air at 250 ° C. for 3 hours. The recovered weight was 63.63 g.
  • the recovered catalyst was physically mixed with the same amount of silica support 1 (63.63 g) as the recovered weight to obtain a supported catalyst 20.
  • the concentration of copper element contained in the supported catalyst 20 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of neodymium element is 2.5% by weight
  • the average sphericity is 0.923.
  • the average particle size was 213.8 ⁇ m
  • the particle density was 0.659 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.910 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • Example 23 A supported catalyst 21 was obtained in the same manner as in Example 22 except that 6.98 g of samarium chloride hexahydrate was used instead of 6.86 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 21 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.921.
  • the average particle size was 216.7 ⁇ m
  • the particle density was 0.662 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.939 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 2 together with the bond dissociation energy values of the lanthanoid elements in the supported catalyst with oxygen.
  • a supported catalyst 22 was obtained in the same manner as in Example 1 except that 3.31 g of lanthanum chloride heptahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 22 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of lanthanum element is 2.5% by weight
  • the average sphericity is 0.914.
  • the average particle size was 220.2 ⁇ m
  • the particle density was 0.678 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.994 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • a supported catalyst 23 was obtained in the same manner as in Example 11 except that 1.93 g of lanthanum chloride heptahydrate was used instead of 1.86 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 23 is 1.5% by weight
  • the concentration of potassium element is 0.9% by weight
  • the concentration of lanthanum element is 1.5% by weight
  • the average sphericity is 0.919.
  • the average particle size was 210.7 ⁇ m
  • the particle density was 0.643 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.862 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • a supported catalyst 24 was obtained in the same manner as in Example 1 except that 3.45 g of ytterbium chloride hexahydrate was used instead of 3.20 g of neodymium chloride hexahydrate.
  • the concentration of the copper element contained in the supported catalyst 24 is 2.5% by weight
  • the concentration of the potassium element is 1.5% by weight
  • the concentration of the ytterbium element is 2.5% by weight
  • the average sphericity is 0.912.
  • the average particle size was 217.2 ⁇ m
  • the particle density was 0.672 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.958 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • a supported catalyst 25 was obtained in the same manner as in Example 9, except that 2.01 g of ytterbium chloride hexahydrate was used instead of 1.86 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 25 is 1.5% by weight
  • the concentration of potassium element is 0.9% by weight
  • the concentration of ytterbium element is 1.5% by weight
  • the average sphericity is 0.917.
  • the average particle size was 209.9 ⁇ m
  • the particle density was 0.639 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.851 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • the silica carrier 1 was calcined in air at 500 ° C. for 2 hours.
  • a glass flask (1 L) 150 g of water and 6.20 g of cupric chloride (Wako Pure Chemical, special grade), neodymium chloride hexahydrate (Wako Pure Chemical, special grade) 6.86 g, potassium chloride (Wako Pure Chemical, (Special grade) 3.30 g was added to prepare an aqueous solution, and 50.0 g of the baked silica carrier 1 was added thereto, and then evaporated to dryness at 80 ° C. using a rotary evaporator. This was calcined in air at 250 ° C. for 3 hours to obtain a supported catalyst 26.
  • the concentration of copper element contained in the supported catalyst 26 is 5.0% by weight, the concentration of potassium element is 3.0% by weight, the concentration of neodymium element is 5.0% by weight, and the average sphericity is 0.915.
  • the average particle size was 221.3 ⁇ m, the particle density was 0.741 g / ml, and the terminal velocity calculated from the Stokes equation was 1.097 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • a supported catalyst 27 was obtained in the same manner as in Comparative Example 5, except that 6.98 g of samarium chloride hexahydrate was used instead of 6.86 g of neodymium chloride hexahydrate.
  • the concentration of copper element contained in the supported catalyst 27 is 5.0% by weight
  • the concentration of potassium element is 3.0% by weight
  • the concentration of samarium element is 5.0% by weight
  • the average sphericity is 0.911.
  • the average particle size was 219.2 ⁇ m
  • the particle density was 0.746 g / ml
  • the terminal velocity calculated from the Stokes equation was 1.083 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • silica carrier 4 (Fuji Silysia Chemical Co., Ltd., G-10, particle size distribution: 75 to 500 ⁇ m, physical property values from manufacturer analysis table are average pore diameter: 10 nm, pore volume:
  • a supported catalyst 28 was obtained in the same manner as in Example 1 except that 1.3 ml / g) was used.
  • the concentration of copper element contained in the supported catalyst 28 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • concentration of neodymium element is 2.5% by weight
  • the average sphericity is 0.760.
  • the average particle size was 303.2 ⁇ m, the particle density was 0.550 g / ml, and the terminal velocity calculated from the Stokes equation was 1.527 m / sec.
  • Example 1 except that silica support 4 is used instead of silica support 1 and samarium chloride hexahydrate 3.26 g is used instead of 3.20 g neodymium chloride hexahydrate as the support.
  • supported catalyst 29 was obtained.
  • the concentration of copper element contained in the supported catalyst 29 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.757.
  • the average particle size was 302.1 ⁇ m
  • the particle density was 0.545 g / ml
  • the terminal velocity calculated from the Stokes equation was 1.502 m / sec.
  • silica carrier 5 (Fuji Silysia Chemical Co., Ltd., G-10, particle size distribution: 75 to 150 ⁇ m, physical property values from manufacturer analysis table are average pore diameter: 10 nm, pore volume:
  • a supported catalyst 30 was obtained in the same manner as in Example 1 except that 1.3 ml / g) was used.
  • the concentration of copper element contained in the supported catalyst 30 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • concentration of neodymium element is 2.5% by weight
  • the average sphericity is 0.729.
  • the average particle size was 202.3 ⁇ m, the particle density was 0.523 g / ml, and the terminal velocity calculated from the Stokes equation was 0.646 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • Example 10 Example 1 except that silica support 5 is used instead of silica support 1 and 3.26 g of samarium chloride hexahydrate is used instead of 3.20 g of neodymium chloride hexahydrate as the support.
  • a supported catalyst 31 was obtained in the same manner as described above.
  • the concentration of copper element contained in the supported catalyst 31 is 2.5% by weight
  • the concentration of potassium element is 1.5% by weight
  • the concentration of samarium element is 2.5% by weight
  • the average sphericity is 0.732%.
  • the average particle size was 199.8 ⁇ m
  • the particle density was 0.517 g / ml
  • the terminal velocity calculated from the Stokes equation was 0.623 m / sec.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • the obtained supported catalyst 32 had an average sphericity of 0.863, a particle density of 1.683 g / ml, an average particle diameter of 78.2 ⁇ m, and an end velocity calculated from the Stokes equation of 0.311 m / sec. It was.
  • the hydrogen chloride conversion rate and fluidity of the obtained supported catalyst were measured and evaluated by the above methods. The results are shown in Table 3 together with the bond dissociation energy value of the lanthanoid element in the supported catalyst with oxygen.
  • each of the obtained supported catalysts maintained an average pore diameter and pore volume of 90% or more of the carrier used.
  • the catalyst activity is high, the catalyst life is long, stable supply is possible at low cost, and it is suitable for the reaction in a fluidized bed reactor capable of maintaining high fluidity over a long period without causing sticking.
  • a catalyst for producing chlorine can be provided. Further, according to the method for producing chlorine using the fluidized bed reactor of the present invention, chlorine can be produced stably, continuously and efficiently over a long period of time, and more economically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、塩化水素を酸素により酸化して塩素を生成する反応において、反応活性に優れ、安価で安定供給が可能であり、流動層反応器での使用に好適な塩素製造用触媒を提供すること、および該触媒を用いた塩素製造方法の提供を課題としている。本発明の塩素製造用触媒は、(A)銅元素、(B)アルカリ金属元素および(C)ランタノイド元素を含み、かつ、平均真球度が0.80以上の球状粒子からなり、ランタノイド元素(C)が、298Kにおける酸素との結合解離エネルギーが100~185kcal/molをみたすものであり、触媒中の銅元素(A)含有量が0.3重量%以上、4.5重量%以下であることを特徴とする。

Description

塩素製造用触媒および該触媒を用いた塩素の製造方法
 本発明は、塩化水素から塩素を製造する触媒に関し、特に流動層反応器での使用に好適な塩素製造触媒、およびそれを用いた塩素の製造方法に関する。
 塩素は塩化ビニル、ホスゲン等の原料として有用である。塩素を製造する方法としては、食塩の電気分解法、あるいは塩化水素の触媒的酸化等が広く知られている。
 食塩の電気分解法は、多くの電力を用いるため、エネルギー的に不利であり、また苛性ソーダを副生するため、塩素と苛性ソーダの需給バランスが常に問題となる。
 一方、塩化水素の触媒的酸化による製造は、塩化ビニルモノマーやイソシアネート類を製造する際に副生する塩化水素の回収法の1つとして考案された。副生する塩化水素を原料とする為、環境負荷の観点から非常に有効なプロセスである。
 塩化水素の触媒的酸化による、塩化水素からの塩素の製造においては、電気分解法、気相接触酸化法、非接触酸化法の3種がある。電気分解法は塩化水素の電気分解により、塩素と水素を得る方法であり、1960年代にウーデ(UHDE)社により提案された。その後、様々な改良がなされているが、多量の電力を消費する点に課題が残る。気相接触酸化法はDeaconプロセスとも呼ばれ、塩化水素と酸素から、塩素を得る方法として1860年代に提案された。この反応は発熱を伴う平衡反応であり、反応温度が低いほど反応が優位に進行する。この反応に用いられる触媒としては、例えば、銅を主成分とする触媒、クロムを主成分とする触媒、ルテニウムを主成分とする触媒等が知られている。
 銅を主成分とする触媒としては、例えば、比表面積200m2/g以上および平均細孔直径60Å以上のシリカゲル担体に塩化銅、アルカリ金属塩化物、塩化ジジミウム等のランタノイド類を担持した触媒(特許文献1)、比表面積が410m2/g、細孔容積が0.72ml/gのシリカゲルに銅、カリウム、ジジミウムを含浸し調製した触媒(特許文献2)などが知られている。これらの触媒は安価な成分で構成されているが、反応活性が低く、充分な活性を得る為には高温を要する。Deaconプロセスは発熱を伴う平衡反応である為、高温ほど、塩化水素の平衡転化率が低くなってしまうという問題点がある。また、ジジミウムは、様々な希土類元素を含む混合物であるが、混合物であるが故に、その採掘場所や時期によって、組成が一定ではなく、ジジミウムを用いた触媒では活性が一定ではなく、安定した使用には不利である。
 クロムを主成分とする触媒としては、例えば、酸化珪素にクロミアを担持した触媒等が知られている(特許文献3、4)。この触媒も反応活性が低いため、銅を主成分とする触媒と同様に、充分な平衡転化率を得難いという問題点がある。同時に、安全衛生上、問題があるクロムを主成分としており、環境負荷の観点からも問題が大きいと言える。
 ルテニウムを主成分とする触媒としては、例えば、担持金属ルテニウム触媒、酸化ルテニウム触媒、ルテニウム複合酸化物触媒等が知られている(特許文献5、6)。これらの触媒は低温下においても充分な活性を有するが、主成分であるルテニウムが高価であるため、廃触媒からのルテニウムを回収、再利用する必要性がある。また、ルテニウムは希少金属であるため、需要増による価格高騰の影響を受けやすく、安定供給、コスト面から問題があると言える。
 流動層プロセスは、固体粒子を流体により浮遊化させて反応、熱処理などの操作を行うプロセスであり、19世紀後半から広く知られるようになった。塩化水素の触媒を用いた酸化反応においても、クロムを主成分とした触媒を用いて行う流動層プロセスが実用化されている。流動層プロセスにおいては、反応時に固体粒子が良好な流動性を維持することが求められ、粒子物性、装置構造、操作条件に関して、さまざまな検討がなされている。また、固体粒子が良好な流動性を維持するためには、反応時に触媒形状が維持されることが必要である。反応中に触媒が磨耗、破砕等により著しく形状が変化すると、触媒成分の飛散を招くこととなり、反応活性の低下の要因となる。しかしながら、各因子が流動性に与える影響については未知の領域が多く、充分な検討がなされているとは言い難い。
 このような状況において、本願出願人は、特定の粒径および比表面積を有する触媒が、活性の経時変化が少なく、流動層で用いた場合にも固着が少ないことを見出して、これをすでに提案している(特許文献7、8)。
 しかしながら、工業的な塩素の製造においては、さらに塩素への転化率が高く、触媒寿命に優れ、流動層で用いる場合の流動性にも優れた塩素製造用触媒の出現が望まれていた。
米国特許3260678号公報 米国特許3483136号公報 特開昭61-275104号公報 特許第2513756号公報 特許第3284879号公報 特許第3543550号公報 特許第3270670号公報 特許第3852983号公報
 本発明は、塩化水素を酸素により酸化して塩素を生成する反応において、反応活性に優れ、触媒寿命が長く、安価で安定供給が可能であって、固着を生じず高い流動性を長期にわたって維持し得る、流動層反応器で使用するに好適な塩素製造用触媒を提供すること、ならびに該触媒を用いた塩素製造方法を提供することを課題としている。さらに、本発明は、塩化水素を酸素により酸化して塩素を生成する反応において、反応時に粒子形状が変化せず、良好な反応収率を長期にわたって維持可能な塩素製造用触媒の提供を課題としている。
 本発明の塩素製造用触媒は、流動層反応器内で、塩化水素を酸素により酸化して塩素を製造するための触媒であり、(A)銅元素、(B)アルカリ金属元素、および(C)ランタノイド元素を含み、かつ、平均真球度が0.80以上の球状粒子からなり、ランタノイド元素(C)が、298Kにおける酸素との結合解離エネルギーが100~185kcal/molをみたすものであって、触媒中の銅元素(A)含有量が0.3重量%以上、4.5重量%以下であることを特徴としている。
 本発明の塩素製造用触媒は、銅元素(A)とアルカリ金属元素(B)との重量比が1:0.2~1:4.0の範囲であり、かつ、銅元素(A)とランタノイド元素(C)との重量比が1:0.2~1:6.0の範囲であることが好ましい。
 また、銅元素(A)とアルカリ金属元素(B)との重量比が1:0.2~1:2.0の範囲であり、かつ、銅元素(A)とランタノイド元素(C)との重量比が1:0.2~1:3.0の範囲であることも好ましい。
 前記ランタノイド元素(C)が、プラセオジム、ネオジム、サマリウム、ユウロピウムよりなる群から選ばれる少なくとも1種であることが好ましい。
 前記アルカリ金属(B)が、ナトリウムおよびカリウムよりなる群から選ばれる少なくとも1種を含むことが好ましい。
 前記平均真球度が、0.90以上1.00以下の球状粒子からなることが好ましい。
 本発明の塩素製造用触媒は、ストークスの式から算出される空気中の終末速度が0.10m/秒以上、2.0m/秒以下であり、かつ、粒子密度が0.4g/ml以上、1.2g/ml以下であることが好ましい。
 本発明の塩素製造用触媒は、銅元素、アルカリ金属元素および希土類金属元素を含有する成分が、担体に担持されてなることが好ましい。
 本発明の塩素の製造方法は、上記本発明の塩素製造用触媒の存在下で、流動層反応器内で、塩化水素を酸素により酸化することを特徴としている。
 本発明の流動層反応器は、本発明の塩素製造用触媒を含むことを特徴とする。
 本発明によれば、塩化水素を酸素により酸化して塩素を生成する反応において、反応活性に優れ、触媒寿命が長く、安価で安定供給が可能であり、流動安定性に優れ、すなわち、固着を生じず高い流動性を長期にわたって維持し得る、流動層反応器での使用に好適な塩素製造用触媒を提供することができる。さらに、本発明によれば、流動層反応器で使用する場合に触媒粒子の流動性がよく、軽量で取り扱いが容易であり、安価であり、安定して長期間使用し得る塩素製造用触媒を提供することができる。また本発明によれば、該触媒を用いた連続的かつ効率的、そして経済的に塩素を製造できる方法を提供し得る。
図1に、実施例および比較例において、触媒活性評価に用いたガラス製反応管の概略図を示す。
 以下、本発明について具体的に説明する。
 <塩素製造用触媒>
 本発明の塩素製造用触媒は、塩化水素を酸素により酸化して塩素を製造するための触媒であって、銅元素(A)、アルカリ金属元素(B)および特定のランタノイド元素(C)を含有する球状粒子からなり、該球状粒子の平均真球度が0.80以上である。
 すなわち、本発明の塩素製造用触媒は、銅元素(A)、アルカリ金属元素(B)および特定のランタノイド元素(C)を活性成分として含有する。
 本発明の塩素製造用触媒中において、銅元素(A)は、原子価が1価、2価いずれの状態で含まれていてもよい。銅元素の含有量は、触媒100重量%あたり、0.3重量%以上、4.5重量%以下であり、好ましくは0.5重量%以上、3.5重量%以下、より好ましくは0.5重量%以上、3.0重量%以下である。銅含有量が4.5重量%より大きいと、触媒間の流動性が悪化するため好ましくない。一方、銅含有量が0.3重量%未満であると、充分な塩素収率が得られないため好ましくない。
 本発明の塩素製造用触媒に含まれるアルカリ金属元素(B)としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられる。これらのアルカリ金属元素(B)は、触媒中に単独で含まれても、2種以上組み合わせて含まれてもよい。このうち、ナトリウムおよび/またはカリウムが好ましく、カリウムがより好ましい。アルカリ金属元素(B)の含有量は、特に限定されないが、塩素製造用触媒100重量%あたり、0.1重量%以上、5.0重量%以下が好ましく、0.2重量%以上、4.0重量%以下がより好ましく、0.3重量%以上、3.0重量%以下がさらに好ましい。
 本発明の塩素製造用触媒に含まれるランタノイド元素(C)としては、原子番号57~71のいわゆるランタノイド元素のうち、298Kにおける酸素との結合解離エネルギーが100~185kcal/molの範囲にあるランタノイド元素が挙げられる。ここで、ランタノイドと酸素との298Kにおける結合解離エネルギーは、次の表1に示すとおりであり、本発明の塩素製造用触媒に含まれるランタノイド元素(C)としては、具体的には、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびルテチウム(Lu)よりなる群から選ばれる1種以上のランタノイド元素が挙げられる。
Figure JPOXMLDOC01-appb-T000001
 なお、上記表1に記載の298KでのLn-O(ランタノイド-酸素)結合解離エネルギーD298の値は、有機金属反応剤ハンドブック(玉尾皓平編著、化学同人、発行年月:2003年6月)223頁表2に記載の値である。
 本発明において、ランタノイド元素(C)の結合解離エネルギーが185kcal/molを超えると、酸素との結合が強くなりすぎ、また100kcal/mol未満であれば、酸素との親和性が低くなりすぎるため、反応活性(塩化水素転化率)を十分に向上させることができない場合がある。
 これらのランタノイド元素(C)のうちでは、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、ジスプロシウムが好ましく、プラセオジム、ネオジム、サマリウム、ユウロピウムが塩素化水素から塩素への転化率、及び流動安定性のバランスの観点からより好ましい。これらのランタノイド元素(C)は、単独で使用しても、2種以上で使用しても構わない。
 ランタノイド元素(C)の含有量は、特に限定されないが、塩素製造用触媒100重量%あたり、0.3重量%以上、10.0重量%以下が好ましく、0.5重量%以上、7.0重量%以下がより好ましく、0.5重量%以上、5.0重量%以下がさらに好ましい。
 本発明の塩素製造用触媒は、銅元素(A)、アルカリ金属元素(B)、およびランタノイド元素(C)を含み、それらの重量比は特に限定されないが、銅元素(A)とアルカリ金属元素(B)との重量比が1:0.2~1:4.0の範囲であり、かつ、銅元素(A)とランタノイド元素(C)との重量比が1:0.2~1:6.0の範囲であることが好ましい。また、銅元素(A)とアルカリ金属元素(B)の重量比は、1:0.2~1:2.0の範囲であり、銅元素(A)とランタノイド元素(C)との重量比が、1:0.2~1:3.0であることがより好ましく、銅元素(A)とアルカリ金属元素(B)との重量比は、1:0.3~1:1.5であり、銅元素(A)とランタノイド元素(C)との重量比が、1:0.3~1:2.5であることがさらに好ましく、銅元素(A)とアルカリ金属元素(B)との重量比は、1:0.4~1:1.0であり、銅元素(A)とランタノイド元素(C)との重量比が、1:0.4~1:2.0であることが最も好ましい。上記範囲では活性成分である各元素が複合化しやすく、長寿命が得られ、塩素製造用触媒が活性に優れたものとなるため、好ましい。
 本発明の塩素製造用触媒は、球状粒子からなり、活性成分である銅元素(A)、アルカリ金属元素(B)、およびランタノイド元素(C)が、通常、多孔質の球状粒子担体に担持されている。本発明の塩素製造用触媒を構成する担体は、活性成分を分散、担持でき、かつ、塩酸、塩素に対して分解しない耐腐食性を有するものである。
 担体としては、平均粒子径が10μm以上、1000μm未満、好ましくは30μm以上、600μm未満、より好ましくは50μm以上、300μm未満であることが望ましい。
 また、担体の細孔直径の平均値(以下、平均細孔径と記載)は3nm以上、50nm以下であることが好ましく、6nm以上、30nm以下であることがより好ましい。平均細孔径が3nm未満であると、細孔内に銅をはじめとする金属成分を導入しがたく、表面での凝集、細孔の閉塞などを招くこととなり好ましくない。一方、平均細孔径が50nmより大きいと、担体の表面積の低下を招くこととなり、反応効率が低下してしまうので好ましくない。
 また、担体の比表面積は30m2/g以上、1000m2/g以下であることが好ましく、50m2/g以上、500m2/g以下であることがより好ましく、100m2/g以上、300m2/g以下であることがさらに好ましい。比表面積が30m2/g未満であると反応点の減少を招くこととなり好ましくない。1000m2/gより大きいと、担体の製造に特殊な手法が必要となり、製造コストの観点から好ましくない。尚、本発明における比表面積は、BET法比表面積測定装置(BELSORP-max 日本ベル株式会社製)を用いて測定した。
 また、担体の嵩密度は0.20g/ml以上、1.00g/ml以下であることが好ましく、0.30g/ml以上、0.80g/ml以下であることがより好ましい。
 さらに、担体の細孔容積は0.5ml/g以上、3.0ml/g以下であることが好ましく、0.5ml/g以上、2.0ml/g以下であることがより好ましい。0.5ml/g未満であると、細孔内の空間が充分でなく、反応効率の低下を招く場合があり好ましくない。一方、3.0ml/gよりも大きいと、担体としての強度が低下し、反応中に触媒自身が破壊されてしまう場合があるため好ましくない。
 担体の素材としては、シリカ、シリカアルミナ、アルミナ、チタニア、ジルコニア、などが挙げられるが、なかでも高強度であるため、触媒が長寿命になる点でシリカが好ましい。シリカ担体は通常の市販のシリカゲル、ヒュームドシリカ等、いずれも用いることができる。本発明の塩素製造用触媒中の担体の含有量は、触媒100重量%あたり、通常98~65重量%、好ましくは97~69重量%、より好ましくは94~72重量%である。上記範囲では、塩素製造用触媒の活性と強度とを両立することができるため好ましい。
 本発明の塩素製造用触媒は、真球に近い形状である場合には触媒の耐摩耗性、耐久性に優れるとともに、流動性も良いため、真球度の平均値が0.80以上、好ましくは0.90以上の球状粒子形状を有する。0.80未満であると、摩擦による粒子の磨耗、粉化が無視できなくなり、反応中の流動性が悪化する。良好な流動性が確保できなければ、反応効率が低下し、結果として生産性の低下につながる。なお、真球度の平均値の上限は、1であり、1のとき、真球を示す。
 球状粒子の真球度の平均値は、走査電子顕微鏡(SEM)などの顕微鏡写真の画像から求められる円形度係数(各球状粒子の真球度)の平均値により表わされる値である。平均値を求めるために測定する粒子数は、1000以上であるのが望ましい。
 真球度は、各粒子画像の周囲長と面積とから、
  4×π×面積/(周囲長×周囲長)
で求められる値であって、粒子画像が真円に近いほど1に近い値となる。
 具体的には、球状粒子の平均真球度は、後述する実施例及び比較例においては以下の手順により測定して求めた。
 1.測定サンプルを試料台の上に粘着テープで固定し、走査電子顕微鏡(SEM)を用いて撮影する。
 2.SEM像を画像解析装置に取り込み、各粒子の真球度(円形度係数)を計測し、測定粒子数から平均真球度を算出する。測定対象は円相当径が30μm以上の粒子とし、測定粒子数は前述のように1000以上が望ましい。
 なお、本発明の測定において使用した装置は以下のとおりである。
 ・走査電子顕微鏡(SEM):(株)日立ハイテクノロジーズ社製S-4800
   加速電圧:30kV、エミッション電流:20μA、倍率:30倍
 ・画像解析装置:ライカマイクロシステムズ(株)社製ライカ Q-win
 本発明の塩素製造用触媒の、球状粒子形状の形成方法は特に限定されるものではなく、球状粒子状の担体に活性成分を担持することで形成してもよく、活性成分を担持した担体を研磨することにより形成してもよいが、触媒粒子の形状は通常、担体の形状に直接依存するため、本発明の塩素製造用触媒を構成する担体としては、球状粒子形状を有する担体を用いるのが好ましく、真球度の平均値が0.80以上、好ましくは0.90以上の球状粒子形状を有するものを用いることがさらに望ましい。なお、上限値は、1である。
 触媒の粒子形状が球形でない場合や、真球度の低い形状である場合には、摩擦による粒子の磨耗、粉化が無視できなくなり、反応中の流動性が低下することがある。そして良好な流動性が確保できなければ、反応効率が低下し、結果として生産性の低下につながる場合がある。
 また本発明の塩素製造用触媒は、上記活性成分および担体以外の成分(その他の成分)を含んでいてもよい。その成分としては、パラジウム元素、イリジウム元素、クロム元素、バナジウム元素、ニオブ元素、鉄元素、ニッケル元素、アルミニウム元素、モリブデン元素、タングステン元素、アルカリ土類金属元素などがあげられる。これら他の成分が含まれる場合には、担体100重量部あたり、通常0.001~10重量部、好ましくは0.01~10重量部の範囲で含まれる。
 また、本発明の塩素製造用触媒では、本発明の目的を損なわない範囲において、ランタン、セリウム、イッテルビウム、スカンジウム、イットリウムなどのその他の希土類元素を1種または2種以上含んでいてもよい。なお、これらの元素は、本発明の目的を損なわない範囲で適宜使用できるが、好ましくは、塩素製造用触媒100重量%あたり、0.001重量%以上、10重量%以下である。また、本発明に係るランタノイド元素(C)と、その他の希土類元素との重量比は、特に限定されないが、好ましくは1:0~1:9.0の範囲であり、より好ましくは1:0~1:4.0の範囲である。
 本発明の塩素製造用触媒は、特に限定されるものではないが、たとえば、平均粒子径が10μm以上、1000μm未満、好ましくは30μm以上、600μm未満、より好ましくは50μm以上、300μm未満であることが望ましい。
 本発明の塩素製造用触媒は、特に限定されるものではないが、たとえば、平均細孔径が3nm以上、50nm以下であることが好ましく、6nm以上、30nm以下であることがより好ましい。平均細孔径が3nm未満であると、細孔内に銅をはじめとする金属成分を導入しがたく、表面での凝集、細孔の閉塞などを招くこととなり好ましくない。一方、平均細孔径が50nmより大きいと、触媒の表面積の低下を招くこととなり、反応効率が低下してしまうおそれがあり好ましくない。
 本発明の塩素製造用触媒は、特に限定されるものではないが、たとえば、比表面積は30m2/g以上、1000m2/g以下であることが好ましく、50m2/g以上、500m2/g以下であることがより好ましく、100m2/g以上、300m2/g以下であることがさらに好ましい。尚、本発明における比表面積は、BET法比表面積測定装置(BELSORP-max 日本ベル株式会社製)を用いて測定した。
 また本発明の塩素製造用触媒は、特に限定されるものではないが、嵩密度が0.20g/ml以上、1.00g/ml以下であることが好ましく、0.30g/ml以上、0.80g/ml以下であることがより好ましい。
 また本発明の塩素製造用触媒は、特に限定されるものではないが、細孔容積が0.3ml/g以上、3.0ml/g以下であることが好ましく、0.5ml/g以上、2.0ml/g以下であることがより好ましく、0.6ml/g以上、1.5ml/g以下であることがさらに好ましい。0.3ml/g未満であると、細孔内の空間が不足し基質の拡散が不充分となる、比表面積が低下し反応効率が低下する、等を招く場合があり好ましくない。一方、3.0ml/gよりも大きいと、触媒としての強度が低下し、反応中に触媒自身が破壊されてしまう場合があるため好ましくない。
 また本発明の塩素製造用触媒は、特に限定されるものではないが、粒子密度が0.4g/ml以上、1.2g/ml以下であることが好ましく、0.6g/ml以上、1.0g/ml以下であることがより好ましい。粒子密度がこのような範囲を満たす場合は、触媒が軽量となり、取り扱いが容易かつ安価であり、安定して長期間使用し得る触媒を提供可能となり好ましい。
 なお本発明において、粒子密度:Z(g/ml)は、粒子の真密度:X(g/ml)と、細孔容積:Y(ml/g)とから、次式により算出される値である。
   Z=1/(1/X+Y)
 さらに本発明の塩素製造用触媒は、ストークスの式から算出される空気中の終末速度が、好ましくは0.05m/秒以上、2.0m/秒以下であり、より好ましくは0.10m/秒以上、1.5m/秒以下、さらに好ましくは0.15m/秒以上、1.0m/秒以下であることが望ましい。ストークスの式から算出される終末速度が、このような範囲を満たす場合には、流動層反応器内で触媒を反応に用いた際に、より良好な流動性を示すため好ましい。
 ここで、触媒の終末速度とは、ストークスの式から算出される空気中の終末速度であって、その値は次式により求められる(触媒講座第6巻「触媒反応装置とその設計」149頁(3.116)式(触媒学会編著、講談社)参照)。
  終末速度ut=g(ρs-ρg)dp 2/18μ
 (式中、g:重力加速度、ρs:粒子密度、ρg:気体の密度、dp:平均粒子径、μ:気体の粘度をそれぞれ表わす。)
 本発明の塩素製造用触媒を製造するための方法としては特に限定されないが、例えば次のような方法で製造することができる。
 本発明の塩素製造用触媒を製造する方法としては、銅化合物とアルカリ金属化合物とランタノイド化合物とを球状粒子担体に分散する工程と、銅化合物とアルカリ金属化合物とランタノイド化合物とが分散された担体を、乾燥あるいは焼成する工程とを有する方法が挙げられる。
 上記触媒を製造する方法では、触媒を解砕する工程、あるいは触媒を特定の粒径に分級する工程を、必要に応じて有しても良い。
 このような塩素製造用触媒の製造において、活性成分である銅元素(A)、アルカリ金属元素(B)、および特定のランタノイド元素(C)は、それぞれ銅化合物とアルカリ金属化合物、およびランタノイド化合物として担体に分散される。担体としては、前述したものを用いることが好適であり、たとえば真球度の平均値が0.80以上、好ましくは0.90以上などの、球状粒子形状を有する担体を用いることが、触媒が長寿命を得られる点で望ましい。
 活性成分を前記担体に分散して担持させる方法については特に限定されず、真空チャンバー内での上記元素の蒸着、気相担持、液相担持(液相調製法)のいずれの方法も使用できるが、操作性や、均一分散性を考慮すると、液相担持が望ましい。液相担持の場合、各活性成分を含む化合物を溶媒に添加し、原料溶液や原料が溶媒中に分散した原料分散液とした後に、触媒担体に吹き付けてもよいし、あるいは、触媒担体を、前記原料溶液や原料分散液中に浸した後、そのまま、原料溶液や原料分散液を攪拌しながら蒸発乾固を行ってもよく、また、触媒担体を、活性成分を含有する前記原料溶液や原料分散液中に浸した後、触媒担体をこの原料溶液や原料分散液中から引き上げ、乾燥する方法を採用することもできる。
 触媒担体を、活性成分を含有する原料溶液や原料分散液中に浸して分散担持する場合は、担持量が少ない場合には、再度触媒担体を原料溶液や原料分散液中に浸すことにより、活性成分の含有率を上げることができる。前記原料溶液や原料分散液中の活性成分は、担体の細孔内へ入る大きさであれば、溶媒中に溶解していない、固体状態のままでも構わないが、活性成分を均一に細孔内へ分散させるためには、各活性成分が溶媒中に溶解した状態すなわち原料溶液であることが好ましい。
 原料溶液や原料が溶媒中に分散した原料分散液を、触媒担体に吹き付ける場合には、原料分散液の容量が触媒担体の細孔容積以下であることが望ましい。原料分散液容量が触媒担体の細孔容積よりも大きいと、原料分散液が、触媒担体の細孔内に充填しきれず、触媒担体の表面に存在することとなり、好ましくない。
 これら液相で担持する場合の各活性成分の溶媒としては、活性成分を含む化合物を溶解または分散できるものであれば特に限定されないが、取り扱いの容易さから水が好ましい。活性成分を溶媒に溶解、分散するときの濃度は、活性成分の化合物が均一に溶解または分散できれば、特に制限されないが、濃度が低すぎると、担持に時間がかかるため、活性成分および溶媒の合計100重量%当たりの活性成分量は、好ましくは1~50重量%、更に好ましくは2~40重量%である。
 本発明の塩素製造用触媒を製造する際には、前記分散後の触媒に細孔容積以上の量の溶媒が残存する場合には、前記分散後、反応器への充填前に溶媒除去が必要となるが、細孔容積以下の溶媒量であれば、そのままの状態で反応に用いても、溶媒除去を行ってもよい。溶媒を除去する場合には、乾燥だけでも良いが、更に焼成を行ってもよい。乾燥条件としては、特に限定はないが、通常は大気中または減圧下、0~200℃、10min~24hrの条件で実施される。また、焼成条件としては、特に限定はしないが、通常は大気中下、200℃~600℃、10min~24hrの条件で実施することができる。
 担体に分散される銅化合物、アルカリ金属化合物、およびランタノイド化合物は、どのような化合物でもよいが、通常はそれぞれ独立にハロゲン化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、シュウ酸塩、アルコキシドまたは錯塩である。中でも塩化物、硝酸塩または酢酸塩であることが複合塩を形成しやすいという点で好ましい。
 銅化合物、アルカリ金属化合物、ランタノイド化合物および担体の使用量としてはその担持方法によっても異なるが、得られる触媒に含まれる銅元素(A)、アルカリ金属元素(B)、およびランタノイド元素(C)が前述の範囲内になる量を用いることが好ましい。
 上記製造方法によって得られる触媒の形状は、通常担体の形状に依存するが、活性成分を担体に担持し、必要に応じて乾燥、焼成を行った後に、解砕、研磨、凝集粒子の再分散などで粒子形状が球状となるよう調製してもよい。
 また担体として、シリカ担体を用いる場合には、市販されているものをそのまま使用することもできるが、活性成分の担持前に、30~700℃の温度で乾燥または焼成して使用することもできる。
 さらに上記銅化合物とアルカリ金属化合物、およびランタノイド化合物に、本発明に係るランタノイド化合物以外の希土類化合物、パラジウム化合物、イリジウム化合物、クロム化合物、バナジウム化合物、ニオブ化合物、鉄化合物、ニッケル化合物、アルミニウム化合物、モリブデン化合物、タングステン化合物、アルカリ土類金属化合物などその他の化合物を担体に分散させる場合にも、その添加方法は特に限定されず、銅化合物とアルカリ金属化合物、およびランタノイド化合物と一緒に溶液にして担体に分散しても良いし、別途、先に担体に分散しても、あるいは後から担体に分散しても良い。このようにして活性成分、活性成分および担体以外の成分を含んでいる触媒を得ることができる。本発明の触媒にこれら他の成分が含まれる場合には、これら他の成分の合計量は、担体100重量部あたり、金属元素換算で通常0.001~10重量部、好ましくは0.01~10重量部の範囲である。
 本発明の塩素製造用触媒は、通常球状粒子の集合体からなるものであって、個々の粒子がほぼ均一な組成であってもよく、全体として上記の特定性状を満たすものであればよい。本発明の塩素製造用触媒は、同じ組成の球状粒子のみの集合体であることが好ましいが、異なる組成の球状粒子の混合体であって、全体として上記特定性状を満たすものであってもよい。異なる組成の球状粒子の混合体である本発明の塩素製造用触媒としては、たとえば、銅元素(A)、アルカリ金属元素(B)および特定のランタノイド元素(C)を含有する球状粒子と、塩化水素酸化反応に対して反応不活性な球状粒子(P)(不活性粒子(P)とも称す)との混合体であるなど、組成や物性の異なる球状粒子の集合体が、全体として本発明で定義する塩素製造用触媒の特性を満たすものであればよい。本発明において、このような不活性粒子(P)を用いると、高い流動性をより長期に渡り維持でき、より安定して塩素の供給をし得る。本発明の塩素製造用触媒が、反応に不活性な球状粒子(P)を含む場合、該不活性な球状粒子の素材としては、反応物(塩化水素、酸素)および生成物(塩素、水)に対して反応性を有しない限り、特に限定されるものではないが、たとえば、シリカ、シリカアルミナ、アルミナ、チタニア、ジルコニア、ガラスなどが挙げられるが、なかでもシリカ、アルミナが好ましく、特にシリカが好ましい。また、不活性粒子(P)として、触媒が担持される前の担体を用いてもよい。不活性粒子(P)の形状は、流動層触媒として一般に用いられる粒子状、顆粒状、あるいは球状等いずれの形状でも構わないが、反応時の磨耗を抑えるためには、球状であることが好ましく、真球度の平均値が0.80以上の球状粒子であることがより好ましい。
 本発明において、銅元素(A)の含有量は、触媒100重量%あたり、0.3重量%以上、4.5重量%以下であるが、例えば、銅元素(A)の含有量が上記範囲を外れる球状粒子を用いる場合でも、触媒に、不活性粒子(P)を混合することで、結果として、触媒100重量%あたり、銅元素(A)の含有量が上記範囲になるように調製すれば、本発明の目的を損なわない限り、本発明の塩素製造用触媒に含まれる。
 このような本発明の塩素製造用触媒は、流動層反応器内で塩化水素を酸素により酸化して塩素を製造する際の触媒として好適に用いることができ、触媒活性に優れ、触媒寿命が長く、安価に安定供給が可能であり、固着を生じず優れた流動性を長期に渡って維持し得る。また、本発明の塩素製造用触媒は、真球度が高いため、粒子強度に優れ、粒子の割れを生じにくく、耐摩耗性に優れる。このため本発明の塩素製造用触媒を用いて塩素を製造する場合には、塩素を、長期にわたり安定して連続的かつ効率的、そして、より経済的に製造することができる。
 <塩素の製造方法>
 次に、本発明の上記塩素製造用触媒を用いた塩素の製造方法について説明する。
 本発明の塩素の製造方法は、流動層反応器内で、触媒の存在下で塩化水素を酸素により酸化して塩素を製造する方法であって、該触媒が、前述した本発明の塩素製造用触媒であることを特徴とする。
 本発明の塩素の製造方法では、流動層反応器を用いるものであり、反応方式については、塩素を連続して製造することができるため流通式が好ましい。本反応は平衡反応であるため、反応温度が高すぎると転化率が低下し、低すぎると触媒の活性が充分でないため、反応温度は、通常は250℃以上、500℃未満、好ましくは320℃以上、420℃未満で行う。反応時の圧力は、操作性を考慮すれば、大気圧以上、50気圧未満が好ましい。
 反応に用いる酸素の酸素源としては、空気をそのまま使用してもよいが、酸素分圧を制御しやすい純酸素がより好ましい。また、塩化水素を酸素により酸化して塩素を生成する反応は平衡反応であるため、転化率は100%に至らず、未反応塩化水素と生成物である塩素との分離が必要である。酸素に対する塩化水素の量論モル比(塩化水素/酸素)は4であるが、一般的に理論量よりも酸素を過剰に供給する方が高活性、かつ良好な流動性を得ることができるため、酸素に対する塩化水素のモル比(塩化水素/酸素)は0.5以上、3.0未満が好ましく、1.0以上、2.5未満がより好ましい。また、必要に応じて、塩化水素、及び酸素以外のガスを反応器内に流通させても良い。
 さらに、反応の開始時、あるいは終了時には、酸素に対する塩化水素のモル比を低下させること、あるいは空塔速度を速めることなどにより安定な運転が可能となる。
 また、使用する原料ガス中には、塩素の原料となる塩化水素、酸素、以外に不純物ガスを含んでもいても良い。不純物としては特に限定はしないが、例えば、塩素、水、窒素、二酸化炭素、一酸化炭素、水素、塩化カルボニル、芳香族化合物、含硫黄化合物、含ハロゲン化合物、等が挙げられる。特に一酸化炭素は、従来の触媒では触媒活性を低下させる要因となることが知られているが、本発明の触媒を使用する際には、触媒活性の顕著な低下は認められず、充分な活性が維持される。一酸化炭素の原料ガス中に含まれる濃度は10.0vol%未満が好ましく、6.0vol%未満がより好ましい。10.0vol%以上であると、一酸化炭素の酸化反応が顕著に進行し、発熱量が過剰となる、塩化水素の転化率が減少する等の問題を生じることとなり好ましくない。
 また、本発明における塩素製造用触媒の使用重量に対する塩化水素の供給速度は、触媒1kgあたり、通常100NL/hr以上、2000NL/hr未満であることが好ましく、より好ましくは200NL/hr以上、1000NL/hr未満である。
 本発明におけるガス空塔速度は、0.01m/秒以上、1.0m/秒以下が好ましく、0.02m/秒以上、0.5m/秒以下がより好ましい。ガス空塔速度が0.01m/秒未満であると、触媒の流動が不充分となり流動性の悪化を招き好ましくない。ガス空塔速度が1.0m/秒より大きいと触媒が反応器内から飛散することとなり好ましくない。また、ガス空塔速度は、前述した触媒の終末速度以下であることが好ましい。ガス空塔速度よりも触媒の終末速度の方が遅いと、触媒の反応器内からの飛散が顕著となるおそれがあり、好ましくない。
 本発明における塩素の製造方法において、その製造工程は特に限定されないが、以下の各工程を含むことが好ましい。
 (1) 塩化水素、酸素を含有する原料ガスを予め加熱する工程
 (2) 塩化水素の酸化反応を行う工程
 (3) 塩化水素、酸素、塩素、水を含有する生成ガスを冷却する工程
 (4) 生成ガスから塩化水素を回収・除去する工程
 (5) 生成ガスを脱水する工程
 (6) 生成ガスを圧縮、冷却し、塩素を液化塩素として分離する工程
 塩化水素、酸素を含有する原料ガスを予め加熱する工程においては、流動層反応器にガスが導入する前に100℃以上、400℃未満に加熱することが好ましく、150℃以上、350℃未満であることがより望ましい。予め加熱する温度が100℃未満であると、塩化水素ガスが系内で凝縮し、装置腐食が進行してしまうおそれがあるため、好ましくない。
 塩化水素、酸素、塩素、水を含有する生成ガスを冷却する工程においては、250℃~500℃程度の、反応器内で生成した塩素及び水と、未反応の塩化水素及び酸素を含む生成ガスを冷媒によって冷却する。冷媒は特に限定されないが、水が好ましい。
 生成ガスから塩化水素を回収・除去する工程は、塩化水素、酸素、塩素、水を含有する生成ガスから未反応の塩化水素を回収・除去することを目的とする。塩化水素の回収・除去方法は、特に限定されないが、塩化水素を回収媒体に吸収させる方法が好ましい。回収媒体は、特に限定されないが、取り扱いの容易さから水が好ましい。また、生成ガスを冷却する工程、及び塩化水素を吸収する工程は、別々の装置を用いて実施しても良いし、同一の装置で実施しても良い。
 生成ガスを脱水する工程は、塩素、酸素、水を含む生成ガスから水を除去することを目的とする。脱水方法は、特に限定されないが、冷却脱水法、吸収脱水法、吸着脱水法、圧縮脱水法等の方法が好適に使用でき、吸収脱水法による方法が特に好ましい。当該工程を用いることで、生成ガス中に含まれる残存水分をほぼ完全に除去できる。
 生成ガスを圧縮、冷却し、塩素を液化塩素として分離する工程においては、前工程で水分除去された生成ガスを圧縮・冷却し、塩素を液化させてガス相より分離する。この際に塩素を液化分離した後のガス相は、酸素、未回収の塩素を含んでいる。この酸素を含むガスは、(1)塩化水素、酸素を含有する原料ガスを予め加熱する工程へ、再度、導入することにより、(2)塩化水素の酸化反応工程の原料ガスとして使用することができる。
 これらの工程を経ることにより、高純度の塩素が、連続的かつ効率的に製造可能となる。
 本発明の塩素の製造方法では、上述した、銅元素(A)、アルカリ金属元素(B)およびランタノイド元素(C)を含有する本発明の塩素製造用触媒のみを用いてもよいが、このような本発明の塩素製造用触媒とともに、流動性向上の為に、塩化水素酸化反応に対して反応不活性な球状粒子(P)を反応器内に共存させて用いることも可能である。この際の不活性粒子(P)の使用割合は特に限定されるものではないが、塩素製造用触媒と不活性粒子とからなる粒子全体に対して、1重量%以上、80重量%以下、好ましくは2重量%以上、50重量%以下、より好ましくは2重量%以上、40重量%以下である。不活性粒子の添加量が1重量%より少ないと、流動性向上の効果が低くなるおそれがあり、80重量%より多いと、塩化水素の転化率が低下するおそれがあるため、好ましくない。なお、不活性粒子(P)については、前述の記載のとおりである。
 本発明の塩素の製造方法では、反応を進行させながら、流動層反応器内の触媒を抜出すること、流動層反応器内に、触媒、あるいは不活性な粒子を装入したりすることも任意に実施可能である。すなわち、流動層反応器内の銅元素(A)濃度を、本発明の目的を損なわない範囲で、容易に制御可能であるが、流動層反応器内の銅元素(A)濃度は、触媒100重量%あたり、0.3重量%以上、4.5重量%以下を維持することが好ましい。
 本発明の流動層反応器を用いた塩素の製造方法によれば、触媒活性が高く、触媒寿命が長く、流動層反応器内で優れた流動性を示す本発明の塩素製造用触媒を用いることにより、塩素を、長期にわたり安定して連続的かつ効率的に、そして、より経済的に製造することができる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の実施例または比較例で得た触媒の触媒活性評価は、特に記述がない限りは、以下の触媒反応試験法の条件にて実施した。また、以下の実施例および比較例において、各性状の測定及び評価は以下のようにして実施した。
 〔1〕触媒反応試験法
 中空部に厚さ3mmのガラスフィルターを設置した内径16mmのガラス製反応管(図1参照)の下部に石英砂を充填し、ガラス反応管中のガラスフィルターの上部に触媒を21.5ml充填する。ガラス反応管下部より、塩化水素を90.0Nml/min、酸素を45.0Nml/min供給し、触媒を流動させながら、常圧下、反応温度380℃で反応させた。この時のガス空塔速度は2.8cm/secであり、触媒1kg当りの塩化水素供給量は約600NL/hrであった。
 〔2〕塩化水素の転化率
 ヨウ化カリウム(関東化学(株)、オキシダント測定用)を水に溶解し、0.2mol/L溶液を調製する。この溶液300mlに反応管から生成ガスを8分間吸収させた。この溶液を0.1mol/Lチオ硫酸ナトリウム溶液(関東化学(株))で滴定し、生成した塩素の量を測定し、塩化水素の転化率を求めた。
 〔3〕触媒流動性の評価
 反応温度を360℃とする以外は、前記触媒反応試験法に記載の方法にて、塩化水素の酸化反応を実施した。触媒層下部、すなわち、ガラスフィルターと接触している部分をA、ガラスフィルターから上へ40mmの部分をBとした場合に、AとBの温度差を測定した。この温度差が±2℃未満である状態を流動性良好、±2℃以上である場合を流動性不良と判断した。
 〔4〕平均粒子径(dp)の測定
 平均粒子径は、通常、以下の方法により測定した。
  使用装置:粒度分布計、Microtrac MT3300EXII(Microtrac社製)
  測定原理:レーザー光回折散乱法(湿式)
  測定範囲:0.021~1408μm
  粒子条件:透過性;透過、屈折率;1.81、形状;非球形
 〔5〕平均真球度の測定
 平均真球度の測定は、以下の手順に従って行った。
 1.測定サンプルを試料台の上に粘着テープで固定し、走査電子顕微鏡(SEM)を用いて撮影した。
 2.SEM像を画像解析装置に取り込み、各粒子の真球度(円形度係数)を計測し、測定粒子数から平均真球度を算出した。測定対象は円相当径が30μm以上の粒子とし、測定粒子数は1000以上とした。
 なお、測定で使用した装置および測定条件は、以下のとおりである。
  走査電子顕微鏡(SEM):(株)日立ハイテクノロジーズ社製S-4800
   加速電圧:30kV、エミッション電流:20μA、倍率:30倍
  画像解析装置:ライカマイクロシステムズ(株)社製ライカQ-win
 〔6〕粒子密度の測定(ρs
 粒子密度は、以下の方法により測定した。
 1.真密度:X(g/ml)を以下の方法により測定した。
  使用装置:乾式自動密度計;アキュピック1330((株)島津製作所)
  使用ガス:ヘリウム
  測定温度:25℃
  測定方法:試料を充填後、パージ(ヘリウム)を20回行った後、10回連続して測定を行った。
 2.細孔容積:Y(ml/g)を以下の方法により測定した。
  使用装置:オートソーブ3(Quantachrome Instruments社製)
  前処理:室温での真空脱気処理
  測定方法:液体窒素温度下(77K)における窒素ガス吸着法(BJH法)
 3.上記の方法により測定した、真密度:X(g/ml)及び細孔容積:Y(ml/g)の値より以下の式にて、粒子密度:Z(g/ml)を算出した。
  Z=1/(1/X+Y)
 〔7〕終末速度
 触媒の終末速度(m/秒)は、次式により求めた。
  終末速度ut=g(ρs-ρg)dp 2/18μ
 なお、本実施例および比較例では、上記測定により得られた粒子密度(ρs)および平均粒子径(dp)を用いて、気体を20℃の空気であると想定し、気体の密度を1.2kg/m3、気体の粘度を0.018mPa・s、重力加速度を9.807m/s2として終末速度を算出した。
 [実施例1]
 担体として、球状シリカ(富士シリシア化学株式会社、Q-15、粒度分布:75~500μm、メーカー分析表よりの物性値は、平均細孔径:15nm、平均粒子径:200μm、嵩密度:0.4g/ml、細孔容積:1.2ml/gである。このシリカをシリカ担体1とする)を空気中、500℃で2hr焼成した。ガラス製フラスコ(1L)に水150gと塩化第二銅(和光純薬、特級)2.89g、塩化ネオジム・六水和物(和光純薬、特級)3.20g、塩化カリウム(和光純薬、特級)1.53gを加えて水溶液とし、これに焼成したシリカ担体1を50.0g加え、ロータリーエバポレーターを用いて、80℃で蒸発乾固した。これを、空気中、250℃で3hr焼成し、担持触媒1を得た。担持触媒1中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.918、平均粒子径は213.4μm、粒子密度は0.683g/ml、ストークスの式から算出される終末速度は0.940m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を前述の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例2]
 塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いる以外は、実施例1と同様の方法にて、担持触媒2を得た。担持触媒2中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.921、平均粒子径は216.8μm、粒子密度は0.661g/ml、ストークスの式から算出される終末速度は0.939m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例3]
 塩化ネオジム・六水和物3.20gの代わりに、塩化プラセオジム・七水和物3.34gを用いる以外は、実施例1と同様の方法にて、担持触媒3を得た。担持触媒3中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、プラセオジム元素の濃度は2.5重量%であり、平均真球度は0.921、平均粒子径は215.6μm、粒子密度は0.677g/ml、ストークスの式から算出される終末速度は0.951m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例4]
 塩化ネオジム・六水和物3.20gの代わりに、塩化ユウロピウム・六水和物3.27gを用いる以外は、実施例1と同様の方法にて、担持触媒4を得た。担持触媒4中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ユウロピウム元素の濃度は2.5重量%であり、平均真球度は0.919、平均粒子径は214.7μm、粒子密度は0.671g/ml、ストークスの式から算出される終末速度は0.934m/秒であった。得られた担持触媒4の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例5]
 塩化ネオジム・六水和物3.20gの代わりに、塩化ガドリニウム・六水和物3.32gを用いる以外は、実施例1と同様の方法にて、担持触媒5を得た。担持触媒5中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ガドリニウム元素の濃度は2.5重量%であり、平均真球度は0.917、平均粒子径は218.1μm、粒子密度は0.679g/ml、ストークスの式から算出される終末速度は0.976m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例6]
 塩化ネオジム・六水和物3.20gの代わりに、塩化ジスプロシウム・六水和物3.36gを用いる以外は、実施例1と同様の方法にて、担持触媒6を得た。担持触媒6中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ジスプロシウム元素の濃度は2.5重量%であり、平均真球度は0.918、平均粒子径は216.2μm、粒子密度は0.681g/ml、ストークスの式から算出される終末速度は0.962m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例7]
 球状シリカとして、シリカ担体1の代わりに、シリカ担体2(富士シリシア化学株式会社、Q-15、粒度分布:75~150μm、メーカー分析表よりの物性値は、平均細孔径:15nm、平均粒子径:100μm、嵩密度:0.4g/ml、細孔容積:1.2ml/gである)を用いる以外は、実施例1と同様の方法にて、担持触媒7を得た。担持触媒7中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.923、平均粒子径は108.9μm、粒子密度は0.656g/ml、ストークスの式から算出される終末速度は0.235m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例8]
 球状シリカとして、シリカ担体1の代わりに、シリカ担体2を用い、塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いること以外は、実施例1と同様の方法にて、担持触媒8を得た。担持触媒8中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.922、平均粒子径は112.5μm、粒子密度は0.644g/ml、ストークスの式から算出される終末速度は0.246m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例9]
 球状シリカとして、シリカ担体1の代わりに、シリカ担体3(富士シリシア株式会社、Q-6、粒度分布:75~150μm、メーカー分析表よりの物性値は、平均細孔径:6nm、平均粒子径:100μm、嵩密度:0.5g/ml、細孔容積:0.8ml/gである)を用いる以外は、実施例1と同様の方法にて、担持触媒9を得た。担持触媒9中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.929、平均粒子径は111.4μm、粒子密度は0.886g/ml、ストークスの式から算出される終末速度は0.332m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例10]
 球状シリカとして、シリカ担体1の代わりに、シリカ担体3を用い、塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いること以外は、実施例1と同様の方法にて、担持触媒10を得た。担持触媒10中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.931、平均粒子径は109.2μm、粒子密度は0.879g/ml、ストークスの式から算出される終末速度は0.317m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例11]
 シリカ担体1を空気中、500℃で2hr焼成した。ガラス製フラスコ(1L)に水150gと塩化第二銅(和光純薬、特級)1.68g、塩化ネオジム・六水和物(和光純薬、特級)1.86g、塩化カリウム(和光純薬、特級)0.90gを加えて水溶液とし、これに焼成したシリカ担体1を50.0g加え、ロータリーエバポレーターを用いて、80℃で蒸発乾固した。これを、空気中、250℃で3hr焼成し、担持触媒11を得た。担持触媒11中に含まれる銅元素の濃度は1.5重量%、カリウム元素の濃度は0.9重量%、ネオジム元素の濃度は1.5重量%であり、平均真球度は0.926、平均粒子径は211.1μm、粒子密度は0.640g/ml、ストークスの式から算出される終末速度は0.862m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例12]
 塩化ネオジム・六水和物1.86gの代わりに、塩化サマリウム・六水和物1.89gを用いる以外は、実施例11と同様の方法にて、担持触媒12を得た。担持触媒12中に含まれる銅元素の濃度は1.5重量%、カリウム元素の濃度は0.9重量%、サマリウム元素の濃度は1.5重量%であり、平均真球度は0.925、平均粒子径は220.1μm、粒子密度は0.636g/ml、ストークスの式から算出される終末速度は0.931m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例13]
 ガラス製フラスコ(200mL)に水25gと塩化第二銅(和光純薬、特級)2.89g、塩化ネオジム・六水和物(和光純薬、特級)3.20g、塩化カリウム(和光純薬、特級)1.53gを加えて攪拌し水溶液1とする。別途、ガラス製ミキサー(1L)に、500℃で2hr焼成したシリカ担体1を50.0g加え、攪拌させながら、水溶液1をスプレーで噴霧する。噴霧終了後、ロータリーエバポレーターを用いて、95℃で減圧乾燥処理を施し、担持触媒13を得た。担持触媒13中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.919、平均粒子径は217.7μm、粒子密度は0.683g/ml、ストークスの式から算出される終末速度は0.978m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例14]
 塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いる以外は、実施例13と同様の方法にて、担持触媒14を得た。担持触媒14中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.924、平均粒子径は216.9μm、粒子密度は0.661g/ml、ストークスの式から算出される終末速度は0.940m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例15]
 塩化カリウムの代わりに、塩化ナトリウムを用いる以外は、実施例1と同様の方法にて、担持触媒15を得た。担持触媒15中に含まれる銅元素の濃度は2.5重量%、ナトリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.913、平均粒子径は219.2μm、粒子密度は0.666g/ml、ストークスの式から算出される終末速度は0.967m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例16]
 塩化カリウムの代わりに、塩化ナトリウムを用い、塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いる以外は、実施例1と同様の方法にて、担持触媒16を得た。担持触媒16中に含まれる銅元素の濃度は2.5重量%、ナトリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.914、平均粒子径は218.7μm、粒子密度は0.672g/ml、ストークスの式から算出される終末速度は0.971m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例17]
 塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物1.63g、及び、塩化プラオセジム・七水和物1.67gを用いる以外は、実施例1と同様の方法にて、担持触媒17を得た。担持触媒17中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は1.25重量%、プラセオジム元素の濃度は1.25重量%であり、平均真球度は0.911、平均粒子径は216.2μm、粒子密度は0.675g/ml、ストークスの式から算出される終末速度は0.953m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例18]
 塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物1.63g、及び、塩化ランタン・七水和物1.67gを用いる以外は、実施例1と同様の方法にて、担持触媒18を得た。担持触媒18中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は1.25重量%、ランタン元素の濃度は1.25重量%であり、平均真球度は0.913、平均粒子径は218.5μm、粒子密度は0.677g/ml、ストークスの式から算出される終末速度は0.977m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例19]
 実施例2で使用した触媒2を用い、使用するガスを、塩化水素を90.0Nml/min、酸素を45.0Nml/min、一酸化炭素を3.0Nml/min、とする以外は前述の触媒反応試験法と同様の方法にて評価した。得られた塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、表2に示す。
 [実施例20]
 実施例2で使用した触媒2を用い、使用するガスを、塩化水素を90.0Nml/min、酸素を45.0Nml/min、一酸化炭素を6.0Nml/min、とする以外は前述の触媒反応試験法と同様の方法にて評価した。得られた塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、表2に示す。
 [実施例21]
 シリカ担体1を空気中、500℃で2hr焼成した。ガラス製フラスコ(1L)に水150gと塩化第二銅(和光純薬、特級)1.77g、塩化サマリウム・六水和物5.98g、塩化カリウム(和光純薬、特級)2.83gを加えて水溶液とし、これに焼成したシリカ担体1を50.0g加え、ロータリーエバポレーターを用いて、80℃で蒸発乾固した。これを、空気中、250℃で3hr焼成し、担持触媒19を得た。担持触媒19中に含まれる銅元素の濃度は1.5重量%、カリウム元素の濃度は2.7重量%、サマリウム元素の濃度は4.5重量%であり、平均真球度は0.915、平均粒子径は213.4μm、粒子密度は0.685g/ml、ストークスの式から算出される終末速度は0.943m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例22]
 シリカ担体1を空気中、500℃で2hr焼成した。ガラス製フラスコ(1L)に水150gと塩化第二銅(和光純薬、特級)6.20g、塩化ネオジム・六水和物(和光純薬、特級)6.86g、塩化カリウム(和光純薬、特級)3.30gを加えて水溶液とし、これに焼成したシリカ担体1を50.0g加え、ロータリーエバポレーターを用いて、80℃で蒸発乾固した。これを、空気中、250℃で3hr焼成し回収した。回収重量は63.63gであった。この回収触媒に回収重量と同量のシリカ担体1(63.63g)を物理混合し、担持触媒20を得た。担持触媒20中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.923、平均粒子径は213.8μm、粒子密度は0.659g/ml、ストークスの式から算出される終末速度は0.910m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [実施例23]
 塩化ネオジム・六水和物6.86gの代わりに、塩化サマリウム・六水和物6.98gを用いる以外は、実施例22と同様の方法にて、担持触媒21を得た。担持触媒21中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.921、平均粒子径は216.7μm、粒子密度は0.662g/ml、ストークスの式から算出される終末速度は0.939m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表2に示す。
 [比較例1]
 塩化ネオジム・六水和物3.20gの代わりに、塩化ランタン・七水和物を3.31g用いる以外は実施例1と同様の方法にて、担持触媒22を得た。担持触媒22中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ランタン元素の濃度は2.5重量%であり、平均真球度は0.914、平均粒子径は220.2μm、粒子密度は0.678g/ml、ストークスの式から算出される終末速度は0.994m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例2]
 塩化ネオジム・六水和物1.86gの代わりに、塩化ランタン・七水和物1.93gを用いる以外は、実施例11と同様の方法にて、担持触媒23を得た。担持触媒23中に含まれる銅元素の濃度は1.5重量%、カリウム元素の濃度は0.9重量%、ランタン元素の濃度は1.5重量%であり、平均真球度は0.919、平均粒子径は210.7μm、粒子密度は0.643g/ml、ストークスの式から算出される終末速度は0.862m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例3]
 塩化ネオジム・六水和物3.20gの代わりに、塩化イッテルビウム・六水和物3.45gを用いる以外は、実施例1と同様の方法にて、担持触媒24を得た。担持触媒24中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、イッテルビウム元素の濃度は2.5重量%であり、平均真球度は0.912、平均粒子径は217.2μm、粒子密度は0.672g/ml、ストークスの式から算出される終末速度は0.958m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例4]
 塩化ネオジム・六水和物1.86gの代わりに、塩化イッテルビウム・六水和物2.01gを用いる以外は、実施例9と同様の方法にて、担持触媒25を得た。担持触媒25中に含まれる銅元素の濃度は1.5重量%、カリウム元素の濃度は0.9重量%、イッテルビウム元素の濃度は1.5重量%であり、平均真球度は0.917、平均粒子径は209.9μm、粒子密度は0.639g/ml、ストークスの式から算出される終末速度は0.851m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例5]
 シリカ担体1を空気中、500℃で2hr焼成した。ガラス製フラスコ(1L)に水150gと塩化第二銅(和光純薬、特級)6.20g、塩化ネオジム・六水和物(和光純薬、特級)6.86g、塩化カリウム(和光純薬、特級)3.30gを加えて水溶液とし、これに焼成したシリカ担体1を50.0g加え、ロータリーエバポレーターを用いて、80℃で蒸発乾固した。これを、空気中、250℃で3hr焼成し、担持触媒26を得た。担持触媒26中に含まれる銅元素の濃度は5.0重量%、カリウム元素の濃度は3.0重量%、ネオジム元素の濃度は5.0重量%であり、平均真球度は0.915、平均粒子径は221.3μm、粒子密度は0.741g/ml、ストークスの式から算出される終末速度は1.097m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例6]
 塩化ネオジム・六水和物6.86gの代わりに、塩化サマリウム・六水和物6.98gを用いる以外は、比較例5と同様の方法にて、担持触媒27を得た。担持触媒27中に含まれる銅元素の濃度は5.0重量%、カリウム元素の濃度は3.0重量%、サマリウム元素の濃度は5.0重量%であり、平均真球度は0.911、平均粒子径は219.2μm、粒子密度は0.746g/ml、ストークスの式から算出される終末速度は1.083m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例7]
 担体として、シリカ担体1の代わりに、シリカ担体4(富士シリシア化学株式会社、G-10、粒度分布:75~500μm、メーカー分析表よりの物性値は、平均細孔径:10nm、細孔容積:1.3ml/g)を用いる以外は、実施例1と同様の方法にて、担持触媒28を得た。担持触媒28中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.760、平均粒子径は303.2μm、粒子密度は0.550g/ml、ストークスの式から算出される終末速度は1.527m/秒であった。得られた担持触媒の塩化水素転化率を上記の方法により測定、評価しようと試みたが、380℃における塩化水素転化率は、触媒層の固着により、不安定となり、正確な測定が不可能であった。評価中のガラス反応管の温度差を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示した。
 [比較例8]
 担体として、シリカ担体1の代わりに、シリカ担体4を用い、塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物3.26gを用いること以外は、実施例1と同様の方法にて、担持触媒29を得た。担持触媒29中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.757、平均粒子径は302.1μm、粒子密度は0.545g/ml、ストークスの式から算出される終末速度は1.502m/秒であった。得られた担持触媒の塩化水素転化率を上記の方法により測定、評価しようと試みたが、380℃における塩化水素転化率は、触媒層の固着により、不安定となり、正確な測定が不可能であった。評価中のガラス反応管の温度差を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示した。
 [比較例9]
 担体として、シリカ担体1の代わりに、シリカ担体5(富士シリシア化学株式会社、G-10、粒度分布:75~150μm、メーカー分析表よりの物性値は、平均細孔径:10nm、細孔容積:1.3ml/g)を用いる以外は、実施例1と同様の方法にて、担持触媒30を得た。担持触媒30中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、ネオジム元素の濃度は2.5重量%であり、平均真球度は0.729、平均粒子径は202.3μm、粒子密度は0.523g/ml、ストークスの式から算出される終末速度は0.646m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例10]
 担体として、シリカ担体1の代わりに、シリカ担体5を用いること、塩化ネオジム・六水和物3.20gの代わりに、塩化サマリウム・六水和物を3.26g用いること以外は、実施例1と同様の方法にて、担持触媒31を得た。担持触媒31中に含まれる銅元素の濃度は2.5重量%、カリウム元素の濃度は1.5重量%、サマリウム元素の濃度は2.5重量%であり、平均真球度は0.732、平均粒子径は199.8μm、粒子密度は0.517g/ml、ストークスの式から算出される終末速度は0.623m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 [比較例11]
 クロミア75重量%、シリカ25重量%からなる微小球状流動層用酸化クロム触媒50gをCuCl2・2H2O 6.71g、KCl 2.85g、La(NO33・6H2O 7.79gを溶解した水溶液25mlに含浸後、510℃で5hr焼成し、酸化ケイ素と酸化クロムからなる担持触媒32を得た。この触媒は、日本国特開昭61-275104号、及び日本国特許3270670号に記載の方法を参考に調製したものである。得られた担持触媒32の平均真球度は0.863、粒子密度は1.683g/ml、平均粒子径は78.2μm、ストークスの式から算出される終末速度は0.311m/秒であった。得られた担持触媒の塩化水素転化率、及び流動性を上記の方法により測定、評価した。結果を、担持触媒中のランタノイド元素の酸素との結合解離エネルギー値とともに表3に示す。
 なお、以上の実施例および比較例において、得られた各担持触媒は、いずれも用いた担体の90%以上の平均細孔径、および細孔容積を維持していた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、触媒活性が高く、触媒寿命が長く、安価で安定供給が可能であって、固着を生じず高い流動性を長期にわたって維持し得る、流動層反応器での反応に好適な塩素製造用触媒を提供できる。また、本発明の流動層反応器を用いた塩素の製造方法によれば、塩素を、長期にわたり安定して連続的かつ効率的に、そして、より経済的に製造することができる。
 1 生成ガス
 2 ガラス反応管(内径:16mm)
 3 ヒーター
 4 触媒層
 5 ガラスフィルター
 6 石英砂
 7 原料ガス

Claims (8)

  1.  流動層反応器内で、塩化水素を酸素により酸化して塩素を製造するための触媒であり、
     (A)銅元素、(B)アルカリ金属元素、および(C)ランタノイド元素を含み、かつ、平均真球度が0.80以上の球状粒子からなり、
     ランタノイド元素(C)が、298Kにおける酸素との結合解離エネルギーが100~185kcal/molをみたすものであり、
     触媒中の銅元素(A)含有量が0.3重量%以上、4.5重量%以下であることを特徴とする塩素製造用触媒。
  2.  銅元素(A)とアルカリ金属元素(B)との重量比が1:0.2~1:4.0の範囲であり、かつ、
     銅元素(A)とランタノイド元素(C)との重量比が1:0.2~1:6.0の範囲であることを特徴とする請求項1に記載の塩素製造用触媒。
  3.  銅元素(A)とアルカリ金属元素(B)との重量比が1:0.2~1:2.0の範囲であり、かつ、
     銅元素(A)とランタノイド元素(C)との重量比が1:0.2~1:3.0の範囲であることを特徴とする請求項1に記載の塩素製造用触媒。
  4.  ランタノイド元素(C)が、プラセオジム、ネオジム、サマリウムおよびユウロピウムよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の塩素製造用触媒。
  5.  アルカリ金属(B)が、ナトリウムおよびカリウムよりなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1~4のいずれか一項に記載の塩素製造用触媒。
  6.  平均真球度が0.90以上の球状粒子からなることを特徴とする請求項1~5のいずれか一項に記載の塩素製造用触媒。
  7.  ストークスの式から算出される空気中の終末速度が0.10m/秒以上、2.0m/秒以下であり、かつ、
     粒子密度が0.4g/ml以上、1.2g/ml以下であることを特徴とする請求項1~6のいずれか一項に記載の塩素製造用触媒。
  8.  請求項1~7のいずれか一項に記載の塩素製造用触媒の存在下で、流動層反応器内で、塩化水素を酸素により酸化することを特徴とする塩素の製造方法。
PCT/JP2010/055279 2009-03-26 2010-03-25 塩素製造用触媒および該触媒を用いた塩素の製造方法 WO2010110392A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011506125A JP5468065B2 (ja) 2009-03-26 2010-03-25 塩素製造用触媒および該触媒を用いた塩素の製造方法
KR1020117021778A KR101287296B1 (ko) 2009-03-26 2010-03-25 염소 제조용 촉매 및 그 촉매를 이용한 염소의 제조 방법
US13/256,623 US9108845B2 (en) 2009-03-26 2010-03-25 Chlorine production catalyst and chlorine production process using the catalyst
EP10756188.8A EP2418016B1 (en) 2009-03-26 2010-03-25 Catalyst for production of chlorine and process for production of chlorine using the catalyst
BRPI1009832A BRPI1009832A2 (pt) 2009-03-26 2010-03-25 catalisador de produção de cloro e processo de produção de cloro usando o catalisador
CN201080010201.XA CN102341173B (zh) 2009-03-26 2010-03-25 用于制造氯的催化剂及使用该催化剂制造氯的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009076920 2009-03-26
JP2009076921 2009-03-26
JP2009-076923 2009-03-26
JP2009076923 2009-03-26
JP2009-076921 2009-03-26
JP2009-076920 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110392A1 true WO2010110392A1 (ja) 2010-09-30

Family

ID=42781082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055279 WO2010110392A1 (ja) 2009-03-26 2010-03-25 塩素製造用触媒および該触媒を用いた塩素の製造方法

Country Status (8)

Country Link
US (1) US9108845B2 (ja)
EP (1) EP2418016B1 (ja)
JP (1) JP5468065B2 (ja)
KR (1) KR101287296B1 (ja)
CN (1) CN102341173B (ja)
BR (1) BRPI1009832A2 (ja)
HU (1) HUE034818T2 (ja)
WO (1) WO2010110392A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493293B1 (ko) 2010-11-18 2015-02-16 완후아 케미컬 그룹 코., 엘티디 염화수소의 산화반응에 의한 염소 제조용 촉매 및 그의 제조방법
WO2018101357A1 (ja) * 2016-12-02 2018-06-07 三井化学株式会社 塩化水素酸化による塩素の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642318B (zh) * 2014-11-11 2018-08-21 上海氯碱化工股份有限公司 氯化氢催化氧化制氯气的催化剂制法及应用
US10322683B2 (en) * 2016-10-11 2019-06-18 Todd David Lawrence Motorized vehicle with a tool holding apparatus
CN110961096B (zh) * 2018-09-30 2022-09-27 中国石油化工股份有限公司 一种费托合成催化剂及其制备方法和应用
CN111252737A (zh) * 2020-01-19 2020-06-09 无锡玖汇科技有限公司 一种用于盐酸原位制氯气的固体反应物
US20230294988A1 (en) 2020-05-29 2023-09-21 Basf Se Catalyst for hydrogen chloride oxidation and production thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260678A (en) 1961-01-17 1966-07-12 Shell Oil Co Catalyst composition, particularly for catalyzing oxidation of hydrogen chloride to chlorine
US3483136A (en) 1967-01-23 1969-12-09 Shell Oil Co Catalysts
JPS61275104A (ja) 1985-05-28 1986-12-05 Mitsui Toatsu Chem Inc 塩素の製造方法
JPH01257102A (ja) * 1988-04-06 1989-10-13 Mitsui Toatsu Chem Inc 塩化水素から塩素を製造する方法
JP2513756B2 (ja) 1986-06-26 1996-07-03 三井東圧化学株式会社 塩素の製造方法
JPH09117666A (ja) * 1995-10-25 1997-05-06 Catalysts & Chem Ind Co Ltd エチレンのオキシクロリネーション触媒
JPH105592A (ja) * 1996-06-21 1998-01-13 Mitsui Petrochem Ind Ltd 塩化水素から塩素を製造するための触媒
JP3270670B2 (ja) 1994-11-14 2002-04-02 三井化学株式会社 塩化水素から塩素を製造するための触媒
JP3284879B2 (ja) 1995-05-18 2002-05-20 住友化学工業株式会社 塩素の製造方法
JP3543550B2 (ja) 1996-08-08 2004-07-14 住友化学工業株式会社 塩素の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL112095C (ja) 1960-01-20
FR1447823A (ja) 1964-10-02 1966-11-07
NL6611699A (ja) * 1966-08-19 1968-02-20
US3527819A (en) * 1967-04-03 1970-09-08 Fmc Corp Oxychlorination process for preparing trichloroethylene and tetrachloroethylene
US3496242A (en) * 1967-08-30 1970-02-17 Fmc Corp Oxychlorination of mixed hydrocarbons
CN1003504B (zh) 1984-12-03 1989-03-08 三井东圧化学有限公司 氯气制备方法
JPH03270670A (ja) 1990-03-16 1991-12-02 Hitachi Metals Ltd リニアモータ
JPH03284879A (ja) 1990-03-30 1991-12-16 Seiko Instr Inc 半導体不揮発性メモリ
JP2699750B2 (ja) 1991-01-22 1998-01-19 日本鋼管株式会社 超高強度鋼板スリットコイルの継ぎ方法
US5292703A (en) 1992-07-28 1994-03-08 The Geon Company Catalyst and process for oxychlorination of ethylene to EDC
US5707919A (en) * 1994-11-14 1998-01-13 Mitsui Toatsu Chemicals, Inc. Catalyst for preparing chlorine from hydrogen chloride
SG67942A1 (en) 1995-05-18 1999-10-19 Sumitomo Chem Ind Process for producing chlorine
US5908607A (en) 1996-08-08 1999-06-01 Sumitomo Chemical Co., Ltd. Process for producing chlorine
TWI322709B (en) * 2001-12-04 2010-04-01 Bp Chem Int Ltd Oxidation process in fluidised bed reactor
EP2198959A4 (en) * 2007-09-27 2014-06-04 Mitsui Chemicals Inc CATALYST, PRODUCTION PROCESS AND METHOD FOR PRODUCING CHLORINE USING THE CATALYST
JP5051719B2 (ja) * 2008-04-07 2012-10-17 日鉄環境エンジニアリング株式会社 活性汚泥のスカムの解消方法及び微生物製剤
JP5015057B2 (ja) * 2008-04-09 2012-08-29 三井化学株式会社 塩素合成用触媒およびその製造方法、ならびに該触媒を用いた塩素の合成方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260678A (en) 1961-01-17 1966-07-12 Shell Oil Co Catalyst composition, particularly for catalyzing oxidation of hydrogen chloride to chlorine
US3483136A (en) 1967-01-23 1969-12-09 Shell Oil Co Catalysts
JPS61275104A (ja) 1985-05-28 1986-12-05 Mitsui Toatsu Chem Inc 塩素の製造方法
JP2513756B2 (ja) 1986-06-26 1996-07-03 三井東圧化学株式会社 塩素の製造方法
JPH01257102A (ja) * 1988-04-06 1989-10-13 Mitsui Toatsu Chem Inc 塩化水素から塩素を製造する方法
JPH0569043B2 (ja) * 1988-04-06 1993-09-30 Mitsui Toatsu Chemicals
JP3270670B2 (ja) 1994-11-14 2002-04-02 三井化学株式会社 塩化水素から塩素を製造するための触媒
JP3284879B2 (ja) 1995-05-18 2002-05-20 住友化学工業株式会社 塩素の製造方法
JPH09117666A (ja) * 1995-10-25 1997-05-06 Catalysts & Chem Ind Co Ltd エチレンのオキシクロリネーション触媒
JPH105592A (ja) * 1996-06-21 1998-01-13 Mitsui Petrochem Ind Ltd 塩化水素から塩素を製造するための触媒
JP3852983B2 (ja) 1996-06-21 2006-12-06 三井化学株式会社 塩化水素から塩素を製造するための触媒
JP3543550B2 (ja) 1996-08-08 2004-07-14 住友化学工業株式会社 塩素の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Organic Metal Reagent Handbook", June 2003, KAGAKU-DOJIN PUBLISHING CO., INC.
"Shokubai Hannou Souchi to Sono Sekkei", KODANSHA LTD., pages: 149
See also references of EP2418016A4
SHOKUBAI KOUZA, CATALYST COURSES, vol. 6

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493293B1 (ko) 2010-11-18 2015-02-16 완후아 케미컬 그룹 코., 엘티디 염화수소의 산화반응에 의한 염소 제조용 촉매 및 그의 제조방법
US10576465B2 (en) * 2010-11-18 2020-03-03 Wanhua Chemical Group Co., Ltd. Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof
WO2018101357A1 (ja) * 2016-12-02 2018-06-07 三井化学株式会社 塩化水素酸化による塩素の製造方法
US11072527B2 (en) 2016-12-02 2021-07-27 Mitsui Chemicals, Inc. Method for producing chlorine by oxidation of hydrogen chloride

Also Published As

Publication number Publication date
CN102341173B (zh) 2014-05-21
KR101287296B1 (ko) 2013-07-17
BRPI1009832A2 (pt) 2019-09-24
EP2418016B1 (en) 2017-05-24
JPWO2010110392A1 (ja) 2012-10-04
US20120009117A1 (en) 2012-01-12
KR20110116241A (ko) 2011-10-25
EP2418016A4 (en) 2013-01-30
JP5468065B2 (ja) 2014-04-09
CN102341173A (zh) 2012-02-01
HUE034818T2 (en) 2018-02-28
US9108845B2 (en) 2015-08-18
EP2418016A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5468065B2 (ja) 塩素製造用触媒および該触媒を用いた塩素の製造方法
JP5414527B2 (ja) 触媒およびその製法、ならびに該触媒を用いた塩素の製造方法
JP5015057B2 (ja) 塩素合成用触媒およびその製造方法、ならびに該触媒を用いた塩素の合成方法
JP2007511343A (ja) 触媒及び該触媒を用いる気相方法
US11072527B2 (en) Method for producing chlorine by oxidation of hydrogen chloride
JP5503732B2 (ja) 塩素の製造方法
CN102140054B (zh) 一种四氟甲烷的制备方法
JP5289131B2 (ja) 塩素製造用流動層触媒および該触媒を用いた塩素の製造方法
JP5289132B2 (ja) 塩素製造用触媒および該触媒を用いた塩素の製造方法
Xueju et al. “Ethane oxychlorination” over γ-Al 2 O 3 supported CuCl 2–KCl–LaCl 3
JP2010248062A (ja) 流動床反応器を用いて、塩化水素から塩素を製造する方法
JP5388974B2 (ja) 塩素製造用再生触媒の製造方法、劣化触媒の再生方法、塩素の製造方法及び塩素製造用触媒の活性維持方法
JP2012062235A (ja) 塩素の製造方法
JP6650840B2 (ja) MgO担持触媒の製造方法
KR102230989B1 (ko) 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
JP2005254091A (ja) Ni/SiO2触媒およびその製造方法
JP4489222B2 (ja) 酢酸合成触媒
JP2010228952A (ja) 流動床反応器を用いて、塩化水素から塩素を製造する方法
JP5867808B2 (ja) 複合酸化物型エタノール改質触媒、及びエタノールの改質方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010201.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13256623

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011506125

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117021778

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7145/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010756188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010756188

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009832

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009832

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110926