WO2020175327A1 - アルミニウム合金箔およびその製造方法 - Google Patents

アルミニウム合金箔およびその製造方法 Download PDF

Info

Publication number
WO2020175327A1
WO2020175327A1 PCT/JP2020/006875 JP2020006875W WO2020175327A1 WO 2020175327 A1 WO2020175327 A1 WO 2020175327A1 JP 2020006875 W JP2020006875 W JP 2020006875W WO 2020175327 A1 WO2020175327 A1 WO 2020175327A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
elongation
mass
alloy foil
foil
Prior art date
Application number
PCT/JP2020/006875
Other languages
English (en)
French (fr)
Inventor
賢治 村松
聡太郎 秋山
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN202080016364.2A priority Critical patent/CN113474476B/zh
Publication of WO2020175327A1 publication Critical patent/WO2020175327A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device, and more particularly to an aluminum alloy foil preferably used for a positive electrode current collector of a lithium ion secondary battery and a method for producing the same.
  • an aluminum alloy foil means an aluminum foil having an aluminum concentration of less than 99.0 mass% in its components.
  • Lithium-ion secondary batteries have excellent energy density among secondary batteries, and are used in a wide range of fields such as batteries for mobile phones and notebook computers. In recent years, even in applications such as in-vehicle batteries, where safety has often been regarded as a problem, it has been increasingly applied in recent years.
  • aluminum foil is used for the positive electrode current collector of a lithium ion secondary battery
  • copper foil is used for the negative electrode current collector.
  • An active material such as a lithium metal oxide or a carbon material is applied on the surface of each current collector, and the active material reacts in the electrolytic solution to operate as a battery.
  • the manufacturing process of a lithium ion secondary battery includes the following steps. First, a slurry prepared by kneading an active material, a binder resin and a solvent is applied onto the surface of the current collector foil. Next, for example, heating is performed at about 100 to 150 ° to evaporate the solvent and dry. Furthermore, press working is performed to increase the density of the active material layer. Thereafter, for example, further drying may be performed at about 120 to 200°.
  • the electrode material produced in this way is cut or punched into a desired shape, laminated with a positive electrode material, a separator, and a negative electrode material, wound, and connected to a pull-out tab material, etc., and then placed in a case or a laminated pack. It is stored. Next, inject the electrolyte into the case or laminate pack, seal it, and then perform the first charge/discharge and aging.
  • the aluminum foil as the current collector undergoes various processing such as pressing and winding and heat history.
  • the density of the active material layer should be increased. ⁇ 2020/175327 2 ⁇ (:171? 2020/006875
  • the thickness of the aluminum foil used for the positive electrode current collector is about 20.
  • it is required to reduce the thickness of aluminum foil, and aluminum foil with such a thickness easily breaks during the manufacturing process, so it is necessary to stabilize the foil characteristics for the purpose of stable manufacturing. Many improvements have been proposed.
  • Patent Document 1 high strength and high electrical conductivity are obtained by adding 6 and 3 slurries and controlling their solid solution amounts, and even after heat treatment at 120 to 160 ° ⁇ .
  • An aluminum alloy foil capable of maintaining high strength is disclosed.
  • high strength is maintained even after heat treatment at 120 to 160°, there is no description regarding elongation.
  • Patent Document 2 Aluminum alloy foil with high strength and high elongation is added to Patent Document 3 by adding 6 and 3 ⁇ in order to make the average grain size in the thickness direction 0.5 or less.
  • the cooling rate during casting is set to 100/sec or more, aluminum alloy foils having high strength and high elongation as well as high folding strength are disclosed.
  • Patent Document 2 nor Patent Document 3 describes the elongation after heat treatment.
  • Patent Documents 4 and 5 disclose aluminum alloy foils in which 6 , 3 and 4 are main additive elements, and the content of these elements is within a specific range to suppress elongation reduction after low temperature heat treatment. Is disclosed.
  • the elongation after heat treatment at 100 to 200° ⁇ is 3% or more, When the content is 0.7 mass% or more, the elongation after rolling is improved but the elongation after heating is decreased.
  • the elongation after heat treatment at 100 to 200° ⁇ is 3.5% or more, and if the content of 3% exceeds 0.5% by mass, it is 8 _ 6 _ 3 It is said that there is concern about coarsening of crystallized substances and deterioration of rolling property.
  • the heating temperature is 1 00 ° ⁇ , 1 50 ° ⁇ , not measured only in three conditions of 200 ° ⁇ , elongation at between temperatures Nitsu ⁇ 2020/175327 3 ⁇ (:171? 2020 /006875
  • Patent Document 1 Patent No. 5 8 1 6 2 8 5
  • Patent Document 2 Japanese Unexamined Patent Publication No. 20 1 7 _ 1 1 0 2 4 4
  • Patent Document 3 Patent No. 5 2 7 5 4 4 6 Publication
  • Patent Document 4 JP 2 0 1 7-1 8 6 6 2 9 Publication
  • Patent Document 5 JP 20 17 _ 1 8 6 6 3 0 Publication
  • the collector of a lithium-ion secondary battery is required to be more space-saving, and a thinner foil is required.
  • high strength has been required.
  • the aluminum foil which is the current collector, is subjected to heat treatment in the battery manufacturing process, and the characteristics may be significantly changed by the heat treatment. If the strength and elongation decrease during the manufacturing process, subsequent process defects may occur, or problems such as breakage of the current collector during use of the battery may occur. In particular, not only the strength but also high elongation is required to withstand the winding work in the cell assembly process and the expansion/contraction of the active material that occurs during battery charging/discharging.
  • the aluminum foil of the positive electrode current collector pure Hachijo type and Hachijo _6 type are often used, but the aluminum foil of the above components tends to decrease in elongation at 120 to 200 ° ⁇ . There is a feature called. Especially 1 2 0 ° ⁇ In less likely recovery and recrystallization, and since the coarsening of reduction and precipitation of 6 solid solution amount is concerned, it is difficult improved elongation among Netsusho sense the temperature of the battery manufacturing process Is the temperature. In other words, the elongation of the aluminum foil after heating at 120 ° ⁇ may be significantly reduced, and may be lower than the elongation after heating conventionally at 100° ⁇ and 150 ° ⁇ .
  • the present invention has been made in view of the above circumstances, and a manufacturing process of a power storage device, particularly an aluminum alloy foil used for a positive electrode current collector of a lithium ion secondary battery
  • Another object of the present invention is to provide an aluminum alloy foil for a current collector, which is less likely to cause defects such as breakage during use of the power storage device.
  • the present inventors set the composition of the aluminum alloy foil in a specific range, and set the elongation at the time of hardening and the elongation after heat treatment, in particular, the elongation after heat treatment at 120 ° C to a specific value, whereby We have found that it is possible to reduce the occurrence of defects such as breakage during the manufacturing process and use of the power storage device.
  • the aluminum alloy foil according to the present invention has the following configurations (1) to (3).
  • (Iron) content is 1.2% by mass or more and 1.6% by mass or less
  • 3% (Silicon) content is 0.5% by mass or more and 0.9% by mass or less
  • the total of 6 and 3% content is 1 .8 mass% or more
  • ⁇ li (copper) content is less than ⁇ 0.02 mass%
  • the balance consists of eight hundred (aluminum) and inevitable impurities.
  • aluminum alloy foil according to the invention 1 60 ° ⁇ Among tensile strength after heat treatment 1 401 ⁇ 1 / ⁇ 1 ⁇ 1 more, 1 / ⁇ tensile strength after heat treatment at 200 ° ⁇ 1 301 ⁇ 1 ⁇ 1 more preferably has an elongation both 7.0% or more configurations.
  • Aluminum alloy foil according to the invention of the aluminum alloy foil intermetallics eight I _ 6 system contained in the eight ⁇ _ 6 _3 ⁇ intermetallic compound, eight ⁇ - 6 -3 ⁇ compound (aluminum , Ternary compound of iron and silicon) is preferred to have a composition of 80% or more. ⁇ 2020/175327 5 ⁇ (:171? 2020 /006875
  • the aluminum alloy foil according to the invention preferably has a thickness of 10 or more and 20 or less.
  • a method for producing an aluminum alloy foil comprises a step of preparing an aluminum mother alloy so as to have the composition range and heating the aluminum alloy alloy to produce an aluminum alloy melt, A step of forming a molten iron alloy molten metal into a lump, a step of subjecting the lump to homogenization at 450 to 600 ° , and a step of rolling the homogenized lump to form a foil.
  • the process includes the following steps:
  • an aluminum alloy foil used for a power storage device particularly for a positive electrode current collector of a lithium ion secondary battery
  • problems such as breakage occur during the manufacturing process of the power storage device and during use of the power storage device. It is possible to obtain an aluminum alloy foil for a current collector that is difficult to do.
  • the aluminum alloy foil according to the embodiment has the following configurations (1) to (5).
  • Hachijo _ 6 Among the intermetallic compounds of the ⁇ system, Hachijo _ 6 The proportion of the number of selenium compounds is 80% or more.
  • the thickness is 10 or more and 20 or less.
  • the aluminum alloy foil of the embodiment is preferably used as a positive electrode current collector of a lithium ion secondary battery, and prevents occurrence of defects such as breakage during the manufacturing process or use of the lithium ion secondary battery. Is what Hereinafter, the configurations of (1) to (5) will be described in order.
  • the amount of 3% contained in the aluminum alloy foil of the embodiment of 0.5% by mass or more and 0.9% by mass or less improves the strength by precipitation strengthening when added to 8I. If the amount added is small, both strength and elongation tend to decrease in the case of hard materials.
  • the content of 3 parts is 0.5 mass% or more, the elongation of the foil after heat treatment at 120° ⁇ becomes higher than that of the hard one. Further, if the content of 3 parts exceeds 0.9 mass%, shrinkage cavities are apt to occur at the time of hooking, which makes stable production difficult.
  • the total content of 6 and 3 in the aluminum alloy foil of the embodiment is 1.8% by mass or more. By setting the total content within the above range, a high value is exhibited both in the elongation when hard and the elongation after heat treatment at 120°.
  • the aluminum alloy foil of the embodiment contains less than 0.02% by mass, it is excellent in solid solution strengthening when added in eighty percent. Solid solution of 0 l improves the strength but decreases the elongation. Although the addition of 0% is suitable for improving the strength, it is preferably less than 0.02% by mass in order to suppress the elongation reduction.
  • Aluminum alloy foil [0024] embodiment as an inevitable impurity, IV n (manganese), V (vanadium), Ding ⁇ (titanium), "(zirconium), ⁇ " (chromium),
  • the content of each of these elements is preferably 0.05% by mass or less in 100% by mass of the aluminum alloy foil.
  • the aluminum alloy foil of the embodiment has a tensile strength of 1 A ⁇ / ⁇ ⁇ or more 2 15 1 ⁇ 1 / ⁇ 10 12 or less and an elongation of 4.0% or more, so that the active material Effective in suppressing foil breakage during slurry coating.
  • the tensile strength after heat treatment at 120 ° ⁇ is 150 1 ⁇ 1 / ⁇ 10 12 or more, and the elongation is 6.
  • the content is 0% or more, it is effective in suppressing foil breakage in the mouth press process and the winding process of the electrode material.
  • the content is 0% or more, it is effective in suppressing foil breakage due to expansion and contraction of the active material during the electrode material winding process and battery charging/discharging.
  • the elongation is 7.0% or more, it is effective in suppressing foil breakage due to expansion/contraction of the active material during the winding process of the electrode material and battery charging/discharging.
  • the aluminum alloy foil of the embodiment is a crystal precipitate Among the 6-system intermetallic compounds and the Hachijo _ 6 _ 3 ⁇ intermetallic compounds, the 8 _ _ 6 _ 3 ⁇ compound
  • the proportion of the number of objects is 80% or more, it is easy to obtain excellent elongation after heat treatment.
  • AI-Fe-Si compounds are contributing to recovery and recrystallization during low temperature heat treatment.
  • the aluminum alloy foil of the embodiment has a thickness of 10 Mm or more and 20 Mm or less, thereby achieving both strength and battery capacity.
  • the thickness is less than 1 Ogm, the strength is low and defects such as breakage are likely to occur.
  • the thickness exceeds 20 Mm, the battery capacity per volume decreases when it is used as a current collector of a power storage device.
  • the manufacturing method of the aluminum alloy foil of the embodiment is not particularly limited, but the following manufacturing method can be given as an example.
  • an aluminum ingot, various additive metal elements, or an aluminum mother alloy containing them is prepared so as to have the above composition range, and heated at 680 to 1000 ° C to obtain an aluminum alloy molten metal.
  • the molten metal is formed into a lump.
  • the method of forming is not limited, a typical example is DC forming (D i r e ct C h i l l C a st i n g).
  • the obtained ingot is subjected to a homogenizing treatment preferably at 450 to 600 ° C for a predetermined time, and then hot rolling and cold rolling are performed to obtain a foil having a predetermined thickness.
  • a homogenizing treatment preferably at 450 to 600 ° C for a predetermined time, and then hot rolling and cold rolling are performed to obtain a foil having a predetermined thickness.
  • Intermediate annealing can be performed during the cold rolling process to improve the ease of rolling and efficiency.
  • the treatment temperature is 450° C. or higher and 600° C. or lower, microsegregation in the aluminum alloy is eliminated, and the size and number ratio of the Al-FeS i-based compound are reduced. It can be set in a suitable range, and the strength and elongation after heating can be improved.
  • the treatment temperature is higher than 600 ° ⁇ , the crystallized substances may be coarsened, the elongation of the aluminum alloy foil will decrease, and when used in a power storage device, it will easily break during the manufacturing process. ..
  • the homogenization treatment time is preferably 2 to 48 hours, and more preferably 5 to 10 hours.
  • processing time exceeds 48 hours, productivity will deteriorate. If the treatment time is less than 2 hours, the structure inside the aluminum alloy ingot remains non-uniform, which adversely affects the properties of the aluminum alloy foil.
  • Aluminum alloys having the respective compositions shown in the following Table 1 were melted, and the molten metal was subjected to degassing and deinclusion treatment, and then a mouth (3 threads were obtained to obtain an ingot. Homogenization treatment was carried out at 50 ° and 10 hours, and then the thickness was adjusted to 7 Hot rolling was carried out. Further, cold rolling was performed to obtain aluminum alloy foils having thicknesses shown in Table 1 according to Examples and Comparative Examples.
  • the number of metals in the aluminum alloy foil was set to 1 1 3
  • the intermetallic compound was observed by a backscattered electron image at a magnification of 400 times, and a compound having a major axis of 1 or more was identified.
  • the components of the specified compound were analyzed by Higaku X and mapping was performed, and the ratio of those in which 3 were detected at the same position among 6 were detected.
  • the above ratio was calculated by observing 50 or more compounds in which 6 was detected.
  • the test results are shown in Table 1. In addition, in the table, the indication of " 3 " is the remaining part.
  • test piece The shape of the test piece is ”No. 35, and the tensile tester is a Strograph 335 manufactured by Toyo Seiki Seisakusho Ltd.
  • Comparative Examples 1 to 9 were excellent in hardness and elongation, but had a problem that the elongation after heating was insufficient and they were easily broken during the manufacturing process.
  • Comparative Example 4 the content of 6 is high, and it is mainly composed of crystalline precipitates. -3 ⁇ -based compounds became coarse. Therefore, it is hard and excellent in strength after heating, but there is a problem that the elongation after hardness and after heating is insufficient and it is easily broken during the manufacturing process.
  • Comparative Example 5 has a high content of 0 and is solid-solution hardened, and therefore is excellent in strength after being hard and heated, but there is a problem that the elongation after hard and after heating is insufficient and the material is easily broken during the manufacturing process.
  • Comparative Example 6 since the content of 6 was small and the proportion of the number of _ 6 _ 3 _ based compounds was low, the elongation of hard and the strength and elongation after heating were insufficient.
  • Comparative Example 8 ⁇ 2020/175327 12 ⁇ (:171? 2020/006875
  • the tensile strength and elongation of the aluminum alloy foil are set at 1 60 ° ⁇ and the tensile strength after heat treatment is 1 401 ⁇ 1/ ⁇ 2 or more, and at 200 ° ⁇ , the tensile strength after heat treatment is 1 30
  • the growth is both 7.0% or more, but it is not limited to this.
  • the thickness of the aluminum alloy foil is 10 or more and 20 but is not limited to this.
  • the aluminum alloy foil of the embodiment can be used for applications other than the current collector.

Abstract

発明にかかるアルミニウム合金箔を、Fe含有量が1.2質量%以上1.6質量%以下、Si含有量が0.5質量%以上0.9質量%以下、FeとSi含有量の合計が1.8質量%以上、Cu含有量が0.02質量%未満であって、残部がアルミニウムと不可避不純物からなり、硬質時の引張強度が170N/mm以上215N/mm以下、伸びが4.0%以上であり、120℃で熱処理後の引張強度が150N/mm以上、伸びが6.0%以上であるものとする。

Description

\¥0 2020/175327 1 卩(:17 2020 /006875 明 細 書
発明の名称 : アルミニウム合金箔およびその製造方法
技術分野
[0001 ] 本発明は蓄電装置、 特にリチウムイオンニ次電池の正極集電体用として好 適に使用されるアルミニウム合金箔およびその製造方法に関する。
背景技術
[0002] 以下、 本明細書において、 アルミニウム合金箔とはアルミニウム箔の内、 成分中のアルミニウム濃度が 9 9 . 0 0質量%未満のものをいう。
[0003] リチウムイオンニ次電池は二次電池の中でもエネルギー密度が優れており 、 携帯電話やノートパソコンのバッテリーなど幅広い分野で使用されている 。 従来は安全性を問題視されることが多かった車載用電池といった用途にお いても、 近年では適用されることが多くなっている。 一般的にリチウムイオ ンニ次電池の正極集電体にはアルミニウム箔、 負極集電体には銅箔が使われ る。 各集電体表面上にはリチウム金属酸化物や炭素材料などの活物質が塗布 され、 上記活物質が電解液中で反応を起こし電池として動作する。
[0004] リチウムイオンニ次電池の製造は一般的に下記の工程となる。 まず集電体 箔表面上に、 活物質とバインダー樹脂と溶剤を混練したスラリーを塗工する 。 次に例えば 1 0 0〜 1 5 0 °〇程度で加熱し溶剤を揮発させ乾燥を行う。 さ らに活物質層の密度を上げるためプレス加工を施す。 その後、 例えば 1 2 0 〜 2 0 0 °〇程度でさらに乾燥を行う場合もある。 このようにして製造した電 極材を所望の形状に裁断あるいは打ち抜き、 正極材、 セパレータ、 負極材を 積層したうえで捲回し、 引き出し用タブ材等と接続した後、 ケースまたはラ ミネートパック中に収納される。 次に、 ケースまたはラミネートパック中に 電解液を注液し、 封止した後、 初回の充放電やエージングなどを行う。
[0005] 上記の製造工程はあくまで一例であるが、 集電体であるアルミニウム箔は プレスおよび捲回といった多様な加工及び熱履歴を経ることになる。 また限 られた体積の中で電池容量を増大させるために、 活物質層については密度を 〇 2020/175327 2 卩(:171? 2020 /006875
高めること、 集電体などその他の部品には省スペース性が求められる。 現在 、 正極集電体に使用されるアルミニウム箔の厚さは 20 程度である。 し かしながら、 上記の理由により、 アルミニウム箔には薄肉化が求められてお り、 その様な厚さのアルミニウム箔は製造工程内で破断しやすいため、 安定 して製造する目的で箔特性の改善が数多く提案されている。
[0006] たとえば特許文献 1 には、 6、 3 し 〇リを添加し、 それらの固溶量を 制御することで高強度 ·高導電率とし、 さらに 1 20〜 1 60°〇で熱処理後 でも高強度を保つことができるアルミニウム合金箔が開示されている。 しかし、 1 20〜 1 60°〇で熱処理後でも高強度が維持されること自体は 開示されているものの、 伸びに関する記載はない。
[0007] また、 特許文献 2には、
Figure imgf000003_0001
3 し 〇リを添加し、 厚さ方向の結晶粒径 を平均〇. 5 以下にすることで、 高強度 ·高伸びを有するアルミニウム 合金箔が、 特許文献 3には、 6、 3 丨 を添加し、 錶造時冷却速度を 1 00 で/秒以上とすることで、 高強度 ·高伸びに加え、 高い耐折強度を有するア ルミニウム合金箔が、 それぞれ開示されている。
しかし、 特許文献 2および特許文献 3のいずれにも、 熱処理後の伸びに関 する記載はない。
[0008] さらに、 特許文献 4および 5には、 6、 3 丨 を主な添加元素とし、 これ らを特定の範囲の含有量にすることで低温熱処理後の伸び低下を抑制したア ルミニウム合金箔が開示されている。
また、 特許文献 4のアルミニウム合金箔では、 1 00〜 200°〇で熱処理 後の伸びが 3%以上であり、
Figure imgf000003_0002
含有量を〇. 7質量%以上にすると、 圧延 後の伸びは向上するものの加熱後の伸び低下が生じるとしている。 特許文献 5のアルミニウム合金箔では、 1 00〜 200°〇で熱処理後の伸びが 3. 5 %以上であり、 3 丨含有量が〇. 5質量%を超えると、 八 丨 _ 6_3 丨系 の晶出物粗大化や圧延性の悪化を懸念されるとしている。
しかし、 特許文献 4および 5のいずれも、 加熱温度は 1 00°〇、 1 50°〇 、 200°〇の 3条件でしか測定しておらず、 その間の温度における伸びにつ 〇 2020/175327 3 卩(:171? 2020 /006875
いてはなんら記載がない。
先行技術文献
特許文献
[0009] 特許文献 1 :特許第 5 8 1 6 2 8 5号公報
特許文献 2 :特開 2 0 1 7 _ 1 1 0 2 4 4号公報
特許文献 3 :特許第 5 2 7 5 4 4 6号公報
特許文献 4 :特開 2 0 1 7 - 1 8 6 6 2 9号公報
特許文献 5 :特開 2 0 1 7 _ 1 8 6 6 3 0号公報
発明の概要
発明が解決しようとする課題
[0010] リチウムイオンニ次電池の集電体は省スペース性がより要求されるように なり、 より厚さの薄い箔が求められるようになった。 その薄箔化の要求に対 応するため、 高強度が求められてきた。 しかし集電体であるアルミニウム箔 は電池製造工程内で熱処理を施されることになり、 上記熱処理により特性は 大きく変化する可能性がある。 製造工程の途中で強度、 伸びが低下してしま うと、 その後の工程不良や、 電池の使用中に、 集電体の破断等の不具合を引 き起こす恐れがある。 特にセル組み立て工程での捲回作業や、 電池充放電中 に起こる活物質の膨張 ·収縮に耐えるためには強度だけでなく、 高い伸びが 必要とされる。
[001 1 ] 正極集電体のアルミニウム箔には純八 丨系、 八 丨 _ 6系がよく使われる が、 上記成分のアルミニウム箔は 1 2 0〜 2 0 0 °〇で伸びが低下しやすいと いう特徴がある。 特に 1 2 0 °〇では回復 ·再結晶が起こりにくく、 また 6 固溶量の低下や析出物の粗大化が懸念されることから、 電池製造工程の熱処 理温度の中でも伸び改善が困難な温度である。 つまり、 1 2 0 °〇加熱後のア ルミニウム箔は伸びが大きく低下する場合があり、 従来行われてきた 1 0 0 °〇および 1 5 0 °〇加熱後の伸びよりも低い場合がある。
[0012] 近年、 リチウムイオンニ次電池の集電体に要求される熱処理後の伸びの値 〇 2020/175327 4 卩(:171? 2020 /006875
はさらに高くなってきており、 製造工程中でのアルミニウム箔への負荷も厳 しくなっていると予想される。
[0013] 本発明はこのような事情に鑑みてなされたものであり、 蓄電装置、 特にリ チウムイオンニ次電池の正極集電体用に使用されるアルミニウム合金箔につ いて、 蓄電装置の製造工程および蓄電装置の使用中において破断等の不具合 の発生し難い集電体用アルミニウム合金箔を提供することを目的とする。 課題を解決するための手段
[0014] 本発明者はアルミニウム合金箔の組成を特定の範囲とし、 硬質時の伸び、 および熱処理後の伸び、 特に 1 20°〇熱処理後の伸びを特定の値とすること で、 蓄電装置の製造工程および蓄電装置の使用中において破断等の不具合の 発生を低減できることを見出した。
[0015] すなわち、 上記した課題を解決するため、 発明にかかるアルミニウム合金 箔を、 以下 (1) 〜 (3) の構成を有するものとしたのである。
(1)
Figure imgf000005_0001
(鉄) 含有量が 1. 2質量%以上 1. 6質量%以下、 3 丨 (珪素 ) 含有量が〇. 5質量%以上〇. 9質量%以下、 6と 3 丨含有量の合計が 1. 8質量%以上、 〇リ (銅) 含有量が〇. 02質量%未満であって、 残部 が八 丨 (アルミニウム) と不可避不純物からなる。
(2) 硬質時の引張強度が
Figure imgf000005_0002
伸び が 4. 0%以上である。
(3)
Figure imgf000005_0003
伸びが 6. 0 %以上である。
[0016] 発明にかかるアルミニウム合金箔は、 1 60°〇で熱処理後の引張強度が 1 401\1/〇11 2以上、 200°〇で熱処理後の引張強度が 1 301\1/〇11 2以上 、 伸びがともに 7. 0%以上の構成を有することが好ましい。
発明にかかるアルミニウム合金箔は、 アルミニウム合金箔中に含まれる八 I _ 6系の金属間化合物と八 丨 _ 6_3 丨系の金属間化合物の内、 八 丨 - 6-3 丨系化合物 (アルミニウム、 鉄、 珪素の三元化合物) の占める個 数割合が 80%以上の構成を有することが好ましい。 〇 2020/175327 5 卩(:171? 2020 /006875
発明にかかるアルミニウム合金箔は、 厚みが 1 0 以上20 以下で ある構成を有することが好ましい。
[0017] 上記した課題を解決するため、 発明にかかるアルミニウム合金箔の製造方 法を、 前記組成範囲になるようにアルミニウム母合金を調製し加熱してアル ミニウム合金溶湯を作製する工程と、 前記アルミニウム合金溶湯を錶造して 錶塊を作製する工程と、 前記錶塊を、 450〜 600°〇で均質化処理を施す 工程と、 前記均質化処理を施した錶塊を圧延して箔にする工程と、 を含む構 成としたのである。
発明の効果
[0018] 本発明によれば、 蓄電装置、 特にリチウムイオンニ次電池の正極集電体用 に使用されるアルミニウム合金箔について、 蓄電装置の製造工程および蓄電 装置の使用中において破断等の不具合の発生し難い集電体用アルミニウム合 金箔を得ることができる。
発明を実施するための形態
[0019] 以下、 本発明の実施形態を説明する。
実施形態にかかるアルミニウム合金箔は、 次の (1 ) 〜 (5) の構成を備 ス ·る。
(1 ) 6含有量が 1. 2質量%以上·! . 6質量%以下、 3 丨含有量が〇.
5質量%以上〇. 9質量%以下、 6と 3 丨含有量の合計が 1. 8質量%以 上、 〇リ含有量が〇. 02質量%未満であって、 残部がアルミニウムと不可 避不純物からなる。
(2) 硬質時の引張強度が
Figure imgf000006_0001
伸び が 4. 0%以上である。
Figure imgf000006_0002
上である。
(4) アルミニウム合金箔中に含まれる八 丨 _ 6系の金属間化合物と八 丨 〇 2020/175327 6 卩(:171? 2020 /006875
_ 6
Figure imgf000007_0001
丨系の金属間化合物の内、 八 丨 _ 6
Figure imgf000007_0002
丨系化合物の占める個 数割合が 8 0 %以上である。
(5) 厚みが 1 〇 以上 2 0 以下である。
実施形態のアルミニウム合金箔は、 リチウムイオンニ次電池の正極集電体 用として好適に使用されるものであり、 そのリチウムイオンニ次電池の製造 工程や使用中に、 破断等の不具合の発生が防止されているものである。 以下、 (1) 〜 (5) の構成について順に説明する。
[0020] (組成)
実施形態のアルミニウム合金箔に ·! . 2質量%以上·! . 6質量%以下含ま れる 6は、 八 I に添加することで、 固溶強化または析出強化が得られる。 また、 6は、 圧延性や伸びを改善する元素であり、 アルミニウム箔には一 般に添加されている。
6の含有量が 1 . 2質量%より少なければ十分な伸びが得られない。 ま た、 の含有量が 1 . 6質量%を超えると晶出物が粗大になること、 初晶 が八 丨から八 丨
Figure imgf000007_0003
6系化合物 (アルミニウムと鉄の二元化合物) となる恐 れがあり、 これも伸びに悪影響を及ぼす。
[0021 ] 実施形態のアルミニウム合金箔に〇. 5質量%以上〇. 9質量%以下含ま れる 3 丨 は、 八 I に添加することで、 析出強化により強度が向上する。 添加 量が少ないと硬質での強度、 伸びともに低下する傾向にある。
3 丨の含有量が〇. 5質量%以上とすることで、 1 2 0 °〇で熱処理後の箔 の伸びが硬質時の伸びに比べて高い値を示すようになる。 また 3 丨の含有量 が、 〇. 9質量%を超えると錶造時に引け巣が発生しやすく、 安定した製造 が困難となる。
[0022] 実施形態のアルミニウム合金箔における 6と 3 丨含有量の合計は 1 . 8 質量%以上である。 合計の含有量を上記範囲とすることで硬質時の伸びと 1 2 0 °〇で熱処理後の伸びの両方で高い値を示すようになる。
合計の含有量が 1 . 8質量%を下回ると、 八 I
Figure imgf000007_0004
6 - 3 I系化合物の晶析 出量が少なく、 硬質時の伸びと 1 2 0 °〇熱処理後の伸びの向上が不十分であ \¥0 2020/175327 7 卩(:17 2020 /006875
る。
[0023] 実施形態のアルミニウム合金箔に〇. 0 2質量%未満含まれる〇リは、 八 丨 に添加することで、 固溶強化に優れている。 0リの固溶は強度を向上させ るが、 伸びが低下する。 0リ添加は強度向上に好適であるが、 伸び低下を抑 えるために 0 . 0 2質量%未満とすることが好ましい。
[0024] 実施形態のアルミニウム合金箔は、 不可避不純物として、 IV! n (マンガン ) 、 V (バナジウム) 、 丁 丨 (チタン) 、 「 (ジルコニウム) 、 〇 「 (ク ロム) 、 |\1 丨 (ニッケル) 等の遷移元素、 IV! 9 (マグネシウム) 、 Z n (亜 鉛) 、 巳 (ホウ素) 、
Figure imgf000008_0001
(ガリウム) 、 巳 丨 (ビスマス) 等の元素を含有 する。
これら各元素の含有量は、 アルミニウム合金箔 1 〇〇質量%中に、 それぞ れ〇. 0 5質量%以下とすることが好ましい。
[0025] (強度および伸び)
実施形態のアルミニウム合金箔は、 硬質時の引張強度が 1 ア〇 / 〇^以 上 2 1 5 1\1 /〇1〇1 2以下、 伸びが 4 . 0 %以上であることで、 活物質スラリー 塗工時の箔切れの抑制に効果がある。
また、 1 2 0 °〇で熱処理後の引張強度が 1 5 0 1\1 /〇1〇1 2以上、 伸びが 6 .
0 %以上であることで、 口ールプレスエ程や電極材の捲回工程での箔切れの 抑制に効果がある。
また、
Figure imgf000008_0002
伸びが 7 .
0 %以上であることで、 電極材の捲回工程や電池充放電での活物質の膨張 · 収縮による箔切れの抑制に効果がある。
さらに、
Figure imgf000008_0003
伸びが 7 . 0 %以上であることで、 電極材の捲回工程や電池充放電での活物質の膨張 -収縮による箔切れの抑制に効果がある。
[0026] (晶析出物)
実施形態のアルミニウム合金箔は、 晶析出物である八 I
Figure imgf000008_0004
6系の金属間 化合物と八 丨 _ 6 _ 3 丨系の金属間化合物の内、 八 丨 _ 6 _ 3 丨系化合 物の占める個数割合が 80%以上となることで、 熱処理後に優れた伸びが得 られやすい。 低温熱処理時の回復、 再結晶に A I - F e -S i系化合物が寄 与している可能性がある。
[0027] (厚み)
実施形態のアルミニウム合金箔は、 厚みが 1 0 Mm以上 20 Mm以下であ ることで、 強度と電池容量とを両立させている。
厚みが 1 Ogm未満では強度が低く、 破断等の不具合を起こしやすい。 ま た厚みが 20 Mmを超えると、 蓄電装置の集電体として用いた際に体積あた りの電池容量が低下する。
[0028] (製造方法)
実施形態のアルミニウム合金箔の製造方法は特に限定されないが、 一例と して以下のような製造方法が挙げられる。
まず、 上記組成範囲になるようにアルミニウム地金、 各種添加金属元素、 またはそれらを含んだアルミニウム母合金を調製し、 680~ 1 000°Cで 加熱しアルミニウム合金溶湯にする。
つぎに、 その溶湯を錶造し、 錶塊を作製する。 錶造方法は限定されないが 、 代表的には DC錶造 (D i r e c t C h i l l C a s t i n g) が挙 げられる。
さらに、 得られた錶塊を、 好ましくは 450〜 600°Cで所定時間の均質 化処理を施した後、 熱間圧延と冷間圧延を実施して所定厚みの箔にする。 圧 延のしやすさ、 効率を上げるために冷間圧延工程の途中で中間焼鈍すること も可能である。
[0029] 均質化処理については、 処理温度が 450°C以上 600°C以下であると、 アルミニウム合金中のミクロ偏析を解消し、 また、 A l -F e-S i系化合物 のサイズおよび個数割合を好適な範囲とする事ができ、 硬質および加熱後の 強度および伸びを向上させることができる。
処理温度が 450°〇より低いと、 組織のミクロ偏祈が十分に解消されない ので、 アルミニウム合金箔が圧延中にピンホールが発生しやすくなり、 蓄電 〇 2020/175327 9 卩(:171? 2020 /006875
装置に用いた場合製造工程中で破断しやすい。
また処理温度が 6 0 0 °〇より高くなると、 晶出物を粗大化させてしまう恐 れがあり、 アルミニウム合金箔の伸びが低下し、 蓄電装置に用いた場合製造 工程中で破断しやすくなる。
均質化処理の時間については、 2〜 4 8時間が好ましく、 特には 5〜 1 0 時間であるとより好ましい。
処理時間が 4 8時間を上回ると生産性が悪化する。 また、 処理時間が 2時 間を下回るとアルミニウム合金錶塊内の組織が不均一なままとなり、 アルミ ニウム合金箔とした際に特性に悪影響を及ぼす。
実施例
[0030] 以下、 実施例および比較例を挙げて、 本発明の内容を一層明確にする。
[0031 ] 次の表 1 に示す各組成からなるアルミニウム合金を溶解し、 その溶湯を脱 ガス ·脱介在物処理した後に口(3錶造で錶塊を得た。 得られた錶塊を 4 5 0 °〇かつ 1 0時間で均質化処理を施し、 その後、 厚さ 7
Figure imgf000010_0001
まで熱間圧延を行 つた。 さらに冷間圧延を行い、 表 1 に示す厚みを有する実施例および比較例 にかかるアルミニウム合金箔を得た。
[0032] (金属間化合物の個数割合)
各実施例および比較例につき、 金属間化合物の個数割合の判定について、 まず 巳一3巳1\/1 (日立ハイテクノロジーズ製、 機種名 3 11 8 0 2 0) でア ルミニウム合金箔中の金属間化合物を 4 0 0〇倍の倍率、 反射電子像で観察 し、 長径が 1 以上の化合物を特定した。 特定した化合物を日口 Xで成分 分析しマッピングを行い、 6が検出されるものの内、 3 丨が同位置で検出 されるものの割合を求めた。 上記の割合は 6が検出された化合物を 5 0個 以上観察して計算した。 試験結果を表 1 に示す。 なお、 表中 「巳 3 丨 . 」 の 表示は残部を示す。
[0033] 〇 2020/175327 10 卩(:171? 2020 /006875
[表 1 ]
Figure imgf000011_0002
[0034] (機械的特性)
各実施例および比較例について、 硬質の試料と、 1 2 0 °〇、 1 6 0 °〇およ び 2 0 0 °〇の各温度で 1時間の空気中熱処理を行い、 室温まで冷却したもの を評価に供した。
機械的特性 (引張強度と伸び) は、 」 丨 3 1 2 2 4 1 (2 0 1 1年版
) に準拠して行った。 試験片の形状は」 丨 3 5号とし、 引張試験機は株式会 社東洋精機製作所製のストログラフ 巳3 5 0を使い、 引張速度
Figure imgf000011_0001
I 门で試験した。 試験は 3回実施し、 その平均値を算出した。 試験結果を表 2に示す。
[0035] 〇 2020/175327 1 1 卩(:171? 2020 /006875
[表 2]
Figure imgf000012_0002
[0036] 実施例 1〜 8では 6と 3 丨の含有量が多く、 晶析出物の主体が八 I _
6 - 3 丨系化合物であることから、 硬質の強度、 伸びおよび加熱後の強度、 伸びに優れることがわかった。
これに対して、 比較例 1〜 9は硬質の強度、 伸びに優れるものの、 加熱後 伸びが不足し製造工程中で破断しやすいという不具合があった。
また、 比較例 4は 6の含有量が多く、 晶析出物の主体である八
Figure imgf000012_0001
- 3 丨系化合物が粗大となった。 そのため、 硬質および加熱後の強度に優れ るが、 硬質および加熱後の伸びが不足し製造工程中で破断しやすいという不 具合があった。
比較例 5は、 0リの含有量が多く固溶硬化したため、 硬質および加熱後の 強度に優れるが、 硬質および加熱後の伸びが不足し製造工程中で破断しやす いという不具合があった。
比較例 6では 6の含有量が少なく 丨 _ 6 _ 3 丨系化合物の個数割合 が低いため硬質の伸びと加熱後の強度および伸びが不足した。 比較例 8では 〇 2020/175327 12 卩(:171? 2020 /006875
硬質の伸びと加熱後の強度および伸びが不足した。 比較例 9では硬質の伸び と加熱後の伸びが不足した。
[0037] 今回開示された実施形態および実施例はすべての点で例示であって制限的 なものではないと考慮されるべきである。 本発明の範囲は特許請求の範囲に よって示され、 特許請求の範囲と均等の意味および範囲内でのすベての修正 と変形を含むものであることが意図される。
[0038] 実施形態では、 アルミニウム合金箔の引張強度および伸びを、 1 60°〇で 熱処理後の引張強度が 1 401\1/ 〇!2以上、 200°〇で熱処理後の引張強度 が 1 30
Figure imgf000013_0001
以上、 伸びがともに 7. 0%以上としているが、 これに限 定されない。
実施形態では、 アルミニウム合金箔中に含まれる八 |
Figure imgf000013_0002
6-3 1系の金属間化合物の内、 八 I _ 6_3 丨系化合物の占める個数割 合を 80%以上としているが、 これに限定されない。
実施形態では、 アルミニウム合金箔の厚みを 1 〇 以上 20 として いるが、 これに限定されない。
実施形態のアルミニウム合金箔は、 集電体以外の用途にも使用可能である

Claims

〇 2020/175327 13 卩(:171? 2020 /006875 請求の範囲
[請求項 1 ] 6含有量が 1 . 2質量%以上·! . 6質量%以下、 3 丨含有量が 0
. 5質量%以上〇. 9質量%以下、 6と 3 丨含有量の合計が 1 . 8 質量%以上、 〇リ含有量が〇. 0 2質量%未満であって、 残部が八 丨 と不可避不純物からなり、
硬質時の引張強度が
Figure imgf000014_0001
伸びが 4 . 0 %以上であり、
1 2 0 °〇で熱処理後の引張強度が 1 5 0 1\1 /〇1〇1 2以上、 伸びが 6 . 0 %以上である、
アルミニウム合金箔。
[請求項 2]
Figure imgf000014_0002
2 0 0 °〇 で熱処理後の引張強度が
Figure imgf000014_0003
伸びがともに 7 . 0
%以上である請求項 1 に記載のアルミニウム合金滔。
[請求項 3] アルミニウム合金箔中に含まれる八 丨 _ 6系の金属間化合物と八
I _ 6 _ 3 丨系の金属間化合物の内、 八 丨 _ 6 _ 3 丨系化合物の 占める個数割合が 8 0 %以上である、 請求項 1 または 2に記載のアル ミニウム合金箔。
[請求項 4] 厚みが 1 0 以上 2 0 〇!以下である、 請求項 1から 3のいずれ かに記載のアルミニウム合金箔。
[請求項 5] 請求項 1〜 4のいずれかに記載のアルミニウム合金箔の製造方法で あって、
前記組成範囲になるようにアルミニウム母合金を調製し加熱してア ルミニウム合金溶湯を作製する工程と、
前記アルミニウム合金溶湯を錶造して錶塊を作製する工程と、 前記錶塊を、 4 5 0〜 6 0 0 °〇で均質化処理を施す工程と、 前記均質化処理を施した錶塊を圧延して箔にする工程と、 を含むアルミニウム合金箔の製造方法。
PCT/JP2020/006875 2019-02-26 2020-02-20 アルミニウム合金箔およびその製造方法 WO2020175327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016364.2A CN113474476B (zh) 2019-02-26 2020-02-20 铝合金箔及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032747 2019-02-26
JP2019032747A JP7216571B2 (ja) 2019-02-26 2019-02-26 アルミニウム合金箔およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020175327A1 true WO2020175327A1 (ja) 2020-09-03

Family

ID=72239131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006875 WO2020175327A1 (ja) 2019-02-26 2020-02-20 アルミニウム合金箔およびその製造方法

Country Status (4)

Country Link
JP (1) JP7216571B2 (ja)
CN (1) CN113474476B (ja)
TW (1) TW202100772A (ja)
WO (1) WO2020175327A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100924A1 (ja) * 2009-03-05 2010-09-10 東洋アルミニウム株式会社 集電体用アルミニウム合金箔およびその製造方法
JP2014198869A (ja) * 2013-03-29 2014-10-23 株式会社Uacj製箔 アルミニウム箔積層体
WO2017057707A1 (ja) * 2015-10-02 2017-04-06 東洋アルミニウム株式会社 アルミニウム合金箔
WO2017135108A1 (ja) * 2016-02-01 2017-08-10 株式会社Uacj アルミニウム合金箔およびその製造方法
JP2017186630A (ja) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 電池集電体用アルミニウム合金箔およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959423B2 (ja) * 2012-12-03 2016-08-02 株式会社Uacj アルミニウム合金箔
US11255001B2 (en) * 2016-03-11 2022-02-22 Uacj Corporation Aluminum-alloy foil
CN107488796A (zh) * 2017-08-18 2017-12-19 成都毅诚机电工程有限公司 一种空调用铝箔材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100924A1 (ja) * 2009-03-05 2010-09-10 東洋アルミニウム株式会社 集電体用アルミニウム合金箔およびその製造方法
JP2014198869A (ja) * 2013-03-29 2014-10-23 株式会社Uacj製箔 アルミニウム箔積層体
WO2017057707A1 (ja) * 2015-10-02 2017-04-06 東洋アルミニウム株式会社 アルミニウム合金箔
WO2017135108A1 (ja) * 2016-02-01 2017-08-10 株式会社Uacj アルミニウム合金箔およびその製造方法
JP2017186630A (ja) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 電池集電体用アルミニウム合金箔およびその製造方法

Also Published As

Publication number Publication date
JP7216571B2 (ja) 2023-02-01
CN113474476B (zh) 2023-01-17
TW202100772A (zh) 2021-01-01
CN113474476A (zh) 2021-10-01
JP2020132993A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5275446B2 (ja) 集電体用アルミニウム合金箔およびその製造方法
KR101902763B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
JP5160849B2 (ja) 集電体用アルミニウム合金箔
KR101175539B1 (ko) 전지 집전체용 알루미늄 합금 경질박
JP5160839B2 (ja) 集電体用アルミニウム合金箔
KR101202998B1 (ko) 전지 집전체용 순알루미늄 경질 박
KR101912767B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
EP2738851B1 (en) Aluminum alloy foil for electrode collectors and production method therefor
KR20160075604A (ko) 전극 집전체용 알루미늄 합금박 및 그 제조방법
JP5798128B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
JP6220773B2 (ja) 電極集電体用アルミニウム合金箔の製造方法
EP2738850B1 (en) Aluminum alloy foil for electrode collector and production method therefor
KR20140030062A (ko) 전지 집전체용 알루미늄 경질 박
JP5448929B2 (ja) 耐折り曲げ性に優れたアルミニウム合金硬質箔およびその製造方法
KR20150070201A (ko) 알루미늄 합금박
WO2013176038A1 (ja) 電極集電体用アルミニウム合金箔、その製造方法及び電極材
KR101944243B1 (ko) 전극 집전체용 알루미늄 합금호일 및 그 제조 방법
WO2012117627A1 (ja) リチウムイオン電池電極集電体用アルミニウム合金箔およびその製造方法
WO2020175327A1 (ja) アルミニウム合金箔およびその製造方法
JP2012241232A (ja) 圧延銅合金箔及びそれを用いた二次電池用集電体
WO2024063091A1 (ja) 電池集電体用アルミニウム合金箔及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763662

Country of ref document: EP

Kind code of ref document: A1