WO2010090154A1 - 熱収縮性フィルム - Google Patents

熱収縮性フィルム Download PDF

Info

Publication number
WO2010090154A1
WO2010090154A1 PCT/JP2010/051336 JP2010051336W WO2010090154A1 WO 2010090154 A1 WO2010090154 A1 WO 2010090154A1 JP 2010051336 W JP2010051336 W JP 2010051336W WO 2010090154 A1 WO2010090154 A1 WO 2010090154A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
mol
film
shrinkable film
gas barrier
Prior art date
Application number
PCT/JP2010/051336
Other languages
English (en)
French (fr)
Inventor
加藤 智則
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42542048&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010090154(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2010549456A priority Critical patent/JP5659793B2/ja
Priority to US13/147,268 priority patent/US20110288266A1/en
Priority to PL10738486T priority patent/PL2395044T3/pl
Priority to CN2010800066780A priority patent/CN102307936A/zh
Priority to ES10738486.9T priority patent/ES2554385T3/es
Priority to EP10738486.9A priority patent/EP2395044B1/en
Publication of WO2010090154A1 publication Critical patent/WO2010090154A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a heat-shrinkable film. Specifically, the present invention relates to a heat-shrinkable film for packaging excellent in gas barrier properties and transparency suitable for shrink-wrapping of processed meat products such as ham and sausage and processed fishery products.
  • Gas barrier films are widely used because it is necessary to prevent food deterioration, discoloration, and browning when packaging and transporting processed meat products such as livestock meat blocks, ham and sausages, and processed fishery products.
  • heat-shrinkable films are widely used for packaging foods because the packaging material is shrunk by heating and requires a tight appearance in close contact with the contents.
  • a heat-shrinkable film having gas barrier properties a film in which polyvinylidene chloride (hereinafter sometimes abbreviated as PVDC) is laminated is known.
  • PVDC polyvinylidene chloride
  • PVDC polyvinylidene chloride
  • Examples of the gas barrier resin containing no chlorine include polyamide resins such as nylon 6 and polymetaxylylene adipamide (hereinafter sometimes abbreviated as N-MXD6), and ethylene vinyl copolymers (hereinafter abbreviated as EVOH). Is known).
  • N-MXD6 is excellent in oxygen barrier properties, especially in high-humidity environments, oxygen barrier properties after heat sterilization treatment such as boiling and retort treatment, and has high mechanical performance, so it is suitable as a food packaging material.
  • a method of laminating a base film such as polyolefin (for example, Patent Document 1) and a method of mixing with other polymers such as nylon 6 (for example, Patent Document 2) are disclosed.
  • N-MXD6 stretched film has insufficient shrinkage compared to polypropylene film, polystyrene film, and the like.
  • a stretched film of N-MXD6 having both transparency and a high shrinkage ratio is used. It was difficult to get.
  • An object of the present invention is to solve the above-mentioned problems and provide a heat-shrinkable film having high gas barrier properties, high shrinkage rate and high transparency at the same time.
  • polyamide resin stretched film having a specific monomer composition ratio within a specific range of crystallization speed at a low temperature in order to obtain a high heat shrinkage rate.
  • the film was excellent in transparency and gas barrier properties, and the present invention was completed.
  • the present invention comprises a diamine component containing at least 70 mol% of metaxylylenediamine, 80 to 98 mol% of ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 2 to 20 mol% of isophthalic acid.
  • the present invention relates to a heat-shrinkable film comprising at least one gas barrier layer (A) comprising a stretched film of a polyamide resin obtained from a dicarboxylic acid component.
  • the present invention relates to a heat shrinkable film obtained by heat-treating the heat shrinkable film.
  • the present invention includes a diamine component containing at least 70 mol% of metaxylylenediamine, 80 to 98 mol% of ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 2 to 20 mol% of isophthalic acid.
  • the present invention relates to a method for producing a heat-shrinkable film including a step of uniaxially or biaxially stretching a polyamide resin film obtained from a dicarboxylic acid component.
  • a heat-shrinkable film including a polyamide resin layer (polyamide stretched film) having a heat shrinkage rate sufficient for practical use as a heat-shrinkable film and having excellent transparency and oxygen gas barrier properties. be able to. Moreover, even if the boil treatment or the retort treatment is performed, the gas barrier property is hardly lowered and the gas barrier property is quickly recovered. Therefore, it is suitable as a packaging material for foods, medicines, cosmetics, industrial products and the like.
  • the polyamide resin used in the present invention comprises a diamine component containing 70 mol% or more (including 100%) of metaxylylenediamine and an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in an amount of 80 to 98. It can be obtained by polycondensation with a dicarboxylic acid component containing 2 to 20 mol% of mol% mol% and isophthalic acid.
  • the polyamide resin is manufactured by a melt polycondensation method.
  • a melt polycondensation method For example, it is produced by a method in which a nylon salt composed of metaxylylenediamine, adipic acid, and isophthalic acid is heated in the presence of water under pressure, and polymerized in a molten state while removing added water and condensed water. It can also be produced by a method in which metaxylylenediamine is directly added to a molten adipic acid and isophthalic acid mixture and polycondensed under normal pressure.
  • the relative viscosity of polyamide having a relatively low molecular weight obtained by melt polymerization is usually 2.28 or less.
  • a high-quality polyamide resin with little generation of gel-like substance and little coloration or whitening can be obtained. It may occur or the thickness of the polyamide layer may become uneven when multilayered with a polyolefin film or the like, making it difficult to obtain a uniform multilayer structure. Therefore, if necessary, the relatively low molecular weight polyamide resin obtained by melt polymerization is then subjected to solid phase polymerization.
  • Solid-phase polymerization is carried out, for example, by converting a polyamide resin having a relatively low molecular weight into a pellet or powder and heating it in a temperature range from 150 ° C. to the melting point of polyamide under reduced pressure or in an inert gas atmosphere.
  • the relative viscosity of the polyamide obtained by solid phase polymerization is preferably 2.3 to 4.2. If it is this range, a favorable film with few draw-down and the thickness nonuniformity of the polyamide layer in a multilayer film, etc. will be obtained.
  • the diamine component used as a raw material for the polyamide resin in the present invention contains metaxylylenediamine in an amount of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more (each containing 100%).
  • metaxylylenediamine in the diamine component is 70 mol% or more, the polyamide resin obtained therefrom can exhibit excellent gas barrier properties.
  • diamines other than metaxylylenediamine aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, and nonamethylenediamine, paraphenylenediamine, paraxylylenediamine, and the like.
  • aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, and nonamethylenediamine, paraphenylenediamine, paraxylylenediamine, and the like.
  • alicyclic diamines such as aromatic diamine and bis (aminomethyl) cyclohexane, etc. can be illustrated, it is not limited to these.
  • the dicarboxylic acid component used as a raw material for the polyamide resin in the present invention is an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in an amount of 80 to 98 mol%, preferably 80 to 97 mol%, more preferably. It is contained in an amount of 85 to 97 mol%, more preferably 85 to 95 mol%.
  • ⁇ , ⁇ -linear aliphatic dicarboxylic acids examples include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, etc.
  • adipic acid is preferable among these.
  • the dicarboxylic acid component further contains 2 to 20 mol% of isophthalic acid, preferably 3 to 20 mol%, more preferably 3 to 15 mol%, still more preferably 5 to 15 mol%. If the isophthalic acid content is less than 2 mol%, the crystallization rate cannot be sufficiently delayed, and it is difficult to improve the stretch processability at a lower temperature while maintaining the gas barrier performance. When the stretching temperature is increased to obtain a stretched film having a thermal shrinkage rate at 150 ° C. of, for example, 30% or more, the haze of the film becomes higher than 2% / 30 ⁇ m. Therefore, if the isophthalic acid content is less than 2 mol%, it is impossible to achieve both high heat shrinkage and transparency after stretching.
  • the isophthalic acid content exceeds 20 mol%, the crystallization rate is greatly delayed, but the glass transition temperature becomes high. Therefore, it is necessary to increase the stretching temperature for stretching, and the heat shrinkage rate at 150 ° C. cannot be made 20% or more. If the isophthalic acid content exceeds 20 mol% and the crystallinity is excessively reduced, fusion between the pellets and powder occurs during drying of the pellets or in the solid phase polymerization process described above, and production of the raw material polyamide resin Is not preferable because it becomes extremely difficult.
  • the polyamide resin used in the present invention is crystalline, and the half crystallization time measured by constant temperature crystallization at 140 ° C. using a depolarization photometric method is 70 to 5000 seconds, preferably 80 to 5000 seconds. More preferably, it is 80 to 2500 seconds, and further preferably 100 to 1000 seconds.
  • the semi-crystallization time of the polyamide resin is 70 seconds or more, whitening and molding defects due to crystallization can be suppressed during the stretching process.
  • the half crystallization time exceeds 5000 seconds, the secondary workability is improved, but the crystallinity is excessively lowered.
  • the polyamide layer is softened during the hot water treatment, and a molded product such as a packaging material may be deformed, which is not preferable. Further, it is not preferable because the pellets and the powder are easily fused during drying of the pellets or in the solid phase polymerization process, and it becomes difficult to produce the raw material polyamide resin.
  • the dicarboxylic acid component contains 2 to 20 mol%, preferably 3 to 20 mol%, of isophthalic acid, a half crystallization time within the above range can be obtained.
  • the depolarization photometry method uses a phenomenon in which, when an amorphous or molten resin sample is crystallized, the birefringence (depolarization) of polarized light transmitted through the sample increases with the progress of crystallization.
  • This is a method for measuring the progress of crystallization. That is, when an amorphous or molten resin sample is crystallized at a constant temperature between two polarizing plates of a device comprising a light source, two orthogonal polarizing plates and a light receiving element, birefringence (depolarization) of polarized light transmitted through the sample is caused.
  • the amount of light that increases with the progress of crystallization, passes through the polarizing plate at the rear of the optical path, and reaches the light receiving element also increases with the progress of crystallization, and the light amount then becomes a constant value.
  • the isothermal crystallization is performed at a constant temperature of a resin sample in an amorphous state or a molten state below the melting point and above the glass transition point.
  • the semi-crystallization time is the time from when an amorphous or molten resin sample is put into an oil bath at 140 ° C. until the amount of transmitted light reaches half of the predetermined value (half is crystallized). It is a value that serves as an index of the crystallization rate.
  • the gas barrier layer (A) (polyamide stretched film) of the present invention has an oxygen gas permeability coefficient measured at 23 ° C. and 60% RH of 0.01 to 0.15 cc ⁇ mm / m 2 ⁇ day ⁇ atm. Is preferred.
  • the oxygen gas permeability coefficient is 0.15 cc ⁇ mm / m 2 ⁇ day ⁇ atm or less, it is not necessary to make the gas barrier layer (A) thicker than necessary in order to preserve the package contents well, The stretchability of the polyamide stretched film and the heat shrinkability at 150 ° C. are also good.
  • the heat-shrinkable film of the present invention comprising only a single-layered or multiple-layered polyamide film (gas barrier layer (A)) can be obtained by a film forming method such as a normal T-die method or a cylindrical die method (inflation method). Further, it is obtained by stretching a raw film made of at least one polyamide resin layer.
  • the melt extrusion temperature is preferably a melting point + 5 ° C. to a melting point + 40 ° C., more preferably a melting point + 10 ° C. to a melting point + 30 ° C. When the melt extrusion temperature is within the above range, decomposition, gel formation, coloring, foaming and the like can be avoided.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred because the heat shrinkability of the stretched polyamide film is improved.
  • the stretching method a normal uniaxial stretching method, simultaneous biaxial stretching method or sequential biaxial stretching method can be used.
  • the stretching temperature is preferably 90 to 160 ° C, more preferably 110 to 150 ° C. If the stretching temperature is 90 ° C. or higher, poor stretching and whitening of the obtained stretched film can be prevented. Moreover, it is preferable that it is 160 degrees C or less, since the heat shrinkability of the obtained stretched film is favorable and the heat shrink rate at 150 degrees C is 30% or more.
  • the product of the draw ratios in the MD direction and the TD direction is preferably 4 to 25 times, more preferably 9 to 25 times, and still more preferably 12 to 20 times (in the case of uniaxial stretching, the magnification in the non-stretching direction is 1). Double).
  • the stretching ratio in each of the MD direction and the TD direction is preferably 2 times or more, and more preferably 3 times or more.
  • the stretch orientation is sufficient, and the oxygen gas barrier property and mechanical strength are good. If it is 25 times or less, the film does not break during stretching, and the thermal shrinkage at 150 ° C. is 20% or more, preferably 30% or more.
  • the haze value of the gas barrier layer (A) (polyamide stretched film) of the present invention obtained as described above is preferably 2% / 30 ⁇ m or less.
  • high transparency with a Haze value of 0.1% / 30 ⁇ m can be obtained.
  • the heat shrinkage rate measured at a thickness of 25 ⁇ m and 150 ° C. is preferably 20 to 80% (area ratio), more preferably 30 to 80% (area ratio).
  • a multilayer heat-shrinkable film may be formed by combining the gas barrier layer (A) of the present invention and a film layer made of another thermoplastic resin. For example, by laminating the gas barrier layer (A) and the polypropylene film via an adhesive layer, a shock-resistant and flexible film can be improved, and a multilayer heat-shrinkable film having heat sealability can be obtained.
  • the multilayer heat-shrinkable film can be produced, for example, by laminating a thermoplastic resin film (non-stretched, uniaxially stretched or biaxially stretched) on the gas barrier layer (A) (polyamide stretched film) of the present invention (lamination method). . Lamination may be performed via an adhesive layer, or a thermoplastic resin film may be laminated on both sides of a polyamide stretched film.
  • the thermoplastic resin include low-density polyethylene, high-density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyester such as polystyrene and polyethylene terephthalate, and modified polyolefins. These can be used alone or in a mixture.
  • the thermoplastic resin film may be a single layer or a multilayer.
  • the resin for forming the adhesive layer include ethylene-vinyl acetate copolymer, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and maleic anhydride graft-modified products of polypropylene and polyester, or grafts thereof.
  • a resin composition mainly composed of a modified product can be used.
  • a multi-layer heat-shrinkable film is obtained by uniaxially or biaxially stretching a raw multi-layer film obtained by melt-coextrusion of the gas barrier layer (A), an adhesive resin, and a thermoplastic resin in the same manner as described above. It can also be obtained (multilayer stretching method). That is, a multi-layer raw film obtained by a film forming method such as a co-extrusion T-die method or a co-extrusion cylindrical die method (inflation method) is used as a heat-shrinkable stretched film composed only of the above-described single-layer or multiple-layer polyamide stretch films.
  • a multilayer heat-shrinkable film can be obtained by stretching at the same stretching method, stretching temperature, and stretching ratio as in the production of.
  • the layer structure of the multilayer heat-shrinkable film obtained by the laminating method and the multilayer stretching method of the present invention is a three-layer three-layer structure of (A) / (B) / (C), or (C) / (B) / (A) / (B) / (C) 3 types and 5 layers (however, A is a gas barrier layer, B is an adhesive layer, and C is a thermoplastic resin layer), but are limited thereto. It is not a thing.
  • the thickness of each gas barrier layer (A) is preferably 2 to 50 ⁇ m.
  • the thickness of the A layer is preferably 2 to 50 ⁇ m
  • the thickness of the B layer is 2 to 20 ⁇ m
  • the thickness of the C layer is preferably 10 to 100 ⁇ m
  • the total thickness is preferably 20 to 200 ⁇ m.
  • thermoplastic elastomers such as aliphatic polyamides such as nylon 6, nylon 66 and nylon 6-66, ionomers and ⁇ -olefin copolymers.
  • an antistatic agent, a lubricant, a release agent, an antioxidant, an ultraviolet absorber, a layered silicate, an inorganic or organic metal salt such as Co, Mn, Zn, a complex, or the like may be added.
  • the arbitrarily added resin, additive, and the like may be dry blended or melt kneaded using a single screw or twin screw extruder.
  • the temperature at which the packaging material obtained using the heat-shrinkable film of the present invention is thermally shrunk is preferably 80 to 170 ° C, more preferably 100 to 160 ° C.
  • the heat treatment temperature is 80 ° C. or higher, the heat shrinkage rate is sufficiently high, the adhesion to the contents to be stored is insufficient, and wrinkles that impair the appearance of the packaged product are difficult to occur.
  • the heat treatment temperature is 170 ° C. or lower, the contents surface does not deteriorate.
  • Oxygen permeability coefficient Measured according to JIS K-7126 (ASTM D3985) at 23 ° C. and 60% relative humidity using an oxygen permeability measuring device (model: OX-TRAN 10 / 50A) manufactured by Modern Controls. did. The oxygen permeability coefficient was calculated from the obtained oxygen permeability and the thickness of the sample.
  • Example 1 Charge a jacketed reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube so that the molar ratio of adipic acid is 96 mol% and isophthalic acid is 4 mol%. After sufficiently purging with nitrogen, the temperature was further raised to 170 ° C. under a nitrogen stream to bring the dicarboxylic acid component into a fluid state, and then metaxylylenediamine was added dropwise with stirring. During this time, the internal temperature was continuously raised to 245 ° C., and the water distilled with the addition of metaxylylenediamine was removed out of the system through a condenser and a cooler.
  • the internal temperature was continuously raised to 255 ° C., and the reaction was continued for 15 minutes. Thereafter, the internal pressure of the reaction system was continuously reduced to 600 mmHg over 10 minutes, and then the reaction was continued for 40 minutes. During this time, the reaction temperature was continuously raised to 260 ° C.
  • the inside of the reaction vessel was pressurized with nitrogen gas at a pressure of 0.2 MPa, the polymer was taken out as a strand from the nozzle at the bottom of the polymerization tank, and was cut after water cooling to obtain a pellet-shaped polymer (polyamide 1). Polyamide 1 obtained had a relative viscosity of 2.1 and a melting point of 234 ° C.
  • this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm.
  • the atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow.
  • the pressure was reduced to 1 torr or less, and the system temperature was further increased to 180 ° C. in 110 minutes. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature for 180 minutes.
  • the pressure reduction was terminated, the system temperature was lowered under a nitrogen stream, and the pellet was taken out when the temperature reached 60 ° C. (polyamide 2).
  • the obtained polyamide 2 had a relative viscosity of 2.5, a melting point of 234 ° C., and a glass transition point of 91 ° C.
  • Polyamide 2 was melt-extruded at 260 ° C. from a twin-screw extruder (PTM-30, manufactured by Plastics Engineering Laboratory), and a single-layer unstretched film having a thickness of 400 ⁇ m was produced by a T-die-cooling roll method. The resulting film had a half crystallization time of 90 seconds.
  • the stretched film thus obtained had a haze / 30 ⁇ m of 1.1% and an oxygen transmission coefficient of 0.06 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • Example 2 As in Example 1, except that the dicarboxylic acid component was 94 mol% adipic acid and 6 mol% isophthalic acid, synthesis of a solid phase polymerized polyamide resin (polyamide 3), production of a single-layer unstretched film, Fabrication was performed.
  • Polyamide 3 obtained had a relative viscosity of 2.7, a melting point of 231 ° C., and a glass transition point of 92 ° C.
  • the half crystallization time of the single layer unstretched film was 225 seconds.
  • the stretched film had a Haze / 30 ⁇ m of 0.4% and an oxygen permeability coefficient of 0.06 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the heat shrinkage at 150 ° C. was 37%. Table 1 shows the measurement results.
  • Example 3 Synthesis of solid phase polymerized polyamide resin (polyamide 4), preparation of single-layer unstretched film, preparation of stretched film in the same manner as in Example 1 except that the dicarboxylic acid component was 85 mol% adipic acid and 15 mol% isophthalic acid Went.
  • the obtained polyamide 4 had a relative viscosity of 2.7, a melting point of 216 ° C., and a glass transition point of 98 ° C.
  • the half crystallization time of the single layer unstretched film was 2000 seconds.
  • the stretched film had a Haze / 30 ⁇ m of 1.3% and an oxygen permeability coefficient of 0.06 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the heat shrinkage at 150 ° C. was 53%. Table 1 shows the measurement results.
  • Comparative Example 1 A solid phase polymerized polyamide resin (polyamide 5) was synthesized, a single-layer unstretched film was prepared, and a stretched film was prepared in the same manner as in Example 1 except that the dicarboxylic acid component was changed to 100 mol% adipic acid.
  • the obtained polyamide 5 had a relative viscosity of 2.6, a melting point of 240 ° C, and a glass transition point of 88 ° C.
  • the half crystallization time of the single layer unstretched film was as short as 30 seconds.
  • the stretched film had a Haze / 30 ⁇ m of 1.6% and an oxygen permeability coefficient of 0.06 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the heat shrinkage at 150 ° C. was insufficient at 15%. The results are shown in Table 2.
  • Example 4 Synthesis of solid phase polymerized polyamide resin (polyamide 6), preparation of a single-layer unstretched film, preparation of a stretched film in the same manner as in Example 1 except that the dicarboxylic acid component was 98 mol% adipic acid and 2 mol% isophthalic acid Went.
  • the obtained polyamide 6 had a relative viscosity of 2.6, a melting point of 237 ° C., and a glass transition point of 90 ° C.
  • the half crystallization time of the single layer unstretched film was 72 seconds.
  • the stretched film had a Haze / 30 ⁇ m of 1.2% and an oxygen permeability coefficient of 0.06 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the heat shrinkage at 150 ° C. was 22%. The results are shown in Table 2.
  • Comparative Example 2 Synthesis of solid phase polymerized polyamide resin (polyamide 7), preparation of a single-layer unstretched film, preparation of a stretched film in the same manner as in Example 1 except that the dicarboxylic acid components were 75 mol% adipic acid and 25 mol% isophthalic acid Went.
  • Polyamide 7 obtained had a relative viscosity of 2.4, a melting point not detected, and a glass transition point of 105 ° C.
  • the half crystallization time of the single layer unstretched film depolarization due to crystallization was not observed even after 5000 seconds. At a temperature of 115 ° C., fracture occurred and the film could not be stretched.
  • Table 2 The results are shown in Table 2.
  • Example 5 Except that the stretching temperature was set to 105 ° C., a solid phase polymerized polyamide resin was synthesized, a single-layer unstretched film was fabricated, and a stretched film was fabricated in the same manner as in Example 2.
  • the stretched film had a Haze / 30 ⁇ m of 0.5% and a heat shrinkage at 150 ° C. of 73%. The results are shown in Table 3.
  • Comparative Example 3 Except that the stretching temperature was set to 105 ° C., a solid phase polymerized polyamide resin was synthesized, a single-layer unstretched film was fabricated, and a stretched film was fabricated in the same manner as in Comparative Example 1.
  • the stretched film had a high Haze / 30 ⁇ m of 2.8%, and the thermal shrinkage at 150 ° C. was 36%.
  • Table 3 The results are shown in Table 3.
  • Comparative Example 4 A solid phase polymerized polyamide resin was synthesized, a single-layer unstretched film was prepared, and a stretched film was prepared in the same manner as in Comparative Example 2 except that the stretching temperature was 130 ° C.
  • the stretched film had a Haze / 30 ⁇ m of 1.3% and an oxygen permeability coefficient of 0.09 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the heat shrinkage at 150 ° C. was insufficient at 17%. The results are shown in Table 3.
  • Example 5 which was the same as Example 2 except that the stretching temperature was lowered, the half crystallization time was within the range defined by the present invention, so that even if the stretching temperature was lowered, it contracted without impairing the transparency. A stretched film with an improved rate was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyamides (AREA)
  • Laminated Bodies (AREA)

Abstract

 ガスバリヤー層(A)を少なくとも1層含む熱収縮性フィルム。ガスバリヤー層(A)は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸80~98モル%とイソフタル酸2~20モル%を含むジカルボン酸成分から得られたポリアミド樹脂の延伸フィルムからなる。前記ポリアミド樹脂は適度な結晶化速度を有するので低温で延伸しても白化が生じることがなく、高熱収縮率と高透明性を兼ね備える熱収縮性フィルムを得ることができる。

Description

熱収縮性フィルム
 本発明は、熱収縮性フィルムに関する。詳しくは、ハムやソーセージ等の加工食肉製品や水産加工品等の収縮包装に適した、ガスバリヤー性、透明性に優れた包装用熱収縮性フィルムに関する。
 畜肉のブロック、ハムやソーセージ等の加工食肉製品や水産加工品の包装及び輸送には、食品の劣化、変色、褐変を防ぐことが必要なことから、ガスバリヤー性フィルムが広く利用されている。またこれら食品の包装には、加熱によって包装材料を収縮させることにより内容物に密着して張りのある外観が必要であることから、熱収縮性フィルムが広く利用されている。ガスバリヤー性を有する熱収縮性フィルムとしては、ポリ塩化ビニリデン(以下PVDCと略すことがある)を積層したフィルムが知られているが、塩素を含むPVDCは焼却時にダイオキシン発生の要因となることから、脱塩素の包装材料が要望されている。
 塩素を含まないガスバリヤー性樹脂としては、ナイロン6やポリメタキシリレンアジパミド(以下、N-MXD6と略することがある)といったポリアミド樹脂やエチレンビニル共重合体(以下EVOHと略することがある)が知られている。なかでもN-MXD6は酸素バリヤー性、特に高湿度環境下やボイルやレトルト処理といった加熱殺菌処理後の酸素バリヤー性に優れ、且つ高い機械的性能を有しているので、食品包装用材料として好適であり、ポリオレフィンといったベースフィルムに積層する方法(例えば特許文献1)や、ナイロン6といった他ポリマーと混合して利用する方法(例えば特許文献2)が開示されている。
特開平5-57855号公報 特開平5-261874号公報
 N-MXD6の延伸フィルムはポリプロピレンフィルムやポリスチレンフィルムなどと比べて収縮率は不十分である。一方、高い収縮率を得るためには延伸温度を下げる必要があるが、冷延伸により延伸フィルムの透明性が損なわれることから、透明性と高い収縮率を両立させたN-MXD6の延伸フィルムを得ることは困難であった。
 本発明の目的は、上記課題を解決し、高ガスバリヤー性、高収縮率および高透明性を同時に有する熱収縮性フィルムを提供することである。
 本発明者は、鋭意検討した結果、特定のモノマー組成比にすることによって結晶化速度を特定範囲にしたポリアミド樹脂の延伸フィルム(ポリアミド延伸フィルム)が、高熱収縮率を得るために低い温度で延伸しても透明性に優れ、且つガスバリヤー性にも優れることを見出し本発明の完成に至った。
 すなわち、本発明は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸80~98モル%とイソフタル酸2~20モル%を含むジカルボン酸成分から得られたポリアミド樹脂の延伸フィルムからなるガスバリヤー層(A)を少なくとも1層含む熱収縮性フィルムに関するものである。
 さらに本発明は、前記熱収縮性フィルムを熱処理して得られる熱収縮フィルムに関する。
 さら本発明は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸80~98モル%とイソフタル酸2~20モル%を含むジカルボン酸成分から得られたポリアミド樹脂のフィルムを一軸または二軸延伸する工程を含む熱収縮性フィルムの製造方法に関する。
 本発明によれば、熱収縮性フィルムとして実用上充分な熱収縮率を有すると共に、優れた透明性、酸素ガスバリヤー性を有するポリアミド樹脂層(ポリアミド延伸フィルム)を含む熱収縮性フィルムを提供することができる。しかも、ボイル処理あるいはレトルト処理をしてもガスバリヤー性の低下が少なく、ガスバリヤー性の回復も早いことから、食品、医療、化粧品、工業品等の包装材料として好適である。
 本発明において使用されるポリアミド樹脂は、メタキシリレンジアミンを70モル%以上(100%を含む)含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸を80~98モル%モル%、イソフタル酸を2~20モル%含むジカルボン酸成分とを重縮合して得られる。
 上記ポリアミド樹脂は、溶融重縮合法により製造される。例えば、メタキシリレンジアミンとアジピン酸、イソフタル酸からなるナイロン塩を水の存在下に、加圧下で昇温し、加えた水および縮合水を取り除きながら溶融状態で重合させる方法により製造される。また、メタキシリレンジアミンを溶融状態のアジピン酸、イソフタル酸混合物に直接加えて、常圧下で重縮合する方法によっても製造される。この場合、反応系を固化させる事の無いように、メタキシリレンジアミンを連続的に加えて、その間の反応温度が生成するオリゴアミドおよびポリアミドの融点以上となるように反応系を昇温しつつ、重縮合が進められる。
 溶融重合によって得られる比較的低分子量のポリアミドの相対粘度(ポリアミド樹脂1gを96%硫酸溶液100mlに溶解し測定した値、以下同じ)は、通常、2.28以下である。溶融重合後の相対粘度が2.28以下であると、ゲル状物質の生成が少なく、着色や白化が少ない高品質のポリアミド樹脂が得られるが、低粘度であるためフィルム等にするとドローダウンを生じたり、ポリオレフィンフィルムなどとの多層化の際にポリアミド層の厚みムラを生じる場合があり、均一な多層構造物を得る事が困難となる。そこで必要に応じて、溶融重合で得られた比較的低分子量のポリアミド樹脂は次いで固相重合される。固相重合は、例えば、比較的低分子量のポリアミド樹脂をペレットあるいは粉末状にして、これを減圧下あるいは不活性ガス雰囲気下に、150℃からポリアミドの融点の温度範囲に加熱することにより実施される。固相重合で得られるポリアミドの相対粘度は、2.3~4.2が好ましい。この範囲であれば、ドローダウンや多層フィルムにおけるポリアミド層の厚みムラ等の少ない、良好なフィルムが得られる。
 本発明でポリアミド樹脂の原料として使用されるジアミン成分は、メタキシリレンジアミンを70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上(それぞれ100%を含む)含む。ジアミン成分中のメタキシリレンジアミンが70モル%以上であると、それから得られるポリアミド樹脂は優れたガスバリヤー性を発現することができる。
 また、本発明において、メタキシリレンジアミン以外のジアミンとして、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミン、パラフェニレンジアミン、パラキシリレンジアミン等の芳香族ジアミン、ビス(アミノメチル)シクロヘキサン等の脂環族ジアミン類等が例示できるが、これらに限定されるものではない。
 本発明においてポリアミド樹脂の原料として使用されるジカルボン酸成分は、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸を80~98モル%、好ましくは80~97モル%、より好ましくは85~97モル%、さらに好ましくは85~95モル%含む。α,ω-直鎖脂肪族ジカルボン酸の例として、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示できるが、これら中でもアジピン酸が好ましい。
 前記ジカルボン酸成分は、さらに、イソフタル酸を2~20モル%、好ましくは3~20モル%、より好ましくは3~15モル%、さらに好ましくは5~15モル%含む。イソフタル酸含量が2モル%未満では結晶化速度を充分遅延させることができず、ガスバリヤー性能を維持しつつより低い温度での延伸加工性を向上させることが難しい。延伸温度を上げて150℃における熱収縮率が例えば30%以上の延伸フィルムにすると、該フィルムのHazeは2%/30μmよりも高くなる。従って、イソフタル酸含量が2モル%未満では、高い熱収縮率と延伸後の透明性を両立させることが出来ない。イソフタル酸含量が20モル%を超える場合、結晶化速度は大きく遅延するが、ガラス転移温度が高くなる。その為、延伸するには延伸温度を高くする必要があり、150℃における熱収縮率を20%以上とすることが出来ない。またイソフタル酸含量が20モル%を超えて、結晶性を過度に低下させると、ペレットの乾燥時や前記した固相重合工程でペレットや粉体間での融着が起こり、原料ポリアミド樹脂の製造が著しく困難となるため好ましくない。
 本発明において使用されるポリアミド樹脂は結晶性であり、且つ、脱偏光光度法を用いて140℃での定温結晶化により測定した半結晶化時間が、70~5000秒、好ましくは80~5000秒、より好ましくは80~2500秒、さらに好ましくは100~1000秒である。該ポリアミド樹脂の半結晶化時間を70秒以上に制御することで、延伸工程時に結晶化による白化や成形不良を抑制する事が出来る。一方、半結晶化時間が5000秒を超える場合、二次加工性は向上するが、結晶性が過度に低下する。そのため、熱水処理時にポリアミド層が軟化し、包装材などの成形品が変形する可能性があるため好ましくない。また、ペレットの乾燥時や固相重合工程でペレットや粉体間の融着が起こり易くなり、原料ポリアミド樹脂の製造が困難になるため、好ましくない。ジカルボン酸成分がイソフタル酸を2~20モル%、好ましくは3~20モル%含むことにより、上記範囲内の半結晶化時間が得られる。
 前記の脱偏光光度法とは、非晶または溶融状態の樹脂試料を結晶化させると、試料を透過する偏光の複屈折(脱偏光)が結晶化の進行とともに増大する現象を利用して樹脂の結晶化の進行度を測定する方法である。すなわち、光源、直交する2つの偏光板および受光素子からなる装置の2つの偏光板の間で非晶または溶融状態の樹脂試料を定温結晶化させると、試料を透過する偏光の複屈折(脱偏光)が結晶化の進行とともに増大し、光路後方の偏光板を通過して受光素子に到達する光の量も結晶化の進行とともに増加し、光量はその後一定値となる。この光の量(強度)を測定することにより結晶化の進行度が分かる。定温結晶化は、非晶状態または溶融状態の樹脂試料を融点以下且つガラス転移点以上の一定の温度で行う。本発明において半結晶化時間は、非晶または溶融状態の樹脂試料を140℃の油浴に投入したときから透過光量が上記一定値の半分に達する(半分が結晶化する)までの時間であり、結晶化速度の指標となる値である。
 本発明のガスバリヤー層(A)(ポリアミド延伸フィルム)の23℃、60%RH条件下で測定した酸素ガス透過係数は、0.01~0.15cc・mm/m2・day・atmであるのが好ましい。酸素ガス透過係数が0.15cc・mm/m2・day・atm以下である場合、包装内容物を良好に保存するためにガスバリヤー層(A)を必要以上に厚くする必要がないので、延伸性が良好であり、ポリアミド延伸フィルムの透明性、150℃における熱収縮性も良好である。
 単層または複数層のポリアミド延伸フィルム(ガスバリヤー層(A))のみからなる本発明の熱収縮性フィルムは、通常のTダイ法、円筒ダイ法(インフレーション法)等の成膜方法により得られた少なくとも1層のポリアミド樹脂層からなる原反フィルムを延伸することにより得られる。溶融押出温度は、融点+5℃~融点+40℃が好ましく、融点+10℃~融点+30℃がより好ましい。溶融押出温度が上記範囲内であると、分解やゲル生成、着色、発泡などを避けることができる。延伸は一軸延伸でも二軸延伸でもよいが、ポリアミド延伸フィルムの熱収縮性が良好となるので、二軸延伸が好ましい。延伸方法としては、通常の一軸延伸法、同時二軸延伸法あるいは逐次二軸延伸法を用いることができる。延伸温度は、好ましくは90~160℃、より好ましくは110~150℃で行うのが良い。延伸温度が90℃以上であると延伸不良、得られた延伸フィルムの白化を防止することができる。また160℃以下であると、得られた延伸フィルムの熱収縮性が良好であり、150℃における熱収縮率が30%以上となるため好ましい。
 MD方向とTD方向との延伸倍率の積は好ましくは4~25倍、より好ましくは9~25倍、更に好ましくは12~20倍である(一軸延伸の場合は、延伸しない方向の倍率を1倍とする)。MD方向とTD方向のそれぞれの方向の延伸倍率は2倍以上が好ましく、3倍以上がより好ましい。延伸倍率の積が4倍以上であると、延伸配向が十分であり、酸素ガスバリヤー性、機械強度が良好である。また25倍以下であると、延伸時にフィルムが破断することがなく、150℃における熱収縮率が20%以上、好ましくは30%以上となる。
 上記のようにして得られた本発明のガスバリヤー層(A)(ポリアミド延伸フィルム)のHaze値は好ましくは2%/30μm以下である。本発明では、Haze値が0.1%/30μmの高透明性を得ることが可能である。また、厚さ25μm、150℃で測定した熱収縮率は好ましくは20~80%(面積比)、より好ましくは30~80%(面積比)である。
 本発明のガスバリヤー層(A)と他の熱可塑性樹脂からなるフィルム層を組み合わせて多層熱収縮性フィルムにしてもよい。例えば、ガスバリヤー層(A)とポリプロピレンフィルムとを接着層を介して積層することにより、耐衝撃性、柔軟性が改善し、ヒートシール性を備えた多層熱収縮性フィルムを得ることが出来る。
 多層熱収縮性フィルムは、例えば、本発明のガスバリヤー層(A)(ポリアミド延伸フィルム)に熱可塑性樹脂フィルム(無延伸、一軸延伸または二軸延伸)をラミネートすることにより製造できる(ラミネート法)。接着層を介してラミネートしても良いし、熱可塑性樹脂フィルムをポリアミド延伸フィルムの両面にラミネートしても良い。該熱可塑性樹脂としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリエチレンテレフタレート等といったポリエステル、変性ポリオレフィン等が挙げられ、これらは単独でも混合物でも使用できる。該熱可塑性樹脂フィルムは単層でも多層でも良い。また接着層を形成する樹脂としては、エチレン-酢酸ビニル共重合体、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン及びポリエステルなどのポリマーの無水マレイン酸グラフト変性物、又はこれらのグラフト変性物を主体とする樹脂組成物を使用することが出来る。
 またガスバリヤー層(A)と、接着性樹脂、および熱可塑性樹脂を、それぞれ溶融共押出して得た原反多層フィルムを上記と同様にして一軸延伸または二軸延伸して多層熱収縮性フィルムを得ることも出来る(多層延伸法)。すなわち、共押出Tダイ法、共押出円筒ダイ法(インフレーション法)等の成膜法により得られた多層原反フィルムを、上記単層または複数層のポリアミド延伸フィルムのみからなる熱収縮性延伸フィルムの製造と同様の延伸方法、延伸温度、延伸倍率で延伸することにより多層熱収縮性フィルムが得られる。
 本発明のラミネート法および多層延伸法で得られた多層熱収縮性フィルムの層構成は、(A)/(B)/(C)の3種3層構成や、(C)/(B)/(A)/(B)/(C)の3種5層構成(ただし、Aはガスバリヤー層、Bは接着層、Cは熱可塑性樹脂層)が一般的であるが、これらに限定されるものではない。
 本発明の熱収縮性フィルムが単層または複数層のポリアミド延伸フィルム(ガスバリヤー層(A))のみからなる場合、各ガスバリヤー層(A)の厚みは2~50μmであるのが好ましい。多層熱収縮性フィルムの場合、A層の厚みは2~50μm、B層の厚みは2~20μm、C層の厚みは10~100μm、全厚みは20~200μmであるのが好ましい。
 本発明のガスバリヤー層(A)には、柔軟性や耐衝撃性を改善するため、本発明の効果(高ガスバリヤー性、高収縮率および高透明性)を損なわない範囲において、必要に応じてナイロン6、ナイロン66、ナイロン6-66等の脂肪族ポリアミド、アイオノマー、α-オレフィン共重合体等の熱可塑性エラストマーを添加することも可能である。また、必要に応じて帯電防止剤、滑剤、離型剤、酸化防止剤、紫外線吸収剤、層状珪酸塩、Co、Mn、Znなどの無機または有機金属塩、錯体等を加えても構わない。任意に添加する樹脂、添加剤等は、ドライブレンドしても良いし、単軸あるいは二軸押出機を用いて溶融混練しても良い。
 本発明の熱収縮性フィルムを用いて得られた包装材などを熱収縮させる温度は80~170℃が好ましく、より好ましくは100~160℃である。熱処理温度が80℃以上であると、熱収縮率が充分高く、保存する内容物への密着が不十分であり、包装された製品の外観を損なうシワ等ができにくい。熱処理温度が170℃以下であると、内容物表面が劣化することがない。
 以下に実施例および比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下に実施例等における評価方法について記す。
(1)相対粘度
 ポリアミド樹脂1gを精秤し、96%硫酸100ccに20~30℃で攪拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5ccを採り、25℃±0.03℃の恒温槽中で10分放置後、落下時間(t)を測定した。また96%硫酸そのものの落下時間(t0)も同様に測定した。tおよびt0から次式(A)により相対粘度を求めた。
           相対粘度=t/t0    (A)
(2)半結晶化時間
 ポリマー結晶化速度測定装置((株)コタキ製作所製、型式:MK701)を使用し、以下の条件の脱偏光光度法により測定した。
  試料溶融温度:260℃
  試料溶融時間:3分
  結晶化浴温度:140℃
(3)Haze(曇価)
 日本電色工業(株)製の色差・濁度測定装置COH-300Aを使用し、JIS K-7105(ASTM D-1003)に準じて測定した。
(4)酸素透過係数
 モダンコントロールズ社製酸素透過率測定装置(型式:OX-TRAN 10/50A)を使用し、23℃、相対湿度60%でJIS K-7126(ASTM D3985)に準じて測定した。得られた酸素透過率と試料の厚みから酸素透過係数を算出した。
(5)150℃熱収縮率
 厚さ25μmのポリアミド延伸フィルムの中央部に10cm×10cmの正方形を描いた後、該フィルムを熱風乾燥機に投入して150℃で30秒間熱処理を行った。熱処理後の正方形の面積を測定し、熱処理前後の面積から収縮率を求めた。
実施例1
 撹拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付反応缶に、モル比でアジピン酸が96モル%とイソフタル酸が4モル%となる様に投入し、十分窒素置換した後、さらに窒素気流下で170℃まで昇温してジカルボン酸成分を流動状態とした後、メタキシリレンジアミンを撹拌下に滴下した。この間、内温を連続的に245℃まで昇温させ、またメタキシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。
 メタキシリレンジアミン滴下終了後、内温を連続的に255℃まで昇温し、15分間反応を継続した。その後、反応系内圧を600mmHgまで10分間で連続的に減圧し、その後、40分間反応を継続した。この間、反応温度を260℃まで連続的に昇温させた。反応終了後、反応缶内を窒素ガスにて0.2MPaの圧力を掛けポリマーを重合槽下部のノズルよりストランドとして取出し、水冷後に切断し、ペレット形状のポリマーを得た(ポリアミド1)。得られたポリアミド1の相対粘度は2.1、融点は234℃、であった。
 次にこのペレットをステンレス製の回転ドラム式の加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1torr以下まで減圧を行い、更に系内温度を110分間で180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて180分間、固相重合反応を継続した。
 反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出した(ポリアミド2)。得られたポリアミド2の相対粘度は2.5、融点は234℃、ガラス転移点91℃であった。ポリアミド2を二軸押出機(プラスチック工学研究所製PTM-30)から260℃で溶融押出して、Tダイ-冷却ロール法により400μm厚みの単層無延伸フィルムを作製した。得られたフィルムの半結晶化時間は、90秒であった。
 作製した単層無延伸フィルムを、二軸延伸装置(テンター法、((株)東洋精機製作所製)を用いて、延伸温度115℃でMD方向×TD方向=4×4倍に同時二軸延伸して延伸フィルムを得た。得られた延伸フィルムのHaze/30μmは1.1%、酸素透過係数は、0.06cc・mm/m2・day・atmであった。
 次に作製した延伸フィルムを150℃の熱風乾燥機に投入し、熱処理前後の収縮率を測定した。150℃の熱収縮率は、33%であった。結果を表1に示す。
実施例2
 ジカルボン酸成分をアジピン酸94モル%、イソフタル酸6モル%とした以外は、実施例1と同様に、固相重合ポリアミド樹脂(ポリアミド3)の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 得られたポリアミド3の相対粘度は2.7、融点は231℃、ガラス転移点92℃であった。単層無延伸フィルムの半結晶化時間は、225秒であった。延伸フィルムのHaze/30μmは0.4%、酸素透過係数は、0.06cc・mm/m2・day・atmであった。150℃の熱収縮率は37%であった。各測定結果を表1に示す。
実施例3
 ジカルボン酸成分をアジピン酸85モル%、イソフタル酸15モル%とした以外は、実施例1と同様に固相重合ポリアミド樹脂(ポリアミド4)の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 得られたポリアミド4の相対粘度は2.7、融点は216℃、ガラス転移点98℃であった。単層無延伸フィルムの半結晶化時間は、2000秒であった。延伸フィルムのHaze/30μmは1.3%、酸素透過係数は、0.06cc・mm/m2・day・atmであった。150℃の熱収縮率は53%であった。各測定結果を表1に示す。
比較例1
 ジカルボン酸成分をアジピン酸100モル%とした以外は、実施例1と同様に固相重合ポリアミド樹脂(ポリアミド5)の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 得られたポリアミド5の相対粘度は2.6、融点は240℃、ガラス転移点88℃であった。単層無延伸フィルムの半結晶化時間は30秒と短かった。延伸フィルムのHaze/30μmは1.6%、酸素透過係数は、0.06cc・mm/m2・day・atmであった。150℃の熱収縮率は15%と不十分であった。結果を表2に示す。
実施例4
 ジカルボン酸成分をアジピン酸98モル%、イソフタル酸2モル%とした以外は、実施例1と同様に固相重合ポリアミド樹脂(ポリアミド6)の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 得られたポリアミド6の相対粘度は2.6、融点は237℃、ガラス転移点90℃であった。単層無延伸フィルムの半結晶化時間は、72秒であった。延伸フィルムのHaze/30μmは1.2%、酸素透過係数は、0.06cc・mm/m2・day・atmであった。150℃の熱収縮率は22%であった。結果を表2に示す。
比較例2
 ジカルボン酸成分をアジピン酸75モル%、イソフタル酸25モル%とした以外は、実施例1と同様に固相重合ポリアミド樹脂(ポリアミド7)の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 得られたポリアミド7の相対粘度は2.4、融点は検出されず、ガラス転移点105℃であった。単層無延伸フィルムの半結晶化時間は、5000秒以上経過しても結晶化による脱偏光が観察されなかった。115℃の温度では破断を生じて延伸出来なかった。結果を表2に示す。
実施例5
 延伸温度を105℃とした以外は、実施例2と同様に固相重合ポリアミド樹脂の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 延伸フィルムのHaze/30μmは0.5%、150℃の熱収縮率は73%であった。結果を表3に示す。
比較例3
 延伸温度を105℃とした以外は、比較例1と同様に固相重合ポリアミド樹脂の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 延伸フィルムのHaze/30μmは2.8%と高く、150℃の熱収縮率は36%であった。結果を表3に示す。
比較例4
 延伸温度を130℃とした以外は、比較例2と同様に固相重合ポリアミド樹脂の合成、単層無延伸フィルムの作製、延伸フィルムの作製を行った。
 延伸フィルムのHaze/30μmは1.3%、酸素透過係数は、0.09cc・mm/m2・day・atmであった。150℃の熱収縮率は17%と不十分であった。結果を表3に示す。
 実施例1~5では適度な結晶化速度であることから、得られた延伸フィルムは、実用上充分な熱収縮性と優れた透明性を兼ね備えていた。比較例1、2、4では、ポリアミド樹脂のジカルボン酸成分の組成が本発明の範囲外であるため、半結晶化時間が本発明で規定する範囲外になり、熱収縮性に劣る延伸フィルムが得られた。また、延伸温度を下げた以外は比較例1と同様である比較例3では、収縮率は向上したが、半結晶化時間が短い(結晶加速度が大きい)ために白化が生じ透明性に劣る延伸フィルムが得られた。一方、延伸温度を下げた以外は実施例2と同様である実施例5では、半結晶化時間が本発明で規定する範囲内であるため、延伸温度を下げても透明性を損なうことなく収縮率が向上した延伸フィルムが得られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (9)

  1. メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸80~98モル%とイソフタル酸2~20モル%を含むジカルボン酸成分から得られたポリアミド樹脂の延伸フィルムからなるガスバリヤー層(A)を少なくとも1層含む熱収縮性フィルム。
  2. 前記ガスバリヤー層(A)のHazeが2%/30μm以下である請求項1記載の熱収縮性フィルム。
  3. 前記ガスバリヤー層(A)の酸素ガス透過係数が、温度23℃、60%RHの条件下において0.01~0.15cc・mm/m2・day・atmである請求項1記載の熱収縮性フィルム。
  4. 前記ガスバリヤー層(A)の150℃における熱収縮率が20~80%(面積比)である請求項1記載の熱収縮性フィルム。
  5. 前記ポリアミド樹脂の脱偏光光度法により測定した半結晶化時間が、140℃において70~5000秒である請求項1記載の熱収縮性フィルム。
  6. 前記ガスバリヤー層(A)が、90~160℃で、MD方向とTD方向の延伸倍率の積が4~25倍で延伸されたフィルムである請求項1記載の熱収縮性フィルム。
  7. 請求項1記載の熱収縮性フィルムを熱処理して得られる熱収縮フィルム。
  8. メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸80~98モル%とイソフタル酸2~20モル%を含むジカルボン酸成分から得られたポリアミド樹脂のフィルムを一軸または二軸延伸する工程を含む熱収縮性フィルムの製造方法。
  9. 前記延伸を90~160℃でMD方向とTD方向との延伸倍率の積が4~25倍になるように行う請求項8記載の製造方法。
PCT/JP2010/051336 2009-02-04 2010-02-01 熱収縮性フィルム WO2010090154A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010549456A JP5659793B2 (ja) 2009-02-04 2010-02-01 熱収縮性フィルム
US13/147,268 US20110288266A1 (en) 2009-02-04 2010-02-01 Heat-shrinkable film
PL10738486T PL2395044T3 (pl) 2009-02-04 2010-02-01 Folia termokurczliwa
CN2010800066780A CN102307936A (zh) 2009-02-04 2010-02-01 热收缩性薄膜
ES10738486.9T ES2554385T3 (es) 2009-02-04 2010-02-01 Película termorretráctil
EP10738486.9A EP2395044B1 (en) 2009-02-04 2010-02-01 Heat-shrinkable film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009024004 2009-02-04
JP2009-024004 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090154A1 true WO2010090154A1 (ja) 2010-08-12

Family

ID=42542048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051336 WO2010090154A1 (ja) 2009-02-04 2010-02-01 熱収縮性フィルム

Country Status (10)

Country Link
US (1) US20110288266A1 (ja)
EP (1) EP2395044B1 (ja)
JP (1) JP5659793B2 (ja)
KR (1) KR101629050B1 (ja)
CN (1) CN102307936A (ja)
ES (1) ES2554385T3 (ja)
PL (1) PL2395044T3 (ja)
PT (1) PT2395044E (ja)
TW (1) TWI492963B (ja)
WO (1) WO2010090154A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042342A1 (de) * 2010-10-12 2012-04-12 Huhtamaki Ronsberg Zn Der Huhtamaki Deutschland Gmbh & Co. Kg Tubenlaminatfolie mit wenigstens einer orientierten Barrierelage sowie wenigstens teilweise aus dieser gebildete Tubenverpackung
US9624019B2 (en) * 2012-11-09 2017-04-18 Winpak Films Inc. High oxygen and water barrier multilayer film
PL2923832T3 (pl) 2012-11-22 2019-09-30 Gunze Limited Folia termokurczliwa
CN106976290B (zh) * 2017-03-15 2019-01-04 嘉浦薄膜新材料(昆山)有限公司 高性能包装用复合薄膜
CN108586714B (zh) * 2018-05-07 2021-01-22 上海棚发膜结构有限公司 一种三乙烯四胺改性的树脂膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387254A (ja) * 1989-06-28 1991-04-12 Mitsubishi Kasei Corp ガスバリヤー性積層体
JPH03115460A (ja) * 1989-07-21 1991-05-16 Amoco Corp ガス遮断性の改良されたポリアミド組成物
JPH0557855A (ja) 1991-07-03 1993-03-09 Mitsubishi Kasei Polytec Co ヒートシール可能な熱収縮性積層フイルム
JPH05261874A (ja) 1992-03-17 1993-10-12 Okura Ind Co Ltd ポリアミド系熱収縮性多層フィルム
EP0987103A1 (en) * 1998-09-14 2000-03-22 Cryovac, Inc. Heat-shrinkable multilayer thermoplastic film
JP2004351769A (ja) * 2003-05-29 2004-12-16 Mitsubishi Gas Chem Co Inc ガスバリア性多層構造物
JP2006152288A (ja) * 2004-11-08 2006-06-15 Mitsubishi Gas Chem Co Inc 芳香族ポリアミド延伸フィルム
JP2008188975A (ja) * 2007-02-08 2008-08-21 Mitsubishi Gas Chem Co Inc 多層構造物
JP2010052402A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Chemicals Corp 共押出延伸多層フィルム、ならびに、これを用いた筒状フィルム成形体および筒状包装体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195211A (ja) * 1996-12-27 1998-07-28 Kureha Chem Ind Co Ltd 包装用フィルムまたはシート
JP4495264B2 (ja) * 1998-04-24 2010-06-30 株式会社クレハ 熱収縮性多層フィルム
DE69924672T2 (de) * 1998-06-26 2006-03-09 Kureha Kagaku Kogyo K.K. Biaxial gestreckte Mehrschichtfolie
JP2001310386A (ja) * 2000-04-28 2001-11-06 Unitika Ltd 熱収縮性フィルム
JP2001354787A (ja) * 2000-06-14 2001-12-25 Unitika Ltd 熱収縮性ポリアミドフィルム
EP1792933B1 (en) * 2004-08-17 2012-12-05 Mitsubishi Gas Chemical Company, Inc. Stretched polyamide film
US20070031546A1 (en) * 2005-08-05 2007-02-08 Curwood, Inc. Polyester and polyamide blend containing article for packaging a CO2 respiring foodstuff
EP2532712B1 (en) * 2006-05-31 2013-11-27 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
US7687123B2 (en) * 2007-01-29 2010-03-30 Cryovac, Inc. Shrink film containing semi-crystalline polyamide and process for making same
US20080182052A1 (en) * 2007-01-29 2008-07-31 Cryovac, Inc. Multilayer heat-shrinkable film of high transparency, low haze, and high semi-crystalline polyamide content

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387254A (ja) * 1989-06-28 1991-04-12 Mitsubishi Kasei Corp ガスバリヤー性積層体
JPH03115460A (ja) * 1989-07-21 1991-05-16 Amoco Corp ガス遮断性の改良されたポリアミド組成物
JPH0557855A (ja) 1991-07-03 1993-03-09 Mitsubishi Kasei Polytec Co ヒートシール可能な熱収縮性積層フイルム
JPH05261874A (ja) 1992-03-17 1993-10-12 Okura Ind Co Ltd ポリアミド系熱収縮性多層フィルム
EP0987103A1 (en) * 1998-09-14 2000-03-22 Cryovac, Inc. Heat-shrinkable multilayer thermoplastic film
JP2004351769A (ja) * 2003-05-29 2004-12-16 Mitsubishi Gas Chem Co Inc ガスバリア性多層構造物
JP2006152288A (ja) * 2004-11-08 2006-06-15 Mitsubishi Gas Chem Co Inc 芳香族ポリアミド延伸フィルム
JP2008188975A (ja) * 2007-02-08 2008-08-21 Mitsubishi Gas Chem Co Inc 多層構造物
JP2010052402A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Chemicals Corp 共押出延伸多層フィルム、ならびに、これを用いた筒状フィルム成形体および筒状包装体

Also Published As

Publication number Publication date
JP5659793B2 (ja) 2015-01-28
CN102307936A (zh) 2012-01-04
JPWO2010090154A1 (ja) 2012-08-09
EP2395044B1 (en) 2015-09-23
PT2395044E (pt) 2015-11-17
KR20110132322A (ko) 2011-12-07
EP2395044A1 (en) 2011-12-14
TW201035166A (en) 2010-10-01
KR101629050B1 (ko) 2016-06-09
PL2395044T3 (pl) 2016-03-31
TWI492963B (zh) 2015-07-21
ES2554385T3 (es) 2015-12-18
EP2395044A4 (en) 2013-09-04
US20110288266A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CA2586198C (en) Stretched aromatic-polyamide film
WO2017010390A1 (ja) 延伸フィルム、延伸フィルムの製造方法、および、ポリアミド樹脂組成物
JP5659793B2 (ja) 熱収縮性フィルム
KR101229154B1 (ko) 폴리아미드계 연신 필름
WO2009154263A1 (ja) 突起部分を有する物品用包装フィルム
JPS6024814B2 (ja) 樹脂組成物
EP2014717B1 (en) Stretched product of thermoplastic resin composition having good gas-barrier properties
JP4770324B2 (ja) ポリアミド系延伸フィルム
WO2006025528A1 (ja) 多層ペレットおよび樹脂成形品
JP3055137B2 (ja) 多層フィルムおよび多層シート
JP2007211159A (ja) 樹脂組成物および多層構造物
JPWO2019208687A1 (ja) 延伸フィルム、包装材料および延伸フィルムの製造方法
JP2018053033A (ja) ポリアミド樹脂組成物および多層成形体
JP5188407B2 (ja) 二軸延伸ポリアミド積層フィルム及びその製造方法
JP4474807B2 (ja) フィルム用ポリアミド樹脂組成物
JP2005146207A (ja) 延伸フィルム
JPH0368642A (ja) 熱可塑性樹脂組成物およびその延伸フィルム
JPH1060270A (ja) ポリアミド樹脂
JPH05140449A (ja) 熱可塑性樹脂組成物およびその成形物
JPH09187902A (ja) 多層成形物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006678.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549456

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117018012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13147268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010738486

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE