JP2012241232A - 圧延銅合金箔及びそれを用いた二次電池用集電体 - Google Patents

圧延銅合金箔及びそれを用いた二次電池用集電体 Download PDF

Info

Publication number
JP2012241232A
JP2012241232A JP2011112172A JP2011112172A JP2012241232A JP 2012241232 A JP2012241232 A JP 2012241232A JP 2011112172 A JP2011112172 A JP 2011112172A JP 2011112172 A JP2011112172 A JP 2011112172A JP 2012241232 A JP2012241232 A JP 2012241232A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy foil
rolled copper
heating
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011112172A
Other languages
English (en)
Inventor
Yoshihiro Chiba
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011112172A priority Critical patent/JP2012241232A/ja
Publication of JP2012241232A publication Critical patent/JP2012241232A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】耐熱性、強度が良好な圧延銅合金箔及びそれを用いた二次電池用集電体を提供する。
【解決手段】400〜1000質量ppmのTiを含有し、酸素濃度が20ppm以下、水素濃度が2ppm以下であり、残部Cu及び不可避的不純物からなる圧延銅合金箔である。
【選択図】図2

Description

本発明は、二次電池用集電体に好適に用いられる圧延銅合金箔及びそれを用いた二次電池用集電体に関する。
リチウム二次電池等の負極集電体として用いられる銅箔には、電池の充放電に伴う負極活物質の膨張、収縮に耐えるよう、伸び、強度、耐熱性及び導電率に優れていることが要求される。さらに、電池容量を高めるため、銅箔の厚みも薄くすることが要求されている。
このように二次電池用集電体に適した銅箔として、Cr,Zn,Ag,Ca,Sn,Sb,Biの1種以上を合計0.005〜0.01質量%添加して熱的安定性と高強度を兼ね備えた圧延銅箔が開発されている(特許文献1)。又、Snを添加してピンホールと屈曲寿命を改善した銅合金箔が開発されている(特許文献2)。
特開2000-303128号公報 特開2003-286528号公報
しかしながら、従来の銅合金箔は、集電体として用いられる環境下での耐熱性、強度が十分でなく、これら特性の改善が望まれていた。
従って、本発明は、耐熱性、強度が良好な圧延銅合金箔及びそれを用いた二次電池用集電体の提供を目的とする。
本発明者は、Tiを400質量ppm以上添加すると、銅合金箔の350℃で30分加熱後の結晶粒径が急激に微細化し、耐熱性及び強度を大幅に向上させることができることを見出した。
すなわち、本発明の圧延銅合金箔は、400〜1000質量ppmのTiを含有し、酸素濃度が20ppm以下、水素濃度が2ppm以下であり、残部Cu及び不可避的不純物からなる。
350℃で30分加熱した後の引張強さが400N/mm2以上であり、かつ350℃で30分加熱した後の導電率が50%IACS以上であることが好ましい。
350℃で30分加熱した後の結晶粒径が10μm以下であることが好ましい。
本発明の二次電池用集電体は、前記圧延銅合金箔を用い、厚みが20μm以下である。
本発明によれば、耐熱性、強度が良好な圧延銅合金箔が得られる。
それぞれ実施例2(図1(a))及び比較例3(図1(b))の350℃で30分加熱後の圧延平行方向に沿う断面のSEM像を示す図である。 各実施例及び比較例のTi濃度と、350℃で30分加熱後の結晶粒径との関係をプロットした図である。
以下、本発明の実施形態に係る銅合金箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
本発明の圧延銅合金箔は、400〜1000質量ppmのTiを含有し、酸素濃度が20ppm以下、水素濃度が2ppm以下であり、残部Cu及び不可避的不純物からなる。
Tiを400質量ppm以上添加すると、銅合金箔の350℃で30分加熱後の結晶粒径が急激に微細化し(結晶粒径10μm以下)、耐熱性及び強度を大幅に向上させることができる。Ti濃度が400質量ppm未満であると、銅合金箔の350℃で30分加熱後の結晶粒径を10μm以下に微細化することができない。但し、Tiの添加量が1000質量ppmを超えると、導電率が50%IACS未満に低下し、二次電池用集電体として適さない。
Tiは、製造工程中の圧延と焼鈍を繰返すことによりCuマトリックス中へ固溶し、その後の熱処理により微細な析出物を合金中に分散させることにより、銅合金箔の結晶粒径を微細化し、強度及び導電率を向上させる。結晶粒径微細化のメカニズムが上記とは断定できないが、Ti濃度の影響が大きいものと考えられる。
圧延銅合金箔中の酸素濃度を20ppm以下、水素濃度を2ppm以下とすることで、介在物の発生を防止し、銅合金箔の結晶粒径を微細化する。
圧延銅合金箔中の酸素濃度が20ppmを超えると、活性元素であるTiが酸化して組織全体を硬化させて延性を低下させるとともに、Tiの均一な固溶を阻害し、銅合金箔の結晶粒径の微細化を妨げる。
圧延銅合金箔中の水素濃度が2ppmを超えると、結晶粒の脆化につながり機械特性を低下させる。例えば、溶解鋳造時の温度管理と雰囲気管理により水素濃度の上昇を抑制できる。
本発明の圧延銅合金箔において、350℃で30分加熱した後の引張強さが400N/mm2以上であり、かつ350℃で30分加熱した後の導電率が50%ACS以上であることが好ましい。ここで、350℃で30分加熱する処理は、銅箔(電池用集電体)への活物質の塗工後の乾燥工程の加熱を模したものである。
Li二次電池等の二次電池用の負極集電体は、充放電に伴う負極の活物質の体積膨張により、引張と収縮を繰返す力を受ける。その際、温度も上昇するので、集電体が耐熱性の低い材料から成る場合には、塑性変形を起こして活物質の劣化につながる。このため、集電体には耐熱性が求められる。特に、Si系の活物質の場合、体積膨張率が大きく、それに伴って発熱反応が生じるため、集電体には高温領域での強度が求められる。
350℃で30分加熱した後の圧延銅合金箔の引張強さが400N/mm2以上であれば、二次電池の集電体として用いたときに、電池の充放電に伴う負極活物質の膨張、収縮に耐え、集電体の破断を防止することができる。又、圧延銅合金箔の導電率が50%ACS以上であれば、箔厚みを薄くしても電気抵抗が高くならず、二次電池の集電体として適する。
圧延銅合金箔の厚みは特に限定されないが、一般的には4〜150μm、好ましくは5〜100μm、より好ましくは5〜75μm、更に好ましくは6〜50μm、最も好ましくは6〜35μmである。
次に、本発明の圧延銅合金箔の製造方法の一例について説明する。
本発明の圧延銅合金箔は、上記組成の鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で所定厚みに仕上げて製造することができる。
最終冷間圧延の総加工度を98%以上とすると、その後の熱処理(例えば、銅箔へ活物質を塗工した後の、乾燥工程の加熱等の熱処理)後の結晶粒径が微細化して強度が向上する。具体的には、最終冷間圧延の総加工度を98%以上とすると、その後の熱処理後の結晶粒が等軸な結晶粒になり、かつ、この時Tiが均一に分布する。結晶粒が等軸であると異方性が低減される。Tiが均一に分布するとTi及びO濃度の不均一により生じる結晶粒界への析出物の発生を防止し、引張強さ、伸び等の機械特性が向上する。
電気銅を原料として、高周波真空溶解炉にて表1に示す組成の各種インゴット(幅60cm×厚さ20cm)を鋳造した。インゴット中のH濃度を低下させるために溶解炉内の真空度を0.01Pa以下とし、充填する不活性ガス成分を調整してN又はAr濃度を99.99体積%以上として鋳造した。また、このインゴットは、酸素濃度が調整された溶湯に合金元素であるTiを添加して製造した。次にインゴットに対し、850℃で厚さ8mmまで熱間圧延を行い、表面の酸化スケールを面削した後、冷間圧延と焼鈍と最終冷間圧延とを順に行った。なお、最終冷間圧延の総加工度と、最終冷間圧延後の銅合金箔の厚みを表1に示す。比較例10については、インゴット中のH濃度を低下させるために溶解炉内の真空度の調整を行わなかったと共に、充填する不活性ガスの成分を調整せず、従来と同じ方法で鋳造を行った。
得られた各試料について、諸特性の評価を行った。
[引張強さ(TS)] 圧延方向に平行な方向に引張試験を行ない、JIS−Z2241に準拠して求めた。
[伸び(EL)] 上記引張試験における破断伸びを求めた。
[導電率] JIS−H0505に準拠し、室温(25℃)でダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から%IACSを算出した。
[結晶粒径(GS)] JIS-H0501の切断法に準じ測定し、圧延平行方向に沿う断面について行った。
得られた結果を表1に示す。なお、引張強さ及び伸びは、各試料をそれぞれ300℃で30分加熱した後、350℃で30分加熱した後、及び400℃で30分加熱した後に測定した。又、結晶粒径は、各試料を350℃で30分加熱した後に測定した。
表1から明らかなように、400〜1000質量ppmのTiを含有し、酸素濃度が20ppm以下、水素濃度が2ppm以下である各実施例の場合、350℃で30分加熱した後の引張強さが400N/mm2以上であり、かつ導電率が50%IACS以上であった。又、各実施例の場合、350℃で30分加熱した後の結晶粒径が10μm以下であった。
一方、Tiを含有しないタフピッチ銅(TPC;JIS-C1100に規格)を用いた比較例1の場合、及びTi の含有量が400質量ppm未満である比較例2〜4の場合、350℃で30分加熱した後の結晶粒径が10μmを超えて粗大化し、350℃で30分加熱した後の引張強さも400N/mm2未満に低下した。
Ti の含有量が1000質量ppmを超えた比較例5の場合、導電率が50%IACS未満となった。
Ti の代わりにAgを添加した比較例6,7の場合も、350℃で30分加熱した後の結晶粒径が10μmを超えて粗大化し、350℃で30分加熱した後の引張強さも400N/mm2未満に低下した。
Ti の代わりにSnを添加した比較例8,9の場合、350℃で30分加熱した後の結晶粒径は10μm以下であるものの、350℃で30分加熱した後の引張強さが400N/mm2未満に低下した。
水素濃度が2ppmを超えた比較例10の場合、400℃で30分加熱した後の伸びは大幅に低下した。これは、水素脆化によるものと考えられる。また、酸素濃度が20ppmを超えた比較例11の場合、引張強さは向上したが、伸びは低下し、これは酸化による影響と考えられる。
なお、各実施例の伸びは3%以下であり、伸びは高くないが、引張強さが400N/mm2以上と高いため、電池の充放電に伴う負極活物質の膨張、収縮に耐えることができる。むしろ、伸びが高すぎると、負極活物質の膨張につられて集電体が伸び過ぎ、活物質層にひび割れを生じるので好ましくない。
図1は、それぞれ実施例2(図1(a))及び比較例3(図1(b))の350℃で30分加熱後の圧延平行方向に沿う断面のSEM像を示す。
又、図2は、表1の各実施例及び比較例のTi濃度と350℃で30分加熱後の結晶粒径(GS)との関係をプロットした図を示す。Tiを400質量ppm以上添加すると、銅合金箔の350℃で30分加熱後の結晶粒径が急激に微細化することがわかる。

Claims (4)

  1. 400〜1000質量ppmのTiを含有し、酸素濃度が20ppm以下、水素濃度が2ppm以下であり、残部Cu及び不可避的不純物からなる圧延銅合金箔。
  2. 350℃で30分加熱した後の引張強さが400N/mm2以上であり、かつ350℃で30分加熱した後の導電率が50%IACS以上である請求項1に記載の圧延銅合金箔。
  3. 350℃で30分加熱した後の結晶粒径が10μm以下である請求項1又は2に記載の圧延銅合金箔。
  4. 請求項1〜3のいずれかに記載の圧延銅合金箔を用い、厚みが20μm以下である二次電池用集電体。
JP2011112172A 2011-05-19 2011-05-19 圧延銅合金箔及びそれを用いた二次電池用集電体 Withdrawn JP2012241232A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112172A JP2012241232A (ja) 2011-05-19 2011-05-19 圧延銅合金箔及びそれを用いた二次電池用集電体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112172A JP2012241232A (ja) 2011-05-19 2011-05-19 圧延銅合金箔及びそれを用いた二次電池用集電体

Publications (1)

Publication Number Publication Date
JP2012241232A true JP2012241232A (ja) 2012-12-10

Family

ID=47463267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112172A Withdrawn JP2012241232A (ja) 2011-05-19 2011-05-19 圧延銅合金箔及びそれを用いた二次電池用集電体

Country Status (1)

Country Link
JP (1) JP2012241232A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489251B1 (ja) * 2018-02-15 2019-03-27 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP6489252B1 (ja) * 2018-02-15 2019-03-27 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP2019140057A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 負極集電体、負極及びリチウム二次電池
CN113166960A (zh) * 2018-12-10 2021-07-23 日本电解株式会社 电解铜箔及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489251B1 (ja) * 2018-02-15 2019-03-27 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP6489252B1 (ja) * 2018-02-15 2019-03-27 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP2019140057A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP2019140056A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 負極集電体、負極及びリチウム二次電池
JP2019140055A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 負極集電体、負極及びリチウム二次電池
CN113166960A (zh) * 2018-12-10 2021-07-23 日本电解株式会社 电解铜箔及其制造方法
JP7450932B2 (ja) 2018-12-10 2024-03-18 日本電解株式会社 電解銅箔及びその製造方法

Similar Documents

Publication Publication Date Title
JP5856076B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
JP5567719B2 (ja) リチウムイオン二次電池正極集電体用アルミニウム合金箔の製造方法およびリチウムイオン二次電池正極集電体用アルミニウム合金箔とリチウムイオン二次電池
JP2012224927A (ja) リチウムイオン電池正極集電体用アルミニウム合金箔及びその製造方法
JP2009064560A (ja) 集電体用アルミニウム合金箔
JP2012097327A (ja) 熱間及び冷間加工性を向上させた銅合金とその製造方法及び該銅合金から得られる銅合金条又は合金箔
JP5448929B2 (ja) 耐折り曲げ性に優れたアルミニウム合金硬質箔およびその製造方法
JP2009081110A (ja) 集電体用アルミニウム合金箔
WO2013018162A1 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
JP2011026656A (ja) リチウムイオン二次電池用アルミニウム合金箔及びその製造方法
EP2554692A1 (en) Cu-co-si alloy material
EP2857535B1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP4743977B2 (ja) 圧延銅合金箔及びその製造方法
JP2013001982A (ja) 圧延銅箔
JP2012241232A (ja) 圧延銅合金箔及びそれを用いた二次電池用集電体
JP2000328159A (ja) 銅合金箔
JP5685049B2 (ja) 析出硬化型銅合金箔、及びそれを用いたリチウムイオン2次電池用負極、並びに析出硬化型銅合金箔の製造方法
JP2001152267A (ja) 銅合金圧延箔
JP2001011550A (ja) 銅合金圧延箔
JP2014114480A (ja) 電極集電体用アルミニウム合金箔及びその製造方法
WO2012117627A1 (ja) リチウムイオン電池電極集電体用アルミニウム合金箔およびその製造方法
JP6280738B2 (ja) 硬質箔用アルミニウム合金、アルミニウム合金硬質箔、リチウムイオン二次電池正極集電体用アルミニウム合金箔およびアルミニウム合金硬質箔の製造方法
JP2013213236A (ja) Cu−Zn−Sn−Ni−P系合金
JP2001279351A (ja) 圧延銅合金箔及びその製造方法
JP2017226886A (ja) 電極集電体用アルミニウム合金箔および電極集電体用アルミニウム合金箔の製造方法
JP6513896B2 (ja) リチウムイオン電池正極集電体用アルミニウム合金箔およびその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805