WO2010090246A1 - ビニル重合体粉体、硬化性樹脂組成物及び硬化物 - Google Patents

ビニル重合体粉体、硬化性樹脂組成物及び硬化物 Download PDF

Info

Publication number
WO2010090246A1
WO2010090246A1 PCT/JP2010/051575 JP2010051575W WO2010090246A1 WO 2010090246 A1 WO2010090246 A1 WO 2010090246A1 JP 2010051575 W JP2010051575 W JP 2010051575W WO 2010090246 A1 WO2010090246 A1 WO 2010090246A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl polymer
resin composition
epoxy resin
curable resin
polymer powder
Prior art date
Application number
PCT/JP2010/051575
Other languages
English (en)
French (fr)
Inventor
香織 福谷
笠井 俊宏
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP10738577.5A priority Critical patent/EP2395032B1/en
Priority to CN201080007186.3A priority patent/CN102307918B/zh
Priority to KR1020117020467A priority patent/KR101277006B1/ko
Priority to US13/148,138 priority patent/US9688801B2/en
Priority to JP2010506758A priority patent/JP5736776B2/ja
Publication of WO2010090246A1 publication Critical patent/WO2010090246A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a vinyl polymer powder, a curable resin composition containing the vinyl polymer powder, and a cured product of the curable resin composition.
  • thermosetting resins or active energy ray curable resins such as epoxy resins, polyimide resins, acrylic curable resins, oxetane curable resins, and the like that are excellent in heat resistance and insulation is rapidly increasing.
  • a resin composition made of an epoxy resin has a high glass transition temperature, is a material having excellent insulating properties, flame retardancy, and adhesiveness, and is used for semiconductor sealing materials, various insulating materials, adhesives, and the like.
  • epoxy resins that are liquid at room temperature are used as various paste-like or film-like materials because they can be cast and applied at room temperature.
  • primary sealing underfill material, secondary mounting underfill material, liquid sealing material such as grab top material in wire bonding; sealing sheet for collectively sealing various chips on the substrate; Pre-dispensed underfill material; sealing sheet for encapsulating at wafer level; adhesive layer for 3-layer copper-clad laminate; adhesive layer for die bond film, die attach film, interlayer insulation film, coverlay film, etc .; die bond Adhesive pastes such as pastes, interlayer insulating pastes, conductive pastes, anisotropic conductive pastes; sealing materials for light-emitting diodes; optical adhesives; used for various flat panel display sealing materials such as liquid crystal and organic EL ing.
  • the epoxy resin composition when using an epoxy resin composition as an underfill material, in order to flow the epoxy resin composition into a narrow gap of several tens of ⁇ m using a dispenser, the epoxy resin composition needs to have high fluidity. . However, if the fluidity of the epoxy resin composition is high, the viscosity of the epoxy resin composition will flow out before it cures upon heating, and it will contaminate surrounding substrates and circuits, or the original sealing performance will not be exhibited. Bad effects occur. In addition, when the epoxy resin composition is used as an adhesive for a film such as a copper-clad laminate and a die bond film, the viscosity of the epoxy resin composition is applied when heat-curing a coating applied to a certain film thickness at room temperature.
  • Patent Document 1 proposes a method of using vinyl polymer particles as a pregel agent. Although this method can impart gelling properties to the epoxy resin composition, since the dispersibility of the vinyl polymer particles in the primary particles is not sufficient, it can cope with the fine pitch required in the field of electronic materials and is thin. It cannot be said that it is in a state that can be satisfied with the response to computerization. In addition, when the epoxy resin composition is thinly applied on the film base material, it generates irregularity, resulting in poor quality. Furthermore, the ion concentration of the epoxy resin composition is not considered.
  • Patent Document 2 proposes a method of using ion-crosslinked rubber-like particles as a pregel agent.
  • this method since gelling property is imparted by ionic crosslinking, ions are inevitably mixed in the obtained cured product, which is not suitable for the electronic material field.
  • the ion concentration of the epoxy resin composition is to be lowered, ion crosslinking cannot be performed, and thus gelation cannot be imparted.
  • the object of the present invention is excellent in dispersibility in the curable resin composition, and quickly turns the curable resin composition into a gel state by heating for a short time at a predetermined temperature, resulting in a cured product having a low ion concentration.
  • a vinyl polymer powder useful as a pregel agent suitable for the field of electronic materials for exhibiting excellent electrical properties in a product a curable resin composition containing the vinyl polymer powder, and the curable resin composition It is to provide a cured product.
  • the gist of the present invention is that the acetone-soluble content is 30% by mass or more, the mass-average molecular weight of the acetone-soluble component (hereinafter referred to as “Mw”) is 100,000 or more, and the content of alkali metal ions is A vinyl polymer powder (hereinafter referred to as “the present powder”) having a volume average primary particle diameter (Dv) of 200 nm or more at 10 ppm or less is defined as a first invention.
  • the gist of the present invention is a curable resin composition containing the present powder and a curable resin (hereinafter referred to as “the present resin composition”) as a second invention. Further, the gist of the present invention is a cured product obtained by curing the resin composition (hereinafter referred to as “main cured product”) as a third invention.
  • the resin composition can be highly gelled by heating at a predetermined temperature for a short time, and the cured product has a low ion concentration.
  • the vinyl polymer constituting the powder in the cured product (hereinafter, “ Dispersibility of “the present polymer”) is excellent. For this reason, this powder, this resin composition, and this hardened
  • This powder has an acetone-soluble content of 30% by mass or more, an acetone-soluble content of Mw of 100,000 or more, an alkali metal ion content of 10 ppm or less, and a volume average primary particle diameter (Dv) of 200 nm or more. is there.
  • the acetone-soluble content of the present powder is 30% by mass or more, sufficient gelling property can be imparted to the present resin composition, and the flow of the epoxy resin is suppressed even at high temperatures.
  • the acetone-soluble content of the present powder is preferably 40% by mass or more, more preferably 50% by mass or more, and more preferably 80% by mass because it can impart high gelling properties even when the viscosity of the epoxy resin described later is extremely low.
  • the acetone-soluble component refers to that obtained by the method for measuring an acetone-soluble component described later.
  • Mw of acetone-soluble part of the present powder is 100,000 or more, high gelling property can be imparted with a small addition amount, and the flow of the epoxy resin is suppressed even at a high temperature. Moreover, since the solubility to an epoxy resin does not fall and it can be made into a sufficient gel state for a short time, Mw of the acetone soluble part of this powder is 20 million or less.
  • the acetone-soluble Mw of the present powder is preferably 400,000 or more, more preferably 600,000 or more, and more preferably 800,000 or more, since high gelling properties can be imparted even when the viscosity of the epoxy resin described later is extremely low. Preferably, 1 million or more is most preferable.
  • the gel state can be evaluated by the gelation temperature and gelation performance obtained by the measurement method described later.
  • Mw is obtained by the Mw measurement method described later.
  • the content of alkali metal ions in the present powder is 10 ppm or less, the insulation properties of the cured product are excellent.
  • the content of alkali metal ions in the present powder is preferably 5 ppm or less, and more preferably 1 ppm or less.
  • the curable resin composition is used for various applications, high electrical properties are required for applications where it directly contacts a semiconductor wafer.
  • the presence of slight ionic impurities may cause insulation failure. Therefore, if the content of alkali metal ions is within the above range, it can be used for a wide range of applications. It can also be used in applications that require a large amount of pregel agent.
  • the content of alkali metal ions in the present powder is the total amount of Na ions and K ions, which is obtained by a method for measuring the content of alkali metal ions described later.
  • the volume average primary particle diameter (Dv) of the present powder is 200 nm or more, preferably 500 nm or more.
  • the powder obtained by spray drying, wet coagulation or the like is an agglomerated powder in which a large number of primary particles are aggregated.
  • this agglomerated powder is used. Is easy to disperse in the primary particles, and the dispersibility of the present powder becomes better when blended with a curable resin such as a liquid epoxy resin.
  • the volume average primary particle diameter (Dv) is 200 nm or more, the total surface area of the particles can be sufficiently reduced, so that the viscosity of the curable resin composition is hardly increased.
  • the volume average primary particle diameter (Dv) of the present powder is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • This powder may be of any nature or structure as a powder.
  • a large number of primary particles obtained by polymerization may aggregate to form an agglomerated powder (secondary particles), or a higher order structure may be formed.
  • secondary particles agglomerated powder
  • it is preferable that the primary particles are not firmly bonded to each other and are loosely aggregated. Thereby, primary particles are finely and uniformly dispersed in the curable resin.
  • the monodispersity of the present powder is indicated by the ratio (Dv / Dn) of the volume average primary particle diameter (Dv) and the number average primary particle diameter (Dn) of the present powder.
  • the Dv / Dn of the present powder is preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.5 or less. The higher the monodispersity of the powder (Dv / Dn is closer to 1), the faster the gelation of the resin composition proceeds in a short time, making it easier to achieve both the storage stability of the resin composition. Tend to be.
  • the content of sulfate ions (SO 4 2 ⁇ ) in the present powder is preferably 20 ppm or less.
  • the curable resin composition used in electronic materials is used in an environment where it comes into contact with metal wires such as copper and aluminum, circuit wiring, etc., so if sulfate ions remain, it causes metal corrosion, causing conduction failure and malfunction. It may become. If the content of sulfate ions in this powder is 20 ppm or less, it can be used for a wide range of applications.
  • the content of sulfate ions in the present powder refers to that obtained by a method for measuring the content of sulfate ions described later.
  • a sulfate ester or a sulfonic acid compound may be used in addition to the sulfate.
  • the sulfonate ion, sulfinate ion and sulfate ester ion contained in these compounds may also cause metal corrosion. Therefore, at the time of polymerization of the vinyl monomer, it is preferable to reduce the use amount of a sulfate ester or a sulfonic acid compound.
  • This polymer is obtained by polymerizing a vinyl monomer capable of radical polymerization (hereinafter referred to as “the present monomer”).
  • the polymerization method of this polymer since it is easy to obtain spherical particles and the particle morphology is easy to control, emulsion polymerization method, soap-free emulsion polymerization method, swelling polymerization method, miniemulsion polymerization method, dispersion polymerization method and fine polymerization method.
  • a suspension polymerization method is preferred.
  • the soap-free emulsion polymerization method is more preferable because a polymer having excellent dispersibility and a particle size corresponding to fine pitch can be obtained.
  • the polymer is preferably spherical particles because the viscosity of the resin composition does not increase and the fluidity is excellent.
  • the internal morphology of the polymer is not particularly limited, and even if various factors such as polymer composition, molecular weight, glass transition temperature, solubility parameter are uniform, the core-shell structure, gradient structure, etc. It may have a variety of commonly recognized particle morphologies.
  • the polymer preferably has two or more concentric morphologies known as core-shell particles.
  • Examples of a method for controlling the internal morphology of the present polymer include a method of forming multilayer structured particles having different solubility parameters and molecular weights on the inside and outside of the particle. This method is preferable because it makes it easy to achieve both the storage stability (pot life) and the gelation speed of the resin composition.
  • Examples of industrially highly practical methods for controlling the internal morphology of the present polymer include a method in which vinyl monomer mixtures having different compositions are successively dropped and polymerized in multiple stages.
  • Examples of a method for determining whether or not the present polymer has a core-shell structure include, for example, that the particle diameter of polymer particles sampled in the polymerization process is surely growing, and the polymer sampled in the polymerization process It may be confirmed that the minimum film-forming temperature (MFT) of the particles and the solubility in various solvents are changed at the same time. Also, a method for observing a section of the polymer with a transmission electron microscope (TEM) to confirm the presence or absence of a concentric structure, or a section of the polymer that has been frozen and broken is a scanning electron microscope (cryo SEM). And confirming the presence or absence of a concentric structure.
  • TEM transmission electron microscope
  • cryo SEM scanning electron microscope
  • the present powder is produced by subjecting the present monomer to emulsion polymerization and spray-drying the obtained emulsion of the present polymer.
  • a polymerization initiator and an emulsifier are used.
  • the polymerization initiator it is preferable to use at least one selected from ammonium persulfate and azo compounds.
  • the emulsifier it is preferable to use at least one selected from ammonium salt type anionic emulsifiers and nonionic emulsifiers.
  • the monomer is not particularly limited as long as it is a vinyl monomer capable of radical polymerization.
  • the monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) ) Acrylate, i-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) ) Acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl
  • (Meth) acrylamide vinyl monomers such as vinyl pyridine, vinyl alcohol, vinyl imidazole, vinyl pyrrolidone, vinyl acetate, 1-vinyl imidazole; monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, monobutyl itaco Itaconic esters such as dimethyl itaconate, diethyl itaconate, dipropyl itaconate, dibutyl itaconate; monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, monobutyl fumarate, dimethyl fumarate, diethyl fumarate , Fumaric acid esters such as dipropyl fumarate and dibutyl fumarate; and monomethyl malate, monoethyl malate, monopropyl malate, monobutyl malate, dimethyl malate, and diethyl Malate, dipropyl maleate, maleic acid esters such as dibutyl maleate
  • monomers can be used alone or in combination of two or more.
  • (meth) acrylate, functional group-containing (meth) acrylate, and acrylic acids are preferable because radical polymerization is easy and emulsion polymerization is easy.
  • a monomer containing a halogen atom such as vinyl chloride or vinylidene chloride is preferably not used because it may cause metal corrosion.
  • (meth) acrylate is added to the first stage polymerization, (meth) acrylate is added to the second stage polymerization, and a functional group is contained ( It is preferable to use (meth) acrylate and acrylic acid.
  • (meth) acrylate is used for polymerization of the inner layer, (meth) acrylate is used for polymerization of the outermost layer, and a functional group containing (meth) It is preferable to use acrylates and acrylic acids.
  • (meth) acrylate refers to acrylate or methacrylate.
  • a polymerization initiator When polymerizing this monomer, a polymerization initiator, an emulsifier, a dispersion stabilizer, and a chain transfer agent can be used.
  • polymerization initiator examples include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate; azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2 ′.
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • the polymerization initiator which does not contain an alkali metal ion is preferable, and an ammonium persulfate and an azo compound are more preferable.
  • a reducing agent such as sodium formaldehyde sulfoxylate, L-ascorbic acid, fructose, dextrose, sorbose, inositol, ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, peroxide is used without departing from the object of the present invention.
  • a redox initiator combined with a product can be used.
  • emulsifier examples include an anionic emulsifier, a cationic emulsifier, a nonionic emulsifier, a betaine emulsifier, a polymer emulsifier, and a reactive emulsifier.
  • anionic emulsifier examples include alkyl sulfonates such as sodium alkyl sulfonate; alkyl sulfate salts such as sodium lauryl sulfate, ammonium lauryl sulfate, and triethanolamine; alkyl phosphates such as potassium polyoxyethylene alkyl phosphate.
  • Ester salts such as sodium alkylbenzenesulfonate, sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate; and dialkylsulfosuccinates such as sodium dialkylsulfosuccinate and ammonium dialkylsulfosuccinate.
  • cationic emulsifiers include alkylamine salts such as stearylamine acetate, coconutamine acetate, tetradecylamine acetate, octadecylamine acetate; lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, And quaternary ammonium salts such as distearyldimethylammonium chloride and alkylbenzylmethylammonium chloride.
  • alkylamine salts such as stearylamine acetate, coconutamine acetate, tetradecylamine acetate, octadecylamine acetate
  • lauryltrimethylammonium chloride stearyltrimethylammonium chloride, cetyltrimethylammonium chloride
  • quaternary ammonium salts such as distearyldimethylammonium chloride and alkylbenzylmethylammonium chloride.
  • Nonionic emulsifiers include, for example, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monocaprylate, sorbitan monomyristate, sorbitan monobehehe Sorbitan fatty acid esters such as nates; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene Polyoxyethylene sorbitan fatty acid esters such as sorbitan triisostearate; polyoxyethylene sorbitol tetra Polyoxyethylene sorbitol fatty acid esters such as reate; polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, poly
  • betaine emulsifier examples include alkylbetaines such as laurylbetaine and stearylbetaine; and alkylamine oxides such as lauryldimethylamine oxide.
  • examples of the polymer emulsifier include polymer carboxylic acid sodium salt, polymer polycarboxylic acid ammonium salt, and polymer polycarboxylic acid.
  • examples of the reactive emulsifier include polyoxyalkylene alkenyl ethers such as polyoxyalkylene alkenyl ether ammonium sulfate.
  • An emulsifier can be used individually by 1 type or in combination of 2 or more types.
  • the emulsifier which does not contain an alkali metal ion is preferable, and a dialkyl sulfosuccinate and a polyoxyalkylene derivative are more preferable.
  • dispersion stabilizer examples include poorly water-soluble inorganic salts such as calcium phosphate, calcium carbonate, aluminum hydroxide, and starch silica; nonionic polymer compounds such as polyvinyl alcohol, polyethylene oxide, and cellulose derivatives; and polyacrylic acid or a salt thereof. And anionic polymer compounds such as polymethacrylic acid or a salt thereof, and a copolymer of a methacrylic acid ester and methacrylic acid or a salt thereof. Of these, nonionic polymer compounds are preferred because of their excellent electrical characteristics. Also, two or more types of dispersion stabilizers can be used in combination depending on the purpose from the viewpoint of compatibility with polymerization stability.
  • chain transfer agents examples include mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan, and n-butyl mercaptan; carbon tetrachloride And halogen compounds such as ethylene bromide; and ⁇ -methylstyrene dimer.
  • chain transfer agents can be used alone or in combination of two or more.
  • the present powder is obtained by recovering an emulsion of the present polymer as a powder by a spray drying method (spray drying method).
  • the spray drying method is a method in which a polymer emulsion is sprayed in the form of fine droplets and dried by applying hot air to the polymer emulsion.
  • Examples of the method for generating droplets in the spray drying method include a rotating disk type, a pressure nozzle type, a two-fluid nozzle type, and a pressurized two-fluid nozzle type.
  • the dryer capacity can be used from a small scale used in a laboratory to a large scale used industrially.
  • the position of the inlet part which is the supply part of the heating gas for drying and the outlet part which is the outlet for the heating gas for drying and the powder may be the same as that of the spray drying apparatus which is usually used.
  • the polymer emulsion When spray-drying, the polymer emulsion may be used alone or in combination.
  • inorganic fillers such as silica, talc and calcium carbonate, polyacrylate, polyvinyl alcohol, polyacrylamide and the like may be added.
  • the powder can be used by adding to a curable resin.
  • the curable resin include a thermosetting resin and an active energy ray curable resin.
  • the thermosetting resin include epoxy resin, phenol resin, melamine resin, urea resin, oxetane resin, unsaturated polyester resin, alkyd resin, polyurethane resin, acrylic resin, and polyimide resin. These can be used alone or in combination of two or more.
  • the active energy ray curable resin examples include resins that are cured by irradiation with ultraviolet rays, electron beams, and the like, and examples thereof include an active energy ray curable acrylic resin, an active energy ray curable epoxy resin, and an active energy ray curable oxetane resin. It is done.
  • the curable resin a hybrid curing (dual cure) type of thermal curing and active energy ray curing can be used according to the purpose.
  • an epoxy resin, a phenol resin, a polyimide resin, and an oxetane resin are preferable because they have high insulating properties and excellent electrical characteristics and are suitable for the electronic material field.
  • the epoxy resin examples include bisphenol A type epoxy resins such as JER827, JER828, KER834 (manufactured by Japan Epoxy Resin Co., Ltd.), RE-310S (manufactured by Nippon Kayaku Co., Ltd.); And bisphenol F type epoxy resins such as RE303S-L (manufactured by Nippon Kayaku Co., Ltd.); naphthalene type epoxy resins such as HP-4032 and HP-4032D (manufactured by Dainippon Ink &Chemicals); NC-3000 (Nippon Kayaku Co., Ltd.), YX4000 (Japan Epoxy Resin Co., Ltd.) and other biphenyl type epoxy resins; YDC-1312, YSLV-80XY, YSLV-120TE (Toto Kasei Co., Ltd.) and other crystallinity Epoxy resin; YX8000 (manufactured by Japan Epoxy Resin Co., Ltd.), CEL20
  • hydrogenated bisphenol A type epoxy resin bisphenol AD type epoxy resin, bisphenol E type epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated epoxy resin and glycidylamine Type epoxy resin.
  • epoxy resin a copolymer of the above epoxy resin and another polymer such as a prepolymer of the above epoxy resin, a polyether-modified epoxy resin, a silicone-modified epoxy resin, or a part of the epoxy resin is an epoxy group.
  • a reactive diluent having
  • Examples of the reactive diluent include resorcing ricidyl ether, t-butylphenyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, 3-glycidoxypropyltrimethoxysilane, and 3-glycidide.
  • Monoglycidyl compounds such as amines; diglycidyl compounds such as neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, propylene glycol diglycidyl ether; and 2- (3,4) -epoxycyclohexyl) Mono alicyclic epoxy compounds such as Le trimethoxysilane.
  • the epoxy resin can be used alone or in combination of two or more.
  • the epoxy resin is an epoxy resin that is liquid at room temperature or a liquid that is solid at room temperature but does not sufficiently cure when heated, in terms of imparting gelling properties to the resin composition.
  • Those having an epoxy resin as a main component are preferred.
  • this resin composition as a liquid sealing material, as an epoxy resin, for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane diglycidyl ether type epoxy resin, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl diglycidyl ether Type epoxy resin, 4,4'-dihydroxybiphenyl diglycidyl ether type epoxy resin, 1,6-dihydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated bisphenol A type epoxy resin, brominated Cresol Novolac type epoxy resins and bisphenol D-type epoxy resins.
  • an epoxy resin for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 3,3 ′
  • this resin composition contains the above-mentioned this powder and curable resin.
  • a compounding ratio of this powder in this resin composition 1 mass% or more is preferable, and 3 mass% or more is more preferable.
  • a sufficient gel state can be realized when the blending ratio of the present powder is 1% by mass or more, and the possibility of bleeding or pattern disturbance due to the use / processing method can be suppressed.
  • a compounding rate of this powder 50 mass% or less is preferable, and 30 mass% or less is more preferable.
  • the blending ratio of the present powder is 50% by mass or less, an increase in the paste viscosity of the present resin composition can be suppressed, and the possibility that the workability and workability are lowered depending on the use can be suppressed. Moreover, in order to express desired gelation property, you may use together several this powder from which gelation temperature differs.
  • This resin composition can be used for various applications such as dispenser, screen printing, dipping, casting, coating with knife coater, doctor coater, and the like.
  • fillers and additives can be blended in the resin composition as necessary.
  • the filler include conductive fillers such as silver powder, gold powder, nickel powder, and copper powder; and insulating fillers such as aluminum nitride, calcium carbonate, silica, and alumina. A necessary amount of the filler can be appropriately blended depending on the purpose of addition.
  • silica examples include crystalline or amorphous silica having a plate shape, a core shape, a spherical shape, or an amorphous shape.
  • spherical silica known ones can be used as long as the gelling properties and viscosity characteristics of the resin composition are not impaired.
  • silica obtained by cutting coarse particles; from the viewpoint of dispersibility, high fluidity, and high filling, silica particles containing silica having various particle sizes can be used in accordance with the Horsefields packing model. .
  • the additive examples include a thixotropic agent, a fluidity improver, a flame retardant, a heat stabilizer, an antioxidant, an ultraviolet absorber, an ion adsorbent, a coupling agent, a mold release agent, and a stress relaxation agent.
  • a known one such as phosphorus, halogen, and inorganic flame retardant may be used.
  • heat stabilizer examples include phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants.
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate and the like; 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl- 6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,9-bis [1 , 1-Dimethyl-2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl] 2,4,8,10-tetraoxaspir
  • sulfur antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like. .
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentanetetrayl bis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetrayl bis (2 , 4-di-tert-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- ⁇ 2- (octade
  • an epoxy resin when used as the curable resin in the resin composition, it can be cured using a curing agent such as an acid anhydride, an amine compound, or a phenol compound.
  • a curing agent such as an acid anhydride, an amine compound, or a phenol compound.
  • the acid anhydride examples include phthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methyl hymic anhydride, Methylcyclohexene tetracarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis trimellitate, glycerol tris trimellitate, dodecenyl succinic anhydride, poly azelaic anhydride and poly ( Ethyl octadecanedioic acid) anhydride.
  • methylhexahydrophthalic anhydride and hexahydrophthalic anhydride are preferred for uses that require weather resistance, light resistance, heat resistance, and
  • amine compound examples include aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, trimethylhexamethylenediamine, m-xylenediamine, 2-methylpentamethylenediamine, and diethylaminopropylamine; Isophorodiamine, 1,3-bisaminomethylcyclohexane, methylenebiscyclohexanamine, norbornenediamine, 1,2-diaminocyclohexane, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, 2,5 ( 2,6) -Bis (aminomethyl) bicyclo [2,2,1] heptane and other alicyclic polyamines; diaminodiethyldiphenylmethane, diaminophenylmethane, dia Bruno diphenyl
  • 2,5 (2,6) -bis (aminomethyl) bicyclo [2,2,1] heptane and isophoronediamine are preferred for applications requiring weather resistance, light resistance, heat resistance and the like. These can be used alone or in combination of two or more.
  • phenol compound examples include phenol novolac resins, cresol novolac resins, bisphenol A, bisphenol F, bisphenol AD, and derivatives of diallysates of these bisphenols.
  • bisphenol A is preferred because the cured product is excellent in mechanical strength and curability. These can be used alone or in combination of two or more.
  • the amount of the curing agent used is preferably 20 to 120 parts by mass, more preferably 60 to 110 parts by mass with respect to 100 parts by mass of the epoxy resin because the cured product is excellent in heat resistance and curability.
  • the amount of the curing agent used is preferably about 0.7 to 1.3 equivalents, more preferably about 0.8 to 1.1 equivalents in the case of acid anhydrides per equivalent of epoxy groups.
  • active hydrogen is preferably 0.3 to 1.4 equivalents, more preferably about 0.4 to 1.2 equivalents.
  • active hydrogen is preferably The amount is about 0.3 to 0.7 equivalent, more preferably about 0.4 to 0.6 equivalent.
  • a hardening accelerator when hardening an epoxy resin, a hardening accelerator, a latent hardening agent, etc. can be used as needed.
  • the curing accelerator a known one used as a thermosetting catalyst for epoxy resins can be used.
  • imidazole compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole; Examples include adducts of epoxy resins; organophosphorus compounds such as triphenylphosphine; borates such as tetraphenylphosphine tetraphenylborate; and diazabicycloundecene (DBU).
  • DBU diazabicycloundecene
  • the curing accelerator is usually added in an amount of 0.1 to 8 parts by mass, preferably 0.5 to 6 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the latent curing agent is solid at room temperature, and liquefies when the epoxy resin is heated and cured to act as a curing agent.
  • latent curing agents include dicyandiamide, carbohydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, iminodiacetic acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide dihydrazide, Dodecanedihydrazide, hexadecanedihydrazide, maleic acid dihydrazide, fumaric acid dihydrazide, diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 2,6-naphtho
  • an oxetane resin when used as the curable resin in the resin composition, for example, a curing agent such as an acid anhydride, or curing capable of initiating ring opening and polymerization of the oxetane ring by heat.
  • a catalyst can be blended and cured.
  • the oxetane resin include EHO, OXBP, OXMA, and OXTP (manufactured by Ube Industries, Ltd.).
  • the amount of the curing agent or curing catalyst used is the same as that for the epoxy resin.
  • a known kneading apparatus can be used when preparing the resin composition.
  • the kneading apparatus for obtaining the resin composition include a raking machine, an attritor, a planetary mixer, a dissolver, a three-roll roll, a ball mill, and a bead mill. Moreover, these can use 2 or more types together.
  • the order of mixing is not particularly limited, but it is preferable to knead the powder as last as possible in order to sufficiently exhibit the effects of the present invention.
  • the heat stabilizer and the like can be used in the form of an aqueous solution previously blended with the emulsion of the present polymer and spray-dried under the above-described conditions.
  • This resin composition is a primary sealing underfill material, a secondary mounting underfill material, a liquid sealing material such as a grab top material in wire bonding, and a sealing sheet that collectively seals various chips on a substrate.
  • the post-supply type is filled between the bonding portions.
  • the underfill it can be used in a commonly used dispenser application.
  • the pre-supply underfill that is applied onto the package substrate before the semiconductor IC electrode and the package substrate electrode are connected to each other by metal bonding or pressure contact, there are generally liquid and film shapes. It can be used for both dispenser and screen printing.
  • sealing sheet materials that place a sheet on the device and make the resin flow and seal with heat and pressure Can also be used.
  • the shape is various such as roll, strip, label, etc. in a state protected by a release film, wire bond type, flip chip, wafer Those that can be used for sealing level CSPs, modules, and the like.
  • the thickness is, for example, 30 to 500 ⁇ m.
  • the die attach paste used for mounting the semiconductor silicon chip on the lead frame examples include a syringe dispensing method, a line draw (PD) method, a stamping method, and a screen printing method.
  • the base resin to be used includes an epoxy resin, a polyimide resin, a cyanate ester resin, and a maleimide resin.
  • the filler include conductive types such as Ag, Au, Cu, and Ni; and insulating types such as SiO 2 , Al 2 O 3 , and BN.
  • the diluent include solvent types such as butyl cellosolve and butyl cellosolve acetate; and solventless types such as a reactive diluent (low viscosity epoxy).
  • the resin composition is made into a varnish, it can be impregnated into a base material such as glass cloth so as to be semi-cured and used as a prepreg.
  • the thickness of the prepreg varies from 40 to 200 ⁇ m depending on the application.
  • the cured product is obtained by curing the resin composition.
  • the curing condition is, for example, 80 to 180 ° C. for about 10 minutes to 5 hours.
  • active energy ray curable resin as an active energy ray to be used, an electron beam, an ultraviolet-ray, a gamma ray, and infrared rays are mentioned, for example.
  • a known ultraviolet irradiation device including a high-pressure mercury lamp, an excimer lamp, a metal halide lamp, or the like can be used.
  • the amount of ultraviolet irradiation is about 50 to 1,000 mJ / cm 2 .
  • a known electron beam irradiation apparatus can be used, and the amount of electron beam irradiation is about 10 to 100 kGy.
  • Emulsion particle size and monodispersity Emulsion of vinyl polymer is diluted with ion-exchanged water, and volume as emulsion particle size is measured using a laser diffraction scattering type particle size distribution analyzer (LA-910W manufactured by Horiba, Ltd.).
  • the average primary particle diameter (Dv) and the number average primary particle diameter (Dn) were measured.
  • the refractive index the refractive index calculated from the charged monomer composition was used.
  • the particles had a multilayer structure such as a core-shell structure, the refractive index for each layer was calculated, and the overall average was calculated using the mass ratio for each layer. In either case, the median diameter was used as the average diameter.
  • monodispersity (Dv / Dn) was determined from the values of Dv and Dn.
  • the monodispersity was evaluated according to the following criteria. A: 1.5 or less B: More than 1.5 and 2.0 or less. C: More than 2.0 and 3.0 or less. D: The sample concentration of the vinyl polymer emulsion exceeding 3.0 was appropriately adjusted so as to be within an appropriate range in the scattered light intensity monitor attached to the apparatus.
  • HLC8220 manufactured by Tosoh Corporation Column: TSKgel SuperHZM-M manufactured by Tosoh Corporation (inner diameter 4.6 mm ⁇ length 15 cm) Number; 4; Exclusion limit; 4 ⁇ 10 6 Temperature: 40 ° C Carrier liquid: Tetrahydrofuran Flow rate: 0.35 ml / min Sample concentration: 0.1% Sample injection volume: 10 ⁇ l Standard: Polystyrene
  • Each bottle was divided into 100 ml portions, and the contents of alkali metal ions and sulfate ions in the vinyl polymer powder were measured under the following conditions using each sample bottle.
  • content of alkali metal ion measured the total amount of Na ion and K ion.
  • ICP emission analyzer IRIS “Intrepid II XSP” manufactured by Thermo Quantitative method: Absolute calibration curve method using samples with known concentrations (4 points of 0 ppm, 0.1 ppm, 1 ppm and 10 ppm) Measurement wavelength: Na; 589.5 nm and K; 766.4 nm
  • Dispersibility The dispersion state of the vinyl polymer powder in the epoxy resin composition was measured according to JIS K-5600 using a particle gauge, and the dispersibility was evaluated according to the following criteria. A: 1 ⁇ m or less B: Over 1 ⁇ m and 10 ⁇ m or less. C: More than 10 ⁇ m and 20 ⁇ m or less. D: Over 20 ⁇ m
  • the temperature of the curing temperature T A
  • the case of using the epoxy resin composition comprising a vinyl polymer powder to the sample the temperature was the gelation temperature (T B )
  • the gelation temperature was evaluated according to the following criteria.
  • the thickening rate of the epoxy resin composition not containing the vinyl polymer powder is R B
  • the thickening rate of the epoxy resin composition containing the vinyl polymer powder is R A
  • the storage stability was evaluated according to the following criteria.
  • R B is less than 1%
  • the R B as a 1% was determined the ratio (R A / R B).
  • the epoxy resin composition was stored in a ⁇ 10 ° C. refrigerator for 24 hours, then taken out and immediately adjusted to 25 ° C., the viscosity was measured.
  • the dielectric constant of the epoxy resin composition not containing vinyl polymer powder is ⁇ rB
  • the dielectric constant of the epoxy resin composition containing vinyl polymer powder is ⁇ rA
  • C More than 2.5 and 3.0 or less.
  • D Over 3.0
  • Ammonium di-2-ethylhexylsulfosuccinate manufactured by Toho Chemical Industry Co., Ltd., trade name “Likacol M-300”
  • Polyoxyethylene distyrenated phenyl ether product name “Emulgen A-90” manufactured by Kao Corporation Methyl methacrylate: Mitsubishi Rayon Co., Ltd., trade name “Acryester M” n-Butyl methacrylate: Mitsubishi Rayon Co., Ltd., trade name “Acryester B” n-Butyl acrylate: Mitsubishi Chemical Co., Ltd.
  • Example 1 Production of vinyl polymer emulsion (L1) and vinyl polymer powder (P1) 2 liter separable flask equipped with a Max blend stirrer, reflux condenser, temperature controller, dropping pump and nitrogen inlet tube was charged with 624.0 g of ion exchanged water, and nitrogen gas was bubbled for 30 minutes while stirring at 120 rpm. Separately, 226.7 g of methyl methacrylate and 173.3 g of n-butyl methacrylate were mixed to prepare a monomer mixture (M1) used for the first stage polymerization. 40.0 g of the monomer mixture (M1) was charged into the flask, and then heated to 80 ° C. in a nitrogen atmosphere.
  • an aqueous solution of 0.32 g of ammonium persulfate and 16.0 g of ion-exchanged water prepared in advance was added all at once and held for 60 minutes to form seed particles.
  • 360.0 g of the remaining monomer mixture (M1), 4.0 g of ammonium di-2-ethylhexylsulfosuccinate and 200.0 g of ion-exchanged water were added to a homogenizer (IKA).
  • IKA homogenizer
  • the mixture obtained by emulsification with “Ultra Turrax T-25” (25000 rpm) was added dropwise over 150 minutes and held for 1 hour to complete the first stage polymerization.
  • Table 1 shows the evaluation results of the emulsion particle diameter of the obtained vinyl polymer emulsion (L1).
  • the obtained vinyl polymer emulsion (L1) was spray-dried under the following conditions using an L-8 type spray dryer manufactured by Okawara Chemical Industries Co., Ltd. to obtain a vinyl polymer powder (P1).
  • Table 2 shows the results of evaluation of the content of acetone-soluble matter, acetone-soluble matter Mw, Mn and ionic impurities in the obtained vinyl polymer powder (P1).
  • Spray system Rotating disk type Disk rotation speed: 25,000 rpm Hot air temperature Inlet temperature: 145 ° C Outlet temperature: 65 ° C
  • Emulsifier 1 Ammonium di-2-ethylhexyl sulfosuccinate
  • Emulsifier 2 Polyoxyethylene distyrenated phenyl ether MMA: Methyl methacrylate n-BMA: n-butyl methacrylate n-BA: n-butyl acrylate AMA: Allyl methacrylate IBM: i- Butyl methacrylate MAA: methacrylic acid
  • HEMA 2-hydroxyethyl methacrylate
  • SLMA alkyl methacrylate n-OM: n-octyl mercaptan
  • VA-057 2,2'-azobis [N- (2carboxyethyl) -2-methylpropionamidine] Hydrate
  • V-65 2,2′-azobis (2,4-dimethylvaleronitrile)
  • Perocta O 1,1,3,3-tetramethylbutylperoxy-2-ethylperoxy-2-e
  • Example 2 to 10 Comparative Examples 1 to 4
  • Vinyl polymer emulsions (L2) to (L9), (L11) to (L14), and vinyl polymer powders (P2) to (P10), (P12) Production of (P15) Examples 2 to 10 and Comparative Examples 1 to 4 were conducted in the same manner as in Example 1 except that the raw material compositions and polymerization conditions shown in Table 1 were used, and the vinyl polymer emulsions (L2) to ( L9) and (L11) to (L14) were obtained.
  • the evaluation results of the particle diameter of the obtained polymer emulsion are shown in Table 1.
  • Example 11 Production of vinyl polymer emulsion (L10) and vinyl polymer powder (P11) A 2-liter separable flask equipped with a Max blend stirrer, a reflux condenser, a temperature controller, a dripping pump and a nitrogen introduction pipe The ion-exchange water 980.0g was thrown into this, and nitrogen gas was bubbled for 30 minutes, stirring at 120 rpm, Then, it heated up at 80 degreeC by nitrogen atmosphere.
  • Vinyl polymer powder (P16) As the vinyl polymer powder (P16), F351 (manufactured by Ganz Kasei Co., Ltd.) was used. Table 2 shows the results of evaluation of the contents of acetone-soluble components, acetone-soluble components Mw, Mn and ionic impurities.
  • Example 12 100 parts of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “Epicoat 828” (trade name)) and 10 parts of vinyl polymer powder (P1) shown in Table 3 are weighed and planetary motion vacuum Using a mixer (manufactured by Shinky Co., Ltd., “Taro Awatori” ARV-200 (trade name)), under a reduced pressure of 2,000 Pa, the rotation speed was 1,000 rpm and the revolution speed was 2,000 rpm for 2 minutes. Kneading and defoaming were performed to obtain a kneaded product.
  • a mixer manufactured by Shinky Co., Ltd., “Taro Awatori” ARV-200 (trade name)
  • the obtained kneaded material was used in a three roll mill (manufactured by EXAKT, “M-80E”), with a roll speed of 200 rpm, a roll interval of 20 ⁇ m ⁇ 10 ⁇ m, 1 pass, 10 ⁇ m / 5 ⁇ m, 1 pass, 5 ⁇ m, 5 ⁇ m, 1 pass. Pass processing.
  • the mixture was kneaded and defoamed for 1 minute at a rotation speed of 1,000 rpm and a revolution speed of 2,000 rpm under reduced pressure to obtain an epoxy resin composition (C1).
  • the obtained epoxy resin composition (C1) was evaluated for initial viscosity, dispersibility, gelation temperature, elastic modulus, and storage stability. The evaluation results are shown in Table 3.
  • a PET film (Toyobo Co., Ltd., trade name: TN200) is pasted on one side of each of the two tempered glass plates of 300 mm long ⁇ 300 mm wide ⁇ 5 mm thick so that the PET film surfaces face each other.
  • a mold was prepared by placing a Teflon (registered trademark) spacer having a thickness of 3 mm between the tempered glass plates.
  • the epoxy resin composition (C1) is poured into the mold and fixed with a clamp. After pre-curing at 80 ° C. for 2 hours, curing is performed at 120 ° C. for 6 hours, and the mold is removed from the mold and cured to a thickness of 3 mm.
  • a product was made.
  • the obtained cured product was annealed at 180 ° C. for 6 hours and conditioned at 25 ° C. for 24 hours or more.
  • a test piece having a length of 30 mm, a width of 30 mm and a thickness of 3 mm was cut out from the obtained cured product, and the relative dielectric constant was evaluated. The evaluation results are shown in Table 3.
  • Example 23 Curing after primary kneading using 100 parts of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “Epicoat 828” (trade name)) and 10 parts of vinyl polymer powder (P2) shown in Table 4. 2 parts of an accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2-ethyl-4-methylimidazole) was added and secondarily kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C18) was obtained. Evaluation was carried out in the same manner as in Example 12. The evaluation results are shown in Table 4.
  • Example 12 curing was carried out in the same manner as in Example 12 except that a polyimide film (trade name: Upilex 12.5SN, manufactured by Ube Industries, Ltd.) was used instead of the PET film, and the curing conditions were changed to 175 ° C. for 5 hours. A product was made. Using the obtained cured product, the relative dielectric constant was evaluated in the same manner as in Example 12. The evaluation results are shown in Table 4.
  • a polyimide film trade name: Upilex 12.5SN, manufactured by Ube Industries, Ltd.
  • Example 24 Curing after primary kneading using 100 parts of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “Epicoat 828” (trade name)) and 10 parts of vinyl polymer powder (P2) shown in Table 5. 49 parts (manufactured by Nippon Kayaku Co., Ltd., acid anhydride curing agent “Kayahard MCD” (trade name)), and curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2-ethyl-4-methylimidazole) 1.25 parts was added and secondary kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C20) was obtained. Evaluation was carried out in the same manner as in Example 12. The evaluation results are shown in Table 5.
  • Example 12 a cured product was produced in the same manner as in Example 12 using the epoxy resin composition (C20). Using the obtained cured product, the relative dielectric constant was evaluated in the same manner as in Example 12. The evaluation results are shown in Table 5.
  • Example 25 Curing after primary kneading using 100 parts of bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd., “Epicoat 828” (trade name)) and 10 parts of vinyl polymer powder (P2) shown in Table 6. 25 parts of an agent (manufactured by Japan Epoxy Resin Co., Ltd., amine-based curing agent “JER Cure W” (trade name)) was added and secondarily kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C22) was obtained. Evaluation was carried out in the same manner as in Example 12. The evaluation results are shown in Table 6.
  • Example 23 a cured product was produced in the same manner as in Example 23 except that preliminary curing was performed at 100 ° C. for 2 hours and then curing was performed at 175 ° C. for 4 hours. Using the obtained cured product, the relative dielectric constant was evaluated in the same manner as in Example 12. The evaluation results are shown in Table 6.
  • Example 26 After primary kneading using 100 parts of bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., “RE303S-L” (trade name)) and 10 parts of vinyl polymer powder (P2) shown in Table 7, 94 parts of curing agent (manufactured by Shin Nippon Rika Co., Ltd., acid anhydride curing agent “Licacid MH-700” (trade name)), and curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2-ethyl-4- Methylimidazole) (1.1 parts) was added and secondarily kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C24) was obtained. Evaluation was carried out in the same manner as in Example 12. Table 7 shows the evaluation results.
  • Example 12 a cured product was produced in the same manner as in Example 12 using the epoxy resin composition (C24). Using the obtained cured product, the relative dielectric constant was evaluated in the same manner as in Example 12. Table 7 shows the evaluation results.
  • Example 27 As shown in Table 8, 100 parts of biphenyl type epoxy resin (Nippon Kayaku Co., Ltd., “NC3000” (trade name)), curing agent (manufactured by Shin Nippon Rika Co., Ltd., acid anhydride curing agent “Ricacid MH-” 700 ”(trade name)) and 57 parts of vinyl polymer powder (P2) and primary curing, followed by curing accelerator (2-ethyl-4-methylimidazole, manufactured by Shikoku Chemicals Co., Ltd.) 0 .68 parts were added and secondarily kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C26) was obtained. Evaluation was carried out in the same manner as in Example 12. Table 8 shows the evaluation results.
  • Example 12 a cured product was produced in the same manner as in Example 12 using the epoxy resin composition (C26). Using the obtained cured product, the relative dielectric constant was evaluated in the same manner as in Example 12. Table 8 shows the evaluation results.
  • Example 28 100 parts of naphthalene type epoxy resin (Dainippon Ink Chemical Co., Ltd., “HP4032” (trade name)), curing agent (manufactured by Shin Nippon Rika Co., Ltd., acid anhydride type curing agent “Ricacid MH” shown in Table 9 -700 "(trade name)) and 105 parts of vinyl polymer powder (P2), followed by primary kneading, followed by a curing accelerator (2-ethyl-4-methylimidazole, manufactured by Shikoku Chemicals Co., Ltd.) 1.55 parts was added and secondarily kneaded. Otherwise in the same manner as in Example 12, an epoxy resin composition (C28) was obtained. Evaluation was carried out in the same manner as in Example 12. Table 9 shows the evaluation results.
  • the acetone soluble content of the vinyl polymer powder (P1, P5, P15) is more than 98%, 48%, and less than 5%.
  • the gelation temperatures of the epoxy resin compositions (C1, C5, C15) blended with these vinyl polymer powders are 76 ° C, 83 ° C, and no gelation. It turns out that it becomes low with the weight reduction, and it does not gelatinize if the acetone soluble content is less than 5%.
  • the gelation performance (G ′ B / G ′ A ) of the epoxy resin composition (C1, C5, C15) using viscosity change as an index is +1150, +270, not gelled. From this, it can be seen that the content of the acetone-soluble component in the vinyl polymer powder is dominant over the gelation temperature and gelation performance.
  • the vinyl polymer powders (P2, P14) have the same polymer composition, and the acetone-soluble component exceeds 98%, but the acetone-soluble component Mw is 75.7 thousand and 8.2. It is a lot and is very different.
  • the ultimate elastic moduli (G ′ B ) of the epoxy resin compositions (C2, C14) in which these vinyl polymer powders are blended are 6.81 and 3.80 ⁇ 10 ⁇ 4 , and become lower depending on the molecular weight. ing. This shows that the molecular weight of the acetone soluble part of the vinyl polymer powder is dominant with respect to the degree of gelation.
  • the vinyl polymer powders (P2, P12) have the same polymer composition, but the content of alkali metal ions is less than 1 ppm and 83.5 ppm, which are greatly different.
  • the relative dielectric constants of the cured products of the epoxy resin compositions (C2, C12) blended with these vinyl polymer powders are 3.04 and 3.14, and become higher depending on the content of alkali metal ions. Yes. Further, the content of alkali metal ions in the vinyl polymer powder (P16) is 341 ppm, and the relative dielectric constant of the cured product of the epoxy resin composition (C16) containing the vinyl polymer powder (P16) is 3. It is not suitable for the field of electronic materials because it is as high as 32 and the electrical characteristics are greatly deteriorated.
  • the vinyl polymer powder (P3) is obtained by changing the single-body composition used for the second stage polymerization of the vinyl polymer powder (P2) to lower the solubility parameter.
  • the gelation temperatures of the epoxy resin compositions (C2, C3) containing these vinyl polymer powders are 84 ° C. and 80 ° C., and the lower the solubility parameter, the faster the dissolution rate. From this, it can be seen that the solubility parameter of the vinyl polymer powder affects the gelation behavior.
  • the solubility parameter of the vinyl polymer powder can be determined by a known method. For example, it can be obtained using the Fedors equation or the Hansen equation.
  • the vinyl polymer emulsions (L2, L9, L12) have the same polymer composition, but their volume average primary particle diameters are 764 nm, 335 nm, and 181 nm. Evaluation of the dispersibility of the epoxy resin compositions (C2, C9, C13) containing the vinyl polymer powders (P2, P9, P13) obtained from these by a particle gauge is less than 1 ⁇ m, 7 ⁇ m, and 28 ⁇ m. As the primary particle diameter of the vinyl polymer is reduced, the dispersibility of the vinyl polymer powder in the primary particles is reduced. The larger the primary particle diameter of the vinyl polymer, the better the dispersion in the primary particles. I understand that.
  • the initial viscosity of the epoxy resin composition (C2, C9, C13) containing the vinyl polymer powder (P2, P9, P13) increases in order to 3300, 3700, 4400, and the storage stability is +33, +230. , Increases to +250.
  • the gelation performance (G ′ B / G ′ A ) decreases in order of +1110, +81, and +47. From this, it can be seen that the primary particle size affects not only dispersibility but also initial viscosity, storage stability, and gelation performance.
  • the vinyl polymer powders (P6) to (P8) are not a particle obtained by two-stage polymerization but a vinyl polymer having a uniform structure obtained by only one-stage polymerization.
  • the epoxy resin compositions (C6) to (C8) containing the vinyl polymer powders (P6) to (P8) have gelation temperatures of 82 ° C., 90 ° C., and 112 ° C. From this, it can be seen that even in a vinyl polymer having a uniform structure, the lower the solubility parameter, the faster the dissolution rate. That is, by adjusting the solubility parameter (by adjusting the amount of methacrylic acid introduced), the gelation temperature can be changed and the gelation temperature can be selected according to the application.
  • the epoxy resin composition (C8) has a gelation temperature as high as 112 ° C., the curing of the epoxy resin composition starts at “gelation temperature + 20 ° C. (132 ° C.)”, and the ultimate elastic modulus G ′ B is measured. Not done.
  • the vinyl polymer powder (P4) is obtained by reducing the amount of sulfate ions from the vinyl polymer powder (P2).
  • the relative dielectric constant of the epoxy resin composition (C4) blended with the vinyl polymer powder (P4) is 3.02, and the relative dielectric constant of the epoxy resin composition (C2) blended with the vinyl polymer powder (P2). It can be seen that it is lower than 3.04 and is equivalent to the epoxy resin composition (C17) not containing the vinyl polymer powder.
  • the vinyl polymer powder does not contain alkali metal ions, and sulfate ions are reduced as much as possible to improve the electrical characteristics of the cured epoxy resin compounded with the vinyl polymer powder. It turns out that it becomes suitable.
  • the vinyl polymer powder (P10) is obtained by mixing 50% of the vinyl polymer emulsions (L2 and L12) and spray-drying, and has a wide particle size distribution of 2.50 and a bimodal property. Have.
  • the evaluation of dispersibility by a particle gauge of the epoxy resin composition (C10) containing the vinyl polymer powder (P10) is 18 ⁇ m.
  • the particle size distribution is wide, the agglomerated powder derived from the vinyl polymer having a small particle size is not completely dispersed and is not suitable for the fine pitch.
  • the particle diameter distribution of vinyl polymer powder (P2, P10, P12) is 1.18, 2.50, 1.19, and the gel of the epoxy resin composition (C2, C10, C12) blended with these
  • the conversion performance (G ′ B / G ′ A ) is +1110, +81, and +540. From this, it can be seen that as the particle size distribution becomes wider, the gelation performance is lowered.
  • the vinyl polymer powder (P11) was obtained by a fine suspension polymerization method and has a particle diameter of 2 ⁇ m or more.
  • the evaluation of dispersibility with a particle gauge of the epoxy resin composition (C11) containing the vinyl polymer powder (P11) is 3 ⁇ m.
  • the vinyl polymer powder (P11) is dispersed up to the primary particles, but may be regarded as rough in recent fine pitch formation.
  • the epoxy resin composition (C18, C20, C22, C24, C26, C28) containing the vinyl polymer powder (P2) uses various epoxy resins / curing agents / curing accelerators. Even in the blending, the dispersibility of the vinyl polymer powder (P2) was good, and the gelation performance was expressed.
  • the present invention relates to priority claim applications based on Japanese Patent Application Nos. 2009-024751 and 2009-193366, and includes all matters included in these basic applications.
  • the vinyl polymer powder of the present invention is excellent in mutual dispersibility with a curable resin, particularly an epoxy resin, and quickly turns the curable resin composition into a gel state by heating at a predetermined temperature for a short time, and has a low ion concentration. It can be used as a pregel agent for electronic parts for developing excellent electrical characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 本発明は、硬化性樹脂組成物への分散性に優れ、所定の温度で短時間の加熱によって速やかに硬化性樹脂組成物をゲル状態とし、イオン濃度が低く、得られる硬化物に優れた電気特性を発現させるための電子材料分野に適したプレゲル剤として有用なビニル重合体粉体、そのビニル重合体粉体を含有する硬化性樹脂組成物及びその硬化性樹脂組成物の硬化物を提供する。本発明のビニル重合体粉体は、アセトン可溶分が30質量%以上で、アセトン可溶分の質量平均分子量が10万以上で、アルカリ金属イオンの含有量が10ppm以下で、体積平均一次粒子径(Dv)が200nm以上である。

Description

ビニル重合体粉体、硬化性樹脂組成物及び硬化物
 本発明はビニル重合体粉体、ビニル重合体粉体を含有する硬化性樹脂組成物及び硬化性樹脂組成物の硬化物に関する。
 モバイル機器、デジタル家電、通信機器、車載用電子機器等のIT関連技術の進歩に伴い、エレクトロニクス分野で使用される樹脂素材が重要視されている。例えば、耐熱性や絶縁性等に優れるエポキシ樹脂、ポリイミド樹脂、アクリル系硬化性樹脂、オキセタン系硬化性樹脂等の、熱硬化性樹脂又は活性エネルギー線硬化性樹脂に対する需要は急速に高まっている。
 特に、エポキシ樹脂からなる樹脂組成物はガラス転移温度が高く、絶縁性、難燃性、接着性に優れる素材であり、半導体の封止材料、各種の絶縁材料、接着剤等に使われている。
 中でも、常温で液状のエポキシ樹脂は、常温で注型や塗布できることから各種のペースト状又はフィルム状の材料として使われている。具体的には、一次実装用アンダーフィル材、二次実装用アンダーフィル材、ワイヤーボンドにおけるグラブトップ材等の液状封止材;基板上の各種チップ類を一括で封止する封止用シート;プレディスペンス型のアンダーフィル材;ウエハーレベルで一括封止する封止シート;3層銅張積層板用の接着層;ダイボンドフィルム、ダイアタッチフィルム、層間絶縁フィルム、カバーレイフィルム等の接着層;ダイボンドペースト、層間絶縁ペースト、導電ペースト、異方導電ペースト等の接着性ペースト;発光ダイオードの封止材;光学接着剤;液晶、有機EL等の各種フラットパネルディスプレイのシーリング材等の各種用途に用いられている。
 上記のエポキシ樹脂組成物は、ディスペンサーによる精密な注入や塗布、スクリーン印刷による精密なパターン塗布、高い膜厚精度でのフィルム上へのコーティング等の精密加工ができることが近年重要になってきている。そのためには、このエポキシ樹脂組成物の粘度特性が安定していることが重要で、環境温度によって粘度が顕著に低下したり上昇したりすることは致命的である。
 しかしながら、エポキシ樹脂組成物は硬化に時間がかかり、粘度の温度依存性が高いため、硬化するまでの温度上昇により粘度が顕著に低下することから、高精度な塗布・パターン形成が困難な状況にある。
 例えば、エポキシ樹脂組成物をアンダーフィル材として使用する場合、ディスペンサーを用いて数十μmという狭い隙間にエポキシ樹脂組成物を流し込むためには、エポキシ樹脂組成物の流動性が高いことが必要である。しかしながら、エポキシ樹脂組成物の流動性が高いと加熱時にエポキシ樹脂組成物が硬化する前に低粘度化して流れ出して、周辺の基板や回路を汚染したり、本来の封止性能が発揮できなくなるという弊害が発生する。
 また、エポキシ樹脂組成物を銅張積層板、ダイボンドフィルム等のフィルム用接着剤として使用する場合、常温で一定の膜厚に揃えて塗布したものを加熱硬化する際に、エポキシ樹脂組成物の粘度低下が激しく起こってエポキシ樹脂組成物が流れ出て接着剤の膜厚が変動するという問題が生じる場合がある。
 このように、特に電子材料分野においては、年々高まる高精度加工の要求により、使用するエポキシ樹脂組成物には温度上昇しても粘度低下しないことや早期に形状が安定化することへの要望が極めて強い。
 エポキシ樹脂組成物に上記のような特性を付与する方法として、加熱により速やかにエポキシ樹脂組成物をゲル状態とするために、エポキシ樹脂組成物に特定のゴム状粒子を配合し、ゲル化性付与剤(以下、「プレゲル剤」という。)として用いる方法がある。
 しかしながら、ゴム状粒子はゲル化性を付与する能力としては不充分であり、また粒子のガラス転移温度が低いために粒子同士の融着が強く、エポキシ樹脂のような液状物の中で一次粒子に分散させることは困難である。またゴム状粒子のイオン純度(イオン濃度)については特に考慮されていない。
 近年の電子材料分野におけるエポキシ樹脂組成物への要望は単なるゲル化性の付与だけでなく、電気特性への影響を低減するための高いイオン純度(即ち、低いイオン濃度)、狭いピッチ内にも速やかに浸透していけるだけの高レベルな浸透性、極めて短時間でのゲル化速度等が同時に求められている。これらを満足する材料は従来まで提案されていないのが実状である。
 例えば、特許文献1では、ビニル重合体粒子をプレゲル剤として用いる方法が提案されている。この方法ではエポキシ樹脂組成物にゲル化性を付与できるが、ビニル重合体粒子の一次粒子への分散性が充分ではないため、電子材料分野で必要とされるファインピッチ化への対応や、薄型化への対応に満足できる状態とはいえない。また、フィルム基材上にエポキシ樹脂組成物を薄く塗布する際には、ブツを発生してしまい品質不良を生じる。更に、エポキシ樹脂組成物のイオン濃度についても考慮されていない。
 特許文献2では、イオン架橋されたゴム状粒子をプレゲル剤として用いる方法が提案されている。この方法では、イオン架橋によってゲル化性を付与しているため、得られる硬化物中に必然的にイオンが混入してしまい、電子材料分野には不適である。当然のことながら、エポキシ樹脂組成物のイオン濃度を下げようとすればイオン架橋ができなくなるため、ゲル化性を付与できなくなる。
特開2003-49050号公報 特開平11-129368号公報
 本発明の目的とするところは、硬化性樹脂組成物への分散性に優れ、所定の温度で短時間の加熱によって速やかに硬化性樹脂組成物をゲル状態とし、イオン濃度が低く、得られる硬化物に優れた電気特性を発現させるための電子材料分野に適したプレゲル剤として有用なビニル重合体粉体、そのビニル重合体粉体を含有する硬化性樹脂組成物及びその硬化性樹脂組成物の硬化物を提供することである。
 本発明の要旨とするところは、アセトン可溶分が30質量%以上で、アセトン可溶分の質量平均分子量(以下、「Mw」という。)が10万以上で、アルカリ金属イオンの含有量が10ppm以下で、体積平均一次粒子径(Dv)が200nm以上であるビニル重合体粉体(以下、「本粉体」という。)を第1の発明とする。
 また、本発明の要旨とするところは、本粉体及び硬化性樹脂を含有する硬化性樹脂組成物(以下、「本樹脂組成物」という。)を第2の発明とする。
 更に、本発明の要旨とするところは、本樹脂組成物を硬化して得られる硬化物(以下、「本硬化物」という。)を第3の発明とする。
 本樹脂組成物は所定の温度で短時間の加熱によって高いゲル化が可能であり、本硬化物はイオン濃度が低く、本硬化物中での本粉体を構成するビニル重合体(以下、「本重合体」という。)の分散性が優れる。このため、本粉体、本樹脂組成物及び本硬化物は、近年の電子機器のファインピッチ化・薄膜化等に対応した高精度加工が要求される電子材料分野にも好適である。
 本粉体はアセトン可溶分が30質量%以上で、アセトン可溶分のMwが10万以上で、アルカリ金属イオンの含有量が10ppm以下で、体積平均一次粒子径(Dv)が200nm以上である。
 本粉体のアセトン可溶分が30質量%以上であれば、本樹脂組成物に充分なゲル化性を付与することができ、高温においてもエポキシ樹脂の流動が抑制される。
 また、本粉体のアセトン可溶分は、後述するエポキシ樹脂の粘度が極めて低い場合でも高いゲル化性を付与できることから、40質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上が更に好ましい。特に、低粘度で使用される用途では、少ない添加量で高いゲル化性を付与できることが要求されるため、アセトン可溶分が多いほど幅広い用途に使用できる。
 本発明において、アセトン可溶分は、後述するアセトン可溶分の測定法により得られたものをいう。
 本粉体のアセトン可溶分のMwが10万以上であれば、少ない添加量で高いゲル化性を付与でき、高温においてもエポキシ樹脂の流動が抑制される。また、エポキシ樹脂への溶解性が低下することがなく、短時間で充分なゲル状態にできることから、本粉体のアセトン可溶分のMwは2000万以下が好ましい。
 本粉体のアセトン可溶分のMwは、後述するエポキシ樹脂の粘度が極めて低い場合でも高いゲル化性を付与できることから、40万以上が好ましく、60万以上がより好ましく、80万以上が更に好ましく、100万以上が最も好ましい。また、一定温度で効率的にゲル状態にできることから、1000万以下がより好ましく、500万以下が更に好ましい。
 本発明においてゲル状態は、後述する測定法により得られたゲル化温度及びゲル化性能で評価することができる。
 また、本発明において、Mwは後述するMwの測定法により得られたものをいう。
 本粉体中のアルカリ金属イオンの含有量が10ppm以下で、本硬化物の絶縁特性が優れたものとなる。
 本粉体中のアルカリ金属イオンの含有量は、5ppm以下が好ましく、1ppm以下がより好ましい。硬化性樹脂組成物は様々な用途に用いられるが、半導体ウェハーに直接触れる用途では、高い電気特性が要求される。また電子機器の薄型化に伴い、僅かなイオン性不純物の存在が絶縁不良を生じる場合もある。
 従って、アルカリ金属イオンの含有量が上記の範囲内であれば、幅広い用途に使用できる。また、プレゲル剤を多量に必要とする用途でも使用できる。
 本発明において、本粉体中のアルカリ金属イオンの含有量はNaイオン及びKイオンの合計量であり、後述するアルカリ金属イオンの含有量の測定法により得られたものをいう。
 本粉体の体積平均一次粒子径(Dv)は200nm以上であり、500nm以上が好ましい。通常、噴霧乾燥法や湿式凝固法等によって得られる粉体は、一次粒子が多数集合した凝集粉体であるが、体積平均一次粒子径(Dv)が200nm以上の場合には、この凝集粉体が一次粒子に分散し易く、液状エポキシ樹脂等の硬化性樹脂に配合した際の本粉体の分散性が良好となる。また、体積平均一次粒子径(Dv)が200nm以上であれば、粒子が持つ総表面積を充分に小さくできるため、硬化性樹脂組成物の粘度が上昇しにくいという利点を持つ。
 また、ファインピッチ化や薄膜化への対応が可能であることから、本粉体の体積平均一次粒子径(Dv)は、8μm以下が好ましく、5μm以下がより好ましく、1μm以下が更に好ましい。
 本粉体は、粉体としての性状や構造は問わない。例えば、重合で得られた一次粒子が多数集合して凝集粉体(二次粒子)を形成していてもよく、それ以上の高次構造を形成していてもよい。但し、このような凝集粉体の場合、一次粒子同士が強固に結合せず、緩く凝集している状態が好ましい。これにより、硬化性樹脂中で一次粒子が微細、且つ均一に分散される。
 また、本粉体は、硬化性樹脂中での分散性が良好となることから、体積平均一次粒子径(Dv)の小さな粒子が少ないものが好ましく、単分散性の良好なものが好ましい。
 本発明において、本粉体の単分散性は、本粉体の体積平均一次粒子径(Dv)と個数平均一次粒子径(Dn)との比(Dv/Dn)で示される。本粉体のDv/Dnとしては3.0以下が好ましく、2.0以下がより好ましく、1.5以下が更に好ましい。本粉体の単分散性が高い(Dv/Dnが1に近い)ほど、本樹脂組成物のゲル化が短時間で急速に進行し、本樹脂組成物の貯蔵安定性との両立がし易くなる傾向にある。
 本粉体中の硫酸イオン(SO 2-)の含有量は20ppm以下が好ましい。電子材料に用いる硬化性樹脂組成物は、銅やアルミニウム等の金属製のワイヤーや回路配線等と接触する環境で用いられることから、硫酸イオンが残存すると金属腐食を引き起こし、導通不良や誤動作の原因となる場合がある。本粉体中の硫酸イオンの含有量が20ppm以下であれば、幅広い用途に使用できる。
 本発明において、本粉体中の硫酸イオンの含有量は、後述する硫酸イオンの含有量の測定法により得られたものをいう。
 本重合体を得るため、乳化重合法や懸濁重合法でビニル単量体を重合する場合、硫酸塩以外に、硫酸エステルやスルホン酸化合物等を用いることがある。これらの化合物に含まれる、スルホン酸イオン、スルフィン酸イオン、硫酸エステルイオンも、金属腐食を引き起こす場合がある。
 従って、ビニル単量体の重合時には、硫酸エステルやスルホン酸化合物等の使用量を減らすことが好ましい。
 本重合体は、ラジカル重合可能なビニル単量体(以下、「本単量体」という。)を重合して得られる。
 本重合体の重合方法としては、真球状粒子を得やすいこと及び粒子モルフォロジーを制御しやすいことから、乳化重合法、ソープフリー乳化重合法、膨潤重合法、ミニエマルション重合法、分散重合法及び微細懸濁重合法が好ましい。この中では、分散性に優れ、ファインピッチ化にも対応した粒子径を持つ重合体が得られることから、ソープフリー乳化重合法がより好ましい。
 本重合体は、本樹脂組成物の粘度が上昇せず流動性に優れることから、真球状の粒子が好ましい。
 本重合体(一次粒子)の内部モルフォロジーについては特に限定されるものではなく、重合体組成、分子量、ガラス転移温度、溶解度パラメーター等の各種因子が均一であっても、コアシェル構造やグラディエント構造等、一般的に認識されている様々な粒子モルフォロジーを有していてもよい。
 本重合体は、コアシェル粒子として知られる、2段階以上の同心円状のモルフォロジーを有することが好ましい。
 本重合体の内部モルフォロジーを制御する方法としては、例えば、粒子の内側と外側で溶解度パラメーターや分子量の異なる多層構造粒子にする方法が挙げられる。この方法は、本樹脂組成物の貯蔵安定性(ポットライフ)とゲル化速度とを両立し易くなることから好ましい。
 本重合体の内部モルフォロジーを制御するための、工業的に実用性の高い手法としては、例えば、異なる組成のビニル単量体混合物を多段階で、逐次的に滴下重合する方法が挙げられる。
 本重合体がコアシェル構造を有しているかどうかの判定方法としては、例えば、重合過程でサンプリングされる重合体粒子の粒子径が確実に成長していること、及び重合過程でサンプリングされる重合体粒子の最低造膜温度(MFT)や各種溶剤への溶解度が変化していることを、同時に満足することを確認することが挙げられる。
 また、透過型電子顕微鏡(TEM)により本重合体の切片を観察して、同心円状の構造の有無を確認する方法、又は凍結破断された本重合体の切片を走査型電子顕微鏡(クライオSEM)で観察して、同心円状の構造の有無を確認する方法が挙げられる。
 本粉体は、本単量体を乳化重合し、得られた本重合体のエマルションを噴霧乾燥することにより製造される。
 本単量体を乳化重合する際には、重合開始剤及び乳化剤を用いる。
 重合開始剤としては、過硫酸アンモニウム及びアゾ化合物から選ばれる少なくとも1種を用いることが好ましい。乳化剤としては、アンモニウム塩型アニオン系乳化剤及びノニオン系乳化剤から選ばれる少なくとも1種を用いることが好ましい。
 更に、本重合体の内部モルフォロジーを制御するため、異なる組成のビニル単量体混合物を2段階以上で乳化重合することが好ましい。
 本単量体としては、ラジカル重合可能なビニル単量体であれば特に限定されない。
 本単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02.6]デカン-8-イル-メタクリレート、ジシクロペンタジエニル(メタ)アクリレート等の(メタ)アクリレート;(メタ)アクリロニトリル等のシアン化ビニル単量体;スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N-メチル-2,2,6,6-テトラメチルピペリジル(メタ)アクリレート等の官能基含有(メタ)アクリレート;(メタ)アクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸等のアクリル酸類;(メタ)アクリルアミド;ビニルピリジン、ビニルアルコール、ビニルイミダゾール、ビニルピロリドン、酢酸ビニル、1-ビニルイミダゾール等のビニル単量体;モノメチルイタコネート、モノエチルイタコネート、モノプロピルイタコネート、モノブチルイタコネート、ジメチルイタコネート、ジエチルイタコネート、ジプロピルイタコネート、ジブチルイタコネート等のイタコン酸エステル;モノメチルフマレート、モノエチルフマレート、モノプロピルフマレート、モノブチルフマレート、ジメチルフマレート、ジエチルフマレート、ジプロピルフマレート、ジブチルフマレート等のフマル酸エステル;及びモノメチルマレート、モノエチルマレート、モノプロピルマレート、モノブチルマレート、ジメチルマレート、ジエチルマレート、ジプロピルマレート、ジブチルマレート等のマレイン酸エステルが挙げられる。
 これらの単量体は、1種を単独で又は2種以上を併用することができる。
 これらの単量体の中では、ラジカル重合が容易であり、且つ乳化重合が容易であることから、(メタ)アクリレート、官能基含有(メタ)アクリレート、アクリル酸類が好ましい。
 尚、塩化ビニルや塩化ビニリデンのようなハロゲン原子を含有する単量体は、金属腐食を引き起こす場合があることから、用いないことが好ましい。
 本単量体を2段階で逐次重合する場合には、本重合体の物性の観点から、1段目の重合に(メタ)アクリレート、2段目の重合に(メタ)アクリレート、官能基含有(メタ)アクリレート、アクリル酸類を用いることが好ましい。
 本単量体を3段階以上で逐次重合する場合には、本重合体の物性の観点から、内層の重合に(メタ)アクリレート、最外層の重合に(メタ)アクリレート、官能基含有(メタ)アクリレート、アクリル酸類を用いることが好ましい。
 尚、本発明において、(メタ)アクリレートとは、アクリレート又はメタクリレートを示す。
 本単量体を重合する際には、重合開始剤、乳化剤、分散安定剤、連鎖移動剤を用いることができる。
 重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩;アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、ジメチル2,2’-アゾビス-(2-メチルプロピオネート)等の油溶性アゾ化合物;4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(2-ヒドロキシエチル)]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]又はその塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]又はその塩、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]又はその塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}又はその塩、2,2’-アゾビス(2-メチルプロピオンアミジン)又はその塩、2,2’-アゾビス(2-メチルプロピンアミジン)又はその塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]又はその塩等の水溶性アゾ化合物;及び過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、ラウロイルパーオキサイド、プロピルベンゼンハイドロパーオキサイド、パーメンタハイドロパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサネート等の有機過酸化物が挙げられる。
 重合開始剤は、1種を単独で又は2種以上を併用することができる。
 これらの中では、アルカリ金属イオンを含有しない重合開始剤が好ましく、過硫酸アンモニウム及びアゾ化合物がより好ましい。また、塩化物イオンを含有しないアゾ化合物を過硫酸アンモニウムと併用することが、本粉体中の硫酸イオン(SO 2-)の含有量を低減できることから更に好ましい。
 また、本発明の目的を逸脱しない範囲で、ナトリウムホルムアルデヒドスルホキシレート、L-アスコルビン酸、フルクトース、デキストロース、ソルボース、イノシトール等の還元剤と、硫酸第一鉄、エチレンジアミン四酢酸二ナトリウム塩、過酸化物を組み合わせたレドックス系開始剤を用いることができる。
 乳化剤としては、例えば、アニオン系乳化剤、カチオン系乳化剤、ノニオン系乳化剤、ベタイン系乳化剤、高分子乳化剤及び反応性乳化剤が挙げられる。
 アニオン系乳化剤としては、例えば、アルキルスルホン酸ナトリウム等のアルキルスルホン酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩;ポリオキシエチレンアルキルリン酸カリウム等のアルキルリン酸エステル塩;アルキルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ジアルキルスルホコハク酸ナトリウム、ジアルキルスルホコハク酸アンモニウム等のジアルキルスルホコハク酸塩が挙げられる。
 カチオン系乳化剤としては、例えば、ステアリルアミン酢酸塩、ココナットアミン酢酸塩、テトラデシルアミン酢酸塩、オクタデシルアミン酢酸塩等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、アルキルベンジルメチルアンモニウムクロライド等の四級アンモニウム塩が挙げられる。
 ノニオン系乳化剤としては、例えば、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタンモノカプリレート、ソルビタンモノミリステート、ソルビタンモノベヘネート等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリイソステアレート等のポリオキシエチレンソルビタン脂肪酸エステル;ポリオキシエチレンソルビトールテトラオレエート等のポリオキシエチレンソルビトール脂肪酸エステル;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンミリスチルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレエート等のポリオキシエチレンアルキルエステル;ポリオキシエチレンアルキレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のポリオキシアルキレン誘導体が挙げられる。
 ベタイン系乳化剤としては、例えば、ラウリルベタイン、ステアリルベタイン等のアルキルベタイン;ラウリルジメチルアミンオキサイド等のアルキルアミンオキサイドが挙げられる。
 高分子乳化剤としては、例えば、高分子カルボン酸ナトリウム塩、高分子ポリカルボン酸アンモニウム塩、高分子ポリカルボン酸が挙げられる。
 反応性乳化剤としては、例えば、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム等のポリオキシアルキレンアルケニルエーテルが挙げられる。
 乳化剤は、1種を単独で又は2種以上を併用することができる。
 これらの中では、アルカリ金属イオンを含有しない乳化剤が好ましく、ジアルキルスルホコハク酸塩及びポリオキシアルキレン誘導体がより好ましい。また、ジアルキルスルホコハク酸塩とポリオキシアルキレン誘導体を併用することが、スルホン酸化合物等の使用量を低減できることから更に好ましい。
 分散安定剤としては、例えば、リン酸カルシウム、炭酸カルシウム、水酸化アルミニウム、澱粉末シリカ等の水難溶性無機塩;ポリビニルアルコール、ポリエチレンオキサイド、セルロース誘導体等のノニオン系高分子化合物;及びポリアクリル酸又はその塩、ポリメタクリル酸又はその塩、メタクリル酸エステルとメタクリル酸又はその塩との共重合体等のアニオン系高分子化合物が挙げられる。これらの中では、電気特性に優れることからノニオン系高分子化合物が好ましい。また、重合安定性との両立の観点から目的に応じて2種以上の分散安定剤を併用することができる。
 連鎖移動剤としては、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-テトラデシルメルカプタン、n-ヘキシルメルカプタン、n-ブチルメルカプタン等のメルカプタン;四塩化炭素、臭化エチレン等のハロゲン化合物;及びα-メチルスチレンダイマーが挙げられる。
 これらの連鎖移動剤は、1種を単独で又は2種以上を併用することができる。
 本粉体は、本重合体のエマルションを、噴霧乾燥法(スプレードライ法)により粉体として回収して得られる。
 噴霧乾燥法は、重合体のエマルションを微小液滴状に噴霧し、これに熱風を当てて乾燥するものである。
 噴霧乾燥法において、液滴を発生する方法としては、例えば、回転円盤型式、圧力ノズル式、二流体ノズル式、加圧二流体ノズル式が挙げられる。
 乾燥機容量は、実験室で使用するような小規模なスケールから、工業的に使用するような大規模なスケールまでのいずれでも使用することができる。
 乾燥用加熱ガスの供給部である入口部、また、乾燥用加熱ガス及び粉体の排出口である出口部の位置も、通常用いられている噴霧乾燥の装置と同様であってよい。
 噴霧乾燥する際には、本重合体のエマルションを単独で用いても、複数を混合して用いてもよい。また、噴霧乾燥時のブロッキング、嵩比重等の粉体特性を向上させるために、シリカ、タルク、炭酸カルシウム等の無機質充填剤や、ポリアクリレート、ポリビニルアルコール、ポリアクリルアミド等を添加してもよい。
 また、必要に応じて、酸化防止剤や添加剤等を加えて噴霧乾燥してもよい。
 本発明において、本粉体は硬化性樹脂に添加して使用することができる。
 硬化性樹脂としては熱硬化性樹脂及び活性エネルギー線硬化性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、オキセタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、アクリル樹脂及びポリイミド樹脂が挙げられる。これらは、1種を単独で又は2種以上を併用することができる。
 活性エネルギー線硬化性樹脂は、紫外線や電子線等の照射により硬化する樹脂が挙げられ、例えば、活性エネルギー線硬化性アクリル樹脂、活性エネルギー線硬化性エポキシ樹脂及び活性エネルギー線硬化性オキセタン樹脂が挙げられる。
 また、本発明においては、硬化性樹脂として、目的に応じて熱硬化と活性エネルギー線硬化のハイブリッド硬化(デュアルキュア)タイプのものを使用することができる。
 これらの中で硬化性樹脂としては、絶縁性が高く電気特性に優れ電子材料分野に好適であることから、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂及びオキセタン樹脂が好ましい。
 エポキシ樹脂としては、例えば、JER827、JER828、KER834(ジャパンエポキシレジン(株)製)、RE-310S(日本化薬(株)製)等のビスフェノールA型エポキシ樹脂;JER806L(ジャパンエポキシレジン(株)製)、RE303S-L(日本化薬(株)製)等のビスフェノールF型エポキシ樹脂;HP-4032、HP-4032D(大日本インキ化学(株)製)等のナフタレン型エポキシ樹脂;NC-3000(日本化薬(株)製)、YX4000(ジャパンエポキシレジン(株)製)等のビフェニル型エポキシ樹脂;YDC-1312、YSLV-80XY、YSLV-120TE(東都化成(株)製)等の結晶性エポキシ樹脂;YX8000(ジャパンエポキシレジン(株)製)、CEL2021P(ダイセル化学工業(株)製)等の脂環式エポキシ樹脂;EPPN-501H、EPPN-501HY、EPPN-502H(日本化薬(株)製)等の耐熱性エポキシ樹脂が挙げられる。
 その他にも、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化エポキシ樹脂及びグリシジルアミン型エポキシ樹脂が挙げられる。
 また、エポキシ樹脂としては、上記エポキシ樹脂のプレポリマーや、ポリエーテル変性エポキシ樹脂、シリコーン変性エポキシ樹脂のような前記エポキシ樹脂と他の重合体との共重合体及びエポキシ樹脂の一部がエポキシ基を有する反応性希釈剤で置換されたものも挙げられる。
 上記の反応性希釈剤としては、例えば、レゾルシングリシジルエーテル、t-ブチルフェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、1-(3-グリシドキシプロピル)-1,1,3,3,3-ペンタメチルシロキサン、N-グリシジル-N,N-ビス[3-(トリメトキシシリル)プロピル]アミン等のモノグリシジル化合物;ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等のジグリシジル化合物;及び2-(3,4)-エポキシシクロヘキシル)エチルトリメトキシシラン等のモノ脂環式エポキシ化合物が挙げられる。
 これらのエポキシ樹脂は、1種を単独で又は2種以上を併用することができる。
 本発明においては、エポキシ樹脂としては、本樹脂組成物にゲル化性を付与する点で、常温で液体のエポキシ樹脂か、又は常温で固体であるが加熱時に硬化が充分に進行する前に液体化するエポキシ樹脂を主成分とするものが好ましい。
 また、本樹脂組成物を液状封止材として使用する場合は、エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルメタンジグリシジルエーテル型エポキシ樹脂、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、4,4’-ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化クレゾールノボラック型エポキシ樹脂及びビスフェノールD型エポキシ樹脂が挙げられる。
 本発明において、本樹脂組成物は前述の本粉体及び硬化性樹脂を含有するものである。
 本樹脂組成物中の本粉体の配合率としては1質量%以上が好ましく、3質量%以上がより好ましい。本粉体の配合率が1質量%以上で充分なゲル状態を実現することができ、用途・加工方法による染み出しやパターン乱れ等が生じる可能性を抑制することができる。また、本粉体の配合率としては50質量%以下が好ましく、30質量%以下がより好ましい。本粉体の配合率が50質量%以下で本樹脂組成物のペースト粘度が上昇するのを抑制し、用途によって加工性・作業性が低下する可能性を抑制することができる。
 また、所望のゲル化性を発現させるために、ゲル化温度の異なる複数の本粉体を併用してもよい。
 本樹脂組成物は、ディスペンサー、スクリーン印刷、ディッピング、注型、ナイフコーターやドクターコーター等によるコーティング等の各種用途に使用することができる。
 本樹脂組成物には、必要に応じて各種のフィラー及び添加剤を配合することができる。
 フィラーとしては、例えば、銀粉、金粉、ニッケル粉、銅粉等の導電性フィラー;及び窒化アルミニウム、炭酸カルシウム、シリカ、アルミナ等の絶縁フィラーが挙げられる。フィラーの配合量は添加目的に応じて適宜必要量配合できる。
 シリカとしては、例えば、形状が板状、芯状、球状又は不定形である、結晶性又は非晶性シリカが挙げられる。
 球状のシリカは、本樹脂組成物のゲル化性及び粘度特性を損なわない範囲で、公知のものを用いることができる。具体的には、粗粒子をカットしたシリカ;分散性、高流動性及び高充填の点から、ホースフィールズのパッキングモデルに準拠して様々な粒子径のシリカを配合したシリカ粒子を用いることができる。
 添加剤としては、例えば、チキソ付与剤、流動性向上剤、難燃剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、イオン吸着体、カップリング剤、離型剤及び応力緩和剤が挙げられる。
 難燃剤は、本発明の目的を逸脱しない範囲であれば、リン系、ハロゲン系、無機系難燃剤等、公知のものを用いればよい。
 耐熱安定剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が挙げられる。
 イオウ系酸化防止剤としては、例えば、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類が挙げられる。
 これらの酸化防止剤はそれぞれ単独で使用できるが、フェノール系/イオウ系、又はフェノール系/リン系のように2種以上を併用することが好ましい。
 本発明においては、本樹脂組成物中の硬化性樹脂としてエポキシ樹脂を使用する場合、例えば、酸無水物、アミン化合物、フェノール化合物等の硬化剤を使用して硬化させることができる。硬化剤を使用することによりエポキシ樹脂の硬化性及び硬化物特性を調整することができ、特に、硬化剤として酸無水物を使用する場合、本硬化物の耐熱性や耐薬品性を向上させることができ、好ましい。
 前記の酸無水物としては、例えば、無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、無水メチルハイミック酸、メチルシクロヘキセンテトラカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、ドデセニル無水コハク酸、ポリアゼライン酸無水物及びポリ(エチルオクタデカン二酸)無水物が挙げられる。これらの中で、耐候性、耐光性、耐熱性等が求められる用途ではメチルヘキサヒドロ無水フタル酸及びヘキサヒドロ無水フタル酸が好ましい。
 アミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、m-キシレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン;イソホロジアミン、1,3-ビスアミノメチルシクロヘキサン、メチレンビスシクロヘキサナミン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、2,5(2,6)-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等の脂環族ポリアミン;ジアミノジエチルジフェニルメタン、ジアミノフェニルメタン、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジエチルトルエン等の芳香族ポリアミンが挙げられる。
 耐候性、耐光性、耐熱性等が求められる用途では2,5(2,6)-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン及びイソホロンジアミンが好ましい。これらは、1種を単独で又は2種以上を併用することができる。
 フェノール化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD及びこれらビスフェノール類のジアリル化物の誘導体が挙げられる。これらの中で、本硬化物の機械強度及び硬化性に優れることからビスフェノールAが好ましい。これらは、1種を単独で又は2種以上を併用することができる。
 前記の硬化剤の使用量としては、本硬化物の耐熱性及び硬化性に優れることからエポキシ樹脂100質量部に対して20~120質量部が好ましく、60~110質量部がより好ましい。硬化剤の使用量としては、エポキシ基1当量あたり、酸無水物の場合には、酸無水物基が好ましくは0.7~1.3当量、より好ましくは0.8~1.1当量程度であり、アミン系化合物の場合には、活性水素が好ましくは0.3~1.4当量、より好ましくは0.4~1.2当量程度、フェノール化合物の場合には、活性水素が好ましくは0.3~0.7当量、より好ましくは0.4~0.6当量程度である。
 本発明においては、エポキシ樹脂を硬化させる際に、必要に応じて硬化促進剤、潜在性硬化剤等を使用することができる。
 硬化促進剤としては、エポキシ樹脂の熱硬化触媒として用いられている公知のものを使用することができ、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール化合物;イミダゾール化合物とエポキシ樹脂のアダクト;トリフェニルホスフィン等の有機リン化合物;テトラフェニルホスフィンテトラフェニルボレート等のボレート類;及びジアザビシクロウンデセン(DBU)が挙げられる。これらは、1種を単独で又は2種以上を併用することができる。
 硬化促進剤が使用される場合、硬化促進剤は、通常、エポキシ樹脂100質量部に対して0.1~8質量部、好ましくは0.5~6質量部が添加される。
 潜在性硬化剤は、常温では固体であり、エポキシ樹脂の加熱硬化時に液化して硬化剤として作用するものである。
 潜在性硬化剤としては、例えば、ジシアンジアミド、カルボヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、イミノジ酢酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカンジヒドラジド、ヘキサデカンジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、2,6-ナフトエ酸ジヒドラジド、4,4’-ビスベンゼンジヒドラジド、1,4-ナフトエ酸ジヒドラジド、アミキュアVDH及びアミキュアUDH(いずれも商品名、味の素(株)製)、クエン酸トリヒドラジド等の有機酸ヒドラジド及び各種のアミンアダクト系化合物が挙げられる。これらは、1種を単独で又は2種以上を併用することができる。
 本発明においては、本樹脂組成物中の硬化性樹脂としてオキセタン樹脂を使用する場合、例えば、酸無水物等の硬化剤、又は、熱によりオキセタン環の開環及び重合を開始させることができる硬化触媒を配合して硬化させることができる。オキセタン樹脂としては、例えば、EHO、OXBP、OXMA、OXTP(宇部興産(株)製)が挙げられる。
 硬化剤又は硬化触媒の使用量は、エポキシ樹脂の場合と同様である。また、オキセタン樹脂にエポキシ樹脂を併用してもよい。
 本樹脂組成物を調製する際には、公知の混練装置を用いることができる。
 本樹脂組成物を得るための混練装置としては、例えば、らいかい機、アトライタ、プラネタリミキサ、ディゾルバー、三本ロール、ボールミル及びビーズミルが挙げられる。また、これらは2種以上を併用することができる。
 本樹脂組成物に添加剤等を配合する場合、配合する順番は特に問わないが、本発明の効果を充分に発揮するために、本粉体はできるだけ最後に混練することが好ましい。また、混練による剪断発熱等で、系内の温度が上がるような場合には、混練中に温度を上げない工夫をすることが好ましい。
 熱安定剤等は、予め水溶液の状態で本重合体のエマルションに配合し、前記した条件で噴霧乾燥して用いることもできる。
 本樹脂組成物は、一次実装用アンダーフィル材、二次実装用アンダーフィル材、ワイヤーボンドにおけるグラブトップ材等の液状封止材;基板上の各種チップ類を一括で封止する封止用シート;プレディスペンス型のアンダーフィル材;ウエハーレベルで一括封止する封止シート;3層銅張積層板用の接着層;ダイボンドフィルム、ダイアタッチフィルム、層間絶縁フィルム、カバーレイフィルム等の接着層;ダイボンドペースト、層間絶縁ペースト、導電ペースト、異方導電ペースト等の接着性ペースト;発光ダイオードの封止材;光学接着剤;液晶、有機EL等の各種フラットパネルディスプレイのシーリング材等の各種用途に使用することができる。
 例えば、半導体IC電極とパッケージ基板電極とを金属接合(一次実装)した後、又は、半導体ICパッケージをマザー基板に搭載した(二次実装)後、各接合部間に充填するような後供給型アンダーフィルとして、一般的に用いられるディスペンサー塗布で使用することができる。
 また、半導体IC電極とパッケージ基板電極とを金属結合又は圧接接続する前にパッケージ基板上に塗布するような先供給アンダーフィルとしては、一般的に液状とフィルム状があるが、それぞれの形状に応じて、ディスペンサーやスクリーン印刷のどちらにも使用することができる。
 また、プレス装置やロールラミネーター等で半導体や電子デバイスを封止できるもので、デバイスの上にシートをおき、熱と圧力で樹脂を流動させ封止させるような封止用シート状物の用途にも使用できる。
 このような目的で使用される封止用シート状物としては、剥離フィルムに保護された状態で、その形状がロール状、短冊状、ラベル状等様々であり、ワイヤーボンドタイプ、フリップチップ、ウエハーレベルCSP、モジュール等の封止に使用できるようなものが挙げられる。
 また、その厚みとしては、例えば、30~500μmが挙げられる。
 半導体シリコンチップをリードフレームに搭載するために用いられるダイアタッチペーストとしては、例えば、シリンジディスペンス法、ラインドロー(PD)法、スタンピング法、スクリーン印刷法等が挙げられる。
 この場合の本樹脂組成物の配合としては、例えば、用いるベース樹脂としては、エポキシ樹脂、ポリイミド樹脂、シアネートエステル樹脂、マレイミド樹脂が挙げられる。
 フィラーとしては、Ag、Au、Cu、Ni等の導電性タイプ;SiO、Al、BN等の絶縁性タイプが挙げられる。希釈剤としては、例えば、ブチルセルソルブ、ブチルセルソルブアセテート等の溶剤タイプ;反応性希釈剤(低粘度エポキシ)等の無溶剤タイプが挙げられる。
 本樹脂組成物をワニス化すれば、ガラスクロス等の基材に含浸させて半硬化の状態とし、プリプレグとしても使用できる。プリプレグの厚みは、40~200μmと用途により様々である。
 本硬化物は本樹脂組成物を硬化して得られるものである。
 硬化性樹脂として熱硬化性樹脂を使用する場合、硬化条件としては、例えば、80~180℃で10分~5時間程度である。
 また、硬化性樹脂として活性エネルギー線硬化性樹脂を使用する場合、使用する活性エネルギー線としては、例えば、電子線、紫外線、ガンマ線及び赤外線が挙げられる。また、活性エネルギー線の硬化条件としては、紫外線で硬化させる場合、高圧水銀灯、エキシマランプ、メタルハライドランプ等を備えた公知の紫外線照射装置を使用することができる。
 紫外線照射量としては50~1,000mJ/cm程度である。電子線で硬化させる場合、公知の電子線照射装置を使用することができ、電子線照射量としては10~100kGy程度である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下において、「部」及び「%」はそれぞれ「質量部」及び「質量%」を示す。但し、貯蔵安定性における増粘率「%」と誘電率における増加率「%」はこの限りではない。
 本実施例における各評価項目は、以下の方法により実施した。
(1)エマルション粒子径及び単分散性
 ビニル重合体のエマルションをイオン交換水で希釈し、レーザー回折散乱式粒度分布測定装置((株)堀場製作所製LA-910W)を用い、エマルション粒子径として体積平均一次粒子径(Dv)及び個数平均一次粒子径(Dn)を測定した。
 屈折率は仕込みモノマー組成から算出される屈折率を用いた。粒子がコアシェル構造等の多層構造を持つ場合には、各層毎の屈折率を算出し、層毎の質量比で全体平均を算出して用いた。
 いずれも平均径としてはメジアン径を用いた。また、Dv及びDnの値より単分散性(Dv/Dn)を求めた。下記の基準で単分散性を評価した。
  A:1.5以下
  B:1.5を超え、2.0以下。
  C:2.0を超え、3.0以下。
  D:3.0を超える
 ビニル重合体エマルションの試料濃度は、装置に付属の散乱光強度モニターにおいて適正範囲となるよう適宜調整した。
(2)アセトン可溶分
 ビニル重合体粉体1gをアセトン50gに溶解させ、70℃で6時間還流及び抽出した後、遠心分離装置((株)日立製作所製、CRG SERIES)を用いて、4℃にて14,000rpmで30分間遠心分離した。分離したアセトン可溶分をデカンテーションで取り除き、アセトン不溶分を真空乾燥機にて50℃で24時間乾燥させて質量を測定した。アセトン可溶分(%)は以下の式にて算出した。
  (アセトン可溶分)=(1-アセトン不溶分の質量)×100
(3)アセトン可溶分の分子量
 上記のアセトン可溶分の測定で得られたアセトン可溶分からアセトンを留去してアセトン可溶分の固形物を得た。この固形物についてゲルパーミエーションクロマトグラフィを用いて下記の条件で質量平均分子量(Mw)を測定した。また、併せて数平均分子量(Mn)も測定した。
  装置 :東ソー(株)製HLC8220
  カラム:東ソー(株)製TSKgel SuperHZM-M(内径4.6mm×長さ15cm)
      本数;4本、排除限界;4×10
  温度 :40℃
  キャリアー液:テトラヒドロフラン
  流量 :0.35ml/分
  サンプル濃度 :0.1%
  サンプル注入量:10μl
  標準 :ポリスチレン
(4)イオン性不純物
 ビニル重合体粉体20gをガラス製耐圧容器に量り取り、これにメスシリンダーを用いてイオン交換水200mlを加え、しっかり蓋をして強く振り混ぜて均一に分散させ、ビニル重合体粉体の分散液を得た。この後、得られた分散液を95℃のギヤーオーブン内に20時間静置してビニル重合体粉体中のイオン分の抽出を行なった。
 次いで、ガラス容器をオーブンから取り出して冷却した後、ギヤーオーブン加熱後の分散液を0.2μmセルロース混合エステル製メンブレンフィルター(アドバンテック東洋(株)製、型番:A020A025A)で濾過し、濾液を100mlサンプル瓶2本に100mlづつ小分けし、各サンプル瓶を用いてビニル重合体粉体中のアルカリ金属イオン及び硫酸イオンの含有量を下記の条件でそれぞれ測定した。尚、アルカリ金属イオンの含有量はNaイオン及びKイオンの合計量を測定した。
 (a)アルカリ金属イオンの含有量の測定条件
  ICP発光分析装置:Thermo社製IRIS「Intrepid II XSP」
  定量法:濃度既知試料(0ppm、0.1ppm、1ppm及び10ppmの4点)による絶対検量線法
  測定波長:Na;589.5nm及びK;766.4nm
 (b)硫酸イオンの含有量の測定条件
  イオンクロマトグラフ:日本ダイオネクス(株)製「IC-20型」
  分離カラム:IonPac AS12A
  定量法:硫酸イオン濃度4ppmの既知試料1点による絶対検量線法
(5)初期粘度
 エポキシ樹脂組成物を調製後、直ちに25℃に調温し、BM型粘度計(東京計器(株)製B型粘度計、ローターNo.4、回転数6rpm)を用いて粘度を測定し、エポキシ樹脂組成物の初期粘度とした。
(6)分散性
 エポキシ樹脂組成物中のビニル重合体粉体の分散状態を、粒ゲージを用いてJIS K-5600に準拠して測定し、下記の基準で分散性を評価した。
  A:1μm以下
  B:1μmを超え、10μm以下。
  C:10μmを超え、20μm以下。
  D:20μmを超える
(7)ゲル化温度及び硬化温度
 エポキシ樹脂組成物を動的粘弾性測定装置(ユービーエム(株)製「Rheosol G-3000」、パラレルプレート直径40mm、ギャップ0.4mm、周波数1Hz、捻り角度1度)を用い、開始温度40℃、終了温度200℃及び昇温速度4℃/分の条件で粘弾性の温度依存性を測定した。
 また、測定開始時に10以上である、貯蔵弾性率G’と損失弾性率G”との比(G”/G’=tanδ)が測定開始後昇温して10となる温度を求めた。
 ビニル重合体粉体を含まないエポキシ樹脂組成物を試料に用いた場合、この温度を硬化温度(T)とし、ビニル重合体粉体を含むエポキシ樹脂組成物を試料に用いた場合、この温度をゲル化温度(T)とし、下記の基準でゲル化温度を評価した。
  A:硬化温度より低い温度でゲル化する(T>T
  D:硬化温度に達するまでゲル化しない(T≦T
(8)ゲル化性能
 上記のビニル重合体粉体を含むエポキシ樹脂組成物のゲル化温度の測定において、ゲル化温度-20℃での貯蔵弾性率G’をG’、ゲル化温度+20℃での貯蔵弾性率G’をG’(到達弾性率)とし、その比率(G’/G’)を求めて、下記の基準でゲル化性能を評価した。
 尚、G’の数値で「7.07E-03」とあるのは、「7.07×10-3」を意味する。
  A:1000以上
  B:100以上、1000未満。
  C:10以上、100未満。
  D:10未満
(9)貯蔵安定性
 エポキシ樹脂組成物の-10℃における貯蔵安定性を、前記の初期粘度の測定と同様にBM型粘度計を用いて24時間貯蔵後の粘度を測定し、下式により増粘率を算出した。
  [増粘率]=(([24時間貯蔵後の粘度]/[初期粘度])-1)×100(%)
 更に、ビニル重合体粉体を含まないエポキシ樹脂組成物の増粘率をR、ビニル重合体粉体を含むエポキシ樹脂組成物の増粘率をRとし、その比率(R/R)を求めて、下記の基準で貯蔵安定性を評価した。ここで、Rが1%未満となる場合には、Rを1%として、比率(R/R)を求めた。
  A:10以下
  B:10を超えて、100以下。
  C:100を超える
  E:測定不能
 尚、-10℃における貯蔵安定性の評価に際しては、エポキシ樹脂組成物を-10℃の冷蔵庫に24時間保管した後、取り出して直ぐに25℃に調温したものについて粘度を測定した。
(10)比誘電率
 エポキシ樹脂組成物の硬化物の試験片(長さ30mm、幅30mm及び厚さ3mm)を190℃で6時間アニールした後、温度23℃及び湿度50%下にて24時間以上調湿した後、比誘電率の測定装置(アジレント・テクノロジー(株)製、RF impedance/material analyzer HP4291B(商品名)、誘電率測定用電極;HP16453A、マイクロメータ((株)ミツトヨ製))を用いて、周波数1GHzにおける比誘電率を測定した。
 ビニル重合体粉体を含まないエポキシ樹脂組成物の比誘電率をεrB、ビニル重合体粉体を含むエポキシ樹脂組成物の比誘電率をεrAとし、下式により増加率を求め、下記の基準で評価した。
  [増加率]=((εrA/εrB)-1)×100(%)
  A:1.0以下
  B:1.0を超えて、2.5以下。
  C:2.5を超えて、3.0以下。
  D:3.0を超える
[ビニル重合体粉体の調製]
 下記の実施例1~11及び比較例1~4に従い、ビニル重合体エマルション(L1)~(L14)及びビニル重合体粉体(P1)~(P15)を製造した。実施例1~11及び比較例1~4では下記の原料を使用した。
  ジ-2-エチルヘキシルスルホコハク酸アンモニウム:東邦化学工業(株)製、商品名「リカコールM-300」
  ポリオキシエチレンジスチレン化フェニルエーテル:花王(株)製、商品名「エマルゲンA-90」
  メチルメタクリレート  :三菱レイヨン(株)製、商品名「アクリエステルM」
  n-ブチルメタクリレート:三菱レイヨン(株)製、商品名「アクリエステルB」
  n-ブチルアクリレート :三菱化学(株)製
  アリルメタクリレート  :三菱レイヨン(株)製、商品名「アクリエステルA」
  i-ブチルメタクリレート:三菱レイヨン(株)製、商品名「アクリエステルIB」
  メタクリル酸      :三菱レイヨン(株)製、商品名「アクリエステルMAA」
  2-ヒドロキシエチルメタクリレート:三菱レイヨン(株)製、商品名「アクリエステルHO」
  アルキルメタクリレート :三菱レイヨン(株)製、商品名「アクリエステルSL」
  n-オクチルメルカプタン:片山化学(株)製(試薬特級品)
  2,2’-アゾビス[N-(2カルボキシエチル)-2-メチルプロピオンアミジン]ヒドレート:和光純薬(株)製、製品名「VA-057」(10時間半減期温度57℃)
  2,2'-アゾビス(2,4-ジメチルバレロニトリル):和光純薬(株)製、商品名「V-65」(10時間半減期温度51℃)
  1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート:日本油脂(株)製、商品名「パーオクタO」
[実施例1]ビニル重合体エマルション(L1)及びビニル重合体粉体(P1)の製造
 マックスブレンド攪拌機、還流冷却管、温度制御装置、滴下ポンプ及び窒素導入管を備えた2リットルのセパラブルフラスコにイオン交換水624.0gを投入し、120rpmで攪拌しながら窒素ガスのバブリングを30分間行なった。
 別途、メチルメタクリレート226.7g及びn-ブチルメタクリレート173.3gを混合して第1段目の重合に用いる単量体混合物(M1)を用意した。
 単量体混合物(M1)の内の40.0gを上記フラスコ内に投入した後、窒素雰囲気下で80℃に昇温した。次いで、予め調製した過硫酸アンモニウム0.32g及びイオン交換水16.0gの水溶液を一括投入して60分間保持し、シード粒子を形成させた。
 上記のシード粒子が形成されたフラスコ内に、残りの単量体混合物(M1)360.0g、ジ-2-エチルヘキシルスルホコハク酸アンモニウム4.0g及びイオン交換水200.0gをホモジェナイザー(IKA社製「ウルトラタラックスT-25」、25000rpm)で乳化処理して得られた混合物を150分かけて滴下して1時間保持し、第1段目の重合を終了した。
 次いで、メチルメタクリレート253.0g、i-ブチルメタクリレート128.3g、メタクリル酸9.3g、2-ヒドロキシエチルメタクリレート9.4g、ジ-2-エチルヘキシルスルホコハク酸アンモニウム4.0g及びイオン交換水200.0gをホモジェナイザー(IKA社製「ウルトラタラックスT-25」、25000rpm)で乳化処理して得られた第2段目の重合に用いる単量体混合物を150分かけて滴下して1時間保持し、ビニル重合体エマルション(L1)を得た。得られたビニル重合体エマルション(L1)のエマルション粒子径の評価結果を表1に示す。
 得られたビニル重合体エマルション(L1)を、大川原化工機(株)製L-8型スプレードライヤーを用い、下記条件で噴霧乾燥処理してビニル重合体粉体(P1)を得た。得られたビニル重合体粉体(P1)のアセトン可溶分、アセトン可溶分のMw、Mn及びイオン性不純物の含有量の評価結果を表2に示す。
[噴霧乾燥処理条件]
  噴霧方式:回転ディスク式
  ディスク回転数:25,000rpm
  熱風温度
   入口温度:145℃
   出口温度:65℃
Figure JPOXMLDOC01-appb-T000001
 表中の略号は以下の化合物を示す。
  乳化剤1 :ジ-2-エチルヘキシルスルホコハク酸アンモニウム
  乳化剤2 :ポリオキシエチレンジスチレン化フェニルエーテル
  MMA  :メチルメタクリレート
  n-BMA:n-ブチルメタクリレート
  n-BA :n-ブチルアクリレート
  AMA  :アリルメタクリレート
  IBMA :i-ブチルメタクリレート
  MAA  :メタクリル酸
  HEMA :2-ヒドロキシエチルメタクリレート
  SLMA :アルキルメタクリレート
  n-OM :n-オクチルメルカプタン
  VA-057:2,2’-アゾビス[N-(2カルボキシエチル)-2-メチルプロピオンアミジン]ヒドレート
  V-65 :2,2’-アゾビス(2,4-ジメチルバレロニトリル)
  パーオクタO:1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート
Figure JPOXMLDOC01-appb-T000002
[実施例2~10、比較例1~4]ビニル重合体エマルション(L2)~(L9)、(L11)~(L14)、及びビニル重合体粉体(P2)~(P10)、(P12)~(P15)の製造
 実施例2~10、及び比較例1~4は、表1に示す原料組成及び重合条件とする以外は、実施例1と同様にしてビニル重合体エマルション(L2)~(L9)、(L11)~(L14)を得た。得られた重合体エマルションの粒子径の評価結果を表1に示す。
[実施例11]ビニル重合体エマルション(L10)及びビニル重合体粉体(P11)の製造
 マックスブレンド攪拌機、還流冷却管、温度制御装置、滴下ポンプ及び窒素導入管を備えた2リットルのセパラブルフラスコにイオン交換水980.0gを投入し、120rpmで攪拌しながら窒素ガスのバブリングを30分間行なった後、窒素雰囲気下で80℃に昇温した。
 次いで、メチルメタクリレート682.06g、アルキルメタクリレート(SLMA)17.94g、ジ-2-エチルヘキシルスルホコハク酸アンモニウム7.0g、「パーオクタO」1.40g、イオン交換水350.0gを、ホモジェナイザー(IKA社製「ウルトラタラックスT-25」、25000rpm)で乳化処理して得られた混合物を、反応容器に一括投入して300分間保持し、ビニル重合体エマルション(L10)を得た。得られたビニル重合体エマルション(L10)の粒子径の評価結果を表1に示す。
 得られたビニル重合体エマルション(L10)は、実施例1と同様に噴霧乾燥処理して、ビニル重合体粉体(P11)を得た。
 ビニル重合体粉体(P2)~(P4)、(P6)~(P9)、(P12)~(P15)の製造では、それぞれビニル重合体エマルション(L2)~(L4)、(L6)~(L9)、(L11)~(L14)を使用した。
 ビニル重合体粉体(P5)の製造では、ビニル重合体エマルション(L2)50%及びビニル重合体エマルション(L5)50%の混合エマルションを使用し、ビニル重合体粉体(P10)の製造では、ビニル重合体エマルション(L2)50%及びビニル重合体エマルション(L12)50%の混合エマルションを使用した。それ以外は、実施例1と同様にしてビニル重合体粉体を製造した。
 得られたビニル重合体粉体(P2)~(P15)のアセトン可溶分、アセトン可溶分のMw、Mn及びイオン性不純物の含有量の評価結果を表2に示す。
[比較例5]ビニル重合体粉体(P16)
 ビニル重合体粉体(P16)として、F351(ガンツ化成(株)製)を用いた。アセトン可溶分、アセトン可溶分のMw、Mn及びイオン性不純物の含有量の評価結果を表2に示す。
[実施例12]
 表3に示す、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、「エピコート828」(商品名))100部、及びビニル重合体粉体(P1)10部を計量し、遊星運動式真空ミキサー((株)シンキー製、「泡取り練太郎」ARV-200(商品名))を使用して、2,000Paの減圧下で自転回転数1,000rpm及び公転回転数2,000rpmで2分混練・脱泡を行ない、混練物を得た。得られた混練物を3本ロールミル(EXAKT社製、「M-80E」)を使用し、ロール回転数200rpm、ロール間隔20μm・10μmで1パス、10μm・5μmで1パス、5μm・5μmで1パス処理した。
 その後、表3に示す、硬化剤(新日本理化(株)製、酸無水物系硬化剤「リカシッドMH-700」(商品名))85部、及び硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)1部を加え、再び遊星運動式真空ミキサー((株)シンキー製、「泡取り練太郎」ARV-200(商品名))を使用して、2,000Paの減圧下で自転回転数1,000rpm及び公転回転数2,000rpmで1分混練・脱泡を行ない、エポキシ樹脂組成物(C1)を得た。
 得られたエポキシ樹脂組成物(C1)について初期粘度、分散性、ゲル化温度、弾性率、貯蔵安定性の評価を実施した。評価結果を表3に示す。
 遊星運動式真空ミキサー((株)シンキー製、「泡取り練太郎」ARV-200(商品名))を使用して、2,000Paの減圧下で自転回転数1,000rpm及び公転回転数2,000rpmで2分混練・脱泡した後、3本ロールミル(EXAKT社製、「M-80E」)を使用し、ロール回転数200rpm、ロール間隔20μm・10μmで1パス、10μm・5μmで1パス、5μm・5μmで1パス処理する一連の操作を「一次混練」という。
 その後、再び遊星運動式真空ミキサー((株)シンキー製、「泡取り練太郎」ARV-200(商品名))を使用して、2,000Paの減圧下で自転回転数1,000rpm及び公転回転数2,000rpmで1分混練・脱泡する操作を「二次混練」という。
[硬化物の作製]
 長さ300mm×幅300mm×厚さ5mmの強化ガラス板2枚の、それぞれの強化ガラス板の片面にPETフィルム(東洋紡(株)製、商品名:TN200)を貼り、PETフィルム面が向き合うように並べ、強化ガラス板の間に厚み3mmのテフロン(登録商標)製のスペーサーを挟んで型を作製した。この型の中にエポキシ樹脂組成物(C1)を流し込んでクランプで固定し、80℃で2時間予備硬化を行なった後、120℃で6時間硬化を行ない、型から取り出して厚さ3mmの硬化物を作製した。得られた硬化物は180℃で6時間かけてアニール処理を施し、25℃で24時間以上調温した。
 得られた硬化物から長さ30mm×幅30mm×厚さ3mmの試験片を切り出し、比誘電率の評価を実施した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例13~22、比較例6~11]
 エポキシ樹脂組成物(C1)の代わりに、表3に示すエポキシ樹脂組成物(C2)~(C17)を使用した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C2)~(C17)の評価を実施した。
 また、エポキシ樹脂組成物(C1)の代わりにエポキシ樹脂組成物(C2)~(C17)を使用したこと以外は、実施例12と同様にして硬化物を作製し、評価を実施した。評価結果を表3に示す。
[実施例23]
 表4に示す、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、「エピコート828」(商品名))100部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)2部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C18)を得た。実施例12と同様にして評価を実施した。評価結果を表4に示す。
 次いで、PETフィルムの代わりにポリイミドフィルム(宇部興産(株)製、商品名:ユーピレックス12.5SN)を使用し、硬化条件を175℃で5時間にする以外は、実施例12と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表4に示す。
[比較例12]
 表4に示すように、実施例23からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C19)を使用した。それ以外は、実施例23と同様にして評価を実施した。また、実施例23と同様にして硬化物を作製した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[実施例24]
 表5に示す、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、「エピコート828」(商品名))100部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化剤(日本化薬(株)製、酸無水物系硬化剤「カヤハードMCD」(商品名))49部、及び硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)1.25部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C20)を得た。実施例12と同様にして評価を実施した。評価結果を表5に示す。
 次いで、エポキシ樹脂組成物(C20)を使用して、実施例12と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表5に示す。
[比較例13]
 表5に示すように、実施例24からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C21)を使用した。それ以外は、実施例24と同様にして評価を実施した。また、実施例24と同様にして硬化物を作製した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
[実施例25]
 表6に示す、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、「エピコート828」(商品名))100部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化剤(ジャパンエポキシレジン(株)製、アミン系硬化剤「JERキュアW」(商品名))25部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C22)を得た。実施例12と同様にして評価を実施した。評価結果を表6に示す。
 次いで、100℃で2時間予備硬化を行なった後、175℃で4時間硬化を行なうこと以外は、実施例23と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表6に示す。
[比較例14]
 表6に示すように、実施例25からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C23)を使用した。それ以外は、実施例25と同様にして評価を実施した。また、実施例25と同様にして硬化物を作製した。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
[実施例26]
 表7に示す、ビスフェノールF型エポキシ樹脂(日本化薬(株)製、「RE303S-L」(商品名))100部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化剤(新日本理化(株)製、酸無水物系硬化剤「リカシッドMH-700」(商品名))94部、及び硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)1.1部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C24)を得た。実施例12と同様にして評価を実施した。評価結果を表7に示す。
 次いで、エポキシ樹脂組成物(C24)を使用して、実施例12と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表7に示す。
[比較例15]
 表7に示すように、実施例26からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C25)を使用した。それ以外は、実施例26と同様にして評価を実施した。また、実施例26と同様にして硬化物を作製した。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
[実施例27]
 表8に示す、ビフェニル型エポキシ樹脂(日本化薬(株)製、「NC3000」(商品名))100部、硬化剤(新日本理化(株)製、酸無水物系硬化剤「リカシッドMH-700」(商品名))57部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)0.68部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C26)を得た。実施例12と同様にして評価を実施した。評価結果を表8に示す。
 次いで、エポキシ樹脂組成物(C26)を使用して、実施例12と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表8に示す。
[比較例16]
 表8に示すように、実施例27からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C27)を使用した。それ以外は、実施例27と同様にして評価を実施した。また、実施例27と同様にして硬化物を作製した。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
[実施例28]
 表9に示す、ナフタレン型エポキシ樹脂(大日本インキ化学(株)製、「HP4032」(商品名))100部、硬化剤(新日本理化(株)製、酸無水物系硬化剤「リカシッドMH-700」(商品名))105部、及びビニル重合体粉体(P2)10部を用いて一次混練後、硬化促進剤(四国化成工業(株)製、2-エチル-4-メチルイミダゾール)1.55部を加えて二次混練した。それ以外は、実施例12と同様にしてエポキシ樹脂組成物(C28)を得た。実施例12と同様にして評価を実施した。評価結果を表9に示す。
 次いで、エポキシ樹脂組成物(C28)を使用して、実施例12と同様にして硬化物を作製した。
 得られた硬化物を用い、実施例12と同様にして比誘電率の評価を実施した。評価結果を表9に示す。
[比較例17]
 表9に示すように、実施例28からビニル重合体粉体(P2)を除いたエポキシ樹脂組成物(C29)を使用した。それ以外は、実施例28と同様にして評価を実施した。また、実施例28と同様にして硬化物を作製した。評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 結果から明らかなように、ビニル重合体粉体(P1、P5、P15)のアセトン可溶分は、98%超、48%、5%未満である。
 これらのビニル重合体粉体を配合したエポキシ樹脂組成物(C1、C5、C15)のゲル化温度は、76℃、83℃、ゲル化せず、であり、ゲル化温度はアセトン可溶分の減量に伴って順を追って低くなり、アセトン可溶分が5%未満では、ゲル化しないことがわかる。また、粘度変化を指標にした、エポキシ樹脂組成物(C1、C5、C15)のゲル化性能(G’/G’)は+1150、+270、ゲル化せず、である。このことから、ビニル重合体粉体中のアセトン可溶分の含有量が、ゲル化温度やゲル化性能に対して支配的であることがわかる。
 また、ビニル重合体粉体(P2、P14)は、重合体の組成が同じであり、アセトン可溶分が98%を超えるが、アセトン可溶分のMwは、75.7万と8.2万であり、大きく異なる。
 これらのビニル重合体粉体を配合したエポキシ樹脂組成物(C2、C14)の到達弾性率(G’)は、6.81と3.80×10-4であり、分子量に応じて低くなっている。このことから、ビニル重合体粉体のアセトン可溶分の分子量がゲル化の程度に対して支配的であることがわかる。
 ビニル重合体粉体(P2、P12)は、重合体の組成が同じであるが、アルカリ金属イオンの含有量は、1ppm未満と83.5ppmであり、大きく異なる。
 これらのビニル重合体粉体を配合したエポキシ樹脂組成物(C2、C12)の硬化物の比誘電率は、3.04と3.14であり、アルカリ金属イオンの含有量に応じて高くなっている。
 また、ビニル重合体粉体(P16)のアルカリ金属イオンの含有量は341ppmであり、ビニル重合体粉体(P16)を配合したエポキシ樹脂組成物(C16)の硬化物の比誘電率は3.32と高く、電気的特性が大きく低下していることから、電子材料分野には適さない。
 ビニル重合体粉体(P3)は、ビニル重合体粉体(P2)の第2段目の重合に用いる単量の体組成を変更し、溶解度パラメーターを下げたものである。
 これらのビニル重合体粉体を配合したエポキシ樹脂組成物(C2、C3)のゲル化温度は84℃と80℃であり、溶解度パラメーターの低いものほど溶解速度が速くなっている。これより、ビニル重合体粉体の溶解度パラメーターは、ゲル化挙動に影響を与えることがわかる。
 ビニル重合体粉体の溶解度パラメーターは、公知の方法により求めることができる。例えば、Fedorsの式やHansenの式を用いて求めることができる。
 ビニル重合体エマルション(L2、L9、L12)は、重合体の組成が同じであるが、体積平均一次粒子径は、764nm、335nm、181nmである。
 これらから得られるビニル重合体粉体(P2、P9、P13)を配合したエポキシ樹脂組成物(C2、C9、C13)の、粒ゲージによる分散性の評価は、1μm未満、7μm、28μmである。ビニル重合体の一次粒子径が小さくなることにより、ビニル重合体粉体の一次粒子への分散性が低下しており、ビニル重合体の一次粒子径が大きいほど一次粒子への分散が良好であることがわかる。
 また、ビニル重合体粉体(P2、P9、P13)を配合したエポキシ樹脂組成物(C2、C9、C13)の初期粘度は、順に3300、3700、4400と高くなり、貯蔵安定性は+33、+230、+250と大きくなる。それに伴い、ゲル化性能(G’/G’)は+1110、+81、+47と順を追って低くなっている。
 これより、一次粒子径は、分散性だけでなく、初期粘度、貯蔵安定性、及びゲル化性能に影響を与えることがわかる。
 ビニル重合体粉体(P6)~(P8)は、他の実施例と異なり、2段階の重合によって得られる粒子ではなく、1段階のみの重合によって得られる均一構造のビニル重合体である。
 ビニル重合体粉体(P6)~(P8)を配合したエポキシ樹脂組成物(C6)~(C8)は、ゲル化温度が82℃、90℃、112℃となる。このことから、均一構造のビニル重合体においても、溶解度パラメーターが低いものほど、溶解速度が速いことがわかる。つまり、溶解度パラメーターを調整することで(メタクリル酸の導入量を調整することで)、ゲル化温度を変えられ、用途に応じてゲル化温度を選択することが可能となる。
 エポキシ樹脂組成物(C8)は、ゲル化温度が112℃と高いため、「ゲル化温度+20℃(132℃)」では、エポキシ樹脂組成物の硬化が開始し、到達弾性率G’は測定できていない。
 ビニル重合体粉体(P4)は、ビニル重合体粉体(P2)から硫酸イオンの量を低減させたものである。
 ビニル重合体粉体(P4)を配合したエポキシ樹脂組成物(C4)の比誘電率は3.02で、ビニル重合体粉体(P2)を配合したエポキシ樹脂組成物(C2)の比誘電率3.04より低く、ビニル重合体粉体を配合していないエポキシ樹脂組成物(C17)と同等であることがわかる。
 これより、ビニル重合体粉体がアルカリ金属イオンを含まず、硫酸イオンをできるだけ低減することで、ビニル重合体粉体を配合したエポキシ樹脂の硬化物の電気的特性を良好にし、電子材料分野に好適となることがわかる。
 ビニル重合体粉体(P10)はビニル重合体エマルション(L2及びL12)を50%ずつ混合し、噴霧乾燥して得られたものであり、粒子径分布が2.50と広く、双峰性を持つ。このビニル重合体粉体(P10)を配合したエポキシ樹脂組成物(C10)の、粒ゲージによる分散性の評価は、18μmである。
 このように、粒子径分布が広い場合、小粒子径のビニル重合体に由来する凝集粉体が分散しきれずブツとなるため、ファインピッチ化への対応には不適当である。
 また、ビニル重合体粉体(P2、P10、P12)の粒子径分布は1.18、2.50、1.19であり、これらを配合したエポキシ樹脂組成物(C2、C10、C12)のゲル化性能(G’/G’)は+1110、+81、+540である。これより、粒子径分布が広くなると、ゲル化性能を低下させることがわかる。
 ビニル重合体粉体(P11)は微細懸濁重合法で得たものであり、粒子径が2μm以上である。このビニル重合体粉体(P11)を配合したエポキシ樹脂組成物(C11)の、粒ゲージによる分散性の評価は、3μmである。この場合、ビニル重合体粉体(P11)は一次粒子にまで分散しているが、近年のファインピッチ化では、ブツとみなされる可能性がある。
 結果から明らかなように、ビニル重合体粉体(P2)を配合したエポキシ樹脂組成物(C18、C20、C22、C24、C26、C28)は、種々のエポキシ樹脂/硬化剤/硬化促進剤を用いた配合においても、ビニル重合体粉体(P2)の分散性が良好であり、ゲル化性能が発現した。
 本発明は、特願2009-024751及び特願2009-193366を基礎とする優先権主張出願に係り、これらの基礎出願に含まれる総ての事項をその内容として含むものである。
 本発明のビニル重合体粉体は、硬化性樹脂、特にエポキシ樹脂との相互分散性に優れ、所定の温度で短時間の加熱によって速やかに硬化性樹脂組成物をゲル状態とし、イオン濃度が低く、優れた電気特性を発現させるための電子部品のプレゲル剤に利用することができる。一次実装用アンダーフィル材、二次実装用アンダーフィル材、ワイヤーボンドにおけるグラブトップ材等の液状封止材、基板上の各種チップ類を一括で封止する封止用シート、プレディスペンス型のアンダーフィル材、ウエハーレベルで一括封止する封止シート、3層銅張積層板用の接着層、ダイボンドフィルム、ダイアタッチフィルム、層間絶縁フィルム、カバーレイフィルム等の接着層、ダイボンドペースト、層間絶縁ペースト、導電ペースト、異方導電ペースト等の接着性ペースト、発光ダイオードの封止材、光学接着剤、液晶、有機EL等の各種フラットパネルディスプレイのシーリング材等の各種用途に使用することができる。
 

Claims (11)

  1.  アセトン可溶分が30質量%以上で、アセトン可溶分の質量平均分子量が10万以上で、アルカリ金属イオンの含有量が10ppm以下で、体積平均一次粒子径(Dv)が200nm以上であるビニル重合体粉体。
  2.  硫酸イオン(SO 2-)の含有量が20ppm以下である請求項1に記載のビニル重合体粉体。
  3.  体積平均一次粒子径(Dv)と個数平均一次粒子径(Dn)との比(Dv/Dn)が3.0以下である、請求項1に記載のビニル重合体粉体。
  4.  体積平均一次粒子径(Dv)が8μm以下である、請求項1に記載のビニル重合体粉体。
  5.  請求項1に記載のビニル重合体粉体及び硬化性樹脂を含有する硬化性樹脂組成物。
  6.  硬化性樹脂がエポキシ樹脂である請求項5に記載の硬化性樹脂組成物。
  7.  請求項5に記載の硬化性樹脂組成物を硬化して得られる硬化物。
  8.  請求項5に記載の硬化性樹脂組成物を用いた半導体封止材料。
  9.  請求項5に記載の硬化性樹脂組成物を用いたシート状物品。
  10.  過硫酸アンモニウム及びアゾ化合物から選ばれる少なくとも1種の重合開始剤と、アンモニウム塩型アニオン系乳化剤及びノニオン系乳化剤から選ばれる少なくとも1種の乳化剤とを用いて、ビニル単量体を乳化重合し、
     得られたビニル重合体のエマルションを噴霧乾燥する、請求項1に記載のビニル重合体粉体の製造方法。
  11.  過硫酸アンモニウム及びアゾ化合物から選ばれる少なくとも1種の重合開始剤と、アンモニウム塩型アニオン系乳化剤及びノニオン系乳化剤から選ばれる少なくとも1種の乳化剤とを用いて、異なる組成のビニル単量体混合物を2段階以上で乳化重合し、
     得られたビニル重合体のエマルションを噴霧乾燥する、請求項1に記載のビニル重合体粉体の製造方法。
PCT/JP2010/051575 2009-02-05 2010-02-04 ビニル重合体粉体、硬化性樹脂組成物及び硬化物 WO2010090246A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10738577.5A EP2395032B1 (en) 2009-02-05 2010-02-04 Powdery vinyl polymer, curable resin composition, and cured object
CN201080007186.3A CN102307918B (zh) 2009-02-05 2010-02-04 乙烯基聚合物粉体、固化性树脂组合物及固化物
KR1020117020467A KR101277006B1 (ko) 2009-02-05 2010-02-04 비닐 중합체 분체, 경화성 수지 조성물 및 경화물
US13/148,138 US9688801B2 (en) 2009-02-05 2010-02-04 Vinyl polymer powder, curable resin composition and cured substance
JP2010506758A JP5736776B2 (ja) 2009-02-05 2010-02-04 ビニル重合体粉体、硬化性樹脂組成物及び硬化物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009024751 2009-02-05
JP2009-024751 2009-02-05
JP2009-193366 2009-08-24
JP2009193366 2009-08-24

Publications (1)

Publication Number Publication Date
WO2010090246A1 true WO2010090246A1 (ja) 2010-08-12

Family

ID=42542139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051575 WO2010090246A1 (ja) 2009-02-05 2010-02-04 ビニル重合体粉体、硬化性樹脂組成物及び硬化物

Country Status (7)

Country Link
US (1) US9688801B2 (ja)
EP (1) EP2395032B1 (ja)
JP (1) JP5736776B2 (ja)
KR (1) KR101277006B1 (ja)
CN (2) CN102307918B (ja)
TW (1) TWI494331B (ja)
WO (1) WO2010090246A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070739A1 (ja) * 2009-12-07 2011-06-16 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
JP2012072405A (ja) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd 高分子樹脂組成物及びこれを用いて製造された絶縁フィルム並びにその製造方法
CN102786759A (zh) * 2011-05-17 2012-11-21 罗门哈斯公司 吸入有热塑性聚合物的胶乳颗粒
WO2012165413A1 (ja) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 エポキシ樹脂組成物、硬化物及び光半導体封止材料
JP2013053263A (ja) * 2011-09-06 2013-03-21 Sunstar Engineering Inc ヘミング用シーリング材組成物
WO2013062123A1 (ja) * 2011-10-27 2013-05-02 三菱レイヨン株式会社 ビニル重合体粉体、硬化性樹脂組成物及び硬化物
WO2013094759A1 (ja) 2011-12-21 2013-06-27 三菱レイヨン株式会社 重合体粉体、硬化性樹脂組成物及びその硬化物
JP2013133465A (ja) * 2011-12-27 2013-07-08 Daicel Corp 硬化性エポキシ樹脂組成物
JP2013253183A (ja) * 2012-06-08 2013-12-19 Namics Corp 先供給型液状半導体封止樹脂組成物
WO2014013970A1 (ja) * 2012-07-19 2014-01-23 ナガセケムテックス株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
JP2014022592A (ja) * 2012-07-19 2014-02-03 Renesas Electronics Corp 半導体装置の製造方法
JP2014133807A (ja) * 2013-01-09 2014-07-24 Daicel Corp 硬化性エポキシ樹脂組成物
JP2014196437A (ja) * 2013-03-29 2014-10-16 ナミックス株式会社 樹脂組成物
JPWO2013099693A1 (ja) * 2011-12-27 2015-05-07 株式会社ダイセル 硬化性エポキシ樹脂組成物
WO2016002777A1 (ja) * 2014-06-30 2016-01-07 三菱レイヨン株式会社 トウプリプレグ、及び複合材料圧力容器とその製造方法
WO2016182077A1 (ja) * 2015-05-13 2016-11-17 三菱レイヨン株式会社 シートモールディングコンパウンド及び繊維強化複合材料
JP2017082022A (ja) * 2015-10-22 2017-05-18 ナガセケムテックス株式会社 エポキシ樹脂接着剤
WO2024157960A1 (ja) * 2023-01-24 2024-08-02 株式会社クラレ 硬化性樹脂組成物とその製造方法
WO2024203994A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 重合体微粒子、樹脂用改質剤および樹脂組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094980A (ja) * 2012-11-07 2014-05-22 Panasonic Corp 液状エポキシ樹脂組成物及びこれを用いた半導体装置
JP6007851B2 (ja) * 2013-04-08 2016-10-12 日立金属株式会社 絶縁電線、およびそれを用いたコイル、モータ
US20190338171A1 (en) * 2016-10-31 2019-11-07 Sumitomo Bakelite Co., Ltd. Thermally conductive paste and electronic device
PL3369787T3 (pl) 2017-03-03 2019-10-31 Evonik Roehm Gmbh Utwardzalne kompozycje żywicy (met)akrylowej o zwiększonej lepkości
PT3369788T (pt) * 2017-03-03 2019-07-17 Roehm Gmbh Composições de resina termoestável curável com propriedades mecânicas melhoradas
KR102470151B1 (ko) * 2017-11-27 2022-11-25 미쯔비시 케미컬 주식회사 고무 함유 그래프트 중합체, 고무 함유 그래프트 중합체 함유 수지 조성물 및 그의 성형체
CN111902461A (zh) * 2018-03-26 2020-11-06 三菱化学株式会社 丙烯酸树脂粉体、树脂组合物、包含丙烯酸树脂粉体的热熔胶粘剂组合物及其制造方法
WO2020196922A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 粉粒体およびその利用
WO2023208919A1 (en) * 2022-04-28 2023-11-02 Röhm Gmbh Poly(meth)acrylat impact modifier with reduced metal ion content and method for its production

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129368A (ja) 1997-10-30 1999-05-18 Nissan Motor Co Ltd 箱型構造部材およびその製造方法ならびに車体の補強構造
JP2003049050A (ja) 2001-08-06 2003-02-21 Nagase Chemtex Corp プレゲル化剤を含有するエポキシ樹脂組成物
JP2004224846A (ja) * 2003-01-21 2004-08-12 Kuraray Co Ltd アクリル系重合体粉末、アクリルゾル及び成形物
JP2004238432A (ja) * 2003-02-04 2004-08-26 Kuraray Co Ltd アクリル系重合体粉末、アクリルゾル及び成形物
JP2005232411A (ja) * 2004-02-23 2005-09-02 Mitsubishi Rayon Co Ltd アクリル系プラスチゾル組成物
JP2007277529A (ja) * 2006-03-15 2007-10-25 Kaneka Corp (メタ)アクリル系共重合体粉体、及びこれを含有する塩化ビニル系樹脂組成物
JP2009024751A (ja) 2007-07-18 2009-02-05 Rinnai Corp 湯沸器における電動式止水弁装置
JP2009193366A (ja) 2008-02-14 2009-08-27 Dainippon Printing Co Ltd 電子ペン、端末装置及びそれに用いられるプログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476884A (en) * 1989-02-20 1995-12-19 Toray Industries, Inc. Semiconductor device-encapsulating epoxy resin composition containing secondary amino functional coupling agents
US5290857A (en) * 1991-09-04 1994-03-01 Nippon Zeon Co., Ltd. Epoxy resin adhesive composition
IT1271767B (it) * 1993-05-14 1997-06-09 Toyo Seikan Kaisha Ltd Composizione di plastisol
EP0768340A4 (en) * 1994-06-30 1998-12-23 Nippon Zeon Co UNSATURATED POLYESTER RESIN COMPOSITION AND METHOD FOR SHAPING THIS COMPOSITION
JP2823040B2 (ja) * 1995-06-29 1998-11-11 東洋製罐株式会社 アクリルプラスチゾル接着構造物
US6288174B1 (en) * 1995-07-07 2001-09-11 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
EP0776917B1 (de) * 1995-11-29 2002-05-29 Vantico AG Core/Shell-Partikel und diese enthaltende härtbare Epoxidharzzusammensetzungen
US6020435A (en) * 1997-11-05 2000-02-01 Rohm And Haas Company Process for preparing polymer core shell type emulsions and polymers formed therefrom
WO2000001748A1 (en) * 1998-07-01 2000-01-13 Mitsubishi Rayon Co., Ltd. Fine acrylic polymer particles and plastisol containing the same
JP2000313818A (ja) * 1999-03-03 2000-11-14 Jsr Corp 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
JP4077323B2 (ja) * 2001-05-23 2008-04-16 三菱レイヨン株式会社 プラスチゾル組成物及びそれを用いた成形品及び物品
JP2003252912A (ja) 2002-02-28 2003-09-10 Sekisui Chem Co Ltd 単分散微粒子
CN100427543C (zh) * 2003-01-21 2008-10-22 株式会社可乐丽 丙烯酸类聚合物粉末、丙烯酸溶胶以及成形物
JP2004331845A (ja) 2003-05-08 2004-11-25 Showa Highpolymer Co Ltd シード粒子およびシード粒子の製造方法、並びに重合体粒子
JP5162096B2 (ja) * 2003-07-31 2013-03-13 三菱レイヨン株式会社 成形材料用樹脂組成物およびそれを用いた成形品
JP5027509B2 (ja) * 2004-08-18 2012-09-19 株式会社カネカ 半導体封止剤用エポキシ樹脂組成物およびエポキシ樹脂成形材料
US7649067B2 (en) * 2005-10-19 2010-01-19 Wacker Polymers, L.P. Process of making a vinyl ester based polymer latex composition
JP4917821B2 (ja) * 2006-03-29 2012-04-18 株式会社ジェイエスピー ポリマー粒子の製造方法
JP5468187B2 (ja) * 2006-09-26 2014-04-09 ポリプラスチックス株式会社 ポリアセタール樹脂組成物
JP5248029B2 (ja) 2007-03-27 2013-07-31 三菱レイヨン株式会社 グラフト共重合体及び樹脂組成物
CN101168584B (zh) * 2007-09-28 2010-10-06 上海东升新材料有限公司 可再分散乳胶粉乳液和可再分散乳胶粉及其制备方法
CN101173021A (zh) * 2007-10-26 2008-05-07 上海大学 丙烯酸系核壳聚合物乳液和可再分散乳胶粉及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129368A (ja) 1997-10-30 1999-05-18 Nissan Motor Co Ltd 箱型構造部材およびその製造方法ならびに車体の補強構造
JP2003049050A (ja) 2001-08-06 2003-02-21 Nagase Chemtex Corp プレゲル化剤を含有するエポキシ樹脂組成物
JP2004224846A (ja) * 2003-01-21 2004-08-12 Kuraray Co Ltd アクリル系重合体粉末、アクリルゾル及び成形物
JP2004238432A (ja) * 2003-02-04 2004-08-26 Kuraray Co Ltd アクリル系重合体粉末、アクリルゾル及び成形物
JP2005232411A (ja) * 2004-02-23 2005-09-02 Mitsubishi Rayon Co Ltd アクリル系プラスチゾル組成物
JP2007277529A (ja) * 2006-03-15 2007-10-25 Kaneka Corp (メタ)アクリル系共重合体粉体、及びこれを含有する塩化ビニル系樹脂組成物
JP2009024751A (ja) 2007-07-18 2009-02-05 Rinnai Corp 湯沸器における電動式止水弁装置
JP2009193366A (ja) 2008-02-14 2009-08-27 Dainippon Printing Co Ltd 電子ペン、端末装置及びそれに用いられるプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2395032A1 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070739A1 (ja) * 2009-12-07 2011-06-16 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
JPWO2011070739A1 (ja) * 2009-12-07 2013-04-22 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
US8963344B2 (en) 2009-12-07 2015-02-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device
JP2012072405A (ja) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd 高分子樹脂組成物及びこれを用いて製造された絶縁フィルム並びにその製造方法
CN102786759A (zh) * 2011-05-17 2012-11-21 罗门哈斯公司 吸入有热塑性聚合物的胶乳颗粒
JP2012255135A (ja) * 2011-05-17 2012-12-27 Rohm & Haas Co 熱可塑性ポリマーを吸収したラテックス粒子
CN102786759B (zh) * 2011-05-17 2014-09-24 罗门哈斯公司 吸入有热塑性聚合物的胶乳颗粒
KR101560075B1 (ko) 2011-05-30 2015-10-13 미쯔비시 레이온 가부시끼가이샤 에폭시 수지 조성물, 경화물 및 광 반도체 밀봉 재료
WO2012165413A1 (ja) * 2011-05-30 2012-12-06 三菱レイヨン株式会社 エポキシ樹脂組成物、硬化物及び光半導体封止材料
JPWO2012165413A1 (ja) * 2011-05-30 2015-02-23 三菱レイヨン株式会社 エポキシ樹脂組成物、硬化物及び光半導体封止材料
JP2013053263A (ja) * 2011-09-06 2013-03-21 Sunstar Engineering Inc ヘミング用シーリング材組成物
TWI580701B (zh) * 2011-10-27 2017-05-01 三菱麗陽股份有限公司 乙烯基聚合物粉末、硬化性樹脂組成物及硬化物
WO2013062123A1 (ja) * 2011-10-27 2013-05-02 三菱レイヨン株式会社 ビニル重合体粉体、硬化性樹脂組成物及び硬化物
JPWO2013062123A1 (ja) * 2011-10-27 2015-04-02 三菱レイヨン株式会社 ビニル重合体粉体、硬化性樹脂組成物及び硬化物
US20140296437A1 (en) * 2011-10-27 2014-10-02 Mitsubishi Rayon Co., Ltd. Vinyl Polymer Powder, Curable Resin Composition and Cured Product
US9522997B2 (en) 2011-12-21 2016-12-20 Mitsubishi Rayon Co., Ltd. Polymer powder, curable resin composition and cured material thereof
JPWO2013094759A1 (ja) * 2011-12-21 2015-04-27 三菱レイヨン株式会社 重合体粉体、硬化性樹脂組成物及びその硬化物
EP3263612A1 (en) 2011-12-21 2018-01-03 Mitsubishi Chemical Corporation Polymer powder, curable resin composition and cured material thereof
KR20140095520A (ko) 2011-12-21 2014-08-01 미쯔비시 레이온 가부시끼가이샤 중합체 분체, 경화성 수지 조성물 및 그의 경화물
US9193812B2 (en) 2011-12-21 2015-11-24 Mitsubishi Rayon Co., Ltd. Polymer powder, curable resin composition and cured material thereof
WO2013094759A1 (ja) 2011-12-21 2013-06-27 三菱レイヨン株式会社 重合体粉体、硬化性樹脂組成物及びその硬化物
JPWO2013099693A1 (ja) * 2011-12-27 2015-05-07 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2013133465A (ja) * 2011-12-27 2013-07-08 Daicel Corp 硬化性エポキシ樹脂組成物
JP2013253183A (ja) * 2012-06-08 2013-12-19 Namics Corp 先供給型液状半導体封止樹脂組成物
WO2014013970A1 (ja) * 2012-07-19 2014-01-23 ナガセケムテックス株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
US20150175800A1 (en) * 2012-07-19 2015-06-25 Nagase Chemtex Corporation Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JP2014022592A (ja) * 2012-07-19 2014-02-03 Renesas Electronics Corp 半導体装置の製造方法
US9963587B2 (en) 2012-07-19 2018-05-08 Nagase Chemtex Corporation Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JPWO2014013970A1 (ja) * 2012-07-19 2016-06-30 ナガセケムテックス株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
JP2014133807A (ja) * 2013-01-09 2014-07-24 Daicel Corp 硬化性エポキシ樹脂組成物
JP2014196437A (ja) * 2013-03-29 2014-10-16 ナミックス株式会社 樹脂組成物
JP6020734B2 (ja) * 2014-06-30 2016-11-02 三菱レイヨン株式会社 トウプリプレグ、及び複合材料圧力容器とその製造方法
WO2016002777A1 (ja) * 2014-06-30 2016-01-07 三菱レイヨン株式会社 トウプリプレグ、及び複合材料圧力容器とその製造方法
JPWO2016182077A1 (ja) * 2015-05-13 2017-05-25 三菱ケミカル株式会社 シートモールディングコンパウンド及び繊維強化複合材料
CN107531985A (zh) * 2015-05-13 2018-01-02 三菱化学株式会社 片状模塑材料和纤维增强复合材料
WO2016182077A1 (ja) * 2015-05-13 2016-11-17 三菱レイヨン株式会社 シートモールディングコンパウンド及び繊維強化複合材料
CN107531985B (zh) * 2015-05-13 2018-11-09 三菱化学株式会社 片状模塑材料和纤维增强复合材料
US10494475B2 (en) 2015-05-13 2019-12-03 Mitsubishi Chemical Corporation Sheet-molding compound and fiber-reinforced composite material
EP3696209A1 (en) 2015-05-13 2020-08-19 Mitsubishi Chemical Corporation Sheet-molding compound and fiber-reinforced composite material
JP2017082022A (ja) * 2015-10-22 2017-05-18 ナガセケムテックス株式会社 エポキシ樹脂接着剤
WO2024157960A1 (ja) * 2023-01-24 2024-08-02 株式会社クラレ 硬化性樹脂組成物とその製造方法
WO2024203994A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 重合体微粒子、樹脂用改質剤および樹脂組成物

Also Published As

Publication number Publication date
CN102307918A (zh) 2012-01-04
US9688801B2 (en) 2017-06-27
US20110294954A1 (en) 2011-12-01
KR101277006B1 (ko) 2013-06-24
TW201035133A (en) 2010-10-01
JP5736776B2 (ja) 2015-06-17
CN104610507A (zh) 2015-05-13
JPWO2010090246A1 (ja) 2012-08-09
CN102307918B (zh) 2016-04-27
KR20110122164A (ko) 2011-11-09
TWI494331B (zh) 2015-08-01
EP2395032A4 (en) 2012-07-11
EP2395032A1 (en) 2011-12-14
EP2395032B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP5736776B2 (ja) ビニル重合体粉体、硬化性樹脂組成物及び硬化物
JP6086062B2 (ja) 重合体粉体、硬化性樹脂組成物及びその硬化物
JP5979006B2 (ja) ビニル重合体粉体、硬化性樹脂組成物及び硬化物
JP2013028813A (ja) ビニル重合体粉体、エポキシ樹脂組成物及びその硬化物
KR101399711B1 (ko) (메트)아크릴레이트계 중합체, 수지 조성물 및 성형체
JPWO2012165413A1 (ja) エポキシ樹脂組成物、硬化物及び光半導体封止材料
WO2024024331A1 (ja) 樹脂組成物
JP2013076092A (ja) 光半導体用封止シート用エポキシ樹脂組成物、光半導体用封止シート及び光半導体装置
JP2013095860A (ja) 硬化性樹脂用応力緩和剤、硬化性樹脂組成物及び成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007186.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506758

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148138

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3346/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010738577

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020467

Country of ref document: KR

Kind code of ref document: A