WO2010107028A1 - 空気電池用触媒およびそれを用いた空気電池 - Google Patents

空気電池用触媒およびそれを用いた空気電池 Download PDF

Info

Publication number
WO2010107028A1
WO2010107028A1 PCT/JP2010/054442 JP2010054442W WO2010107028A1 WO 2010107028 A1 WO2010107028 A1 WO 2010107028A1 JP 2010054442 W JP2010054442 W JP 2010054442W WO 2010107028 A1 WO2010107028 A1 WO 2010107028A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
group
air
oxide
Prior art date
Application number
PCT/JP2010/054442
Other languages
English (en)
French (fr)
Inventor
利一 獅々倉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020117024194A priority Critical patent/KR101256327B1/ko
Priority to CN2010800122723A priority patent/CN102356507A/zh
Priority to JP2011504848A priority patent/JP5606431B2/ja
Priority to US13/257,218 priority patent/US9236641B2/en
Publication of WO2010107028A1 publication Critical patent/WO2010107028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air battery catalyst and an air battery using the same.
  • An air battery uses air as an active material for the positive electrode, Li metal or its alloy that can take a potential difference from the air for the negative electrode, or Li intercalated into carbon, etc., and also a hydrogen storage alloy that stores hydrogen. It is common to use.
  • a metal that becomes a divalent ion such as Zn, Mg, or Ca, a metal that becomes a trivalent ion such as Al, or an alloy thereof may be used for the negative electrode.
  • Such an air battery can be an extremely high energy density battery because the positive electrode active material is air in the atmosphere, and is an extremely attractive battery as a next-generation storage battery or a metal fuel battery.
  • metal ions released from the negative electrode react with air (oxygen) on the positive electrode side to generate metal oxide.
  • air oxygen
  • the generated metal oxide is reduced to metal ions and air.
  • Non-Patent Document 1 electrolytic manganese dioxide, porphyrin complex, Molecular Co phthalocyanine, platinum, etc. are used.
  • Non-Patent Document 2 electrolytic manganese dioxide and porphyrin complexes are vulnerable to oxidation, and the platinum group dissolves little by little in the solvent, and the dissolved species are deposited on the negative electrode, causing side reactions.
  • electrolytic manganese dioxide and a porphyrin complex are insufficient as a catalyst that is sufficiently reversible for these reactions and stable at a high potential during charging.
  • the object of the present invention is to solve such problems in the prior art, and the object of the present invention is that the oxygen reduction performance at the time of discharging in an air battery is high, and charging is required when used as an air secondary battery.
  • the object is to provide a catalyst that is efficient in generating oxygen at the time and stable even at a high potential during charging.
  • the present inventors have used a catalyst composed of a specific transition metal oxycarbonitride for oxygen reduction during discharge in an air battery and a secondary battery. It has been found that it has both functions of oxygen generation during charging and is stable even at a high potential during charging, and the present invention has been completed.
  • the present invention relates to the following (1) to (11), for example.
  • a catalyst for an air battery comprising a carbonitride oxide of a Group 4 transition metal and / or a Group 5 transition metal.
  • the metal carbonitride is further characterized in that at least one selected from the group consisting of other transition metals, metals belonging to Group 13 or Group 14, rare earth metals and alkaline earth metals is added.
  • At least one selected from the group consisting of other transition metals, metals belonging to Group 13 or 14, rare earth metals and alkaline earth metals is tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium (2) or (3), characterized in that it is at least one metal selected from the group consisting of cobalt, manganese, cerium, nickel, yttrium, lanthanum, samarium, calcium, barium, and magnesium Air battery catalyst.
  • the composition formula of the metal carbonitrous oxide is NbC x N y O z (where x, y, z represent the ratio of the number of atoms, 0.02 ⁇ x ⁇ 1.2, 0.01 ⁇ y ⁇ 0.7, 0.4 ⁇ z ⁇ 2.5, And 1 ⁇ x + y + z ⁇ 3.9.)
  • M is at least selected from the group consisting of tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, manganese, cerium, nickel, yttrium, lanthanum, samarium, calcium, barium, and magnesium. Represents one metal. 5.
  • the composition formula of the metal carbonitride is TiC x N y O z (where x, y, z represents the ratio of the number of atoms, 0.05 ⁇ x ⁇ 1.2, 0.01 ⁇ y ⁇ 0.7, 0.1 ⁇ z ⁇ 1.94, 1.0 ⁇ x + y + z ⁇ 3.1 and 2.0 ⁇ 4x + 3y + 2z)).
  • M is at least selected from the group consisting of tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, manganese, cerium, nickel, yttrium, lanthanum, samarium, calcium, barium, and magnesium. Represents one metal.
  • the catalyst for an air battery according to (4). (9) The metal oxycarbonitride is titanium, and the crystal structure of the metal oxycarbonitride measured by powder X-ray diffraction (Cu-K ⁇ ray) includes a rutile crystal structure ( The catalyst for an air battery according to any one of 7) or (8).
  • the catalyst of the present invention has both functions of oxygen reduction during discharging in an air primary battery or air secondary battery and oxygen generation during charging in an air secondary battery, and is stable to a high potential during charging. Therefore, the air battery provided with the catalyst has the advantages of excellent discharge characteristics and excellent performance in terms of reversibility and high energy density even when used in a secondary battery.
  • 2 is a powder X-ray diffraction spectrum of NbCN in Example 1.
  • 2 is a powder X-ray diffraction spectrum of the NbCNO catalyst of Example 1. It is sectional drawing of the cell for Li air secondary battery evaluation.
  • 2 is a powder X-ray diffraction spectrum of the catalyst of Example 2.
  • 2 is a powder X-ray diffraction spectrum of the catalyst of Example 3.
  • 4 is a powder X-ray diffraction spectrum of the catalyst of Example 4.
  • 4 is a powder X-ray diffraction spectrum of TiCN in Example 5.
  • 2 is a powder X-ray diffraction spectrum of the catalyst of Example 5.
  • 4 is a powder X-ray diffraction spectrum of TiZrCN in Example 6.
  • Example 2 is a powder X-ray diffraction spectrum of the catalyst of Example 6.
  • 6 is a current-potential curve showing the oxygen reducing ability of Example 7.
  • 10 is a current-potential curve showing the oxygen reducing ability of Example 8.
  • 2 is a current-potential curve showing oxygen reducing ability in oxygen of Comparative Example 1.
  • 3 is data in nitrogen of Comparative Example 1.
  • 6 is a current-potential curve showing the oxygen reducing ability of Comparative Example 2.
  • 6 is a current-potential curve showing the oxygen reducing ability of Comparative Example 3.
  • 10 is a current-potential curve of three electrodes of Example 9.
  • 10 is a current-potential curve of Example 9 (air electrode of Example 7).
  • 10 is a current-potential curve of Example 9 (platinum plate).
  • 10 is a current-potential curve of Example 9 (air electrode of Comparative Example 1).
  • 10 is a current-potential curve of an electrode of Example 10.
  • the catalyst of the present invention is a group 4 transition metal and / or a group 5 transition metal carbonitride of the periodic table, or a group 4 transition metal and / or a group 5 transition metal carbonitride, and another transition metal, It is characterized by comprising a carbonitride oxide to which at least one selected from the group consisting of metals belonging to group 13 or 14 of the periodic table, rare earth metals and alkaline earth metals is added.
  • transition metals include titanium, zirconium and hafnium.
  • Group 5 transition metals include vanadium, niobium, and tantalum.
  • transition metals metals belonging to Group 13 or Group 14, rare earth metals and / or alkaline earth metals include tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, Examples include manganese, nickel, yttrium, lanthanum, cerium, samarium, calcium, barium, and magnesium.
  • titanium is the most preferable among group 4 transition metals.
  • group 5 transition metals niobium is most preferred.
  • tin and iron are preferable as other transition metals, metals belonging to Group 13 or Group 14, rare earth metals and / or alkaline earth metals. Particularly in the case of niobium, it is preferable to combine with tin or iron.
  • the composition formula of the metal carbonitride is NbC x N y O z (1)
  • x, y, z represents the ratio of the number of atoms, 0.02 ⁇ x ⁇ 1.2 (preferably 0.02 ⁇ x ⁇ 0.7, more preferably 0.05 ⁇ x ⁇ 0.7), 0.01 ⁇ y ⁇ 0.7, 0.4 ⁇ z ⁇ 2.5 and 1 ⁇ x + y + z ⁇ 3.9.)
  • the one represented by is good.
  • x, y, z are preferably 0.02 ⁇ x ⁇ 0.5, 0.01 ⁇ y ⁇ 0.5, 1.5 ⁇ z ⁇ 2.5, more preferably 0.10 ⁇ x ⁇ 0.5, 0.02 ⁇ y ⁇ 0.1, 2.0 ⁇ z ⁇ 2.5.
  • 0.02 ⁇ x ⁇ 0.5, 0.01 ⁇ y ⁇ 0.5, 1.5 ⁇ z ⁇ 2.5 it is desirable that 1.7 ⁇ x + y + z ⁇ 3.5, 0.10 ⁇ x ⁇ 0.5, 0.02 ⁇ y ⁇ 0.1, 2.0 ⁇ z ⁇ 2.5
  • the ratio of the elements is in the above range because it does not elute into the electrolyte solution, and the overvoltage of oxygen generation and oxygen reduction is small.
  • composition formula of the metal carbonitride oxide when it contains other transition metals, metals belonging to Group 13 or Group 14, rare earth metals and / or alkaline earth metals Nb a M b C x N y O z (2)
  • M is at least selected from the group consisting of tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, manganese, cerium, nickel, yttrium, lanthanum, samarium, calcium, barium, and magnesium. Represents one metal. ) The one represented by is good.
  • x, y, z are preferably 0.02 ⁇ x ⁇ 0.5, 0.01 ⁇ y ⁇ 0.5, 1.5 ⁇ z ⁇ 2.5, more preferably 0.10 ⁇ x ⁇ 0.5, 0.02 ⁇ y ⁇ 0.1, 2.0. ⁇ z ⁇ 2.5.
  • niobium is used as the Group 5 transition metal
  • the metal carbonitrous oxide is measured by the powder X-ray diffraction method (Cu-K ⁇ ray)
  • those containing mainly Nb 12 O 29 composition are highly active.
  • the diffraction line peak is a peak obtained with a specific diffraction angle and diffraction intensity when a sample (crystalline) is irradiated with X-rays at various angles.
  • a signal that can be detected when the ratio (S / N) of the signal (S) to the noise (N) is 2 or more is regarded as one diffraction line peak.
  • the noise (N) is the width of the baseline.
  • NbCNO has niobium oxide structure and never NbCN rock salt structure.
  • X-ray diffraction measurement apparatus for example, a powder X-ray analysis apparatus: Rigaku RAD-RX can be used.
  • the measurement conditions are: X-ray output (Cu-K ⁇ ): 50 kV, 180 mA, scan axis: ⁇ / 2 ⁇ , measurement range (2 ⁇ ): 10 ° to 89.98 °, measurement mode: FT, scan width: 0.02 °, sampling Time: 0.70 seconds, DS, SS, RS: 0.5 °, 0.5 °, 0.15 mm, goniometer radius: 185 mm.
  • the composition formula of the metal carbonitride is TiC x N y O z (3)
  • x, y, z represents the ratio of the number of atoms, 0.05 ⁇ x ⁇ 1.2 (preferably 0.05 ⁇ x ⁇ 0.7), 0.01 ⁇ y ⁇ 0.7, 0.1 ⁇ z ⁇ 1.94, 1.0 ⁇ x + y + z ⁇ 3.1 (preferably 1.0 ⁇ x + y + z ⁇ 2.0), and 2.0 ⁇ 4x + 3y + 2z, preferably 0.05 ⁇ x ⁇ 0.7, 0.01 ⁇ y ⁇ 0.7, 0.1 ⁇ z ⁇ 1.94, 1.0 ⁇ x + y + z ⁇ 2.0, and 2.0 ⁇ 4x + 3y + 2z.
  • the one represented by is good.
  • x, y, z are preferably 0.05 ⁇ x ⁇ 0.5, 0.01 ⁇ y ⁇ 0.50, 0.1 ⁇ z ⁇ 1.90, and more preferably 0.08 ⁇ x ⁇ 0.4, 0.03 ⁇ y ⁇ . 0.30, 1.4 ⁇ z ⁇ 1.85.
  • composition formula of the metal carbonitride oxide when it contains other transition metals, metals belonging to Group 13 or Group 14, rare earth metals and / or alkaline earth metals Ti a M b C x N y O z (4)
  • M is at least selected from the group consisting of tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, manganese, cerium, nickel, yttrium, lanthanum, samarium, calcium, barium, and magnesium. Represents one metal. ) The one represented by is good.
  • x, y, z are preferably 0.05 ⁇ x ⁇ 0.5, 0.01 ⁇ y ⁇ 0.50, 0.1 ⁇ z ⁇ 1.90, and more preferably 0.08 ⁇ x ⁇ 0.4, 0.03 ⁇ y ⁇ . 0.30, 1.4 ⁇ z ⁇ 1.85.
  • the crystal structure of the metal oxycarbonitride measured by powder X-ray diffraction preferably includes a rutile crystal structure.
  • the metal oxycarbonitride is a compound whose composition formula is represented by M′C x N y O z ; an oxide of metal M ′, a carbide of metal M ′, and nitridation of metal M ′.
  • 'carbonitride, a metal M' metal M carbonate of the metal M ', and the like oxynitride of a mixture composition formula is represented as a whole by M'C x N y O z; or M'
  • M' Along with a compound represented by C x N y O z , an oxide of metal M ′, a carbide of metal M ′, a nitride of metal M ′, a carbonitride of metal M ′, a carbonate of metal M ′, a metal M It means a mixture containing a nitride oxide of “′” and having a composition formula as a whole represented by M′C x N y O z .
  • the metal M ′ represents a group 4 transition metal and / or a group 5 transition metal.
  • the metal M ′ includes a Group 4 transition metal and / or a Group 5 transition metal.
  • the surface of the carbon rod is made porous by mixing a catalyst and carbon black on one end face of the carbon rod and suspending it in water and drying it.
  • a catalyst fixed with a tetrafluoroethylene resin film as a catalyst
  • platinum or graphite as a counter electrode
  • a hydrogen electrode as a reference electrode
  • single electrode evaluation may be performed by potential scanning in an alkaline solution
  • a current collector carrying a catalyst is installed on the air electrode side, an oxide of the negative electrode active material is brought into contact therewith, and an electrode that is also used as a current collector such as platinum immersed in an electrolyte solution is installed on the counter electrode.
  • a standard electrode such as silver / silver chloride, it may be performed by a method for determining the efficiency of oxygen generation and air reduction from the oxide on the air electrode side, Moreover, you may evaluate by incorporating a simple air battery cell.
  • the method for producing the catalyst is not particularly limited.
  • titanium or niobium-containing carbonitride is heat-treated in an inert gas containing oxygen to form titanium or niobium carbonitride, which is used as a catalyst.
  • inert gas containing oxygen to form titanium or niobium carbonitride, which is used as a catalyst.
  • a metal carbonitride containing metal M and titanium or niobium is heat-treated in an inert gas containing oxygen to produce tin, indium, platinum, copper, iron, chromium, molybdenum, tungsten, hafnium, cobalt, manganese.
  • rare earth metals or alkaline earth metals when adding rare earth metals or alkaline earth metals, it is also possible to first add them in the state of compounds such as respective metals or oxides, and then fire them to make the desired composition.
  • a method of producing a metal carbonitride by heat-treating a mixture of the metal oxide and carbon in a nitrogen atmosphere (I), oxidation of the metal Method (II) for producing a metal carbonitride by heat-treating a mixture of oxide and nitride in a nitrogen atmosphere or the like, or heat-treating a mixture of the metal oxide, carbide and nitride in a nitrogen atmosphere or the like A method for producing a metal carbonitride (III) or a mixture of the metal (for example, organic acid salt, chloride, carbide, nitride, complex, etc.), carbide, and nitride in a nitrogen atmosphere.
  • a method (IV) for producing a metal carbonitride by heat treatment for producing a metal carbonitride by heat treatment.
  • the above methods (I) to (IV) can be used.
  • carbon may be mixed in a mixture of niobium oxide and iron oxide, and heat treatment may be performed in a nitrogen atmosphere (I).
  • Niobium nitride may be mixed and heat-treated in a nitrogen atmosphere (II).
  • niobium carbide and niobium nitride may be mixed with iron oxide and heat-treated in a nitrogen atmosphere (III).
  • Niobium carbide carbonitride and niobium nitride are mixed with organic acid iron and heat-treated in a nitrogen atmosphere to obtain carbonitride of niobium iron. The same operation can be used to produce titanium and cerium carbonitrides.
  • the temperature of the heat treatment in producing the metal carbonitride is in the range of 600 ° C to 1800 ° C, preferably in the range of 800 to 1600 ° C.
  • the heat treatment temperature is within the above range, it is preferable in terms of good crystallinity and uniformity.
  • the heat treatment temperature is less than 600 ° C., the crystallinity tends to be poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, sintering tends to occur.
  • the raw metal M oxide is tin oxide, indium oxide, platinum oxide, tantalum oxide, zirconium oxide, copper oxide, iron oxide, tungsten oxide, chromium oxide, molybdenum oxide, hafnium oxide, titanium oxide, vanadium oxide, cobalt oxide. , Manganese oxide, cerium oxide or nickel oxide.
  • metal M oxides can be used.
  • Examples of the raw material niobium oxide include NbO, NbO 2 and Nb 2 O 5 .
  • TiO 2 is generally used, but there is no particular limitation, and oxides of other valences may be used.
  • the raw material carbon includes carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is small because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black (specific surface area: 100 to 300 m 2 / g, for example, XC-72 manufactured by Cabot) is preferably used.
  • the raw material There are no particular restrictions on the raw material. Whichever raw material is used, it can be obtained by heat-treating a mixture of niobium oxide, titanium oxide or the metal M oxide, and metal carbonitride obtained from carbon in an inert gas containing oxygen.
  • a catalyst made of a metal carbonitride oxide When used in an air secondary battery, a catalyst made of a metal carbonitride oxide has very high oxygen reduction performance at the air electrode and oxygen generation performance during charging, and has high activity.
  • carbonitrous oxide mixed with other metals is used as a catalyst, for example, in the case of nitrous oxide of niobium and other metals, the blending amount (molar ratio) of other metal oxides, niobium oxide and carbon By controlling this, a suitable metal carbonitride can be obtained.
  • the blending amount (molar ratio) is usually 0.01 to 10 moles of the metal M oxide and 1 to 10 moles of carbon with respect to 1 mole of niobium oxide, and preferably 1 mole of niobium oxide.
  • the metal M oxide is 0.01 to 4 mol, and the carbon is 2 to 6 mol.
  • the inert gas includes nitrogen, helium gas, neon gas, argon gas, krypton gas, xenon gas or radon gas. Nitrogen or argon gas is particularly preferable because it is relatively easily available.
  • the oxygen concentration in the step depends on the heat treatment time and the heat treatment temperature, but is preferably 0.1 to 10% by volume, particularly preferably 0.5 to 5% by volume.
  • the oxygen concentration is within the above range, it is preferable in that a uniform carbonitride oxide is formed. Further, when the oxygen concentration is less than 0.1% by volume, it tends to be in an unoxidized state, and when it exceeds 10% by volume, oxidation tends to proceed excessively.
  • the concentration of the hydrogen gas to be mixed is preferably 10 mol% or less, more preferably 5 mol% or less of the whole atmospheric gas. This takes into account reactivity and safety.
  • the temperature of the heat treatment in the process is usually in the range of 400 to 1400 ° C, preferably in the range of 600 to 1200 ° C.
  • the heat treatment temperature is within the above range, it is preferable in that a uniform metal oxynitride is formed.
  • the heat treatment temperature is less than 400 ° C., the oxidation tends not to proceed, and when it is 1400 ° C. or more, the oxidation proceeds excessively and the crystal tends to grow.
  • a ground leveling method As the heat treatment method in the process, a ground leveling method, a stirring method, a dropping method, a powder trapping method and the like can be mentioned.
  • an inert gas containing a small amount of oxygen flows through an induction furnace, the furnace is heated to a predetermined heat treatment temperature, and after maintaining a thermal equilibrium at the temperature, the furnace is heated in a crucible that is a heating area of the furnace.
  • the metal carbonitride is dropped and heat-treated.
  • the dropping method is preferable in that aggregation and growth of metal carbonitride particles can be suppressed to a minimum.
  • the powder trapping method captures metal carbonitride in a vertical tubular furnace maintained at a prescribed heat treatment temperature by suspending the metal carbonitride in the atmosphere of an inert gas containing a small amount of oxygen. This is a heat treatment method.
  • the heat treatment time of the metal carbonitride is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes. It is preferable that the heat treatment time be within the above range because a uniform metal oxycarbonitride tends to be formed. When the heat treatment time is less than 0.5 minutes, metal oxycarbonitride tends to be partially formed, and when it exceeds 10 minutes, oxidation tends to proceed excessively.
  • the heat treatment time of the metal carbonitride is 0.2 second to 1 minute, preferably 0.2 to 10 seconds. It is preferable that the heat treatment time be within the above range because a uniform metal oxycarbonitride tends to be formed. If the heat treatment time is less than 0.2 seconds, metal oxycarbonitride tends to be partially formed, and if it exceeds 1 minute, oxidation tends to proceed excessively.
  • the heat treatment time of the metal carbonitride is 0.1 to 10 hours, preferably 0.5 to 5 hours. When the heat treatment time is within the above range, a uniform metal oxycarbonitride tends to be formed, which is preferable. If the heat treatment time is less than 0.1 hour, metal oxycarbonitride tends to be partially formed, and if it exceeds 10 hours, oxidation tends to proceed excessively.
  • the metal oxycarbonitride obtained by the above-described production method or the like may be used as it is, but the obtained metal oxycarbonitride is further pulverized into a finer powder. It may be used.
  • Examples of the method for crushing the metal carbonitride oxide include a roll rolling mill, a ball mill, a medium agitation mill, an airflow crusher, a mortar, a method using a tank disintegrator, and the like.
  • the method using an airflow pulverizer is preferable, and the method using a mortar is preferable from the viewpoint that a small amount of processing is easy.
  • the catalyst of the present invention can be used as an air battery catalyst.
  • the catalyst of the present invention is not only high in oxygen reducing ability but also low in oxygen generation overvoltage during charging, and is therefore suitable as a metal-air secondary battery catalyst.
  • the air battery uses air as the active material for the positive electrode
  • the negative electrode uses Li metal or its alloy that can take a potential difference from air or Li intercalated into carbon, etc., and also a hydrogen storage alloy that stores hydrogen.
  • a metal that becomes a divalent ion such as Zn, Mg, or Ca
  • a metal that becomes a trivalent ion such as Al, or an alloy thereof may be used for the negative electrode.
  • Such an air battery can be a battery with a very high energy density because the positive electrode active material is air in the atmosphere, and is an extremely attractive battery as a next-generation battery.
  • an air battery using zinc for the negative electrode is suitable for the present invention because an aqueous solution can be used for the electrolytic solution.
  • an alkali metal such as Li or an intercalated carbon such as Li is used for the negative electrode, the battery voltage can be increased, which is also effective.
  • metal ions released from the negative electrode react with air (oxygen) on the positive electrode side to produce metal oxide.
  • air oxygen
  • the metal oxide generated in the charging process is reduced to metal ions and air.
  • a suitable catalyst is required to efficiently perform oxygen reduction during discharging and oxygen generation from the metal oxide during charging, and the present invention can be used as the catalyst.
  • the catalyst layer of the present invention preferably further contains an electron conductive powder.
  • the electron conductive powder is considered to increase the catalytic reaction current because it generates an electrical contact for inducing an electrochemical reaction in the catalyst.
  • the electron conductive particles are usually used as a catalyst carrier.
  • the electron conductive particles include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide and iridium oxide, and these can be used alone or in combination.
  • carbon since carbon has a large specific surface area, carbon alone or a mixture of carbon and other electron conductive particles is preferable. That is, the air battery catalyst layer preferably contains the catalyst and carbon.
  • carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the air battery catalyst layer tends to decrease or the utilization factor of the catalyst tends to decrease. A range of 1000 nm is preferable, and a range of 10 to 100 nm is more preferable.
  • the mass ratio of the catalyst to carbon is preferably 4: 1 to 1000: 1.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid.
  • Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used in the fuel cell catalyst layer forming step.
  • the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water is generally used.
  • the electrolyte and the dispersant may be further dispersed at the same time.
  • the method for forming the air battery catalyst layer is not particularly limited, and examples thereof include a method of applying a suspension containing the catalyst, the electron conductive particles, and the binder to a current collector, a separator, or a solid electrolyte. It is done.
  • Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method.
  • a method of forming a catalyst layer on a separator or a solid electrolyte by a transfer method after forming a catalyst layer on a base material by a coating method or a filtration method from a suspension containing the catalyst, electron conductive particles, and an electrolyte. can be mentioned.
  • EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.
  • the number of diffraction line peaks in powder X-ray diffraction of each sample was taught by regarding a signal that can be detected with a signal (S) to noise (N) ratio (S / N) of 2 or more as one peak.
  • Noise (N) was the width of the baseline.
  • Nitrogen / oxygen About 0.1 g of a sample was weighed and sealed in Ni-Cup, and then measured with an ON analyzer.
  • Niobium and other metals M About 0.1 g of a sample was weighed in a platinum dish, and acid was added for thermal decomposition. This pyrolyzate was fixed, diluted, and quantified with ICP-MS.
  • BET specific surface area measurement The BET specific surface area of the catalyst was measured using Micromeritics Gemini 2360 manufactured by Shimadzu Corporation.
  • Example 1 Preparation of catalyst 2.50 g (20 mmol) of niobium (IV) oxide (NbO 2 ) was sufficiently pulverized and mixed with 600 mg (50 mmol) of carbon (Cabot, Vulcan 72). This mixed powder was heated in a tube furnace at 1600 ° C. for 1 hour in a nitrogen atmosphere to obtain 2.54 g of niobium carbonitride.
  • Fig. 1 shows the powder X-ray diffraction spectrum of the obtained niobium carbonitride.
  • Niobium carbonitride (hereinafter referred to as "catalyst (1)" was heated by heating 1.00 g of the obtained niobium carbonitride at 800 ° C for 1 hour in a tubular furnace while flowing argon gas containing 1% by volume of oxygen gas. ) ").) 1.08 g was obtained.
  • the powder X-ray diffraction spectrum of the catalyst (1) is shown in FIG. This spectrum just overlapped the spectrum of Nb 12 O 29 . Further, the BET specific surface area of the catalyst (1) was 2.2 m 2 / g.
  • the negative electrode was made by bonding a Li metal of 10 mm ⁇ to the central part on the Ni collector with a diameter of 14.5 mm ⁇ to the counter electrode.
  • the positive electrode and negative electrode current collectors were coated with an insulating resin except for the portions in contact with the catalyst or the electrodes so as not to directly touch the electrolytic solution.
  • the open circuit voltage of the cell thus prepared was 3.OV. This was first discharged for 2 hours at a current density of 0.2 mA / cm 2 using a charge / discharge device manufactured by Hokuto Denko (the air reacts with Li ions to form Li oxide and electricity can be taken out).
  • the lifetime is defined as when the amount of electricity at the time of charging is expressed as a percentage with respect to the amount of electricity at the time of the first discharge until the value is 50% or more.
  • the lifetime of this battery is 136 times, and the percentage of the amount of electricity at the time of charging with respect to the amount of electricity at the time of discharging is 97% for the first time, 98% for the second time, almost 100% after the third time, 102 times It began to fall from the day, 85% at the 120th, 76% at the 130th, 51% at the 136th, 47% at the 137th.
  • Example 2 1.Preparation of catalystNiobium (IV) oxide (NbO 2 ) 4.95 g (39.6 mmol), tin oxide (IV) (SnO 2 ) 60 mg (0.4 mmol) carbon (Cabot, Vulcan 72) 1.2 g (100 mmo1) Thoroughly pulverized and mixed. This mixed powder was heat-treated in a tube furnace at 1400 ° C. for 3 hours in a nitrogen atmosphere to obtain 4.23 g of carbonitride (2) containing tin (0.01 mol with respect to niobium) and niobium.
  • Example 3 Preparation of catalyst 5.88 g (56 mmol) of niobium carbide, 0.40 g (2.5 mmol) of ferric oxide, and 5.14 g (48 mmol) of niobium nitride were sufficiently pulverized and mixed. This mixed powder was heat-treated in a tube furnace for 3 hours at 1600 ° C. in a nitrogen atmosphere to obtain 11.19 g of carbonitride (3) containing iron and niobium. The sintered carbonitride (3) was pulverized with a ball mill.
  • Example 4 1.Catalyst preparation Niobium (IV) oxide (NbO 2 ) 4.75 g (38 mmol), tin oxide (IV) (SnO 2 ) 302 mg (2 mmol) with sufficient carbon (Cabot, Vulcan 72) 1.2 g (100 mmol) Milled and mixed. This mixed powder was heat-treated in a tube furnace at 1400 ° C. for 3 hours in a nitrogen atmosphere to obtain 4.10 g of carbonitride (4) containing tin (5 mol%) and niobium.
  • Example 3 Evaluation of Catalytic Activity
  • the evaluation air secondary battery thus produced was evaluated in the same manner as in Example 1. As a result, this battery has a lifetime of 128 times, and the percentage of the amount of electricity at the time of charging with respect to the amount of electricity at the time of discharge is 95% for the first time, 96% for the second time, 98% for the third time, and almost four days later. At 100%, it started to fall from the 115th, and it was 95% at the 117th, 92% at the 120th, 83% at the 125th, 62% at the 128th, and 45% at the 129th.
  • Example 5 1.Catalyst preparation Titanium carbide (TiC) 5.10 g (85 mmol), titanium oxide (TiO 2 ) 0.80 g (10 mm01), titanium nitride (TiN) 0.31 g (5 mmol) were mixed well, and 1800 ° C. for 3 hours. By heating in a nitrogen atmosphere, 5.73 g of titanium carbonitride was obtained. Since it became a sintered body, it was pulverized in an automatic mortar.
  • TiC Titanium carbide
  • TiO 2 titanium oxide
  • TiN titanium nitride
  • Fig. 7 shows the powder X-ray diffraction spectrum of the obtained titanium carbonitride.
  • FIG. 8 shows a powder X-ray diffraction spectrum of the resulting catalyst (5).
  • Example 6 Preparation titanium oxide catalyst (IV) (TiO 2) 2.87g (39,6mmol), zirconium oxide (ZrO 2) 0.49g (4mmol) of carbon (Cabot Corporation, Vulcan72) 1.2g of (100 mmol) sufficiently Milled and mixed. This mixed powder was heat-treated in a tube furnace at 1800 ° C. for 3 hours in a nitrogen atmosphere to obtain 3.05 g of carbonitride (6) containing zirconium (0.09 mol relative to titanium) and titanium.
  • FIG. 9 shows the powder X-ray diffraction spectrum of carbonitride (6).
  • the resulting carbonitride (1) 1.02 g, containing zirconium (1 mol%) and titanium by heat treatment at 1000 ° C. for 1 hour in a tubular furnace while flowing argon gas containing 1% by volume of oxygen gas 1.10 g of carbonitride oxide (hereinafter also referred to as “catalyst (6)”) was obtained.
  • FIG. 10 shows a powder X-ray diffraction spectrum of the catalyst (6).
  • Example 7 Preparation of catalyst The catalyst was produced in exactly the same manner as in Example 1.
  • Electrode for air electrode evaluation Weigh 30 mg of catalyst, mix 1.5 mg of Ketjen Black EC300J (manufactured by Lion Corporation) with it, extract 25 mg from it, and volume of isopropanol and distilled water 1.25 mL of a 1: 1 ratio was added and immersed in an ultrasonic bath to mix.
  • FIGS. 11 to 16 show “oxygen polarization curve—nitrogen polarization curve”.
  • FIG. 11 shows a current-potential curve scanned from 1.2 V (vsNHE) to the oxygen reduction side.
  • the oxygen reduction starting potential was as high as 0.97V, and the reduction current flowed greatly.
  • Example 8 Preparation of catalyst The catalyst was produced in exactly the same manner as in Example 5.
  • FIG. 12 shows a current-potential curve scanned from 1.2 V (vsNHE) to the oxygen reduction side.
  • the oxygen reduction starting potential was as high as 0.95 V, and the reduction current flowed moderately.
  • FIG. 13 shows a current-potential curve scanned in the oxygen reduction side in oxygen.
  • FIG. 14 shows the difference in current value between the potential scanned curve in oxygen and the potential scanned curve in nitrogen. From this, MnO 2 itself reacted on the oxygen reduction side in oxygen and nitrogen, and good reducibility of oxygen was not observed.
  • FIG. 14-2 shows data in nitrogen.
  • water is oxidized and the oxidation current starts flowing from a potential lower than 1.23V. That is, since MnO 2 has been dissolved by oxidation, it cannot be used as an electrode.
  • Example 2 The performance of the air electrode was evaluated in the same manner as in Example 7 except that a 2 cm 2 platinum plate was used. The results are shown in FIG. Although the oxygen reducing ability is good (0.98V), as shown in FIG. 17-2, the oxygen generation overvoltage is large, and the use as an air electrode is wasteful of energy.
  • Example 3 The performance of the air electrode was evaluated in the same manner as in Example 7, except that the carbon rod polished to the mirror surface used in Example 7 was used. The results are shown in FIG. Although it has oxygen reducing ability, the overvoltage was large and the oxygen reduction starting potential was 0.80 V (vsNHE).
  • Example 9 The air electrode obtained in Example 7 and Comparative Example 1 and a platinum plate (one side area 2 cm 2 ) were scanned in oxygen, and the state of oxygen generation from oxygen reduction was compared with the current-potential curve. The results are shown in FIG. The results of the air electrode of Example 7, the platinum plate (one side area 2 cm 2 ), and the air electrode of Comparative Example 1 are also shown in FIGS. 17-1 to 17-3, respectively.
  • the air electrode of Example 7 has a good oxygen reducing ability and a small oxygen generation overvoltage, which indicates that the catalyst used is a suitable catalyst for the air secondary battery (FIG. 17-1).
  • the platinum plate has good oxygen reducing ability, but it can be seen that the overvoltage of oxygen generation is too large (Fig. 17-2).
  • the air electrode (manganese dioxide) obtained in the comparative example reacts with manganese dioxide itself in both the oxygen reduction state and the oxygen generation state, and when used in a secondary battery, it becomes an efficient and excellent air electrode. It can be seen that this is not possible ( Figure 17-3).
  • Example 10 Using the same electrode as in Example 8, scanning was performed in oxygen as in Example 9. The results are shown in FIG. 18, and it was found that the oxygen reduction ability was high, the oxygen generation overvoltage was low, and it was suitable for a catalyst for an air secondary battery.
  • the catalyst of the present invention not only has a high oxygen reducing ability, but also has a low oxygen generation overvoltage during charging, and therefore can be used as a catalyst for a metal-air secondary battery.
  • Air hole 2 Air electrode current collector 3: Air electrode catalyst 4: Separator 5: Li negative electrode 6: Li electrode current collector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

[課題]空気二次電池における放電時の酸素還元と充電時の酸素発生の両機能を有し、充電時の高い電位にも安定な触媒を提供すること。 [解決手段]チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、またはタンタル等から選ばれる特定の遷移金属の炭窒酸化物からなる触媒が、空気二次電池における放電時の酸素還元と充電時の酸素発生の両機能を有し、充電時の高い電位にも安定であることを見出し、本発明を完成するに至った。

Description

空気電池用触媒およびそれを用いた空気電池
 本発明は空気電池用触媒およびそれを用いた空気電池に関する。
 空気電池には、正極に空気を活物質に用い、負極に空気と電位差が取れるLi金属やその合金またはLiがカーボン等にインターカレートしたもの、さらには水素吸蔵合金に水素を吸蔵したものを用いることが一般的である。またZnやMg、Caなどの2価イオンになる金属やAlなどの3価イオンになる金属またはそれらの合金を負極に用いることもある。
 このような空気電池は正極活物質が大気中の空気であるので、非常に高エネルギー密度な電池となり得、次世代蓄電池としてもまた金属燃料電池としても極めて魅力的な電池である。
 また放電過程では負極から放出される金属イオンと正極側の空気(酸素)が反応して金属酸化物が生成される。また充電過程では生成された金属酸化物が金属イオンと空気に還元される。
 放電時の酸素還元と充電時の金属酸化物からの酸素発生が効率よく行われるには適した触媒が必要であり、現状では非特許文献1に示したように電解二酸化マンガン、ポルフィリン錯体、高分子Coフタロシアン、白金などが用いられている。しかし、非特許文献2に示したように電解二酸化マンガン、ポルフィリン錯体は酸化に弱く、また白金族は溶媒に僅かずつだが溶解し、その溶解種が負極に析出して副反応の要因になる。
 他にも例えば空気電池用触媒については、特開平2-257577、特開2003-200051、特開2004-076084、特開2008-112724、特開2008-270166、特開2008-300273等に種々の金属化合物が開示されている。
ケミカル・エンジエアリング,9月号,P23~30,1990 荒井創 資源と素材,Vol.117,No3, P177~182,2001
 しかし、これらはいずれも酸素還元特性または酸素発生特性または使用条件での耐久性などが不十分である。
 しかも空気電池を二次電池として用いる場合には、これらの反応に充分に可逆的であり、充電時の高い電位にも安定である触媒としては電解二酸化マンガン、ポルフィリン錯体では不十分である。
 現在のところ、これらの要件を充分に満たす触媒はいまだ見出されていない。
 本発明は、このような従来技術における問題点の解決を課題としており、本発明の目的は、空気電池における放電時の酸素還元性能が高効率であり、また空気二次電池として用いる場合は充電時の酸素発生性能も効率的で、充電時の高い電位にも安定な触媒を提供することにある。
 本発明者らは、上記従来技術の問題点を解決すべく鋭意検討した結果、特定の遷移金属の炭窒酸化物からなる触媒が、空気電池における放電時の酸素還元と二次電池に用いた場合の充電時の酸素発生の両機能を有し、充電時の高い電位にも安定であることを見出し、本発明を完成するに至った。
 本発明は、たとえば以下の(1)~(11)に関する。
(1)
 4族遷移金属及び/または5族遷移金属の炭窒酸化物からなることを特徴とする空気電池用触媒。
(2)
 金属炭窒酸化物は、さらに、他の遷移金属、13族または14族に属する金属、希土類金属及びアルカリ土類金属からなる群より選択される少なくとも1種が添加されていることを特徴とする(2)に記載の空気電池用触媒。
(3)
 4族遷移金属及び/または5族遷移金属が、チタン、ジルコニウム、及びニオブからなる群より選択される少なくとも1種の金属であることを特徴とする(1)または(2)に記載の空気電池用触媒。
(4)
 他の遷移金属、13族または14族に属する金属、希土類金属及びアルカリ土類金属からなる群より選択される少なくとも1種が、錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属であることを特徴とする(2)または(3)に記載の空気電池用触媒。
(5)
 金属炭窒酸化物の組成式が、NbCxNyOz(ただし、x、y、zは原子数の比を表し、0.02≦x≦1.2、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。)で表されることを特徴とする(3)に記載の空気電池用触媒。
(6)
 金属炭窒酸化物の組成式が、NbaMbCxNyOz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.99、a+b=1、0.02≦x≦1.2、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。
また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)で表されることを特徴とする請求項4に記載の空気電池用触媒。
(7)
 金属炭窒酸化物の組成式が、TiCxNyOz(ただし、x、y、zは原子数の比を表し、0.05≦x≦1.2、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1、かつ2.0≦4x+3y+2zである。)で表されることを特徴とする(3)に記載の空気電池用触媒。
(8)
 金属炭窒酸化物の組成式が、TiaMbCxNyOz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1.0、0<b≦0.99、a+b=1、0.05≦x≦1.2、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1、かつ2.0≦4x+3y+2zである。
また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)で表されることを特徴とする(4)に記載の空気電池用触媒。
(9)
 金属炭窒酸化物の金属がチタンであって、かつ粉末X線回折法(Cu-Kα線)によって測定した前記金属炭窒酸化物の結晶構造がルチル型結晶構造を含むことを特徴とする(7)または(8)のいずれかに記載の空気電池用触媒。
(10)
 空気電池用負極がリチウム、アルミニウム、マグネシウム、カルシウム、亜鉛、それらと他の金属との合金またはそれらがカーボンにインターカレーションされたものであることを特徴とする(1)~(10)のいずれかに記載の空気電池用触媒。
(11)
 (1)~(10)のいずれかに記載の触媒を用いることを特徴とする空気二次電池。
 本発明の触媒は、空気一次電池または空気二次電池における放電時の酸素還元と、空気二次電池における充電時の酸素発生の両機能を有し、充電時の高い電位にも安定である。従って、前記触媒を備えた空気電池は放電特性が良く、また二次電池に用いても可逆性が良くエネルギー密度が高い点で非常に性能が優れているという利点がある。
実施例1のNbCNの粉末X線回折スペクトルである。 実施例1のNbCNO触媒の粉末X線回折スペクトルである。 Li空気二次電池評価用セルの断面図である。 実施例2の触媒の粉末X線回折スペクトルである。 実施例3の触媒の粉末X線回折スペクトルである。 実施例4の触媒の粉末X線回折スペクトルである。 実施例5のTiCNの粉末X線回折スペクトルである。 実施例5の触媒の粉末X線回折スペクトルである。 実施例6のTiZrCNの粉末X線回折スペクトルである。 実施例6の触媒の粉末X線回折スペクトルである。 実施例7の酸素還元能を示した電流電位曲線である。 実施例8の酸素還元能を示した電流電位曲線である。 比較例1の酸素中での酸素還元能を示した電流電位曲線である。 比較例1の酸素還元能を示した電流電位曲線である。 比較例1の窒素中のデータである。 比較例2の酸素還元能を示した電流電位曲線である。 比較例3の酸素還元能を示した電流電位曲線である。 実施例9の3つの電極の電流電位曲線である。 実施例9(実施例7の空気極)の電流電位曲線である。 実施例9(白金板)の電流電位曲線である。 実施例9(比較例1の空気極)の電流電位曲線である。 実施例10の電極の電流電位曲線である。
 <触媒>
 本発明の触媒は、周期表の4族遷移金属及び/または5族遷移金属の炭窒酸化物、あるいは4族遷移金属及び/または5族遷移金属の炭窒酸化物にさらに他の遷移金属、周期表の13族または14族に属する金属、希土類金属及びアルカリ土類金属からなる群から選ばれた少なくとも1種を添加した炭窒酸化物からなることを特徴とする。
 具体的には例えば4族遷移金属としてはチタン、ジルコニウム及びハフニウムが挙げられる。また、5族遷移金属としてはバナジウム、ニオブ及びタンタルが挙げられる。
 さらに他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属からなる群としては、錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、ニッケル、イットリウム、ランタン、セリウム、サマリウム、カルシウム、バリウム、及びマグネシウムが挙げられる。
 これらの中で、4族遷移金属のうち最も好ましいのはチタンである。また、5族遷移金属のうち最も好ましいのはニオブである。
 また、他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属として好ましいのは錫及び鉄である。特にニオブの場合に錫又は鉄と組み合わせることが好ましい。
 5族遷移金属にニオブを用いた場合は、金属炭窒酸化物の組成式が、
 NbCxNyOz    (1)
(ただし、x、y、zは原子数の比を表し、0.02≦x≦1.2(好ましくは0.02≦x≦0.7、より好ましくは0.05≦x≦0.7)、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。)
で表されるものが良い。
 上記式(1)のx、y、zでは好ましくは、0.02≦x≦0.5、0.01≦y≦0.5、1.5≦z≦2.5であり、さらに好ましくは0.10≦x≦0.5、0.02≦y≦0.1、2.0≦z≦2.5である。さらに、0.02≦x≦0.5、0.01≦y≦0.5、1.5≦z≦2.5のとき、1.7≦x+y+z≦3.5であることが望ましく、0.10≦x≦0.5、0.02≦y≦0.1、2.0≦z≦2.5のとき、2.2≦x+y+z≦2.9であることが望ましい。元素の比率が上記範囲であると、電解液に溶出せず、さらに酸素発生および酸素還元の過電圧が小さく好ましい。
 また、さらに他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属を含む場合は金属炭窒酸化物の組成式が、
 NbaMbCxNyOz    (2)
(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.9、a+b=1、0.02≦x≦1.2(好ましくは0.02≦x≦0.7、より好ましくは0.05≦x≦0.7)、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。
 また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)
で表されるものが良い。
 上記式(2)のx、y、zでは好ましくは、0.02≦x≦0.5、0.01≦y≦0.5、1.5≦z≦2.5であり、さらに好ましく0.10≦x≦0.5、0.02≦y≦0.1、2.0≦z≦2.5である。さらに、0.02≦x≦0.5、0.01≦y≦0.5、1.5≦z≦2.5のとき、1.7≦x+y+z≦3.5であることが望ましく、0.10≦x≦0.5、0.02≦y≦0.1、2.0≦z≦2.5のとき、2.2≦x+y+z≦2.9であることが望ましい。
 5族遷移金属にニオブを用いた場合、粉末X線回折法(Cu-Kα線)によって前記金属炭窒酸化物を測定した際に、回折角2θ=33°~43°の間に、回折線ピークが2つ以上観測されるものがよい。結晶構造的にはNb12O29の組成のものを主として含んでいるものが高活性である。
 回折線ピークとは、試料(結晶質)に様々な角度でX線を照射した場合に、特異的な回折角度および回折強度で得られるピークのことをいう。本発明においては、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを一つの回折線ピークとしてみなす。ここで、ノイズ(N)は、ベースラインの幅とした。
 NbCNOの組成で、ニオブが酸化物構造であり、決してNbCNの岩塩構造でないことが重要であると考えられる。回折角2θ=33°~43°の間に回折線ピークが2つ以上観測されることで、構造が岩塩構造から酸化物構造に変化していることを示す。岩塩構造が主体では触媒活性がほとんど現れないと考えられる。
 X線回折法の測定装置としては、例えば粉末X線解析装置:リガク RAD-RXを用いて行うことができる。その測定条件としては、X線出力(Cu-Kα):50kV、180mA、走査軸:θ/2θ、測定範囲(2θ):10°~89.98°、測定モード:FT、読込幅:0.02°、サンプリング時間:0.70秒、DS、SS、RS:0.5°、0.5°、0.15mm、ゴニオメーター半径:185mmで行うことができる。
 一方、4族遷移金属にチタンを用いた場合、金属炭窒酸化物の組成式が、
 TiCxNyOz    (3)
(ただし、x、y、zは原子数の比を表し、0.05≦x≦1.2(好ましくは0.05≦x≦0.7)、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1(好ましくは1.0≦x+y+z≦2.0)、かつ2.0≦4x+3y+2zである。好ましくは0.05≦x≦0.7、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦2.0、かつ2.0≦4x+3y+2zである。)
で表されるものが良い。
 上記式(3)のx、y、zでは、好ましくは、0.05≦x≦0.5、0.01≦y≦0.50、0.1≦z≦1.90であり、さらに好ましくは、0.08≦x≦0.4、0.03≦y≦0.30、1.4≦z≦1.85である。0.05≦x≦0.5、0.01≦y≦0.50、0.1≦z≦1.90のとき、1.2≦x+y+z≦3.0、かつ2.5≦4x+3y+2zであることが望ましく、0.08≦x≦0.4、0.03≦y≦0.30、1.4≦z≦1.85のとき、1.8≦x+y+z≦2.5、かつ3.5≦4x+3y+2zであることが望ましい。元素の比率が上記範囲であると、電解液に溶出せず、さらに酸素発生および酸素還元の過電圧が小さく好ましい。
 また、さらに他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属を含む場合は金属炭窒酸化物の組成式が、
 TiaMbCxNyOz    (4)
(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1.0、0<b≦0.99、a+b=1、0.05≦x≦1.2(好ましくは0.05≦x≦0.7)、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1(好ましくは1.0≦x+y+z≦2.0)、かつ2.0≦4x+3y+2zである。好ましくは0.05≦x≦0.7、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦2.0、かつ2.0≦4x+3y+2zである。
 また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)
で表されるものが良い。
 上記式(4)のx、y、zでは、好ましくは、0.05≦x≦0.5、0.01≦y≦0.50、0.1≦z≦1.90であり、さらに好ましくは、0.08≦x≦0.4、0.03≦y≦0.30、1.4≦z≦1.85である。0.05≦x≦0.5、0.01≦y≦0.50、0.1≦z≦1.90のとき、1.2≦x+y+z≦3.0、かつ2.5≦4x+3y+2zであることが望ましく、0.08≦x≦0.4、0.03≦y≦0.30、1.4≦z≦1.85のとき、1.8≦x+y+z≦2.5、かつ3.5≦4x+3y+2zであることが望ましい。
 4族遷移金属にチタンを用いた場合、粉末X線回折法(Cu-Kα線)によって測定した結果、ルチル型結晶構造を主として有するものが良い。いいかえると、粉末X線回折法(Cu-Kα線)によって測定した前記金属炭窒酸化物の結晶構造がルチル型結晶構造を含むことが好ましい。
 なお、本発明において、前記金属炭窒酸化物とは、組成式がM’Cxyzで表される化合物;金属M’の酸化物、金属M’の炭化物、金属M’の窒化物、金属M’の炭窒化物、金属M’の炭酸化物、金属M’の窒酸化物などを含み、組成式が全体としてM’Cxyzで表される混合物;あるいはM’Cxyzで表される化合物とともに、金属M’の酸化物、金属M’の炭化物、金属M’の窒化物、金属M’の炭窒化物、金属M’の炭酸化物、金属M’の窒酸化物などを含み、組成式が全体としてM’Cxyzで表される混合物を意味する。ここで、金属M’とは、4族遷移金属及び/または5族遷移金属を表す。また、他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属が添加されているときは、金属M’には、4族遷移金属及び/または5族遷移金属と、他の遷移金属、13族または14族に属する金属、希土類金属及び/またはアルカリ土類金属とが含まれる。
 本発明に用いる触媒の評価方法としては、空気電池に触媒を組み込んで評価するのが最も確実である。
 一方、例えば亜鉛-空気電池用空気極評価の場合は、空気極側にカーボンロッドの1端面に触媒とカーボンブラックを混ぜて水中に懸濁させたものを垂らして乾燥させて表面を多孔性の4フッ化エチレン樹脂膜で固定したものを触媒として用い、対極に白金や黒鉛を用い、参照極に水素電極を用いて、アルカリ溶液中で電位走査などで単極評価してもよいし、
 空気極側に触媒を担持した集電体を設置し、それに負極活物質の酸化物を接触させて、対極に電解液に浸した白金などの集電体兼用の電極を設置し、参照極に銀/塩化銀などの基準になる電極を用いて、空気極側の酸化物からの酸素発生や空気還元の効率を求める方法で行ってもよいし、
 また簡易の空気電池セルを組み込んで評価してもよい。
 具体的には、負極にLiなどの金属を用いて、電解液を染み込ませたセパレータを挟んで空気極側に触媒を担持した白金メッシュを用いて、白金メッシュの裏側から空気が取り入れ、取り出しできるようにして全体を4フッ化エチレン樹脂の枠で挟んで、空気二次電池を組み立てて可逆性を評価することもできる。
 <触媒の製造方法>
 上記触媒の製造方法は特に限定されないが、例えば、チタンまたはニオブを含有する炭窒化物を酸素を含む不活性ガス中で熱処理することにより、チタンまたはニオブの炭窒酸化物ができ、これを触媒として用いることができる。
 また、錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択された少なくとも1種の金属Mならびにチタンまたはニオブを含有する金属炭窒化物を、酸素を含む不活性ガス中で熱処理することにより、錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択された少なくとも1種の金属Mならびにチタンまたはニオブを含有する金属炭窒酸化物を得る工程を含む製造方法が挙げられる。
 また希土類金属やアルカリ土類金属を添加する場合は最初にそれぞれの金属または酸化物などの化合物の状態で添加して、それを焼成して求める組成のものを作ることもできる。
 上記工程に用いる金属炭窒化物を得る方法としては、前記金属の酸化物及び炭素との混合物を、窒素雰囲気中で熱処理することにより金属炭窒化物を製造する方法(I)、前記金属の酸化物および窒化物の混合物を、窒素雰囲気中などで熱処理することにより金属炭窒化物を製造する方法(II)、または前記金属の酸化物、炭化物および窒化物の混合物を、窒素雰囲気中などで熱処理することにより金属炭窒化物を製造する方法(III)、または前記金属の含有物(例えば有機酸塩、塩化物、炭化物、窒化物、錯体など)、炭化物、窒化物の混合物を、窒素雰囲気中などで熱処理することにより金属炭窒化物を製造する方法(IV)が挙げられる。
 また金属が2種類以上の場合も上記(I)~(IV)の方法を用いることができる。例えばニオブと鉄の炭窒化物を製造するにも、ニオブ酸化物と鉄酸化物との混合物に炭素を混ぜて、窒素雰囲気中で熱処理してもよいし(I)、鉄の酸化物に、ニオブ窒化物を混ぜ、窒素雰囲気中で熱処理してもよい(II)。
 また、鉄の酸化物に、ニオブ炭化物とニオブ窒化物を混ぜ窒素雰囲気中で熱処理しても良い(III)。
 有機酸鉄にニオブ炭化物とニオブ窒化物を混ぜて、窒素雰囲気中で熱処理することで、ニオブ鉄の炭窒化物を得ることができる。またチタンとセリウムの炭窒化物を作るときも同様な操作で製造することができる。
 金属炭窒化物を製造する際の熱処理の温度は600℃~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記熱処理温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記熱処理温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料の金属Mの酸化物は、酸化スズ、酸化インジウム、酸化白金、酸化タンタル、酸化ジルコニウム、酸化銅、酸化鉄、酸化タングステン、酸化クロム、酸化モリブデン、酸化ハフニウム、酸化チタニウム、酸化バナジウム、酸化コバルト、酸化マンガン、酸化セリウムまたは酸化ニッケル等が挙げられる。金属Mの酸化物は、1種類以上用いることができる。
 また原料の酸化ニオブとしては、NbO、NbO2やNb2O5等が挙げられる。
 また原料の酸化チタンとしてはTiO2が一般的に用いられるが特に限定はなく、他の価数の酸化物でも良い。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径が小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。
 例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 原料については、特に限定されない。いずれの原料を用いても、酸化ニオブまたは酸化チタンまたは前記金属Mの酸化物を混ぜたもの、および炭素から得られる金属炭窒化物を、酸素を含む不活性ガス中で熱処理することにより得られる金属炭窒酸化物からなる触媒は、空気二次電池に用いた場合、空気極の酸素還元性能や充電時の酸素発生性能が極めて高く、活性が大きい。
 他の金属を混ぜた炭窒素酸化物を触媒にする場合は、例えばニオブと他の金属との炭窒酸化物の場合は、他の金属酸化物、酸化ニオブおよび炭素の配合量(モル比)を制御すると、適切な金属炭窒化物が得られる。
 前記配合量(モル比)は、通常、酸化ニオブ1モルに対して、前記金属Mの酸化物が0.01~10モル、炭素が1~10モルであり、好ましくは、酸化ニオブ1モルに対して、前記金属Mの酸化物が0.01~4モル、炭素が2~6モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物を用いると、空気二次電池用触媒としての活性が極めて高いものができる。
 (金属炭窒酸化物の製造工程)
 次に、上記製造方法(I)~(IV)で得られた金属炭窒化物を、酸素を含む不活性ガス中で熱処理することにより、金属炭窒酸化物を得る工程について説明する。
 上記不活性ガスとしては、窒素、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスまたはラドンガスが挙げられる。窒素またはアルゴンガスが比較的入手しやすい点で特に好ましい。
 当該工程における酸素濃度は、熱処理時間と熱処理温度に依存するが、0.1~10容量%が好ましく、0.5~5容量%が特に好ましい。前記酸素濃度が前記範囲内であると、均―な炭窒酸化物が形成する点で好ましい。また、前記酸素濃度が0.1容量%未満であると未酸化状態になる傾向があり、10容量%を超えると酸化が進み過ぎてしまう傾向がある。
 反応を全体に均―に行わせるために水素ガスを少量混入させて酸化反応を起こさせると、極めて効率的に高活性な触媒を合成することができる。混入させる水素ガスの濃度は雰囲気ガス全体の10モル%以下が好ましく、さらに好ましくは5モル%以下である。これは反応性と安全性を考慮している。
 当該工程における熱処理の温度は、通常は400~1400℃の範囲であり、好ましくは600~1200℃の範囲である。前記熱処理温度が前記範囲内であると、均一な金属炭窒酸化物が形成する点で好ましい。前記熱処理温度が400℃未満であると酸化が進まない傾向があり、1400℃以上であると酸化が進み過ぎ、結晶成長する傾向がある。
 当該工程における熱処理方法としては、整地法、攪拌法、落下法、粉末捕捉法などが挙げられる。
 落下法とは、誘導炉中に微量の酸素を含む不活性ガスを流しながら、炉を所定の熱処理温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に金属炭窒化物を落下させ、熱処理する方法である。落下法の場合は、金属炭窒化物の粒子の凝集および成長を最小限度に抑制することができる点で好ましい。
 粉末捕捉法とは、微量の酸素を含む不活性ガス雰囲気中で、金属炭窒化物を飛沫にして浮遊させ、所定の熱処理温度に保たれた垂直の管状炉中に金属炭窒化物を捕捉して、熱処理する方法である。
 落下法の場合、金属炭窒化物の熱処理時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記熱処理時間が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.5分未満であると金属炭窒酸化物が部分的に形成される傾向があり、10分を超えると酸化が進みすぎる傾向がある。
 粉末捕捉法の場合、金属炭窒化物の熱処理時間は、0.2秒~1分、好ましくは0.2~10秒である。前記熱処理時間が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.2秒未満であると金属炭窒酸化物が部分的に形成される傾向があり、1分を超えると酸化が進みすぎる傾向がある。管状炉で行なう場合、金属炭窒化物の熱処理時間は、0.1~10時間、好ましくは0.5時間~5時間である。前記熱処理時間が前記範囲内であると、均―な金属炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.1時間未満であると金属炭窒酸化物が部分的に形成される傾向があり、10時間を超えると酸化が進みすぎる傾向がある。
 本発明の触媒としては、上述の製造方法等により得られる金属炭窒酸化物を、そのまま用いてもよいが、得られる金属炭窒酸化物をさらに解砕し、より微細な粉末にしたものを用いてもよい。
 金属炭窒酸化物を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、金属炭窒酸化物をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
 <用途>
 本発明の触媒は、空気電池用触媒として使用することができる。
 本発明の触媒は酸素還元能が高いばかりでなく、充電時の酸素発生過電圧も低いため、金属空気二次電池用触媒としても適している。空気電池は、正極に空気を活物質に用い、負極は空気と電位差が取れるLi金属やその合金またはLiがカーボン等にインターカレートしたもの、さらには水素吸蔵合金に水素を吸蔵したものを用いるか、またZnやMg、Caなどの2価イオンになる金属やAlなどの3価イオンになる金属またはそれらの合金を負極に用いることもある。
 このような空気電池は正極活物質が大気中の空気であるので、非常に高エネルギー密度な電池となり得、次世代電池として極めて魅力的な電池である。中でも負極に亜鉛を用いた空気電池は電解液に水溶液を用いることができるので本発明には好適である。また負極にLiなどのアルカリ金属またはそれらがカーボンなどにインターカレートしたものを用いると電池電圧を大きく取れるので、それも有効である。
 放電過程では負極から放出される金属イオンと正極側の空気(酸素)が反応して金属酸化物が生成される。二次電池として用いた場合は充電過程で生成された金属酸化物が金属イオンと空気に還元される。このように放電時の酸素還元と充電時の金属酸化物からの酸素発生が効率よく行われるには適した触媒が必要であり、その触媒として本発明は用いることができる。
 本発明の触媒層には、さらに電子伝導性粉末を含むことが好ましい。電子伝導性粉末は、前記触媒に電気化学的反応を誘起させるための電気的接点を生じさせるため触媒反応電流を高めると考えられる。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。
 電子伝導性粒子としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、炭素は比表面積が大きいため、炭素単独または炭素とその他の電子伝導性粒子との混合物が好ましい。すなわち空気電池用触媒層としては、前記触媒と炭素とを含むことが好ましい。
 炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると空気電池用触媒層のガス拡散性が低下したり、触媒の利用率が低下する傾向があるため、10~1000nmの範囲であることが好ましく、10~100nmの範囲であることがよりに好ましい。
 電子伝導性粒子が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは4:1~1000:1である。
 導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェエル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。
 液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
 また、触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 空気電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と結着剤を含む懸濁液を集電体またはセパレータまたは固体電解質に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に触媒層を形成した後、転写法でセパレータや固体電解質に触媒層を形成する方法が挙げられる。
以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 実施例および比較例における各種測定は、下記の方法により行なった。
 [分析方法]
 1.粉末X線回折
 理学電機株式会社製 ロータフレックスを用いて、試料の粉末X線回折を行った。
 各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして教えた。なお、ノイズ(N)は、ベースラインの幅とした。
 2.元素分析
 炭素:試料約0.1gを量り取り、堀場製作所 EMIA-110で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Ni-Cupに封入後、ON分析装置で測定を行った。
 ニオブ・他の金属M:試料約0.1gを白金皿に量り取り、酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP一MSで定量を行った。
 3.BET比表面積測定
 島津製作所株式会社製 マイクロメリティクス ジェミニ2360を用いて触媒のBET比表面積を測定した。
 [実施例1]
 1.触媒の調製
 酸化ニオブ(IV)(NbO2)2.50g(20mmol)にカーボン(キャボット社製、Vulcan72)600mg(50mmol)を十分に粉砕して混合した。この混合粉末を管状炉において、1600℃で1時間、窒素雰囲気中で加熱することにより、炭窒化ニオブ2.54gが得られた。
 得られた炭窒化ニオブの粉末X線回折スペクトルを図1に示す。
 得られた炭窒化ニオブ1.00gを、1容量%の酸素ガスを含むアルゴンガスを流しながら、管状炉で、800℃で1時間加熱することにより、ニオブの炭窒酸化物(以下「触媒(1)」とも記す。)1.08gが得られた。
 触媒(1)の粉末X線回折スペクトルを図2に示す。このスペクトルはちょうどNb12O29のスペクトルと重なった。また、触媒(1)のBET比表面積は、2.2m2/gであった。
 またこの触媒の元素分析からのモル比は次の通りであつた。
 Nb:C:N:O=1:0.35:0.1:2.20。
 2.評価用空気二次電池の製造
 触媒能の測定は、次のように行った。触媒(1)0.095gとカーボン(キャボット社製 XC-72)0.005gをイソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で境拌、縣濁して混合した。この混合物を加圧成形器で直径10mmΦに成形しそれを14.5mmΦの白金製の網状集電体の中央に載せた。
 対極に直径14.5mmΦのNi製集電体上中央部に10mmΦのLi金属を圧着したものを負極とした。正極、負極の集電体は電解液に直接触れないように触媒または電極と接触する部分以外は絶縁樹脂でコートした。
 電解質として、それぞれ脱気乾燥済みの1MのLiPF6をエチレンカーボネートとエチルカーボネートとジメチルカーボネートの質量比1:1:1の混合物溶媒に溶かしたものを用いた。
 これをポリエチレン製セパレーター(厚み2mm)に染み込ませ、負極と正極触媒で挟んで、さらに全体を空気極側に10mmΦの穴をあけたPTFE製容器と負極側は穴のない容器で狭んで図3のような評価用セルを組み立てた。
 また、評価実験中に外部にわずかに漏れた液相当分を常に補充できるようにした。
 3.触媒能の評価
 このようにして作製したセルの開回路電圧は3.OVであった。これを北斗電工製充放電装置を用いて、まずは放電(空気がLiイオンと反応してLi酸化物ができ、外部に電気が取り出せる)電流密度0.2mA/cm2で2時間放電した。
 次いで、反対方向(生成したLi酸化物から酸素発生反応)に充電電流を0.2mA/cm2で電圧が4.5Vに上昇するまで流した。
 その後、再び放電電流を一回日と同じ条件で2時間流した後、逆向きに充電電流を電圧が4.5Vになるまで流した。
 さらに上記の繰り返しを行い、充電時の電気量が1回目の半分以下に低下するまでを寿命と仮定し、その寿命まで繰り返し続けた。いいかえると、寿命は、1回目の放電時の電気量に対する充電時の電気量を百分率で表した場合、この値が50%以上であるときまでとした。
 その結果、この電池の寿命は136回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が97%、2回目が98%、3回日以降ほぼ100%で、102回日から下がり始め120回目で85%、130回目で76%、136回日で51%、137回目で47%であった。
 [実施例2]
 1.触媒の調製
 酸化ニオブ(IV)(NbO2)4.95g(39.6mmol)、酸化スズ(IV)(SnO2)60mg(0.4mmol)にカーボン(キャボット社製、Vulcan72)1.2g(100mmo1)を十分に粉砕して混合した。この混合粉末を管状炉において、1400℃で3時間、窒素雰囲気中で熱処理することにより、スズ(ニオブに対して0.01モル)およびニオブを含有する炭窒化物(2)4.23gが得られた。
 得られた炭窒化物(2)1.02gを、1容量%の酸素ガスと2容量%の水素ガスを含むアルゴンガスを流しながら、回転式管状炉で、800℃で1時間熱処理することにより、スズ(1モル%)およびニオブを含有する炭窒酸化物(以下「触媒(2)」とも記す。)1.10gが得られた。得られた触媒(2)の元素分析結果を表1に示す。
 触媒(2)の粉末X線回折スペクトルを図4に示す。回折角2θ=33°~43°の間に、回折線ピークが4つ観測された。
 またこの触媒の元素分析からのモル比は次の通りであった。
 Nb:Sn:C:N:O=1:0.01:0.2:0.05:2.38
 2.評価用空気二次電池の製造
 触媒(1)を触媒(2)とした以外は実施例1と同様に行った。
 3.触媒能の評価
 このようにして作製した評価用空気二次電池を実施例1と同様にして評価実験を行った。その結果、この電池の寿命は128回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が96%、2回目が98%、3回目が99%で4回日以降ほぼ100%で、98回目から下がり始め100回日で95%、110回目で86%、120回目で71%、128回目で50%であった。
 [実施例3]
 1.触媒の調製
 炭化ニオブ5.88g(56mmol)、酸化第二鉄0.40g(2.5mmol)、窒化ニオブ5.14g(48mmol)を十分に粉砕して混合した。この混合粉末を管状炉において、該混合物を1600℃で3時間、窒素雰囲気中で熱処理することにより、鉄およびニオブを含有する炭窒化物(3)11.19gが得られた。焼結体の炭窒化物(3)をボールミルで粉砕した。
 得られた炭窒化物(3)1.00gを、1容量%の酸素ガス、0.8容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、900℃で6時間熱処理することにより、鉄(ニオブに対して0.02モル)およびニオブを含有する炭窒酸化物(以下「触媒(3)」とも記す。)1.24gが得られた。
 触媒(3)の粉末X線回折スペクトルを図5に示す。回折角2θ=33°~43°の間に、回折線ピークが4つ観測された。
 またこの触媒の元素分析からのモル比は次の通りであった。
 Nb:Fe:C:N:O=1:0.02:0.30:0.01:2.27
 2.評価用空気二次電池の製造
 触媒(1)を触媒(3)とした以外は実施例1と同様に行った。
 3.触媒能の評価
 このようにして作製した評価用空気二次電池を実施例1と同様にして評価実験を行った。その結果、この電池の寿命は178回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が97%、2回目が98%、3回目が99%で4回日以降ほぼ100%で、160回目から下がり始め170回日で95%、175回日で85%、178回日で70%、179回日で49%であった。
 [実施例4]
 1.触媒の調製
 酸化ニオブ(IV)(NbO2)4.75g(38mmol)、酸化スズ(IV)(SnO2)302mg(2mmol)にカーボン(キャボット社製、Vulcan72)1.2g(100mmol)を十分に粉砕して混合した。この混合粉末を管状炉において、1400℃で3時間、窒素雰囲気中で熱処理することにより、スズ(5モル%)およびニオブを含有する炭窒化物(4)4.10gが得られた。
 得られた炭窒化物(4)の1.02gを、1容量%の酸素ガス含むアルゴンガスを流しながら、管状炉で、800℃で1時間熱処理することにより、スズ(ニオブに対して0.05モル)およびニオブを含有する炭窒酸化物(以下「触媒(4)」とも記す。)1.09gが得られた。
 触媒(4)の粉末X線回折スペクトルを図6に示す。回折角2θ=33°~43°の間に、回折線ピークが4つ観測された。
 またこの触媒の元素分析からのモル比は次の通りであった。
 Nb:Sn:C:N:O=1:0.05:0.4:0.02:2.15
 2.評価用空気二次電池の製造
 触媒(1)を触媒(4)とした以外は実施例1と同様に行った。
 3.触媒能の評価
 このようにして作製した評価用空気二次電池を実施例1と同様にして評価実験を行った。その結果、この電池の寿命は128回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が95%、2回目が96%、3回目が98%で4回日以降ほぼ100%で、115回目から下がり始め117回目で95%、120回日で92%、125回日で83%、128回目で62%、129回目で45%であった。
 [実施例5]
 1.触媒の調製
 炭化チタン(TiC)5.10g(85mmol)、酸化チタン(TiO2)0.80g(10mm01)、窒化チタン(TiN)0.31g(5mmol)をよく混合して、1800℃で3時間、窒素雰囲気中で加熱することにより、炭窒化チタン5.73gが得られた。焼結体になるため、自動乳鉢で粉砕した。
 得られた炭窒化チタンの粉末X線回折スペクトルを図7に示す。
 得られた炭窒化チタン298mgを、1容量%の酸素ガスおよび4容量%の水素ガスを含む、窒素ガスを流しながら、管状炉で、1000℃で10時間加熱することにより、チタンの炭窒酸化物(以下「触媒(5)」とも記す。)393mgが得られた。得られた触媒(5)の粉末X線回折スペクトルを図8に示す。
 またこの触媒の元素分析からのモル比は次の通りであった。
 Ti:C:N:O=1:0.18:0.06:1.52
 2.評価用空気二次電池の製造
 触媒(1)を触媒(5)とした以外は実施例1と同様に行った。
 3.触媒能の評価
 このようにして作製した評価用空気二次電池を実施例1と同様にして評価実験を行った。その結果、この電池の寿命は165回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が97%、2回目が99%、3回日以降ほぼ100%で、150回目から徐々に下がり始め155回目で95%、160回目で92%、163回日で85%、164回日で64%、165回目で57%で、166回日で43%であった。
 [実施例6]
 1.触媒の調製
 酸化チタニウム(IV)(TiO2)2.87g(39,6mmol)、酸化ジルコニウム(ZrO2)0.49g(4mmol)にカーボン(キャボット社製、Vulcan72)1.2g(100mmol)を十分に粉砕して混合した。この混合粉末を管状炉において、1800℃で3時間、窒素雰囲気中で熱処理することにより、ジルコニウム(チタンに対して0.09モル)及びチタニウムを含有する炭窒化物(6)3.05gが得られた。炭窒化物(6)の粉末X線回折スペクトルを図9に示す。
 得られた炭窒化物(1)1.02gを、1容量%の酸素ガス含むアルゴンガスを流しながら、管状炉で、1000℃で1時間熱処理することにより、ジルコニウム(1モル%)及びチタニウムを含有する炭窒酸化物(以下「触媒(6)」とも記す。)1.10gが得られた。触媒(6)の粉末X線回折スペクトルを図10に示す。
 またこの触媒の元素分析からのモル比は次の通りであった。
 Ti:Zr:C:N:O=1:0.09:0.23:0.07:1.43
 2.評価用空気二次電池の製造
 触媒(1)を触媒(6)とした以外は実施例1と同様に行った。
 3.触媒能の評価
 このようにして作製した評価用空気二次電池を実施例1と同様にして評価実験を行った。その結果、この電池の寿命は185回で、放電時の電気量に対する充電時の電気量の百分率は、1回目が96%、2回目が99%、3回日以降ほぼ100%で、170回日から徐々に下がり始め175回日で96%、178回日で92%、180回目で88%、183回日で74%、184回目で65%で、185回日で55%であった。186回日で48%であった。
 [実施例7]
 1.触媒の調製
 触媒は実施例1と全く同じ方法で製造した。
 2.空気極評価用電極の作製
 触媒を30mg秤量し、それに粉砕したケッチェンブラックEC300J(ライオン(株)社製)を1.5mgを混合し、そこから25mg採取し、それにイソプロパノールと蒸留水の体積比1:1のものを1.25mL入れて、超音波漕に浸けて混合した。
 そこからマイクロピペットで数μLずつを表面をよく研磨したカーボンロッド(直径5.8mm、長さ30mm)の一端面に滴下させ、120℃で乾燥させる工程を繰り返してロッド表面に塗布した触媒とカーボンの量が20mgになるようにした。ロッド側面はマニキュアタイプの絶縁性樹脂でコーティングし、ロッドから金線で集電して作用極とした。
 3.空気板の性能評価
 対極に白金黒ワイヤを用い、参照極に水素電極(NHE)を用いて、電解液には1規定のKOH水溶液を用いた。それらを5mL容量のガラス製4ロフラスコに入れ、電解槽内の温度を30℃にて、作用極側には窒素または酸素をバブリングさせて、電位走査させることで空気極としての酸素還元能及び酸素発生能を調べた。これは亜鉛-空気二次電池などの水溶液電池の空気側の触媒能を判断するのに好都合な方法である。酸素還元能は作用極を酸素バブリングした状態で電位走査した電流電位曲線と窒素バブリングした状態で電位走査した電流電位曲線との電流値の差から酸素還元能を判断した。なお、図11~16までが「酸素の分極曲線-窒素の分極曲線」を示した図である。
 4.評価結果
 1.2V(vsNHE)から酸素還元側に走査した電流電位曲線を図11に示した。酸素還元開始電位は0.97Vと高く、還元電流も大きく流れた。
 [実施例8]
 1.触媒の調製
 触媒は実施例5と全く同じ方法で製造した。
 2.空気極評価用電極の作製
 評価用電極も触媒のみを変更した以外は実施例7と同じように電極を作製した。
 3.空気極の性能評価
 作用極を変更した以外は実施例7と全く同じようにして評価した。
 4.評価結果
 1.2V(vsNHE)から酸素還元側に走査した電流電位曲線を図12に示した。酸素還元開始電位は0.95Vと高く、還元電流もほどほどよく流れた。
 [比較例1]
 1.触媒の調製
 市販の電解二酸化マンガン((株)高純度化学研究所製)を乳鉢でよく練りつぶしたものを用いた。
 2.空気極評価用電極の作製
 評価用電極も触媒のみを変更した以外は実施例7と同じように電極を作製した。
 3.空気極の性能評価
 作用極を変更した以外は実施例7と全く同じようにして評価した。
 4.評価結果
 酸素中で酸素還元側に走査した電流電位曲線を図13に示した。一方酸素中で電位走査した曲線から窒素中で電位走査した曲線の電流値の差を図14に示した。これを見ると、酸素中でも窒素中でも酸素還元側ではMnO2自身が反応しており、酸素のよい還元性は見られなかった。
 なお、図14-2に窒素中のデータを示す。窒素中のデータ(図14-2)でも、酸素中のデータ(図13)でも、水が酸化し、酸化電流が流れる電位=1.23Vより低い電位から酸化電流が流れ始めてしまっているため、すなわち、MnO2が酸化溶解してしまっているため、電極としては使えないと考えられる。
 [比較例2]
 空気極の性能評価は2cm2の白金板を用いた以外は実施例7と全く同様にして評価した。その結果を図15に示した。酸素還元能は良好(0.98V)であるが、図17-2で見られるように、酸素発生過電圧が大きく、空気極として用いることはエネルギーの無駄が多い。
 [比較例3]
 空気極の性能評価は実施例7で用いた鏡面状態まで磨き上げたカーボンロッドを用いた以外は実施例7と全く同様にして評価した。その結果を図16に示した。酸素還元能はあるが、過電圧が大きく酸素還元開始電位は0.80V(vsNHE)であった。
 [実施例9]
 実施例7及び比較例1で得た空気極、並びに白金板(片側面積2cm2)を酸素中でスキャンさせて、酸素還元から酸素発生の状態を電流電位曲線にて比較した。その結果を図17に示した。なお、実施例7の空気極、白金板(片側面積2cm2)、および比較例1の空気極の結果について、それぞれ図17-1~17-3にも示した。
 実施例7の空気極は酸素還元能も良く、酸素発生過電圧も小さく、用いた触媒が空気二次電池には適した触媒であることが分かる(図17-1)。
 一方、白金板は酸素還元能は良いが、酸素発生の過電圧が大きすぎることが分かる(図17-2)。
 また、比較例で得た空気極(二酸化マンガン)は、酸素還元状態でも酸素発生状態でも二酸化マンガン自身が反応しており、二次電池に用いた場合は効率が良い優れた空気極にはなりえないことが分かる(図17-3)。
 [実施例10]
 実施例8と同じ電極を用いて、実施例9と同じように酸素中でスキャンさせた。その結果を図18に示すが、酸素還元能も高く、酸素発生過電圧も低く、空気二次電池用触媒に適していることが分かった。
 本発明の触媒は、酸素還元能が高いばかりでなく、充電時の酸素発生過電圧も低いため、金属空気二次電池用触媒として使用することができる。
 1:   空気穴
 2:   空気極集電体
 3:   空気極触媒
 4:   セパレーター
 5:   Li負極
 6:   Li極集電体

Claims (11)

  1.  4族遷移金属及び/または5族遷移金属の炭窒酸化物からなることを特徴とする空気電池用触媒。
  2.  前記金属炭窒酸化物は、さらに、他の遷移金属、13族または14族に属する金属、希土類金属及びアルカリ土類金属からなる群より選択される少なくとも1種が添加されていることを特徴とする請求項1に記載の空気電池用触媒。
  3.  前記4族遷移金属及び/または5族遷移金属が、チタン、ジルコニウム、及びニオブからなる群より選択される少なくとも1種の金属であることを特徴とする請求項1または請求項2に記載の空気電池用触媒。
  4.  前記他の遷移金属、13族または14族に属する金属、希土類金属及びアルカリ土類金属からなる群より選択される少なくとも1種が、錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属であることを特徴とする請求項2または請求項3に記載の空気電池用触媒。
  5.  前記金属炭窒酸化物の組成式が、NbCxNyOz(ただし、x、y、zは原子数の比を表し、0.02≦x≦1.2、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。)で表されることを特徴とする請求項3に記載の空気電池用触媒。
  6.  前記金属炭窒酸化物の組成式が、NbaMbCxNyOz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.99、a+b=1、0.02≦x≦1.2、0.01≦y≦0.7、0.4≦z≦2.5、かつ1≦x+y+z≦3.9である。
     また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)で表されることを特徴とする請求項4に記載の空気電池用触媒。
  7.  前記金属炭窒酸化物の組成式が、TiCxNyOz(ただし、x、y、zは原子数の比を表し、0.05≦x≦1.2、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1、かつ2.0≦4x+3y+2zである。)で表されることを特徴とする請求項3に記載の空気電池用触媒。
  8.  前記金属炭窒酸化物の組成式が、TiaMbCxNyOz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1.0、0<b≦0.99、a+b=1、0.05≦x≦1.2、0.01≦y≦0.7、0.1≦z≦1.94、1.0≦x+y+z≦3.1、かつ2.0≦4x+3y+2zである。
     また、Mは錫、インジウム、白金、銅、鉄、クロム、モリブデン、タングステン、ハフニウム、コバルト、マンガン、セリウム、ニッケル、イットリウム、ランタン、サマリウム、カルシウム、バリウム、及びマグネシウムからなる群より選択される少なくとも1種の金属を表す。)で表されることを特徴とする請求項4に記載の空気電池用触媒。
  9.  前記金属炭窒酸化物の金属がチタンであって、かつ粉末X線回折法(Cu-Kα線)によって測定した前記金属炭窒酸化物の結晶構造がルチル型結晶構造を含むことを特徴とする請求項7または請求項8のいずれかに記載の空気電池用触媒。
  10.  空気電池用負極がリチウム、アルミニウム、マグネシウム、カルシウム、亜鉛、それらと他の金属との合金またはそれらがカーボン等にインターカレーションされたものであることを特徴とする請求項1~10のいずれかに記載の空気電池用触媒。
  11.  請求項1~10のいずれかに記載の触媒を用いることを特徴とする空気二次電池。
PCT/JP2010/054442 2009-03-18 2010-03-16 空気電池用触媒およびそれを用いた空気電池 WO2010107028A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117024194A KR101256327B1 (ko) 2009-03-18 2010-03-16 공기 전지용 촉매 및 그것을 사용한 공기 전지
CN2010800122723A CN102356507A (zh) 2009-03-18 2010-03-16 空气电池用催化剂和使用该催化剂的空气电池
JP2011504848A JP5606431B2 (ja) 2009-03-18 2010-03-16 空気電池用触媒およびそれを用いた空気電池
US13/257,218 US9236641B2 (en) 2009-03-18 2010-03-16 Air battery catalyst and air battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-065383 2009-03-18
JP2009065383 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010107028A1 true WO2010107028A1 (ja) 2010-09-23

Family

ID=42739688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054442 WO2010107028A1 (ja) 2009-03-18 2010-03-16 空気電池用触媒およびそれを用いた空気電池

Country Status (6)

Country Link
US (1) US9236641B2 (ja)
JP (1) JP5606431B2 (ja)
KR (1) KR101256327B1 (ja)
CN (1) CN102356507A (ja)
TW (1) TW201105415A (ja)
WO (1) WO2010107028A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023018A1 (en) * 2010-08-17 2012-02-23 Toyota Jidosha Kabushiki Kaisha Air electrode for metal-air battery, and metal-air battery including the air electrode
JP2013038083A (ja) * 2011-01-14 2013-02-21 Showa Denko Kk 燃料電池用電極触媒およびその用途
WO2013035291A1 (ja) * 2011-09-06 2013-03-14 パナソニック株式会社 半導体材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
CN103370831A (zh) * 2011-02-16 2013-10-23 富士通株式会社 空气二次电池
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
US9748580B2 (en) 2011-03-24 2017-08-29 Yokohama National University Oxygen reduction catalyst and method for producing the same
CN114373941A (zh) * 2022-01-19 2022-04-19 一汽解放汽车有限公司 一种改性抗反极催化剂及其制备方法与应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070239B2 (ja) * 2012-02-22 2017-02-01 日産自動車株式会社 空気電池
CN104518225B (zh) * 2013-09-29 2017-01-18 中国科学院大连化学物理研究所 一种锂空气电池用多孔碳材料及其制备和应用
US9780386B2 (en) * 2014-08-08 2017-10-03 Samsung Electronics Co., Ltd. Composite for lithium air battery, method of preparing the composite, and lithium air battery employing positive electrode including the composite
CN104505522B (zh) * 2014-12-31 2017-05-03 东莞市迈科科技有限公司 一种锂空气电池用镧镍复合氧化物催化剂的水热制备方法
KR20170094941A (ko) * 2016-02-12 2017-08-22 주식회사 이엠따블유에너지 공기-아연 이차전지
TWI550936B (zh) * 2016-02-18 2016-09-21 財團法人工業技術研究院 金屬空氣液流二次電池
US20190109330A1 (en) * 2017-10-09 2019-04-11 Uchicago Argonne, Llc Thin-film catalyst with enhanced catalyst-support interactions
CN109037703A (zh) * 2018-07-02 2018-12-18 河南师范大学 一种表面具有褶皱精细纳米组装结构的双功能电催化剂的制备方法及其在锌空电池中的应用
CN109037710A (zh) * 2018-07-02 2018-12-18 河南师范大学 一种锌空电池催化剂的制备方法及其在催化orr、oer和her反应中的应用
CN109037709A (zh) * 2018-07-03 2018-12-18 河南师范大学 一种电催化剂镍、钴、磷共掺杂碳材料的制备方法及其在锌-空气电池中的应用
JP7317904B2 (ja) 2020-09-03 2023-07-31 インディアン オイル コーポレイション リミテッド 酸化還元バッファー金属酸化物を含む二機能性空気電極用の電極触媒組成物
CN112467149A (zh) * 2020-11-26 2021-03-09 洪华军 一种基于Ti/Mn-MOF制备的大孔C/TixMnyO2正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161203A (ja) * 2003-12-02 2005-06-23 Japan Science & Technology Agency 金属オキシナイトライド電極触媒
WO2006019128A1 (ja) * 2004-08-19 2006-02-23 Japan Science And Technology Agency 金属酸化物電極触媒
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009107518A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1667432A1 (de) 1966-11-25 1971-07-08 Centre Nat Rech Scient Neues Verfahren zur Herstellung von einfachen oder gemischten Carbonitriden oder Oxycarbonitriden von UEbergangsmetallen und neue Metallcarbonitride oder -oxycarbonitride,die diese Metalle enthalten
US3899357A (en) * 1971-02-11 1975-08-12 Us Army Electrodes including mixed transition metal oxides
JPH02257577A (ja) 1989-03-30 1990-10-18 Mitsui Eng & Shipbuild Co Ltd 金属―空気2次電池
JP2003012375A (ja) 2001-06-29 2003-01-15 Sumitomo Special Metals Co Ltd セラミックス焼結体および磁気ヘッドスライダ
JP2003200051A (ja) 2001-12-28 2003-07-15 Sony Corp 酸素酸化還元デバイス用触媒及びそれを用いた電極
JP4187479B2 (ja) 2002-08-15 2008-11-26 旭化成ケミカルズ株式会社 電極触媒
JP5023936B2 (ja) 2006-10-06 2012-09-12 株式会社豊田中央研究所 正極用触媒及びリチウム空気二次電池
JP5277642B2 (ja) 2007-03-29 2013-08-28 株式会社豊田中央研究所 空気電池
JP4458117B2 (ja) 2007-06-01 2010-04-28 株式会社豊田中央研究所 非水系空気電池及びその触媒
CN101918134B (zh) * 2008-01-18 2013-09-18 昭和电工株式会社 催化剂及其制造方法以及其用途
WO2009119523A1 (ja) * 2008-03-24 2009-10-01 昭和電工株式会社 触媒及びその製造方法ならびにその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161203A (ja) * 2003-12-02 2005-06-23 Japan Science & Technology Agency 金属オキシナイトライド電極触媒
WO2006019128A1 (ja) * 2004-08-19 2006-02-23 Japan Science And Technology Agency 金属酸化物電極触媒
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009107518A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIRO OGI ET AL.: "Bubun Sanka shita Sen'i Kinzoku Tanchikkabutsu no Sanso Kangen Shokubaino", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 74 KAI TAIKAI KOEN YOSHISHU, 29 March 2007 (2007-03-29), pages 94 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043568A (ja) * 2010-08-17 2012-03-01 Toyota Motor Corp 金属空気電池用空気極、及び当該空気極を備える金属空気電池
WO2012023018A1 (en) * 2010-08-17 2012-02-23 Toyota Jidosha Kabushiki Kaisha Air electrode for metal-air battery, and metal-air battery including the air electrode
JP2013038083A (ja) * 2011-01-14 2013-02-21 Showa Denko Kk 燃料電池用電極触媒およびその用途
CN105449228B (zh) * 2011-01-14 2018-02-16 昭和电工株式会社 燃料电池用电极催化剂的制造方法、燃料电池用电极催化剂和其用途
CN105449228A (zh) * 2011-01-14 2016-03-30 昭和电工株式会社 燃料电池用电极催化剂的制造方法、燃料电池用电极催化剂和其用途
US9350025B2 (en) 2011-01-14 2016-05-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
CN103370831A (zh) * 2011-02-16 2013-10-23 富士通株式会社 空气二次电池
US9748580B2 (en) 2011-03-24 2017-08-29 Yokohama National University Oxygen reduction catalyst and method for producing the same
WO2013035291A1 (ja) * 2011-09-06 2013-03-14 パナソニック株式会社 半導体材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
US9630169B2 (en) 2011-09-06 2017-04-25 Panasonic Corporation Semiconductor material, optical hydrogen generating device using same, and method of producing hydrogen
US9433933B2 (en) 2012-01-18 2016-09-06 Nitto Denko Corporation Titania photocatalytic compounds and methods of making the same
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
CN114373941A (zh) * 2022-01-19 2022-04-19 一汽解放汽车有限公司 一种改性抗反极催化剂及其制备方法与应用
CN114373941B (zh) * 2022-01-19 2024-01-02 一汽解放汽车有限公司 一种改性抗反极催化剂及其制备方法与应用

Also Published As

Publication number Publication date
TW201105415A (en) 2011-02-16
KR20110138380A (ko) 2011-12-27
CN102356507A (zh) 2012-02-15
JPWO2010107028A1 (ja) 2012-09-20
JP5606431B2 (ja) 2014-10-15
US20120003548A1 (en) 2012-01-05
KR101256327B1 (ko) 2013-04-18
US9236641B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5606431B2 (ja) 空気電池用触媒およびそれを用いた空気電池
JP5411123B2 (ja) 燃料電池用触媒およびその製造方法ならびにその用途
JP5462150B2 (ja) 触媒及びその製造方法ならびにその用途
Black et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries.
JP5578849B2 (ja) 触媒およびその製造方法ならびにその用途
JP5495798B2 (ja) 触媒およびその製造方法ならびにその用途
JP5475245B2 (ja) 触媒およびその製造方法ならびにその用途
WO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
JP5468416B2 (ja) リチウム空気二次電池及びその空気極作製方法
CN113412155B (zh) 氧催化剂和使用该氧催化剂的电极
WO2009091047A1 (ja) 触媒およびその製造方法ならびにその用途
JP5037696B2 (ja) 触媒およびその製造方法ならびにその用途
WO2011049173A1 (ja) 直接液体型燃料電池用触媒および該触媒を用いた燃料電池
JP5419864B2 (ja) 燃料電池用触媒の製造方法および燃料電池用触媒
JP5537433B2 (ja) 触媒およびその製造方法ならびにその用途
JP2017037814A (ja) リチウム空気二次電池
JP2017103002A (ja) リチウム空気二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012272.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504848

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024194

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10753520

Country of ref document: EP

Kind code of ref document: A1