WO2010100924A1 - 集電体用アルミニウム合金箔およびその製造方法 - Google Patents

集電体用アルミニウム合金箔およびその製造方法 Download PDF

Info

Publication number
WO2010100924A1
WO2010100924A1 PCT/JP2010/001486 JP2010001486W WO2010100924A1 WO 2010100924 A1 WO2010100924 A1 WO 2010100924A1 JP 2010001486 W JP2010001486 W JP 2010001486W WO 2010100924 A1 WO2010100924 A1 WO 2010100924A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
mass
less
alloy foil
current collector
Prior art date
Application number
PCT/JP2010/001486
Other languages
English (en)
French (fr)
Inventor
呂明哲
多田裕志
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to KR1020117011310A priority Critical patent/KR101314696B1/ko
Priority to JP2011502655A priority patent/JP5275446B2/ja
Priority to CN2010800035867A priority patent/CN102245788B/zh
Publication of WO2010100924A1 publication Critical patent/WO2010100924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to an aluminum alloy foil for a current collector and a method for producing the same, and specifically, is used as a material for forming a current collector for a positive electrode of a secondary battery such as a lithium ion battery.
  • the present invention relates to a current collector aluminum alloy foil and a method for producing the same.
  • a lithium ion battery As a high-capacity secondary battery, a lithium ion battery is not only used as a power source for portable electronic devices, but recently has been developed for use as a power source for hybrid vehicles. Conventionally, aluminum foil or aluminum alloy foil has been used as a material for forming a positive electrode current collector of a lithium ion battery.
  • Patent Document 1 As a positive electrode substrate of a lithium ion secondary battery, pure aluminum (JIS name 1000 series) foil, Al—Mn series (JIS) Nominal 3000 series) alloy foil and Al-Fe (JIS nominal 8000 series) alloy foil are used.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-64560 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2009-81110 (Patent Document 3)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2009-81110
  • a novel Al—Mn—Fe alloy foil has been proposed as an aluminum alloy foil for a current collector that does not occur.
  • the thickness of the aluminum foil or aluminum alloy foil forming the current collector is made thinner than 20 ⁇ m, a step of applying various active materials to the surface of the foil, a step of pressure-bonding the applied active material to the surface of the foil, etc. In the electrode manufacturing process, there is a problem that the foil frequently breaks.
  • Al-Mn and Al-Fe-based aluminum alloy foils are superior in strength in tensile tests compared to pure aluminum foils, but bending strength is reduced when the thickness of the aluminum alloy foil is further reduced to less than 20 ⁇ m. Therefore, it was not sufficient to solve the problem that the foil frequently breaks in the electrode manufacturing process.
  • Al—Mn and Al—Fe based aluminum alloy foils have a lower corrosion resistance to the electrolyte, so that, for example, secondary batteries used as power sources for hybrid vehicles can be used for a long time. It is difficult to use for a current collector of a secondary battery that requires a long life.
  • the Al—Mn-based aluminum alloy foil has a high electrical resistivity value due to the contained Mn, and further increases the electrical resistance value by reducing the thickness to 20 ⁇ m or less, and the current collector generates heat during charging and discharging. There was a problem. It is well known that when the current collector generates heat, the performance of the secondary battery, for example, the charge / discharge rate, the battery life, and the like are impaired.
  • the object of the present invention is that the corrosion resistance does not decrease as compared with a pure aluminum foil, and it breaks in the electrode manufacturing process even if the thickness of the foil is 15 ⁇ m or less as compared with a conventional aluminum alloy foil for a current collector. It is another object of the present invention to provide an aluminum alloy foil for a current collector and a method for manufacturing the same that can reduce the electrical resistivity value to a relatively low value.
  • the present inventors have made various studies.
  • the aluminum alloy foil at least the content of iron, silicon, copper, manganese, magnesium, and zinc, and the large diameter present in the aluminum alloy foil.
  • the diameter of the crystallized material By controlling the diameter of the crystallized material, the tensile strength and bending strength required to prevent the aluminum alloy foil from breaking in the electrode manufacturing process even if the thickness of the aluminum alloy foil is 15 ⁇ m or less, and excessive charge and discharge It has been found that the electrical resistivity value necessary for preventing excessive heat generation and the corrosion resistance can be obtained simultaneously.
  • the present invention has been made based on such knowledge of the present inventor.
  • An aluminum alloy foil for a current collector according to the present invention comprises 0.3% by mass or more and 3.0% by mass or less of iron, 0.8% by mass or more and 1.5% by mass or less of silicon, and 0.0001% by mass % To 0.011% by weight copper, 0.0001% to 0.6% by weight manganese, 0.0001% to 0.011% by weight magnesium, and 0.001% by weight or more.
  • An aluminum alloy foil for a current collector containing 0.011% by mass or less of zinc and the balance containing aluminum and inevitable impurities, and the average diameter of the large-diameter crystallized material present in the aluminum alloy foil is 0 0.005 ⁇ m or more and 10 ⁇ m or less.
  • the aluminum alloy foil for a current collector of the present invention contains 0.005 mass% or more and 0.5 mass% or less of titanium.
  • the aluminum alloy foil for a current collector of the present invention contains 0.0001 mass% or more and 0.3 mass% or less of zirconium.
  • the current collector of aluminum foil of the invention has a thickness of 1 ⁇ m or more 15 ⁇ m or less, a tensile strength of 170N / mm 2 or more 280N / mm 2 or less, elongation of 4% to 10% or less, folding endurance is
  • the electrical resistivity is 2.7 ⁇ cm or more and less than 3.7 ⁇ cm for 350 times or more and 1200 times or less.
  • the method for producing an aluminum alloy foil for a current collector according to the present invention is a method for producing an aluminum alloy foil for a current collector having any of the above-described features, and includes the following steps.
  • the aluminum alloy foil for current collector of the present invention is excellent in tensile strength and bending strength, it is prevented from breaking in the electrode manufacturing process even if the thickness of the aluminum alloy foil is 15 ⁇ m or less. can do.
  • the aluminum foil for current collector of the present invention does not deteriorate in corrosion resistance as compared with pure aluminum foil, and further has a relatively low electrical specific resistance value. Therefore, it was used for, for example, a battery current collector. In some cases, excessive heat generation during charging and discharging can be prevented. Accordingly, the current collector aluminum foil of the present invention can be used for a current collector of a secondary battery that requires a long life.
  • an aluminum alloy foil for a current collector is composed of 0.3 mass% to 3.0 mass% iron and 0.8 mass% to 1.5 mass% silicon. 0.0001 mass% or more and 0.011 mass% or less of copper, 0.0001 mass% or more and 0.6 mass% or less of manganese, 0.0001 mass% or more and 0.011 mass% or less of magnesium, It contains 0.001 mass% or more and 0.011 mass% or less of zinc, and the balance contains aluminum and inevitable impurities.
  • Iron is an element that can be crystallized as an Al—Fe-based compound in an aluminum alloy and can improve the rollability and elongation of the aluminum alloy foil.
  • an appropriate amount of Al-Fe-based compound refines the crystal grains by crystal nucleation sites and pinning, seizure resistance (welding of the material to the roll) and the generation of fine powder during the rolling of the aluminum alloy foil. By suppressing the above, the rollability of the thin foil is improved. If the iron content is less than 0.3% by mass, the above effects cannot be sufficiently exhibited.
  • the Al—Fe-based compound crystallizes excessively, resulting in a decrease in the bending strength of the aluminum alloy foil or an increase in the tensile strength. There exists a possibility of reducing the elongation and rollability of the aluminum alloy foil.
  • Silicon is an element that can mainly improve the tensile strength of the aluminum alloy foil. For example, particularly when rolling to a thin foil having a thickness of 15 ⁇ m or less, an instantaneous temperature rise accompanying the rolling process occurs not only on the surface of the aluminum alloy foil but also inside. At this time, the presence of silicon in the aluminum alloy foil can suppress the disappearance of dislocations and prevent the strength from decreasing. When the silicon content is less than 0.8% by mass, the above effect cannot be obtained. If the silicon content exceeds 1.5% by mass, the tensile strength increases too much, and the elongation and rollability of the aluminum alloy foil are lowered.
  • the reason why the amount of copper (Cu) contained in the aluminum alloy foil for the current collector is limited to 0.011% by mass or less is as follows. Copper easily dissolves in aluminum, reduces the elongation of the aluminum alloy foil, and increases the electrical resistivity. Furthermore, copper significantly reduces the corrosion resistance of the aluminum alloy foil. For this reason, it is necessary to limit copper content to 0.011 mass% or less. The more preferable content of copper is 0.005% by mass or less. The lower limit of the copper content is not particularly limited, but is usually about 0.0001% by mass.
  • the reason for limiting the amount of manganese (Mn) contained in the aluminum alloy foil for the current collector to 0.6% by mass or less is as follows.
  • Manganese is an element that can improve the tensile strength and elongation without reducing the corrosion resistance of the aluminum alloy foil.
  • excessive Al-Mn compound crystallization in the aluminum alloy reduces the folding strength of the aluminum alloy foil or increases the tensile strength too much.
  • the electrical resistivity is increased. For this reason, it is necessary to limit manganese content to 0.6 mass% or less.
  • the lower limit of the manganese content is not particularly limited, but is usually about 0.0001% by mass.
  • magnesium (Mg) contained in the aluminum alloy foil for the current collector is limited to 0.011% by mass or less is as follows. Magnesium easily dissolves in aluminum, reduces the elongation of the aluminum alloy foil, and increases the electrical resistivity. For this reason, it is necessary to limit magnesium content to 0.011 mass% or less. A more preferable content of magnesium is 0.005% by mass or less. The lower limit of the magnesium content is not particularly limited, but is usually about 0.0001% by mass.
  • the reason why the amount of zinc (Zn) contained in the aluminum alloy foil for the current collector is limited to 0.3% by mass or less is as follows. Zinc contributes to the tensile strength and elongation of the aluminum alloy foil, but increases the electrical resistivity. Furthermore, zinc significantly reduces the corrosion resistance of the aluminum alloy foil. For this reason, it is necessary to limit zinc content to 0.3 mass% or less. A more preferable content of zinc is 0.1% by mass or less. The lower limit of the zinc content is not particularly limited, but is usually about 0.001% by mass.
  • the aluminum alloy foil for the current collector is 0.005% by mass or more and 0.5% by mass or less of titanium, and / or 0.0001% by mass or more and 0.3% by mass. % Zirconium is contained.
  • Titanium is an element that can improve tensile strength and elongation without reducing the corrosion resistance of the aluminum alloy foil. If the titanium content is less than 0.005% by mass, the above effect cannot be obtained. If the titanium content exceeds 0.5% by mass, the tensile strength of the aluminum alloy foil is excessively increased, which lowers the rollability of the aluminum alloy foil and decreases the elongation.
  • zirconium zirconium is an element that can improve the tensile strength and elongation without reducing the corrosion resistance of the aluminum alloy foil. If the zirconium content is less than 0.0001% by mass, sufficient tensile strength and elongation cannot be obtained. When the content of zirconium exceeds 0.3% by mass, the tensile strength of the aluminum alloy foil is excessively increased and the rollability of the aluminum alloy foil is lowered.
  • the aluminum alloy foil of the present invention has a content that does not affect the above characteristics and effects, and is silver (Ag), nickel (Ni), chromium (Cr), vanadium (V), boron (B). , Elements such as gallium (Ga) and bismuth (Bi) may be included.
  • silver and nickel contents are each 0.01% by mass or less, it is possible to prevent the corrosion resistance of the aluminum alloy from being lowered.
  • the aluminum alloy foil for current collector of the present invention has a limited composition, the corrosion resistance does not decrease as compared with pure aluminum foil, and further, the electrical resistivity value is relatively low. Excessive heat generation during discharge can be prevented.
  • the average diameter of the large-diameter crystallized substance present in the aluminum alloy foil is 10 ⁇ m or less.
  • the bending strength that is, the bending strength of the aluminum alloy foil can be increased.
  • the thickness of the aluminum alloy foil is 15 ⁇ m or less, for example, it is possible to prevent the aluminum alloy foil from being broken in the electrode manufacturing process involving the step of bending the aluminum alloy foil for the current collector into a spiral shape or the like. it can.
  • the average diameter of the large-diameter crystallized product is a crystal measured by selecting a predetermined number of crystallized products in descending order of the diameter of the crystallized product among a plurality of crystallized products existing in the aluminum alloy foil.
  • the average diameter of the artifacts is a crystal measured by selecting a predetermined number of crystallized products in descending order of the diameter of the crystallized product among a plurality of crystallized products existing in the aluminum alloy foil.
  • the average diameter of the large-diameter crystallization product is 10 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 2/3 or less of the foil thickness.
  • the lower limit value of the average diameter of the large-diameter crystallization product is not particularly limited, but is usually about 0.005 ⁇ m.
  • the aluminum alloy foil for a current collector of the present invention has a limited composition, and the average diameter of the large-diameter crystallized material present in the aluminum alloy foil is limited to a relatively small value. Therefore, it has excellent tensile strength and folding strength. Thereby, even if the thickness of the aluminum alloy foil is 15 ⁇ m or less, it is possible to prevent breakage in the electrode manufacturing process. Moreover, the aluminum alloy foil for current collectors of the present invention having the composition limited as described above does not have a corrosion resistance lower than that of a pure aluminum foil, and further has a relatively low electrical resistivity value. For example, when it is used as a battery current collector, excessive heat generation during charging and discharging can be prevented. By these things, the aluminum alloy foil for collectors of this invention can be used for the collector of the secondary battery in which long life is requested
  • preferred current collector aluminum alloy foil as one embodiment of the present invention has a thickness of 15 ⁇ m or less, a tensile strength of 170N / mm 2 or more 280N / mm 2 or less, elongation of 4% or more, folding endurance is The electrical resistivity value is less than 3.7 ⁇ cm for 350 times or more.
  • the foil may be broken in the electrode manufacturing process such as the step of applying and the step of pressure-bonding the applied active material to the surface of the foil.
  • the electrical resistivity value is 3.7 ⁇ cm or more, the current collector may generate heat during charging and discharging.
  • the lower limit of the thickness of the aluminum alloy foil is not particularly limited as long as the mechanical strength as an electrode can be maintained, but is usually about 1 ⁇ m.
  • the tensile strength of the aluminum alloy foil is 170N / mm 2 or more 280N / mm 2 or less, preferably 190 N / mm 2 or more 280N / mm 2 or less.
  • the foil breaks in the electrode manufacturing process such as a process of applying various active materials to the surface of the foil, a process of pressing the applied active material on the surface of the foil, and the like. There is a fear.
  • the tensile strength of the aluminum alloy foil exceeds 280 N / mm 2 , the rollability of the foil may be reduced.
  • the elongation of the aluminum alloy foil is 4% or more, preferably 4% or more and 10% or less. If the elongation of the aluminum alloy foil is less than 4%, the foil may break in the electrode manufacturing process such as a process of applying various active materials to the surface of the foil and a process of pressing the applied active material to the surface of the foil. . If the elongation of the aluminum alloy foil exceeds 10%, it becomes difficult to make the thickness of the active material to be applied uniform.
  • the folding strength of the aluminum alloy foil is 350 times or more, preferably 450 times or more. If the folding strength of the aluminum alloy foil is less than 350 times, the foil may break in the electrode manufacturing process such as a process of applying various active materials to the surface of the foil, a process of pressing the applied active material to the surface of the foil, etc. There is.
  • the upper limit value of the bending strength of the aluminum alloy foil is not particularly limited, but is usually about 1200 times.
  • the lower limit of the electrical resistivity value of the aluminum alloy foil is not particularly limited, but is usually about 2.7 ⁇ cm.
  • a molten aluminum alloy having the above composition by preparing a molten aluminum alloy having the above composition and solidifying the molten aluminum alloy at a cooling rate of 100 ° C./second or more, for example, by continuous casting, 3 mm or more and 10 mm or less.
  • the ingot of thickness is manufactured. Thereafter, the ingot is cold-rolled into a foil having a desired thickness.
  • heat treatment for example, between the casting process and the rolling process, or after the rolling process, heat treatment (homogeneous) at a temperature of about 150 ° C. to 650 ° C. for 1 minute to 100 hours as necessary. May be performed.
  • the ingot obtained by continuous casting is subjected to the above homogenization treatment and then cold-rolled to obtain a desired thickness.
  • a foil may be used, or a foil having a desired thickness may be obtained by directly performing cold rolling on an ingot obtained by continuous casting.
  • a crystallized product is formed during casting and then pulverized by rolling to become fine.
  • the size of the crystallized substance in the aluminum alloy foil having a thickness of 15 ⁇ m or less can be controlled by casting and rolling.
  • a more preferable cooling rate is 150 ° C./second or more.
  • the upper limit of the cooling rate is not particularly limited, but is usually about 500 ° C./second.
  • the casting thickness is 3 mm or more and 10 mm or less, preferably 3 mm or more and 6 mm or less.
  • the casting thickness is thicker than 10 mm, it is difficult to obtain a desired cooling rate inside the ingot.
  • the casting thickness is less than 3 mm, the crystallized product formed during casting may not be sufficiently pulverized by rolling.
  • the ingot having a cast thickness exceeding 10 mm was homogenized for 5 hours at a temperature of 520 ° C., then rolled to a thickness of 6 mm by hot rolling, and further 12 ⁇ m by cold rolling.
  • An aluminum alloy foil for a current collector was produced by rolling to a thickness.
  • the ingot having a casting thickness of 10 mm or less was homogenized for 1 hour at a temperature of 400 ° C., and then rolled to a thickness of 12 ⁇ m by cold rolling to produce an aluminum alloy foil for a current collector.
  • each aluminum alloy foil for a current collector as an electrolyte solution for a lithium ion battery (non-aqueous electrolyte solution in which diethylene carbonate and ethylene carbonate were mixed at a volume ratio of 1: 1 to LiPF 6. Was dissolved at a concentration of 1 mol / liter) for 30 days at room temperature, and the degree of corrosion was visually observed.
  • “Corrosion resistance” was evaluated with ⁇ indicating that the material was hardly corroded and ⁇ indicating that there was evidence of corrosion such as pitting corrosion.
  • Tensile strength (N / mm 2 )” and “elongation (%)” were evaluated as follows. About each aluminum alloy foil for electrical power collectors, the tensile test was done with the tension tester according to JISB7721, and the tensile strength and elongation were calculated
  • “Folding strength (times)” was evaluated as follows. About each aluminum collector foil for collectors, using a MIT type automatic bending test apparatus according to JIS P8115, a 200 gf load was applied to a sample having a width of 15 mm and a length of 150 mm, and the bending radius (R) was set. The bending test was performed at 0.5 mm and a repetition rate of bending of 360 times / second. As shown in FIG. 1, the sample 100 is bent 90 ° as shown by an arrow 1 once, returned to the original as shown by an arrow 2 twice, and bent by 90 ° in the opposite direction as shown by an arrow 3. The number of times of folding was counted until the sample 100 was broken. “Folding strength (times)” in Table 2 indicates the number of bendings when each sample breaks.
  • the “large diameter crystallized average diameter ( ⁇ m)” was evaluated as follows. A sample having a width of 10 mm was embedded in an epoxy resin so that the LT-ST plane (cross section perpendicular to the rolling direction) was the observation plane, and the observation plane was buffed (diamond polishing), and then scanned with an electron microscope (SEM) Observed. And, in 20 pictures (magnification 500 times) taken at random, as shown in FIG. 2, the diameter D of the crystallized substance has a large ratio with respect to the foil thickness T. It was measured. “Large-diameter crystallized average diameter ( ⁇ m)” in Table 2 represents an average value of the top 30 values among the obtained measured values.
  • Cooling rate during casting was evaluated as follows. A sample of two ingots (both ends) is embedded in an epoxy resin so that the LT-ST plane (cross section perpendicular to the rolling direction) becomes the observation plane, and the observation plane is buffed (diamond polishing) and then scanned. It observed with the electron microscope (SEM). Secondary dendrite branches obtained by measuring the secondary dendrite branch interval d ( ⁇ m) in 20 fields of view (1000 ⁇ magnification) taken at random from the surface layer and the center of each sample at five locations. The average value of the measured distance was obtained.
  • the aluminum alloy foil for current collector of the present invention is used as a material for forming a current collector for a positive electrode of a secondary battery such as a lithium ion battery, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 純アルミニウム箔に比べて耐食性が低下することがなく、従来の集電体用アルミニウム合金箔に比べて、箔の厚みを15μm以下にしても電極の製造工程において破断することがないとともに、電気比抵抗値を比較的低い値にすることが可能な集電体用アルミニウム合金箔の組成を提供する。集電体用アルミニウム合金箔は、0.3質量%~3.0質量%以下の鉄と、0.8質量%以上1.5質量%以下のシリコンと、0.0001質量%以上0.011質量%以下の銅と、0.0001質量%以上0.6質量%以下のマンガンと、0.0001質量%以上0.011質量%以下のマグネシウムと、0.001質量%以上0.011質量%以下の亜鉛とを含み、残部がアルミニウムと不可避不純物とを含む集電体用アルミニウム合金箔であって、当該アルミニウム合金箔中に存在する大径晶出物の平均直径が0.005μm以上10μm以下である。

Description

集電体用アルミニウム合金箔およびその製造方法
 この発明は、一般的には集電体用アルミニウム合金箔およびその製造方法に関し、特定的には、リチウムイオン電池等の二次電池の正極用集電体を形成するための材料として使用される集電体用アルミニウム合金箔およびその製造方法に関する。
 高容量二次電池としてリチウムイオン電池は、携帯用電子機器の電源に用いられるだけでなく、最近ではハイブリッド自動車用電源として用いるための開発が進められている。従来から、アルミニウム箔またはアルミニウム合金箔はリチウムイオン電池の正極用集電体を形成する材料として用いられている。
 たとえば、特開2005-133207号公報(特許文献1)に記載されているように、リチウムイオン二次電池の正極用基材として、純アルミニウム(JIS呼称1000系)箔、Al-Mn系(JIS呼称3000系)合金箔、Al-Fe系(JIS呼称8000系)合金箔が使用されている。
 また、特開2009-64560号公報(特許文献2)および特開2009-81110号公報(特許文献3)に記載されているように、箔の厚みを15μm以下にしても電極の製造工程において破断することがない集電体用アルミニウム合金箔として、新規なAl-Mn-Fe系合金箔が提案されている。
特開2005-133207号公報 特開2009-64560号公報 特開2009-81110号公報
 最近では、二次電池の高容量化と小型化の要求に応じて、集電体をより薄くして、二次電池の体積あたりの容量を増大する方法が検討されている。
 しかしながら、集電体を形成するアルミニウム箔またはアルミニウム合金箔の厚みを20μmよりも薄くすると、箔の表面に各種の活物質を塗布する工程、塗布した活物質を箔の表面に圧着させる工程等の電極の製造工程において、箔が頻繁に破断するという問題がある。
 一般に、純アルミニウム箔に比べて、Al-Mn系とAl-Fe系のアルミニウム合金箔は、引張試験における強度が勝るものの、アルミニウム合金箔の厚みを20μmよりもさらに薄くしていくと耐折強度が低下するので、電極の製造工程において、箔が頻繁に破断するという問題を解決するには十分ではなかった。
 また、純アルミニウム箔に比べて、Al-Mn系とAl-Fe系のアルミニウム合金箔は、電解液に対する耐食性が低下するので、たとえば、ハイブリッド自動車用電源として用いられる二次電池のように長期間の寿命が要求される二次電池の集電体に用いることが困難である。
 さらに、Al-Mn系のアルミニウム合金箔は、含有するMnにより電気比抵抗値が高くなり、さらに厚みを20μm以下に薄くすることにより電気抵抗値が増大し、充電放電時に集電体が発熱するという問題があった。集電体が発熱すると、二次電池の性能、例えば、充放電速度や電池寿命等が損なわれることは周知である。
 そこで、この発明の目的は、純アルミニウム箔に比べて耐食性が低下することがなく、従来の集電体用アルミニウム合金箔に比べて、箔の厚みを15μm以下にしても電極の製造工程において破断することがないとともに、電気比抵抗値を比較的低い値にすることが可能な集電体用アルミニウム合金箔とその製造方法を提供することである。
 上述の課題を解決するために、本発明者は種々検討した結果、アルミニウム合金箔において、少なくとも、鉄、シリコン、銅、マンガン、マグネシウムおよび亜鉛の含有量と、アルミニウム合金箔中に存在する大径晶出物の直径とを制御することにより、アルミニウム合金箔の厚みを15μm以下にしても電極の製造工程において破断するのを防止するために必要な引張強度および耐折強度と、充電放電の過剰な発熱を防止するために必要な電気比抵抗値と、耐食性とが同時に得られることを見出した。このような本発明者の知見に基づいて本発明はなされたものである。
 この発明に従った集電体用アルミニウム合金箔は、0.3質量%以上3.0質量%以下の鉄と、0.8質量%以上1.5質量%以下のシリコンと、0.0001質量%以上0.011質量%以下の銅と、0.0001質量%以上0.6質量%以下のマンガンと、0.0001質量%以上0.011質量%以下のマグネシウムと、0.001質量%以上0.011質量%以下の亜鉛とを含み、残部がアルミニウムと不可避不純物とを含む集電体用アルミニウム合金箔であって、当該アルミニウム合金箔中に存在する大径晶出物の平均直径が0.005μm以上10μm以下である。
 好ましくは、この発明の集電体用アルミニウム合金箔は、0.005質量%以上0.5質量%以下のチタンを含む。
 また、好ましくは、この発明の集電体用アルミニウム合金箔は、0.0001質量%以上0.3質量%以下のジルコニウムを含む。
 さらに、好ましくは、この発明の集電体用アルミニウム箔は、厚みが1μm以上15μm以下、引張強度が170N/mm以上280N/mm以下、伸びが4%以上10%以下、耐折強度が350回以上1200回以下、電気比抵抗値が2.7μΩcm以上3.7μΩcm未満である。
 この発明に従った集電体用アルミニウム合金箔の製造方法は、上述のいずれかの特徴を有する集電体用アルミニウム合金箔の製造方法であって、以下の工程を備える。
 (A)アルミニウム合金の溶湯を、100℃/秒以上500℃/秒以下の冷却速度で、3mm以上10mm以下の厚みに鋳造することにより、アルミニウム合金の鋳塊を得る工程。
 (B)上記の鋳塊を圧延する工程。
 以上のように、この発明の集電体用アルミニウム合金箔は、引張強度および耐折強度に優れているので、アルミニウム合金箔の厚みを15μm以下にしても電極の製造工程において破断するのを防止することができる。また、本発明の集電体用アルミニウム箔は、純アルミニウム箔に比べて耐食性が低下せず、さらに電気比抵抗値が比較的低い値であるので、たとえば、電池の集電体に用いられた場合において充電放電時の過剰な発熱を防止することができる。これらにより、長期間の寿命が要求される二次電池の集電体に本発明の集電体用アルミニウム箔を用いることができる。
本発明の実施例で耐折強度(回)の測定方法を説明するための図である。 本発明の実施例で大径晶出物平均直径の測定方法を説明するための図である。
 まず、この発明の一つの実施の形態として集電体用アルミニウム合金箔は、0.3質量%以上3.0質量%以下の鉄と、0.8質量%以上1.5質量%以下のシリコンと、0.0001質量%以上0.011質量%以下の銅と、0.0001質量%以上0.6質量%以下のマンガンと、0.0001質量%以上0.011質量%以下のマグネシウムと、0.001質量%以上0.011質量%以下の亜鉛とを含み、残部がアルミニウムと不可避不純物とを含む。
 集電体用アルミニウム合金箔に0.3質量%以上3.0質量%以下の鉄(Fe)を含有させる理由は以下のとおりである。鉄は、アルミニウム合金中においてAl-Fe系の化合物として晶出し、アルミニウム合金箔の圧延性や伸びを改善することができる元素である。また、適度な量のAl-Fe系の化合物は、結晶核発生サイトおよびピン止めにより結晶粒を微細化し、アルミニウム合金箔の圧延時に耐焼付性(ロールへの材料の溶着)と微粉の発生とを抑えることによって、薄箔の圧延性を向上させる。鉄の含有量が0.3質量%未満であると、上記の効果を十分に発揮することができない。鉄の含有量が3.0質量%を超えると、Al-Fe系の化合物が過剰に晶出することにより、アルミニウム合金箔の耐折強度が低下したり、引張強度が増大しすぎて、かえってアルミニウム合金箔の伸びと圧延性を低下させるおそれがある。
 集電体用アルミニウム合金箔に0.8質量%以上1.5質量%以下のシリコン(Si)を含有させる理由は以下のとおりである。シリコンは、主に、アルミニウム合金箔の引張強度を向上させることができる元素である。また、例えば、特に厚みが15μm以下の薄箔への圧延時には、アルミニウム合金箔の表面のみならず内部にも圧延加工に伴う瞬間的な温度上昇が発生する。このとき、アルミニウム合金箔中にシリコンが存在することにより、転位の消失を抑制して強度の低下を防ぐことができる。シリコンの含有量が0.8質量%未満であると、上記の効果を得ることができない。シリコンの含有量が1.5質量%を超えると、引張強度が増大しすぎてアルミニウム合金箔の伸びおよび圧延性を低下させる。
 集電体用アルミニウム合金箔に含有させる銅(Cu)の量を0.011質量%以下に限定する理由は以下のとおりである。銅は、アルミニウムに固溶しやすく、アルミニウム合金箔の伸びを低下させるとともに電気比抵抗を増大させる。さらに、銅は、アルミニウム合金箔の耐食性を著しく低下させる。このため、銅の含有量を0.011質量%以下に限定する必要がある。銅のより好ましい含有量は0.005質量%以下である。銅の含有量の下限値は特に限定されないが、通常は0.0001質量%程度である。
 集電体用アルミニウム合金箔に含有させるマンガン(Mn)の量を0.6質量%以下に限定する理由は以下のとおりである。マンガンは、アルミニウム合金箔の耐食性を低下させることなく、引張強度および伸びを向上させることができる元素である。しかし、アルミニウム合金中においてAl-Mn系の化合物が過剰に晶出することにより、アルミニウム合金箔の耐折強度が低下したり、引張強度が増大しすぎて、かえってアルミニウム合金箔の伸びと圧延性を低下させるおそれがあるだけでなく、電気比抵抗を増大させる。このため、マンガンの含有量を0.6質量%以下に限定する必要がある。マンガンの含有量の下限値は特に限定されないが、通常は0.0001質量%程度である。
 集電体用アルミニウム合金箔に含有させるマグネシウム(Mg)の量を0.011質量%以下に限定する理由は以下のとおりである。マグネシウムは、アルミニウムに固溶しやすく、アルミニウム合金箔の伸びを低下させるとともに電気比抵抗を増大させる。このため、マグネシウムの含有量を0.011質量%以下に限定する必要がある。マグネシウムのより好ましい含有量は0.005質量%以下である。マグネシウムの含有量の下限値は特に限定されないが、通常は0.0001質量%程度である。
 集電体用アルミニウム合金箔に含有させる亜鉛(Zn)の量を0.3質量%以下に限定する理由は以下のとおりである。亜鉛は、アルミニウム合金箔の引張強度と伸びに寄与するが、電気比抵抗を増大させる。さらに、亜鉛は、アルミニウム合金箔の耐食性を著しく低下させる。このため、亜鉛の含有量を0.3質量%以下に限定する必要がある。亜鉛のより好ましい含有量は0.1質量%以下である。亜鉛の含有量の下限値は特に限定されないが、通常は0.001質量%程度である。
 さらに、この発明の好ましい一つの実施の形態として集電体用アルミニウム合金箔は、0.005質量%以上0.5質量%以下のチタン、および/または、0.0001質量%以上0.3質量%以下のジルコニウムを含む。
 集電体用アルミニウム合金箔に0.005質量%以上0.5質量%以下のチタン(Ti)を含有させる理由は以下のとおりである。チタンは、アルミニウム合金箔の耐食性を低下させることなく、引張強度および伸びを向上させることができる元素である。チタンの含有量が0.005質量%未満であると、上記の効果を得ることができない。チタンの含有量が0.5質量%を超えると、アルミニウム合金箔の引張強度が増大しすぎて、アルミニウム合金箔の圧延性を低下させるとともに、伸びを低下させる。
 集電体用アルミニウム合金箔に0.0001質量%以上0.3質量%以下のジルコニウム(Zr)を含有させる理由は以下のとおりである。ジルコニウムは、アルミニウム合金箔の耐食性を低下させることなく、引張強度および伸びを向上させることができる元素である。ジルコニウムの含有量が0.0001質量%未満であると、十分な引張強度および伸びを得ることができない。ジルコニウムの含有量が0.3質量%を超えると、アルミニウム合金箔の引張強度が増大しすぎて、アルミニウム合金箔の圧延性を低下させる。
 なお、本発明のアルミニウム合金箔は、上記の特性や効果に影響を与えない程度の含有量で、銀(Ag)、ニッケル(Ni)、クロム(Cr)、バナジウム(V)、ホウ素(B)、ガリウム(Ga)、ビスマス(Bi)等の元素を含んでいてもよい。特に、銀およびニッケルの含有量をそれぞれ0.01質量%以下にすると、アルミニウム合金の耐食性が低下するのを防止することができる。
 以上のように本発明の集電体用アルミニウム合金箔は限定された組成を有するので、純アルミニウム箔に比べて耐食性が低下しないとともに、さらに電気比抵抗値が比較的低い値であることにより充電放電時の過剰な発熱を防止することができる。
 次に、本発明の集電体用アルミニウム合金箔では、アルミニウム合金箔中に存在する大径晶出物の平均直径が10μm以下である。このようにアルミニウム合金箔中に存在する大径晶出物の平均直径が相対的に小さい値に限定されているので、アルミニウム合金箔の耐折強度、すなわち、折り曲げ強度を高めることができる。これにより、アルミニウム合金箔の厚みを15μm以下にしても、たとえば、集電体用アルミニウム合金箔を渦巻状等に折り曲げる工程を伴う電極の製造工程においてアルミニウム合金箔が破断するのを防止することができる。ここで、大径晶出物の平均直径とは、アルミニウム合金箔中に存在する複数の晶出物のうち、晶出物の直径の大きい順に所定数の晶出物を選んで測定された晶出物の直径の平均値をいう。
 大径晶出物の平均直径は、10μm以下、好ましくは5μm以下で、箔厚の2/3以下であることがより好ましい。大径晶出物の平均直径の下限値は特に限定されないが、通常は0.005μm程度である。
 以上のように、本発明の集電体用アルミニウム合金箔は、限定された組成を有するとともに、アルミニウム合金箔中に存在する大径晶出物の平均直径が相対的に小さい値に限定されているので、引張強度および耐折強度に優れている。これにより、アルミニウム合金箔の厚みを15μm以下にしても電極の製造工程において破断するのを防止することができる。また、上述のように限定された組成を有する本発明の集電体用アルミニウム合金箔は、純アルミニウム箔に比べて耐食性が低下せず、さらに電気比抵抗値が比較的低い値であることにより、たとえば、電池の集電体に用いられた場合において充電放電時の過剰な発熱を防止することができる。これらのことにより、長期間の寿命が要求される二次電池の集電体に本発明の集電体用アルミニウム合金箔を用いることができる。
 さらに、この発明の好ましい一つの実施の形態として集電体用アルミニウム合金箔は、厚みが15μm以下、引張強度が170N/mm以上280N/mm以下、伸びが4%以上、耐折強度が350回以上、電気比抵抗値が3.7μΩcm未満である。
 アルミニウム合金箔の引張強度が170N/mm以上280N/mm以下、伸びが4%以上、耐折強度が350回以上の条件を満たさない場合、15μm以下の箔の表面に各種の活物質を塗布する工程、塗布した活物質を箔の表面に圧着させる工程等の電極の製造工程において箔が破断する恐れがある。また、電気比抵抗値が3.7μΩcm以上になると、充電放電時に集電体が発熱する恐れがある。
 アルミニウム合金箔の厚みの下限は、電極としての機械的強度を維持することができれば特に限定されないが、通常は1μm程度である。
 アルミニウム合金箔の引張強度は170N/mm以上280N/mm以下で、好ましくは190N/mm以上280N/mm以下である。アルミニウム合金箔の引張強度が170N/mm未満では、箔の表面に各種の活物質を塗布する工程、塗布した活物質を箔の表面に圧着させる工程等の電極の製造工程において箔が破断する恐れがある。また、アルミニウム合金箔の引張強度280N/mmを超えると、箔の圧延性を低下させる恐れがある。
 アルミニウム合金箔の伸びは4%以上で、好ましくは4%以上10%以下である。アルミニウム合金箔の伸びが4%未満では、箔の表面に各種の活物質を塗布する工程、塗布した活物質を箔の表面に圧着させる工程等の電極の製造工程において箔が破断する恐れがある。アルミニウム合金箔の伸びが10%を超えると、塗布する活物質の厚みを均一にすることが困難になる。
 アルミニウム合金箔の耐折強度は350回以上、好ましくは450回以上である。アルミニウム合金箔の耐折強度が350回未満では、箔の表面に各種の活物質を塗布する工程、塗布した活物質を箔の表面に圧着させる工程等の電極の製造工程において箔が破断する恐れがある。アルミニウム合金箔の耐折強度の上限値は特に限定されないが、通常は1200回程度である。
 アルミニウム合金箔の電気比抵抗値の下限は特に限定されないが、通常は2.7μΩcm程度である。
 上述したような組成と特性を有する本発明の集電体用アルミニウム合金箔の製造方法は、上記の組成を有するアルミニウム合金の溶湯を100℃/秒以上の冷却速度で、3mm以上10mm以下の厚みに鋳造することにより、アルミニウム合金の鋳塊を得る工程、この鋳塊を圧延する工程とを備える。
 具体的には、上記の組成を有するアルミニウム合金の溶湯を調製し、そのアルミニウム合金の溶湯を、100℃/秒以上の冷却速度で、たとえば、連続鋳造によって、凝固させることにより、3mm以上10mm以下の厚みの鋳塊を製造する。その後、鋳塊に冷間圧延を施すことによって所望の厚みの箔に圧延する。なお、鋳造後の工程において、たとえば、鋳造工程と圧延工程の間において、または、圧延工程の後において、必要に応じて150℃~650℃程度の温度で1分以上100時間以下の熱処理(均質化処理)を行ってもよい。すなわち、連続鋳造によって薄板状のアルミニウム合金の鋳塊を製造する場合には、連続鋳造により得られた鋳塊に上記の均質化処理を施した後、冷間圧延を施すことによって所望の厚みの箔にしてもよく、連続鋳造により得られた鋳塊に直接、冷間圧延を施すことによって所望の厚みの箔にしてもよい。
 本発明の集電体用アルミニウム合金箔の製造方法において、晶出物は鋳造時に形成された後、圧延によって粉砕されて細かくなる。厚みが15μm以下のアルミニウム合金箔における晶出物の大きさは、鋳造および圧延により制御することができる。
 100℃/秒より遅い冷却速度でアルミニウム合金の溶湯を鋳造すると、Al-Fe系やAl-Mn系等の化合物の粗大な晶出物が形成されるために、15μm以下の厚みに圧延することが困難になり、集電体用アルミニウム合金箔中に存在する大径晶出物の平均直径が増大して耐折強度が低下したりするおそれがある。より好ましい冷却速度は150℃/秒以上である。冷却速度の上限値は特に限定されないが、通常は500℃/秒程度である。
 鋳造厚みは3mm以上10mm以下、好ましくは3mm以上6mm以下である。鋳造厚みが10mmより厚いと、鋳塊の内部において所望の冷却速度を得ることが困難である。また、鋳造厚みが3mmより薄いと、鋳造時に形成された晶出物が圧延によって十分に粉砕されないおそれがある。
 以下、本発明の実施例について説明する。
 表1に示すさまざまな組成のアルミニウム合金A~U(合金A~Kは本発明の範囲内の組成を有し、合金L~Tは本発明の範囲外の組成を有する)の溶湯を調製し、表2に示す鋳造厚みになるようにアルミニウム合金の溶湯を凝固させることにより、実施例1~11と比較例1~21の鋳塊を製造した。表2に示す実施例1~11と比較例12~21では連続鋳造法によって溶湯を鋳造し、比較例1~11では溶湯を固定鋳型に注入することによっ鋳造した。鋳造後、鋳造方向に沿った長さでほぼ3等分して各鋳塊を3分割し、両端部は後述の鋳造時冷却速度測定するための試料として用い、中央部を次のように加工した。
 表2に示すように鋳造厚みが10mmを超える鋳塊は、520℃の温度で5時間の均質化処理を施した後、熱間圧延によって6mmの厚みまで圧延し、さらに冷間圧延によって12μmの厚みまで圧延することにより、集電体用アルミニウム合金箔を作製した。鋳造厚みが10mm以下の鋳塊は、400℃の温度で1時間の均質化処理を施した後、冷間圧延によって12μmの厚みまで圧延して集電体用アルミニウム合金箔を作製した。
 得られた実施例1~11と比較例1~21の集電体用アルミニウム合金箔について各種特性(大径晶出物平均直径、引張強度・伸び・耐折強度、圧延性・耐食性・電気比抵抗値)を評価した。その評価された特性を表2に示す。
 また、現在、リチウムイオン電池用集電箔として使用されているJIS呼称の1N30、8021、8079、3003のアルミニウム合金についても、上記と同様にして集電体用アルミニウム合金箔(従来例1~4)を作製し、その評価を行った。その評価結果も表2に示す。
 ここで、「耐食性」の評価は、各集電体用アルミニウム合金箔をリチウムイオン電池用電解液(ジエチレンカーボネートとエチレンカーボネートを体積比で1:1の割合で混合した非水系電解液にLiPFを1モル/リットルの濃度で溶解したもの)に室温で30日間浸漬した後、腐食の程度を目視で観察することによって行った。ほとんど腐食されていないものを○、孔食等の腐食の形跡のあるものを×として「耐食性」を評価した。また、「圧延性」は、6μmの厚みまで連続的に破断なく製造できたものを○、圧延中に破断または圧延できなかったものを×として評価した。さらに、各集電体用アルミニウム合金箔の「電気比抵抗値」は、温度293Kにおいて直流四端子法で測定した。
 「引張強度(N/mm)」と「伸び(%)」は、以下のようにして評価した。各集電体用アルミニウム合金箔について、JIS B 7721に準じた引張試験機により引張試験を行ない、次のようにして引張強度と伸びを求めた。幅が10mmで長さが150mmの試料を、チャック間距離が50mmとなるように固定し、10mm/minの引張速度で10回引張試験を行い、引張強度と伸びを測定した。0.2%伸びを「伸び」とし、破断時の引張強度を「引張強度」とし、その平均値を求めた。
 「耐折強度(回)」は、以下のようにして評価した。各集電体用アルミニウム合金箔について、JIS P8115に準じたMIT型自動折り曲げ試験装置を使用し、幅が15mmで長さが150mmの試料に、200gfの荷重を加えて、折り曲げ半径(R)を0.5mm、折り曲げの繰返し速度を360回/秒として折り曲げ試験を行った。図1に示すように、試料100を矢印1で示すように90°曲げて1回、矢印2で示すように元に戻して2回、矢印3に示すように逆方向に90°曲げて3回、矢印4に示すように元に戻して4回・・・と折り曲げ回数を試料100が破断するまで数えた。表2の「耐折強度(回)」は、各試料が破断する際の折り曲げ回数を示す。
 「大径晶出物平均直径(μm)」は、以下のようにして評価した。LT-ST面(圧延方向に垂直な断面)が観察面となるように幅が10mmの試料をエポキシ樹脂に埋め込み、その観察面をバフ研磨(ダイヤモンド研磨)した後、走査型電子顕微鏡(SEM)にて観察した。そして、無作為に撮影した20視野(倍率500倍)の写真において、図2に示すように晶出物の直径Dが箔厚Tに対して大きな割合を有する晶出物の直径Dを40個測定した。表2の「大径晶出物平均直径(μm)」は、得られた測定値のうち上位30個の値の平均値を示す。
 「鋳造時冷却速度(℃/秒)」は、以下のようにして評価した。LT-ST面(圧延方向に垂直な断面)が観察面となるように2つの鋳塊(両端部)の試料をエポキシ樹脂に埋め込み、その観察面をバフ研磨(ダイヤモンド研磨)した後、走査型電子顕微鏡(SEM)にて観察した。それぞれの試料の表層部と中心部を5か所ずつ無作為に撮影した20視野(倍率1000倍)の写真において、二次デンドライト枝間隔d(μm)を測定し、得られた二次デンドライト枝間隔の測定値の平均値を求めた。この二次デンドライト枝間隔の平均値d(μm)を次式に代入することによって、凝固時の冷却速度C(℃/秒)を算出して「鋳造時冷却速度(℃/秒)」とした。
d=bC-n
 ここで、bは33、nは0.33である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本発明の実施例1~11では、伸びが4%以上で、耐食性を低下させることがなく、引張強度が170N/mm以上280N/mmで、かつ、電気比抵抗値が3.7μΩcm未満で、さらに耐折強度が350回以上の厚みが12μmのアルミニウム合金箔を得ることができる。
 以上に開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。
 本発明の集電体用アルミニウム合金箔は、たとえば、リチウムイオン電池等の二次電池の正極用集電体を形成するための材料として使用される。
 100:試料。

Claims (5)

  1.  0.3質量%以上3.0質量%以下の鉄と、0.8質量%以上1.5質量%以下のシリコンと、0.0001質量%以上0.011質量%以下の銅と、0.0001質量%以上0.6質量%以下のマンガンと、0.0001質量%以上0.011質量%以下のマグネシウムと、0.001質量%以上0.011質量%以下の亜鉛とを含み、残部がアルミニウムと不可避不純物とを含む集電体用アルミニウム合金箔であって、
     当該アルミニウム合金箔中に存在する大径晶出物の平均直径が0.005μm以上10μm以下である、集電体用アルミニウム合金箔。
  2.  0.005質量%以上0.5質量%以下のチタンを含む、請求項1に記載の集電体用アルミニウム合金箔。
  3.  0.0001質量%以上0.3質量%以下のジルコニウムを含む、請求項1に記載の集電体用アルミニウム合金箔。
  4.  厚みが1μm以上15μm以下、引張強度が170N/mm以上280N/mm以下、伸びが4%以上10%以下、耐折強度が350回以上1200回以下、電気比抵抗値が2.7μΩcm以上3.7μΩcm未満である、請求項1に記載の集電体用アルミニウム合金箔。
  5.  請求項1に記載の集電体用アルミニウム合金箔の製造方法であって、
     アルミニウム合金の溶湯を、100℃/秒以上500℃/秒以下の冷却速度で、3mm以上10mm以下の厚みに鋳造することにより、アルミニウム合金の鋳塊を得る工程と、
     前記鋳塊を圧延する工程とを備えた、集電体用アルミニウム合金箔の製造方法。
PCT/JP2010/001486 2009-03-05 2010-03-04 集電体用アルミニウム合金箔およびその製造方法 WO2010100924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117011310A KR101314696B1 (ko) 2009-03-05 2010-03-04 집전체용 알루미늄 합금박 및 그 제조 방법
JP2011502655A JP5275446B2 (ja) 2009-03-05 2010-03-04 集電体用アルミニウム合金箔およびその製造方法
CN2010800035867A CN102245788B (zh) 2009-03-05 2010-03-04 集电体用铝合金箔及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009051690 2009-03-05
JP2009-051690 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010100924A1 true WO2010100924A1 (ja) 2010-09-10

Family

ID=42709490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001486 WO2010100924A1 (ja) 2009-03-05 2010-03-04 集電体用アルミニウム合金箔およびその製造方法

Country Status (4)

Country Link
JP (1) JP5275446B2 (ja)
KR (1) KR101314696B1 (ja)
CN (1) CN102245788B (ja)
WO (1) WO2010100924A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321834A (zh) * 2011-10-20 2012-01-18 银邦金属复合材料股份有限公司 一种新型的用于加工铝钢复合带的铝合金
CN102569817A (zh) * 2010-12-14 2012-07-11 三菱铝株式会社 锂离子电池正极集电体用铝合金箔及其制造方法
JP2013054950A (ja) * 2011-09-05 2013-03-21 Toshiba Corp 非水電解質電池及び電池パック
JP2015113515A (ja) * 2013-12-13 2015-06-22 三菱アルミニウム株式会社 リチウムイオン電池正極集電体用アルミニウム合金箔およびその製造方法
JP2015120968A (ja) * 2013-12-25 2015-07-02 三菱アルミニウム株式会社 硬質箔用アルミニウム合金、アルミニウム合金硬質箔、リチウムイオン二次電池正極集電体用アルミニウム合金箔およびアルミニウム合金硬質箔の製造方法
EP2639341A4 (en) * 2010-11-11 2015-08-19 Hitachi Metals Ltd PROCESS FOR PRODUCING ALUMINUM SHEET
JP2016041835A (ja) * 2014-08-14 2016-03-31 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法
WO2016158245A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
WO2017002420A1 (ja) * 2015-06-30 2017-01-05 住友電気工業株式会社 リード導体、及び電力貯蔵デバイス
JP2017066502A (ja) * 2015-10-02 2017-04-06 東洋アルミニウム株式会社 アルミニウム合金箔
JP2020132993A (ja) * 2019-02-26 2020-08-31 東洋アルミニウム株式会社 アルミニウム合金箔およびその製造方法
WO2024063091A1 (ja) * 2022-09-22 2024-03-28 東洋アルミニウム株式会社 電池集電体用アルミニウム合金箔及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825300B2 (en) * 2012-05-25 2017-11-21 Uacj Corporation Aluminum alloy foil for electrode current collector, method for manufacturing same, and electrode material
JP5927614B2 (ja) * 2012-08-29 2016-06-01 株式会社神戸製鋼所 電池集電体用アルミニウム硬質箔
TWI458841B (zh) * 2012-09-06 2014-11-01 Truan Sheng Lui 輕金屬快速均質熱處理方法
CN102978483B (zh) * 2012-11-30 2016-04-06 苏州有色金属研究院有限公司 锂离子正极集流体用铝合金箔及其制造方法
RU2015115688A (ru) * 2014-04-30 2016-11-20 Эннио КОРРАДО Пленка, выполненная из сплава алюминия и железа, применение такого материала в комбинации с переменным магнитным полем и кухонный инвентарь, подходящий для нагрева на индукционных устройствах для приготовления пищи, включающий такую пленку
JP7317504B2 (ja) * 2016-12-27 2023-07-31 東洋アルミニウム株式会社 アルミニウム合金箔及びその積層体並びにそれらの製造方法
CN108441743A (zh) * 2018-01-24 2018-08-24 云南浩鑫铝箔有限公司 一种锂离子电池正极集流体用铝箔
CN108598367B (zh) * 2018-04-26 2020-12-08 广东永邦新能源股份有限公司 一种高电压负极片及其制备方法、一种高电压锂电池
JP7128676B2 (ja) * 2018-07-12 2022-08-31 東洋アルミニウム株式会社 アルミニウム合金箔及びその製造方法
JP7160636B2 (ja) * 2018-11-01 2022-10-25 住友化学株式会社 非水電解液二次電池
WO2024049957A1 (en) * 2022-09-01 2024-03-07 Novelis Inc. Thin gauge aluminum-based cathodes for lithium-ion batteries
CN117568667B (zh) * 2024-01-15 2024-04-19 中铝材料应用研究院有限公司 铝箔材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329447A (ja) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd 非水二次電池
JP2003520295A (ja) * 2000-01-21 2003-07-02 アルキャン・インターナショナル・リミテッド アルミニウム合金の製造法
JP2004522585A (ja) * 2001-02-13 2004-07-29 アルキャン・インターナショナル・リミテッド 高強度アルミニウム合金箔の製造方法
JP2007502360A (ja) * 2003-07-21 2007-02-08 ノヴェリス インコーポレイテッド AlFeSi合金製の薄片あるいは薄い帯

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
CN100478475C (zh) * 2003-06-06 2009-04-15 东北轻合金有限责任公司 高比电容合金箔及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329447A (ja) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd 非水二次電池
JP2003520295A (ja) * 2000-01-21 2003-07-02 アルキャン・インターナショナル・リミテッド アルミニウム合金の製造法
JP2004522585A (ja) * 2001-02-13 2004-07-29 アルキャン・インターナショナル・リミテッド 高強度アルミニウム合金箔の製造方法
JP2007502360A (ja) * 2003-07-21 2007-02-08 ノヴェリス インコーポレイテッド AlFeSi合金製の薄片あるいは薄い帯

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639341A4 (en) * 2010-11-11 2015-08-19 Hitachi Metals Ltd PROCESS FOR PRODUCING ALUMINUM SHEET
US9267216B2 (en) 2010-11-11 2016-02-23 Hitachi Metals Ltd. Method for producing aluminum foil
CN102569817A (zh) * 2010-12-14 2012-07-11 三菱铝株式会社 锂离子电池正极集电体用铝合金箔及其制造方法
JP2013054950A (ja) * 2011-09-05 2013-03-21 Toshiba Corp 非水電解質電池及び電池パック
CN102321834A (zh) * 2011-10-20 2012-01-18 银邦金属复合材料股份有限公司 一种新型的用于加工铝钢复合带的铝合金
JP2015113515A (ja) * 2013-12-13 2015-06-22 三菱アルミニウム株式会社 リチウムイオン電池正極集電体用アルミニウム合金箔およびその製造方法
JP2015120968A (ja) * 2013-12-25 2015-07-02 三菱アルミニウム株式会社 硬質箔用アルミニウム合金、アルミニウム合金硬質箔、リチウムイオン二次電池正極集電体用アルミニウム合金箔およびアルミニウム合金硬質箔の製造方法
JP2016041835A (ja) * 2014-08-14 2016-03-31 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法
WO2016158245A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
JPWO2016158245A1 (ja) * 2015-03-31 2018-02-01 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
WO2017002420A1 (ja) * 2015-06-30 2017-01-05 住友電気工業株式会社 リード導体、及び電力貯蔵デバイス
JP2017016839A (ja) * 2015-06-30 2017-01-19 住友電気工業株式会社 リード導体、及び電力貯蔵デバイス
JP2017066502A (ja) * 2015-10-02 2017-04-06 東洋アルミニウム株式会社 アルミニウム合金箔
WO2017057707A1 (ja) * 2015-10-02 2017-04-06 東洋アルミニウム株式会社 アルミニウム合金箔
JP2020132993A (ja) * 2019-02-26 2020-08-31 東洋アルミニウム株式会社 アルミニウム合金箔およびその製造方法
WO2020175327A1 (ja) * 2019-02-26 2020-09-03 東洋アルミニウム株式会社 アルミニウム合金箔およびその製造方法
JP7216571B2 (ja) 2019-02-26 2023-02-01 東洋アルミニウム株式会社 アルミニウム合金箔およびその製造方法
WO2024063091A1 (ja) * 2022-09-22 2024-03-28 東洋アルミニウム株式会社 電池集電体用アルミニウム合金箔及びその製造方法

Also Published As

Publication number Publication date
CN102245788A (zh) 2011-11-16
KR20110069893A (ko) 2011-06-23
JPWO2010100924A1 (ja) 2012-09-06
CN102245788B (zh) 2013-10-23
JP5275446B2 (ja) 2013-08-28
KR101314696B1 (ko) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5275446B2 (ja) 集電体用アルミニウム合金箔およびその製造方法
JP5160839B2 (ja) 集電体用アルミニウム合金箔
JP5160849B2 (ja) 集電体用アルミニウム合金箔
JP5639398B2 (ja) 電池集電体用アルミニウム硬質箔
JP5856076B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
KR101202998B1 (ko) 전지 집전체용 순알루미늄 경질 박
KR101175539B1 (ko) 전지 집전체용 알루미늄 합금 경질박
KR101912767B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
JPWO2019111970A1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP5927614B2 (ja) 電池集電体用アルミニウム硬質箔
KR101924250B1 (ko) 이차전지 집전체용 압연 동박 및 그 제조방법
JP5448929B2 (ja) 耐折り曲げ性に優れたアルミニウム合金硬質箔およびその製造方法
JP5791720B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
WO2013125565A1 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
JP5460102B2 (ja) リチウムイオン二次電池用アルミニウム合金箔及びその製造方法
JP2015017301A (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
JP2015017302A (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
JP6162512B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
JP7216571B2 (ja) アルミニウム合金箔およびその製造方法
JP5565262B2 (ja) 加工性に優れたクラッド材及びその製造方法
JP2024046021A (ja) 電池集電体用アルミニウム合金箔及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003586.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011502655

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117011310

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748523

Country of ref document: EP

Kind code of ref document: A1