WO2011049173A1 - 直接液体型燃料電池用触媒および該触媒を用いた燃料電池 - Google Patents

直接液体型燃料電池用触媒および該触媒を用いた燃料電池 Download PDF

Info

Publication number
WO2011049173A1
WO2011049173A1 PCT/JP2010/068609 JP2010068609W WO2011049173A1 WO 2011049173 A1 WO2011049173 A1 WO 2011049173A1 JP 2010068609 W JP2010068609 W JP 2010068609W WO 2011049173 A1 WO2011049173 A1 WO 2011049173A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
catalyst
oxygen
liquid fuel
oxide
Prior art date
Application number
PCT/JP2010/068609
Other languages
English (en)
French (fr)
Inventor
建燦 李
涼子 今田
安顕 脇坂
隆二 門田
利一 獅々倉
健一郎 太田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2011537305A priority Critical patent/JPWO2011049173A1/ja
Publication of WO2011049173A1 publication Critical patent/WO2011049173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst for a direct liquid fuel cell and a fuel cell using the catalyst.
  • Direct liquid fuel cells that use liquid fuels such as methanol, ethanol, formic acid, 2-propanol, and dimethyl ether as direct fuel are simple in structure and easy to handle. Application to distributed power sources is expected.
  • the direct liquid fuel cell has, for example, a structure in which a proton conductive polymer electrolyte membrane is sandwiched between an anode (fuel electrode) and a cathode (air electrode).
  • anode fuel electrode
  • cathode air electrode
  • the direct liquid fuel cell has a problem that due to the crossover of the liquid fuel, the potential at the cathode decreases with a decrease in the fuel utilization rate, and the energy conversion efficiency of the cell significantly decreases.
  • the liquid fuel crossover is a phenomenon in which the liquid fuel moves from the anode to the cathode through the polymer electrolyte membrane. Since the liquid fuel that has reached the cathode is directly oxidized on the surface of the cathode catalyst, the potential at the cathode is lowered.
  • a platinum catalyst or a platinum alloy catalyst is used as a cathode catalyst of a direct liquid fuel cell.
  • a platinum catalyst or a platinum alloy catalyst has high activity and high stability.
  • the platinum catalyst or the platinum alloy catalyst not only shows high catalytic activity for the oxygen reduction reaction but also shows high catalytic activity for the oxidation reaction of the liquid fuel described above. It also promotes the oxidation reaction of the liquid fuel.
  • the oxygen reduction potential at the cathode is significantly reduced because it forms a mixed potential with the oxidation potential of the liquid fuel.
  • a direct liquid fuel cell uses a larger amount of platinum catalyst than a fuel cell using hydrogen in order to promote a reaction at the anode and to suppress a potential drop at the cathode due to a fuel crossover. Yes.
  • platinum is expensive and has a limited amount of resources, there is a strong demand for the development of an alternative direct liquid fuel cell catalyst.
  • Non-Patent Document 4 uses a large amount of expensive noble metals such as palladium and iridium, which is economically disadvantageous.
  • the catalyst disclosed in Non-Patent Document 4 does not use a noble metal and is inexpensive, but has a problem that a practically sufficient oxygen reducing ability is not obtained as a catalyst.
  • Patent Document 5 uses an inexpensive zirconium (Zr) -based oxide, a practically sufficient oxygen reduction ability as a catalyst has not been obtained.
  • Non-Patent Document 5 reports that a zirconium-based ZrO x N y compound exhibits oxygen reducing ability.
  • Patent Document 6 discloses an oxygen reduction electrode material containing a nitride of one or more elements selected from the group of elements of Group 4, Group 5 and Group 14 of the long periodic table as a platinum substitute material.
  • Patent Document 7 discloses a carbonitride oxide obtained by mixing carbide, oxide and nitride and heating at 500 to 1500 ° C. in a vacuum, inert or non-oxidizing atmosphere.
  • Patent Document 7 is a thin film magnetic head ceramic substrate material, and the use of this oxycarbonitride as a catalyst has not been studied.
  • platinum is useful not only as a catalyst for the fuel cell, but also as an exhaust gas treatment catalyst or an organic synthesis catalyst, platinum is expensive and has limited resources. There has been a demand for the development of a catalyst that can be used in various applications.
  • the platinum catalyst or platinum alloy catalyst has high performance to promote the oxidation reaction of liquid fuels such as methanol, ethanol, formic acid, 2-propanol and dimethyl ether, thereby suppressing the decrease in cathode potential due to crossover of liquid fuel. Very difficult to do.
  • the present invention is a direct liquid fuel cell that directly supplies liquid fuels such as methanol, ethanol, formic acid, 2-propanol, and dimethyl ether, and is capable of suppressing a decrease in cathode potential due to crossover of the liquid fuel.
  • the object is to provide a catalyst for a liquid fuel cell.
  • a catalyst composed of a metal carbonitride containing niobium and / or titanium is liquid when used directly in a liquid fuel cell. It has been found that the cathode potential can be prevented from lowering due to fuel crossover, and is inexpensive and has high performance, and the present invention has been completed.
  • the present invention relates to the following (1) to (14), for example.
  • a catalyst for a direct liquid fuel cell comprising a metal carbonitride containing niobium and / or titanium.
  • the catalyst for direct liquid fuel cell according to (3) or (4).
  • the catalyst for direct liquid fuel cell according to (1) or (2) comprising a metal carbonitride containing titanium and at least one metal M2 other than titanium.
  • At least one metal M2 selected from the group consisting of calcium, strontium, yttrium, ruthenium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium
  • (7) or (8) characterized in that the catalyst for direct liquid fuel cell.
  • a catalyst layer for a direct liquid fuel cell comprising the catalyst according to any one of (9) to (9).
  • a direct liquid fuel cell electrode having a direct liquid fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is for the direct liquid fuel cell according to (10) or (11) An electrode for a direct liquid fuel cell, which is a catalyst layer.
  • a membrane electrode assembly for a direct liquid fuel cell having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is a direct liquid according to (12)
  • a membrane electrode assembly for a direct liquid fuel cell characterized by being an electrode for a fuel cell.
  • a direct liquid fuel cell comprising the membrane electrode assembly for a direct liquid fuel cell according to (13).
  • FIG. 1 shows current-potential curves for an electrode using a catalyst that is active for oxidation of liquid fuel when the liquid fuel is present in the electrolyte (Lf) and when no liquid fuel is present (Lo). It is an example of the graph compared.
  • FIG. 2 is a cyclic voltammogram when methanol is present in the sulfuric acid electrolyte for an electrode using a platinum catalyst.
  • FIG. 3 is a cyclic voltammogram of the electrode using a platinum catalyst when methanol is not present in the sulfuric acid electrolyte.
  • FIG. 4 is a graph comparing the oxygen reducing ability of an electrode using a platinum catalyst when methanol is present in the sulfuric acid electrolyte and when methanol is not present.
  • FIG. 1 shows current-potential curves for an electrode using a catalyst that is active for oxidation of liquid fuel when the liquid fuel is present in the electrolyte (Lf) and when no liquid fuel is present (Lo). It is an example of
  • FIG. 5 is an example of a cyclic voltammogram when methanol is present in the sulfuric acid electrolyte for an electrode using the catalyst according to the present invention.
  • FIG. 6 is an example of a cyclic voltammogram of the electrode using the catalyst according to the present invention when methanol is not present in the sulfuric acid electrolyte.
  • FIG. 7 is an example of a graph in which the oxygen reduction ability of the electrode using the catalyst according to the present invention is compared and evaluated when methanol is present in the sulfuric acid electrolyte and when methanol is not present.
  • FIG. 8 is a powder X-ray diffraction spectrum of the catalyst (1) of Example 1.
  • FIG. 9 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (1-1) of Example 1.
  • FIG. 10 is a graph in which the oxygen reducing ability of the fuel cell electrode (1-1) of Example 1 in the presence of methanol in the sulfuric acid aqueous solution and in the absence of methanol are compared and evaluated.
  • FIG. 11 is a graph comparing the oxygen reducing ability of the fuel cell electrode (1-2) of Example 1 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 12 is a graph in which the oxygen reducing ability of the fuel cell electrode (1-3) of Example 1 in the case where formic acid is present in the sulfuric acid aqueous solution and in the case where no formic acid is present is compared and evaluated.
  • FIG. 13 is a powder X-ray diffraction spectrum of the catalyst (2) of Example 2.
  • FIG. 14 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (2-1) of Example 2.
  • FIG. 15 is a graph comparing the oxygen reducing ability of the fuel cell electrode (2-1) of Example 2 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 16 is a graph comparing the oxygen reducing ability of the fuel cell electrode (2-2) of Example 2 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 17 is a graph in which the oxygen reducing ability of the fuel cell electrode (2-3) of Example 2 in a case where formic acid is present in a sulfuric acid aqueous solution and in the case where no formic acid is present is compared and evaluated.
  • FIG. 18 is a graph comparing the oxygen reducing ability of the fuel cell electrode (C1-1) of Comparative Example 1 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 19 is a graph in which the oxygen reducing ability of the fuel cell electrode (C1-2) of Comparative Example 1 is compared and evaluated in the case where ethanol is present in the sulfuric acid aqueous solution and in the case where ethanol is not present.
  • FIG. 1 is a graph in which the oxygen reducing ability of the fuel cell electrode (2-3) of Example 2 in a case where formic acid is present in a sulfuric acid aqueous solution and in the case where no formic acid is present is compared and evaluated.
  • FIG. 18 is
  • FIG. 20 is a graph in which the oxygen reducing ability of the fuel cell electrode (C1-3) of Comparative Example 1 in the presence of formic acid in the sulfuric acid aqueous solution and in the absence of formic acid are evaluated by comparison.
  • FIG. 21 is the powder X-ray diffraction spectrum of the catalyst (3) of Example 3.
  • FIG. 22 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (3-1) of Example 3.
  • FIG. 23 is a graph comparing the oxygen reducing ability of the fuel cell electrode (3-1) of Example 3 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 24 is a graph comparing the oxygen reducing ability of the fuel cell electrode (3-2) of Example 3 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 25 is a graph in which the oxygen reducing ability of the fuel cell electrode (3-3) of Example 3 in the case where formic acid is present in the sulfuric acid aqueous solution and in the case where no formic acid is present is compared and evaluated.
  • FIG. 26 is the powder X-ray diffraction spectrum of the catalyst (4) of Example 4.
  • FIG. 27 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (4-1) of Example 4.
  • FIG. 28 is a graph comparing the oxygen reducing ability of the fuel cell electrode (4-1) of Example 4 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 29 is a graph comparing the oxygen reducing ability of the fuel cell electrode (4-2) of Example 4 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 30 is a graph comparing the oxygen reducing ability of the fuel cell electrode (4-3) of Example 4 when the formic acid is present in the sulfuric acid aqueous solution and when the formic acid is absent.
  • FIG. 31 is the powder X-ray diffraction spectrum of the catalyst (5) of Example 5.
  • FIG. 32 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (5-1) of Example 5.
  • FIG. 33 is a graph comparing the oxygen reducing ability of the fuel cell electrode (5-1) of Example 5 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 34 is a graph comparing the oxygen reducing ability of the fuel cell electrode (5-2) of Example 5 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 35 is a graph in which the oxygen reducing ability of the fuel cell electrode (5-3) of Example 5 in a case where formic acid is present in a sulfuric acid aqueous solution and in a case where formic acid is absent is compared and evaluated.
  • FIG. 33 is a graph comparing the oxygen reducing ability of the fuel cell electrode (5-1) of Example 5 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 34 is a
  • FIG. 36 is the powder X-ray diffraction spectrum of the catalyst (6) of Example 6.
  • FIG. 37 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (6-1) of Example 6.
  • FIG. 38 is a graph comparing the oxygen reducing ability of the fuel cell electrode (6-1) of Example 6 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 39 is a graph comparing the oxygen reducing ability of the fuel cell electrode (6-2) of Example 6 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 40 is a graph comparing the oxygen reducing ability of the fuel cell electrode (6-3) of Example 6 when the formic acid is present in the aqueous sulfuric acid solution and when the formic acid is absent.
  • FIG. 41 is the powder X-ray diffraction spectrum of the catalyst (7) of Example 7.
  • FIG. 42 is a graph showing an evaluation of the oxygen reducing ability of the fuel cell electrode (7-1) of Example 7.
  • FIG. 43 is a graph comparing the oxygen reducing ability of the fuel cell electrode (7-1) of Example 7 when methanol is present in the sulfuric acid aqueous solution and when methanol is not present.
  • FIG. 44 is a graph comparing the oxygen reducing ability of the fuel cell electrode (7-2) of Example 7 when ethanol is present in the sulfuric acid aqueous solution and when ethanol is not present.
  • FIG. 45 is a graph comparing the oxygen reducing ability of the fuel cell electrode (7-3) of Example 7 when the formic acid is present in the sulfuric acid aqueous solution and when the formic acid is absent.
  • the direct liquid fuel cell catalyst of the present invention is characterized by comprising a metal carbonitride containing niobium and / or titanium.
  • an electrolyte is sandwiched between a cathode and an anode, a liquid fuel containing hydrogen is supplied to the anode, and oxygen or a gas containing oxygen (for example, air) is supplied to the cathode.
  • oxygen or a gas containing oxygen for example, air
  • liquid fuel used in the direct liquid fuel cell examples include those containing a carbon atom and a hydrogen atom in the chemical structure such as alcohols, ethers and acids.
  • the alcohols include methanol, ethanol, and 2-propanol.
  • Specific examples of the ethers include dimethyl ether.
  • a specific example of the acids is formic acid. Among these, methanol, ethanol, and formic acid are preferable. Such a liquid fuel tends to have high energy conversion efficiency in the fuel cell.
  • Examples of the electrolyte used in the direct liquid fuel cell include an acidic, neutral or alkaline electrolyte solution or a polymer membrane.
  • the catalyst of the present invention is composed of a metal carbonitride containing niobium and / or titanium, even if the liquid fuel is present at the cathode due to crossover, it is possible to suppress a decrease in cathode potential and reduce oxygen. It is excellent in performance and inexpensive.
  • the catalyst for direct liquid fuel cell of the present invention is preferably inert to the oxidation of liquid fuel.
  • the catalyst for direct liquid fuel cell is inactive against the oxidation of liquid fuel, even if the liquid fuel reaches the cathode due to crossover, the oxidation reaction of the liquid fuel does not occur on the cathode catalyst surface, and the cathode potential decreases. Can be suppressed.
  • the direct liquid fuel cell catalyst In general, the lower the activity of the direct liquid fuel cell catalyst with respect to the oxidation of the liquid fuel, the closer Lf and Lo in FIG. When completely inactive, Lf and Lo agree. In order to prevent the cathode potential from being lowered due to the crossover of the liquid fuel, it is preferable that the direct liquid fuel cell catalyst is inactive against the oxidation of the liquid fuel.
  • the catalyst for a direct liquid fuel cell is inactive against the oxidation of liquid fuel
  • the catalyst for a direct liquid fuel cell is inactive against the oxidation of liquid fuel
  • a potential at a current density of ⁇ 100 ⁇ A / cm 2 obtained by the following measurement method A1 (hereinafter referred to as “ E Fuel + Oxygen ”(refer to FIG. 1) and the electric potential at a current density of ⁇ 100 ⁇ A / cm 2 (hereinafter also referred to as“ E Oxygen ”; refer to FIG. 1) obtained by the following measurement method A2.
  • the oxygen reduction reaction In a current density -100 ⁇ A / cm 2, the oxygen reduction reaction is dominant, the potential at a current density -100 ⁇ A / cm 2, the oxygen reduction reaction in the mixing reaction between a fuel oxidation reaction and oxygen reduction reaction
  • the selectivity can be evaluated appropriately.
  • NAFION registered trademark
  • DE521 DuPont 5% NAFION (registered trademark) solution (DE521)
  • Measurement method A2 A current similar to measurement method A1 except that the 0.5 mol / L sulfuric acid aqueous solution containing 0.5 mol / L liquid fuel was changed to a 0.5 mol / L sulfuric acid aqueous solution not containing liquid fuel.
  • E Oxygen The potential at the current density of -100 ⁇ A / cm 2 due to the oxygen reduction reaction when measuring the potential curve is defined as E Oxygen .
  • E Fuel + Oxygen and E Oxygen are preferably 0.6 ⁇ (E Fuel + Oxygen / E Oxygen ) ⁇ 1, ⁇ more preferably from (E Fuel + Oxygen / E Oxygen ) ⁇ 1, particularly preferably 0.9 ⁇ (E Fuel + Oxygen / E Oxygen) ⁇ 1.
  • the direct liquid fuel cell catalyst of the present invention can suppress a decrease in cathode potential when E Fuel + Oxygen / E Oxygen is within the above range, and can be used as an oxygen reduction catalyst in a direct liquid fuel cell. It becomes a very useful catalyst.
  • the direct liquid fuel cell catalyst When the direct liquid fuel cell catalyst is active against the oxidation of the liquid fuel, the liquid fuel that has reached the cathode due to the crossover is oxidized at a potential higher than the theoretical oxidation potential.
  • the theoretical oxidation potential of methanol is 0.05 V
  • the direct liquid fuel cell catalyst is a platinum catalyst
  • the methanol reaching the cathode due to crossover is oxidized at a potential of about 0.4 V or more. This can be confirmed by comparing FIG. 2 with FIG.
  • FIG. 2 is a cyclic voltammogram of an electrode using a platinum catalyst when 0.5 mol / L methanol is present in a 0.5 mol / L sulfuric acid electrolyte in a saturated nitrogen gas atmosphere.
  • FIG. 3 is a cyclic voltammogram of an electrode using a platinum catalyst when methanol is not present in a 0.5 mol / L sulfuric acid electrolyte in a saturated nitrogen gas atmosphere.
  • a large oxidation current (anodic current) is observed from about 0.4 V (vs RHE). That is, it can be seen that methanol is oxidized from about 0.4 V on the platinum catalyst.
  • FIG. 4 shows a current-potential curve for evaluating oxygen reduction ability in the absence of methanol in a 0.5 mol / L sulfuric acid electrolyte in a saturated oxygen gas atmosphere for an electrode using a platinum catalyst, and in a saturated oxygen gas atmosphere. This is a comparison between a current-potential curve evaluated for oxygen reduction ability when 0.5 mol / L methanol is present in a 0.5 mol / L sulfuric acid electrolyte.
  • E Oxygen is 0.96 V (vs RHE)
  • E Fuel + Oxygen is 0.58 V (vs RHE).
  • E Fuel + Oxygen is significantly lower than E Oxygen because the activity of the platinum catalyst with respect to the methanol oxidation reaction is large. That is, in an electrode using a platinum catalyst, when a liquid fuel such as methanol is present in the electrolyte, the oxygen reducing ability is significantly reduced.
  • the cathode catalyst is preferably a catalyst in which E Fuel + Oxygen and E Oxygen show close values.
  • FIG. 5 is an example of a cyclic voltammogram in the case where 0.5 mol / L methanol is present in a 0.5 mol / L sulfuric acid electrolyte in a saturated nitrogen gas atmosphere for an electrode using the catalyst according to the present invention.
  • FIG. 6 is an example of a cyclic voltammogram of the electrode using the catalyst according to the present invention when methanol is not present in a 0.5 mol / L sulfuric acid electrolyte in a saturated nitrogen gas atmosphere.
  • the cyclic voltammogram in FIG. 5 Unlike the cyclic voltammogram (relationship between FIG. 2 and FIG. 3) of the platinum catalyst that is active in the oxidation of methanol, the cyclic voltammogram in FIG. 5 and the cyclic voltammogram in FIG. That is, when the catalyst according to the present invention is inactive against oxidation of liquid fuel such as methanol, no oxidation current due to methanol oxidation is observed in the cyclic voltammogram.
  • FIG. 7 shows the current evaluated for the oxygen reduction ability when 0.5 mol / L methanol was present in 0.5 mol / L sulfuric acid electrolyte in a saturated oxygen gas atmosphere for the electrode using the catalyst according to the present invention. It is an example which contrasted the electric potential curve and the electric current-potential curve which evaluated the oxygen reduction ability when methanol does not exist in the 0.5 mol / L sulfuric acid electrolyte in saturated oxygen gas atmosphere.
  • the direct liquid fuel cell has a tendency to suppress the oxidation reaction of the liquid fuel and selectively reduce oxygen, thereby improving the performance of the direct liquid fuel cell. be able to.
  • the cathode catalyst in a direct liquid fuel cell is usually in contact with an acidic or alkaline polymer electrolyte and reduces the supplied oxygen.
  • the oxygen reduction catalytic ability is evaluated mainly by using a sulfuric acid electrolyte as the electrolyte and bringing the catalyst into contact with the electrolyte to simulate the state of the cathode catalyst in the direct liquid fuel cell. Yes.
  • the direct liquid fuel cell catalyst layer of the present invention formed using the above catalyst is preferably used at a potential of 0.4 V (vs. RHE) or higher in the acidic electrolyte, and the upper limit of the potential is It depends on the stability and can be used up to approximately 1.23 V (vs. RHE) of the potential at which oxygen is generated.
  • the catalyst for a direct liquid fuel cell of the present invention is composed of a metal carbonitride oxide (hereinafter also referred to as “metal carbonitride oxide 1”) containing niobium and at least one metal M1 other than niobium. Is preferred.
  • the metal M1 examples include tin, indium, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, yttrium, ruthenium, lanthanum, cerium, praseodymium, It is preferably at least one metal selected from the group consisting of neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel. Among these, at least one metal selected from the group consisting of iron, tin, indium, tantalum, manganese, cerium, chromium and cobalt is particularly preferable.
  • Such a catalyst comprising a metal carbonitride containing a metal is applied directly to a liquid fuel cell, it can suppress a decrease in cathode potential due to crossover, has excellent redox ability, and is inexpensive.
  • composition formula Nb a M1 b C x N y O z in x, y and z are, 0.01 ⁇ x ⁇ 2,0.01 ⁇ y ⁇ 2,0.05 ⁇ z ⁇ 3, and 0.07 ⁇ It is more preferable that x + y + z ⁇ 5.
  • the ratio of the number of atoms is in the above range because the catalyst composed of the metal carbonitride oxide 1 has a high effect of suppressing the decrease in cathode potential and the oxygen reducing ability tends to be high.
  • the catalyst composed of the metal carbonitride oxide 1 of the present invention is one in which at least niobium, metal M1, carbon, nitrogen and oxygen are detected when elemental analysis of the catalyst is performed, and a single compound, Or it could be a mixture. That is, the catalyst composed of the metal oxycarbonitride 1 of the present invention is a compound whose composition formula is represented by Nb a M1 b C x N y O z , an oxide of the metal M1, a carbide of the metal M1, or a metal M1 nitride, metal M1 carbonitride, metal M1 carbonate, metal M1 nitride, niobium oxide, niobium carbide, niobium nitride, niobium carbonitride, niobium carbonate, Niobium nitride oxide, oxide containing metal M1 and niobium, carbide containing metal M1 and niobium, nitride containing metal M1
  • the metal carbonitride oxide 1 is measured by powder X-ray diffraction (Cu-K line)
  • a diffraction line peak means a peak obtained with a specific diffraction angle and diffraction intensity when a sample (crystalline) is irradiated with X-rays at various angles.
  • a signal that can be detected when the ratio (S / N) of the signal (S) to the noise (N) is 2 or more is regarded as one diffraction line peak.
  • the noise (N) is the width of the baseline.
  • X-ray diffraction measurement apparatus for example, a powder X-ray analysis apparatus: Rigaku RAD-RX can be used.
  • the measurement conditions are X-ray output (Cu-K line): 50 kV, 180 mA, scanning Shaft: ⁇ / 2 ⁇ , measurement range (2 ⁇ ): 10 ° to 89.98 °, measurement mode: FT, read width: 0.02 °, sampling time: 0.70 seconds, DS, SS, RS: 0.5 °, 0.5 °, 0.15 mm, Gonometer radius: 185 mm.
  • the metal carbonitride oxide 1 is a mixture of several phases, and when the metal carbonitride oxide 1 is measured by a powder X-ray diffraction method (Cu—K line), Nb 12 O 29 It is preferable that a peak derived from is observed. In addition, peaks derived from oxides such as NbO, NbO 2 , Nb 2 O 5 , Nb 25 O 62 , Nb 47 O 116 , and Nb 22 O 54 may be observed.
  • the structure of the metal carbonitride oxide 1 is not clear, it is considered that a phase composed of an oxide such as Nb 12 O 29 having oxygen defects exists in the metal carbonitride oxide 1. Normally, single Nb 12 O 29 does not exhibit a high oxygen reducing ability, but the metal carbonitride oxide 1 has a phase composed of an oxide such as Nb 12 O 29 having an oxygen defect. The inventors presume that the resulting catalyst has a high oxygen reducing ability.
  • Nb 12 O 29 having an oxygen defect when Nb 12 O 29 having an oxygen defect is regarded as one unit, oxygen is bridged (Nb—O—O—Nb) between Nb and Nb of each unit. It is thought that there is. Although the mechanism of the expression of oxygen reducing ability is not clear, it is presumed that Nb contributing to the bridge coordination (Nb—O—O—Nb) becomes an active site and oxygen reducing ability is expressed. When Nb 12 O 29 having oxygen defects overlaps in each unit, the coupling distance between Nb and Nb between the units is shortened. It is considered that the oxygen reduction ability is improved as the portion having a shorter bond distance is increased.
  • an additive for imparting conductivity may be blended.
  • electron conductive particles such as carbon black represented by Vulcan XC72, Ketjen Black and the like are blended.
  • the catalyst composed of the metal oxycarbonitride 1 of the present invention detects carbon when elemental analysis is performed without blending such conductive particles such as carbon black.
  • the catalyst for a direct liquid fuel cell of the present invention comprises a metal carbonitride (hereinafter also referred to as “metal carbonitride 2”) containing titanium and at least one metal M2 other than titanium. Is preferred.
  • the metal M2 is at least one selected from the group consisting of calcium, strontium, yttrium, ruthenium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • a seed metal is preferred.
  • at least one metal selected from the group consisting of samarium, praseodymium, neodymium, dysprosium, erbium, strontium, calcium and lanthanum is particularly preferable.
  • Such a catalyst comprising a metal carbonitride containing a metal is applied directly to a liquid fuel cell, it can suppress a decrease in cathode potential due to crossover, has excellent redox ability, and is inexpensive.
  • composition formula Ti a M2 b C x N y O z in x, y and z are, 0.01 ⁇ x ⁇ 2,0.01 ⁇ y ⁇ 2,0.01 ⁇ z ⁇ 3, and at x + y + z ⁇ 5 More preferably.
  • the catalyst composed of the metal oxycarbonitride 2 has a high effect of suppressing the decrease in cathode potential, and the oxygen reducing ability tends to be high, which is preferable.
  • the catalyst composed of the metal carbonitride oxide 2 of the present invention is one in which at least titanium, metal M2, carbon, nitrogen and oxygen are detected when elemental analysis of the catalyst is performed, and a single compound, Or it could be a mixture.
  • the metal oxycarbonitride 2 used in the present invention is considered to have at least the crystal structure of the oxide as the crystalline component. That is, there is a possibility that the compound (1) is a compound in which part of oxygen in the rutile oxide is replaced with carbon or nitrogen. Alternatively, an oxide composed of titanium and oxygen (an oxide that may contain oxygen defects) may be a mixture (2) of a crystalline compound and an amorphous compound composed of carbon and nitrogen. . Further, it may be a mixture of the compound (1) and the mixture (2), but it is technically difficult to separate and identify them.
  • an additive for imparting conductivity may be blended.
  • electron conductive particles such as carbon black represented by Vulcan XC72, Ketjen Black and the like are blended.
  • carbon is detected when elemental analysis is performed without blending such conductive particles such as carbon black.
  • the method for producing the above direct liquid fuel cell catalyst is not particularly limited.
  • niobium and / or titanium-containing metal carbonitride is heated in an inert gas containing oxygen gas, thereby allowing niobium and / or
  • the manufacturing method including the process of obtaining the metal carbonitrous oxide containing titanium is mentioned.
  • a catalyst comprising a metal oxycarbonitride obtained by such a production method can suppress a decrease in cathode potential due to a crossover when applied directly to a liquid fuel cell, is excellent in redox ability, and is inexpensive. .
  • Metal carbonitride 1 tin, indium, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium , Mercury, plutonium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel
  • metal carbonitride 1 containing metal M1 and niobium
  • Examples include a production method including a step of obtaining at least one metal M1 selected from the group consisting of dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel and a metal carbonitride oxide 1 containing niobium.
  • the metal carbon is obtained by heating a mixture of the metal M1 oxide, niobium oxide and carbon in a nitrogen atmosphere or an inert gas containing nitrogen gas.
  • the compound containing the metal M1 for example, organic acid salt, chloride, carbide, nitride, complex, etc.
  • a mixture of niobium carbide and niobium nitride is added in an inert
  • the raw material is not particularly limited, and for example, the raw materials in the production methods (i) to (iv) and other raw materials can be used in combination.
  • the method (v) for producing the metal carbonitride 1 by heating the mixture thus combined in an inert gas such as nitrogen gas may be used.
  • Production method (i) is a method of producing metal carbonitride 1 by heating a mixture of the metal M1 oxide, niobium oxide and carbon in an inert gas containing nitrogen atmosphere or nitrogen gas. is there.
  • the heating temperature for producing the metal carbonitride 1 is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, the sintering tends to be easy.
  • the raw metal M1 oxides are tin oxide, indium oxide, tantalum oxide, zirconium oxide, copper oxide, iron oxide, tungsten oxide, chromium oxide, molybdenum oxide, hafnium oxide, titanium oxide, vanadium oxide, cobalt oxide, manganese oxide.
  • One or more oxides of the metal M1 can be used.
  • Examples of the raw material niobium oxide include NbO, NbO 2 and Nb 2 O 5 .
  • the raw material carbon examples include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot is preferably used.
  • Metal oxycarbonitride obtained by heating metal carbonitride 1 obtained from oxide of metal M1, niobium oxide and carbon in an inert gas containing oxygen gas, using any of the above raw materials
  • the catalyst consisting of 1 can suppress a decrease in cathode potential due to crossover, has excellent redox ability, and is inexpensive.
  • the compounding amount (molar ratio) is usually 0.01 to 10 mol of the oxide of the metal M1 and 1 to 10 mol of carbon, and preferably 1 mol of niobium oxide with respect to 1 mol of niobium oxide.
  • the metal M1 oxide is 0.01 to 4 mol and carbon is 2 to 6 mol.
  • the production method (ii) is a method for producing the metal carbonitride 1 by heating a mixture of the metal M1 oxide, niobium carbide and niobium nitride in an inert gas such as nitrogen gas.
  • the heating temperature for producing the metal carbonitride 1 is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, the sintering tends to be easy.
  • the metal M1 oxide, niobium carbide and niobium nitride are used as the raw material.
  • the raw metal M1 oxides are tin oxide, indium oxide, tantalum oxide, zirconium oxide, copper oxide, iron oxide, tungsten oxide, chromium oxide, molybdenum oxide, hafnium oxide, titanium oxide, vanadium oxide, cobalt oxide, manganese oxide.
  • metal M1 oxides can be used.
  • NbC etc. are mentioned as a raw material niobium carbide.
  • Examples of the raw material niobium nitride include NbN.
  • Metal oxycarbonitride obtained by heating metal carbonitride 1 obtained from oxide of metal M1, niobium carbide and niobium nitride in an inert gas containing oxygen, regardless of which raw material is used When applied to a direct liquid fuel cell, the catalyst consisting of 1 can suppress a decrease in cathode potential due to crossover, has excellent redox ability, and is inexpensive.
  • the compounding amount (molar ratio) of the metal M1 oxide, niobium carbide and niobium nitride is controlled, an appropriate metal carbonitride 1 can be obtained.
  • the compounding amount (molar ratio) is usually 0.01 to 500 mol of niobium carbide (NbC) and 0.01 to 50 mol of the metal M1 oxide with respect to 1 mol of niobium nitride (NbN).
  • niobium carbide (NbC) is 0.1 to 300 mol and the metal M1 oxide is 0.1 to 30 mol with respect to 1 mol of niobium nitride (NbN).
  • Production method (iii) is a method for producing metal carbonitride 1 by heating a mixture of the metal M1 oxide, niobium carbide, niobium nitride and niobium oxide in an inert gas such as nitrogen gas. .
  • the heating temperature for producing the metal carbonitride 1 is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, the sintering tends to be easy.
  • the metal M1 oxide, niobium carbide, niobium nitride and niobium oxide are used as the raw material.
  • the raw metal M1 oxides are tin oxide, indium oxide, tantalum oxide, zirconium oxide, copper oxide, iron oxide, tungsten oxide, chromium oxide, molybdenum oxide, hafnium oxide, titanium oxide, vanadium oxide, cobalt oxide, manganese oxide.
  • One or more oxides of the metal M1 can be used.
  • NbC etc. are mentioned as a raw material niobium carbide.
  • Examples of the raw material niobium nitride include NbN.
  • Examples of the raw material niobium oxide include NbO, NbO 2 and Nb 2 O 5 .
  • the metal obtained by heating the metal carbonitride 1 obtained from the oxide, niobium carbide, niobium nitride and niobium oxide of the metal M1 in an inert gas containing oxygen gas When applied directly to a liquid fuel cell, the catalyst composed of carbonitride oxide 1 can suppress a decrease in cathode potential due to crossover, is excellent in redox ability, and is inexpensive.
  • an appropriate metal carbonitride 1 can be obtained.
  • the blending amount (molar ratio) is usually 0.01 to 500 moles of niobium carbide (NbC) with respect to 1 mole of niobium nitride (NbN), and the total of the metal M1 oxide and niobium oxide is 0.01.
  • niobium carbide (NbC) per mole of niobium nitride (NbN)
  • metal M1 oxide and niobium oxide in total Is a mole.
  • Production method (iv) is a method for producing metal carbonitride 1 by heating a mixture of the compound containing metal M1, niobium carbide and niobium nitride in an inert gas such as nitrogen gas.
  • the heating temperature for producing the metal carbonitride 1 is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, the sintering tends to be easy.
  • a compound containing the metal M1, niobium carbide and niobium nitride are used as a raw material.
  • the compound containing the raw material metal M1 is tin, indium, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, yttrium, ruthenium, lanthanum, Organic acid salts such as cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or nickel, carbonates, chlorides, organic complexes, carbides, nitrides, etc. Can be mentioned.
  • One or more compounds containing the metal M1 can be used.
  • NbC etc. are mentioned as a raw material niobium carbide.
  • Examples of the raw material niobium nitride include NbN.
  • the catalyst made of oxide 1 can suppress a decrease in cathode potential due to crossover, is excellent in redox ability, and is inexpensive.
  • the blending amount (molar ratio) is usually 0.01 to 500 mol of niobium carbide (NbC) and 0.001 to 50 mol of the compound containing the metal M1 with respect to 1 mol of niobium nitride (NbN).
  • niobium carbide (NbC) is 0.1 to 300 mol and the compound containing the metal M1 is 0.01 to 30 mol with respect to 1 mol of niobium nitride (NbN).
  • the raw material is not particularly limited, and the raw materials in the production methods (i) to (iv) and other raw materials can be used in various combinations.
  • the production method (v) is a method for producing the metal carbonitride 1 by heating a raw material mixture other than the combination of raw materials in the production methods (i) to (iv) in an inert gas such as nitrogen gas. is there.
  • the heating temperature for producing the metal carbonitride 1 is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 1800 ° C. or more, the sintering tends to be easy.
  • the raw material for example, a mixture containing various combinations of the compound containing the metal M1, niobium carbide, niobium nitride, niobium oxide, niobium precursor, carbon, or the like can be used as the raw material mixture.
  • the compound containing the raw material metal M1 is tin, indium, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, yttrium, ruthenium, lanthanum, Organic acid salts such as cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or nickel, carbonates, chlorides, organic complexes, carbides, nitrides, precursors Examples include the body. One or more compounds containing the metal M1 can be used.
  • NbC etc. are mentioned as a raw material niobium carbide.
  • Examples of the raw material niobium nitride include NbN.
  • Examples of the raw material niobium oxide include NbO, NbO 2 and Nb 2 O 5 .
  • niobium precursors include organic acid salts, carbonates, chlorides, organic complexes, carbides, nitrides, and alkoxy bodies of niobium.
  • the raw material carbon examples include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot is preferably used.
  • the catalyst comprising the metal carbonitride 1 obtained by heating the obtained metal carbonitride 1 in an inert gas containing oxygen can be directly applied to a liquid fuel cell. In this case, it is possible to suppress a decrease in cathode potential due to crossover, excellent in redox ability, and inexpensive.
  • the compounding amount (molar ratio) of the compound containing the metal M1, niobium carbide and niobium nitride is controlled, an appropriate metal carbonitride 1 can be obtained.
  • the blending amount (molar ratio) is usually 0.01 to 500 mol of niobium carbide (NbC) and 0.001 to 50 mol of the compound containing the metal M1 with respect to 1 mol of niobium nitride (NbN).
  • niobium carbide (NbC) is 0.1 to 300 mol and the compound containing the metal M1 is 0.01 to 30 mol with respect to 1 mol of niobium nitride (NbN).
  • the inert gas includes nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas or radon gas.
  • Nitrogen gas, argon gas or helium gas is particularly preferable because it is relatively easy to obtain.
  • the concentration of oxygen gas in the inert gas depends on the heating time and heating temperature, but is preferably 0.1 to 10% by volume, particularly preferably 0.5 to 5% by volume. When the concentration of the oxygen gas is within the above range, it is preferable in that a uniform carbonitride oxide is formed. Further, when the concentration of the oxygen gas is less than 0.1% by volume, it tends to be in an unoxidized state, and when it exceeds 10% by volume, oxidation tends to proceed excessively.
  • hydrogen gas is contained in the inert gas in a range of 5% by volume or less.
  • the hydrogen gas content is more preferably 0.01 to 4% by volume, still more preferably 0.1 to 4% by volume.
  • the gas concentration (volume%) in the present invention is a value in a standard state.
  • the heating temperature in this step is usually in the range of 400 to 1400 ° C., preferably in the range of 600 to 1200 ° C. When the heating temperature is within the above range, it is preferable in that a uniform metal oxynitride 1 is formed. When the heating temperature is less than 400 ° C., the oxidation does not proceed, and when the heating temperature is 1400 ° C. or more, the oxidation proceeds excessively and the crystal tends to grow.
  • Examples of the heating method include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the standing method is a method in which the metal carbonitride 1 is placed in a stationary electric furnace and heated. There is also a method of heating by placing an alumina board, a quartz board or the like obtained by weighing the metal carbonitride 1.
  • the stationary method is preferable in that a large amount of the metal carbonitride 1 can be heated.
  • the stirring method is a method in which the metal carbonitride 1 is placed in an electric furnace such as a rotary kiln and heated while stirring.
  • the stirring method is preferable in that a large amount of the metal carbonitride 1 can be heated, and aggregation and growth of particles of the metal carbonitride 1 can be suppressed.
  • the heating time of the metal carbonitride 1 is 0.1 to 10 hours, preferably 0.5 to 5 hours.
  • the heating time is within the above range, a uniform metal oxynitride 1 tends to be formed, which is preferable.
  • the heating time is less than 0.1 hour, the metal carbonitride oxide 1 tends to be partially formed, and when it exceeds 10 hours, oxidation tends to proceed excessively.
  • the dropping method is a method of heating a furnace to a predetermined heating temperature while flowing an inert gas containing a small amount of oxygen gas in an induction furnace, maintaining a thermal equilibrium at the temperature, and then a crucible which is a heating area of the furnace.
  • the metal carbonitride 1 is dropped and heated.
  • the dropping method is preferable in that aggregation and growth of metal carbonitride 1 particles can be minimized.
  • the heating time of the metal carbonitride 1 is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes. When the heating time is within the above range, a uniform metal oxynitride 1 tends to be formed, which is preferable. When the heating time is less than 0.5 minutes, metal carbonitride oxide 1 tends to be partially formed, and when it exceeds 10 minutes, oxidation tends to proceed excessively.
  • the metal carbonitride 1 is splashed and suspended in an inert gas atmosphere containing a small amount of oxygen gas, and the metal carbonitride 1 is placed in a vertical tubular furnace maintained at a predetermined heating temperature. It is a method of capturing and heating.
  • the heating time of the metal carbonitride 1 is 0.2 second to 1 minute, preferably 0.2 to 10 seconds.
  • the heating time is within the above range, a uniform metal oxynitride 1 tends to be formed, which is preferable.
  • the heating time is less than 0.2 seconds, the metal carbonitride oxide 1 tends to be partially formed, and when it exceeds 1 minute, oxidation tends to proceed excessively.
  • the metal carbonitride oxide 1 obtained by the above-described production method or the like may be used as it is, but the obtained metal carbonitride oxide 1 is further crushed into a finer powder. A thing may be used.
  • Examples of the method for crushing the metal carbonitride oxide 1 include a roll rolling mill, a ball mill, a medium agitation mill, an airflow grinder, a mortar, a method using a tank disintegrator, and the like.
  • a method using an airflow pulverizer is preferable in that it can be made finer, and a method using a mortar is preferable in that a small amount of processing is easy.
  • Metal carbonitride 2 The method for producing the catalyst composed of the metal carbonitride oxide 2 is not particularly limited.
  • a metal carbonitride (hereinafter also referred to as “metal carbonitride 2”) containing at least one metal M2 selected from the group consisting of thulium, ytterbium and lutetium and titanium (hereinafter also referred to as “metal carbonitride 2”).
  • a manufacturing method comprising the steps of obtaining a metal oxycarbonitride 2 containing at least one metal M2 and titanium are selected from the group consisting of ytterbium, and lutetium.
  • a compound containing the metal M2 for example, a compound containing the metal M2, a compound containing titanium, and a mixture containing carbon are mixed with a nitrogen atmosphere or an inert gas containing nitrogen gas.
  • the method (vi) which manufactures the metal carbonitride 2 by heating in is mentioned.
  • the method (via) for producing the metal carbonitride 2 by heating the mixture of the metal M2 oxide, titanium oxide and carbon in a nitrogen atmosphere or an inert gas containing nitrogen gas is preferable.
  • the metal carbonitride 2 is prepared by heating the compound containing the metal M2, the compound containing titanium and the carbon in a nitrogen atmosphere or an inert gas containing nitrogen gas. It is a method of manufacturing.
  • the heating temperature when producing the metal carbonitride 2 is in the range of 500 to 2200 ° C., and preferably in the range of 800 to 2000 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. When the heating temperature is less than 500 ° C., the crystallinity is poor and the uniformity tends to deteriorate, and when it is 2200 ° C. or more, the crystal tends to be sintered and become larger. It is possible to supply a nitrogen source in the synthesized carbonitride by supplying nitrogen gas or a nitrogen compound mixed gas during the reaction.
  • Examples of the compound containing the metal M2 as a raw material include oxides, carbides, nitrides, carbonates, nitrates, acetates, oxalates, citrates, carboxylates such as citrates, phosphates, and the like.
  • oxides include calcium oxide, strontium oxide, yttrium oxide, ruthenium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, Examples include thulium oxide, ytterbium oxide, and lutetium oxide.
  • the carbides include calcium carbide, strontium carbide, yttrium carbide, ruthenium carbide, lanthanum carbide, praseodymium carbide, neodymium carbide, promethium carbide, samarium carbide, europium carbide, gadolinium carbide, terbium carbide, dysprosium carbide, holmium carbide, erbium carbide, carbonized Examples include thulium, ytterbium carbide, and lutetium carbide.
  • nitride examples include calcium nitride, strontium nitride, yttrium nitride, ruthenium nitride, lanthanum nitride, praseodymium nitride, neodymium nitride, promethium nitride, samarium nitride, europium nitride, gadolinium nitride, terbium nitride, dysprosium nitride, holmium nitride, erbium nitride, Examples include thulium nitride, ytterbium nitride, and lutetium nitride.
  • Examples of carbonates include calcium carbonate, strontium carbonate, yttrium carbonate, ruthenium carbonate, lanthanum carbonate, praseodymium carbonate, neodymium carbonate, promethium carbonate, samarium carbonate, europium carbonate, gadolinium carbonate, terbium carbonate, dysprosium carbonate, holmium carbonate, erbium carbonate, Examples include thulium carbonate, ytterbium carbonate, and lutetium carbonate.
  • One or more kinds of compounds containing the metal M2 can be used and are not particularly limited.
  • Examples of the raw material containing titanium include oxides, carbides, nitrides, carbonates, nitrates, acetates, oxalates, citrates, carboxylates, phosphates, oxychlorides and the like.
  • Ti 3 O 4 , TiO 2 , Ti n O 2n-1 (where n is an integer of 1 to 20, preferably 1 to 10), TiC, TiN, TiCl 2 O, TiCl 4 etc. are mentioned.
  • the raw material carbon examples include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot is preferably used.
  • the catalyst comprising the metal carbonitride 2 obtained by heating the obtained metal carbonitride 2 in an inert gas containing oxygen gas is directly applied to the liquid fuel cell.
  • the catalyst When applied, it is possible to suppress a decrease in cathode potential due to crossover, excellent redox ability, and low cost.
  • the compounding amount (molar ratio) can suppress a decrease in the cathode potential due to crossover, has an excellent oxygen reducing ability, and has a high activity. Oxide 2 tends to be obtained.
  • the production method (via) is a method of producing the metal carbonitride 2 by heating a mixture of the metal M2 oxide, titanium oxide and carbon in an inert gas containing nitrogen atmosphere or nitrogen gas. .
  • a catalyst made of metal carbonitride 2 obtained by heating metal carbonitride 2 obtained by this production method (via) in an inert gas containing oxygen gas is preferable because of its excellent redox ability.
  • the heating temperature when producing the metal carbonitride 2 is in the range of 600 to 2200 ° C., and preferably in the range of 800 to 2000 ° C. More preferably, it is in the range of 1000 to 1900 ° C. When the heating temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. If the heating temperature is less than 600 ° C., the crystallinity tends to be poor and the uniformity tends to be poor, and if it is 2200 ° C. or more, the crystal tends to be sintered and become large.
  • oxide of the raw material metal M2 in the production method examples include terbium, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, or lutetium oxide. One or more kinds of these oxides can be used.
  • Ti 3 O 4 , TiO 2 , and Ti n O 2n-1 As the raw material titanium oxide in the production method (via), Ti 3 O 4 , TiO 2 , and Ti n O 2n-1 (where n is an integer of 1 to 20, preferably 1 to 10). ) And the like.
  • Examples of the raw material carbon in the production method (via) include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene.
  • carbon black is particularly preferable. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black (specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot) is preferably used.
  • the catalyst comprising the metal carbonitride 2 obtained by heating the obtained metal carbonitride 2 in an inert gas containing oxygen gas is directly applied to the liquid fuel cell.
  • the catalyst When applied, it is possible to suppress a decrease in cathode potential due to crossover, excellent redox ability, and low cost.
  • the blending amount (molar ratio) is usually 0.0001 to 1 mol of the metal M2 oxide and 1 to 10 mol of carbon, and preferably 1 mol of titanium oxide with respect to 1 mol of titanium oxide.
  • the metal M2 oxide is 0.001 to 0.4 mol and carbon is 2 to 6 mol. More preferably, the metal M2 oxide is 0.001 to 0.1 mol and the carbon is 2 to 3 mol with respect to 1 mol of titanium oxide.
  • the metal M2 is calcium, strontium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, the metal is 1 mol of titanium oxide.
  • the M2 oxide is preferably 0.001 to 0.05 mol. More preferably, the amount is 0.005 to 0.03 mol.
  • the inert gas includes nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas or radon gas. Nitrogen gas or argon gas is particularly preferable because it is relatively easily available.
  • the concentration of oxygen gas in the inert gas depends on the heating time and heating temperature, but is preferably 0.1 to 10% by volume, particularly preferably 0.5 to 5% by volume. When the oxygen concentration is within the above range, it is preferable in that a uniform metal oxynitride 2 is formed. Further, when the oxygen concentration is less than 0.1% by volume, it tends to be in an unoxidized state, and when it exceeds 10% by volume, oxidation tends to proceed excessively.
  • hydrogen gas is contained in the inert gas in a range of 10% by volume or less.
  • the hydrogen gas content is more preferably 0.01 to 10% by volume, still more preferably 0.1 to 5% by volume.
  • the gas concentration (volume%) in the present invention is a value in a standard state.
  • the heating temperature in this step is usually in the range of 400 to 1400 ° C., preferably in the range of 600 to 1200 ° C. When the heating temperature is within the above range, it is preferable in that a uniform metal oxynitride 2 is formed. When the heating temperature is less than 400 ° C., the oxidation does not proceed, and when the heating temperature is 1400 ° C. or more, the oxidation proceeds and the crystal tends to grow.
  • Examples of the heating method include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the stationary method is a method in which the metal carbonitride 2 is placed in a stationary electric furnace and heated. There is also a method of heating by placing an alumina board, a quartz board or the like obtained by weighing the metal carbonitride 2. The stationary method is preferable in that a large amount of the metal carbonitride 2 can be heated.
  • the stirring method is a method in which the metal carbonitride 2 is placed in an electric furnace such as a rotary kiln and heated while stirring.
  • the stirring method is preferable in that a large amount of the metal carbonitride 2 can be heated, and aggregation and growth of the metal carbonitride 2 particles can be suppressed.
  • the heating time of the metal carbonitride 2 is 0.1 to 10 hours, preferably 0.5 to 5 hours.
  • the heating time is within the above range, a uniform metal oxycarbonitride 2 tends to be formed, which is preferable.
  • the heating time is less than 0.1 hour, the metal carbonitride oxide 2 tends to be partially formed, and when it exceeds 10 hours, the oxidation tends to proceed excessively.
  • the dropping method is a method of heating a furnace to a predetermined heating temperature while flowing an inert gas containing a small amount of oxygen gas in an induction furnace, maintaining a thermal equilibrium at the temperature, and then a crucible which is a heating area of the furnace.
  • the metal carbonitride 2 is dropped and heated.
  • the dropping method is preferable in that aggregation and growth of metal carbonitride 2 particles can be minimized.
  • the heating time of the metal carbonitride 2 is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes.
  • the heating time is within the above range, a uniform metal oxycarbonitride 2 tends to be formed, which is preferable.
  • the heating time is less than 0.5 minutes, the metal carbonitride oxide 2 tends to be partially formed, and when it exceeds 10 minutes, the oxidation tends to proceed excessively.
  • the metal carbonitride 2 is splashed and suspended in an inert gas atmosphere containing a small amount of oxygen gas, and the metal carbonitride 2 is placed in a vertical tubular furnace maintained at a predetermined heating temperature. It is a method of capturing and heating.
  • the heating time of the metal carbonitride 2 is 0.2 second to 1 minute, preferably 0.2 to 10 seconds.
  • the heating time is within the above range, a uniform metal oxycarbonitride 2 tends to be formed, which is preferable.
  • the heating time is less than 0.2 seconds, the metal carbonitride oxide 2 tends to be partially formed, and when it exceeds 1 minute, oxidation tends to proceed excessively.
  • the metal carbonitride oxide 2 obtained by the above-described production method or the like may be used as it is, but the obtained metal carbonitride oxide 2 is further pulverized into a finer powder. A thing may be used.
  • Examples of the method for crushing the metal carbonitride oxide 2 include a roll rolling mill, a ball mill, a medium agitation mill, an airflow crusher, a mortar, a tank disintegrator method, and the like.
  • a method using an airflow pulverizer is preferable in that it can be made finer, and a method using a mortar is preferable in that a small amount of processing is easy.
  • the catalyst of the present invention can be effectively used as a catalyst in a direct liquid fuel cell, and particularly can be effectively used as an alternative catalyst for a platinum catalyst in a direct liquid fuel cell.
  • the catalyst of the present invention is particularly useful as an oxygen reduction catalyst in a direct liquid fuel cell using liquid fuel such as methanol, ethanol and formic acid.
  • the catalyst of the present invention when applied as a cathode catalyst in a direct liquid fuel cell, as described above, even when the liquid fuel is present at the cathode due to crossover, it is possible to suppress a decrease in cathode potential, and oxygen reduction. It is excellent in performance and inexpensive.
  • the catalyst layer for a direct liquid fuel cell of the present invention is characterized by including the catalyst.
  • the direct liquid fuel cell catalyst layer includes an anode catalyst layer and a cathode catalyst layer.
  • the catalyst is preferably used for the cathode catalyst layer because it is excellent in durability, has a large oxygen reducing ability, and can suppress a decrease in cathode potential due to crossover of liquid fuel.
  • the catalyst layer for a direct liquid fuel cell of the present invention preferably further contains electron conductive particles.
  • the reduction current can be further increased.
  • the electron conductive particles are considered to increase the reduction current because they generate an electrical contact for inducing an electrochemical reaction in the catalyst.
  • the electron conductive particles are usually used as a catalyst carrier.
  • the material constituting the electron conductive particles include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide or iridium oxide, which can be used alone or in combination. .
  • carbon particles having a large specific surface area alone or a mixture of carbon particles having a large specific surface area and other electron conductive particles are preferable. That is, the direct liquid fuel cell catalyst layer preferably includes the catalyst and carbon particles having a large specific surface area.
  • carbon carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer for the fuel cell tends to be reduced or the utilization factor of the catalyst tends to be reduced. A range of 1000 nm is preferable, and a range of 10 to 100 nm is more preferable.
  • the particle diameter of carbon is a value measured with a transmission electron microscope (TEM).
  • the mass ratio of the catalyst to carbon is preferably 0.5: 1 to 1000: 1, more preferably 1 : 1 to 100: 1, more preferably 4: 1 to 10: 1.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • the polymer electrolyte is not particularly limited as long as it is generally used in a direct liquid fuel cell catalyst layer.
  • a perfluorocarbon polymer having a sulfonic acid group for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521))
  • a hydrocarbon polymer having a sulfonic acid group for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521)
  • Compound, polymer compound doped with inorganic acid such as phosphoric acid, organic / inorganic hybrid polymer partially substituted with proton conductive functional group, proton impregnated with phosphoric acid solution or sulfuric acid aqueous solution in polymer matrix A conductor etc. are mentioned.
  • NAFION registered trademark
  • DuPont 5% NAFION (registered trademark) solution (DE521) is preferable.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used directly in the liquid fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent that can be used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water may be used. it can.
  • the electrolyte and the dispersant may be further dispersed at the same time.
  • the method for forming the catalyst layer for the direct liquid fuel cell is not particularly limited.
  • a suspension containing the catalyst, the electron conductive particles, and the electrolyte is applied to an electrolyte membrane or a gas diffusion layer described later.
  • a method is mentioned. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method.
  • a liquid type is directly applied to an electrolyte membrane by a transfer method.
  • the method of forming the catalyst layer for fuel cells is mentioned.
  • the direct liquid fuel cell electrode of the present invention is characterized by having the direct liquid fuel cell catalyst layer and a porous support layer.
  • the porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”).
  • gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance.
  • carbon-based porous materials such as carbon paper and carbon cloth are used.
  • Aluminum foil coated with stainless steel or corrosion resistant material is used for the material and weight reduction.
  • the membrane electrode assembly of the present invention is a membrane electrode assembly for a direct liquid fuel cell having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, the cathode and / or the anode. Is the direct liquid fuel cell electrode.
  • the direct liquid fuel cell of the present invention includes the membrane electrode assembly for a direct liquid fuel cell.
  • the number of diffraction line peaks in powder X-ray diffraction of each sample was counted by regarding a signal that can be detected with a ratio (S / N) of signal (S) to noise (N) of 2 or more as one peak.
  • the noise (N) is the width of the baseline.
  • Nitrogen / oxygen About 0.1 g of a sample was weighed and sealed in Ni-Cup, and then measured with an ON analyzer (TC600, manufactured by Leco).
  • Niobium, titanium, and other metals About 0.1 g of a sample was weighed on a platinum dish, and heat decomposed by adding an acid. The heat-decomposed product was fixed, diluted, and quantified with ICP-MS (SII, ICP-OESVISTA-PRO type).
  • Example 1 (Nb a Fe b C x N y O z ) 1.
  • catalyst 5.88 g (56 mmol) of niobium carbide (NbC, manufactured by Soekawa Riken Co., Ltd.), ferric oxide (Fe 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) 0.40 g (2.5 mmol) and nitriding Niobium (NbN, manufactured by Kojundo Chemical Laboratory Co., Ltd.) 5.14 g (48 mmol) was sufficiently pulverized and mixed.
  • the mixed powder was heated in a tube furnace at 1600 ° C. for 3 hours in a nitrogen atmosphere to obtain 11.19 g of metal carbonitride (1) containing iron and niobium.
  • the sintered metal carbonitride (1) was pulverized with a ball mill.
  • NAFION registered trademark
  • DE521 DuPont 5% NAFION (registered trademark) solution
  • the prepared fuel cell electrode (1-1) was polarized in a saturated oxygen atmosphere in a 0.5 mol / L sulfuric acid aqueous solution at a potential scanning speed of 30 mV and 5 mV / sec, and a current-potential curve was measured. did.
  • a reversible hydrogen electrode (RHE) in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode.
  • the catalytic ability (oxygen reducing ability) of the produced fuel cell electrode (1-1) was evaluated by “E Oxygen ”.
  • FIG. 9 shows a current-potential curve obtained by the above measurement.
  • the fuel cell electrode (1-1) had an E Oxygen of 0.83 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • FIG. 10 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 above (without methanol).
  • the fuel cell electrode (1-1) was obtained by the measurement in the above 3 (no methanol) even when methanol was present in the sulfuric acid aqueous solution and E Fuel + Oxygen was 0.80 V (vs. RHE). It was found to have a high oxygen reducing ability almost equivalent to E Oxygen (0.83 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.96.
  • the catalytic ability (oxygen reducing ability) of the fuel cell electrode (1-2) when ethanol was not present in the sulfuric acid aqueous solution was evaluated by the following method.
  • the prepared fuel cell electrode (1-2) was polarized in a saturated oxygen atmosphere in a 0.5 mol / L sulfuric acid aqueous solution at 30 ° C. and a potential scanning speed of 5 mV / sec, and a current-potential curve was measured. did.
  • a reversible hydrogen electrode (RHE) in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode.
  • the fuel cell electrode (1-2) had an E Oxygen of 0.78 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • FIG. 11 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (1-2) produced in Example 1 had an E Fuel + Oxygen of 0.78 V (vs. RHE) even when ethanol was present in the sulfuric acid aqueous solution. None) was found to have a high oxygen reduction ability equivalent to E Oxygen (0.78 V (vs. RHE)) obtained.
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the catalytic ability (oxygen reducing ability) of the fuel cell electrode (1-3) when no formic acid was present in the sulfuric acid aqueous solution was evaluated by the following method.
  • the produced fuel cell electrode (1-3) was polarized in a saturated oxygen atmosphere in a 0.5 mol / L sulfuric acid aqueous solution at a potential scanning speed of 30 mV and 5 mV / sec, and a current-potential curve was measured. did.
  • a reversible hydrogen electrode (RHE) in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode.
  • the fuel cell electrode (1-3) had an E Oxygen of 0.78 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • FIG. 12 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (1-3) had E Fuel + Oxygen of 0.77 V (vs. RHE) even when formic acid was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 7 above (without formic acid). It was found to have a high oxygen reducing ability almost equivalent to E Oxygen (0.78 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.99.
  • the electrode (1-3) using the fuel cell catalyst prepared in Example 1 is a formic acid fuel cell (Direct® Acid Acid Fuel Cell, DFAFC) that uses formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct® Acid Acid Fuel Cell
  • a fuel cell electrode (2-1) was obtained in the same manner as in Example 1 except that the catalyst (2) was used.
  • Example 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 3 except that the fuel cell electrode (2-1) was used, when methanol was not present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (2-1) was evaluated.
  • FIG. 14 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (2-1) had an E Oxygen of 0.83 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution As in Example 1-4, except that the fuel cell electrode (2-1) was used, methanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (2-1) was evaluated.
  • FIG. 15 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 above (without methanol).
  • the fuel cell electrode (2-1) was obtained by the measurement in (3) above (no methanol), even when methanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.83 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.83 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (2-2) was evaluated when ethanol was not present in the sulfuric acid aqueous solution in the same manner as in Example 1 except that the fuel cell electrode (2-2) was used. did.
  • the fuel cell electrode (2-2) had an E Oxygen of 0.85 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution
  • ethanol was present in the sulfuric acid aqueous solution.
  • the oxygen reducing ability of the fuel cell electrode (2-2) was evaluated.
  • FIG. 16 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (2-2) was obtained by the measurement in 5 above (no ethanol), even when ethanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.84 V (vs. RHE). It was found to have a high oxygen reducing ability substantially equivalent to E Oxygen (0.85 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.99.
  • the oxygen reducing ability of the fuel cell electrode (2-3) when no formic acid is present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 7 except that the fuel cell electrode (2-3) was used. did.
  • the fuel cell electrode (2-3) had E Oxygen of 0.85 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution As in Example 1-8, except that the fuel cell electrode (2-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (2-3) was evaluated.
  • FIG. 17 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (2-3) had E Fuel + Oxygen of 0.83 V (vs. RHE) even when formic acid was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 7 above (without formic acid). It was found to have a high oxygen reducing ability substantially equivalent to E Oxygen (0.85 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.98.
  • the electrode (2-3) using the fuel cell catalyst prepared in Example 2 is a formic acid fuel cell (Direct-Formic Acid Fuel Cell, DFAFC) that uses formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct-Formic Acid Fuel Cell
  • the oxygen reducing ability was measured as follows. 10 mg of the catalyst (C1) was put into 5.0 mL of pure water, and stirred and suspended with ultrasonic waves. 20 ⁇ L of this suspension was applied to a glassy carbon rotating electrode (Hokuto Denko, diameter: 5.0 mm) and sufficiently dried in air. Furthermore, 10 ⁇ L of NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521) diluted 10-fold with pure water was applied and dried sufficiently in the air, and the fuel cell electrode (C1 -1) was obtained.
  • NAFION registered trademark
  • DE521 DuPont 5% NAFION (registered trademark) solution
  • Example 1 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 1 3 except that the fuel cell electrode (C1-1) was used, no methanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (C1-1) was evaluated.
  • the fuel cell electrode (C1-1) had an E Oxygen of 0.96 V (vs. RHE).
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution
  • the fuel cell electrode (C1-1) was used, the case where methanol was present in the sulfuric acid aqueous solution was used.
  • the oxygen reducing ability of the fuel cell electrode (C1-1) was evaluated.
  • FIG. 18 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 (without methanol).
  • E Fuel + Oxygen was 0.58 V (vs. RHE)
  • E Oxygen obtained by the measurement in 3 above was performed. It was found to be significantly lower than (0.96 V (vs. RHE)) and the oxygen reducing ability was lowered.
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.60.
  • the oxygen reducing ability of the fuel cell electrode (C1-2) when no ethanol was present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (C1-2) was used. did.
  • the fuel cell electrode (C1-2) had an E Oxygen of 0.94 V (vs. RHE).
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution As in Example 6 except that the fuel cell electrode (C1-2) was used, ethanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (C1-2) was evaluated.
  • FIG. 19 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 above (without ethanol).
  • E Fuel + Oxygen was 0.53 V (vs. RHE), and E Oxygen obtained by the measurement in 5 above (no ethanol) was obtained. It was found to be significantly lower than (0.94 V (vs. RHE)) and to reduce the oxygen reducing ability.
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.56.
  • the oxygen reducing ability of the fuel cell electrode (C1-3) in the absence of formic acid in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (C1-3) was used. did.
  • the fuel cell electrode (C1-3) had an E Oxygen of 0.94 V (vs. RHE).
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution
  • the fuel cell electrode (C1-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (C1-3) was evaluated.
  • FIG. 20 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • E Fuel + Oxygen was 0.32 V (vs. RHE), and E Oxygen obtained by the measurement in 7 above (without formic acid) was obtained. It was found to be significantly lower than (0.94 (vs. RHE)) and the oxygen reducing ability was lowered.
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.34.
  • Example 3 (Ti a C x N y O z ) 1. Catalyst Preparation 3.53 g (44.12 mmol) of titanium oxide (TiO 2 , Showa Denko, Super Titania F6) and 1.33 g (110 mmol) of carbon (Vulcan 72, manufactured by Cabot) were sufficiently pulverized and mixed. This mixed powder was heated in a tube furnace at 1800 ° C. for 3 hours in a nitrogen atmosphere to obtain 2.50 g of titanium-containing metal carbonitride (3). This was crushed with a mortar.
  • TiO 2 Showa Denko, Super Titania F6
  • Vulcan 72 manufactured by Cabot
  • Titanium was obtained by heating 1.0 g of crushed metal carbonitride (3) in a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 2% by volume oxygen gas and 4% by volume hydrogen gas. 1.24 g of metal oxycarbonitride containing the following (hereinafter also referred to as “catalyst (3)”) was obtained. Table 1 shows the results of elemental analysis of the obtained catalyst (3).
  • FIG. 21 shows a powder X-ray diffraction spectrum of the catalyst (3).
  • a fuel cell electrode (3-1) was obtained in the same manner as 2 in Example 1 except that the catalyst (3) was used.
  • Example 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 1 3 except that the fuel cell electrode (3-1) was used, when methanol was not present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (3-1) was evaluated.
  • FIG. 22 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (3-1) had an E Oxygen of 0.73 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution As in Example 1-4, except that the fuel cell electrode (3-1) was used, methanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (3-1) was evaluated.
  • FIG. 23 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 (without methanol).
  • the fuel cell electrode (3-1) had an E Fuel + Oxygen of 0.73 V (vs. RHE) even when methanol was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 3 above (no methanol). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.73 V (vs. RHE)).
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (3-2) in the absence of ethanol in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (3-2) was used. did.
  • the fuel cell electrode (3-2) had an E Oxygen of 0.73 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution As in Example 1-6, except that the fuel cell electrode (3-2) was used, ethanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (3-2) was evaluated.
  • FIG. 24 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 above (without ethanol).
  • the fuel cell electrode (3-2) was obtained by the measurement in 5 above (no ethanol), even when ethanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.73 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.73 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (3-2) using the fuel cell catalyst prepared in Example 3 is a direct ethanol fuel cell using ethanol as a liquid fuel (Direct Ethanol Fuel Cell, DEFC). It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • the oxygen reduction ability of the fuel cell electrode (3-3) when no formic acid was present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (3-3) was used. did.
  • the fuel cell electrode (3-3) had an E Oxygen of 0.73 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution As in Example 1-8, except that the fuel cell electrode (3-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (3-3) was evaluated.
  • FIG. 25 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (3-3) was obtained by the measurement in the above 7 (no formic acid), even when formic acid was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.73 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.73 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (3-3) using the fuel cell catalyst prepared in Example 3 is a formic acid fuel even when used in a direct formic acid fuel cell (Direct® Acid Acid Fuel Cell, DFAFC) using formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct® Acid Acid Fuel Cell
  • Example 4 (NbC x N y O z ) 1. Catalyst preparation 4.96 g (81 mmol) of niobium carbide (NbC, manufactured by Soekawa Riken), 1.25 g (10 mmol) of niobium oxide (NbO2, manufactured by Kojundo Chemical Laboratory Co., Ltd.) and niobium nitride (NbN, high 0.54 g (10 mmol) (manufactured by Pure Chemical Laboratories) was sufficiently pulverized and mixed. This mixed powder was heated in a tube furnace at 1600 ° C. for 3 hours in a nitrogen atmosphere to obtain 2.70 g of metal carbonitride (4) containing niobium. The sintered metal carbonitride (4) was pulverized with a ball mill.
  • Niobium by heating 1.0 g of the pulverized metal carbonitride (4) in a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 2% by volume oxygen gas and 4% by volume hydrogen gas. 1.34 g of metal carbonitride oxide (hereinafter also referred to as “catalyst (4)”) was obtained. Table 1 shows the elemental analysis results of the resulting catalyst (4). FIG. 26 shows the powder X-ray diffraction spectrum of the catalyst (4).
  • a fuel cell electrode (4-1) was obtained in the same manner as 2 in Example 1 except that the catalyst (4) was used.
  • Example 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 3 except that the fuel cell electrode (4-1) was used, the case where methanol was not present in the sulfuric acid aqueous solution was used. The oxygen reducing ability of the fuel cell electrode (4-1) was evaluated.
  • FIG. 27 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (4-1) had an E Oxygen of 0.72 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution As in Example 4 except that the fuel cell electrode (4-1) was used, the case where methanol was present in the sulfuric acid aqueous solution was used. The oxygen reducing ability of the fuel cell electrode (4-1) was evaluated.
  • FIG. 28 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 above (without methanol).
  • the fuel cell electrode (4-1) was obtained by the measurement in (3) above (no methanol), even when methanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.72 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.72 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (4-2) in the absence of ethanol in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (4-2) was used. did.
  • the fuel cell electrode (4-2) had an E Oxygen of 0.72 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution
  • ethanol was present in the sulfuric acid aqueous solution.
  • the oxygen reducing ability of the fuel cell electrode (4-2) was evaluated.
  • FIG. 29 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (4-2) was obtained by the measurement in 5 above (no ethanol) even when ethanol was present in the sulfuric acid aqueous solution and E Fuel + Oxygen was 0.72 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.72 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (4-3) in the absence of formic acid in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (4-3) was used. did.
  • the fuel cell electrode (4-3) had an E Oxygen of 0.72 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution
  • the fuel cell electrode (4-3) was used, when formic acid was present in the sulfuric acid aqueous solution, The oxygen reducing ability of the fuel cell electrode (4-3) was evaluated.
  • FIG. 30 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (4-3) was obtained by the measurement in 7 above (no formic acid), even when formic acid was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.72 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.72 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (4-3) using the fuel cell catalyst prepared in Example 4 is formic acid even when used in a direct formic acid fuel cell (Direct® Acid Acid Fuel Cell, DFAFC) using formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct® Acid Acid Fuel Cell
  • Example 5 Ti a Sm b C x N y O z .
  • catalyst Titanium oxide TiO 2 , Showa Denko, Super Titania F6
  • 3.53 g 44.12 mmol
  • samarium oxide Shin-Etsu Chemical Co., Sm 2 O 3
  • carbon 1.33 g (110 mmol) manufactured by Cabot, Vulcan 72
  • This mixed powder was heated in a tube furnace at 1800 ° C. for 3 hours in a nitrogen atmosphere to obtain 2.48 g of metal carbonitride (5) containing titanium and samarium. This was crushed with a mortar.
  • Titanium is obtained by heating 1.0 g of crushed metal carbonitride (5) in a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 2% by volume oxygen gas and 4% by volume hydrogen gas. Further, 1.22 g of metal oxycarbonitride containing samarium (hereinafter also referred to as “catalyst (5)”) was obtained. Table 1 shows the elemental analysis results of the resulting catalyst (5). Further, FIG. 31 shows a powder X-ray diffraction spectrum of the catalyst (5).
  • a fuel cell electrode (5-1) was obtained in the same manner as in Example 1, 2 except that the catalyst (5) was used.
  • Example 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 1 3 except that the fuel cell electrode (5-1) was used, the case where methanol was not present in the sulfuric acid aqueous solution was used. The oxygen reducing ability of the fuel cell electrode (5-1) was evaluated.
  • FIG. 32 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (5-1) had an E Oxygen of 0.84 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution
  • the fuel cell electrode (5-1) was used, the case where methanol was present in the sulfuric acid aqueous solution was used.
  • the oxygen reducing ability of the fuel cell electrode (5-1) was evaluated.
  • FIG. 33 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 (without methanol).
  • the fuel cell electrode (5-1) had E Fuel + Oxygen of 0.84 V (vs. RHE) even when methanol was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 3 above (no methanol). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.84 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (5-2) in the absence of ethanol in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (5-2) was used. did.
  • the fuel cell electrode (5-2) had an E Oxygen of 0.83 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution As in Example 1-6 except that the fuel cell electrode (5-2) was used, ethanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (5-2) was evaluated.
  • FIG. 34 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (5-2) was obtained by the measurement in 5 above (no ethanol), even when ethanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.83 V (vs. RHE). It was found to have a high oxygen reducing ability almost equivalent to E Oxygen (0.84 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.99.
  • the electrode (5-2) using the fuel cell catalyst prepared in Example 5 was used in a direct ethanol fuel cell (Direct Ethanol Fuel Cell, DEFC) using ethanol as a liquid fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DEFC Direct Ethanol Fuel Cell
  • the oxygen reducing ability of the fuel cell electrode (5-3) when no formic acid is present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 7 except that the fuel cell electrode (5-3) was used. did.
  • the fuel cell electrode (5-3) had E Oxygen of 0.83 V (vs. RHE), and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution As in Example 1-8, except that the fuel cell electrode (5-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (5-3) was evaluated.
  • FIG. 35 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (5-3) was obtained by the measurement in 7 above (without formic acid), even when formic acid was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.83 V (vs. RHE). It was found to have a high oxygen reducing ability almost equivalent to E Oxygen (0.84 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.99.
  • the electrode (5-3) using the fuel cell catalyst produced in Example 5 is a formic acid fuel cell (Direct® Acid Acid Fuel Cell, DFAFC) that uses formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct® Acid Acid Fuel Cell
  • Example 6 (Nb a Ta b C x N y O z) 1.
  • catalyst 4.96 g (42.5 mol) of niobium carbide (NbC, manufactured by Soekawa Rikagaku Co., Ltd.), 1.11 g (2.5 mmol) of tantalum oxide (Ta 2 O 5 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) and nitriding Niobium (NbN, manufactured by Kojundo Chemical Laboratory Co., Ltd.) 0.27 g (2.5 mmol) was sufficiently pulverized and mixed.
  • This mixed powder was heated in a tube furnace at 1500 ° C. for 3 hours in a nitrogen atmosphere to obtain 5.94 g of metal carbonitride (6) containing niobium and tantalum.
  • the sintered metal carbonitride (6) was pulverized with a ball mill.
  • Niobium by heating 1.0 g of the pulverized metal carbonitride (6) in a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 2% by volume oxygen gas and 4% by volume hydrogen gas. And 1.11 g of metal oxycarbonitride containing tantalum (hereinafter also referred to as “catalyst (6)”) were obtained.
  • Table 1 shows the elemental analysis results of the obtained catalyst (6).
  • FIG. 36 shows the powder X-ray diffraction spectrum of the catalyst (6).
  • a fuel cell electrode (6-1) was obtained in the same manner as 2 in Example 1 except that the catalyst (6) was used.
  • Example 3 Evaluation of oxygen reduction ability when methanol is not present in sulfuric acid aqueous solution As in Example 3 except that the fuel cell electrode (6-1) was used, the case where methanol was not present in the sulfuric acid aqueous solution was used. The oxygen reducing ability of the fuel cell electrode (6-1) was evaluated.
  • FIG. 37 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (6-1) had an E Oxygen of 0.76 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol is present in sulfuric acid aqueous solution As in Example 4 except that the fuel cell electrode (6-1) was used, the case where methanol was present in the sulfuric acid aqueous solution was used. The oxygen reducing ability of the fuel cell electrode (6-1) was evaluated.
  • FIG. 38 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 (without methanol).
  • the fuel cell electrode (6-1) was obtained by the measurement in (3) above (no methanol), even when methanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.76 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.76 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (6-2) in the absence of ethanol in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (6-2) was used. did.
  • the fuel cell electrode (6-2) had an E Oxygen of 0.75 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution As in Example 1 except that the fuel cell electrode (6-2) was used, ethanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (6-2) was evaluated.
  • FIG. 39 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (6-2) was obtained by the measurement in 5 above (no ethanol) even when ethanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.75 V (vs. RHE). It was found to have a high oxygen reducing ability almost equivalent to E Oxygen (0.76 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 0.99.
  • the oxygen reducing ability of the fuel cell electrode (6-3) when no formic acid is present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 7 except that the fuel cell electrode (6-3) was used. did.
  • the fuel cell electrode (6-3) had an E Oxygen of 0.76 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution
  • the fuel cell electrode (6-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (6-3) was evaluated.
  • FIG. 40 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (6-3) was obtained by the measurement in 7 above (without formic acid), even when formic acid was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.76 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.76 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (6-3) using the fuel cell catalyst prepared in Example 6 is a formic acid fuel cell (Direct® Acid Acid Fuel Cell, DFAFC) that uses formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct® Acid Acid Fuel Cell
  • Example 7 (Nb a Sn b C x N y O z ) 1.
  • Niobium (IV) oxide (NbO 2 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) 4.00 g (32 mmol)
  • tin oxide (IV) (SnO 2 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) 1.21 g ( 8 mmol) was sufficiently pulverized and mixed with 1.2 g (100 mmol) of carbon (manufactured by Cabot, Vulcan 72).
  • This mixed powder was heat-treated in a tube furnace at 1400 ° C. for 3 hours in a nitrogen atmosphere to obtain 4.23 g of a metal carbonitride (7) containing niobium and tin.
  • the sintered metal carbonitride (7) was pulverized with a ball mill.
  • Niobium by heating 1.0 g of the pulverized metal carbonitride (7) in a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 2% by volume oxygen gas and 4% by volume hydrogen gas. Further, 1.09 g of metal oxycarbonitride containing tin and tin (hereinafter also referred to as “catalyst (7)”) was obtained. Table 1 shows the elemental analysis results of the resulting catalyst (7). In addition, FIG. 41 shows a powder X-ray diffraction spectrum of the catalyst (7).
  • a fuel cell electrode (7-1) was obtained in the same manner as in Example 1 except that the catalyst (7) was used.
  • FIG. 42 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (7-1) had an E Oxygen of 0.68 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 4 Evaluation of oxygen reduction ability when methanol was present in sulfuric acid aqueous solution The same as in Example 1 4 except that the fuel cell electrode (7-1) was used. The oxygen reducing ability of the fuel cell electrode (7-1) was evaluated.
  • FIG. 43 shows a graph comparing the current-potential curve obtained by the measurement (with methanol) and the current-potential curve obtained by the measurement in 3 above (without methanol).
  • the fuel cell electrode (7-1) had an E Fuel + Oxygen of 0.68 V (vs. RHE) even when methanol was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 3 above (no methanol). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.68 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the oxygen reducing ability of the fuel cell electrode (7-2) in the absence of ethanol in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (7-2) was used. did.
  • the fuel cell electrode (7-2) had an E Oxygen of 0.68 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 6 Evaluation of oxygen reduction ability when ethanol is present in sulfuric acid aqueous solution As in Example 1 except that the fuel cell electrode (7-2) was used, ethanol was present in the sulfuric acid aqueous solution. The oxygen reducing ability of the fuel cell electrode (7-2) was evaluated.
  • FIG. 44 shows a graph comparing the current-potential curve obtained by the measurement (with ethanol) and the current-potential curve obtained by the measurement in 5 (without ethanol).
  • the fuel cell electrode (7-2) was obtained by the measurement in 5 above (no ethanol), even when ethanol was present in the sulfuric acid aqueous solution, E Fuel + Oxygen was 0.68 V (vs. RHE). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.68 V (vs. RHE)). The oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (7-2) using the fuel cell catalyst prepared in Example 7 is a direct ethanol fuel cell using ethanol as a liquid fuel (Direct Ethanol Fuel Cell, DEFC). It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • the oxygen reducing ability of the fuel cell electrode (7-3) when no formic acid is present in the sulfuric acid aqueous solution was evaluated in the same manner as in Example 1 except that the fuel cell electrode (7-3) was used. did.
  • the fuel cell electrode (7-3) had an E Oxygen of 0.68 V (vs. RHE) and was found to have a high oxygen reducing ability.
  • Example 8 Evaluation of oxygen reduction ability when formic acid is present in sulfuric acid aqueous solution As in Example 1-8, except that the fuel cell electrode (7-3) was used, when formic acid was present in the sulfuric acid aqueous solution The oxygen reducing ability of the fuel cell electrode (7-3) was evaluated.
  • FIG. 45 shows a graph comparing the current-potential curve obtained by the measurement (with formic acid) and the current-potential curve obtained by the measurement in 7 (without formic acid).
  • the fuel cell electrode (7-3) had an E Fuel + Oxygen of 0.68 V (vs. RHE) even when formic acid was present in the sulfuric acid aqueous solution, and was obtained by the measurement in 7 above (without formic acid). It was found to have a high oxygen reducing ability equivalent to E Oxygen (0.68 V (vs. RHE)).
  • the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) was 1.00.
  • the electrode (7-3) using the fuel cell catalyst prepared in Example 7 is a formic acid fuel cell (Direct-Formic Acid Fuel Cell, DFAFC) using formic acid as a fuel. It was suggested that the cathode potential drop due to crossover could be suppressed and that the oxygen reduction ability was excellent.
  • DFAFC Direct-Formic Acid Fuel Cell
  • Table 1 shows the oxygen reduction potential ratio (E Fuel + Oxygen / E Oxygen ) at ⁇ 100 ⁇ A / cm 2 obtained from the current-potential curves in the above Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

[課題]本発明の課題は、メタノール、エタノール、ギ酸、2-プロパノールおよびジメチルエーテルなどの液体燃料を直接供給する直接液体型燃料電池において、液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池用触媒を提供することにある。 [解決手段]本発明の直接液体型燃料電池用触媒は、ニオブおよび/またはチタンを含有する金属炭窒酸化物からなることを特徴とする。 また、本発明の直接液体型燃料電池用触媒は、液体燃料の酸化に対して不活性であることが好ましい。

Description

直接液体型燃料電池用触媒および該触媒を用いた燃料電池
 本発明は、直接液体型燃料電池用触媒および該触媒を用いた燃料電池に関する。
 メタノール、エタノール、ギ酸、2-プロパノールおよびジメチルエーテル等の液体燃料を直接燃料として用いる直接液体型燃料電池は、構造が簡単であることや燃料の取り扱いが容易であることから、携帯用途、移動用電源、分散電源への応用が期待されている。
 直接液体型燃料電池は、例えば、プロトン導電性の高分子電解質膜をアノード(燃料極)およびカソード(空気極)で挟み込んだ構造を有している。そして、アノードに液体燃料を直接供給し、カソードに酸素を供給することにより、アノードでは液体燃料が酸化され、カソードでは酸素が還元されて外部に電気エネルギーを取り出すことができる。
 しかしながら、直接液体型燃料電池には、液体燃料のクロスオーバーにより、燃料利用率の低下とともにカソードにおける電位が低下し、セルのエネルギー変換効率が著しく低下するという問題がある。液体燃料のクロスオーバーとは、液体燃料が高分子電解質膜を透過してアノードからカソードに移動する現象のことである。カソードに達した液体燃料は、カソード触媒表面で直接酸化されるため、カソードにおける電位が低下するという問題が生じる。
 一般的に、直接液体型燃料電池のカソード触媒としては、白金触媒または白金合金触媒が使用されている。白金触媒または白金合金触媒は、高活性であるとともに安定性が高い。しかしながら、白金触媒または白金合金触媒は、酸素の還元反応に対して高い触媒活性を示すだけでなく、上述の液体燃料の酸化反応に対しても高い触媒活性を示すため、クロスオーバーによりカソードに達した液体燃料の酸化反応も促進させる。結果として、カソードにおける酸素還元電位は、液体燃料の酸化電位と混合電位を形成するため、著しく低下する。
 また、直接液体型燃料電池は、アノードにおける反応を促進するため、また燃料のクロスオーバーによるカソードにおける電位低下を抑制するために、水素を用いる燃料電池に比べて、白金触媒が多量に使用されている。しかしながら、白金は価格が高く、また資源量が限られていることから、代替可能な直接液体型燃料電池用触媒の開発が強く求められている。
 直接液体型燃料電池における液体燃料のクロスオーバーを抑制するために、液体燃料の透過が少ない電解質膜もしくは液体燃料のクロスオーバーが起こらない電解質膜が開発されている(例えば、特許文献1~3参照)。
 しかしながら、特許文献1~3に記載の電解質膜では、高いイオン伝導度と安定性とを保持しながら、液体燃料のクロスオーバーを大幅に減らすことは極めて困難である。また、ある程度の液体燃料の透過を抑制した電解質膜を用いても、電解質膜内において、水の透過とともに液体燃料の透過も少なからず起こるため、カソードにおける電位低下は避けられない。
 一方、クロスオーバーによりカソードに達した液体燃料を酸化せず、酸素還元だけを選択的に行う触媒も報告されている(例えば、特許文献4および非特許文献1~4参照)。
 しかしながら、特許文献4および非特許文献1~3に開示された触媒は、高価なパラジウム、イリジウムといった貴金属を多量に用いており、経済上不利である。非特許文献4に開示された触媒は、貴金属を用いておらず安価であるが、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
 したがって、より安価で高性能の直接液体型燃料電池用触媒の開発が強く求められている。
 特許文献5に開示された触媒は、安価なジルコニウム(Zr)系酸化物を用いているが、触媒として実用的に充分な酸素還元能が得られていない。
 非特許文献5では、ジルコニウムをベースとしたZrOxy化合物が、酸素還元能を示すことが報告されている。
 特許文献6には、白金代替材料として長周期表4族、5族および14族の元素群から選ばれる1種以上の元素の窒化物を含む酸素還元電極材料が開示されている。
 しかしながら、これらの非金属を含む材料は、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
 また、特許文献7には、炭化物、酸化物、窒化物を混合し、真空、不活性または非酸化性雰囲気下、500~1500℃で加熱をした炭窒酸化物が開示されている。
 しかしながら、特許文献7に開示されている炭窒酸化物は、薄膜磁気ヘッドセラミックス基板材料であり、この炭窒酸化物を触媒として用いることは検討されていない。
 なお、白金は、上記燃料電池用の触媒としてだけでなく、排ガス処理用触媒または有機合成用触媒としても有用であるが、白金は価格が高く、また資源量が限られているため、これらの用途においても代替可能な触媒の開発が求められていた。
特開平11-144745号公報 特開2002-184427号公報 特開2003-257453号公報 特開2005-135752号公報 国際公開第07-072665号パンフレット 特開2007-31781号公報 特開2003-342058号公報
K.Lee、O.Savadogo、A.Ishihara、S.Mitsushima、N.Kamiya、K.Ota、「Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3d Transition Metal Alloys for Direct Methanol Fuel Cells」、Journal of The ElectrochemicalSociety、2006年、153(1)、A20-A24 K.Lee、L.Zhang、J.Zhang、「A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction」、Journal of Power Sources、2007年、165(1)、108-113 K.Lee、L.Zhang、J.Zhang、「IrxCo1-x(x=0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction」、Journal of Power Sources、2007年、170(10)、291-296 Y.Liu、A.Ishihara、S.Mitsushima、N.Kamiya、K.Ota、「Transition Metal Oxides as DMFC Cathodes Without Platinum」、Journal of The Electrochemical Society、2007年、154(7)、B664-B669 S.Doi、A.Ishihara、S.Mitsushima、N.kamiya、and K.Ota、「Zirconium-Based Compounds for Cathode of Polymer Electrolyte Fuel Cell」、Journal of The Electrochemical Society、2007年、154(3)、B362-B369
 上述したとおり、白金触媒または白金合金触媒は、メタノール、エタノール、ギ酸、2-プロパノールおよびジメチルエーテルなどの液体燃料の酸化反応を促進させる性能が高いため、液体燃料のクロスオーバーによるカソード電位の低下を抑制することが非常に難しい。
 本発明は、メタノール、エタノール、ギ酸、2-プロパノールおよびジメチルエーテルなどの液体燃料を直接供給する直接液体型燃料電池において、液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池用触媒を提供することにある。
 本発明者らは、上記従来技術の問題点を解決すべく鋭意検討した結果、ニオブおよび/またはチタンを含有する金属炭窒酸化物からなる触媒は、直接液体型燃料電池に用いた場合、液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、しかも安価で高性能であることを見出し、本発明を完成するに至った。
 本発明は、たとえば以下の(1)~(14)に関する。
 (1)
 ニオブおよび/またはチタンを含有する金属炭窒酸化物からなる直接液体型燃料電池用触媒。
 (2)
 液体燃料の酸化に対して不活性であることを特徴とする(1)に記載の直接液体型燃料電池用触媒。
 (3)
 ニオブと、ニオブ以外の少なくとも1種の金属M1とを含有する金属炭窒酸化物からなることを特徴とする(1)または(2)に記載の直接液体型燃料電池用触媒。
 (4)
 スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムおよびニッケルからなる群より選択された少なくとも1種の金属M1ならびにニオブを含有する金属炭窒酸化物からなることを特徴とする(1)または(2)に記載の直接液体型燃料電池用触媒。
 (5)
 前記金属炭窒酸化物の組成式が、NbaM1bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.99、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることを特徴とする(3)または(4)に記載の直接液体型燃料電池用触媒。
 (6)
 粉末X線回折法(Cu-K線)によって前記金属炭窒酸化物を測定した際に、回折角2θ=33°~43°の間に、回折線ピークが2つ以上観測されることを特徴とする(3)~(5)のいずれかに記載の直接液体型燃料電池用触媒。
 (7)
 チタンと、チタン以外の少なくとも1種の金属M2とを含有する金属炭窒酸化物からなることを特徴とする(1)または(2)に記載の直接液体型燃料電池用触媒。
 (8)
 カルシウム、ストロンチウム、イットリウム、ルテニウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選択された少なくとも1種の金属M2ならびにチタンを含有する金属炭窒酸化物からなることを特徴とする(1)または(2)に記載の直接液体型燃料電池用触媒。
 (9)
 前記金属炭窒酸化物の組成式が、TiaM2bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.7≦a≦0.9999、0.0001≦b≦0.3、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることを特徴とする(7)または(8)に記載の直接液体型燃料電池用触媒。
 (10)
 (1)~(9)のいずれか一項に記載の触媒を含むことを特徴とする直接液体型燃料電池用触媒層。
 (11)
 さらに電子伝導性粒子を含むことを特徴とする(10)に記載の直接液体型燃料電池用触媒層。
 (12)
 直接液体型燃料電池用触媒層と多孔質支持層とを有する直接液体型燃料電池用電極であって、前記燃料電池用触媒層が(10)または(11)に記載の直接液体型燃料電池用触媒層であることを特徴とする直接液体型燃料電池用電極。
 (13)
 カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する直接液体型燃料電池用膜電極接合体であって、前記カソードおよび/または前記アノードが(12)に記載の直接液体型燃料電池用電極であることを特徴とする直接液体型燃料電池用膜電極接合体。
 (14)
 (13)に記載の直接液体型燃料電池用膜電極接合体を備えることを特徴とする直接液体型燃料電池。
 本発明によれば、メタノール、エタノール、ギ酸、2-プロパノールおよびジメチルエーテルなどの液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池を得ることができる。
図1は、液体燃料の酸化に対して活性がある触媒を用いた電極について、電解質中に液体燃料が存在した場合(Lf)と液体燃料が存在しない場合(Lo)との電流―電位曲線を対比したグラフの一例である。 図2は、白金触媒を用いた電極について、硫酸電解質中にメタノールが存在した場合のサイクリックボルタモグラムである。 図3は、白金触媒を用いた電極について、硫酸電解質中にメタノールが存在しない場合のサイクリックボルタモグラムである。 図4は、白金触媒を用いた電極について、硫酸電解質中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図5は、本発明に係る触媒を用いた電極について、硫酸電解質中にメタノールが存在した場合のサイクリックボルタモグラムの一例である。 図6は、本発明に係る触媒を用いた電極について、硫酸電解質中にメタノールが存在しない場合のサイクリックボルタモグラムの一例である。 図7は、本発明に係る触媒を用いた電極について、硫酸電解質中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフの一例である。 図8は、実施例1の触媒(1)の粉末X線回折スペクトルである。 図9は、実施例1の燃料電池用電極(1-1)の酸素還元能を評価したグラフである。 図10は、実施例1の燃料電池用電極(1-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図11は、実施例1の燃料電池用電極(1-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図12は、実施例1の燃料電池用電極(1-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図13は、実施例2の触媒(2)の粉末X線回折スペクトルである。 図14は、実施例2の燃料電池用電極(2-1)の酸素還元能を評価したグラフである。 図15は、実施例2の燃料電池用電極(2-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図16は、実施例2の燃料電池用電極(2-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図17は、実施例2の燃料電池用電極(2-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図18は、比較例1の燃料電池用電極(C1-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図19は、比較例1の燃料電池用電極(C1-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図20は、比較例1の燃料電池用電極(C1-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図21は、実施例3の触媒(3)の粉末X線回折スペクトルである。 図22は、実施例3の燃料電池用電極(3-1)の酸素還元能を評価したグラフである。 図23は、実施例3の燃料電池用電極(3-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図24は、実施例3の燃料電池用電極(3-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図25は、実施例3の燃料電池用電極(3-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図26は、実施例4の触媒(4)の粉末X線回折スペクトルである。 図27は、実施例4の燃料電池用電極(4-1)の酸素還元能を評価したグラフである。 図28は、実施例4の燃料電池用電極(4-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図29は、実施例4の燃料電池用電極(4-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図30は、実施例4の燃料電池用電極(4-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図31は、実施例5の触媒(5)の粉末X線回折スペクトルである。 図32は、実施例5の燃料電池用電極(5-1)の酸素還元能を評価したグラフである。 図33は、実施例5の燃料電池用電極(5-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図34は、実施例5の燃料電池用電極(5-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図35は、実施例5の燃料電池用電極(5-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図36は、実施例6の触媒(6)の粉末X線回折スペクトルである。 図37は、実施例6の燃料電池用電極(6-1)の酸素還元能を評価したグラフである。 図38は、実施例6の燃料電池用電極(6-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図39は、実施例6の燃料電池用電極(6-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図40は、実施例6の燃料電池用電極(6-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。 図41は、実施例7の触媒(7)の粉末X線回折スペクトルである。 図42は、実施例7の燃料電池用電極(7-1)の酸素還元能を評価したグラフである。 図43は、実施例7の燃料電池用電極(7-1)について、硫酸水溶液中にメタノールが存在した場合とメタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図44は、実施例7の燃料電池用電極(7-2)について、硫酸水溶液中にエタノールが存在した場合とエタノールが存在しない場合との酸素還元能を対比評価したグラフである。 図45は、実施例7の燃料電池用電極(7-3)について、硫酸水溶液中にギ酸が存在した場合とギ酸が存在しない場合との酸素還元能を対比評価したグラフである。
 <直接液体型燃料電池用触媒>
 本発明の直接液体型燃料電池用触媒は、ニオブおよび/またはチタンを含有する金属炭窒酸化物からなることを特徴としている。
 本発明の触媒が用いられる直接液体型燃料電池は、電解質をカソードとアノードとで挟み込み、アノードに水素を含有する液体燃料を供給し、カソードに酸素或いは酸素を含有するガス(例えば、空気)を供給して、水素と酸素とが反応して電気エネルギーを取り出す発電システムである。
 直接液体型燃料電池に用いられる液体燃料としては、例えばアルコール類、エーテル類および酸類等、化学構造中に炭素原子および水素原子を含むものが挙げられる。
 前記アルコール類の具体例としては、メタノール、エタノール、2-プロパノールが挙げられる。また、前記エーテル類の具体例としては、ジメチルエーテルが挙げられる。また、前記酸類の具体例としては、ギ酸が挙げられる。これらの中でも、メタノール、エタノール、ギ酸が好ましい。このような液体燃料は、燃料電池におけるエネルギー変換効率が高い傾向がある。
 直接液体型燃料電池に用いられる電解質としては、酸性、中性もしくはアルカリ性の電解質液または高分子膜が挙げられる。
 このような構成の直接液体型燃料電池におけるカソード触媒として白金触媒または白金合金触媒を適用すると、前記液体燃料のクロスオーバーによるカソード電位の低下が生じる。結果として、直接液体型燃料電池の性能が著しく低下する。
 しかしながら、本発明の触媒は、ニオブおよび/またはチタンを含有する金属炭窒酸化物からなるため、前記液体燃料がクロスオーバーによりカソードに存在しても、カソード電位の低下を抑制ができ、酸素還元能に優れ、しかも安価である。
 本発明の直接液体型燃料電池用触媒は、液体燃料の酸化に対して不活性であることが好ましい。
 直接液体型燃料電池用触媒が液体燃料の酸化に対して不活性であると、液体燃料がクロスオーバーによりカソードに達しても、カソード触媒表面で液体燃料の酸化反応が起こらず、カソード電位の低下を抑制することができる。
 例えば、酸性電解質液中に液体燃料を含まない場合、酸素還元に対して、図1中におけるLoのような電流―電位曲線が得られる。
 一方、酸性電解質液中に液体燃料を含む場合、直接液体型燃料電池用触媒が液体燃料の酸化に対して活性があると、触媒表面上では酸素還元反応と燃料の酸化反応とが同時におこり、二つ反応の釣り合いによる混合電位が形成される。その結果、図1中における電流―電位曲線がLoからLfへ、すなわち低電位側に移動する。
 一般的に、直接液体型燃料電池用触媒が液体燃料の酸化に対して活性が低くなるほど、図1におけるLfとLoとは近くなり、直接液体型燃料電池用触媒が液体燃料の酸化に対して完全不活性の場合はLfとLoとは一致する。液体燃料のクロスオーバーによるカソード電位の低下を防ぐためには、直接液体型燃料電池用触媒が液体燃料の酸化に対して不活性であることが好ましい。
 本発明において、「直接液体型燃料電池用触媒が液体燃料の酸化に対して不活性である」とは、下記測定法A1により得られる、電流密度-100μA/cm2での電位(以下、「EFuel+Oxygen」とも記す。図1参照。)と下記測定法A2により得られる、電流密度-100μA/cm2での電位(以下、「EOxygen」とも記す。図1参照。)とがほぼ一致することを意味する。電流密度-100μA/cm2においては、酸素還元反応が支配的であるため、電流密度-100μA/cm2での電位により、燃料酸化反応と酸素還元反応との混合反応中での酸素還元反応の選択性を適切に評価することができる。
 直接液体型燃料電池用触媒が液体燃料の酸化に対して活性が低くなるほど、EFuel+OxygenとEOxygenとは近くなり、直接液体型燃料電池用触媒が液体燃料の酸化に対して完全不活性の場合はEFuel+OxygenとEOxygenとは一致する。
 〔測定法A1: 直接液体型燃料電池用触媒0.095gとカーボン(キャボット社製 XC-72)0.005gとを、イソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で攪拌し懸濁液を得る。この懸濁液30μLをグラッシーカーボン回転電極(北斗電工社製、直径:5mm)に塗布し、空気中で乾燥することにより、直接液体型燃料電池用触媒を含む燃料電池用触媒層が、グラッシーカーボン回転電極上に形成される。
 さらに、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))を10倍に純水で希釈したもの10μLを、前記触媒層上に塗布し、空気中で乾燥することにより、燃料電池用電極が得られる。
 前記燃料電池用電極を用いて、飽和酸素ガス雰囲気で、0.5mol/Lの液体燃料を含む0.5mol/L硫酸水溶液中、30℃の温度で、同濃度の硫酸水溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流-電位曲線を測定した際の、酸素還元反応による電流密度-100μA/cm2での電位をEFuel+Oxygenとする。〕
 〔測定法A2: 0.5mol/Lの液体燃料を含む0.5mol/L硫酸水溶液を、液体燃料を含まない0.5mol/Lの硫酸水溶液に変更した以外は測定法A1と同様にして電流-電位曲線を測定した際の、酸素還元反応による電流密度-100μA/cm2での電位をEOxygenとする。〕
 本発明の直接液体型燃料電池用触媒は、上述したEFuel+OxygenとEOxygenとの関係が、0.6≦(EFuel+Oxygen/EOxygen)≦1であることが好ましく、0.8≦(EFuel+Oxygen/EOxygen)≦1であることがさらに好ましく、0.9≦(EFuel+Oxygen/EOxygen)≦1であることが特に好ましい。
 このような特性を有する触媒を直接液体型燃料電池に用いると、上記液体燃料がクロスオーバーによりカソードに存在しても、液体燃料を酸化せず、酸素を選択的に還元する傾向がある。したがって、本発明の直接液体型燃料電池用触媒は、EFuel+Oxygen/EOxygenが上記範囲内であると、カソード電位の低下を抑制することができ、直接液体型燃料電池における酸素還元触媒として極めて有用な触媒となる。
 なお、直接液体型燃料電池用触媒が液体燃料の酸化に対して活性がある場合、クロスオーバーによりカソードに達した液体燃料は理論酸化電位より高い電位で酸化される。例えば、メタノールの理論酸化電位は0.05Vであるが、直接液体型燃料電池用触媒が白金触媒である場合、クロスオーバーによりカソードに達したメタノールは約0.4V以上の電位で酸化される。このことは、図2と図3との比較により確認することができる。
 図2は、白金触媒を用いた電極について、飽和窒素ガス雰囲気における0.5mol/Lの硫酸電解質中に0.5mol/Lのメタノールが存在した場合のサイクリックボルタモグラムである。
 図3は、白金触媒を用いた電極について、飽和窒素ガス雰囲気における0.5mol/Lの硫酸電解質中にメタノールが存在しない場合のサイクリックボルタモグラムである。図2では、約0.4V(vs RHE)から大きな酸化電流(アノディック電流)が観察される。すなわち、白金触媒上でメタノールが約0.4Vから酸化されることがわかる。
 図4は、白金触媒を用いた電極について、飽和酸素ガス雰囲気における0.5mol/Lの硫酸電解質中にメタノールが存在しない場合の酸素還元能を評価した電流―電位曲線と、飽和酸素ガス雰囲気における0.5mol/L硫酸電解質中に0.5mol/Lのメタノールが存在した場合の酸素還元能を評価した電流―電位曲線とを対比したものである。硫酸電解質中にメタノールが存在しない場合、EOxygenは0.96V(vs RHE)となり、硫酸電解質中に0.5mol/Lのメタノールが存在した場合、EFuel+Oxygenは0.58V(vs RHE)まで低下する。
 白金触媒を用いた電極において、EFuel+OxygenがEOxygenより大幅に低下するのは、メタノール酸化反応に対して白金触媒の活性が大きいためである。すなわち、白金触媒を用いた電極において、電解質中にメタノール等の液体燃料が存在した場合、酸素還元能は著しく低下する。
 したがって、液体燃料のクロスオーバーが起こる場合の直接液体型燃料電池において、カソード触媒としては、EFuel+OxygenとEOxygenとが近い値を示す触媒が好ましい。
 本発明に係る触媒が、液体燃料の酸化、例えばメタノール酸化に対して不活性である場合の電気特性について、図5~7を用いて以下詳細に説明する。
 図5は、本発明に係る触媒を用いた電極について、飽和窒素ガス雰囲気における0.5mol/Lの硫酸電解質中に0.5mol/Lのメタノールが存在した場合のサイクリックボルタモグラムの一例である。
 図6は、本発明に係る触媒を用いた電極について、飽和窒素ガス雰囲気における0.5mol/Lの硫酸電解質中にメタノールが存在しない場合のサイクリックボルタモグラムの一例である。
 上記のメタノールの酸化に活性がある白金触媒におけるサイクリックボルタモグラム(図2と図3との関係)と異なり、図5におけるサイクリックボルタモグラムと図6におけるサイクリックボルタモグラムとはほぼ一致する。すなわち、本発明に係る触媒は、メタノール等の液体燃料の酸化に対して不活性である場合、サイクリックボルタモグラムにおいて、メタノール酸化による酸化電流が観察されない。
 図7は、本発明に係る触媒を用いた電極について、飽和酸素ガス雰囲気における0.5mol/Lの硫酸電解質中に0.5mol/Lのメタノールが存在した場合の酸素還元能を評価した電流―電位曲線と、飽和酸素ガス雰囲気における0.5mol/Lの硫酸電解質中にメタノールが存在しない場合の酸素還元能を評価した電流―電位曲線とを対比した一例である。
 以上、図5~7より、本発明に係る触媒が、メタノール等の液体燃料の酸化に対して不活性である場合、酸素還元電位とメタノール酸化電位とによる混合電位は形成されず、EFuel+OxygenとEOxygenとがほぼ一致することがわかる。
 このような特性を有する触媒によれば、直接液体型燃料電池において、上記液体燃料の酸化反応を抑制し、酸素を選択的に還元する傾向があるので、直接液体型燃料電池の性能を向上することができる。
 直接液体型燃料電池におけるカソード触媒は、通常、酸性またはアルカリ性の高分子電解質に接触しており、供給される酸素を還元する。本発明においては、主に、電解質を硫酸電解質とし、該電解質に触媒を接触させて、直接液体型燃料電池におけるカソード触媒の状態を模擬的に再現することで、酸素還元触媒能を評価している。
 上記触媒を用いて形成された本発明の直接液体型燃料電池用触媒層は酸性電解質中において0.4V(vs.RHE)以上の電位で使用されることが好ましく、電位の上限は、電極の安定性により決まり、酸素が発生する電位のおよそ1.23V(vs.RHE)まで使用可能である。
 この電位が0.4V(vs.RHE)未満の場合、化合物の安定性という観点では全く問題はないが、酸素を好適に還元することができず、直接液体型燃料電池に含まれる膜電極接合体の触媒層としての有用性は乏しい。
 〔ニオブを含有する金属炭窒酸化物〕
 本発明の直接液体型燃料電池用触媒は、ニオブと、ニオブ以外の少なくとも1種の金属M1とを含有する金属炭窒酸化物(以下「金属炭窒酸化物1」とも記す。)からなることが好ましい。
 前記金属M1としては、スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムおよびニッケルからなる群より選択された少なくとも1種の金属であることが好ましい。中でも、鉄、スズ、インジウム、タンタル、マンガン、セリウム、クロムおよびコバルトからなる群より選択された少なくとも1種の金属であることが特に好ましい。
 このような金属を含有する金属炭窒酸化物からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属炭窒酸化物1の組成式は、NbaM1bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.99、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることが好ましい。
 上記組成式NbaM1bxyzにおけるaおよびbは、0.05≦a≦0.99、0.01≦b≦0.95、かつa+b=1であることがより好ましく、0.50≦a≦0.99、0.01≦b≦0.50、かつa+b=1であることがさらに好ましく、0.80≦a≦0.99、0.01≦b≦0.20、かつa+b=1であることが特に好ましい。
 上記組成式NbaM1bxyzにおけるx、yおよびzは、0.01≦x≦2、0.01≦y≦2、0.05≦z≦3、かつ0.07≦x+y+z≦5であることがより好ましい。
 各原子数の比が上記範囲であると、前記金属炭窒酸化物1からなる触媒による、カソード電位の低下抑制効果が高くなり、また、酸素還元能が高くなる傾向があり好ましい。
 本発明の金属炭窒酸化物1からなる触媒とは、該触媒の元素分析を行ったときに、少なくともニオブ、金属M1、炭素、窒素および酸素が検出されるものであり、単一の化合物、または混合物である可能性もある。すなわち、本発明の金属炭窒酸化物1からなる触媒とは、組成式がNbaM1bxyzで表される化合物、または、金属M1の酸化物、金属M1の炭化物、金属M1の窒化物、金属M1の炭窒化物、金属M1の炭酸化物、金属M1の窒酸化物、ニオブの酸化物、ニオブの炭化物、ニオブの窒化物、ニオブの炭窒化物、ニオブの炭酸化物、ニオブの窒酸化物、金属M1およびニオブを含有する酸化物、金属M1およびニオブを含有する炭化物、金属M1およびニオブを含有する窒化物、金属M1およびニオブを含有する炭窒化物、金属M1およびニオブを含有する炭酸化物、金属M1およびニオブを含有する窒酸化物などを含み、組成式が全体としてNbaM1bxyzで表される混合物(ただし、NbaM1bxyzで表される化合物を含んでいてもいなくてもよい。)、あるいはその両方を意味する。中でも、酸素欠陥を有するNb1229などのニオブの酸化物を含んでいると、得られる触媒の酸素還元能が高くなる傾向があり好ましい。
 また、粉末X線回折法(Cu-K線)によって前記金属炭窒酸化物1を測定した際に、回折角2θ=33°~43°の間に、回折線ピークが2つ以上観測されることが好ましい。回折線ピークが2つ以上観測されると、得られる触媒の酸素還元電位が高くなる傾向がある点で好ましい。
 回折線ピークとは、試料(結晶質)に様々な角度でX線を照射した場合に、特異的な回折角度および回折強度で得られるピークのことをいう。本発明においては、信号(S)とノイズ(N)との比(S/N)が2以上で検出できるシグナルを一つの回折線ピークとしてみなす。ここで、ノイズ(N)は、ベースラインの幅とした。
 X線回折法の測定装置としては、例えば粉末X線解析装置:リガク RAD-RXを用いて行うことができ、その測定条件としては、X線出力(Cu-K線):50kV、180mA、走査軸 :θ/2θ、測定範囲(2θ):10°~89.98°、測定モード:FT、読込幅 :0.02°、サンプリング時間:0.70秒、DS、SS、RS:0.5°、0.5°、0.15mm、ゴンオメーター半径:185mmである。
 また、前記金属炭窒酸化物1がいくつかの相からなる混合物であって、粉末X線回折法(Cu-K線)によって前記金属炭窒酸化物1を測定した際に、Nb1229由来のピークが観測されることが好ましい。その他にNbO、NbO2、Nb25、Nb2562、Nb47116、Nb2254などの酸化物由来のピークが観測されてもよい。
 前記金属炭窒酸化物1の構造は明らかではないが、前記金属炭窒酸化物1中には、酸素欠陥を有するNb1229などの酸化物からなる相が存在していると考えられる。通常、単独のNb1229は高い酸素還元能を発現しないが、前記金属炭窒酸化物1は、酸素欠陥を有するNb1229などの酸化物からなる相が存在するため、最終的に得られる触媒は高い酸素還元能を有すると、本発明者らは、推定している。
 前記金属炭窒酸化物1において、酸素欠陥を有するNb1229を一つのユニットとすると、各ユニットのNbとNbとの間で酸素がブリッジ配位(Nb-O-O-Nb)していると考えられる。酸素還元能の発現のメカニズムは明らかではないが、前記ブリッジ配位(Nb-O-O-Nb)に寄与しているNbが活性点となり、酸素還元能が発現すると推定される。酸素欠陥を有するNb1229が各ユニットで重なると、ユニット間のNbとNbとの結合距離が短くなる。該結合距離が短い部分が多くなるほど、酸素還元能が向上すると考えられる。また、このユニットに、炭素または窒素が介在することで、Nb周辺の電子密度が変化し触媒活性が向上すると推定される。また、炭素、窒素の介在で電子伝導性が向上しているとも推定できるが、性能向上の理由は定かではない。
 前記金属炭窒酸化物1を直接液体型燃料電池用触媒として使用する際に、導電性を付与するための添加材を配合する場合がある。具体的には、バルカンXC72、ケッチェンブラックなどに代表されるカーボンブラックなどの電子伝導性粒子を配合する場合がある。しかしながら、本発明の金属炭窒酸化物1からなる触媒は、このようなカーボンブラックなどの導電性粒子を配合しなくても、元素分析を行った際に炭素が検出される。
 〔チタンを含有する金属炭窒酸化物〕
 本発明の直接液体型燃料電池用触媒は、チタンと、チタン以外の少なくとも1種の金属M2とを含有する金属炭窒酸化物(以下「金属炭窒酸化物2」とも記す。)からなることが好ましい。
 前記金属M2としては、カルシウム、ストロンチウム、イットリウム、ルテニウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選択された少なくとも1種の金属であることが好ましい。中でも、サマリウム、プラセオジウム、ネオジウム、ジスプロシウム、エルビウム、ストロンチウム、カルシウムおよびランタンからなる群より選択された少なくとも1種の金属であることが特に好ましい。
 このような金属を含有する金属炭窒酸化物からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属炭窒酸化物2の組成式は、TiaM2bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.7≦a≦0.9999、0.0001≦b≦0.3、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることが好ましい。
 上記組成式TiaM2bxyzにおけるaおよびbは、0.8≦a≦0.999、0.001≦b≦0.2、かつa+b=1であることがより好ましく、0.9≦a≦0.999、0.001≦b≦0.1、かつa+b=1であることがさらに好ましい。
 上記組成式TiaM2bxyzにおけるx、yおよびzは、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、かつx+y+z≦5であることがより好ましい。
 各原子数の比が上記範囲であると、前記金属炭窒酸化物2からなる触媒による、カソード電位の低下抑制効果が高くなり、また、酸素還元能が高くなる傾向があり好ましい。
 本発明の金属炭窒酸化物2からなる触媒とは、該触媒の元素分析を行ったときに、少なくともチタン、金属M2、炭素、窒素および酸素が検出されるものであり、単一の化合物、または混合物である可能性もある。
 本発明に用いる金属炭窒酸化物2は、その結晶性の成分は少なくとも酸化物の結晶構造をとっていると考えられる。すなわち、ルチル型の酸化物の酸素の一部を炭素または窒素で置き換えた化合物(1)である可能性がある。または、チタンと酸素とからなる酸化物(酸素欠陥を含むこともある酸化物)は結晶性の化合物と、炭素および窒素からなる非晶質の化合物との混合物(2)である可能性がある。さらに化合物(1)と混合物(2)との混合物である可能性があるが、これらを分離同定することは技術上困難である。
 前記金属炭窒酸化物2を直接液体型燃料電池用触媒として使用する際に、導電性を付与するための添加材を配合する場合がある。具体的には、バルカンXC72、ケッチェンブラックなどに代表されるカーボンブラックなどの電子伝導性粒子を配合する場合がある。しかしながら、本発明の金属炭窒酸化物2からなる触媒は、このようなカーボンブラックなどの導電性粒子を配合しなくても、元素分析を行った際に炭素が検出される。
 <直接液体型燃料電池用触媒の製造方法>
 上記直接液体型燃料電池用触媒の製造方法は特に限定されないが、例えば、ニオブおよび/またはチタン含有する金属炭窒化物を、酸素ガスを含む不活性ガス中で加熱することにより、ニオブおよび/またはチタン含有する金属炭窒酸化物を得る工程を含む製造方法が挙げられる。
 このような製造方法で得られた金属炭窒酸化物からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 〔金属炭窒酸化物1からなる触媒の製造方法〕
 上記金属炭窒酸化物1からなる触媒の製造方法は特に限定されないが、例えば、スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムおよびニッケルからなる群より選択された少なくとも1種の金属M1ならびにニオブを含有する金属炭窒化物(以下「金属炭窒化物1」とも記す。)を、酸素ガスを含む不活性ガス中で加熱することにより、スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムおよびニッケルからなる群より選択された少なくとも1種の金属M1ならびにニオブを含有する金属炭窒酸化物1を得る工程を含む製造方法が挙げられる。
 上記工程に用いる金属炭窒化物1を得る方法としては、前記金属M1の酸化物、酸化ニオブおよび炭素との混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物1を製造する方法(i)、前記金属M1の酸化物、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法(ii)、または前記金属M1の酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法(iii)、または前記金属M1を含有する化合物(例えば有機酸塩、塩化物、炭化物、窒化物、錯体など)、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法(iv)などが挙げられる。また、金属炭窒化物1を得ることができれば、原料としては特に制限されず、例えば、前記製造方法(i)~(iv)における原料、その他の原料を組み合わせて用いることができる。このように組み合わせた混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法(v)であってもよい。
 [製造方法(i)]
 製造方法(i)は、前記金属M1の酸化物、酸化ニオブおよび炭素との混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物1を製造する方法である。
 金属炭窒化物1を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料の金属M1の酸化物は、酸化スズ、酸化インジウム、酸化タンタル、酸化ジルコニウム、酸化銅、酸化鉄、酸化タングステン、酸化クロム、酸化モリブデン、酸化ハフニウム、酸化チタン、酸化バナジウム、酸化コバルト、酸化マンガン、酸化セリウム、酸化水銀、酸化プルトニウム、酸化イットリウム、酸化ルテニウム、酸化ランタン、酸化セリウム、酸化プラセオジウム、酸化ネオジウム、酸化プロメチウム、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウムおよび酸化ニッケル等が挙げられる。金属M1の酸化物は、1種類以上用いることができる。
 原料の酸化ニオブとしては、NbO、NbO2やNb25等が挙げられる。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 上記いずれの原料を用いても、前記金属M1の酸化物、酸化ニオブおよび炭素から得られる金属炭窒化物1を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物1からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属Mの酸化物、酸化ニオブおよび炭素の配合量(モル比)を制御すると、適切な金属炭窒化物1が得られる。
 前記配合量(モル比)は、通常、酸化ニオブ1モルに対して、前記金属M1の酸化物が0.01~10モル、炭素が1~10モルであり、好ましくは、酸化ニオブ1モルに対して、前記金属M1の酸化物が0.01~4モル、炭素が2~6モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物1を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物1が得られる傾向がある。
 [製造方法(ii)]
 製造方法(ii)は、前記金属M1の酸化物、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法である。
 金属炭窒化物1を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、前記金属M1の酸化物、炭化ニオブおよび窒化ニオブを用いる。
 原料の金属M1の酸化物は、酸化スズ、酸化インジウム、酸化タンタル、酸化ジルコニウム、酸化銅、酸化鉄、酸化タングステン、酸化クロム、酸化モリブデン、酸化ハフニウム、酸化チタン、酸化バナジウム、酸化コバルト、酸化マンガン、酸化セリウム、酸化水銀、酸化プルトニウム、酸化イットリウム、酸化ルテニウム、酸化ランタン、酸化セリウム、酸化プラセオジウム、酸化ネオジウム、酸化プロメチウム、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウムおよび酸化ニッケル等が挙げられる。金属M1の酸化物は、1種類以上用いることができる。
 原料の炭化ニオブとしては、NbC等が挙げられる。
 原料の窒化ニオブとしては、NbN等が挙げられる。
 上記いずれの原料を用いても、前記金属M1の酸化物、炭化ニオブおよび窒化ニオブから得られる金属炭窒化物1を、酸素を含む不活性ガス中で加熱することにより得られる金属炭窒酸化物1からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属M1の酸化物、炭化ニオブおよび窒化ニオブの配合量(モル比)を制御すると、適切な金属炭窒化物1が得られる。前記配合量(モル比)は、通常、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.01~500モル、前記金属M1の酸化物が0.01~50モルであり、好ましくは、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.1~300モル、前記金属M1の酸化物が0.1~30モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物1を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物1が得られる傾向がある。
 [製造方法(iii)]
 製造方法(iii)は、前記金属M1の酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法である。
 金属炭窒化物1を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、前記金属M1の酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブを用いる。原料の金属M1の酸化物は、酸化スズ、酸化インジウム、酸化タンタル、酸化ジルコニウム、酸化銅、酸化鉄、酸化タングステン、酸化クロム、酸化モリブデン、酸化ハフニウム、酸化チタン、酸化バナジウム、酸化コバルト、酸化マンガン、酸化セリウム、酸化水銀、酸化プルトニウム、酸化イットリウム、酸化ルテニウム、酸化ランタン、酸化セリウム、酸化プラセオジウム、酸化ネオジウム、酸化プロメチウム、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウムおよび酸化ニッケル等が挙げられる。金属M1の酸化物は、1種類以上用いることができる。
 原料の炭化ニオブとしては、NbC等が挙げられる。
 原料の窒化ニオブとしては、NbN等が挙げられる。
 原料の酸化ニオブとしては、NbO、NbO2やNb25等が挙げられる。
 上記いずれの原料を用いても、前記金属M1の酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブから得られる金属炭窒化物1を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物1からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属M1の酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブの配合量(モル比)を制御すると、適切な金属炭窒化物1が得られる。前記配合量(モル比)は、通常、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.01~500モル、前記金属M1の酸化物および酸化ニオブが合わせて0.01~50モルであり、好ましくは、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.1~300モル、前記金属M1の酸化物および酸化ニオブが合わせて0.1~30モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物1を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物1が得られる傾向がある。
 [製造方法(iv)]
 製造方法(iv)は、前記金属M1を含有する化合物、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法である。
 金属炭窒化物1を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、前記金属M1を含有する化合物、炭化ニオブおよび窒化ニオブを用いる。原料の金属M1を含有する化合物は、スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムまたはニッケル等の有機酸塩、炭酸塩、塩化物、有機錯体、炭化物、窒化物等が挙げられる。金属M1を含有する化合物は、1種類以上用いることができる。
 原料の炭化ニオブとしては、NbC等が挙げられる。
 原料の窒化ニオブとしては、NbN等が挙げられる。
 上記いずれの原料を用いても、前記金属M1を含有する化合物、炭化ニオブおよび窒化ニオブから得られる金属炭窒化物1を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物1からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属M1を含有する化合物、炭化ニオブおよび窒化ニオブの配合量(モル比)を制御すると、適切な金属炭窒化物1が得られる。前記配合量(モル比)は、通常、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.01~500モル、前記金属M1を含有する化合物が0.001~50モルであり、好ましくは、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.1~300モル、前記金属M1を含有する化合物が0.01~30モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物1を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物1が得られる傾向がある。
 [製造方法(v)]
 前記金属炭窒化物1を得ることができれば、原料としては特に制限されず、前記製造方法(i)~(iv)における原料、その他の原料を様々に組み合わせて用いることができる。
 製造方法(v)は、前記製造方法(i)~(iv)における原料の組み合わせ以外の原料混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物1を製造する方法である。
 金属炭窒化物1を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、例えば、前記金属M1を含有する化合物、炭化ニオブ、窒化ニオブ、酸化ニオブ、ニオブ前駆体または炭素等を様々に組み合わせた混合物を原料混合物として用いることができる。
 原料の金属M1を含有する化合物は、スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムまたはニッケル等の有機酸塩、炭酸塩、塩化物、有機錯体、炭化物、窒化物、前駆体等が挙げられる。金属M1を含有する化合物は、1種類以上用いることができる。
 原料の炭化ニオブとしては、NbC等が挙げられる。
 原料の窒化ニオブとしては、NbN等が挙げられる。
 原料の酸化ニオブとしては、NbO、NbO2やNb25等が挙げられる。
 ニオブ前駆体としては、ニオブの、有機酸塩、炭酸塩、塩化物、有機錯体、炭化物、窒化物、アルコキシ体等が挙げられる。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 上記いずれの原料を用いても、得られる金属炭窒化物1を、酸素を含む不活性ガス中で加熱することにより得られる金属炭窒酸化物1からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 例えば、前記金属M1を含有する化合物、炭化ニオブおよび窒化ニオブの配合量(モル比)を制御すると、適切な金属炭窒化物1が得られる。前記配合量(モル比)は、通常、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.01~500モル、前記金属M1を含有する化合物が0.001~50モルであり、好ましくは、窒化ニオブ(NbN)1モルに対して、炭化ニオブ(NbC)が0.1~300モル、前記金属M1を含有する化合物が0.01~30モルである。上記範囲を満たす配合モル比で作られた金属炭窒化物1を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物1が得られる傾向がある。
 (金属炭窒酸化物1の製造工程)
 次に、上記製造方法(i)~(v)で得られた金属炭窒化物1を、酸素ガスを含有する不活性ガス中で加熱することにより、金属炭窒酸化物1を得る工程について説明する。
 上記不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスまたはラドンガスが挙げられる。窒素ガス、アルゴンガスまたはヘリウムガスが、比較的入手しやすい点で特に好ましい。
 上記不活性ガス中の酸素ガスの濃度は、加熱時間と加熱温度に依存するが、0.1~10容量%が好ましく、0.5~5容量%が特に好ましい。前記酸素ガスの濃度が前記範囲内であると、均一な炭窒酸化物が形成する点で好ましい。また、前記酸素ガスの濃度が0.1容量%未満であると未酸化状態になる傾向があり、10容量%を超えると酸化が進み過ぎてしまう傾向がある。
 上記不活性ガス中に、水素ガスが5容量%以下の範囲で含有していることが好ましい。該水素ガス含有量は、より好ましくは0.01~4容量%であり、さらに好ましくは0.1~4容量%である。なお、本発明におけるガス濃度(容量%)は、標準状態における値である。
 当該工程における加熱の温度は、通常は400~1400℃の範囲であり、好ましくは600~1200℃の範囲である。前記加熱温度が前記範囲内であると、均一な金属炭窒酸化物1が形成する点で好ましい。前記加熱温度が400℃未満であると酸化が進まない傾向があり、1400℃以上であると酸化が進み過ぎ、結晶成長する傾向がある。
 前記加熱方法としては、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
 静置法とは、静置式の電気炉などに、金属炭窒化物1を置き、加熱する方法である。また、金属炭窒化物1を量りとったアルミナボード、石英ボードなどを置いて加熱する方法もある。静置法の場合は、大量の金属炭窒化物1を加熱することができる点で好ましい。
 攪拌法とは、ロータリーキルンなどの電気炉中に金属炭窒化物1を入れ、これを攪拌しながら加熱する方法である。攪拌法の場合は、大量の金属炭窒化物1を加熱することができ、金属炭窒化物1の粒子の凝集および成長を抑制することができる点で好ましい。
 静置法、攪拌法などの管状炉で行なう場合、金属炭窒化物1の加熱時間は、0.1~10時間、好ましくは0.5~5時間である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物1が形成される傾向があり好ましい。前記加熱時間が0.1時間未満であると金属炭窒酸化物1が部分的に形成される傾向があり、10時間を超えると酸化が進みすぎる傾向がある。
 落下法とは、誘導炉中に微量の酸素ガスを含む不活性ガスを流しながら、炉を所定の加熱温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に金属炭窒化物1を落下させ、加熱する方法である。落下法の場合は、金属炭窒化物1の粒子の凝集および成長を最小限度に抑制することができる点で好ましい。
 落下法の場合、金属炭窒化物1の加熱時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物1が形成される傾向があり好ましい。前記加熱時間が0.5分未満であると金属炭窒酸化物1が部分的に形成される傾向があり、10分を超えると酸化が進みすぎる傾向がある。
 粉末捕捉法とは、微量の酸素ガスを含む不活性ガス雰囲気中で金属炭窒化物1を飛沫にして浮遊させ、所定の加熱温度に保たれた垂直の管状炉中に金属炭窒化物1を捕捉して、加熱する方法である。
 粉末捕捉法の場合、金属炭窒化物1の加熱時間は、0.2秒~1分、好ましくは0.2~10秒である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物1が形成される傾向があり好ましい。前記加熱時間が0.2秒未満であると金属炭窒酸化物1が部分的に形成される傾向があり、1分を超えると酸化が進みすぎる傾向がある。
 本発明の触媒としては、上述の製造方法等により得られる金属炭窒酸化物1を、そのまま用いてもよいが、得られる金属炭窒酸化物1をさらに解砕し、より微細な粉末にしたものを用いてもよい。
 金属炭窒酸化物1を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体攪拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、金属炭窒酸化物1をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
 〔金属炭窒酸化物2からなる触媒の製造方法〕
 上記金属炭窒酸化物2からなる触媒の製造方法は特に限定されないが、例えば、カルシウム、ストロンチウム、イットリウム、ルテニウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選択された少なくとも1種の金属M2ならびにチタンを含有する金属炭窒化物(以下「金属炭窒化物2」とも記す。)を、酸素ガスを含む不活性ガス中で加熱することにより、カルシウム、ストロンチウム、イットリウム、ルテニウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選択された少なくとも1種の金属M2ならびにチタンを含有する金属炭窒酸化物2を得る工程を含む製造方法が挙げられる。
 上記工程に用いる前記金属炭窒化物2を得る方法としては、例えば、前記金属M2を含有する化合物、チタンを含有する化合物および炭素を含んだ混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物2を製造する方法(vi)が挙げられる。その中でも、前記金属M2の酸化物、酸化チタンおよび炭素の混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物2を製造する方法(via)が好ましい。
 [製造方法(vi)]
 製造方法(vi)は、前記金属M2を含有する化合物、チタンを含有する化合物および炭素を含んだ混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物2を製造する方法である。
 金属炭窒化物2を製造する際の加熱の温度は500~2200℃の範囲であり、好ましくは800~2000℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が500℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、2200℃以上であるとより焼結し結晶が大きくなる傾向がある。反応時には窒素ガスまたは窒素化合物混合ガスを供給することにより、合成される炭窒化物における窒素源を供給することが可能である。
 原料の金属M2を含有する化合物は、酸化物、炭化物、窒化物、炭酸塩、硝酸塩、酢酸塩、シュウ酸塩、クエン酸塩等のカルボン酸塩、リン酸塩などが挙げられる。酸化物としては、酸化カルシウム、酸化ストロンチウム、酸化イットリウム、酸化ルテニウム、酸化ランタン、酸化プラセオジウム、酸化ネオジウム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等が挙げられる。炭化物としては、炭化カルシウム、炭化ストロンチウム、炭化イットリウム、炭化ルテニウム、炭化ランタン、炭化プラセオジウム、炭化ネオジウム、炭化プロメチウム、炭化サマリウム、炭化ユウロピウム、炭化ガドリニウム、炭化テルビウム、炭化ジスプロシウム、炭化ホルミウム、炭化エルビウム、炭化ツリウム、炭化イッテルビウムまたは炭化ルテチウム等が挙げられる。窒化物としては、窒化カルシウム、窒化ストロンチウム、窒化イットリウム、窒化ルテニウム、窒化ランタン、窒化プラセオジウム、窒化ネオジウム、窒化プロメチウム、窒化サマリウム、窒化ユウロピウム、窒化ガドリニウム、窒化テルビウム、窒化ジスプロシウム、窒化ホルミウム、窒化エルビウム、窒化ツリウム、窒化イッテルビウムまたは窒化ルテチウム等が挙げられる。炭酸塩としては、炭酸カルシウム、炭酸ストロンチウム、炭酸イットリウム、炭酸ルテニウム、炭酸ランタン、炭酸プラセオジウム、炭酸ネオジウム、炭酸プロメチウム、炭酸サマリウム、炭酸ユウロピウム、炭酸ガドリニウム、炭酸テルビウム、炭酸ジスプロシウム、炭酸ホルミウム、炭酸エルビウム、炭酸ツリウム、炭酸イッテルビウムまたは炭酸ルテチウム等が挙げられる。金属M2を含んだ化合物は、1種類以上用いることができ、特に限定されない。
 原料のチタンを含有する化合物としては、酸化物、炭化物、窒化物、炭酸塩、硝酸塩、酢酸塩、シュウ酸塩、クエン酸塩、カルボン酸塩、リン酸塩、オキジ塩化物等が挙げられる。
 例えば、Ti34、TiO2、Tin2n-1(ただし、nは1~20の整数であり、好ましくは1~10の整数である。)、TiC、TiN、TiCl2O、TiCl4等が挙げられる。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 上記いずれの原料を用いても、得られる金属炭窒化物2を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物2からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属M2を含有する化合物およびチタンを含有する化合物の配合量(モル比)を制御すると、適切な金属炭窒化物2が得られる。
 前記配合量(モル比)は、最適な配合モル比で作られた金属炭窒化物2を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物2が得られる傾向がある。
 [製造方法(via)]
 製造方法(via)は、前記金属M2の酸化物、酸化チタンおよび炭素の混合物を、窒素雰囲気または窒素ガスを含有する不活性ガス中で加熱することにより金属炭窒化物2を製造する方法である。この製造方法(via)で得られる金属炭窒化物2を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物2からなる触媒は、酸化還元能に優れるため好ましい。
 金属炭窒化物2を製造する際の加熱の温度は600~2200℃の範囲であり、好ましくは800~2000℃の範囲である。さらに好ましくは1000~1900℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、2200℃以上であると焼結し結晶が大きくなる傾向がある。
 製造方法(via)における原料の金属M2の酸化物としては、酸化カルシウム、酸化ストロンチウム、酸化イットリウム、酸化ルテニウム、酸化ランタン、酸化プラセオジウム、酸化ネオジウム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウムまたは酸化ルテチウムが挙げられる。これらの酸化物は、1種類以上用いることができる。
 製造方法(via)における原料の酸化チタンとしては、Ti34、TiO2、Tin2n-1(ただし、nは1~20の整数であり、好ましくは1~10の整数である。)等が挙げられる。
 製造方法(via)における原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。この中でも特に、カーボンブラックが好ましい。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 上記いずれの原料を用いても、得られる金属炭窒化物2を、酸素ガスを含む不活性ガス中で加熱することにより得られる金属炭窒酸化物2からなる触媒は、直接液体型燃料電池に適用した場合、クロスオーバーによるカソード電位の低下を抑制でき、酸化還元能に優れ、しかも安価である。
 前記金属M2の酸化物、酸化チタンおよび炭素の配合量(モル比)を制御すると、適切な金属炭窒化物2が得られる。
 前記配合量(モル比)は、通常、酸化チタン1モルに対して、前記金属M2の酸化物が0.0001~1モル、炭素が1~10モルであり、好ましくは、酸化チタン1モルに対して、前記金属M2の酸化物が0.001~0.4モル、炭素が2~6モルである。さらに好ましくは、酸化チタン1モルに対して、前記金属M2の酸化物が0.001~0.1モル、炭素が2~3モルである。金属M2がカルシウム、ストロンチウム、イットリウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの場合には、酸化チタン1モルに対して、金属M2の酸化物が0.001~0.05モルであることが好ましい。より好ましくは、0.005~0.03モルであることが好ましい。上記範囲を満たす配合モル比で作られた金属炭窒化物2を用いると、クロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れ、活性が高い金属炭窒酸化物2が得られる傾向がある。
 (金属炭窒酸化物2の製造工程)
 次に、上記製造方法(via)等の製造方法(vi)で得られた金属炭窒化物2を、酸素ガスを含む不活性ガス中で加熱することにより、金属炭窒酸化物2を得る工程について説明する。
 上記不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスまたはラドンガスが挙げられる。窒素ガスまたはアルゴンガスが、比較的入手しやすい点で特に好ましい。
 上記不活性ガス中の酸素ガスの濃度は、加熱時間と加熱温度に依存するが、0.1~10容量%が好ましく、0.5~5容量%が特に好ましい。前記酸素濃度が前記範囲内であると、均一な金属炭窒酸化物2が形成する点で好ましい。また、前記酸素濃度が0.1容量%未満であると未酸化状態になる傾向があり、10容量%を超えると酸化が進み過ぎてしまう傾向がある。
 上記不活性ガス中に、水素ガスが10容量%以下の範囲で含有していることが好ましい。該水素ガス含有量は、より好ましくは0.01~10容量%であり、さらに好ましくは0.1~5容量%である。なお、本発明におけるガス濃度(容量%)は、標準状態における値である。水素ガスが前記範囲内で含有していると、均一な炭窒酸化物が形成する点で好ましい。10容量%を超えると還元が進み過ぎてしまう傾向がある。
 当該工程における加熱の温度は、通常は400~1400℃の範囲であり、好ましくは600~1200℃の範囲である。前記加熱温度が前記範囲内であると、均一な金属炭窒酸化物2が形成する点で好ましい。前記加熱温度が400℃未満であると酸化が進まない傾向があり、1400℃以上であると酸化が進み、結晶成長する傾向がある。
 前記加熱方法としては、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
 静置法とは、静置式の電気炉などに、金属炭窒化物2を置き、加熱する方法である。また、金属炭窒化物2を量りとったアルミナボード、石英ボードなどを置いて加熱する方法もある。静置法の場合は、大量の金属炭窒化物2を加熱することができる点で好ましい。
 攪拌法とは、ロータリーキルンなどの電気炉中に金属炭窒化物2を入れ、これを攪拌しながら加熱する方法である。攪拌法の場合は、大量の金属炭窒化物2を加熱することができ、金属炭窒化物2の粒子の凝集および成長を抑制することができる点で好ましい。
 静置法、攪拌法などの管状炉で行なう場合、金属炭窒化物2の加熱時間は、0.1~10時間、好ましくは0.5~5時間である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物2が形成される傾向があり好ましい。前記加熱時間が0.1時間未満であると金属炭窒酸化物2が部分的に形成される傾向があり、10時間を超えると酸化が進みすぎる傾向がある。
 落下法とは、誘導炉中に微量の酸素ガスを含む不活性ガスを流しながら、炉を所定の加熱温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に金属炭窒化物2を落下させ、加熱する方法である。落下法の場合は、金属炭窒化物2の粒子の凝集および成長を最小限度に抑制することができる点で好ましい。
 落下法の場合、金属炭窒化物2の加熱時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物2が形成される傾向があり好ましい。前記加熱時間が0.5分未満であると金属炭窒酸化物2が部分的に形成される傾向があり、10分を超えると酸化が進みすぎる傾向がある。
 粉末捕捉法とは、微量の酸素ガスを含む不活性ガス雰囲気中で金属炭窒化物2を飛沫にして浮遊させ、所定の加熱温度に保たれた垂直の管状炉中に金属炭窒化物2を捕捉して、加熱する方法である。
 粉末捕捉法の場合、金属炭窒化物2の加熱時間は、0.2秒~1分、好ましくは0.2~10秒である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物2が形成される傾向があり好ましい。前記加熱時間が0.2秒未満であると金属炭窒酸化物2が部分的に形成される傾向があり、1分を超えると酸化が進みすぎる傾向がある。
 本発明の触媒としては、上述の製造方法等により得られる金属炭窒酸化物2を、そのまま用いてもよいが、得られる金属炭窒酸化物2をさらに解砕し、より微細な粉末にしたものを用いてもよい。
 金属炭窒酸化物2を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、金属炭窒酸化物2をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
 <用途>
 本発明の触媒は、直接液体型燃料電池における触媒として有効に使用することができ、特に直接液体型燃料電池における白金触媒の代替触媒として有効に使用することができる。また、本発明の触媒は、メタノール、エタノールおよびギ酸等の液体燃料を使用する直接液体型燃料電池における酸素還元触媒として特に有用である。
 直接液体型燃料電池におけるカソード触媒として白金触媒を適用すると、前記液体燃料のクロスオーバーによるカソード電位の低下が生じる。結果として、直接液体型燃料電池の性能が著しく低下する。
 しかしながら、本発明の触媒は、直接液体型燃料電池におけるカソード触媒として適用した場合、上述のとおり、前記液体燃料がクロスオーバーによりカソードに存在しても、カソード電位の低下を抑制ができ、酸素還元能に優れ、しかも安価である。
 本発明の直接液体型燃料電池用触媒層は、前記触媒を含むことを特徴としている。
 直接液体型燃料電池用触媒層には、アノード触媒層、カソード触媒層がある。特に前記触媒は、耐久性に優れ、酸素還元能が大きく、液体燃料のクロスオーバーによるカソード電位の低下を抑制することができるので、カソード触媒層に用いることが好ましい。
 本発明の直接液体型燃料電池用触媒層には、さらに電子伝導性粒子を含むことが好ましい。前記触媒を含む直接液体型燃料電池用触媒層がさらに電子伝導性粒子を含む場合には、還元電流をより高めることができる。電子伝導性粒子は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。電子伝導性粒子を構成する材料としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、比表面積の大きい炭素粒子単独または比表面積の大きい炭素粒子とその他の電子伝導性粒子との混合物が好ましい。すなわち直接液体型燃料電池用触媒層としては、前記触媒と、比表面積の大きい炭素粒子とを含むことが好ましい。
 炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下したり、触媒の利用率が低下する傾向があるため、10~1000nmの範囲であることが好ましく、10~100nmの範囲であることがよりに好ましい。
 なお、本発明において、カーボンの粒径は、透過電子顕微鏡(Transmission Electron Microscope:TEM)により測定した値である。
 電子伝導性粒子を構成する材料が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは0.5:1~1000:1であり、より好ましくは1:1~100:1であり、さらに好ましくは4:1~10:1である。導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 高分子電解質としては、直接液体型燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸水溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))が好ましい。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、直接液体型燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用できる溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等を使用することができる。
 また、触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 直接液体型燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に直接液体型燃料電池用触媒層を形成した後、転写法で電解質膜に直接液体型燃料電池用触媒層を形成する方法が挙げられる。
 本発明の直接液体型燃料電池用電極は、前記直接液体型燃料電池用触媒層と多孔質支持層とを有することを特徴としている。
 多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被覆したアルミニウム箔が用いられる。
 本発明の膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する直接液体型燃料電池用膜電極接合体であって、前記カソードおよび/または前記アノードが、前記直接液体型燃料電池用電極であることを特徴としている。
 本発明の直接液体型燃料電池は、前記直接液体型燃料電池用膜電極接合体を備えることを特徴としている。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 また、実施例および比較例における各種測定は、下記の方法により行なった。
 [分析方法]
 1.粉末X線回折
 理学電機株式会社製 ロータフレックスおよびPANalytical製 X‘Pert Proを用いて、試料の粉末X線回折を行った。
 各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)との比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。なお、ノイズ(N)は、ベースラインの幅とした。
 2.元素分析
 炭素:試料約0.1gを量り取り、炭素分析装置(堀場製作所 EMIA-110)で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Ni-Cupに封入後、ON分析装置(Leco社製、TC600型)で測定を行った。
 ニオブ、チタンおよび他の金属:試料約0.1gを白金皿に量り取り、酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP-MS(SII社製、ICP-OESVISTA-PRO型)で定量を行った。
 [実施例1](NbaFebxyz
 1.触媒の調製
 炭化ニオブ(NbC、添川理化学株式会社製)5.88g(56mmol)、酸化第二鉄(Fe23、株式会社高純度化学研究所製)0.40g(2.5mmol)および窒化ニオブ(NbN、株式会社高純度化学研究所製)5.14g(48mmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1600℃で3時間、窒素雰囲気中で加熱することにより、鉄およびニオブを含有する金属炭窒化物(1)11.19gが得られた。焼結体の金属炭窒化物(1)をボールミルで粉砕した。
 粉砕した金属炭窒化物(1)1.00gを、1容量%の酸素ガスおよび0.8容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、900℃で6時間加熱することにより、鉄およびニオブを含有する金属炭窒酸化物(以下「触媒(1)」とも記す。)1.24gが得られた。得られた触媒(1)の元素分析結果を表1に示す。
 触媒(1)の粉末X線回折スペクトルを図8に示す。回折角2θ=33°~43°の間に、回折線ピークが4つ観測された。
 2.燃料電池用電極の製造
 酸素還元能の測定は、次のように行った。触媒(1)0.095gおよびカーボン(キャボット社製 XC-72)0.005gを、イソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で攪拌し懸濁液を得た。この懸濁液をグラッシーカーボン回転電極(北斗電工社製、直径:5mm)に塗布し、触媒の担持量が2mgになるようにして、空気中で充分乾燥した。さらに、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))を10倍に純水で希釈したもの10μLを塗布し、空気中で充分乾燥し、燃料電池用電極(1-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(1-1)の触媒能(酸素還元能)を以下の方法で評価した。
 まず、作製した燃料電池用電極(1-1)を、飽和酸素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、5mV/秒の電位走査速度で分極し、電流-電位曲線を測定した。その際、同濃度の硫酸水溶液中での可逆水素電極(RHE)を参照電極とした。
 本実施例において、当該測定(メタノール等の液体燃料無し)における、酸素還元電流密度-100μA/cm2での電位を「EOxygen」とした。
 作製した燃料電池用電極(1-1)の触媒能(酸素還元能)を「EOxygen」により評価した。
 すなわち、「EOxygen」が高いほど燃料電池用電極(1-1)の触媒能(酸素還元能)が高いことを示す。
 図9に、上記測定により得られた電流-電位曲線を示す。
 燃料電池用電極(1-1)は、EOxygenが0.83V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 0.5mol/Lの硫酸水溶液を、0.5mol/Lのメタノールを含む0.5mol/L硫酸水溶液に変更した以外は上記3と同様にして電流-電位曲線を測定し、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(1-1)の酸素還元能を評価した。
 本実施例において、当該測定(メタノール等の液体燃料有り)における、酸素還元電流密度-100μA/cm2での電位を「EFuel+Oxygen」とした。
 図10に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(1-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.80V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.83V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.96であった。
 すなわち、実施例1で作製した燃料電池用触媒を用いた電極(1-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(1-2)を作製した。
 硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(1-2)の触媒能(酸素還元能)を以下の方法で評価した。
 まず、作製した燃料電池用電極(1-2)を、飽和酸素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、5mV/秒の電位走査速度で分極し、電流-電位曲線を測定した。その際、同濃度の硫酸水溶液中での可逆水素電極(RHE)を参照電極とした。
 燃料電池用電極(1-2)は、EOxygenが0.78V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 0.5mol/Lの硫酸水溶液中を、0.5mol/Lのエタノールを含む0.5mol/L硫酸水溶液中に変更した以外は上記5と同様にして電流-電位曲線を測定し、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(1-2)の酸素還元能を評価した。
 図11に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 実施例1で作製した燃料電池用電極(1-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.78V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.78V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例1で作製した燃料電池用触媒を用いた電極(1-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(1-3)を作製した。
 硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(1-3)の触媒能(酸素還元能)を以下の方法で評価した。
 まず、作製した燃料電池用電極(1-3)を、飽和酸素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、5mV/秒の電位走査速度で分極し、電流-電位曲線を測定した。その際、同濃度の硫酸水溶液中での可逆水素電極(RHE)を参照電極とした。
 燃料電池用電極(1-3)は、EOxygenが0.78V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 0.5mol/Lの硫酸水溶液を、0.5mol/Lのギ酸を含む0.5mol/L硫酸水溶液に変更した以外は上記7と同様にして電流-電位曲線を測定し、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(1-3)の酸素還元能を評価した。
 図12に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(1-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.77V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.78V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.99であった。
 すなわち、実施例1で作製した燃料電池用触媒を用いた電極(1-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [実施例2](TiaLabxyz
 1.触媒の調製
 酸化チタン(TiO2、昭和電工製、スーパータイタニアF6)3.53g(44.12mmol)、酸化ランタン(La23、信越化学工業製)0.144g(0.44mmol)およびカーボン(キャボット社製、Vulcan72)1.33g(110mmmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1800℃で3時間、窒素雰囲気中で加熱することにより、チタンおよびランタン(チタンに対して約2mol%)を含有する金属炭窒化物(2)2.52gが得られた。これを乳鉢により破砕した。
 得られた金属炭窒化物(2)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、ランタンおよびチタンを含有する金属炭窒酸化物(以下「触媒(2)」とも記す。)1.27gが得られた。得られた触媒(2)の元素分析結果を表1に示す。また、触媒(2)の粉末X線回折スペクトルを図13に示す。
 2.燃料電池用電極の製造
 前記触媒(2)を用いた以外は実施例1の2と同様にして燃料電池用電極(2-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(2-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(2-1)の酸素還元能を評価した。
 図14に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(2-1)は、EOxygenが0.83V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(2-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(2-1)の酸素還元能を評価した。
 図15に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(2-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.83V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.83V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例2で作製した燃料電池用触媒を用いた電極(2-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(2-2)を作製した。
 前記燃料電池用電極(2-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(2-2)の酸素還元能を評価した。
 燃料電池用電極(2-2)は、EOxygenが0.85V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(2-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(2-2)の酸素還元能を評価した。
 図16に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(2-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.84V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.85V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.99であった。
 すなわち、実施例2で作製した燃料電池用触媒を用いた電極(2-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(2-3)を作製した。
 前記燃料電池用電極(2-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(2-3)の酸素還元能を評価した。
 燃料電池用電極(2-3)は、EOxygenが0.85V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(2-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(2-3)の酸素還元能を評価した。
 図17に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(2-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.83V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.85V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.98であった。
 すなわち、実施例2で作製した燃料電池用触媒を用いた電極(2-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [比較例1](Pt/C)
 1.触媒の調製
 白金担持カーボン触媒(E-TEK製、20.0wt%)を触媒(C1)として用いた。
 2.燃料電池用電極の製造
 酸素還元能の測定は、次のように行った。触媒(C1)10mgを純水5.0mLに入れ、超音波で攪拌、縣濁した。この縣濁液20μLをグラッシーカーボン回転電極(北斗電工社製、直径:5.0mm)に塗布し、空気中で充分乾燥した。さらに、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))を10倍に純水で希釈したもの10μLを塗布し、空気中で充分乾燥し、燃料電池用電極(C1-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(C1-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(C1-1)の酸素還元能を評価した。
 燃料電池用電極(C1-1)は、EOxygenが0.96V(vs.RHE)であった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(C1-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(C1-1)の酸素還元能を評価した。
 図18に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(C1-1)は、硫酸水溶液中にメタノールが存在した場合、EFuel+Oxygenが0.58V(vs.RHE)となり、上記3における測定(メタノール無し)で得られたEOxygen(0.96V(vs.RHE))よりも大幅に低下し、酸素還元能を低くなることがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.60であった。
 すなわち、比較例1における白金担持カーボン触媒を用いた電極(C1-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合、メタノールのクロスオーバーによってカソード電位が低下することが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(C1-2)を作製した。
 前記燃料電池用電極(C1-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(C1-2)の酸素還元能を評価した。
 燃料電池用電極(C1-2)は、EOxygenが0.94V(vs.RHE)であった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(C1-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(C1-2)の酸素還元能を評価した。
 図19に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(C1-2)は、硫酸水溶液中にエタノールが存在した場合、EFuel+Oxygenが0.53V(vs.RHE)となり、上記5における測定(エタノール無し)で得られたEOxygen(0.94V(vs.RHE))よりも大幅に低下し、酸素還元能を低くなることがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.56であった。
 すなわち、比較例1における白金担持カーボン触媒を用いた電極(C1-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合、エタノールのクロスオーバーによってカソード電位が低下することが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(C1-3)を作製した。
 前記燃料電池用電極(C1-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(C1-3)の酸素還元能を評価した。
 燃料電池用電極(C1-3)は、EOxygenが0.94V(vs.RHE)であった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(C1-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(C1-3)の酸素還元能を評価した。
 図20に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(C1-3)は、硫酸水溶液中にギ酸が存在した場合、EFuel+Oxygenが0.32V(vs.RHE)となり、上記7における測定(ギ酸無し)で得られたEOxygen(0.94(vs.RHE))よりも大幅に低下し、酸素還元能を低くなることがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.34であった。
 すなわち、比較例1における白金担持カーボン触媒を用いた電極(C1-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合、ギ酸のクロスオーバーによってカソード電位が低下することが示唆された。
 [実施例3](Tiaxyz
 1.触媒の調製
 酸化チタン(TiO2、昭和電工製、スーパータイタニアF6)3.53g(44.12mmol)およびカーボン(キャボット社製、Vulcan72)1.33g(110mmmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1800℃で3時間、窒素雰囲気中で加熱することにより、チタンを含有する金属炭窒化物(3)2.50gが得られた。これを乳鉢により破砕した。
 破砕した金属炭窒化物(3)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、チタンを含有する金属炭窒酸化物(以下「触媒(3)」とも記す。)1.24gが得られた。得られた触媒(3)の元素分析結果を表1に示す。また、触媒(3)の粉末X線回折スペクトルを図21に示す。
 2.燃料電池用電極の製造
 前記触媒(3)を用いた以外は実施例1の2と同様にして燃料電池用電極(3-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(3-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(3-1)の酸素還元能を評価した。
 図22に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(3-1)は、EOxygenが0.73V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(3-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(3-1)の酸素還元能を評価した。
 図23に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(3-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.73V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.73V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例3で作製した燃料電池用触媒を用いた電極(3-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(3-2)を作製した。
 前記燃料電池用電極(3-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(3-2)の酸素還元能を評価した。
 燃料電池用電極(3-2)は、EOxygenが0.73V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(3-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(3-2)の酸素還元能を評価した。
 図24に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(3-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.73V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.73V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例3で作製した燃料電池用触媒を用いた電極(3-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(3-3)を作製した。
 前記燃料電池用電極(3-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(3-3)の酸素還元能を評価した。
 燃料電池用電極(3-3)は、EOxygenが0.73V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(3-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(3-3)の酸素還元能を評価した。
 図25に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(3-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.73V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.73V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例3で作製した燃料電池用触媒を用いた電極(3-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [実施例4](NbCxyz
 1.触媒の調製
 炭化ニオブ(NbC、添川理化学株式会社製)4.96g(81mmol)、酸化ニオブ(NbO2, 株式会社高純度化学研究所製)1.25g(10mmol)および窒化ニオブ(NbN、株式会社高純度化学研究所製)0.54g(10mmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1600℃で3時間、窒素雰囲気中で加熱することにより、ニオブを含有する金属炭窒化物(4)2.70gが得られた。焼結体の金属炭窒化物(4)をボールミルで粉砕した。
 粉砕した金属炭窒化物(4)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、ニオブを含有する金属炭窒酸化物(以下「触媒(4)」とも記す。)1.34gが得られた。得られた触媒(4)の元素分析結果を表1に示す。また、触媒(4)の粉末X線回折スペクトルを図26に示す。
 2.燃料電池用電極の製造
 前記触媒(4)を用いた以外は実施例1の2と同様にして燃料電池用電極(4-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(4-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(4-1)の酸素還元能を評価した。
 図27に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(4-1)は、EOxygenが0.72V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(4-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(4-1)の酸素還元能を評価した。
 図28に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(4-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.72V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.72V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例4で作製した燃料電池用触媒を用いた電極(4-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(4-2)を作製した。
 前記燃料電池用電極(4-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(4-2)の酸素還元能を評価した。
 燃料電池用電極(4-2)は、EOxygenが0.72V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(4-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(4-2)の酸素還元能を評価した。
 図29に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(4-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.72V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.72V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例4で作製した燃料電池用触媒を用いた電極(4-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(4-3)を作製した。
 前記燃料電池用電極(4-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(4-3)の酸素還元能を評価した。
 燃料電池用電極(4-3)は、EOxygenが0.72V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(4-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(4-3)の酸素還元能を評価した。
 図30に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(4-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.72V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.72V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例4で作製した燃料電池用触媒を用いた電極(4-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [実施例5](TiaSmbxyz
 1.触媒の調製
 酸化チタン(TiO2、昭和電工製、スーパータイタニアF6)3.53g(44.12mmol)、酸化サマリウム(信越化学工業製、Sm23)0.077g(0.5mmol)およびカーボン(キャボット社製、Vulcan72)1.33g(110mmmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1800℃で3時間、窒素雰囲気中で加熱することにより、チタンおよびサマリウムを含有する金属炭窒化物(5)2.48gが得られた。これを乳鉢により破砕した。
 破砕した金属炭窒化物(5)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、チタンおよびサマリウムを含有する金属炭窒酸化物(以下「触媒(5)」とも記す。)1.22gが得られた。得られた触媒(5)の元素分析結果を表1に示す。また、触媒(5)の粉末X線回折スペクトルを図31に示す。
 2.燃料電池用電極の製造
 前記触媒(5)を用いた以外は実施例1の2と同様にして燃料電池用電極(5-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(5-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(5-1)の酸素還元能を評価した。
 図32に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(5-1)は、EOxygenが0.84V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(5-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(5-1)の酸素還元能を評価した。
 図33に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(5-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.84V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.84V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例5で作製した燃料電池用触媒を用いた電極(5-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(5-2)を作製した。
 前記燃料電池用電極(5-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(5-2)の酸素還元能を評価した。
 燃料電池用電極(5-2)は、EOxygenが0.83V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(5-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(5-2)の酸素還元能を評価した。
 図34に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(5-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.83V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.84V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.99であった。
 すなわち、実施例5で作製した燃料電池用触媒を用いた電極(5-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(5-3)を作製した。
 前記燃料電池用電極(5-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(5-3)の酸素還元能を評価した。
 燃料電池用電極(5-3)は、EOxygenが0.83V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(5-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(5-3)の酸素還元能を評価した。
 図35に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(5-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.83V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.84V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.99であった。
 すなわち、実施例5で作製した燃料電池用触媒を用いた電極(5-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [実施例6](NbaTabxyz
 1.触媒の調製
 炭化ニオブ(NbC、添川理化学株式会社製)4.96g(42.5mol)、酸化タンタル(Ta25、株式会社高純度化学研究所製)1.11g(2.5mmol)および窒化ニオブ(NbN、株式会社高純度化学研究所製)0.27g(2.5mmol)を充分に粉砕して混合した。この混合粉末を管状炉において、1500℃で3時間、窒素雰囲気中で加熱することにより、ニオブおよびタンタルを含有する金属炭窒化物(6)5.94gが得られた。焼結体の金属炭窒化物(6)をボールミルで粉砕した。
 粉砕した金属炭窒化物(6)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、ニオブおよびタンタルを含有する金属炭窒酸化物(以下「触媒(6)」とも記す。)1.11gが得られた。得られた触媒(6)の元素分析結果を表1に示す。また、触媒(6)の粉末X線回折スペクトルを図36に示す。
 2.燃料電池用電極の製造
 前記触媒(6)を用いた以外は実施例1の2と同様にして燃料電池用電極(6-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(6-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(6-1)の酸素還元能を評価した。
 図37に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(6-1)は、EOxygenが0.76V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(6-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(6-1)の酸素還元能を評価した。
 図38に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(6-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.76V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.76V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例6で作製した燃料電池用触媒を用いた電極(6-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(6-2)を作製した。
 前記燃料電池用電極(6-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(6-2)の酸素還元能を評価した。
 燃料電池用電極(6-2)は、EOxygenが0.75V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(6-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(6-2)の酸素還元能を評価した。
 図39に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(6-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.75V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.76V(vs.RHE))とほぼ同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、0.99であった。
 すなわち、実施例6で作製した燃料電池用触媒を用いた電極(6-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(6-3)を作製した。
 前記燃料電池用電極(6-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(6-3)の酸素還元能を評価した。
 燃料電池用電極(6-3)は、EOxygenが0.76V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(6-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(6-3)の酸素還元能を評価した。
 図40に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(6-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.76V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.76V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例6で作製した燃料電池用触媒を用いた電極(6-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 [実施例7](NbaSnbxyz
 1.触媒の調製
 酸化ニオブ(IV)(NbO2、株式会社高純度化学研究所製)4.00g(32mmol)、酸化スズ(IV)(SnO2、株式会社高純度化学研究所製)1.21g(8mmol)にカーボン(キャボット社製、Vulcan72)1.2g(100mmol)を十分に粉砕して混合した。この混合粉末を管状炉において、1400℃で3時間、窒素雰囲気中で熱処理することにより、ニオブおよびスズを含有する金属炭窒化物(7)4.23gが得られた。焼結体の金属炭窒化物(7)をボールミルで粉砕した。
 粉砕した金属炭窒化物(7)1.0gを、2容量%の酸素ガスおよび4容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、ニオブおよびスズを含有する金属炭窒酸化物(以下「触媒(7)」とも記す。)が1.09g得られた。得られた触媒(7)の元素分析結果を表1に示す。また、触媒(7)の粉末X線回折スペクトルを図41に示す。
 2.燃料電池用電極の製造
 前記触媒(7)を用いた以外は実施例1の2と同様にして燃料電池用電極(7-1)を得た。
 3.硫酸水溶液中にメタノールが存在しない場合の酸素還元能の評価
 前記燃料電池用電極(7-1)を用いた以外は実施例1の3と同様にして、硫酸水溶液中にメタノールが存在しない場合の燃料電池用電極(7-1)の酸素還元能を評価した。
 図42に、当該測定により得られた電流-電位曲線を示す。
 燃料電池用電極(7-1)は、EOxygenが0.68V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 4.硫酸水溶液中にメタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(7-1)を用いた以外は実施例1の4と同様にして、硫酸水溶液中にメタノールが存在した場合の燃料電池用電極(7-1)の酸素還元能を評価した。
 図43に、当該測定(メタノール有り)により得られた電流-電位曲線と、上記3における測定(メタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(7-1)は、硫酸水溶液中にメタノールが存在した場合でも、EFuel+Oxygenが0.68V(vs.RHE)であり、上記3における測定(メタノール無し)で得られたEOxygen(0.68V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例7で作製した燃料電池用触媒を用いた電極(7-1)は、メタノールを液体燃料とする直接メタノール形燃料電池(Direct Methanol Fuel Cell, DMFC)に用いた場合でも、メタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 5.硫酸水溶液中にエタノールが存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(7-2)を作製した。
 前記燃料電池用電極(7-2)を用いた以外は実施例1の5と同様にして、硫酸水溶液中にエタノールが存在しない場合の燃料電池用電極(7-2)の酸素還元能を評価した。
 燃料電池用電極(7-2)は、EOxygenが0.68V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 6.硫酸水溶液中にエタノールが存在した場合の酸素還元能の評価
 前記燃料電池用電極(7-2)を用いた以外は実施例1の6と同様にして、硫酸水溶液中にエタノールが存在した場合の燃料電池用電極(7-2)の酸素還元能を評価した。
 図44に、当該測定(エタノール有り)により得られた電流-電位曲線と、上記5における測定(エタノール無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(7-2)は、硫酸水溶液中にエタノールが存在した場合でも、EFuel+Oxygenが0.68V(vs.RHE)であり、上記5における測定(エタノール無し)で得られたEOxygen(0.68V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例7で作製した燃料電池用触媒を用いた電極(7-2)は、エタノールを液体燃料とする直接エタノール形燃料電池(Direct Ethanol Fuel Cell, DEFC)に用いた場合でも、エタノールのクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 7.硫酸水溶液中にギ酸が存在しない場合の酸素還元能の評価
 上記2と同様にして、新たに燃料電池用電極(7-3)を作製した。
 前記燃料電池用電極(7-3)を用いた以外は実施例1の7と同様にして、硫酸水溶液中にギ酸が存在しない場合の燃料電池用電極(7-3)の酸素還元能を評価した。
 燃料電池用電極(7-3)は、EOxygenが0.68V(vs.RHE)であり、高い酸素還元能を有することがわかった。
 8.硫酸水溶液中にギ酸が存在した場合の酸素還元能の評価
 前記燃料電池用電極(7-3)を用いた以外は実施例1の8と同様にして、硫酸水溶液中にギ酸が存在した場合の燃料電池用電極(7-3)の酸素還元能を評価した。
 図45に、当該測定(ギ酸有り)により得られた電流-電位曲線と、上記7における測定(ギ酸無し)により得られた電流-電位曲線とを比較したグラフを示す。
 燃料電池用電極(7-3)は、硫酸水溶液中にギ酸が存在した場合でも、EFuel+Oxygenが0.68V(vs.RHE)であり、上記7における測定(ギ酸無し)で得られたEOxygen(0.68V(vs.RHE))と同等の高い酸素還元能を有することがわかった。酸素還元電位比(EFuel+Oxygen/EOxygen)は、1.00であった。
 すなわち、実施例7で作製した燃料電池用触媒を用いた電極(7-3)は、ギ酸を燃料とする直接ギ酸形燃料電池(Direct Formic Acid Fuel Cell, DFAFC)に用いた場合でも、ギ酸のクロスオーバーによるカソード電位の低下を抑制でき、酸素還元能に優れることが示唆された。
 <酸素還元開始電位の比較>
 以上の実施例および比較例における電流―電位曲線から求めた-100μA/cm2での酸素還元電位比(EFuel+Oxygen/EOxygen)を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (14)

  1.  ニオブおよび/またはチタンを含有する金属炭窒酸化物からなることを特徴とする直接液体型燃料電池用触媒。
  2.  液体燃料の酸化に対して不活性であることを特徴とする請求項1に記載の直接液体型燃料電池用触媒。
  3.  ニオブと、ニオブ以外の少なくとも1種の金属M1とを含有する金属炭窒酸化物からなることを特徴とする請求項1または2に記載の直接液体型燃料電池用触媒。
  4.  スズ、インジウム、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタン、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、イットリウム、ルテニウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムおよびニッケルからなる群より選択された少なくとも1種の金属M1ならびにニオブを含有する金属炭窒酸化物からなることを特徴とする請求項1または2に記載の直接液体型燃料電池用触媒。
  5.  前記金属炭窒酸化物の組成式が、NbaM1bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.01≦a<1、0<b≦0.99、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることを特徴とする請求項3または4に記載の直接液体型燃料電池用触媒。
  6.  粉末X線回折法(Cu-K線)によって前記金属炭窒酸化物を測定した際に、回折角2θ=33°~43°の間に、回折線ピークが2つ以上観測されることを特徴とする請求項3~5のいずれか一項に記載の直接液体型燃料電池用触媒。
  7.  チタンと、チタン以外の少なくとも1種の金属M2とを含有する金属炭窒酸化物からなることを特徴とする請求項1または2に記載の直接液体型燃料電池用触媒。
  8.  カルシウム、ストロンチウム、イットリウム、ルテニウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選択された少なくとも1種の金属M2ならびにチタンを含有する金属炭窒酸化物からなることを特徴とする請求項1または2に記載の直接液体型燃料電池用触媒。
  9.  前記金属炭窒酸化物の組成式が、TiaM2bxyz(ただし、a、b、x、y、zは原子数の比を表し、0.7≦a≦0.9999、0.0001≦b≦0.3、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、a+b=1、かつx+y+z≦5である。)で表されることを特徴とする請求項7または8に記載の直接液体型燃料電池用触媒。
  10.  請求項1~9のいずれか一項に記載の触媒を含むことを特徴とする直接液体型燃料電池用触媒層。
  11.  さらに電子伝導性粒子を含むことを特徴とする請求項10に記載の直接液体型燃料電池用触媒層。
  12.  直接液体型燃料電池用触媒層と多孔質支持層とを有する直接液体型燃料電池用電極であって、前記直接液体型燃料電池用触媒層が請求項10または11に記載の直接液体型燃料電池用触媒層であることを特徴とする直接液体型燃料電池用電極。
  13.  カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する直接液体型燃料電池用膜電極接合体であって、前記カソードおよび/または前記アノードが請求項12に記載の直接液体型燃料電池用電極であることを特徴とする直接液体型燃料電池用膜電極接合体。
  14.  請求項13に記載の直接液体型燃料電池用膜電極接合体を備えることを特徴とする直接液体型燃料電池。
PCT/JP2010/068609 2009-10-22 2010-10-21 直接液体型燃料電池用触媒および該触媒を用いた燃料電池 WO2011049173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537305A JPWO2011049173A1 (ja) 2009-10-22 2010-10-21 直接液体型燃料電池用触媒および該触媒を用いた燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243604 2009-10-22
JP2009243604 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011049173A1 true WO2011049173A1 (ja) 2011-04-28

Family

ID=43900396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068609 WO2011049173A1 (ja) 2009-10-22 2010-10-21 直接液体型燃料電池用触媒および該触媒を用いた燃料電池

Country Status (3)

Country Link
JP (1) JPWO2011049173A1 (ja)
TW (1) TW201131873A (ja)
WO (1) WO2011049173A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008501A1 (ja) * 2011-07-14 2013-01-17 昭和電工株式会社 酸素還元触媒およびその製造方法、並びに固体高分子形燃料電池
WO2013150939A1 (ja) * 2012-04-05 2013-10-10 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2015037131A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 燃料電池発電システムおよび燃料電池発電方法
JPWO2014017447A1 (ja) * 2012-07-25 2016-07-11 昭和電工株式会社 膜電極接合体、およびこれを備える燃料電池
CN113578362A (zh) * 2021-07-23 2021-11-02 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用
CN113644284A (zh) * 2021-07-08 2021-11-12 广东工业大学 一种碳材料负载氟掺杂碳化铌纳米复合材料及其制备方法和应用
CN115209992A (zh) * 2020-03-13 2022-10-18 庄信万丰氢能科技有限公司 催化剂载体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257888A (ja) * 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009104500A1 (ja) * 2008-02-20 2009-08-27 昭和電工株式会社 触媒用担体、触媒およびその製造方法
WO2009119523A1 (ja) * 2008-03-24 2009-10-01 昭和電工株式会社 触媒及びその製造方法ならびにその用途
JP2009226311A (ja) * 2008-03-24 2009-10-08 Showa Denko Kk 触媒およびその製造方法ならびにその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114780B1 (ko) * 2007-09-07 2012-03-05 쇼와 덴코 가부시키가이샤 촉매 및 그 제조 방법 및 그 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257888A (ja) * 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009104500A1 (ja) * 2008-02-20 2009-08-27 昭和電工株式会社 触媒用担体、触媒およびその製造方法
WO2009119523A1 (ja) * 2008-03-24 2009-10-01 昭和電工株式会社 触媒及びその製造方法ならびにその用途
JP2009226311A (ja) * 2008-03-24 2009-10-08 Showa Denko Kk 触媒およびその製造方法ならびにその用途

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008501A1 (ja) * 2011-07-14 2013-01-17 昭和電工株式会社 酸素還元触媒およびその製造方法、並びに固体高分子形燃料電池
JP5302468B2 (ja) * 2011-07-14 2013-10-02 昭和電工株式会社 酸素還元触媒およびその製造方法、並びに固体高分子形燃料電池
CN103648642A (zh) * 2011-07-14 2014-03-19 昭和电工株式会社 氧还原催化剂和其制造方法、以及固体高分子型燃料电池
CN103648642B (zh) * 2011-07-14 2016-05-25 昭和电工株式会社 氧还原催化剂和其制造方法、以及固体高分子型燃料电池
WO2013150939A1 (ja) * 2012-04-05 2013-10-10 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JPWO2013150939A1 (ja) * 2012-04-05 2015-12-17 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JPWO2014017447A1 (ja) * 2012-07-25 2016-07-11 昭和電工株式会社 膜電極接合体、およびこれを備える燃料電池
WO2015037131A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 燃料電池発電システムおよび燃料電池発電方法
CN115209992A (zh) * 2020-03-13 2022-10-18 庄信万丰氢能科技有限公司 催化剂载体
CN113644284A (zh) * 2021-07-08 2021-11-12 广东工业大学 一种碳材料负载氟掺杂碳化铌纳米复合材料及其制备方法和应用
CN113578362A (zh) * 2021-07-23 2021-11-02 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用
CN113578362B (zh) * 2021-07-23 2023-09-08 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用

Also Published As

Publication number Publication date
JPWO2011049173A1 (ja) 2013-03-14
TW201131873A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5495798B2 (ja) 触媒およびその製造方法ならびにその用途
JP5462150B2 (ja) 触媒及びその製造方法ならびにその用途
JP5411123B2 (ja) 燃料電池用触媒およびその製造方法ならびにその用途
US8889315B2 (en) Catalyst, process for preparing the same, and uses of the catalyst
JP5374387B2 (ja) 触媒およびその製造方法ならびにその用途
WO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
WO2011049173A1 (ja) 直接液体型燃料電池用触媒および該触媒を用いた燃料電池
JP5037696B2 (ja) 触媒およびその製造方法ならびにその用途
JP5713891B2 (ja) 触媒及びその製造方法ならびにその用途
JP5419864B2 (ja) 燃料電池用触媒の製造方法および燃料電池用触媒
JP5106342B2 (ja) 触媒及びその製造方法ならびにその用途
WO2010041655A1 (ja) 触媒およびその製造方法ならびにその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537305

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10825022

Country of ref document: EP

Kind code of ref document: A1